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De Haas-van Alphen effect as a first-order 
electronic topological transition 

Ya M Blanter, M I Kaganov, D V Posvyanskii 

Abstract. The de H a a s - v a n Alphen effect and the 
behav iour of a superlat t ice in a quant is ing magnet ic field 
can be described in te rms of an electronic topological 
t ransi t ion. N e a r the t ransi t ion, the t h e r m o d y n a m i c stability 
condi t ion is shown to b reak down, thus el iminating the \ \ -
order t ransi t ion and giving rise to a first-order phase 
t ransi t ion. The latter leads to the format ion of d iamagnet ic 
C o n d o n domains . 

1. The pu rpose of the present N o t e is to suggest a new 
perspective for a well-studied p h e n o m e n o n k n o w n as the de 
H a a s - v a n Alphen (dHvA) effect. As is well known , the 
dependence of the t h e r m o d y n a m i c proper t ies (e.g., the 
magnet ic susceptibility) of meta l single crystals on the 
magnet ic field H at low tempera tu res is oscil latory in 
na tu re (an exhaustive review of the relevant results is given 
in Ref. [1]). The reason is the quant i sa t ion of the mo t ion of 
electrons in a magnet ic field. The t rad i t iona l app roach to 
the d H v A effect is [1] tha t a physical p rope r ty (say, 
susceptibility) is represented as a sum over the quant ised 
energy states; after this, Poisson ' s summat ion formula is 
applied and the p rope r ty in quest ion emerges as an 
expansion in te rms of functions per iodic in H~l. This is 
discussed in somewhat m o r e detail below. In the s t andard 
app roach , all occupied quant i sa t ion levels are 'in service'. 
Our in tent ion here is to look at h o w the physical proper t ies 
of interest are affected by one level, namely, tha t which has 
just begun, or is abou t , to be filled. This means tha t we 
change the 'scale ' of the p rob lem: ra ther than investigate 
the behaviour of the t h e r m o d y n a m i c function as the inverse 
magnet ic field is changed by a per iod, we will examine the 
ne ighbourhood of a magnet ic field value cor responding to 
just one par t icular level. This app roach reveals an 
electronic topological t ransi t ion (ETT, see Refs. [2, 3]) in 
the system of conduct ion electrons. 

W e begin by discussing the basic concepts of the 
p rob lem, which are of course c o m m o n to b o t h 
approaches . The mot ion of conduct ion electrons in a 
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magnet ic field is determined by the Loren tz force acting 
on them. The p a t h of an electron in r space is similar to its 
p a t h in p space. The na tu re of electronic mo t ion is greatly 
influenced by the shape of the cross section of the energy 
surface in a p lane n o r m a l to the magnet ic field direction. If 
the cross section is closed, the p a t h is finite, and if open, 
infinite. In the former case, tha t pa r t of the electronic 
energy associated with the mot ion perpendicular to the field 
is quant ised. In the quasiclassical case, which is of the 
greatest impor tance for analysis, the quant i sa t ion condi 
t ions can be wri t ten down explicitly (L i f sh i t z -Onsage r 
quant i sa t ion condi t ion; see, for example, Ref. [4]): 

S ( s , P z ) = ^ - ( n + y), ,. = 0 , 1 , 2 , . . . . (1) 

Here H is the strength of the magnet ic field directed a long 
the z axis; S(s,pz) is the cross-sectional area of the energy 
surface e(p) = s in the p lane pz = const n o r m a l to the 
magnet ic field direction; y is a cons tant which in mos t cases 
is equal to 1/2. There is also the spin electron quant i sa t ion , 
which splits in two each energy level given by E q n (1). In 
the simplest case, when the s p i n - o r b i t a l coupl ing is 
ignored, the magn i tude of the splitting is eHH/niQC, 
where m 0 is the free electron mass . 

The quant i sa t ion- induced rea r rangement of the electro
nic spectrum clearly changes the electron density of states, 
thus substantial ly affecting the physical proper t ies of the 
metal . Suppose the electronic dispersion and the magnet ic 
field direction are such tha t the electronic orbi ts are closed. 
The L i f s h i t z - O n s a g e r quant i sa t ion , E q n (1), t ransforms 
the three-dimensional spectrum into a one-dimensional one. 
To each par t icular specification of the q u a n t u m number n 
and spin project ion a = ± 1 / 2 , there cor responds a one -
dimensional b a n d (more frequently referred to as L a n d a u 
subband) of the form 

fi = Znc(Pz) • (2) 

The s t ructure of the L a n d a u subband is determined by the 
dependence of the cross-sectional area S(s,pz) on pz. At 
this point , some simple general s ta tements can be made . 
The cross-sectional area S(s,pz) is b o u n d to have a 
m a x i m u m at a certain value of pz. The greatest of the 
max ima determines the lower edge (bo t tom) of the L a n d a u 
subband . The cross-sectional area S(e, pz) m a y have several 
extrema as a function of pz. F o r each of these, there is a 
cor responding m a x i m u m in the sn = sn(pz) dependence. 
The q u a s i m o m e n t u m pz which maximises S(s,pz) will be 
denoted by pzn ; t hus s(pzn) = sn. Accord ing to E q n (1), pzn 

and sn are determined by the equa t ions 
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S(£n,Pzn) = {n + y) 

dS(sn, pz) 
dPz 

= o 
Pz=Pzn 

Expand ing S(e,pz) in powers of pz —pzn yields 

^na(Pz) ~ Sna(Pzn) + 
(Pz -Pzn) 

2m ii 
-Pzn , 

(3) 

(4) 

where sna differs from sn by the spin splitting term, 

£n/T £n + -
ehHo -4 

and where, in te rms of the cyclotron mass m* = 
(2n)~1[dS(s,pz)/ds], the longi tudinal effective mass m\\ is 

-2nrn 
dp2

z 

(5) 

The sign of m\\ is determined by tha t of the cyclotron mass 
and by the s t ructure of the energy surface (see Table 1). 
F o r the free electron gas, m* = m 0 , d2S/dpi =—2n and 
m|| = m 0 . E q n s (2) and (4) are no t limited to the 
quasiclassical approx imat ion . The magnet ic field renders 
the electronic mo t ion one-dimensional , with the quas imo-
m e n t u m pz re ta ining its meaning . Close to the edges of the 
one-dimensional b a n d , E q n (4) is valid as before (see 
Ref. [4], §19, Ref. [5], and the discussion below). 

Table 1. 

Carriers Cross-sectional area S has a 

maximum minimum 

Electrons W|| > 0 W| | < 0 
m* > 0 

Holes W|| < 0 W| | > 0 
m* < 0 

To il lustrate the above ideas, two examples will be 
considered: 

(a) the dispersion away from Brillouin b a n d edges i s | 
2 

P± 
2 4 

' + 8 C , (6) 
2m± 2m|| ' ^p\m\^ 

with energy surfaces as shown schematically in Fig. 1. 
(b) energy surfaces are warped cylinders (Fig. 2). 
In the former case, the quant i sa t ion condi t ion becomes 

S(s, pz) = np\ = 2nm± s — sc + 

2nheH , 

giving the quant ised energy levels 

2m || ^p\m\\ 

f \ t \ P2z pt 
£n(Pz)=*c+ « + y - f - + j T - -

m±c 2m || 4/?Qm|| 

(7) 

(8) 

fBy assumption, the points pz — ±p0 and pz — 0 are away from the 
edges of the Brilliouin zone. 

a 

i 
< >i 

Po 

Figure 1. Energy surface of the spectrum given by Eqn (6) for energy 
values e < ec — pl/2m\\ (a), s — sc (b), and s > sc (c). 

The energy b a n d structure, i.e., the energy as a function of 
pz, is shown in Fig. 3a for two values of n. As seen from 
E q n (7), the cross-sectional area S(s,pz) at fixed n and s 
shows one min imum (at pz = 0) and two max ima (at 
pz = =bpo) and, as predicted for the general case, the energy 
sn(Pz) a l s o n a s extrema at these values of pz: at pz = 0 we 
have a m a x i m u m , and at pz = ±p0, we have minima. 

In the latter case, s = sn(pz) is a per iodic function of the 
q u a s i m o m e n t u m (Fig. 3b), each of the reciprocal space cells 
necessarily having one m i n i m u m and one m a x i m u m . 

Let us n o w re turn to the general case. The density of 
electronic states in a magnet ic field is [4] 

e H ^ ( dpZ8[e-sn<!(pz)} . (9) V ( 8 ) 
(2nny 
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Pi 

n/a 2n/a 

Figure 2. Energy surfaces of a warped-cylinder spectrum. 

-Po Po 

Figure 3. Energy band structure for the spectrum given by Eqn (6) (a) 
and for the warped-cylinder spectrum (b). In both cases n2 > nx. 

F o r 8 = ena, the electron velocity componen t vz vanishes 
and hence v(e) has a square roo t singularity at s = e m . 

In the usua l approach , the sum over n is t ransformed by 
the Poisson formula and the density of states becomes a 
sum of / / _ 1 - h a r m o n i c functions whose per iods are inversely 
p r o p o r t i o n a l to the m a x i m u m (in pz) cross-sectional area Sm 

of the F e r m i surface in p lanes perpendicular to the pz axis: 
A / / - 1 = 2%eH/cSm. Knowledge of the density of states 
allows one to find whatever t h e r m o d y n a m i c quant i t ies 
are of interest. In s t rong magnet ic fields, T <^ hcoc 

(coc = eH/m*c is the cyclotron frequency of the electronic 
orbit) , the cons tant componen t of the magnet ic suscepti
bility is less t han the oscillatory one, and it is the latter 

which domina tes . The magnet ic susceptibility is [6] 

1 1 
' H3 2 ^ 7 / 2 

eh 1 
/ / 3 / 2 

J^I/J^kT /hcoc) 

k=i 

m m^\d2S/dp2

z[ 

m*\ z 
x cos ( uk — , \j/(z) = —.— 

1 m0) smh z 
(10) 

F r o m E q n (10), and letting T —> 0, it follows tha t , since 
i/f(0) = 1, the ampl i tude of the susceptibility oscillations is 
given by the sum of the series in 1/Y/k and hence tends to 
infinity. The increase in susceptibility makes the electronic 
system uns tab le and results in separa t ing the meta l into 
regions of different magnet ic induct ion ( C o n d o n domains , 
see, for example, Refs [1, 7]). However , the growth of %z z 

with t empera tu re or magnet ic field is very difficult to 
determine since this requires a summat ion of the series (10). 

W e shall proceed in a different way. W h e n the energy s 
is close enough to sna(pn) to permit the expansion (2) (from 
this po in t on, this value is denoted by sn and referred to as 
an energy level), then the density of states m a y be expressed 
in the form v(e) = v 0 (e) + 5v n (e) , where v 0 (e) results from 
the summat ion in E q n (9) over all the levels except for those 
near s„, and where 

eH 

2(2nh)2c 

\2m\\ l V 2 

0[±(f i - f i„)] (11) 

is the cont r ibu t ion from the level considered. The upper 
sign in the a rgument of the 9 function refers to the case 
where the longi tudinal effective mass is posit ive. To be 
specific, let m\\ > 0. N o t e tha t as e—>e n , the density of 
states v 0 (e) remains finite whereas 8v(e) goes to infinity, so 
tha t near s = sn there is a range of values for which 
8v(e) > v0(fi). 

The to ta l number of electronic states be low the energy s 
has an a n o m a l o u s par t , 

8 # n ( e ) = -
(2nh)c 

^\s-sn\9(s - en) , (12) 

and the t h e r m o d y n a m i c poten t ia l is represented in the form 
Q = Q0 + 8£2n, where 

eHn/2m n/lm\\ f 

{2Tznfc J e x p [ ( e - / i ) / r ] + l ' 

(13) 

T h e field Hn is determined from the condi t ion e„ = ji (fi is 
the chemical potent ia l ) . At zero t empera tu re 

2 eHN^2R^ 3 / 2 

(14) 

The energy pa rame te r z = \l — sn we have in t roduced will 
be impor t an t in the discussion below. 

Formal ly , the s i tuat ion is reminiscent of E T T [2] (see 
Ref. [3] for a review). If the F e r m i surface of a meta l 
changes its topo logy by, say, developing a pocket or losing 
a neck, it is k n o w n tha t the Fermi-surface density of states 
in a pu re crystal acquires a singular te rm. This te rm is zero 
on tha t side of the t ransi t ion which has fewer Fermi-surface 



206 Ya M Blanter, M I Kaganov, and D V Posvyanskii 

pockets , while on the other side it depends in a square roo t 
fashion on the pa rame te r z = \i — e c , where e c is the F e r m i 
topo logy change energy. The t h e r m o d y n a m i c potent ia l at 
zero t empera tu re also acquires a singular te rm: zero on one 
side of the t rans i t ion and p ropo r t i ona l to |z | 5 ^ 2 on the other . 
Thus , in Ehrenfest ' s terminology, a three-dimensional E T T 
at zero t empera tu re is a 2^ -o rde r phase t ransi t ion. To avoid 
misunders tanding , this is no t a tempera ture- induced phase 
t ransi t ion, bu t one due to external pa rame te r s (such as 
pressure, impur i ty concent ra t ion , or magnet ic field). At 
finite t empera tu re , as well as in a nonidea l crystal, the 
t h e r m o d y n a m i c poten t ia l singularity is washed out , and the 
E T T is no longer a phase t ransi t ion bu t manifests itself in 
anomal ies . In par t icular , the a n o m a l o u s pa r t of the 
electronic specific heat increases as a square roo t of z, 
and the the rma l coefficient of expansion tends to infinity as 
I 1-1/2 
|z| 1 • 

A similar a rgument suggests tha t , for the case under 
considerat ion, the intersection of F e r m i levels sn(T gives rise 
to a 1 Jporder phase t ransi t ion, or one-dimensional E T T | , 
which is the appearance (or d isappearance) of a ' one-
dimensional pocke t ' at the F e r m i level [the appea rance 
of electrons in a new L a n d a u subband , when sn cor responds 
to the greatest of the max ima of S(s,pz) as a function of pz\ 

At finite t empera tu re , as well as in a nonidea l crystal, 
the singularity is washed out and the phase t ransi t ion 
t ransforms into an anomaly (see below). W h a t t h e r m o d y 
namic singularities will then occur? Suppose T <^ Hcoc, 
\z\ <̂  ft(Dc, and the n u m b e r of occupied L a n d a u subbands 
is large enough, so tha t the chemical po ten t ia l m a y be 
considered as weakly dependent on the magnet ic field (a 
typical d H v A si tuat ion). Let us start by determining the 
dependence of the pa ramete r z on the t empera tu re , volume, 
and magnet ic field. F r o m the condi t ion tha t the number of 
electrons N is cons tant we obta in , for T <^ Id , tha t 

8 z , iz2T 8z 
dV' 

N 

V2v(z) 

Since, from E q n (11), v(z) oc l/y/z as z —> 0, 

dz n2T 
dT 6z 

8z_ _ L o . 

(15) 

(16) 

Since v(z) approaches infinity as l/y/z, It follows tha t for 
|z| —> 0 the a n o m a l o u s pa r t of the density of states is much 
larger t han the n o r m a l pa r t : v 0 <̂  8v n and |v 0 | <̂  |8v^|. 

Fu r the r , at T = 0 and 

~eHny/m\\~\2 

0<fi0-sn< 

we have 

z(H)=II(H)-Bn 

0*0 - Sn) 
2 v2(in0)y/2TZ2cH3 

m\\eHn 

cx(Hn-H)2 , (17) 

where /n0 is the chemical potent ia l in the absence of a 
magnet ic field. 

The t h e r m o d y n a m i c quant i t ies of interest — electronic 
specific heat (C), the rmal coefficient of electron pressure 

(oc = T~ldP/dT), and compressibil i ty (K = dP/dV) are 
conveniently expressed by the use of Eqns (15) and (16) 
to give 

n2T 
C = - 3 - v ( z ) , 

n2T 
v(z) 

Nv'(z)' 
Vv(z) 

N2 1 

(18) 

(19) 

(20) 

Thus , the specific heat has a singularity which tu rns to zero 
as z —> 0: 

8C 7Tfli 1 
(21) 

the no ta t ion 

T 3 y/z~ 

W e have in t roduced 
a\ = [eHn/2(2n%)c]^j\2m\\\. The the rmal coefficient of 
pressure (and similarly the the rmal coefficient of expan
sion) is still m o r e singular: 

tz2N 
8a = — 0(Z), (22) 

and the electronic componen t of the compressibil i ty at 
z > 0 vanishes as a square roo t : 

NZ 

1\y/z, Z > 0 . (23) 

F o r Z < 0, all the electron characterist ics assume their 
b a c k g r o u n d values involving the quant i ty v 0 . Trea t ing the 
magnet ic field as a variable, we find tha t the specific heat 
and the the rma l coefficient of expansion diverge as 
(Hn — H)~l and (Hn — H)~2, respectively, and tha t the 
electronic compressibil i ty is p ropo r t i ona l to Hn — H. 

W e note , however , tha t the 1 ̂ -order t rans i t ion gives rise 
to a p h e n o m e n o n which is no t found in E T T . This is seen by 
calculat ing the magnet ic susceptibility a n o m a l y } 8# = 
= —d26Q/dH2. Re ta in ing only the term divergent as 
z —> 0, we find 

eHn fdsn 

6 X = - — [ M (fan)2 V^H f 

\pHj (2NTI)2 J 

dnF(e + 6 „ ) _de_ 

In the limiting cases we have: for T <̂  z, 

eH„ /'de, 

2c \QHj (2nfi)2^ 
0(z)(l + 

and for z <^T, 

5 Z " 2c [M) (2nR)2V2f\l + T A 2 

(25) 

(26) 

OO 

" J c o s h z f 

sinh £ f sinh f 

J cosh 3 

: 0.298 . (27) 

fThis is of course because the electron spectrum becomes one-
dimensional in a magnetic field. j F o r simplicity we neglect anisotropy effects. 
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H 

Figure 4. Phase diagram in z, T coordinates. The dashed part is the 
Condon domain region, the enclosing line being that of first-order phase 
transitions. 

Figure 5. Typical dependence of the magnetic field H upon the 
induction B close to the phase transition. For BX<B<B2, the 
thermodynamic inequality dH/dB > 0 fails, and the system is unstable 
to Condon domain formation. 

In the low- tempera ture low-z region (i.e., for the chemical 
po ten t ia l fi close enough to e„), the susceptibility is highly 
posit ive and tends to infinity. In par t icular , in the dashed 
region of the z-T phase d iagram of Fig. 4 | the magnet ic 
susceptibility exceeds ( 4 T I ) _ 1 . 

The large value of the magnet ic susceptibility raises the 
quest ion of whether it is the magnet ic field H or the magnet ic 
induct ion B which determines the t h e r m o d y n a m i c poten t ia l 
Q and other t he rmodynamic characterist ics of the conduc 
t ion electrons. N o r m a l l y (in nonmagne t i c media) this 
quest ion does no t arise because the magnet ic susceptibility 
(of b o t h diamagnet ics and paramagnet ics ) is very limited, so 
tha t B ~H. The most impor t an t — oscil latory — c o m p o 
nent of the t h e r m o d y n a m i c poten t ia l is domina ted by 
macroscopical ly large electronic orbi ts (of size larger 
t han the crystal cell). In following such an orbit , an 
electron feels the average magnet ic field, tha t is, the 
induct ion B. Therefore the a rgument of the t h e r m o d y 
namic poten t ia l Q is 5 , not / / , and hence we mus t 
replace H by B in all the formulas above. Us ing 

H =B-4KM(B) , (28) 

where M(B) = —dQ(B)/dB is the sample magnet isa t ion , we 
can readily show tha t the t h e r m o d y n a m i c stability 
condi t ion dH/dB > 0 (see Ref. [8]) becomes the inequali ty 

1 
X> 4K 

(29) 

Thus , the dashed region in Fig. 4 is one of instability. 
The existence of an instabili ty region in the dependence 
H = H{B) (Fig. 5) suggests tha t the electronic subsystem of 
the meta l must necessarily undergo a first-order phase 
t rans i t ion in which the system breaks down into two phases 
differing in induct ion (Shoenberg effect, see Refs [1, 17]). 

Thus , at a given t empera tu re Tx (see Fig. 4) and 
Z\ < z < Z2, the system consists of two phases whose 
induct ions cor respond to B(z\) and # ( z 2 ) ; these are 
d iamagnet ic C o n d o n domains [9]. The entire s i tuat ion is 
very similar to tha t of a l i q u i d - v a p o u r t ransi t ion in a Van 
der Waa l s system. 

The region of existence of the domains is easy to 
est imate. Thus , at zero t empera tu re the susceptibility 

fThe quantities z 0 and TQ are found from (25), (26) and the equality 
§X — ( 4 T T ) - 1 for T — 0 and z — 0, respectively (the term %0 <̂  1 may of 
course be neglected). 

becomes (4K) 1 for z = Zo (see Fig . 4), which from 
E q n (17) implies the induct ion 

Ho = H n 

v(fi0)e2fi2 

(30) 

The infinite d H v A ampl i tude and the appearance of 
C o n d o n domains m a y be interpreted as an electronic 
topological t ransi t ion, a first-order phase t rans i t ion tha t 
precedes (and thereby eliminates) the 1^-order t ransi t ion. 

Lifshitz [2] notes tha t in an E T T (without a magnet ic 
field) the compressibil i ty dP/dV acquires a finite posit ive 
term, which can render the crystal uns table . W e emphasise 
tha t at H = 0 the addi t iona l te rm is finite, and the to ta l 
compressibil i ty can be negative only for |z| ^ 0. In a 
magnet ic field (for T —> 0), an instabili ty is b o u n d to 
occur, and so also is a first-order phase t ransi t ion. This 
latter fact accounts for the repeatedly observed effect of 
meta l doma ins [1] or, in other words , for the repeatedly 
observed first-order electronic topological t ransi t ion. 

2. There is current ly considerable interest in artificial 
(man-made) objects. In par t icular , these include crystals 
with a supers t ructure — proper ty-per iodic superlatt ices 
with a per iod greatly exceeding the lattice constant . A m o n g 
such objects are systems of a l ternat ing 'degenerate semi
c o n d u c t o r - d i e l e c t r i c ' layers. The mot ion in a 
semiconductor layer m a y be considered quasifree. C o u 
pling between the layers is generally weak. If the tunne l 
penetrabi l i ty of the dielectric barr iers is no t too weak, and if 
the periodici ty is strict enough, b a n d mot ion across the 
layers (i.e., a long the z axis) is possible. In ac tual fact, one 
cannot go beyond the weak coupl ing condi t ion (see, for 
example, Ref. [10]), and the carrier dispersion relat ion has a 
simple form (for H = 0) of 

/ x Pi +Py , A • l(Pzd 

(31) 

where denotes the effective mass for the mo t ion in a 
conduct ing layer, A is the min iband width related to the 
dielectric-layer tunne l t ransparency , and d is the super-
lattice per iod. In a magnet ic field a long the z axis (i.e., 
perpendicular to the layers), the spectrum gets quant ised 
(the spin splitting is for simplicity neglected): 

Sn(Pz) — ( n + ^ ) + ^ sm^ 2H 
/i = 0 , l , 2 , . . . , (32) 
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the electron cyclotron frequency being coc = eH/m±c. The 
density of states of such a system is, from E q n (9), 

V ( 8 ) 8 — h~coc ( n + 
eH y-^ 

n2cd%^ 

Hcoc [ n + - \ +A—e 

-1/2 

where the energy lies of course within the intervals 

Hcoc ( n + ^ j < s < Hcoc (n + ^ ) + A , 

(33) 

(34) 

while outs ide these intervals v(e) = 0 provided hcoc > A. It 
is seen tha t in s t rong magnet ic fields (for hcoc > A) there are 
gaps in the energy spectrum. The allowed and forbidden 
b a n d s a l ternate bu t do no t over lap. The width of each 
allowed b a n d , in a super lattice of vo lume 1 c m 3 , is A, and 
the to ta l capaci ty of the b a n d is NH = eH/nhcd ( c m - 3 ) . 
Thus , if the carrier density N is a mult iple of NH (N = sNH, 
s = 1 ,2 , . . . ) , then at T = 0 the superlat t ice is a dielectric: 
there are only filled and empty b a n d s in the system. It is 
t rue tha t this is a ra ther peculiar dielectric. All the 
dissipative componen t s of its conduct ivi ty are zero, 
whereas the Ha l l componen t axy = —Gyx is not and equals 
e2s/%M. It is easy to realise tha t we are dealing with a 
three-dimensional ana logue of the q u a n t u m Hal l effect (see 
Refs [11, 12]). In t roduc ing two-dimens iona l conduct ivi ty 
a& ~ dGik> the steps in quest ion assume their usua l form of 
<$ = 2e2s/h. 

F o r N = sNH and T = 0, the electron chemical p o t e n 
tial, /i, lies in the middle of the forbidden b a n d . F o r 
T <^ HCQC, the number of electrons in the first ' empty ' 
(conduct ion) b a n d and the number of holes in the last 
'filled' (valence) b a n d are exponential ly small: 
N e = A/"h oc exp(—hcoc/2T). The occupat ion of the b a n d s 
at a cons tant carrier density can be control led by varying 
the magnet ic field. F o r H^HS= =nhcNd/es, there is 
necessarily a par t ly filled band , and the system is a 'meta l ' 
(degenerate semiconductor) . Thus , varying the magnet ic 
field enables a m e t a l - d i e l e c t r i c t ransi t ion to be model led 
[11]. This latter is also an example of a 1 ^-order topological 
phase t ransi t ion. However , as in the case above, a 1 ^-order 
t rans i t ion does no t actually occur. As the magnet ic field 
approaches Hs, the susceptibility increases causing the loss 
of stability. As a result, a first-order phase t ransi t ion takes 
place. Such a si tuat ion arises, at least for T = 0, when the 
magnet ic susceptibility is given by 

2e2 5 + 1 / 2 

nc2dm y/\ — x2 ' 
X = 2 s in ' 

nN 
1 (35) 

This formula m a y also be considered t rue for T <^ \l\ where 
/ / is the chemical po ten t ia l measured from the b a n d edge. 

Sufficiently close to the m e t a l - d i e l e c t r i c t ransi t ion, 
when the inequali ty 

hcoc 5> T ^> fi 

holds (or for H -> Hs: \H-HS\ < Hsy/nT/A), the degen
eracy of the system is removed and the electron gas 
becomes a Bo l t zmann one. In this case, the chemical 
po ten t ia l lies in the centre of the forbidden gap, and the 
magnet ic susceptibility is given by 

Figure 6. Magnetic susceptibility versus magnetic field for a superlattice 
for T — 0 (a) and T ^ O (b). Dashed regions correspond to magnetic 
fields for which x > ( 4 T C ) - 1 (Condon domain region). For T —> 0, the 
maxima move off to infinity, and the minimum disappears. 

2el 

lie dm 
HcocT exp 

Hcoc 

2T 
2i 

H C Q c - A$>T . (36) 

It is seen tha t in this region the susceptibility is 
exponential ly small. Figs 6a and 6b present the var ia t ion 
of the magnet ic susceptibility with the field for T = 0 and 
T ^ 0, respectively. At zero t empera tu re , an increase (or 
decrease) of the magnet ic field is accompanied by two first-
order phase t rans i t ions (i.e., b reak ing of the system into 
C o n d o n domains) . The fields Hx and H2 (Fig. 6a) are 
readily found to be 

/ / i 9 — H„ IT 
4ez 

nc dm 
(37) 

At finite t empera tu re the m a x i m u m value of the suscepti 
bility occurs at the fields 

H^HA i t (38) 
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At t empera tu res 

A (39) 

the susceptibility never exceeds 1/4TT, and the C o n d o n -
domain instabili ty region is absent: the system exhibits only 
a m e t a l - d i e l e c t r i c t ransi t ion (a l though clearly a smeared 
one since T ^ 0). 

It should be no ted tha t , in contras t to the three-
dimensional case, in superlatt ices (at low tempera tures ) 
equil ibrium electrons appear only as a result of doping. 
Because of the collisions of electrons with impuri t ies , 
L a n d a u levels are b roadened . This reduces the ampl i tude 
of susceptibility oscillations, the a m o u n t of reduct ion being 
characterised by the effective Dingle t empera tu re r D , where 
TD ~ H / T , and T is the characterist ic t ime for electron 
scattering by impuri t ies . In reference [13] it was found 
tha t the electron scat tering t ime in the point-defect field 
U(r)= = t f o £ , - 8 ( r - r , . ) is 

l ' ' 2 * U0NimeH 1 / 2 L 

2n2HcdA [ X [ X ) i ' X A ' ^ 

where Nim is the impur i ty concent ra t ion . I ts value controls 
the existence (or otherwise) of the first-order phase 
t ransi t ion. 

It should be remembered , however , tha t popu la t ing 
L a n d a u subbands can also be achieved wi thout i n t roduc 
ing impuri t ies (say, by light pumping) . This m a y p rove 
convenient for the observat ion of phase t rans i t ions in 
superlatt ices. 
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