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Once again about the equivalence principle

V L Ginzburg, Yu N Eroshenko

Abstract. The formulation of the equivalence principle
underlying the general theory of relativity is considered.
Implications of the equivalence principle are discussed with
regard to a charge placed in a locally uniform gravitational
field or a uniformly accelerated reference frame (the
problem was addressed earlier elsewhere, for example by
Ginzburg [1] in 1969). The criticism by Logunov and co-
workers [2] of the canonical equivalence principle in
electrodynamics as presented in the earlier review by
Ginzburg [1] is shown to be irrelevant.

1. The equivalence principle (EP) and its role in physics in
general, specifically in the general theory of relativity
(GTR), has been extensively considered in numerous
publications. Another detailed discussion of EP is beyond
the scope of the present communication, but we believe it
appropriate to recall once again its formulation and offer a
few comments from the classical book by Pauli ([3], p. 196):

“For an infinitely small four-dimensional world-region
(i.e. a world-region which is so small that the spacetime
variation of gravity can be neglected in it), there always
exists such a coordinate frame K (X, X,, X3, X4) in which
gravitation has no influence either on the motion of a
material point or any other physical process. In short, in an
infinitely small world-region, any gravitational field can be
destroyed by means of coordinate transformation. The local
coordinate frame K, can be thought of as a freely soaring
small box which is exposed to the effect of no other external
forces but gravitation in which it falls freely.

“It is evident that the transformation of the coordinates
is possible only because the gravitational field possesses the
fundamental property of imparting the same acceleration to
all bodies, in other words because gravitational and inertial
masses always are equal. This inference is based on the most
reliable experimental findings.”’

We have selected this formulation of EP because the
book in question [3] was first published as early as 1921.
This means that the physical sense and the local (so to say)
character of EP were quite obvious for many physicists
within a few years after the construction of GTR was
completed in 1915.
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Certain authors (see for instance Ref. [4]) distinguish
between the Newtonian or weak equivalence principle
(WEP) and the Einsteinian or strong equivalence principle
(SEP). WEP is understood as being EP applied exclusively
to mechanics, i.e. as the statement that all bodies travelling
in a gravitational field are uniformly accelerated. This
means that an observer enclosed in a freely falling elevator
has no way to perceive accelerated motion of the bodies (in
the past, such an elevator was frequently referred to as
Einstein’s elevator; nowadays it would rather be called a
satellite). Of course, we ignore here possible tidal effects
arising from inhomogeneity of the field, which tend to be
vanishingly small with decreasing size of the elevator.

The transition to SEP accomplished by Einstein implies
that all physical laws, including mechanical and electro-
magnetic, hold true in a falling elevator exactly as they do in
the absence of gravity. Naturally, the definition of EP as
suggested in Ref. [3] also included SEP.

Since strong, electromagnetic, and weak interactions all
contribute to the body’s inertial mass, experimental ver-
ification of the equality of inertial and gravitational masses
may be regarded as a check of SEP just as it is a check of
WEP (see Ref. [4]). The fact that the gravitational inter-
action contributes to the value of the inertial mass does not
interfere with the universal character of the equality of
inertial and gravitational masses (see Ref. [4], p. 162).

In elaborating GTR and in later works, Einstein used
different SEP formulations and commented on them as he
thought proper (see Refs [2] and [5], p. 32). However, his
views were never in conflict with the formulation of EP by
Pauli [3] (see above).

It should be emphasised that quantum events are
beyond the scope of the present paper. EP would hold
true if quantum effects (specifically, zero-field oscillations in
vacuum) were taken into account provided an appropriate
vacuum state has been chosen [6].

2. It is also worth discussing the application of EP to a
charge e placed in a gravitational field or a uniformly
accelerated reference frame. This problem attracted the
attention of many authors and was examined in a number
of papers [7, 8, 9, 10, 1, 2] for several reasons which will
become clear from this review.

In examining different reference frames and different
situations, we shall to a certain extent remain confined to
classical mechanics (Newtonian approximation), where
notions of the inertial reference frame, the external
gravitational field with acceleration due to gravity g,
etc., are physically determined.

The first system to be discussed is the inertial reference
frame K without a gravitational field. This system can be
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physically realised somewhere in outer space at a suffi-
ciently large distance from all masses. Evidently, a free
charge e in system K does not radiate. This is especially
clear when charge velocity (with respect to system K) v =0.
In this case, it simply has ‘nothing to emit’, and its field is
the Coulomb field. In other reference frames to be discussed
below, charge velocity at a given moment is also considered
to equal zero.

Let us now examine reference frame K, i.e. an inertial
reference frame in which the gravitational field has
acceleration g. In the restricted space-region of interest,
field g may be assumed to be uniform and constant in time.
The reference frame K, can be realised, with a certain
degree of error, in a relatively small domain nearby
any mass, e.g. close to the Earth’s surface. In such a
system, a free charge is likely to propagate with constant
acceleration g.

The problem of radiation in this or in a more general
uniformly accelerated motion is a matter of long-standing
discussion (see Refs [1, 3, 7, 8, 9, 10, 11] and publications
cited in the bibliography of each report). It is now quite
clear that a uniformly accelerated charge radiates in the
sense that the flow of the Poynting vector through the
surface surrounding the charge is nonzero:

P 2(32 2 (1)
=—w,

36‘3

where w2/c~4:—wiwi, w' is the four-vector of charge

acceleration, and c is the velocity of light (see Ref. [1] and
chapter 3 in Ref. [11] for details). If charge velocity v at the
instant of emission is low compared with ¢, then w* = |v|*;
in this case, the flow of the Poynting vector in system K, is

2(52 2

P=2g. @

Finally, there is a reference frame K,, that is a field-free
system with acceleration @ = —g relative to reference frame
K. In agreement with EP, a free charge placed in reference
frame K, (in an elevator) should be expected to behave
precisely the way it does in system K,; in particular, it must
emit energy (2).

Moreover, Ginzburg [1] mentions reference frame K,,
which falls freely in system K,, i.e. a reference frame with
acceleration g with respect to K,. Therefore, system K, is a
locally inertial reference frame in which a charge does not
radiate. In other words, system K, is in fact the reference
frame K, mentioned in the above formulation of EP [3].

The presence of radiation in system K, looks at first
sight like a paradox because charge e is not accelerated with
respect to reference frame K and cannot radiate. Indeed,
this paradox has become a matter of debate in the literature
(see for example Ref. [1]).

The thing is that expression (1) is Lorentz covariant, i.e.
it is the same in any inertial reference frame. However, this
expression need not be preserved, as it is actually not, upon
the transition to noninertial systems like a uniformly
accelerated reference frame K,.

This situation is similar to that which is well-known to
take place in the case of electromagnetic fields in different
inertial reference frames. In a reference frame K where a
charge is at rest, only the Coulomb field of the charge is
present, whereas both the transverse electric field and the

magnetic field are inherent in inertial reference frames K’
which are in uniform motion with respect to frame K.
Similarly, transition from reference frame K to system K,
results in a change of the charge field: energy P =0 in K
while P #0 in K,.

One more paradox is the possibility ‘to create radiation’,
i.e. to make energy P nonzero by means of transition from
one reference frame to another. Nevertheless, the transition
from reference frame K to K, fails to give rise to new
particles, e.g. electrons, androns, photons, etc.

The solution of this apparent paradox is to be found in
the fact that P # 0 is not equivalent to the presence of
photons, that is free solutions of the electromagnetic field
equations. This problem has been discussed at greater
length in [11].

A group of authors (A A Logunov, M A Mestvirishvili,
and Yu V Chugreev [2]) turn down the propositions of
Ginzburg [1]. These authors argue: ..V L Ginzburg’s
statement that a charge in frame K, radiates is utterly
wrong, ...just as wrong as his statement that a charge in
system K, does not radiate. If cither statement were true, it
would mean the possibility to transform radiation away by
the choice of the reference frame, which is physically
unattainable.” In fact, Logunov et al [2] question the
validity of EP or, to be more precise, Einstein’s EP, which
they thus set off against weak EP. Here is a quotation from
Ref. [2]: ““...the equivalence principle as formulated above
holds true for mechanical processes but is not applicable to
electrodynamic ones. This suggests the possibility to
ascertain, by making measurements inside the system,
whether a reference frame is inertial or falls freely in a
uniform gravitational field.” Here is another extract from
this paper [2], practically to the same effect: ‘“..an inertial
reference frame with a static homogeneous gravitational
field is not equivalent, in physical terms, to a uniformly
accelerated reference frame free of a gravitational field.
Therefore, the equivalence principle is not fulfilled for
electromagnetic phenomena.”

Meanwhile, the validity of SEP has been proved with a
very high degree of accuracy [4]. Specifically, it has been
shown that the equality of inertial and gravitational masses
holds true up to 107" [4, 12]. Apart from this argument,
the reasoning of Logunov et al [2] is beneath criticism in
itself. That the identification of energy P [see(1)] and the
energy of free electromagnetic radiation (photon flow) is
unsound has already been mentioned in the foregoing
discussion. Therefore, the possibility to create or frustrate
‘emission’ of P by the choice of a reference frame does not
contradict current views. It will be shown below by means
of direct calculation that a charge in reference frame K,
emits energy provided the transition from reference frame K
to frame K, is correctly accomplished; moreover, the
emitted energy is exactly that given by Eqn (2).

It should be emphasised that we introduce the notion of
radiation and variable P in different reference frames
because it is this variable that is commonly referred to
in the literature reviewed in the present paper. As far as the
application of EP is concerned, it would be possible and
even more rational to be confined to fields themselves. It
follows from EP that the electromagnetic fields of a charge
in reference frames K, and K, are similar, which imme-
diately implies equality of the quadratic-in-field values P in
these reference frames.
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3. Any physical theory has to deal with the problem of
measurement, that is a methodological problem of the
evaluation of pertinent physical parameters, the choice of
instruments, and the ways to interpret the results. This
problem is considered to be of primary importance in
quantum theory where its discussion remains a matter of
great concern in the current literature.

However, the problem extends far beyond the limits of
quantum theory. Specifically, the features of rulers and
clocks need to be more accurately specified so far as
measurement of spatial distances and time intervals
between different events are concerned. For example, in
comparing lengths and time intervals in two inertial
reference frames K and K’ which are in motion relative
to each other at a constant speed, any conclusion about the
contraction of travelling rulers (rods) and the deceleration
of running clocks is made with the rulers and the clocks in
each system being regarded as similar. It is common to
speak about rigid or standard rulers and standard or ideal
clocks. Generally speaking, it must be possible to transfer
these rulers and clocks between systems to ensure the
identity of the rulers and clocks in reference frames K
and K’. However, this is impossible to do without
accelerating both the rulers and the clocks; they must be
insensitive to acceleration.

Furthermore, the length of the rulers and the running of
the clocks must be independent of their location in space
and time. If this requirement cannot be met (e.g. clocks
showing different time in reference frames K and K’ are
used), the Lorentz transformations and their known
corollaries will be incorrect.

Of course, this line of reasoning holds equally true in
nonrelativistic physics where clocks in reference frames K
and K’ are also considered similar whenever the Galilean
transformations need to be defined. That is probably why
this problem is usually assumed to be generally known and
the said requirements of rulers and clocks are just implied
rather than explicitly specified in various textbooks (see for
instance Ref. [13]). There is certainly some reason for this
assumption, but we believe it opportune to highlight the
problem of measurement when dealing with the special
theory of relativity in order to avoid misinterpretation. An
example of a detailed discussion of the requirements to
rulers and especially to clocks in the relativistic theory is
provided in Ref. [14], dedicated to ‘the twins paradox’.

In special relativity (inertial reference frame K or
Minkowski space), the Cartesian coordinate system
x'=(ct,x,y,z) is most frequently used in which the
square of the interval (borrowing notation from
Ref. [13]) is

ds* =2 dr* —dx? — dy2 —dz?. 3)

In such a system, the above agreement as regards rulers
and clocks actually looks almost evident.

Generally speaking, GTR uses curvilinear coordinates
xi= (xo, x!, x2, x3) so that

ds? = gy (x") dx' dx* . )

But the relationship between coordinates x' and ‘real’
distance and time measured with standard rulers and clocks
is not so obvious. This problem was discussed by Landau
and Lifshitz ([13], paragraph 84), who showed that

intervals of real time or proper time dt at a given space
point are related to dx” as

1
dr = /g dx? . (5)
For the distance d/ between two close points, one has
42 = (—ga,, +M) dx® def . ©)
800

We shall use Cartesian coordinates x’ with interval (3)in
the inertial reference frame K. For the transition to the
uniformly accelerated reference frame K,, corresponding
coordinates x” must be chosen rather than arbitrary ones to
allow us to compare the results of the measurement with
those in system K. Doubtless, Einstein was perfectly aware
of this when he wrote the following in one of his papers
([15], p. 189) published in 1912, i.e. before the construction
of GTR was completed:

“Suppose that system K (coordinates x, y, z)T is in
uniformly accelerated motion towards axis X. This accel-
eration is uniform in Born’s sense, which means that
acceleration of the coordinate origin in this system is
constant with respect to such a non-accelerated system
relative to which points of system K are at rest (that is, they
have infinitely low speed, to put it more precisely).
According to the equivalence principle, such a system K
is exactly equivalent to a certain system at rest where a
mass-free gravitational field of a given form acts (masses
that generate this field can be imagined as infinitely
remote). Spatial measurements in system K are performed
by means of scales which have identical lengths if compared
with each other at rest in a selected place of the system. All
geometric properties as well as the relations between
coordinates x, y, z and other lengths must be examined
with the use of such scales. These rules must not be taken
for granted; instead, they contain certain physical assump-
tions which may sometimes happen to be incorrect. ...It is
feasible to imagine scales, as well as axes of coordinates, in
the form of absolutely rigid rods despite the fact that
absolutely rigid bodies cannot exist in the relativistic theory.
In fact, absolutely rigid measuring rods may be imagined as
being composed of a large number of bodies which are not
absolutely rigid; they are connected in such a way that they
do not transfer pressure between them when one or another
rod stops. We shall measure time ¢ in the reference frame K
with a clock positioned in spatial points of the system so
that the time interval measured in this way and necessary
for a light beam to travel between two points A and B of the
frame is independent of the instant when the light beam was
emitted from A....”

Furthermore, in the same paper, Einstein examined
system K, with a gravitational field, but we feel it would
be inappropriate to dwell on this subject here.

4. Thus, our objective is to construct coordinates in the
accelerated reference frame K, that would satisfy the above
requirements. It will be shown below that such coordinates
include the coordinates x”" = (cn, &, x, p), described for
instance in Ref. [16] (paragraph 18.6) and usually referred
to as Moller coordinates.

The relationship between Moller coordinates and
coordinates x' = (ct,x,y,z), which were previously used

FThe system denoted here by K is evidently our system K,.
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in the inertial reference frame K may be presented in the
following form:

ct = psinh 61(_’1 R @)
x=¢, ®)
y=1 &)
z:pcosh“c—f’, (10)
where p>=0. In Ref [16], this transformation was

introduced by considering system K, as a continuous
transition between instantaneously co-moving systems.

It is easy to see that

22

ds? = g dx” dx” :“c—f d? — dp? — d& — dp . (1)

According to Eqns (7)—(10) and (6), in Moller coor-
dinates,

dPP = dp® + d& + dy’ , (12)
i.e. the physical length element coincides with the
coordinate one. Element d/ is independent of the
coordinates, and measuring rulers may be regarded as
rigid (see Ref. [6], paragraph 2.2, for details).

Furthermore, in compliance with Eqns (5) and (11),
where x° = e,

dr:@ dy,
¢

(13)

with variable # (coordinate time) being the proper time at
the point p = ¢?/a.

It follows from the definition of the Moller coordinates
(7)—(10) that they cover only a part of the Minkowski space
in which z > ¢|f|. Logunov and co-workers [2] consider this
to be a defect since, in their opinion: “...from the physical
point of view, transition to a new reference frame should
always ensure transformations of all points of the spacetime
in the initial reference frame”. We consider this statement to
be completely wrong because in GTR reference frames of
‘global’ nature are far from being always considered.

In the case in question, the discussion concerns small
domains of spacetime in keeping with the spirit of EP. It is
in these domains that the equivalence of reference frames
K, and K, is to be demonstrated. Moreover, it is physically
meaningless to consider uniformly accelerated motion at all
times, i.e. in the interval —oo < t < oo, as is emphasised by
many authors (see for instance Refs [1, 11]). To summarise,
the transition to Moller coordinates (7)—(10) for the
description of the uniformly accelerated frame K, meets
all necessary requirementst.

If a particle (a charge) in a reference frame K, is at rest,
its coordinates p,, £y, and x, are constant, i.c.
dpy = déy = dya =0. In system K, the particle is in
hyperbolic motion, that is zi — (cf4)* = p4 (henceforth,
index A will be omitted). The velocity v of the particle, its
acceleration, and proper time T are

FIt should be noted that Ref. [10] suggests coordinates which generalise
the Moller coordinates and cover the entire space.

,— 4z (ap/c)sinh(an/c)dn
dr (1/c¢) (ap/c)cosh(an/c) dn
_ csinh (an/c) _ c(ct/n) _ c_2t ,
cosh(an/c) 14 (ct/p)? ?
< . (14)

dr (0% + 22)? -3

N T2 ap
T= l—=dti=—1n.
JO P 2"

The four-vectors of velocity u' and acceleration wi,
together with the vector dw'/ds, for this particle, if
expressed via the coordinates ct, £, x and p, have the form

o dx!
W= (coshﬁ, 0, 0, Sinh“—”) ,
ds c c

. i 1 1
w :ﬂ: <—sinh an , 0,0, —cosh ﬂ) ,
ds p c p c

dw' 1
—=| —=co

ds p?
since, for instance,

o_ dx° _d(er) 0_ d[cosh (an/c)] .

~ s (ap/c)dn’ (ap/c)dn
It is known (see for example Ref. [11]) that for
uniformly accelerated motion
dw'

K—l—wkwkui = 0 N

as)

I
sh 2 0,0, —25inhﬂ> ,
¢ p ¢

which follows from Eqn (15) because whw, = —1/p’.
Therefore a particle at rest in reference frame K, is in
uniformly accelerated motion in system K. Conversely, a
particle at rest in reference frame K will be uniformly
accelerated in reference frame K, provided it travels at low
speed [8].

5. It is now time to prove that a charge which does not
radiate in the inertial system K, when at rest, does radiate
if placed in reference frame K,. If the charge is at rest at
the point of reference frame K with coordinates x =y =0,
7= cz/a, it is supposed to have a purely Coulomb field in
this system, that is the tensor of the electromagnetic field
will have the following form (see Ref. [13], paragraph 24,
for notation):

0 e e e ( C2>
——=x ——=y ——=|z——
T R L N
= 0 0 0
ik rgx
F - e 9
S 0 0 0
e ’ C2
= z—— 0 0 0
7 (%)

(16)

fWe have presented here all the details of the calculation because this is
exactly what the authors of the paper subjected to criticism [2] did
although they published it in a journal intended for original reports.
Such details are even more pertinent in the present communication,
submitted to a journal devoted to reviews of current problems.
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where
2

2
C
r3=p3+(&.—;), Rty

The tensor of energy—momentum of the field (see
Ref. [13], paragraph 33) is

. 1 . 1 .
le :E (_Fllel +Z gthlmFlm> ,
Hence
4nTOO=%§, 7O =72 7% =0,
o
2
4nT'2=—e—6xy s
o
13 ¢ J
4nT > =——x|z——|,
g a
2 2
3 e c
4nTb=—r—6y(z—Z) ,
0 (17)
2
1 1
o2 (L),
rg r(2) 2
2
e (1 1
T2 = —— [=y? = s
G (rgy 2
2

[

33 e 1 C2 2 ]
AT =——= |5 lz2——] —5| -
5| 1g a 2

Tensor T is symmetric.

A shift to system K, with coordinates (7)—(10) yields a
charge with coordinates éE =y =0, p = c2/a at time n = 0.
The velocity of the charge is

dp  azsinh(an/c)  apt

dn ccosh? (an/c) z ’
and its acceleration is

d2p _ a2p _

d112 C2

(It should be borne in mind that in system K the charge is
at rest, with z :c2/a. For this reason, in reference frame
K, the charge has acceleration —a at the instant y =t = 0.
This is exactly what occurs in an elevator which falls with
acceleration a = —g, g being the free-fall acceleration in
system K,.) ‘

Coefficients 0x " /dx’ of the tensor transformation law

ik ox i ox 1k

Im
T oox! T (18)
have the form
Oen) _ ¢t oan
oct) ap ¢’
en) _ < . an
oz  ap c’
¢ dy
Lotk 19
dx dy ’ (19)
op . .an
) —sinh -
o

Other coefficients vanish. The coordinates (¢, & x, p )
must certainly be expressed via the coordinates (ct, x, y, z)
by means of relations (7)—(10), from which it follows that
320 2
m=ct=p.

With the aid of Eqns (17)—(19), the necessary compo-
nents of the energy—momentum tensor in the reference

frame K, can be found:

(20)

B A\? an an
T’OJ:_—A‘[— <z——> —1] cosh — sinh — .
pa 4nry |1 a : c

It is now possible to find the energy flow of the
electromagnetic field through the spherical surface
22
c
4+ (p - ;) = (en)? @n
at time #. Calculations are to be made up to terms of order
(an/c)?, neglecting terms of a higher order: O(an/c)’, etc.
Expansion of all the values in a series yields
2 2
z—c—zpcosh a_Z
a C a

2 2
:p—c——i—g(a—n), sinha—nzﬁ.
a 2\c c c

The following expressions are obtained with the same
accuracy at the surface of sphere (21):

2
=y’ +2 (a_r/) ¢y cos@,
2\ ¢

where coordinates 6 and ¢ are introduced such that
E=cysinfcosq ,

K =cnsinBsin @ ,
2

p—c—:cr[cos@.
a

The flow of the Poynting vector §* = ¢T ** across sphere
@1 is

1 21
P = C_[ J ded(cos 0)c2112{T'm sin 6 cos @
-1Jo

+ 7" sinsin ¢ + 7" cos 6} , (22)

where the integrand is evaluated on the surface of sphere
(21) at time #u; values of T are given in Eqn (20).
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It is worthy of note that the surface of sphere (21) does
not coincide with a constant-phase surface of the electro-
magnetic field. This can be accounted for by the difference
between coordinate velocities of light dx°’/dx0 at points
p < c?/a and p > c?/a in reference frame K,. Indeed, at

2 2
ds2:“c—f A — dp? — d&® — d2 =0

the velocity

V42 + 48+ d? gp

dn c
This explains why radiation emitted at the instant # =0
cannot simultaneously arrive at different points of the
sphere. However, it is possible to show that taking this fact
into account affects only higher-order terms.

Further calculation of P from Eqn (21) is simple but
tedious. We went through it in the smallest detail, but it
would be inappropriate to present here a minute description
of the procedure because the final result is in agreement
with EP as expected, that is

26 2
363 a

P (23)
which coincides with (2), provided @ = gz.

Calculation neglecting terms of O(an/c)’ or higher is
not a defect because what we are interested in are small
spacetime domains, in compliance with the spirit of EP,
which was more than once emphasised in the foregoing
discussion.

Calculations similar to those described in Ref. [10]
unambiguously show that in system K,, falling freely in
reference frame K, the charge does not radiate even though
it is certain to radiate in system K,.

The equivalence principle constitutes the basis of GTR.
Therefore, any calculation in the framework of GTR would
not contradict EP. Meanwhile, the great heuristic potency
of EP is apparent from the above discussion of charge
radiation in reference frame K,. The result (23) that
immediately follows from EP is obtainable with the use
of the machinery of GTR only after simple but tedious
calculations.

6. There is one more example of the possibility of obtaining
a result directly from EP when it is not at all evident
without the use of EP. Let us consider, in the relativistic
approximation, a certain object (a solid body or an atom)
which is in motion with constant acceleration with respect
to an inertial reference frame K. We wish to describe the
object in the framework of nonrelativistic quantum
mechanics. Specifically, we would like to describe the
propagation of a conduction electron in a uniformly
accelerated metal [17, 18] and find level shifts of the
uniformly accelerated atom.

Because the object is at rest, its behaviour can be
described by means of the Schrodinger equation

Y w

h—=|—-—V 4+ U(x,y,2)| ¥,

or 2m 9

where U(x,y,z) is the potential energy of a conduction
electron, an electron in the atom, etc. The Schrodinger equa-
tion (24) is written in the inertial reference frame, which is
not normally specified. Whenever a body or an atom is in
accelerated motion (e.g. along the z axis with constant

acceleration a), it is necessary to substitute U(x,y,z) in
Eqn (24) by

U(x,y,z—%t2> .

The transition to the uniformly accelerated reference
frame associated with the body, atomic nucleus, etc., is
effected by the transformation

25)

li

t'=t, x'=x, y' =y, ':z—%tz. (26)
After a new wave function is introduced,
_ / i 10 1 2,13
Y=y exp |- mat 'z +8mat , (27)
it follows from Eqns (24) and (25) that
oy’ B on Vot :
ih—=|—— ) . 2
in a7 [ ZmV +U(x',y',z )+maz] (28)

This results in precisely the same equation for ¥’ as that
in the inertial reference frame, with the exception that
potential energy maz’ is added to the former expression.
This is what immediately follows from EP [18] because in a
homogeneous gravitational field with acceleration g = —a,
the potential energy is exactly maz’. A potential of a similar
type occurs in a uniform electric field. That is why
elucidation of the effect of acceleration on the running
of an atomic clock is possible on the basis of the known
results relating to the Stark effect in atoms.

7. There is one more point to clarify: why Logunov et al.
[2] have obtained a result which is in conflict with EP. The
authors examined a charge at rest in the inertial reference
frame K and calculated its radiation in a certain noninertial
reference frame Ky, assumed to be uniformly accelerated.
Furthermore, following the line of reasoning described
above, they proved that the charge does not radiate in the
latter system, which is true. However, the crux of the
matter is that reference frame Ky is radicaly different from
system K,, which is associated with uniformly accelerated
motion and discussed in connection with EP.

In fact, Logunov et al. [2] use the reference frame Ky
with coordinates

2
n=t, ¢=x, x=y, p:z—c\/;—2+t2. (29)

To the second order in at/c, coordinates (29) correspond to
the Galilean transformation

2 2 3
¢ at at
1=y, p=1—— ——+0(—) -(30)

n=t, {=x,

It is clear that such a transformation eliminates relativistic
effects of order (v/c)?, ie. (at/c)*. At the same time, the
total radiated power (23) is of order (a/c)Q. This accounts
for the necessity of relativistic calculations in reference
frame K, notwithstanding arbitrarily low velocity of the
charge. Incidentally, the relativistic transformation rules
have to be taken into account at arbitrarily low velocities
and specifically in examining the Thomas precession [19].

The reference frame Ky is not rigid because the
following expression holds for the physical length element
dl [see Eqn (6)]:

dP = d& + dy? + dp® + ¢ dydp ,

i.e. dl is time dependent.
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This fact immediately ensues from Eqn (30). Suppose,
for instance, that the ends of a rod which is at rest in
reference frame K have coordinates p, and p,. Then, at
each instant of time ¢, the length of the rod is
py — P = 2o — 21, wWhere z, and z; are the coordinates of
its ends in reference frame K. This means that in reference
frame K there is no Lorentz contraction of the rod length
when the rod is at rest in system Ky. Therefore, the length
of the rod in reference frame Ky is inconstant, being time
dependent and increasing with time at # > 0. Thus, reference
frame Ky is not to be compared with system K, in the
framework of EP.

To summarise, the criticism [2] of propositions sug-
gested by one of the authors of the present communication
in Ref. [1] is unsubstantiated. We failed to find mistakes
in Ref [1]. It may be inferred that the statement of
Logunov and co-workers [2] on the equivalence principle
as applied to electrodynamics is invalid.
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