
Dedicated to my teachers:
Professor Aleksandr Aleksandrovich Nikol’skii

and Vera Alekseevna To rzhkova

Abstract. This is a collection of topical hydrodynamic
problems of different degrees of complexity, which are not
ripe for mathematical modelling or for numerical calcula-
tions. Hints for obtaining solutions are given. Attention is
concentrated on unexpected analogies between phenomena
of different kinds and on establishment of new links
between what are at first sight unrelated or isolated facts.

Th e feeling of mystery is the most
beautiful feeling that man can experience.
It is a source of any true art and science.

One who has never experienced this feeling,
who does not know what it is to stop and

think seized in enthralling rapture, is like a
dead man and his eyes are closed ...

A Einstein

1. Introduction

In the last decades the interest in physics has shifted from
field theory and from elementary particles to mechanics.

Previously regarded as a fully complete branch of knowl-
edge, mechanics has undergone profound changes.
Gradually all new surprising properties of the evolution
of dynamic systems have become clear and so has the
decisive role of such antagonisms as stability – instability,
randomness – regularity, continuity – discreteness, symme-
try – asymmetry, evolution – revolution, and reversibility –
irreversibility.

We can now speak of the establishment of a new science
called synergetics which combines many branches of natural
sciences ranging from astronomy to biology, and which
largely relies on hydrodynamics (for the literature, see
Ref. [1]). Convergence of sciences has led to a situation in
which hydrodynamics is becoming part of synergetics. Only
two divisions of hydrodynamics have become detached
from the main body: they are physical and computational
hydrodynamics. Physical hydrodynamics includes kinetics,
flow of quantum liquids, relativistic hydrodynamics, and
plasma dynamics.

Computational hydrodynamics has reached such a stage
of development in its 40 years of existence that if a correct
mathematical model is formulated, it is not difficult to find
a method for its numerical verification [2 – 4]. Therefore,
programming and calculation have become technical tools
and autonomous topics, which now represent only the final
stage of the mathematical modelling process represented by
the triad: experiment – physical model – perturbation meth-
ods. Mathematical modelling or mathematical formulation
of a problem should not be confused with computer
modelling or simulation, which represents numerical cal-
culation or simulation (involving the choice of an algorithm
and programming).
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The most powerful computers are being earmarked to
tackle problems directly or indirectly related to hydro-
dynamics. For example, the IBM computer SP1 installed in
1993 at the Cornell University is intended to solve the
problems in hydrodynamics, plasma physics, analysis of
pollutants in air and ground water, development of new
medicines, plotting ozone layer maps, and seismic analysis.

Although that part of unsolved problems which belongs
to physical hydrodynamics is incomparably smaller than the
remaining problems, the conclusion that fluid dynamics has
become completely mathematical is unjustified. Hydro-
dynamics is a surprising science and the approaches
following from it are effective in fields where at first sight
the conditions are unsuitable for the application of the
hypothesis of a fluid continuum. One example is that of
particles and antiparticles. In spite of the still unfinished
search for antimatter in the nearest stars, a hypothesis of
cellular structure in the Galaxy has become popular:
according to this hypothesis, matter is separated from
antimatter by thin surface layers (known as the Leidenfrost
layers) which are hot regions where matter is annihi-
lated [5]. It is postulated that the radiation emerging
from such layers is far too weak to be detected. How
long does an antimeteorite fly before it burns up? How do
matter and antimatter interact?

The problems can be divided into general and specific.
Paraphrasing Planck’s words on the physics of the nine-
teenth century and two unsolved problems (which were the
finite velocity of light and the discrete nature of thermal
radiation), we can say that hydrodynamics is almost
complete and there are only two clouds on its bright
horizon: Reynolds turbulence and separation of flow
from a body. These are fundamental problems and their
solution is of very great importance for further development
of transport and power industries. These problems touch
upon the content of the whole of theoretical hydrody-
namics. The general problems are well known [6, 7] and
there is no need to discuss them here.

The history of identifying specific unsolved problems in
hydrodynamics began perhaps with Mark Twain when, well
before the appearance of the theory of sound, he formulated
the classical problem in acoustics: ‘‘There ain’t no way to
find out why a snorer cannot hear himself snore’’. Since
then prominent mathematicians and physicists have made
up collections of unsolved problems.

Soon after Hilbert formulated, at the turn of the
century, his famous 23 problems, it became clear that
they have not paved the road of progress in mathematics
that has led subsequently to a revolutionary breakthrough
in theoretical physics. Attempts to formulate the funda-
mental problems in physics have also suffered a fiasco
because of unpredictability of the twists of imagination in
science [8].

It is known that Einstein, who on top of everything else
was also a designer and an inventor, was the author of the
well-known problem of tea leaves [9]. Many famous
scientists (Kolmogorov, Kapitza, Lavrent’ev, Sakharov
[10 – 13] and others) have collected and published inter-
esting unsolved problems. This paper deals with tens of
unsolved problems in hydrodynamics [14].

The unsolved problems not only help in making science
more systematic or act as a collection of paradoxes, but
they also are a programme for action. Unsolved problems
are identified most readily in mathematics because they can

be formulated clearly as theorems. For example, the famous
Kourovka Notebooks, published from 1962 onwards, con-
tain about 800 such problems on the group theory and some
of them have already been solved. In hydrodynamics, as in
physics, the selection of unsolved problems is subjective and
depends on the adopted scale of values, which makes it
difficult to follow a systematic approach. For example,
Fritz Ursell, professor at Manchester University, lists ten
unsolved problems on the theory of waves [15].

Only one method, that of perturbation theory, is
suitable for analytic solution of hydrodynamic problems.
The development of the perturbation method and its
applications are major recent achievements [16]. Numerical
methods are something special. Their capabilities are
extremely wide. Twenty problems in astrophysics, plasma
physics, oceanology, turbulence theory, solid state physics,
etc. are collected in Ref. [17].

Hydrodynamics, like any other branch of physics, can
be divided into five parts:

(1) mathematical modelling of laminar flow;
(2) physical and mathematical modelling of turbulent

flow;
(3) theory of flow separation;
(4) theory of stability;
(5) development of rheological models.
Problems which belong to all these parts are listed in

Ref. [14].
Outstanding solved problems have usually appeared

spontaneously. In hydrodynamics they are the following
discoveries: (1) shock waves, by B Riemann (1860) and
E Mach (1987); (2) chaos, by O Reynolds (1883); (3) the
boundary layer, by L Prandtl (1904); (4) strange attractor,
by E Lorenz (1963); (5) soliton, by M Kruskal and
N Zabusky (1965); (6) fractals, by B Mandelbrot (1967);
(7) catastrophes, by R Thom (1970). Not very rigorously,
one should include here the development of synergetics by
H Haken, professor at Stuttgart University (1977), and by I
Prigogine, Nobel Prize Laureate.

Hydrodynamics is now unthinkable without the Fok-
ker – Planck (Planck 1917), variational averaging (Whitham
1965), inverse scattering (Gardner et al. 1967) and renor-
malisation group (Wilson 1971) methods.

All these methods and discoveries, enriched with
philosophical content, are now part of all natural sciences
and not only of physics. These methods in conjunction with
the perturbation theory concepts comprise what is now
known as the culture of hydrodynamics.

There are dangers of reaching two extremal positions in
selecting unsolved problems: one can become a fermatist or
a provider of problems for doctoral theses. In contrast to a
mathematician or a physicist, who can focus a narrow
‘cone’ of interests on the solution of just one problem, a
hydrodynamicist has to master an extremely wide range of
knowledge in his science and become an encyclopedist. This
is in fact the meaning of the pithy saying: hydrodynamics is
a humanist science.

The aim is not to obtain a solution, but to expose the
problem. If somebody can predict in advance the results of
a study, then that study is no longer a problem.

Those who hope to grasp the Navier – Stokes equation
and use it in numerical calculations, so as to obtain results
instantaneously, will be greatly disappointed. The path to
the solution of a complex technical problem (such as the
flow around turbine blades or an aircraft, flow in a wind
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tunnel or in a chemical reactor, etc.) is difficult and involves
many stages: the complete problem is split into several
partial but no less difficult subproblems and if these are not
solved the study straightaway becomes incorrect.

The collection of subproblems presented below is
intended for inquisitive minds of whom Rene Descartes
said: ‘‘A curious person seeks rare events only to wonder at
them, an inquisitive person seeks them in order to learn
about them and cease wondering’’.

The intermediate stage between the solved and unsolved
problems is occupied by problems for which a mathematical
model has been constructed and which await their turn for
calculations. A contemporary collection of such problems,
very interesting in their content, can be found in Ref. [18].
‘‘In exact sciences, as in art, beauty is the major source of
light and clarity’’ (W Heisenberg).

2. Construction of models

One of the sources for new formulations of problems is the
improvement of the existing mathematical models. For
example, the equation of motion of a mathematical
pendulum, representing a material point at the end of a
weightless string,

d2x(t)

dt 2 + x(t) = 0 , (2.1)

where x is the angle by which the string is tilted from the
vertical, can be ‘improved’ by a variety of methods. The
range of validity of the mathematical model in terms of the
values of x(0) is widened slightly by inclusion of the
following nonlinear term:

d2x

dt 2 + x ÿ
1
6

x 3
= 0 . (2.2)

A much more fundamental change to

d2x

dt 2 + sin x = 0 (2.3)

makes it possible to extend the range of validity of the
above equation to all values of x(0).

The mathematical model represents simplification of a
real situation. Its validity depends on the targets which are
set. For example, the oscillation period can be found from
any one of Eqns (2.1) – (2.3). However, the number of
oscillations until the pendulum stops cannot be found at
all from these equations and one has to consider friction. In
the linear approximation, we then have

d2x

dt 2 + k
dx
dt

+ x = 0 . (2.4)

The rolling and sliding friction in a joint is proportional,
apart from the sign, to the load, i.e. (dx=dt)2. When the
values of jdx=dtj are large, more exactly, when the
Reynolds number Re is large, the aerodynamic resistance
force is also large and proportional to the square of the
velocity (dx=dt)2. However, it is more correct to consider
the coefficient k in Eqn (2.4) as dependent on jdx=dtj. But
this model also does not correspond fully to reality.

A pendulum does not move in a medium at rest, but in a
perturbed medium, i.e. in a wake. Therefore, a more
rigorous model should take account of the memory, i.e.
of the dependence on the prehistory of a process. This
illustrates the transition from a simple oscillator to more

complex unsolved problems in hydrodynamics. The specific
mathematical model becomes more complex if a new
hitherto ignored effect is included.

One can try to include stretching of the string,
proportional to (dx=dt)2, the weight of the string, etc.,
but one must recall here the familiar aphorism that ‘‘any
equation longer than 5 cm is most likely wrong’’.

There are controlled and uncontrolled processes. If the
strain (effect) l depends on the force (cause) F in such a way
that dl=dF = O(1), the process is controlled (Fig. 1a). If the
derivative dl=dF is large, then the process is uncontrolled
(Fig. 1b). Unsolved problems usually represent uncon-
trolled processes. The simplest familiar example of such
a process is the growth of a tear in a newspaper sheet. When
the force is applied to the edges of an initially formed tear
(Fig. 2a), the process is controlled, but when the force is
applied to the edges of the sheet (Fig. 2b), the process is
uncontrolled.

Hydrodynamics stands out from the whole of physics
by the nonlinearity of its problems. Even the simplest
approximations such as the model of an incompressible
Newtonian fluid includes nonlinearities of the following
types:

(1) convective — the term (u.
H)u in the Navier – Stokes

equation governs the acceleration of a particle, ( u is the
particle velocity);

(2) rheological — the transport coefficients are functions
of pressure and temperature;

(3) covariational, which represents the degree of correla-
tion between the velocity of a fluid in different parts of
space.

2.1 Modelling principles
Hydrodynamics is a science of modelling. The whole of its
history, beginning from Helmholtz and even Newton,
confirms this. There are three mutually related types of
modelling: experimental, physical, and mathematical.

l(0)

b

F�0

l

F

l(0)

a

0

l

F

Figure 1. Controlled (a) and uncontrolled (b) processes.

a b

tear

FF F F

Figure 2. Evolution of a tear in a sheet of paper, showing examples of
controlled (a) and uncontrolled (b) processes.
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Experience is the foundation stone of any science, even
as abstract as mathematics. The experiments of Faraday,
Michelson, Hertz, and Mendel have been the seeds for such
sciences as electrodynamics, theory of relativity, quantum
mechanics, and genetics.

One can distinguish between several types of scientific
experiments. If there is no hypothesis about the nature of
the investigated phenomenon, then one would speak of an
exploratory experiment. If there is a hypothesis, then an
experiment is carried out in order to verify it and it can be
called a control experiment. Finally, if there are several
hypotheses, an experiment is performed to select one of
them and it is called a conclusive experiments.

In addition to dividing experiments in accordance with
their aim, in hydrodynamics one can divide them into
quantitative and qualitative. Quantitative experiments yield
numerical data, whereas qualitative experiments are used to
determine the ‘flow geometry’, for example, the field of the
paths of motion of fluid particles. The results of quanti-
tative experiments are presented in the form of graphs or
tables and those of qualitative experiments are illustrated by
photographs or drawings. A quantitative experiment is
usually of the ‘black box’ type: only the echo signal of a
certain action on an object is recorded but the nature of the
object remains unknown. Qualitative experiments are of
great importance for hydrodynamics as a science.

The latter include what are known as ‘experiments in a
bath’. They are unpretentious and inexpensive, and they can
be carried out at home or in the physical laboratory of one’s
institute. As one prominent American experimentalist
R Wood said, they can be done with a stick, string, sealing
wax, and mica. However, the scientific importance of the
experiments in a bath, which are represented extensively in
this paper, is difficult to overestimate.

A collection of outstanding scientific experiments on
fluid flow, which could be regarded as a catalogue of the
gold treasure of hydrodynamics was made by Milton Van -
Dyke, professor at Stanford University. He asked famous
experimentalists all over the world to send photographs of
the most interesting cases of flow. This enabled him to
publish, in 1982, An Album of Fluid M otions [19], a
masterpiece of both scientific and popular literature on
hydrodynamics.

Industrial experiments are more widely known than
scientific ones. They are carried out in wind tunnels, on
benches, in tanks, and in channels at the request of a design
department. Usually industrial experiments are quantitative
and their aim is to establish the optimal shape of an aircraft,
a rocket, a ship, or a turbine blade.

A mathematical model is based on a physical model
(deduced from first principles of physics) and a qualitative
experiment. The simplest structure of scientific and technical
relationships in hydrodynamics is shown schematically in
Fig. 3. The link between qualitative experiment and math-
ematical model represents the transition from contemplation
to scientific understanding of a phenomenon. Construction
of a mathematical model represents the strategy of a
numerical calculation, but not its performance [20].

Like the theory of relativity, the theory of mathematical
modelling is the cutting edge of philosophical problems in
hydrodynamics and can be divided into general and special.
Rheological models of a non-Newtonian fluid are devel-
oped on the basis of the general theory. The special theory
deals with continuous Newtonian media. Under the

conditions not very different from those on the Earth,
i.e. those dealing with the practical requirements of aircraft
construction and shipbuilding, the flow of a continuous
medium obeys the Navier – Stokes (NS) equation. In the
case of an incompressible fluid which is not subject any
external forces, this equation is

du
dt

= ÿ

1
r
Hp + nH

2u , H
.u = 0 , (2.5)

where p is the pressure, r is the density, n is the kinematic
viscosity, and t is time.

The Euler (E) equation is obtained if we assume
formally n = 0. When the NS equation is converted to
its canonic form, we go over from physical to mathematical
modelling and we meet immediately the familiar difficulties:
the solution of the NS equation cannot be obtained for
sufficiently large Reynolds numbers Re and the E equation
has an infinite set of solutions, whereas the Prandtl
boundary-layer equation does not always have a solution.

In the limiting case when the Reynolds number
Re = u

1
l=n (u

1
is the velocity of homogeneous free-stream

flow and l is a typical dimension of the body in the stream)
is small, the NS equation reduces to the Stokes (S) equation.
In the other limiting case when Re4 1, the NS equation
reduces to the E equation. The reality is not as simple: there
is a large number of differential, integral, and integro-
differential equations which correspond to asymptotic
submodels of hydrodynamic phenomena. Fig. 4 shows
only some of these equations. The designations used in
this figure are as follows: P stands for the Prandtl
boundary-layer equations, NS are the averaged NS equa-
tions, NS' are the reduced (parabolised, hyperbolised, etc.)
NS equations, AT are the asymptotic theory equations
(linearised NS equations, equations of interaction, equa-
tions of marginal separation, etc.), L is used for the Laplace
equations, L(D) is the Laplace equation with discontinuities
(slip surfaces), EVS, ECD, and EFS are integrodifferential
equations for the evolution of a vortex sheet, of a contact
discontinuity, and of a free surface.

ADS
Qualitative Physical Quantitative
experiment model experiment

Asymptotic Mathematical Numerical
analysis model calculation DD

Topological Numerical Empirical
analysis experiment methods

Figure 3. Structure of scientific and technical relationships. Here, ADS
is an automated design system and DD is a design department or
bureau.

P + E NS 0 M
1
! 1 � 0 L EVS

NS AT M
1
!1 j = a2

Dj EFS

S NS E L (D) ECD

Figure 4. Equations of fluid dynamics (explanations in text).
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The points, lines, and surfaces on which the solution is
not smooth are called folds. It is particularly important to
monitor the correctness of a mathematical model in the
vicinity of folds where the nonlinearity is ‘concentrated’. A
correct mathematical model should have local asymptotic
expansions near all the folds.

Unfortunately, these expansions are not always known.
This is, in particular, the reason why various empirical
principles are used widely in hydrodynamics. The principles
of indeterminacy prohibits the use of deterministic calcula-
tion methods in regions where the flow is chaotic; this
principle justifies introduction of such ‘fuzzy’ notions as
separation, turbulence, etc. The principle of maximal
simplicity postulates the minimum number of separations
on a smooth surface, boundedness of the solution (the
Kutta and Brillouin – Villat conditions) and the minimal
singularity in the solution of the problem by the method
of deformed coordinates (the Lighthill rule). The principle
of convergence implies that both experiments and numerical
calculations are repeatable and reproducible. The principle
of forbiddenness imposes familiar physical limits from above
and below on hydrodynamic quantities and on the space –
time scale of flow; for example, the concept of a continuous
medium, i.e. the NS equation, breaks down at distances of
the order of O(Reÿ1

) and after time intervals O(t), where t
is the mean free time. The principle of ex tremal correspon-
dence implies that a mathematical model should be reduced
to a known model for the limiting values of the parameters
0, 1, or 1; this can be used as a criterion in selection of
models suitable in practice and its effectiveness has been
demonstrated in the selection of quantum-mechanical
theories.

2.2 Perturbation methods
Asymptotic analysis of the correctness of a mathematical
model is based on perturbation methods suitable for the
solution of the equation f(x ; e) = 0 when the parameter e

can be regarded as small (e! 0) or large (e!1). One
case goes over to the other by, for example, the substitution
d = 1=e.

Perturbation methods are the foundations of any theory
(those of Euclid, Newton, Darwin, Smith, Marx, Einstein,
Vernadskii, etc.) because each of them represents ideal-
isation of an actual phenomenon, proposed on the
assumption that some of the determining parameters go
to their limiting values (e = 0). Perturbation methods are
not a tribute to fashion and they do not represent abstract
mathematical apparatus, but they are the tools of a natural
scientist. They have the dominant position both in
fundamental research and in applications, and they com-
pete quite successfully with calculation methods.

The correctness of perturbation methods, which first
appeared at the beginning of the nineteenth century, has
never been proved. This is the drama of ideas: physicists
employ methods which are not accepted by ‘pure’ math-
ematicians (purists).

Perturbation methods were not the result of a sudden
discovery of one mathematician. Among the many scientists
who worked on these methods one should mention three
prominent contributors.

The French astronomer, mathematician, and physicist
Pierre Simon Laplace (1749 – 1827) used extensively series
in his work. He solved the problem of equilibrium of a large
weightless drop on a plane and he was the first to use

perturbation methods. This was an intuitive breakthrough
into the unknown. Laplace gave an amazingly rich
description of perturbation methods: ‘‘a mathematical
method is the more precise the greater is the need for it’’.

The French mathematician Augustin Louis Cauchy
(1789 – 1857), one of the founders of mathematical ana-
lysis, proposed a clear theory of convergent series indicating
the criteria for their convergence. Naturally, divergent series
were at that time of no interest to Cauchy. His authority was
so great that practical applications of asymptotic expansions
were delayed for a long time. At present the asymptotic (and
as a rule) divergent series are an important investigative tool.

The idea of deformed coordinates dates back to the
outstanding French mathematician Jules Henri Poincare
(1854 – 1912). He obtained a uniformly applicable asymp-
totic expansion by altering slightly the coordinate x and
also by expanding it as an asymptotic series. Thus, together
with an expansion for an independent variable,

f(x ; e) = f0(s) + e f1(s) + e
2 f2(s) + . . . ,

he constructed a series for the coordinate

x(s; e) = s + ex 1(s) + e
2x 2(s) + . . . ,

where s is a new coordinate replacing x . The functions
xn(s) representing the deformation of the coordinate x , are
not a priori known and have to be found successively in the
course of solution of the problem.

The history of perturbation methods is marked by two
triumphal moments.

In 1846 the French astronomer, a Foreign Correspond-
ing Member of the St Petersburg Academy of Sciences,
Urbain Leverrier discovered a planet, later called Neptune.
The discovery was unusual: Leverrier did not use a
telescope, as was done always by his predecessors in
similar discoveries. He found a new planet ‘at the tip of
a pen’ by investigating perturbations which this mysterious
invisible object caused in the motion of another planet —
Uranus. In the same year 1846 the coordinates calculated by
Leverrier were used by the German astronomer Johann -
Galle to discover (with a telescope!) the hitherto unknown
planet.

This was the first triumph of perturbation methods. The
second was the discovery in 1905 (once again ‘at the tip
of a pen’!) by the prominent German hydrodynamicist
Ludwig Prandtl (1875 – 1953) of what we know as the
boundary layer — a thin region adjoining the surface where
the velocity of flow of a low-viscosity fluid changes very
rapidly. This discovery was of very great importance for the
subsequent development of the transport and power
industries.

Today not only physicists, but also mathematicians
denote by boundary layer a narrow region or a small
interval where a function undergoes rapid changes.

Many perturbation methods have been developed: they
include the method of matching asymptotic expansions, the
method of multiple scales, the method of deformed coor-
dinates, etc. There are so many of them that physicists joke
that ‘‘there are as many perturbation methods as there are
problems’’.

Among all the possible perturbation methods the first
place in hydrodynamics is occupied by the method of
matching asymptotic expansions, which has changed
from a purely mathematical tool to a category of physical
thinking. The method of matching asymptotic expansions is
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effective when there are at least two different, in order of
magnitude, scale lengths which define two regions: outer
and inner, and in each of them a specific asymptotic
expansion is valid.

Imagine that you have a photograph (outer region) with
an unclear but important detail, which because of its small
size looks like a singular point (inner region). If this region
is viewed with a magnifying glass, i.e. under multiple
magnification (stretching of coordinates), then somewhere
at its periphery we can see the details which are hardly
distinguishable in the vicinity of this singular point in the
unenlarged photograph. This is the essence of the method of
matching asymptotic expansions.

2.3 The Prandtl paradigm
The limit Re !1 is special. Prandtl’s concept of a
boundary layer, valid for nonseparated flow past a
body, can be generalised in a natural manner to separated
flow. Fig. 5 shows schematically the pattern of limiting
flow past a schematic body with a spike. There are three
characteristic regions: (1) thin viscous layers where the P
equations are valid (1A are boundary layers; 1B are mixing
layers; 1C is a wake); (2) vicinities of folds, where the P and
E equations are not valid and a more careful application of
the NS equation is necessary (2A and 2B are the vicinities
of the lines of separation from a smooth surface and of a
corner edge; 2C and 2D are the vicinities of a line of
reattachment to a smooth surface and to a corner edge; 2E
is the vicinity of the tip of a cavity or a closed circulation
zone; 2F is the vicinity of a spiral core of a tangential
discontinuity, a line where discontinuities cross, etc.); (3) a
region of ideal fluid flow (3A is a region of vortex-free
flow; 3B is a region of vortex flow). Since in the limit
Re !1 the thicknesses of regions 1 (where small amounts
of mass, momentum, and energy are concentrated) and the
dimensions of local zones 2 vanish, it follows that the
boundary layers become coincident with the surface of a
body and the mixing layers contract into vortex surfaces of
discontinuity of the tangential component of the velocity.
Therefore, in a certain range of scales, which are not too
small, so as not to include viscous layers, and not too large,
so that the diffusion of the wake is still unimportant (for
example, on the scale of the body which is considered here),
the flow corresponding to the limit Re !1 can be
regarded as inviscid. The E equations apply in regions 3.
Flow subregions are separated by tangential discontinuity
surfaces: a contact discontinuity, which separates liquids
with different densities and which appear in media
consisting of two or more phases; a vortex sheet,
separating parts of the same liquid (which is a special

case of a contact discontinuity); a free surface, separating a
region of flow from a region at the boundary of which the
pressure is assumed to be given. At a contact discontinuity
we have zero flow velocity on both sides and the pressure
jump is equal to the effective pressure representing the
action of the surface tension forces. The pressure is
continuous across a vortex sheet. On a free boundary
the flow velocity is zero on the moving fluid side and also
there is a given pressure which is generally a function of the
surface coordinates and time. In a special case a free
surface is a boundary of an isobaric region. Surface forces
may act on a free boundary.

A vortex sheet and a free boundary are defined for a
compressible fluid also as surfaces of discontinuity of the
tangential component of the velocity. The density of a gas
has a discontinuity at a vortex sheet.

The solution of the E equation is piecewise analytic:
parts of space are separated by piecewise analytic surfaces
of discontinuity of the velocity (slip surfaces, weak
discontinuities, and shock waves) and functions or their
derivatives suffer a jump of the first kind when they cross
these surfaces. Folds are those lines on which the surfaces of
discontinuity are nonanalytic. The folds form as inter-
sections of discontinuity surfaces with one another and
with the body past which the flow occurs. In their turn, the
folds are also piecewise analytic. The points at which they
are nonanalytic are singularities. The folds and the
singularities may appear, merge, or escape to infinity as
time passes. It is not yet clear which singularities of
functions and surfaces can exist at the folds. These
questions are being investigated by coordinate expansions
within the framework of the E equation, and by the
methods of matching asymptotic expansions on the basis
of the NS equation. There is a close relationship between
these two theories: the internal limit of an expansion in the
theory of flow of an ideal fluid is equal to the external limit
of an expansion in the theory of a viscous fluid.

2.4 Hierarchy of models
Three main requirements have to be satisfied by a
mathematical model: it must agree with experiments, it
must also agree with the initial physical model, and the
problem must be well-posed. Apart for a qualitative
similarity between the mathematical model and the flow
patterns observed in wind and water tunnels, a quantitative
agreement is necessary (within the limits of a certain error)
between the calculated and real characteristics: the model
must satisfy practical requirements. At present, the demand
that a problem be well-posed is much weakened by the
absence of suitable theorems. It is postulated that a
(piecewise analytic) solution does exist. The solution
need not be unique, since this can be checked experimen-
tally, and it need not be correctly posed in the Hadamard
sense.

It would seem that when the full problem of flow past a
body is split into a number of auxiliary problems in
accordance with the NS ! E + P + NS0 scheme, we can
solve the E equation and thus find the boundary conditions
for the P equation, which can then be solved, and the
solution can be considered in specific regions on the basis of
the reduced NS0 equations. However, this simplistic pro-
gramme would fail: a model of an ideal fluid (‘dry water’
model) is not logically closed. The difficulty is as follows: in
the course of formal passing to the limit Re !1 the higher
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Figure 5. Pattern of flow of a low-viscosity fluid past a schematic
body.
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derivative is lost from the NS equation and this means the
loss of information about flow: about smoothness, unique-
ness, asymptotic behaviour at large distances or after a long
time, and sometimes even about the existence of a solution.
The ‘dry water’ model does not have a unique solution even
when it is supplemented by reasonable conditions (the
Kutta conditions that the pressure should be finite at
the corner edge of a body in a flowing fluid, the
Brillouin – Villat condition that the pressure gradient
should be finite on the line of separation of a tangential
discontinuity surface from the smooth surface of a body,
and the Batchelor condition, which represents an equation
for determination of the vorticity in a closed circulation
region). We thus find that in the ‘dry water’ model we
cannot obtain a unique solution a priori, because without
diagnosis of the boundary layer the positions and numbers
of points of separation, i.e. of slip surfaces starting at a
body, remain unknown. The two problems, i.e. the solution
of the E and P equations, are so closely related that the
formal (though correct from the point of view of the
perturbation method) separation of them has to be
empirical. The solution of the E equation requires addi-
tional assumptions about the number and sometimes also
about the shape of the discontinuity surfaces, and also
about the presence of closed vortex zones adjoining the
surface of a body in a flowing fluid.

However, separation of the problem results in a
fundamental simplification: turbulence typical of low-
viscosity flow is concentrated in thin layers. In hydro-
dynamics a stochastic layer coincides with a boundary layer
and a mixing layer [21]. This is the physical reason for the
instability of discontinuity surfaces. In the absence of
stabilising factors the slip planes have a Helmholtz
instability or, in other words, a Lyapunov instability.
The ‘instability in the small’ changes the ‘dry water’
flow pattern if the frequency of fluctuations is high or if
their amplitude reaches finite values. The thin viscous layer
concept becomes invalid even earlier, when the amplitude of
displacements of a discontinuity becomes of the same order
of magnitude as the thickness of a mixing layer.

Essentially ill-posed and conditionally ill-posed prob-
lems are very different from the mathematical point of view.
The absence of a solution of an ill-posed problem is
evidence that the model is not selected correctly and
that the problem has to be reformulated. However, this
classification is speculative until a criterion is found how to
distinguish between these two types of ill-posed problems.

A specific model can be improved by introducing a new
effect ignored at the preceding stage. The most striking
example of such an improvement is the hierarchical series of
mathematical models used in the theory of a low-aspect-
ratio wing, known as a small-elongation wing in Russian
terminology, where elongation is a parameter that deter-
mines the extent of the wing in the direction of free-stream
flow [22]. A model without flow separation (Fig. 6a; here
and later the cross sections of a wing are shown) leads to
infinite velocities at the wing edges ( y = 0, z = �1), since
the Kutta condition is not satisfied. The Legendre model
(Fig. 6b) resolves this conflict, but it leads to an ambiguous
solution because of a pressure discontinuity on the AF line
which joins a point vortex at a point F to the wing
edge A [23]. The ‘vortex – cut’ scheme (Fig. 6c) avoids this
ambiguity, but there is then an indeterminacy in respect of
the shape of AF [24]. A separation model with spiral vortex

sheets starting at the edges [25] is free of this indeterminacy
(Fig. 6d) but it predicts an infinite pressure gradient on
approach to the edge along the top surface of the wing.

Numerical experiments, which represent the ‘head-on’
solution of the E or NS equations, occupy a special place in
the hierarchy of methods used to solve hydrodynamic
problems. In the pre-computer era such numerical experi-
ments were pioneered by giants such as Masau [26],
Rosenhead [27], Westwater [28], Kaden [29], and
Fermi [30]. Numerical experiments should be considered
not only as a means for obtaining quantitative results, but
also of determining whether the problem is well-posed. Such
‘brute force’ methods can only give qualitative results. The
range of applications of numerical experiments in hydro-
dynamics has shrunk under the influence of our expanding
knowledge of the properties of flow of low-viscosity fluids.

2.5 Paradoxes
A paradox is an unexpected conclusion that is in stark
contrast to what is generally accepted. The practical value
of paradoxes, which are the driving engines of progress, is
that they force one to take a fresh look at the foundations
of an older theory and to develop a new improved theory
and sometimes a new science. The special theory of
relativity represents the resolution of the paradox of the
finite rate of information transfer and quantum mechanics
is a resolution of the paradox of discontinuity of signals in
the microscopic world. Paradoxes have given rise to the
physics of elementary particles and to modern cosmology,
and have stimulated the development of modern mathe-
matics.

‘‘The facts that we come up against seem at first
completely paradoxical from the mathematical point of
view, an can only be examined on the basis of purely
physical considerations’’ (J Hadamard).

If we can distinguish a tentative judgement based on
experiments from a theoretical one based on mathematical
modelling of a phenomenon, we can classify paradoxes into
three types.

First, there are the conflicts between the generally
accepted and new theoretical propositions. These are
perhaps the simplest paradoxes (of the ‘theory – theory’
type) and they arise as a result of improvement of a
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Figure 6. Patterns of flow past a low-aspect-ratio wing, deduced on
the basis of nonstationary flow analogy.
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mathematical model and calculation methods. The para-
doxes of nonunique solutions and of infinity are among
them.

The second type of paradox involves a conflict between
what is generally accepted and new experimental evidence
(‘experience – experience’). Examples of such paradoxes are
those that concern symmetry. Symmetry breaking or
appearance, considered from the point of view of syner-
getics, is a transition to a different (stable) level of
organisation which occurs under the action of all small
asymmetric perturbations present in flow. This is, of course,
a far too general explanation and each specific problem
requires a detailed analysis. Another example is the Eiffel
paradox: the drag of a sphere decreases abruptly (by a
factor of 4 – 5!) with increase in the velocity near the
‘critical’ Reynolds number, which is approximately
150 000. This observation, which is in conflict with our
expectations, is also associated with a transition of flow to a
different level of self-organisation, namely from laminar to
turbulent flow.

Paradoxes of the third type (‘theory – experience’ or
‘experience – theory’) are characterised by a conflict
between the theoretical results and what we call experi-
ence, intuition, or simply common sense. The most famous
of the paradoxes of this type is the Euler – d’Alembert
paradox of zero resistance of a body moving in a frictionless
fluid. It can be regarded as one of the symmetry paradoxes:
if the flow well ahead of a body is the same as far behind it,
it follows from the law of conservation of momentum that
the resistance force vanishes. In real flow (in accordance
with our experience) the symmetry is always broken: a wake
forms behind a body and it represents a stagnant ‘stream’ of
a fluid.

Contemplation is a primitive form of cognition, whereas
identification of contradictions of paradoxes is a complex
gnosiological process. Everyone facing a discrepancy asks
the question ‘‘Why?’’ ‘‘Why does an apple fall down?’’ was
the question asked by Newton and the answer was the law
of universal gravity.

Unresolved problems are unsolved paradoxes. Unlike
solved paradoxes, which are now part of history, the
unsolved ones still excite the minds of scientists. A paradox
is what is born as a paradox but dies of banality.

3. Self-similar flow

‘Self-similarity’ is called ‘auto-modelling’ in Russian. The
Russian phrase is poorly made up. The first part, ‘auto’,
though of foreign origin, does reflect correctly the nature of
the phenomenon, whereas the second part is completely out
of place. It is better to follow the English terminology and
speak of ‘self-similarity’. Unfortunately, ‘auto-modelling’ is
now customary in Russian and it would be impossible
(rather than difficult) to alter it.

Self-similar flow is virtually an intermediate asymptote
of real flow [31 – 33]. One can say that real flow attains the
self-similar regime in a certain space – time interval only in
the sense that real flow is described by the self-similar
approximation subject to a certain error. The influence of
non-self-similar factors (counterpressure, asymmetry, vis-
cosity, other real properties of a gas, etc.) is important over
short and long times and particularly near singularities of
flow and at infinity. If the background of non-self-similar
factors is small, the hypothesis of self-similar flow is on the

whole valid, subject to the additional assumption that the
flow is laminar, but this has to be checked experimentally.

Self-similar solutions are exceptionally important
because they are almost the only type of initial data in
the Cauchy problem describing evolutionary processes in
the dynamics of liquids and gases. For example, at the
moment of appearance of discontinuous flow the number of
determining parameters is minimised and this means that
the hypothesis of self-similarity can be used. The existence
of a self-similar solution is crucial for the existence of
solutions of complete non-self-similar problems, which can
be obtained readily by numerical methods under the
familiar conditions of the Cauchy – Kovalevskaya theorem.

Self-similarity implies that in the four-dimensional space
r1, t there are quasiconical coordinates r = r1=bt n, t
(04 t 41) and that the dependence on t is expressed in
an explicit (power law) form. The vector r describes the
velocity of motion of a point under consideration. There-
fore, the relative velocity vector w = uÿ r becomes
important; here,

nu(r) =
u1(r1, t)

bt nÿ1 ,

where u1 is the viscosity vector of particles in a liquid.
Therefore, the Euler equations for a compressible gas are
found to be elliptic in the range where jwj2 < a2

= gp=r (g
is the adiabatic exponent of a perfect gas and a is the
velocity of sound) and hyperbolic in the range where
jwj > a.

The parametric family of the vector lines w� dr = 0
defines a field of self-similar paths. Let us now consider how
these lines are selected for the same fluid particles at the
initial moment t = 0. If we adopt physical variables, we find
in the limit t ! 0 that

(tu1 ÿ nr1)� dr1 = r1 � dr1 = 0 .

It therefore follows that each self-similar path is initially a
straight line passing through the origin of the coordinate
system. The field of self-similar paths is not solenoidal,
H

.w = ÿ2, even in the case of flow of an incompressible
fluid.

The topological properties of self-similar flow are
determined by the nature and positions of singularities
of a field of self-similar paths defined by w = 0. There are
numerous types of singularities. A singularity of the ‘focus’
type occurs at the core of spiral discontinuity or in the
vicinity of a point vortex, and its presence indicates that the
flow has separated. Singularities of the ‘centre’ type cannot
appear in flow if there are no fluid sources, whereas a
singularity of the ‘node’ type is associated with self-similar
paths even in the absence of sources, because a field of such
paths is not solenoidal. If linearisation in the vicinity of a
singularity is invalid, more complex types of singularities
appear, for example, a saddle + node singularity. Such a
situation occurs when singularities merge and the para-
meters reach their critical values. All the singularities are
located in a region where equations of the elliptic type are
valid or on the boundary of this region, which is a parabolic
surface.
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3.1 Classification
Let us assume that unsteady flow of a perfect gas or an
incompressible liquid is governed by two parameters r0 and
b with independent dimensions:

[r0] = ML ÿ3T ÿkn , [b] = LT ÿn .

The self-similarity index n is characteristic of the law of
expansion or contraction of a flow region. The exponent k
vanishes for an incompressible fluid.

First, we have to identify the time interval t1 4 t 4 t2

where a self-similar solution exists. Two forms of self-
similar flow can be distinguished [34]. If this flow has
appeared ‘recently’, i.e. if t1 = O(t), it follows from the
invariance of the solution with respect to a time shift that
we can always assume t1 = 0 and that a self-similar solution
exists for positive times (t2 =1). If this flow has started
‘long ago’, i.e. if t1 = ÿ1, a self-similar solution exists for
negative times: ÿ1 < t < 0 (t2 = 0).

The influence of non-self-similar factors responsible for
the appearance of self-similar flow is important at the initial
moment t = t1. The influence of non-self-similar factors
responsible for suppression of self-similar flow is important
at the final moment t = t2. The question of the role of these
factors is usually resolved a priori from considerations of
the dimensions.

Let us consider this in detail by taking as our example
the viscosity force acting in a Newtonian liquid with a
constant kinematic viscosity n. The influence of this factor
can be described by the Reynolds number

Re =

u
1

l
n

= O
�

(�t)2nÿ1�

where u
1

and l are the velocity and length scales, and the
upper or lower sign is selected for the positive and negative
time intervals, respectively. Such flow is strictly self-similar
if n =

1
2 (Birkhoff flow [35]). If n 6= 1

2 , we can only speak of
the motion of an ideal gas, i.e. of a self-similar solution of
the E equation. However, will the influence of the viscosity
force be so low or localised that the flow as a whole can be
regarded as inviscid? This central problem in hydro-
dynamics of low viscosity fluids has not been resolved in
general.

If the Reynolds number Re decreases with time from
infinity to zero, there must come a moment when the
influence of the viscosity force becomes the dominant one.
Therefore, a necessary condition for the existence of a self-
similar solution in the case when n 6= 1

2 is an increase in Re
with time from zero to infinity, i.e. the condition Re(t1) = 0.
Consequently, the solution is physically real{ in the half-
interval 0 < t <1 if n >

1
2 , and it is also real in the interval

ÿ1 < t < 0 if n <

1
2 . The full circulation of each vortex

zone of physically real flow increases from zero to infinity,
like the Reynolds number Re .

If we begin with the condition of physical reality of self-
similar flow, we can immediately reject the possibility that
the solution on the semiaxis o < t <1 can be continued to
negative values t. In contrast, the solution in the interval
ÿ1 < t < 0 sets the initial conditions at t = 0 for con-
tinuation of this solution to positive values of t. If such a
continuation exists, it follows form the consideration of the

dimensions that it should have the same self-similarity index
as the initial solution and that this is lost with time under
the influence of the viscosity force.

The solution of the semiaxis ÿ1 < t < 0 describes
collapse (a contact discontinuity, a free boundary, or a
shock wave) if n > 0 and it corresponds to expansion if
n < 0.

Whole classes of self-similar flow are known in hydro-
dynamics of an ideal fluid and they are listed below.

(1 ) Incompressible fluid. The self-similarity index is
arbitrary. It is possible to distinguish [34] pseudosteady
flow (n = 0), Birkhoff flow (n =

1
2), Kaden flow (n =

2
3) ,

exponential self-similar flow (n ! �1), and unsteady
conical flow (n ! �100). A one-dimensional example is
symmetric collapse of a cavity.

(2 ) Compressible fluid. The presence of a dimensional
parameter, which is the velocity of sound in free-stream
flow, determines the unique value of the self-similarity
index, which is unity. Each fixed point in a self-similar
plane moves at a constant velocity; a coordinate system
linked to the moving surface is inertial; the quantity b has
the dimensions of velocity; the pressure of an unperturbed
gas, which is of constant density, can be taken into account
within the framework of the self-similarity hypothesis. One
of the determining parameters is the Mach number M

1
for

free-stream flow. One-dimensional examples are decay of an
arbitrary discontinuity and the motion of a flat piston.

(3 ) Hypersonic flow. The self-similarity index is arbi-
trary again. It is postulated that in nonuniform (n 6= 1) free-
stream flow the velocity of sound a0 is negligible compared
with the velocity of a shock wave. Therefore, only
compressive flow with a strong shock wave (M

1
=1)

is possible. The model defined in a positive time interval is
self-similar for t4 t0 in the case of accelerated flow (n > 1)
and for t5 t0 in the case of retarded flow (n < 1); here,
t0(a0=b)1=(nÿ1), 0 < t <1.

Accelerated self-similar flow of a gas is preceded by an
acoustic stage of evolution of weak discontinuities for t5 t0

and by a transition stage of formation of hypersonic flow
when t = O(t0). An ‘entropy layer’ of a stagnant gas with
the characteristic thickness bt n forms at the transition stage.

One-dimensional examples of a hypersonic self-similar
flow are the motion of a piston, a strong explosion, and
collapse of a shock wave.

(4 ) Conical flow is an example of steady self-similarity
[23, 36]. The solution is independent of the linear coor-
dinate, but it depends only on two angular coordinates. The
problem is then two-dimensional. A one-dimensional
example is the flow past a circular cone oriented at zero
angle of attack.

In hydrodynamics of a Newtonian fluid the self-
similarity index of flow of an incompressible fluid is, as
mentioned before, 1

2 for the complete NS equations. A
steady self-similar flow can be represented as follows in a
spherical system of coordinates r, y, l:

u(r, y, l) =
n

r
U(y, l) , p(r, y, l) =

n
2

r2 P(y, l) .

In a nonideal medium with a constant Prandtl number
Pr and with its kinematic viscosity depending on tempera-
ture in accordance with the power law (n = aT k

) the self-
similarity index is fixed:

n =

1 ÿ 2k
2 ÿ 2k

, (3.1)

{The term ‘physically unreal’ or meaningless is not the same as in
mathematics. The existence of a physically unreal solution can only
stimulate an investigator to broaden the formulation of the problem.
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and the steady self-similar solution becomes

u(r, y, l) = barmU(y, l) , p(r, y; l) = b2ar2mP(y, l) ,

where b = aRÿk , a = 1=(1 ÿ 2k), m = 1 ÿ 1=n, and R is the
gas constant.

3.2 Ideal fluid
Nikol’skii [37, 38] was the first to investigate the solution
describing the motion of a point vortex of strength G0 or
several points vortices, which is physically meaningful in
the case of unsteady self-similar flow when the flow-
similarity index n approaches 1

2 + 0. This solution is
applicable to the flow past an infinite wedge (Fig. 7a)
and flow past a finite body (plate, Fig. 7b), which is
considered in Ref. [39]. The Nikol’skii flow is characterised
by an increase in all the dimensions of the body and the
path travelled by it proportionally to

��

t
p

. This type of flow
includes that inside a wedge at a constant rate (Fig. 7c).

The Nikol’skii theory can be applied to separated flow if
certain quantities are selected a priori, for example the
number of point vortices which simulate a vortex that has
become separated from the investigated body. The situation
is suitable for modelling separation of flow from a wedge-
shaped edge of a body when the problem satisfies addi-
tionally the Kutta condition.

The Nikol’skii flow represents a special case of the
Birkhoff flow (Re =1). Some examples of the Nikol’skii
flow, which can be used to study the existence, bifurcation,
topology, and asymmetry of self-similar solutions can be
found in Ref. [14].

One of the surprising phenomena which occur in a
system of three or more point vortices is collapse, which is
essentially the Nikol’skii flow in a rotating coordinate
system [40]. Vortices with complex coordinates zj(t) travel
along spiral paths to a point where they collapse after a
finite time (Fig. 7d).

Consider a cluster of three vortices which evolve in
accordance with the law

dzj(t)

dt
=

1
2pi

X

k 6=j

Gk

zj ÿ zk
, j = 1, 2, 3 ,

and rotate about the ‘centre of gravity’ z = 0. It follows
from dimensional analysis that the angular velocity of
rotation of the vortices is inversely proportional to the
square root of time. Consequently, the solution can be
represented in the form

zj = b
������

ÿt
p

m1 exp(io ln t) , Gj =
1
2

b2Gj ,

mj = xj + iZj , ÿ1 < t 4 0 .

The equations describing evolution can be converted to
the algebraic form:

(2io+ 1)mj =
X

k 6=j

Gj

mk ÿ mj
.

There are six real equations for eight real constants, which
are obtained when ten unknowns xj, Zj, Gj, and o are
reduced to the dimensionless form. There is, however, a
solution to this underdetermined problem.

Further continuation of this solution in the direction of
positive values of t can be regarded as unravelling
(unrolling) of a vortex. In this case the directions of the
arrows in Fig. 7d should be reversed. In contrast to collapse
of vortices, which can be checked experimentally, such
unravelling is not a natural causal process. Irreversibility is
created in the dynamics of systems of point vortices when
unravelling is impossible. This mechanism of the appear-
ance of a ‘time arrow’ has no analogue in the dynamics of
particles.

It seems almost self-evident that merging of vortices is
unstable. Nevertheless, it would be of interest to determine
the conditions of ‘minimal instability’ within the framework
of a narrower definition of stability, such as that used by
von Karman in an investigation of chains of point vortices
[41, 42].

Is the collapse of two point vortices possible? The
answer is yes [43]! This happens if point vortices simu-
late, as shown in Fig. 7b, separated flow, controlled by the
Kutta conditions, from sharp or blunt edges of a body and
the body collapses to form a point (ÿ1 < t < 0). The
stability of such vortex merging seems to be almost self-
evident.

Let us consider one more example of self-similar flow of
an ideal fluid which is coevolution of a vortex sheet and a
free boundary.

Although in the case of simultaneous evolution of
different types of surfaces of tangential discontinuities of
the velocity of an incompressible fluid the method of
boundary integrodifferential equations allows superposi-
tion, studies of such problems meet with considerable
numerical difficulties. An important practical example is
the self-similar problem of oblique entry of a wedge into a
water-filled lower half-space in accordance with a power-
law time dependence. A free boundary 1 is adjacent to the
sides of the wedge and a spiral vortex sheet 2 starting from
the edge ensures that the Kutta condition of finite velocity is
satisfied (Fig. 8a).

The method of matching asymptotic expansions leads,
in the case of weak asymmetry, to separation of the
phenomenon into two parts and each of them is char-
acterised by just one type of discontinuity: in the outer
region there is a free boundary and in the inner region,
located near the wedge edge, there is a vortex sheet [44].
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Figure 7. Examples of the Nikol’skii flow.
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When the asymmetry parameters (which are the angle a
between the vertical and the bisector of the wedge and the
angle b between the bisector and the direction of the entry
velocity u0) are sufficiently large, the flow pattern changes:
a free boundary departs from the wedge edge O and it rolls
up to a double spiral ( 3 ) because of a shock interaction
with the wedge edge at the moment when the edge touches
the water surface (Fig. 8b). Both flow patterns have to be
checked experimentally as well as numerically.

3.3 Compressible fluid
The flow in the vicinity of the edge of a wedge or of the
vertex of a cone can be self-similar also in the case of a
compressible ideal medium. Three problems of this kind
are known: diffraction of a shock wave by a wedge
(Section 4.5), sudden acceleration of a wedge [45], and
decay of an arbitrary wedge-shaped discontinuity [46]. Far
from the wedge edge the flow is one-dimensional. As in the
problem of oblique entry of a wedge into water, in
asymmetric diffraction of a shock wave by a sufficiently
thick wedge the Kutta condition can be satisfied within the
framework of slip lines converging at the wedge edge and
with their free lines rolled up to form a spiral.

For the same reason a spiral vortex slips off the wedge
edge as a result of a sudden asymmetric motion from a state
of rest in the regime in which a shock wave becomes
detached.

The large number of dominant parameters has
prevented so far the establishment of a topological
classification of decay of an arbitrary wedge-shaped
discontinuity even in the symmetric case. There are several
ways of introducing asymmetry into the problem of decay
of a wedge-shaped discontinuity. One can consider the
evolution of an entity consisting initially of connected, to a
common edge, N angular regions in each of which the
parameters of gas differ. It is not clear whether in this case
an N -turn spiral vortex is formed. We can assume that, for
t < 0, supersonic flow with a centred rarefaction wave takes
place around a ‘solid wedge’ and that inside the wedge the
gas is at rest; at the instant t = 0 the wall wedges are
removed.

The problem of an incompressible fluid is formulated
similarly: at t < 0 the coordinate dependence of the complex
velocity is represented by a power law. A vortex sheet, a free
boundary, or a contact discontinuity can be selected as a
slip line which coincides initially with the sides of a
wedge [47].

Decay of an initially conical discontinuity is a difficult
problem [48] and in the asymmetric (three-dimensional)
variant it is hardly capable of exhaustive analysis.

3.4 Spiral vortex sheets
Before we consider self-similar spiral flow, we must
consider helicity in general, digressing far from fluid
dynamics, in full agreement with the principle that one
who understands hydrodynamics alone does not under-
stand it fully. The world surrounding us is spiral. There are
numerous examples of spiral structures in animate and
inanimate nature. The shells of garden snails, found in
abundance at the roadside, are spiral. Spiral fossils have
come to us from prehistoric times. Sunflower seeds form
two families of oppositely twisted spirals. In technology
there are spiral revolving knives, gears, etc. There is also
the spiral shape of flowers and ferns, which cannot support
themselves without rocks, building, or other plants. The
horns of goats are twisted in opposite spirals.

Helicity is the fundamental property of matter, not only
in the macroworld. In the microworld, we have the helical
structure of the DNA molecule and in the megaworld we
have spiral galaxies.

Spiral shapes are so frequent in nature that it is not
possible to even list them all. Spiral waves are formed as a
result of what is called spin detonation. They are also
observed in the well-known Belousov – Zhabotinskii reac-
tion. Many biologists believe that spiral waves account for
arrhythmia in the operation of the heart muscle and in other
biological phenomena. Spiral shock waves have been found
in our and other galaxies. Three-dimensional spiral (more
correctly, helical) structure is found in cyclones, water
spouts, Ekman’s flow above the surfaces of the oceans,
and Taylor’s flow in the upper atmosphere.

In the scientific sense, the helicity is used in two similar
and dissimilar meanings. In physics, the helicity means the
quantum number of an elementary particle, equal to the
projection of its spin along the direction of its motion. In
hydrodynamics this term, proposed by the English scientist
Moffatt in 1969, denotes the scalar u.curl u or a volume
integral of this quantity, where u is the velocity vector of
fluid particles. The helicity is conserved in an ideal fluid and
its changes are due to kinks in the vortex lines and also due to
diffusion. The helicity is used to describe cascade turbu-
lence.

In each specific case a spiral structure usually represents
some unsolved problem of natural science. However, in a
more general synergetic sense, the spiral symmetry differs
fundamentally from the symmetry of a snowflake, an
atomic nucleus, or a chess position, and is a natural
generalisation of the spherical symmetry. In contrast to
the spherical symmetry, which is characterised by constant
radius during rotation, the spiral symmetry is associated
with contraction or elongation of the radius as it rotates
clockwise or anticlockwise. Therefore, the spiral symmetry
is a law of nature, whereas the spherical symmetry is an
exceptional case.

Why the majority of the spiral shells and the helical
DNA molecules are twisted in the same way? There is as yet
no answer to this question. Since Pasteur, it has been agreed
that such an unbalance of the spiral symmetry is a
characteristic feature of life.

Philosophers have noticed long ago that art and science,
balancing tradition against innovation, seem to develop
along a spiral: the next turn of knowledge differs from the
preceding one and yet they are alike. This analogy is
symbolic but striking. Since it is qualitative and not
rigorous, there are those who oppose it strongly:

a b

2

O

11

3

1

a

b
O

u
�0

Figure 8. Entry of a wedge into water: (a) weak asymmetry;
(b) strong asymmetry.
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‘‘I don’t think the scientists have got it right,
There is a hole, a gap, in their hypothesis.
The path of progress is not a spiral flight,
But aslant, oblique, spreading, and across it is.’’

(V Vysotskii, translation by J Briggs)

This indeed may be so.
Let us now return to self-similar flow with spiral vortex

sheets. The free end of a vortex sheet can roll up to form a
spiral with an infinite number of turns. The asymptotic
behaviour of the solution at the centre of a plane spiral
vortex (y!1, r ! 0) may be investigated by replacing the
polar coordinates r, y with r, Z [where Z is the spiral variable

04Z = yÿ y0(r)4 2p ,

y0(r) is the shape of a vortex sheet, and r is the self-similar
coordinate] and expanding the functions as series in powers
of r. This can be done if the function y0(r) is monotonic.
An increase in Z from zero to 2p for r = const implies a
circular path from one side of a vortex sheet to the other.
Therefore, the spiral periodic condition is satisfied: the
pressure and the velocity component normal to a vortex
sheet are identical for Z = 0 and Z = 2p.

A spiral vortex sheet is logarithmic if the self-similarity
index is n <

1
2 [49] and algebraic if n >

1
2 [50]. Numerical

solutions of specific problems of separation of a vortex
sheet from a solid surface [25] have been obtained only for
algebraic spirals. The solutions obtained are due to the
utilisation of a fortunate, characteristic of the nature of the
problem itself, approximation of the core of a vortex sheet
by a point vortex with a cut. Application of the same
approximation to the core of a logarithmic spiral fails: the
results of numerical calculations become unstable. This
unsolved problem demonstrates also that fitting the results
of numerical calculation to the well-known asymptote for a
fold is one of the difficult problems in computational
hydrodynamics.

It has been found experimentally that at the cores of
spiral vortices, which become separated from the edges of a
low-aspect-ratio wing in a water tunnel, cavitation zones
form that are visible to the naked eye. According to the
unsteady analogy, this conical flow is equivalent to plane
flow (n = 1).

Cavities do not appear in a fluid which cannot exist in
the drop form (for example, air or any other gas) and, in
accordance with the asymptote of the flow at the centre of
the core of a vortex sheet (r ! 0), the pressure p tends to
ÿ1 obeying the following logarithmic law:

p ' p0 + ru2
0 ln r ,

where p0 and u0 are the certain characteristic values of the
pressure and velocity.

The order of the size of a cavity in a fluid that forms
drops (for example, water) is small{ if the cavitation
number

s = 2
p0 ÿ p1

ru2
0

is large ( p1 is the pressure in the cavity). The large
parameter s characteristic of this unsolved problem means
that an asymptotic approach has to be followed.

The problem requires generalisation to the case of flow
with the self-similarity index n 6= 1, selected from the range
0:5 < n < 1, when the pressure in the region external to a
cavity tends to ÿ1, obeying a power law, as r is
reduced [50].

If the size of a cavity is comparable with the size of a
body immersed in fluid flowing past it, the helicity is not an
appropriate concept. The exact solution of the problem had
been obtained by von Karman for the case of pseudosteady
(n = 0) symmetric flow past a plate [51]. It is not clear when
the point of closure of a cavity is located on the symmetry
line and when it is on the body.

Can the Prandtl solution for a logarithmic vortex
sheet [49] be generalised to the case of flow of a compres-
sible gas? The answer has not yet been found.

The Euler equations

ut + uuR +

1
R

vuy ÿ
1
R

v2
= ÿ

1
r

pR ,

vt + uvR +

1
R

vvy +
1
R

uv = ÿ

1
Rr

py ,

rt +
1
R
(Rru)R +

1
R
(rv)y = 0 ,

S t + uS R +

v
R

S y = 0 ,

where u and v are the components of the velocity along the
directions of R and y, S = prÿg is the entropy function, and
g is the adiabatic exponent, have (or do not have!) the
exact solution

u(R , y, t) = n
R
t

�

U0(Z) + 1
�

,

v(R , y, t) = n
R
t

V 0(Z) ,

r(R , y, t) = r0(�t)qnreÿ2
r0(Z) ,

p(R , y, t) = n2
r0b2

(�t)qnÿ2+2nrep0(Z) ,

R = b(�t)nr , 04Z4Z0 , y0 = ÿk ln r .

Instead of U0 and V 0, we shall introduce now the
components of the relative velocities U and V which are
equal to the normal and tangential components on a slip
line:

(1 + k2
)

1=2 U = V 0 + kU 0 , (1 + k2
)

1=2 V = kV 0 ÿ U0 .

The unknown functions U, V , p0, and r0 can be found
from the Euler equations by deriving a system of ordinary
differential equations:

(a2
ÿ U 2

)U 0

= A , UV 0

= B ,

(a2
ÿ U 2

)p 00 = Cp0 , U(a2
ÿ U 2

)r
0

0 = Dr0 ,

where a2
= gT , and the functions A , B, C, and D are

algebraic polynomials which depend on U, V , and
T = p0=r0.

The following periodicity conditions are satisfied on a
vortex sheet (Z0 = 2p):

p0(0) = p0(2p) , U(0) = U(2p) = 0 .

{The region where diffusion is important is of characteristic size
�(nt)1=2. Therefore, it can be assumed that, for large values of Re ,
the viscous flow region is located near the top of the wing (t5 1).
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There is also a problem of rolling up, into a logarithmic
spiral, of two free boundaries:

y1(r) = ÿk ln r , y2(r) = Z0 ÿ k ln r .

The following conditions of constant pressure and zero
velocity are satisfied on these boundaries:

p0(0) = p0(Z0) = p0 , U(0) = U(Z0) = 0 , Z0 < 2p .

The system of ordinary differential equations under
investigation has two singularities. Continuous passage
across the singularity Z = Z1 (0 < Z1 < Z0), where
a = �U, is possible only if A = 0. The other singularity,
U = 0, is located on a slip line. For finite values of T(0) the
derivative U 0

(0) is finite.
It is not known whether there exists a similar solution

for a vortex sheet in the shape of an algebraic spiral in a
compressible gas [52].

3.5 Viscous fluid
The interaction of a shock wave with a boundary layer that
is formed as a result of a strong point explosion on a plane
is a problem with important applications and it has been
completely ignored. Fig. 9 shows the shapes of an explosive
charge and of a shock wave for the plane (N = 1),
cylindrical (N = 2), and spherical (N = 3) symmetries.
The cylindrical symmetry is possible when the line formed
by an explosive charge is perpendicular to a plane P
(fig. 9b) and when this line lies in the plane P (Fig. 9c). The
flow is self-similar if, in accordance with expression (3.1),
we have k = ÿ

1
2 for N = 1, k = 0 for N = 2, and k =

1
6 for

N = 3. The determining parameter is the Reynolds number

Re =

�

E
r

�1=N
R

k

n1
,

where E is the energy released by such an explosion, r is
the density of the undisturbed gas, and R is the gas
constant.

In the limit Re !1, a boundary layer forms in the
plane P. Singular regions where the concept of a boundary
layer breaks down are located near the epicentre of the
explosion and in the region of interaction of the shock wave

with the boundary layer. Does this interaction crate a
shock-wave precursor?

One further example of self-similar flow of a viscous
liquid is the Stewartson problem of the motion of a semi-
infinite plate parallel to itself from rest at a velocity
nbt nÿ1 [53]. If the velocity is not directed along the normal
to the plate edge, we are faced with the problem of unsteady
flow past a sliding plate.

If the boundary layer concept is adopted (Re !1),
any value of the self-similarity index is permissible in the
Stewartson problem, whereas on the basis of the Navier –
Stokes equation only those values of the index are allowed
which satisfy the condition described by expression (3.1).
The principle of maximum simplicity can be applied a priori
before numerical calculations are carried out. The simplest
field of self-similar paths obtained in this way has five
singularities (two saddles S and three node N ). It is plotted
in Fig. 10 on the assumption that a low-viscosity liquid
(Re !1) runs into the edge (b > 0) [54]. Perturbations do
not penetrate the limiting line x = bt n and the influence of
the top of the plate is negligible in the region x > bt n: the
one-dimensional solution obtained a long time ago by
Rayleigh [6] applies here. It is not clear what is the
topology of self-similar paths in the problem of the flow
running off (b < 0) from the edge of a flat plate and how
does it vary with Re.

Limiting lines appear also in a stationary three-dimen-
sional boundary layer [55]. The solution near a limiting line
has not yet been obtained.

3.6 Two comments about self-similar solutions
We have considered so far only the self-similar solutions
satisfying exactly the Euler, Navier – Stokes, or Prandtl
equations. However, there is a whole class of approx-
imately self-similar solutions which exist in a certain local
space – time region. They are the asymptotically self-similar
solutions.

Let us assume that a solution

u(r, t) '
1
a

U(R) , (3.2)

Point-like
explosive
charge

N = 3

N = 1

P

SW

Plane of an
explosive charge

a

N = 2

P

SW

Line of an
explosive
charge

b

Line of an
explosive
charge

SW

P

c d

N = 2

SW
P

Figure 9. Problem of a strong explosion of a charge located on a
plane (N = 1), on a line (N = 2), and at a point (N = 3); SW is shock
wave.

Limiting

line

N

S

N

S

N

x
bt n

Flat plate

Figure 10. Field of self-similar paths in the Stewartson problem.
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where r = bR, a(t) > 0, b(t) > 0, is valid for t ! t0,
R = O(1). Then if a = b and ja 0ja5 1, this solution
satisfies the Navier – Stokes equation (if ja 0ja = 1, we
obtain the exact Birkhoff solution). If a5 b, it satisfies
the Euler equation (for ja 0jb = jb 0ja we have the exact
solution), and if a4 b, it satisfies the Stokes equation.

The Stokes equation describes, for example, an expo-
nential approach of the solution to the state of rest:

a = exp(kt ) , b = 1 , k > 0 , t !1 .

Substitution of the solution represented by expression (3.2)
into Eqn (2.5) and neglect of the quadratic terms gives

nH
2
R U + kU ÿ HR P = 0 , HR

.U = 0 , (3.3)

where

p(r, t) = exp(ÿkt )P(R) + o
�

exp(ÿkt )
�

.

Such a linear system of equations describes the flow of a
fluid in bounded and unbounded regions, for example,
rotation of tea in a glass after stirring, the flow near a body
when it comes to rest, slowing down of rotation of a
wingless rocket, etc. The boundaries of solids may be at
rest or they may be moving at an exponentially decreasing
velocity. In the case of symmetric rotation of a liquid
relative to the r = 0 axis, the system of equations (3.3)
reduces to the Bessel equation:

ru000(r) + u00(r) +
k
n

ru0(r) = 0 .

The second comment applies to unbounded solutions.
The space – time singularity of the solution, called by
physicists the unbounded cumulation and the peaking
regime by mathematicians, can be divided into the three
types listed below.

(1) The solution is unbounded in the whole space at t = 0.
For example, Eqn (2.5) has (or does not have?) the solution

u(r, t) =
1
t

u0(r) + o

�

1
t

�

, p(r, t) =
1

t 2 p0(r) + o

�

1

t 2

�

.

There is no dissipative term in this approxinmation:

ÿu0 + (u0
.
H)u0 = ÿ

1
r
Hp , H

.u0 = 0 .

The following simple example demonstrates that the
nonlinear heat conduction equation allows the appearance
of a singularity in a finite time:

ut = uuxx , u =

a0 + a1x ÿ x 2

2t
.

(2) The solution is unbounded at any time on a singular
low-dimensional manifold, representing a surface, a line, or a
point. Examples of such singularities are a vortex filament, a
line of sources, the solution of the Navier – Stokes equation
for juj = O(rÿ1

) when r ! 0, and the convective term
(u.

H)u the modulus of which is of the same order of
magnitude as the term njH

2uj = O(rÿ3
).

Near the centre (r = 0) of a self-similar point explosion
in an ideal gas the velocity u and the density r tend to
zero [31]:

u = c1
r
t
+ o(r) ,

r = c2t ÿ 2N=[(N+2)(gÿ1)] r N=(gÿ1)
+ o

ÿ

r N=(gÿ1)� ,

where r is the radial coordinate, and c1 and c2 are
constants. The pressure at the centre of the explosion is
finite, but the temperature tends to infinity. Therefore, the
model of a perfect gas becomes invalid and near the
epicentre of the explosion we have to take into account the
effects of heat conduction and viscosity. The simplest
model makes it possible to apply the hypothesis of self-
similarity. If Re4 1, the influence of heat conduction and
viscosity is concentrated near the epicentre, i.e. in the inner
region. In the outer region the solution of the problem of a
point explosion in an ideal medium applies.

(3) Unbounded solution for r = t = 0. One example is the
Guderley problem of the focusing of a cylindrical or
spherical shock wave at the point r = 0 at the instant
t = 0 [32].

The Rayleigh problem of the collapse of bubbles in an
incompressible fluid is interesting because at the moment of
focusing (t = 0) the velocity is infinite only at the point
r = 0, whereas the pressure is infinite throughout the region
of flow. Therefore, this problem can be regarded as of the
first or third type. In some cases, for example, in the
problem of a shock wave reaching the upper boundary
atmosphere [32], the pressure is finite, but the temperature
is infinite.

These infinity paradoxes are a consequence of using
mathematical models which are far too simplistic, but these
paradoxes can be resolved if we take account of real
properties of a fluid such as dissipation, second viscos-
ity, compressibility, thermodynamic imperfections of a
medium, relaxation, emission of radiation, etc. There is
always some, no matter how small, factor which when
included makes the solution bounded: nature does not
tolerate infinities. For example, the collapse of a cylindrical
bubble in an incompressible fluid stops with slow rota-
tion [56].

4. ‘Dry water’ model

In Fig. 4 the ‘wet water’ model is represented by the two
columns on the left and the ‘dry water’ model by the three
columns on the right.

The ‘dry water’ model has been studied actively
throughout the whole history of hydrodynamics. How-
ever, the flow of a zero-viscosity fluid differs
significantly from that of a real fluid. The two types of
flow are identical only in cases which are an exception to
this rule: the ‘dry water’ model does not explain the main
problem which is the appearance of vortices in an
incompressible fluid in the presence of external potential
forces. The reason for this is that, as the viscosity
approaches zero, its effect does not vanish completely
and remains in small subregions (boundary and mixing
layers), thus influencing significantly the flow as a whole.

4.1 Three-dimensional vortices
Vortices in a viscous fluid merge because of diffusion.
There is no diffusion in an ideal fluid. Therefore, merging
of vortices in such a fluid is one of the surprising properties
of vortex clusters. A numerical calculation has been
made [57] of the evolution of two vortices with the same
sign in an incompressible liquid. Each of these vortices is
initially in the shape of a circle of radius r and has a
constant angular velocity o0. When the dimensionless
initial distance l=r between vortices is sufficiently large,
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they expand into ovals and rotate separately, like point
vortices (this analogy is valid for l4 r), around a geometric
centre. When the initial distance between the vortices is
small, they merge to form a single tangle in a finite time. In
the critical case corresponding to l=r � 3:2 the vortices are
in periodic motion: partly merging and then diverging.

Details of how vortices merge are not clear. It is
assumed that it is a contact process: in a finite time the
minimum distance between vortex regions vanishes, as
shown in Fig. 11a, where the vortices are shown shaded.

Two-spiral capture is also a priori self-consistent:
regions occupied by vortices alternate with those which
are free of vortices and the connectivity of space is
conserved (Fig. 11b).

When the number of point vortices exceeds three, a
transition to chaos takes place [58]. This means that chaos
is definitely possible in a system of distributed vortices if the
connectivity of a vortex-free potential region exceeds four.
Examples of steadily rotating vortices are the Kirchhoff
elliptical vortex, as well as its various one-parameter
generalisations in the form of single and double vortex
structures known as Burbea’s patches [59, 60]. The search
for other vortices is continuing.

It seems likely that the connectivity of a vortical region
can increase or decrease in the course of its evolution.

The critical value of l=r for a compressible perfect gas
depends on the adiabatic exponent and on the ‘Mach
number’ o0r=a0, where a0 is the velocity of sound at
infinity. Problems of this kind can not only provide tests
of numerical methods dealing with inviscid flow, but they
may be also a source of new knowledge about the
appearance of acoustic lines and shock waves during
evolution of vortices.

Another simple example is that of a thin vortical jet. It
would seem that the solution is not difficult to obtain: the
flow in such a jet should be described by the thin-layer
equation:

uux + vuy = ÿ

1
r

p0(x) ,

where the pressure p(x) is constant over a transverse
section across the layer [u(x , y), v(x , y) are the velocity
components along the jet axis x and along the normal y to
the jet]. Although this equation has a quadrature in the
form of an analogue of the Bernoulli integral

p
r
+

1
2

u2
= f(c) ,

where ÿf 0(c) = ÿcyy is the vorticity and y is the stream
function (u = cy , v = ÿcx ), this asymptotic approach is

invalid in singular flow regions where the initial assump-
tions of a small thickness of the flow region are not obeyed.
This is true in the vicinity of the stagnation points A on a
body, sharp edges B of a body, and points of separation
and reattachment C (Fig. 12). The boundary of a jet may
also be the subject to surface tension forces.

It follows that the thin-layer theory of an ideal fluid is
far from complete both in planar and three-dimensional
cases [61]. It would be of interest to consider the separation
of a thin jet from a body. Two different formulations of the
problem are possible. If this jet is immersed in a liquid at
rest (immersed jet), its boundary is free. If the jet is
surrounded by a moving liquid, its boundary is a contact
discontinuity.

Formation of a bubble, which is a closed circulation
zone, in the flow of an inviscid liquid is problematic.
Nevertheless, it is possible to estimate quite simply the
shape of a thin bubble in the flow of an inviscid liquid
which is not subject to surface tension forces (Fig. 12f). The
thin-layer approximation is valid:

c(x , y1; e) = eC(x , y) + o(e) , y1 = ey ,

where e5 1 is the flatness coefficient of the bubble.
It follows from the Batchelor theorem [6] that the

vorticity is constant inside the bubble:

C = yu0(x)ÿ
1
2

y2
O , O = e o ,

p(x) = p0 ÿ
1
2
ru2

0(x) , p0 = const .
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Figure 12. Jet flow patterns.
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Figure 11. Patterns of merging of two three-dimensional vortices.
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We shall assume that the bubble boundary is described by
the equation y1 = e f(x). Outside the bubble the flow is
vortex-free:

C =

�

y ÿ f(x)
�

u1(x) , p(x) +
1
2
ru2

1(x) = const .

The pressure distribution p(x) is assumed to be given and it
is created by external factors. It follows from the condition
C(x , f) = 0 that the bubble shape is

f(x) = ÿ

2
O

�����������������

2
p0 ÿ p
r

r

.

Since f(x 1) = f(x 2) = 0, the pressure p(x) has a maximum
in the region where the bubble is located (x 1, x 2).

4.2 Vortex sheets
If a problem can be reduced to a boundary equation, its
dimension decreases by unity and the equations become
two-dimensional. Therefore, modern computers can be
used to solve more complex problems than those that are
soluble directly by the difference methods, finite element
methods, etc. The method of boundary integral equations,
which is a modern version of the potential method, has
become popular in the solution of steady-state problems in
the mechanics of continuous media. It is not always
possible to reduce equations describing unsteady motion to
integral equations, because the former contain a time
derivative. Therefore, there is a chance to obtain boundary
integrodifferential equations. This is used in the case of
flow of incompressible fluids.

The contributions to the velocity u made by vortices
distributed in space and by those concentrated on a
tangential discontinuity surface add up together. We shall
consider only the latter. Let us assume that a single vortex
sheet, described by the equation r = R(x, G, t), evolves in a
vortex-free potential; here G is the circulation measured
from a certain centre and x is a coordinate along the
G = const vortex line. The physical meaning of a vortex
sheet is that it is vortex x of infinite strength and
concentrated on a r = R 0 surface. It follows from the
Biot – Savart formula

u(r, t) =
1

4p

�

(r0
ÿ r)� x

0

jr0
ÿ rj3

dt0 ,

where dt = dZ dS is an element of volume and dS is an
element of the area of a surface vortex, that if

lim
o!1;DZ!0

(xDZ) = cc ,

then

u(r, t) =
1

4p

�

(R0
ÿ r)� cc

0

jR0
ÿ rj3

dS 0 , (4.1)

where u+

ÿ uÿ = cc � n is a discontinuity of the velocity
vector on a vortex sheet and n is a unit normal to this
sheet.

What is the velocity of a vortex line characterised by
G = const? It follows from the condition of continuity of
the pressure on a vortex sheet and from the Bernoulli
equation that

qDj

qt
+

u+

+ uÿ

2
H(Dj) = 0 ,

where Dj = j
+

ÿ j
ÿ

= G is the difference between the
potentials on a vortex sheet. It therefore follows that a
vortex line is travelling at a velocity (u+

+ uÿ)=2.
According to the Sokhotskii formula, the principal value

of the singular integral described by Eqn (4.1), found for
the case when the point at which the velocity is calculated is
located on the vortex sheet itself, is equal to the half-sum of
the velocities on opposite sides of the sheet. Therefore, the
equation of evolution is

qR(x, G, t)
qt

=

1
4p

�

(R 0
ÿ R)� cc

0

jR 0
ÿ Rj3

dS 0 . (4.2)

The shape of a plane vortex sheet can be represented in
the form z = z(G, t), where z = x + iy is a complex
coordinate. It follows from Eqn (4.2) that

qz(G, t)
qt

=

1
2pi

�

dG 0

z(G 0, t)ÿ z(G, t)
.

The term ‘singular integral’ is understood to be here the
Cauchy principal value and the bar in the above expression
represents complex conjugation. The presence of a body in
a flowing fluid is particularly easy to take into account
when the region of flow is transformed into a half-plane or
a circle by conformal mapping z = z(z, t). Conjugate
vortex sheets are included in this more general case and
the equation of evolution becomes

a
qzk(G, t)

qt
= b(zk , t) +

1
2pi

X

n

�

dG 0

zn(G
0, t)ÿ zk (G, t)

, (4.3)

where a = jqz=qzj2 is the square of the modulus of the
stretching of the coordinates and b is the complex velocity
of flow in the absence of vortex sheets.

Eqns (4.2) and (4.3) have not yet been studied by
mathematicians.

We can go over to flow characterised by point vortices if
the solution can be represented in the form of the d

function:

dG0

dzn
= Gnd(zÿ zn) .

In this case the Cauchy integral can be replaced with
an algebraic expression and the integrodifferential equa-
tion (4.3) reduces to differential.

The equation of evolution of tangential discontinuities
leads in a natural manner to an autonomous problem with
initial data, i.e. it is not related directly to the viscosity
effects, and it is formulated as follows: it is necessary to find
the geometry and intensity of a discontinuity for t > 0
provided they are known for t = 0. The problem whether
this formulation is ill-posed is fundamental. A vortex sheet
is always unstable, whereas a contact discontinuity and a
free boundary are unstable in the absence of stabilising
factors. A mathematical manifestation of this instability is
an ill-posed problem. In fact, small short-wavelength
perturbations such as a travelling wave

y0 = exp

�

ot ÿ io
x
u0

�

[where y = y0(x , t) is the shape of the discontinuity and �u0

is the velocity of the fluid on its opposite sides] satisfy the
Laplace equation

q

2y0

qt 2 + u0
q

2y

qx 2 = 0 ,
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when the problem with the initial conditions is ill-posed in
the Hadamard sense [62].

It is known that ill-posedness is a constant feature of
inverse problems. A steady-state inverse problem in hydro-
dynamics is determination of the shape of a body past
which a fluid is flowing, either from the distribution of the
pressure on this body [63] or from the shape of a shock
formed ahead of the body [64, 65]. The problem of
determination of the shape of the surface of a tangential
discontinuity (with a given shape of a body) is direct.

The necessary condition for a well-posedness (which is
that the solution should depend in a continuous manner on
the initial data and on external factors) of evolution
problems is the requirement of analyticity of an inter-
face. A solution which is conditionally correct, i.e. piecewise
analytic, can be obtained by special regularisation methods
[22, 66]. A regulariser cuts off the hf harmonics of a Fourier
series, smooths out short-wavelength perturbations, and
does not reduce a given precision of a numerical calculation
procedure. Let us consider the effect of one of the
regularisers on the Hadamard example:

utt + uxx = 0 , u(x , 0) = 0 , ut(x , 0) = d sin(nx) .

The solution

u(x , t) =
d

n
sinh(nt) sin(nx) ,

defined in the finite time interval 0 < t < 1, increases
exponentially in the limit n !1. Let us add to the
equation a regulariser in the form a fourth-order derivative
of the required function:

utt + uxx + e
2uxx xx = 0 .

The task is to determine a value of e(d) which would satisfy
the conditions

lim
d!0

e = 0 , lim
n!1; d!0

u(x , t) = 0 .

For the solution given by

u(x , t) =
d

k
sinh(kt ) sin(nx) , k = n

�����������������

1 ÿ e2n2
p

the estimate looks as follows:

�

�u(x , t)
�

�4
d

kmax
sinh kmax = 2ed sinh

1
2e

, kmax =

1
2e

(in the Hadamard example, we have kmax =1). Therefore

lim
d!0

u(x , t) = 0 , if lim
d!0

�

ed exp
1
2e

�

= 0 .

Here, we can select e(d) e.g. in the form of the function

e = ÿ

1
2 ln d

.

This example of regularisation, based on introduction of
an even high-order derivative, is just the simplest illustra-
tion of the mechanism of action of a linear regulariser [62]
based on additive introduction, into the equation of
evolution of a vortex sheet [Eqn (4.3)], of the term

e
2 q

2z(G, t)

qG 2 .

There is an uncountable number of regularisation
methods. Apart from the linear regularisation method,

the method of an artificial vortex layer [67] and the method
of rediscretisation [68] have proved themselves in practice.
It is suggested in Ref. [69] that the surface tension be used
as a regulariser. It seems that such a regulariser would not
be very effective: when the surface tension is low, no
stabilisation takes place. The choice of the optimal
regulariser is a topical problem in computational hydro-
dynamics.

The method of boundary integrodifferential equations
has to be generalised to the cases of axisymmetric flow of an
incompressible fluid [70] and of plane flow of a compres-
sible fluid [71].

4.3 Free boundaries
The equation for a plane contact discontinuity can be
represented in the form z = z(s, t), where the constant
value of the parameter s is conserved across this
discontinuity and identifies a point moving at a velocity
(u+

+ uÿ)=2 . The point G = const does not move at the
same velocity. Therefore, a system of two equations is
needed for the determination of two functions z(s, t) and
G(s, t) defined at the discontinuity. These equations have
been derived with account taken of the surface tension, the
forces due to gravity, and the difference between the
densities r

� and between the Bernoulli constants of the
fluids in contact both in the case of periodic waves [69] and
for a closed contact discontinuity [22]. Preliminary
attempts have been made to obtain a numerical solution
of the system of equations of evolution of a contact
discontinuity.

This system of equations is valid if r+

r
ÿ

6= 0 and, in
principle, it does not differ from the system of equations of
evolution of a free boundary. The latter cannot be obtained
by going to the limit r+

! 0 or r
ÿ

! 0 because the area
bounded by a contact discontinuity — in contrast to the
area bounded by a free boundary, i.e. the area of a cavity
— is invariant in a solenoidal field of flow. An integro-
differential equation of evolution of a free boundary,
regarded as a line of vortex sources on a plane, was
introduced in Ref. [22] and integral equations are discussed
in Ref. [72].

There are many unsolved problems relating to the
formation of steady separated flow. For example, we
can imagine the following scenarios of steady flow with
two free boundaries starting from a body in flow: expansion
of a closed cavity, expansion of two closed cavities followed
by their merging into one, growth of two accelerating
Prandtl vortices and their merging at infinity. At the final
stage (t4 1) of evolu-tion of cavitational flow a cavity
shrinks into a section of a straight line and the body in
a flowing fluid shrinks to a point where the singularity is
determined by the drag coefficient.

Let us now consider some specific problems.
In 1910 an aircraft of unusual design was test-flown

successfully not far from Paris. It did not have an
obligatory (at the time) propeller and instead its nose
contained a compression engine, which was the prototype
of a modern air-breathing jet engine! The young Rumanian
designer of this aircraft, by the name of Coanda, placed
metallic shields to protect the plywood fuselage from the
flames shooting out from the jet nozzles. How surprised he
must have been when the jet became sucked towards the
fuselage instead of being deflected from it.
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The phenomenon of a slow jet deviating greatly from its
direction which at a high flow rate is known as the Coanda
effect and also as the teapot effect. We encounter this effect
every day: at low angles of tilt of the teapot the tea
emerging from it follows the shape of the spout and its
flow assumes various forms.

The Coanda effect can be observed in planar flow in an
open trough. It is hardly possible to realise planar flow in its
pure form (is this not typical of hydrodynamic phenom-
ena?), but a priori we can assume that, apart from the case
of a layer which becomes attached to the outer surface of a
plate (Fig. 13a) and the case of a free jet (Fig. 13b), there is
an intermediate regime in a wide range of flow rates in
which a planar jet splits, like an axisymmetric one, into wall
and free parts (Fig. 13c). The solution of the Euler equation
for the first two cases does exist, but nor for the case shown
in Fig. 13c.

All types of flow past a body can be observed
simultaneously (shown in Fig. 13d) if a rectangular plate
is inserted into a stream of water coming from a tap.

It is traditionally assumed that the problem of a plane
stream flowing past a sharp edge can be formulated on the
basis of the ‘dry water’ theory [73, 74]: the difference
between the atmospheric pressure at the free boundary
of the stream and the theoretical infinite rarefaction at the
edge of the plate (O in Fig. 13a) presses the stream against
the plate. However, if Re = q=v4 1 ( q is the rate of flow in
the jet), a boundary layer can separate under the action of
an unfavourable (decelerating) pressure gradient on the
lower surface of a plate. Therefore, the influence of viscosity
is important.

Near the edge of a plate there is always a region where
the complete Navier – Stokes equation cannot be simplified.
The situation resembles the familiar unsolved problem of
the flow of a fluid near the front and rear edges of the plate
at which a Prandtl – Blasius boundary layer is formed [75].
In the latter case there is a coordinate expansion which is
valid in the vicinity of the edge [75, 76] and which does not
overlap the solution in a region where the Navier – Stokes
equation is valid and even less so where the Prandtl
equation applies. A natural generalisation of this problem
is the flow past a corner edge.

A free film of a fluid which is accelerating, for example
under the action of the force of gravity, becomes thinner

and eventually breaks up. One of the ways in which this can
happen is the rolling up of a film into a system of streams.
The solution in the vicinity of the edge of a free film, like
that near the ‘point’ of formation of the streams, is not
known. The number of streams is not known either. It is
claimed in Ref. [14] that the system can consist of one, two,
or three streams.

Since there is no folding criterion, it is not possible to
calculate the parameters of a transition from sheet to stream
flow and the changeover between topologically different
regimes. Therefore, it is of primary importance to determine
experimentally the parametric limits of the existence of such
regimes and to detect new ones.

If a metal disk is placed in a water-filled bath, it will
sink. What happens if a jet of water from a tap is directed
onto this disk (Fig. 14)? One would expect the pressure
from the jet to cause the disk to sink even faster. However,
this disk does not sink? It floats under the action of the
buoyancy force [77, 78]. The clue to the solution of this
paradox is that atmospheric pressure acts on the upper
surface of the disk, since only a thin stream of water passes
along this surface. However, the lower surface is acted upon
by the hydrostatic pressure, which his higher than the
atmospheric pressure because the disk is immersed in
water to a considerably depth. The difference between
them creates the buoyancy force, similar to the Archime-
dean force. The same difference between the pressures is
responsible for a characteristic hydraulic water crest (a
bora-like effect) near the disk edge. The solution of the
problem of such a floating plate has not been obtained in
the plane or axisymmetric configurations. It is not clear
how important is the role of the viscosity near the edge
where a contact discontinuity is formed.

The dynamics of air bubbles in water has not been
studied at all. One of the surprising phenomena in hydro-
dynamics is asymmetric flow of water around an air bubble
whose typical dimension l is so small that the surface
tension forces are important [6, 79]. Such a bubble, pro-
pelled by the buoyancy force, follows an upward helical
path. The origin of the lateral force which appears in this
case is assumed to be not so much the asymmetry of
separation of the flow from the air bubble, as periodic
oscillations in the nearby wake.

The simplest experiment with a bubble floating upwards
involves placing a controlled amount of air, whose volume
has a characteristic length l, at the bottom of a water-filled
sufficiently high and wide glass vessel. If the value of l is

Contact discontinuity

Incident jet

Disk
Bora-like crest

Figure 14. Incidence of a water jet on a floating disk.
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Figure 13. The Coanda effect. WL is a wall layer and FJ is a free jet.
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varied and the other parameters are kept constant, the
results give one-parameter dependences of the shape of the
bubble, of the coefficients representing the aerodynamic
forces acting on the bubble, and of the ratio h=r on the
number Re , where h is the pitch of the helical path followed
by the bubble and r is the radius of this path.

The shape of the bubble can be calculated on the
assumption that the flow is inviscid, symmetric, and
nonseparated, that the air pressure inside the bubble is
negligible, and that the pressure on its surface is

p = constÿ
a

R
,

where a is the surface tension and R is the radius of curva-
ture of the bubble surface. However, even if the solution to
this problem does exist, it is of no practical use because
the flow past a bubble moving along a helical path is
separated.

The simplest outflow problem is that of the shape of a
free boundary at the contact between the finite mass of a
fluid which is flowing down to the vertex of a cone or a
wedge at a rate obeying, for example, a power-law function
of time. Does the self-similar regime appear? Which of the
factors — viscosity, weight, or capillarity — dominates the
final stage of flow? The problem may be converted to one-
dimensional form if it is assumed that the vertex angle of
the cone or wedge is a small parameter.

4.4 Combined vortices
A three-dimensional vortex of finite size is called simple if it
has no tangential discontinuities and combined if there are
such discontinuities. The boundary of a combined vortex is
a slip surface: a contact discontinuity, or a free surface. An
example of a combined vortex, bounded by a contact
discontinuity, is the Hill spherical vortex and an example of
a combined vortex bounded by a free surface is the
combined Rankine vortex [80].

A combined vortex of finite size is called hollow if there
is no three-dimensional vorticity, i.e. if H� u = 0, except
for the surfaces of a tangential velocity discontinuity. If
there is no motion inside such a hollow vortex, then its
boundary is a free surface. An example of a hollow vortex,
bounded by a vortex sheet, is a planar circular vortex with a
point vortex of strength ÿG=2 located at its centre; here, G
is the global circulation of the vortex sheet.

The wonderful world of combined vortices has not been
investigated at all. It has been found that the interaction of
two simple planar vortices is accompanied by the formation
of a cusp point and of a vortex sheet [59]. Such an effect
(artefact?) has to be reproduced and thoughtfully analysed.
No studies have been made of the dynamics of peaking of a
tangential discontinuity [81] or of spontaneous (without
external forces) appearance of helicity on its smooth
surface.

We have considered already a bubble in gradient fluid
flow (Fig. 12f). A completely different situation occurs
when a thin bubble is in a fluid flowing in the absence
of a gradient at a constant velocity u

1
. A pressure gradient

is induced by the bubble itself, i.e.

p(x , y1) = p
1

+ ep1(x , y1) + o(e) , p
1

= const .

The pressures outside the bubble is found by solving the
linear problem of potential flow past a thin body whose
shape is given by the expression y1 = e f(x). This pressure is

p1(x , 0) =
ru2

1

p

�l

0

f 0(x)
xÿ x

dx .

The bubble can ‘withstand’ this pressure if the velocity
inside it, described by the Bernoulli law, is of the order of
��

e
p

. Inside the bubble we then have

c(xP , y1) = e
3=2
c0(x , y) + o(e3=2

) , p1

�

�

�

y=f
= ÿ

1
8
ro

2f 2 ,

c0(x , y) =
1
2
oy( f ÿ y) , o = const , y1 = ey .

The quality of the pressures outside and inside the bubble
together with the action of the surface tension can be
described by the following nonlinear integrodifferential
equation for the function f(x):

u2
1

p

�l

0

f 0(x)
xÿ x

dx+

1
8
o

2f 2
ÿ

a

r
f 00 = 0 , (4.4)

where a is the surface tension. It seems that there are no
solutions for a = 0.

Formulation of the problem of a bubble in supersonic
flow is too exotic for proper treatment. In accordance with
the linear supersonic theory, the pressure is proportional to
the angle of tilt of the bubble surface or, more exactly,

p1(x , 0) = ru2
1

f 0(x) .

Eqn (4.4) is now replaced with the following ordinary
differential equation:

u2
1

f 0 +
1
8
o

2f2
ÿ

a

r
f 00 = 0 .

It is necessary to confirm that the problem of a vortex
bubble is well-posed within the framework of the Navier –
Stokes equation.

A combined vortex can have a spiral structure. The
equation for the transport of the vorticity o, derived in
terms of a system of polar coordinates r and y is

qo

qt
+ u

qo

qr
+

v
r
qo

qy
= 0 , (4.5)

where the stream function is

c(r, y, t) =
1

4p

�

o(r0, y0, t)

� ln
�

r2
ÿ 2rr0 cos(yÿ y

0
) + r02�r0 dr0 dy0 ,

ru =

qc

qy
, v = ÿ

qc

qr
,

and this equation has an exact solution with separable
variables:

c = r 2
C(Z, t) , o = o(Z, t) ,

p = r 2P(Z, t) , Z = y+ k ln r .

The system of coordinates is nonorthogonal in a physical
plane and consists of a family of spirals and a family of
circles; the solution is sought in a half-strip defined by
t > 0, 04Z4 2p.

Numerical solution of Eqn (4.5) requires specifying the
initial vortex o(Z, 0) and the boundary conditions. The
latter conditions can be the equality of the pressures and of
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the normal components of the velocity un on the Z = 0 and
Z = 2p lines, which coincide in a physical plane:

P(0, t) = P(2p, t) , un(0, t) = un(2p, t) .

Since the boundary conditions include the pressure, the
problem should be supplemented by an equation for
determination of P(Z, t).

Two physically distinct formulations are possible and
they are given below.

(1) Simple vortex . In this case the tangential compo-
nents of the velocity remain continuous:

ut(0, t) = ut(2p, t) .

(2) Combined vortex . A spiral characterised by Z = 0
(or Z = 2p) is a vortex sheet. Since fluid does not cross this
sheet, the normal component of the velocity on the sheet is
equal to the velocity of the discontinuity c(t):

un(0, t) = c(t) .

There is no certainty that this solution describes
‘pseudorandom flow’. However, in analysis of the special
case of a self-similar solution [82] spontaneous appearance
of an infinite singularity in the distribution of the vortex has
been confidently predicted [33]. This phenomenon has been
discussed so far for three dimensional flow [84] or for plane
vortex sheets evolving in potential flow [85].

4.5 Coordinate expansions in the vicinity of folds
A local solution near a fold, obtained on the basis of the
‘dry water’ model, is a coordinate series in powers of the
distance from the fold. Such a series expansion represents
the upper limit of the solution of the problem of the small-
scale structure of flow of a low-viscosity fluid. In terms of
spherical coordinates r, y, l, the solution of the Laplace
equation for the velocity potential is sought in the form
r nfn(y, l) + o(r n

). In addition to regular harmonics, which
correspond to integral values of n, there are also
eigensolutions with fractional values of n. The aim is to
find the eigensolution with the smallest index n.

Let us now consider some examples.
The ‘three-halves law’ (Fig. 15a) for the shape of a

vortex sheet near a sharp edge from which this sheet
originates [86] breaks down near the edges of a wing.
Fig. 15b shows the shape of a wing in plan view. Points
A, B, and C are the kinks of the wing profile. Different flow
patterns are obtained, depending on the angle of attack (the
angle of tilt of a wing relative to the direction of free-stream
flow) and on the vertex angle y at a kink. The nonseparated
flow pattern in considered in Ref. [87], but for some reason
this is done only for the case when y < p. Linearised
solutions have been published [88] and patterns proposed
in Ref. [14] have to be checked.

Fig. 15c shows the shape of a wing in plan view when the
wing has a longitudinal cut. Patterns of flow near folds A
and B proposed in Ref. [14] also need to be checked.

There is a greater variety of patterns involving separa-
tion from a smooth surface of a body. Topological
classification of such patterns should be based on the
type of lines of contact of a vortex sheet with the body.
Possible cases of three- dimensional separation are shown in
Fig. 16: (a) smooth separation; (b) open separation;
(c) dipole separation; (d) spiral separation. The three-
halves law is valid in sections perpendicular to the line
of contact (dashed lines in Fig. 16) and the shape resulting
from smooth separation is similar to that obtained for the
planar case.

A coordinate expansion in the vicinity of a vertex line of
contact between a vortex sheet and a body has not yet been
obtained even for a single case. The problem of a contact
discontinuity subject to the surface tension forces has not
been tackled: a coordinate expansion has not been obtained
even for planar flow; the three-halves law is not valid in the
case of separation from a sharp edge or from a smooth
surface. Closed vortical regions apparently form in the
vicinity of a point of separation, as established experimen-
tally [19].

One of the best known examples of the flow of a
compressible fluid for which a coordinate expansion is
not known near a fold is the problem of a triple shock
proposed by Richtmyer [65] and representing a simple
Mach reflection of a shock wave from a wedge. The
flow pattern is shown in Fig. 17a, where a contact
discontinuity starting from a triple point is represented
by a dashed curve and the continuous curves represent self-
similar paths. It would seem that the lines of discontinuity
should be analytic curves everywhere with the exception of
the triple point itself and that the self-similar solutions
should be analytic in terms of the variables x=t and y=t.
Richtmyer obtained a local solution with the aid of a
fractional-exponent series and logarithms. The series
derived for each of the angular subregions 1, 2, 3, 4
(Fig. 17a) and satisfying differential equations are matched
along the lines of discontinuity. Unfortunately, a solution
cannot be obtained in this way. The nature of the
singularity still remains unknown. What is the problem?
Apparently Richtmyer ignored the special transonic nature
of flow near the triple point.
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Figure 15. (a) ‘Three-halves law’. (b) Kinks in the wing profile (plan).
(c) Wing with a longitudinal cut.
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Figure 16. Possible types of lines of contact of vortex sheets with a
body.
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Before we propose a possible explanation of the
unsuccessful attempt made by Richtmyer, let us recall
that (as established in Section 3) singular points in the
field of self-similar paths are located in the region of elliptic
equations. For example, under regular reflection conditions
the line of parabolicity (dashed line in Fig. 17b) separates
‘supersonic’ flow in the vicinity of point A from ‘subsonic’
flow surrounding a node of self-similar paths N.

It is very likely that in the case of simple Mach reflection
a line of parabolicity divides an angular region ( 4 in
Fig. 17a) between a Mach stem and a contact discontinuity
into two corner subregions for which the expansions of the
solutions are fundamentally different. The ellipticity of the
system of equations is important right up to the limiting
characteristic.

Similar considerations apply in the case of a steady
simple Mach reflection of a shock wave from a solid wall.

Richtmyer’s attempt is related also to the following two
unsolved problems. One of them, discussed long ago [89],
can be solved after the topology of flow has been
determined and checked numerically. This is the problem
of determination of the criterion of a transition from
regular to simple Mach reflection.

The second problem is the behaviour of the end of a
contact discontinuity. Fig. 17a applies only if the velocity of
a fluid to the left of the contact discontinuity is not equal to
the velocity of a point of the saddle + node (SN) type where
a slip line is attached to a wedge. It is naturally understood
that such a ‘separation’ pattern is not self-consistent with
separation of a self-similar boundary layer from a wedge.
Equally doubtful is the simplest topology with just one node
N (Fig. 17c) when the velocity of a fluid to the left of a
contact discontinuity is equal to the velocity of the point N,
i.e. the velocity discontinuity vanishes at this end of a slip
line. Under some conditions, experiments reveal the end of
a contact discontinuity rolled up into a spiral. Such a flow
pattern, which includes a focus and a saddle S (Fig. 17d), is
formally self-consistent.

I shall end this subsection by comments which should
finally shatter any illusions that we might have about the
ease of constructing expansions in the vicinity of folds. A
local solution does not always have the simple form of a
coordinate series. An alternative case is that when the

vicinity of a point (or a line on a surface) has to be split into
several (three, ten, or more) subregions and in each of them
the initial complete problem has to be simplified. The
solutions for such embedded, like the Russian matryoshka
toys, subregions are asymptotically compact and mutually
correlated. This method had been used first to tackle the
problem of flow near a point of separation of a boundary
layer in a supersonic stream: this was done by Neiland [90]
and also by Stewartson and Williams [91]. Nowadays such
expansions are regarded as conventional tools by inves-
tigators and the range of their applications is particularly
great in the hydrodynamic stability theory, which is an
extensive topic we have hardly touched so far.

It follows that a theory of local solutions has not yet
been developed not only for the Navier – Stokes equation,
but even for the Euler equation.

4.6 Vortex filaments
A vortex filament, which is a mathematical representation
of the vorticity concentrated on a line in the delta-function
manner, is of little use in modelling real hydrodynamic
processes primarily because the velocity and deformation
of the filament are generally infinite [6, 92].

Curvilinear vortex filaments are often used in qualitative
analysis. Two ring vortex filaments with a common axis
should pass through each other periodically. This is
mentioned in practically every textbook on hydrody-
namics. In experiments it is found that vortex rings are
usually ejected through a circular opening as a result of
pulsed compression of a closed volume of air. The vortices
breaking away from sharp edges of the opening can easily
be made visible with smoke.

Under suitable conditions two vortex rings, ejected one
after another, merge into one which at first oscillates
assuming an elliptic shape and then separates into two
new rings. The related paradox, which still has to be
resolved satisfactorily, is that during their short interaction
these vortices exchange their vorticities. In fact, if initially
these rings are coloured differently, then each of the new
rings formed as a result of their interaction is coloured half
with one colour and the other half with the other colour.

If you carry out this experiment, try to eject several (up
to ten) vortex rings following one another at short intervals.
The rings will travel some distance along their shared axis
and then they will effectively diverge forming a beautiful
‘bouquet’. This phenomenon demonstrates the unity of the
randomness and regularity principles in the motion of
vortices, which is not yet possible to model mathematically.

Can vortex rings pass through one another many times?
Maxworthy [93] tried to simulate leap-frogging of vortex
rings in water. When the initial velocities of the vortices
were approximately the same, two rings merged into one
which did not separate later. When the velocity of the
second vortex was much higher than that of the first, an
unstable composite ring was formed and it then separated
into two. As a result, the second ring overtook the first, but
then the velocities of the two rings became approximately
equal. Therefore, subsequent merging was not observed.

If Maxworthy is correct, then the leap-frogging of
vortex rings in water is impossible. Double interaction of
vortex rings in air was detected by Yamada and Matsui six
years later [19].

Rectilinear vortex lines, moving at a finite velocity, are
more suitable for modelling than are curvilinear lines. In
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Figure 17. Patterns of reflection of a shock wave from a wedge.
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1913, Foppl proposed a pattern for flow past a cylinder,
characterised by two symmetrically arranged vortices.
These vortices may form not only behind a cylinder but
also in front of it [94]. The circulation G of these vortices
proves to be a free parameter.

In contrast to the Nikol’skii flow, the Foppl model is
incorrect: the appearance and existence of point vortices in
a real viscous liquid is impossible. However, from the
practical point of view this model is very attractive since
it predicts zero resistance force. This immediately leads to
an interesting idea of deliberate formation of point vortices
in the Foppl flow by two rotating cylinders of sufficiently
small radius in order to reduce the drag and suppress the
wake. An estimate of the energy losses expected in such an
experiment shows that it is feasible, but technological
difficulties prevent implementation of this idea. We note
parenthetically that a rotating cylinder on the surface of a
wing profile is being used to move further the point of
separation along the wing set at an angle of attack [95].

The Foppl model has another and purely theoretical
use: it can be employed to detect unusual properties of
separated flow and to carry them over to realistic
mathematical models.

The presence of a free parameter G in the Foppl model
makes it possible to use this model for fluid flow past bodies
with sharp edges: the value of G can be selected so that the
Kutta condition is satisfied or, in other words, the point of
separation on a wing is fixed.

Let us consider symmetric flow past a plate with a sharp
corner at the origin of the coordinate system (V plate). Let us
denote the angles that the plate makes with the x axis by�ap
(Fig. 18a). Let us assume that point vortices of strengths
ÿG and G are located at points z1 and �z1. The conformal
transformation

z = b(z+ 1)1ÿa
(zÿ 1)a , b =

1
2

h
1 ÿ a

�

1 ÿ a

a

�a

maps the exterior of the plate in the z plane onto the z

plane, in which a section of the axis of abscissae has been
removed. The complex-conjugate velocity of flow is

dw
dz

=

dz
dz

�

bu
1
ÿ

G

2pi
1

zÿ z1
+

G

2pi
1

zÿ z1

�

.

If under steady conditions (no external force) we go to
the limit

lim
z!z1

�

dw
dz

+

G

2pi
1

z ÿ z1

�

= 0 ,

we find that two algebraic equations are obtained:

(x1 ÿ k)(x2
1 ÿ Z

2
1 ÿ 1) = 2x1Z

2
1 ,

�

1 ÿ
2Z1

g

�

(3x2
1 ÿ Z

2
1 ÿ 2kx1 ÿ 1) = 1 ÿ k2 ,

where 2pu
1

ag = G, k = 1 ÿ 2a, z1 = x1 + iZ1.
The Kutta condition at the sharp edge

dw(k)
dz

= 0

completes the problem of determination of x1, Z1, and g by
the third algebraic equation:

(k ÿ x1)
2
+ Z

2
1 = 2gZ1 .

The geometric locus of the centre of vortices is plotted as
a function of a in Fig. 18a. At low values of a (or in the
limit a! 1) a weak point vortex is located in the vicinity of
the edge. As a increases to 0.5, which corresponds to flow
past the plate, the vortex strength increases without limit
and the vortex escapes to infinity along asymptotes which
make the angle �p=6 with the abscissa. Thus, contrary to
the currently held ideas [94], there is no solution to the
problem of symmetric flow past the plate characterised by
two point vortices. This is the essence of the Foppl paradox.
In a broader sense the work, the Foppl paradox can be used
to denote the absence of a steady solution of a problem for
certain critical values of the determining parameters scr if
vortices are removed to infinity by going to the limit
s! scr.

Does bifurcation in the asymmetric Foppl flow pattern
occur at a = 0:5? Does the Foppl paradox apply to other
configurations or to other distributions of the vorticity,
apart from those concentrated at points? It is interesting to
note that the solution of the problem of flow past such a V
plate does exist in the Nikol’skii scheme for any value of a.

Can the Foppl model be applied to flow inside a wedge-
shaped region? The problem is that the flow of a strongly
viscous liquid (Re ! 0) is characterised by an infinite chain
of three-dimensional vortices of decreasing alternating-sign
strength, located in a wedge-shaped region (Fig. 18b). This
chain has been observed experimentally and is known under
the name of Moffatt vortices [19, 96]. Such a system of
vortices is an exact solution of the Stokes equation. A
similar solution of the Navier – Stokes or Euler equations is
not known.

One of the possible solutions of the Euler equation is a
sequence of point vortices with the circulation Gm , located at
points x m on the bisector of a wedge. The condition for the

a! 1 a! 0

p=6

x

a! 1=2 + 0 a! 1=2 ÿ 0

0

h

0

2pÿ y0

xxm

Gm

a b

u
1

Asymptotes

Figure 18. Two problems with point vortices.

308 S K Betyaev



absence of a force acting on each point vortex leads to an
infinite system of transcendental equations:

X

j6=m

Gjxj

x
2
m ÿ x

2
j

=

2y0 ÿ p

4p
Gm

xm
,

where xm = xp=2y0
m and y0 is the wedge angle. The simple

solution Gm = (ÿ1)m , x m = m = 1, 2, 3, . . . exists only when
y0 = p.

Systems of point vortices evolving in the absence of solid
boundaries are being investigated intensively. An example is
what is known as a discrete-circular vortex (Fig. 19), which
is a symmetric system of point vortices located on N
concentric circles in such a way that the same number
of k vortices with the same circulation is located on each
circle.

One general comment should be made on the stability of
symmetric clusters: it relates to the methods of investigating
this stability. We can study symmetry breaking in a system
as a whole on the assumption that its components are stable
entities and, having determined the symmetry as the exact
solution of the problem, we can then study instability of an
individual component. This division of the problem into
two parts opens up possibly the only way for investigating
the stability of symmetric vortex structures.

In the case of a discrete-circular vortex we can study the
behaviour of all the kN vortices. It is found that a ‘cloud’ of
vortices exhibits a symmetry instability [86] similar to the
Helmholtz instability of a contact discontinuity [69],
whereas a discrete-circular vortex breaks down imme-
diately. In the other case we can select one vortex on
each circle and having determined the symmetry positions
of the other vortices, we can study instability of N vortices.
The mechanism of this instability is not known, but it is
fundamentally different from the Helmholtz instability.

Thus, if on each circle we select one vortex with the
circulation Tj( j = 1, 2, . . . , N) and with the complex
coordinate

zj(t) = rj(t) exp
�

iyj(t)
�

,

we find that the functions rj(t) and yj(t) obey a system of
2N ordinary differential equations. The Kirchhoff invar-
iants are retained [6].

In the course of motion a sign of the quantity rj+1 ÿ rj

may change. If N = 2, this resembles the leap-frogging of
vortices discussed above. It occurs when initially r1=r2 is less
than a certain critical value of s. It is of interest to consider
the dependence of s on G2=G1, which represents the
boundary of the region where such a vortex leap-frogging
takes place. This is useful in determination of the dis-
cretisation step in numerical calculations of multispiral
vortex sheets.

If N = 2, flow is deterministic, but for N > 2, we can
expect chaos. One of the probable scenarios of the
appearance of chaos is the formation of an e layer on
the separatrices in the phase space [97].

It is not known whether collapse of a discrete-circular
vortex is possible. This problem is closely related to the
problem of stability of conventional collapse of three point
vortices{ discussed above because, in the limit t ! 0 (t = 0
is the collapse time), the main contribution comes from the
selected three collapsing vortices and the remaining k ÿ 1
vortex triplets have only a correction that decreases with
time.

As pointed out above, chaos in a system of point
vortices does occur when their number exceeds three.
This conclusion applies to the evolution of vortices in
unbounded space. Are the properties of a system of three
point vortices the same in bounded space? Here, the term
‘bounded space’ means either an internal region (wedge,
circle) or a region external relative to the body around
which fluid flows. The simplest problem is that of the
evolution of three point vortices above an impermeable
plane, which is equivalent to three symmetric (relative to
this plane) pairs of point vortices in infinite space.

Can chaos occur in the case of evolution of a discrete-
circular vortex, located inside or outside a circle, if N = 2?

Point vortices provide good opportunities for modelling
both small and large perturbations in the dynamics of an
ideal incompressible fluid. Such perturbations frequently
not only deform, but also destroy coherent entities. The
problem is formulated as follows: at t = 0, point vortices
are introduced into a moving fluid and these begin to
interact with one another and with solid boundaries.
Depending on the previous history of flow and on the
nature of this interaction, three variants are possible: there
is no separation, vortices initiate separation which has not
occurred earlier at t < 0, and vortices interact with a well-
advanced separation, which exists when t < 0, and is — for
example — in the form of free boundaries. Specific prob-
lems are considered in Ref. [14].

5. Rotational flow

Rotational flow refers to three-dimensional motion with a
specific fluid rotation axis. Even in the ‘dry water’
approximation it is found that fast rotational motion
has surprising properties: change of equation from elliptic
to hyperbolic, formation of Proudman – Taylor columns,
proportionality of the drag of a body not to the
acceleration, but to the velocity or ... the path (!) travelled
by a body [6, 99, 100]. However, the general theory of
rotational laminar flow is still far from complete.

{The problems of existence and stability of steady and uniformly
rotating point-vortex clusters is discussed in Ref. [98].

Gj
0

rj yj

2p=k

Figure 19. Discrete-circular vortex.
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5.1 Flow past bodies
Axisymmetric flow of an ideal incompressible fluid can be
described by the following parameters: the modulus of
the maximum angular velocity O, the characteristic
dimension l of the body past which the fluid is flowing,
the axial velocity u

1
which is constant far from this body.

Then, the influence of rotational flow can be described by
the Rossby number

Ro =

u
1

Ol
.

The Euler equation is then [6]

cxx + crr ÿ
1
r
cr = Roÿ2�r2H 0

(c)ÿ C(c)C 0

(c)
�

,

where the various quantities are made dimensionless as
follows: the stream function c is divided by u

1
l 2, the

cylindrical coordinates x and r are divided by l, the total
pressure H in a stream line is divided by pl 2

O
2, and the

velocity of circulation around the symmetry axis (r = 0) is
divided by l 2

O; the functions H(c) and C(c) are specified
by the conditions at infinity (x = ÿ1), where c = r 2

=2.
If Ro5 1 the overall flow is independent of x and the

stream function is found from

r2H 0

= CC 0 . (5.1)

A change occurs only in a thin inviscid boundary layer of
thickness O(Ro) adjoining the surface of the body. In the
simplest case of flow past a disk (Fig. 20a) the stream
function c0 in the boundary layer is found from the
equation

q

2
c0(x, r)

qx
2 = r2H 0

(c0)ÿ C(c0)C
0

(c0)

with the boundary conditions (5.1) in the limit x! �1

and subject to the condition c0 = 0 when x = 0, where
x = xRo.

If O =1, then Ro = u
1

l=G, where G is the circulation
of a vortex filament. The problem of uniform flow of a fluid
represented by a vortex filament (r = 0) in the Helmholtz
scheme has not yet been solved (Fig. 20b).

A very different problem is represented by the case
when flow turns under the action of a rotating body and
there is no rotation at infinity. A mathematical model of the
Proudman – Taylor columns, which then appear ahead of a
body and behind it (Fig. 20c), has not yet been developed.
It is also worth noting the disappearance of a rear column
on reduction in the Reynolds number Re = u

1
l=n. The

Proudman – Taylor columns in an ideal fluid extend along
the x axis to �1 (dashed lines in Fig. 20c).

If the axial velocity u is divided by u
1

, the radial v and
circular w velocities are divided by Ol, and the pressure is
divided by r(Ol)2, the Navier – Stokes equations become

Ro
qu
qx

+

1
r
q(rv)
qr

= 0 ,

Ro u
qv
qx

+ v
qv
qr
ÿ

w2

r
= ÿ

qp
qr

+ a

�

H

2vÿ
v

r2

�

,

(5.2)

Ro u
qw
qx

+ v
qw
qr

+

vw
r

= a

�

H

2wÿ
w

r2

�

,

Ro u
qu
qx

+ v
qu
qr

= ÿ

1
Ro

qp
qx

+ H

2u ,

were

aRe = Ro , H

2
=

q

qx 2 +

1
r
q

qr

�

r
q

qr

�

.

The next two nonlinear submodels correspond to the cases
of strongly rotating (Ro5 1) and weakly rotating (Ro4 1)
fluids.

(1) Ro5 1. A body is flattened along the x axis and its
shape is described by the equation x = Ro f(r). The pressure
is independent of x an and the dependence p(r) is found
from the conditions at infinity (x! ÿ1):

dp
dr

=

w2

r
, u = 1 , v = 0 .

The reduced Navier – Stokes equations follow from the
system of equations (5.2):

qu
qx

+

1
r
q(rv)
qr

= 0 ,

u
qv
qx

+ v
qv
qr
ÿ

w2

r
= ÿ

dp
dr

+ a
q

2v

qx
2 ,

u
qw
qx

+ v
qw
qr

+

vw
r

= a
q

2w

qx
2 .

(2) Ro4 1. A theory of a thin body now applies and the
equation for the surface is r = Roÿ1f(x). The pressure is

c

PT columns

r

x

x

Vortex filament

Body

Free boundary

b
r

u
1

u
1

x

O(Ro)

a

IBL

r

Figure 20. (a) Inviscid boundary layer (IBL) on a disk. (b) Interaction
of a vortex filament with a body in the Helmholtz model.
(c) Proudman – Taylor (PT) columns.
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found separately from the second equation by the Navier –
Stokes equations converted to the parabolic form:

qu
qx

+

1
Z

q(Zv)
qZ

= 0 ,

u
qw
qx

+ v
qw
qZ

+

vw
Z

= b

�

1
Z

q

qZ

�

Z
qw
qZ

�

ÿ

w

Z2

�

,

u
qu
qx

+ v
qu
qZ

= b

�

1
Z

q

qZ

�

Z
qu
qZ

�

ÿ

u

Z2

�

,

where Z = r Ro , and bRe = Ro 2.
A numerical calculation begins at the point x = ÿ1.

There are singular regions near the front and rear edges.
It is usual to distinguish the ‘entry point’ of flow

(Fig. 21a) and the ‘exit point’ (Fig. 21b). Within the
framework of the Euler equations, these two types of
flow are indidstinguishable because of the principle of
reversibility of flow. In the vortex-free case a rectilinear
vortex filament, located on the continuation of the axis of a
cone, starts from the vertex A of this cone. In fact, the
conditions of axial symmetry, written down for the
potential j in a spherical system of coordinates r, y, and l

q

2
j

qr ql
=

q

2
j

qy ql
= 0 ,

determines directly the form of its function:

j(r; y; l) = j1(r; y) + j2(l) .

It follows from the Laplace equation H

2
j = 0 that

2pj2(l) = Gl, where G is a constant. Therefore, the
continuation of the attached vortex filament AB is a
free filament AC with the circulation G (Fig. 21). Such a
local solution implies dependence on time as a parameter.

In view of linearity of the problem, the loss of the axial
symmetry can be investigated separately. If the potential is
represented by a Fourier series

j(r, y, l) =
X

1

k=1

Fk(r, y) sin(kl)

and the solution for low values of r is limited to a power
law

Fk(r, y) = rnFk(y) ,

the Laplace equation leads to the Legendre equation for
Fk . The condition of zero flow on the cone [F 0

k(y0) = 0] and
the ‘Kutta condition’ of a finite velocity on the axis y = 0
[Fk(0) = 0] complete the formulation of the n(k) eigenvalue
problem.

A vortex filament is extremely unstable. A slight
deformation of a part of the filament causes it to move,
theoretically, at infinite velocity. Therefore, the pattern of

flow with a vortex filament can hardly serve as an external
expansion for the solution obtained for the problem of flow
of a viscous liquid when Re = G=n!1, where n is the
kinematic viscosity. The self-similar solution proposed for
the y0 = p=2 case in Ref. [101] is unacceptable because it
ignores diffusion of a vortex filament and it does not exist
for sufficiently large values of the number Re.

The mechanism of appearance of rotational flow can be
made more specific on the assumption that the investigated
cone rotates uniformly about its axis. Then the solution of
the local problem should be sought in the half-strip r5 0,
04y4y0 subject to the condition of zero velocity on the
y = y0 line and the minimal singularity conditions on the
lines y = 0 and r = 0. A soliton solution of this problem
(y0 = p=2) was obtained by von Karman (see, for example,
Ref. [102]).

5.2 Self-rotation of bodies in flow
If a body is hinged at a point or a shaft, it has the freedom
to rotate in a flowing fluid. Rotation of a body which is not
damped out with time is called self-rotation. The energy of
such rotation is drawn from the flow outside the body.
Experiments have shown that steady, oscillatory, and
disordered self-rotation is possible.

The published investigations have been concerned
mainly with self-rotation about the axis coinciding with
the direction of free-stream flow.

Self-rotation of a rectangular plate was discovered by
Zhukovskii in 1906. This rotation took place in a range of
attack angles corresponding to a negative derivative (with
respect to the angle of attack) of the normal force [103].
Only then an aerodynamic torque rotating a wing is
observed.

Self-rotation of an ellipsoid with the aspect ratio of 5
about an axis coinciding with its minor axis and with the
direction of free-stream flow is surprising: in the case of
such a body the flow past it is independent of the angle of
attack and there is no lift force [104]. An increase in the
Reynolds number Re first does not alter the frequency of
rotation (?) and then (Re = Recr) in the ellipsoid stops and
begins to rotate (Re > Recr) in the opposite direction
(mystically?) at a higher angular velocity. Self-rotation is
explained by the asymmetry of Hertler vortices on the
upstream and downstream parts of the ellipsoid. An
experiment of this kind must be repeated and analysed.

Self-rotation is of practical importance for manoeuvra-
ble aircraft. Such aircraft have low-aspect-ratio wings (l5 1)
and, therefore, the centre of interest has shifted to studies of
their rotation [105]. The topic of first importance is then the
interaction of the vortices trailing off from both side edges,
their evolution, and breakup. Mathematical modelling of the
majority of these effects is possible on the assumption that
the fluid is ideal. In particular, it is necessary to develop the

r
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a b

AB

y0

Figure 21. Interaction of a vortex filament with a cone: (a) ‘entry point’; (b) ‘exit point’.
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law of planar cross section for a rotatable low-aspect-ratio
wing.

Conversely, in aerodynamics of self-rotating wingless
rockets the viscosity effects are of prime importance:
separation of a boundary layer on a rotating wall and
laminar – turbulent transition [106].

Even a slight asymmetry can greatly enhance self-
rotation. This effect is observed if a hole is made in a
solid sphere placed in an air stream.

Self-rotation patterns of double configurations are
surprising and varied [107]. Two cylinders, whose axes
are parallel to one another but perpendicular to the
direction of free-stream flow, can self-rotate. A child’s
rattle, which is a configuration of several spheres hinged
to a ring, also self-rotates.

5.3 Channel flow
A typical problem of internal flow of a fluid can be solved
if the solution is not based on the Navier – Stokes equation
but, for example, on its parabolised subanalogue. One of
such mathematical models is discussed below.

Let a fluid travel between two concentric cylinders
(Fig. 22). The flow is turned by rotation of the inner
cylinder at a velocity dw1 and of the outer cylinder at a
velocity dw2; here, d is a dimensionless parameter such that
d = O(1) or d = o(1). The width of the annular channel
between the cylinders is small: the outer cylinder has the
radius (1 + e)r0, where r0 is the radius of the inner cylinder
and e5 1. The dimensionless form of the coordinate x is
obtained if we divide it by r0, and instead of r use a
stretched variable

R =

rÿ r0

er0
, 04R 4 1 .

The case can be made more general by assuming that the
fluid is injected or drawn off at a characteristic velocity tu

1

along the normal to the surface of both cylinders; here, u
1

is the characteristic velocity of axial motion and t = O(e)

or t = o(e).
Substitution of the expansions of the velocity compo-

nents

u =

t

e
U(x , R) + o

�

t

e

�

, v =

tu
1

Ol
V(x , R) + o(t) ,

w =

dw1

Ol
W (x , R) + o(d)

into the system of equations (5.2) yields the following
expressions which are obtained from the first and third
equations:

UW x + VW R =

1
Re

W RR , Ux + V R = 0 ,

where Re = teu
1

r0=n = O(1).
The conditions which apply on the cylinder surfaces

U(x , 0) = U(x , 1) = 0 , V(x , 0) = V 1(x) ,

V(x , 1) = V 2(x), W (x ; 0) = 1, W (x ; , ) =
w2

w1

(5.3)

contain the functions V 1(x) and V 2(x), which are assumed
to be given.

Estimates of the pressure are contradictory. It follows
from the second equation of the system (5.2) that

p = O(ed
2
) + O(t

2
) ,

but the third equation gives

p = O

�

t
2

e2

�

.

Depending on the relationships between ed
2 and t

2
=e

2, we
can distinguish the following three cases.

(1) Strong rotation:

e
3
d

2
4 t

2 , p = ed
2
rw2

1 P(x , R) + O(ed
2
) .

The solution is obtained in a closed form:

qP
qx

= 0 ,
dP(R)

dR
= W 2 , . . . .

(2) Weak rotation

e
3
d

2
5 t

2 , p =

t
2

e2 rw2
1 P(x , R) + o

�

t
2

e2

�

.

The boundary layer approximation can be used:

PR = 0 , Ux + V R = 0 , UUx + VU R = ÿP 0

(x) +
1

Re
URR .

(3) Basic model:

e
3
d

2
= t

2 , p = ed
2
rw2

1 P(x , R) + o(ed2
) .

The system of equations

Ux + V R = 0 ; PR = W 2 ,

UW x + VW R =

1
Re

W RR , (5.4)

UUx + VU R = ÿPx +

1
Re

URR

is compatible with the boundary conditions (5.3). More-
over, it is necessary to specify the initial values of the
functions in a certain section x = 0: U(0, R), V(0, R),

r, v r

x ; u

u

dw2

dw1

w y

r

r0(1 + e)

r0

a b

Figure 22. Channel flow pattern.
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W (0, R), and P(0, R). In this initial set there are two
interdependent functions:

PR = W 2 ,

2VWW R ÿ VUU RR + U 2VRR =

1
Re

(2WW RR ÿ UURR ) .

In a numerical calculation one can use the Crank –
Nicholson scheme or an implicit three-layer scheme [3 – 4].

If Re = 0, the solution is in quadratures:

U = Re A 0

(x)
R(R ÿ 1)

2
, Re A 00

(x) = 12(V 2 ÿ V 1) ,

V = V 1 + (V 1 ÿ V 2)R 2
(2R ÿ 3) ,

W = 1 + R

�

w2

w1
ÿ 1

�

, P =

�

W 2 dR + A(x) .

It is of interest to consider to stability of the solution of
the system of equation (5.4).

The well-known problem of steady axisymmetric out-
flow of water from a bath under the action of the force of
gravity has not yet been solved. The model of an ideal fluid
is applicable provided

Re =

��������

gd 3
p

n
4 1 ,

where g is the acceleration due to gravity and d is the
diameter of the drain hole. The problem is governed by a
single dimensionless parameter s = h=d, where h is the
undisturbed level of water.

It is known from experience that in a certain range of
values of s (s1 < s < s2) the flow begins to rotate sponta-
neously. Is there only one value of the angular velocity O of
the stream? Is O the eigenvalue of the problem or is it found
from the considerations of stability? Is the method of
boundary integral equations applicable to this problem?

The experimentally observed increase in the rate of flow
of water when it is rotating can obviously be explained by
an increase in the thickness of the stream under the action
of centrifugal forces.

The problem of an axisymmetric fountain can also be
extended to the case of rotation of water around the x axis
(Fig. 23). The initial distribution of the vertical velocity u(r)
is fairly arbitrary. Is separation of sheets and formation of
bubbles possible? A thin-stream approximation is discussed
in Ref. [108].

5.4 Once again about spiral flow
Spiral motion is a special case of rotational flow. In
describing spacial spiral vortex structures, I found to my
chagrin that I do not know the mathematical definition of
the spiral even as a planar curve. I found that this is not a
simple matter! I cannot accept as this definition the
following abracadabra statement given in Ma tematicheskii
Entsiklopedicheskii Slovar’ (Encyclopedic Mathematical
Dictionary) published by Sovetskaya Entsiklopediya
(Moscow 1988): ‘‘The spiral is a planar curve, which
usually (? — my query) passes around one (or several)
points, approaching or moving away from it.’’ This
unmathematical definition fits also, for example, an ellipse.

In fluid dynamics the spiral is usually (!) understood to
be a curve with an infinite number of turns. Therefore, I
shall define a spiral as a planar curve which makes an
infinite number of rotations as it reels in on a simple closed
curve or on a point. In the first case the simple closed curve
is called the limit cycle.

In mathematical models the number of turns of a spiral
is infinite, but our experience shows that the number of
turns is finite: the nature, as pointed out already, does not
tolerate infinities.

A spiral surface is a surface which has a simple curve as
its axis. The surface is such that its normal section is a spiral
with the focus located on the axis. It follows that the axis of
a spiral surface is a focal curve, which is the geometric locus
of the foci of the spirals. The axis of a cylindrical spiral
surface is a straight line and the spirals are the same in each
section.

A spatial spiral line is the path of a particle moving
along a spiral surface in such a way that a spiral is obtained
by projection onto a plane normal to the axis. A screw
(h elical) line is a spatial line describing the path of a
particle which rotates about a certain straight line (axis) and
at the same time moves parallel to this line.

In the modelling of spatial spiral flow it is convenient to
use coordinate systems with an axis and an azimuthal angle
l. These are, for example, spherical (r, y, l) and cylindrical
(x , r, l) coordinates. Instead of l, a spiral variable
Z = l+ g is used; here g = g(r, y, t) in a spherical system
of coordinates and g = g(x , r, l) in a cylindrical one. The
conditions of spiral periodicity mentioned earlier apply for
Z = 0 and Z = 2p.

The shape of a waterspout-like vortex sheet in the plane
of symmetry of flow and also near a smooth surface where
sheet begins has not been investigated. Are steady self-
similar solutions applicable in this case?

Spiral flow occurs over rotating bodies or in rotating
containers. No studies have been made of bifurcation of
axisymmetric flow to spiral flow. Is there an analogue of the
Hill vortex [6] in slowly rotating spiral flow?

The self-similar steady solution of the Navier – Stokes
equation in a spherical system of coordinates is

u(r, y, l) =
n

r
U(y, Z) , p(r, y, l) =

n
2

r2 P(y, Z) ,

g(y, r) = k ln r + f(y) .

The region where the solution exists is bounded by the
rectangle 04Z4 2p, 04y4 p. In the special case of
axisymmetric flow (q=qZ = 0) with (w 6� 0) or without
(w � 0) rotation the equation can be reduced to the
ordinary form and the spiral periodicity conditions are

u

x

r

Sheets

Bubble

Figure 23. Axisymmetric fountain.
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unnecessary. Three formulations of this problem are
known: axisymmetric flux of momentum from a point
source, flow induced by a vortex filament located along the
axis of a cone, and flow induced by a linear source also
located on the cone axis. All these three formulations need
to be extended to the case of spiral flow.

Axisymmetric flow can be generalised conveniently to
this case by adopting a cylindrical system of coordinates.
Interesting approximations are those of rapidly convergent
((rjqg=qrj4 1) and slowly convergent (rjqg=qrj5 1) spirals.
Can the limit cycle appear in the field of streamlines?

Although it has long been known that a waterspout has
a spiral structure, only axisymmetric models have been
investigated. Such a formulation is suitable only for the
modelling of a waterspout-like vortex which breaks off
from the surface of a wing. A real waterspout can be
modelled only if the compressibility, the force of gravity,
and heat conduction are taken into account.

The exact self-similar solution

ux =

nx

r2 u(Z) , ur =
n

r
v(Z) , ul =

n

r
w(Z) ,

p =

n
2

r2 P(Z) , Z = l+ k ln r

describes spiral flow in the symmetry plane x = 0. It can be
treated as a truncated coordinate expansion in powers of x
of a non-self-similar solution in the vicinity of the
symmetry plane x = 0.

The planar Hamel flow, described by the stream
function c = c(Z), where Z = l+ k ln r, as well as its
various generalisations [42, 109] are not physically realis-
able since they do not satisfy the spiral periodicity
conditions.

It is not known whether a spiral boundary layer builds
up on a rotating body in a stream and, in particular,
whether this happens on a rotating disk.

6. Hydrodynamics in a bath

Experiments in a bath are mentioned frequently in the
preceding section, but no reference has been made to the
well-known experiments of Magnus, Rank, Taylor,
Marangoni, Toms, and others [9, 110]. However, even a
superficial examination of any of these experiments reveals
unsolved problems and incompleteness of the conventional
interpretation.

Let us consider, for example, the experiment with tea
leaves. Why do they gather at the centre of the bottom of a
glass after the tea has been stirred with a spoon? The answer
to this question was published by Einstein himself: tea
leaves are driven to the centre by flow at the bottom of the
glass. Although no rigorous calculations of the motion of
tea leaves has been made, there is evidence that the ‘wet’ tea
leaves at the bottom of the glass of density exceeding that
of water rotate not at the centre of the glass but near it and
form a ‘belt of asteroids’. The width of this ‘belt’ depends
on the degree of inhomogeneity of the tea leaves: leaves of
different sizes and masses rotate along circles of different
radii. They collect at the centre only during the final stage
of their deceleration.

We perform these ‘experiments’ on tea leaves daily, but
we do not pay proper attention to their behaviour. It would
be necessary to determine how not only the ‘wet’ tea leaves,

but the also ‘dry’ leaves (i.e. those that float in the interior
and on the surface of water) behave during motion and its
final stage. Instead of tea leaves, we can consider other
particles and it is desirable that they should be of calibrated
size. In addition to mixing with a spoon, we can use a
‘purer’ method of rotational motion: we can rotate a glass
of tea by clamping it in a mixer or placing it at the centre of
a rotating disk in a record player. We can make the
following experiments with tea leaves: (a) determine their
positions during rotation or after; (2) rotate tea or glass;
(3) observe bottom, surface, floating leaves. This is a total
of 2 � 2 � 3 = 12 combinations. However, this is not all!
We can exclude the influence of deformation of the free
surface by, for example, covering tightly the water in the
glass with a cover. We can also do other things. the reader
can think of other ways of carrying these apparently simple
but really extremely complex experiments.

It is hardly likely that Einstein expected the concentra-
tion of tea leaves at the centre of a glass to find an
application in technology. However, this effect has been
used in a centrifuge designed for industrial purification of
tin: molten metal rotates in this centrifuge, impurities are
collected at the centre, and removed automatically.

Scientific experiment differs from contemplation in that
it is designed for the development, checking, or improve-
ment of the mathematical model of the investigated
phenomenon.

6.1 Evolution of a free surface
True ‘experiments in a bath’ involve a free surface.

In hydrodynamics of capillary liquids there is an
unanswered fundamental question of the time taken by a
meniscus to rise in a cylindrical tube. Is this time finite or
infinite? The inertial term is ignored in Ref. [111]. Therefore
the law of motion of a meniscus obtained there is
exponential and the time taken by the meniscus to
approach equilibrium is infinite. In fact, the inertial term
is of the same order of magnitude as the other terms: it
cannot be neglected. It has been shown [14] that the
exponential law is valid only in the case of a highly viscous
liquid and that the column of a low-viscosity liquid will
oscillate about an equilibrium position. These conclusions
need to be checked experimentally.

A liquid film remains on the surface of a solid taken out
from a liquid. If the solid is a plate, drawn upwards parallel
to itself (Fig. 24a), the liquid becomes entrained under the
action of tangential (i.e. viscosity) forces. Flow can be
regarded as steady if the dimensions of the vessel and the
length of the plate are sufficiently large (Fig. 24b) and the
plate is pulled out at a constant velocity u0. The dimen-
sional determining parameters u0, n, g, r and the surface
tension a can be used to form two dimensionless combina-
tions:

Re =

u3
0

gn
and We =

ru4
0

ga
.

There are two characteristic scales in this case: the length
lvisc = n=u0, governed by the viscosity forces, and the length
lcap = (a=rg)1=2, governed by the capillary forces. Their
ratio is

lcap

lvisc
=

Re
�������

We
p .
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Depending on the order of magnitude of the ratio of the
Reynolds Re and Weber We numbers (41, �1, 51), there
are 3 � 3 = 9 asymptotic flow submodels{, which have to be
checked experimentally. The structure of the film extracted
with the plate is described by an internal expansion
obtained in the thin-layer approximation.

One can formulate the problem of immersion of a plate
in a wetting liquid. In the corresponding problem of pulling
out of a plate there is a critical value of the number
Re(We , y) which distinguishes the regime when the
entrained film wets the whole of the plate from the regime
when such a film does not form (Fig. 24c).

It is of interest to consider unsteady and in particular
self-similar problems of a plate entering a half-plane of
liquid at rest and a plate leaving such a liquid.

6.2 Sprays and splashes
A splash represents ejection (usually upwards) of water in
the form of a jet or a sheet. Sprays are liquid droplets
which scatter rapidly after an impact or a splash. Can you
recall the Russian poet Alexander Pushkin: ‘‘People were
herded, admiring splashes, mountains, and foam of
enraged waters’’?

Waterfalls, breaking waves, impact of waves on a rock,
and collisions of meteorites with solid surfaces are all
accompanied by splashes. The relevant unsolved problems
are collected in Ref. [112], but the one-dimensional math-
ematical model of a splash used there does not stand up
even to a mildly critical examination. It is not clear whether
the Moore – Rott – Sirs splash criterion for the detachment
of a boundary layer is satisfied.

Splashes usually break up into sprays. The spray-
formation mechanisms are various. For example, a liquid
jet may break up into droplets under the influence of
turbulence, Rayleigh instability, or capillary instabil-
ity [19]. Large masses of a liquid (over 100 g) break up
into sprays because they cannot be held together by the
surface tension forces. This fact reduces significantly the
efficiency of fire fighting by large masses of water dropped
from aircraft. After the answer has been found how the
surface tension and the method by which water is ejected

affect spray formation, the problem should be subject to a
‘brainstorming’ attack by inventors.

A splash in the form of an opposite jet called the ‘sultan’
is formed when a drop is incident on a free surface of a
liquid. A drop falling on a solid surface produces very
different effects. The whole world has seen photographs of a
splash consisting of 24 sprays distributed symmetrically on
a circle (Fig. 25) [107]. Such a ‘coronet’ forms when a drop
of milk hits a solid surface. The drop strikes the plane
surface and spreads into a patch. Waves with a period
3608=24 = 158 along the angular coordinate form at the
boundary of this patch. The milk becomes detached from
the plane it struck and the separated thin layer splits into 24
sprays. This was the moment at which a photograph was
taken. The motion then becomes chaotic. Why precisely 24
sprays are formed? What is the influence of the viscosity
and surface tension forces? There is as yet no answer to this
and other questions.

Experimental investigations of the fragmentation of a
liquid droplet began at the dawn of aviation (1904). Such
investigations are of great scientific and technological
importance. Applications include chemical processes in
two-phase media, drying of sprays, erosion of turbine
blades, formation of aerosols, operation of gas turbines
and of diesel and rocket engines, and combustion chambers
with liquid injection.

Six types of fragmentation of an initially spherical liquid
droplet in a gas stream are known [113]: vibrational, bag
type, stamen-like, chaotic, stripping type, and catastrophic.
The main parameters which determine the fragmentation
processes are

r

r0
, Re =

u
1

d
n

,
n

n0
; We =

ru2
1

d
a

, M
1

=

u
1

a
,

where r is the density of the liquid, r0 is the density of the
gas in which fragmentation takes place, n is the kinematic
viscosity of the liquid, n0 is the kinematic viscosity of the
gas, u

1
is the flow velocity, d is the initial diameter of the

droplet, a is the surface tension, and a is the velocity of
sound in the gas.

An attempt to construct, on the basis of the available
experimental data, in a Re – W e diagram the limits of the
various types of fragmentation of a water droplet in slowly
(M

1
� 0) moving air has proved to be internally incon-

sistent. It is not clear whether the fault lies in the insufficient
precision of the experiments or whether the problem in
hand has some hidden determining parameter on which the
fragmentation mechanism depends.

Figure 25. Impact of a milk drop on a flat surface.

c Free
boundary

u0

a

u0

Sheet

Free
boundary

u0

y

bSheet

Figure 24. Formation of a sheet on a plate drawn out of water.

{The model proposed in Ref. [111] is phenomenological and not
asymptotic.
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6.3 Boundary waves
If a plate is immersed vertically in a water-filled bath to a
small depth (about 4 mm) and if this plate is made to
vibrate in a horizontal plane, unusual ‘boundary’ waves are
observed. This is what the discoverer of these waves,
Michael Faraday, founder of electromagnetism, had to say:
‘‘Immediately waves, protuberances, and folds of very
unusual kind began to form in water. Waves propagating
from the plate to the walls of the vessel were almost
unnoticeable while whole swellings of a height from one-
third to one-half inch and more were incessantly appearing
near the plate perpendicularly to it; they were alike very
short teeth of a coarse comb’’. The frequency of these
waves was equal to half the frequency of the plate
vibrations [107, 114].

Two kinds of boundary waves should be distinguished.
The existence of waves of one type, which form near a
vibrating sharp edge of a plate, is due to flow separation
from the edge.

The second type of boundary waves is observed when
there is no separation from the sharp edge. They appear, for
example, in a water-filled glass if its edge is rubbed carefully
with a wet finger and vibrations of the glass are thus
excited. Nothing is known about the nature of these waves,
observed by the inquisitive Faraday.
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