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Abstract. Equations for the massive gravitational field 
have been derived in the framework of the special theory of 
relativity on the basis of the geometrisation principle. 
Graviton mass has been shown to be crucial for the 
elaboration of the relativistic theory of gravitation. 
According to this theory, a homogeneous and isotropic 
universe develops in a series of alternating cycles, from 
high to low density, and cannot be anything other than flat. 
The theory predicts the presence of a large amount of 
latent mass in the universe and prohibits the existence of 
'black holes'. Also, the theory explains all observable 
events so far known to occur in the solar system. 

1. Introduction 
Einstein's general theory of relativity (GTR), for which the 
principal equations were proposed by Gilbert and Einstein 
in 1915, opened a new stage in the study of gravitational 
phenomena. However, from the very beginning, this theory 
encountered, for all its progress and advances, serious 
difficulties with the evaluation of the physical character­
istics of the gravitational field and the formulation of the 
energy-momentum conservation laws|. 

fThe Editorial Board would remind readers that problems dealt with 
in the present paper were more than once discussed in Physics-Uspekhi 
[see A A Logunov et al. 155 (3) 1988, Ya B Zel'dovich 155 (3) 1988, 
L P Grishchuk and A A Logunov et al. 160 (8) 1990]. 
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Einstein was perfectly aware of the fundamental 
importance of the energy-momentum conservation laws. 
Moreover, he believed the total tensor of matter and of the 
gravitational field, taken together, to be the source of the 
latter. In 1913, he wrote that "the tensor of gravitational 
field is a true source of the field as well as the tensor of 
material systems 0^v. An exceptional position of the energy 
of the gravitational field compared with that of all other 
forms of energy would have inadmissible consequences." In 
the same work, Einstein came to the conclusion that "in the 
general case the gravitational field is characterised by ten 
spacetime functions", components of the metric tensor g^v 

of the Riemannian space. However, elaboration of the 
theory along this line did not enable Einstein to use the 
tensor of matter and the gravitational field as a field source 
since a pseudotensor in the Riemannian space arose in 
GTR, instead of the gravitational field tensor. 

In 1918, SchroSdinger demonstrated that all the com­
ponents of the energy-momentum pseudotensor of the 
gravitational field outside a spherically symmetric source 
can be made to vanish provided an appropriate system of 
coordinates is chosen. With regard to this, Einstein noted: 
"As for the ideas of SchroSdinger, their persuasiveness lies 
in the analogy with electrodynamics where the stresses and 
energy densities of any field are nonzero. However, I cannot 
find any reason why the situation should be the same for 
gravitational fields. Gravitational fields can be specified 
without introducing stresses and energy densities." 

Thus, Einstein abandoned the concept of the gravita­
tional field being a classical field of the Faraday-Maxwell 
type possessing energy-momentum density, even though he 
made an important step by linking the gravitational field 
with a tensor value. The value taken by Einstein was the 
metric tensor of Riemannian space, g ^ v . Einstein seems to 
have considered this line of reasoning to be quite natural 
since his views on the gravitational field developed under 
the influence of the principle of equivalence between forces 
of inertia and gravitational forces, which he introduced as 
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follows: "...for any infinitely small world-region, the 
coordinates can always be chosen in such a way that the 
gravitational field in that world-region vanishes." 

Einstein was very persistent in emphasising this idea. In 
1923, he wrote: "For any infinitely small vicinity of a point 
in an arbitrary gravitational field, the local system of 
coordinates can be specified in such a state of motion 
that there will be no gravitational field with respect to this 
coordinate system (the local inertial system)." This asser­
tion gave rise to the belief that the gravitational field cannot 
be localised. According to Einstein, the presence of the 
energy-momentum pseudotensor is in good conformity 
with the equivalence principle!. 

The above statement of Einstein is in fact not fulfilled in 
GTR because, for a physical characterisation of the field in 
this theory, it is necessary to consider the Riemann 
curvature tensor. That we have a clear understanding of 
this fact we owe to Synge. According to this author: "If we 
accept the idea that spacetime is a Riemann four-dimen­
sional space (and if we are relativists we must), then surely 
our first task is to get the feel of it just as early navigators 
had to get the feel of a spherical ocean. And the first thing 
we have to get the feel of is the Riemann tensor, for it is the 
gravitational field: if it vanishes, and only then, there is no 
field at all. Yet, strangely enough, this most important fact 
has been pushed into the background." Synge proceeded as 
follows: "In Einstein's theory, either there is a gravitational 
field or there is none, according as the Riemann tensor does 
not or does vanish. This is an absolute property, it has 
nothing to do with any observer's world line." 

Thus, in compliance with GTR, matter (all matter fields 
with the exception of the gravitational field) is characterised 
by the energy-momentum tensor, whereas the physical 
characteristic of the gravitational field is the Riemann 
curvature tensor. The former tensor is of second rank 
while the latter is a fourth-rank tensor, which implies a 
fundamental difference between the properties of matter 
and the gravitational field in GTR. 

The introduction of the energy-momentum pseudo­
tensor of the gravitational field in GTR turned out to be of 
no great help to Einstein in his attempt to make provision 
for the energy-momentum conservation laws in his theory. 
Gilbert seems to have understood this fairly well when he 
wrote in 1917 as follows: "...I declare that for the general 
theory of relativity, that is in the case of general invariance 
of the Hamiltonian function, there are no energy equations 
that... correspond to energy equations in orthogonal-
invariant theories; I could even note this fact as being a 
characteristic feature of the theory." 

Unlike any other physical theory, GTR is fundamentally 
incapable of the introduction of the energy-momentum 

fQuestion: Misner, Thorne, and Wheeler explain why the gravitational 
field is impossible to localise (see their book Gravitation, chapters 19 and 
especially 20, paragraph 20.4). I do not share their opinion. Hence, the 
question arises: what is wrong with the arguments of Misner and co­
workers? 

According to GTR, this is exactly the case with the gravitational field 
energy as was long ago stated by V A Fock. In the relativistic theory of 
gravitation (RTG), the F a r a d a y - M a x w e l l physical gravitational field in 
Minkowski space is introduced which allows the notion of an ene rgy-
momentum tensor of the gravitational field to be used. The difference of 
opinion ensues from different starting points in GTR and R T G . An 
experiment is needed to verify the validity of either approach although 
general theoretical considerations are also of great value. 

and angular momentum conservation laws because of the 
absence of the ten-parameter group of spacetime trans­
formation. The laws of energy-momentum and angular 
momentum conservation are fundamental laws of nature. 
These laws impose universal physical properties on all 
forms of matter and allow their interconversion to be 
quantitatively analysed. Not surprisingly, it is tempting 
to have a gravitational theory that includes all energy-
momentum and angular momentum conservation laws, 
with the gravitational field possessing energy-momentum 
density, similar to the case of the Faraday-Maxwell 
electromagnetic field. 

In GTR, the scalar Lagrangian density of the gravita­
tional field contains second-order derivatives of the field, at 
variance with all other physical theories. 

About 50 years ago, Nathan Rosen showed that 
introduction of the metric y^v of Minkowski space, along 
with the Riemannian metric g^v, makes it possible to obtain 
a scalar Lagrangian density of the gravitational field with 
respect to arbitrary coordinate transformations, containing 
derivatives of not higher than the first order [1]. Specifi­
cally, Rosen devised such a Lagrangian density, which led 
to the Gilbert-Einstein equations. In this way, the bimetric 
formalism arose. However, this approach made elaboration 
of the gravitational theory even more complicated since 
using tensors y^v and g^v allows rather a large number of 
scalar densities with respect to arbitrary coordinate trans­
formation to be written and it is utterly unclear which scalar 
density to choose as the Lagrangian density for the 
development of the theory of gravitation. 

Following this approach, Rosen used different scalar 
densities as the Lagrangian density to develop a variety of 
gravitational theories which, generally speaking, predict 
different gravitational effects. It will be shown below 
that it is possible to combine Poincare's idea of the 
gravitational field [2] as a Faraday-Maxwell physical field 
with Einstein's idea of a Riemannian spacetime geometry in 
the framework of the special theory of relativity (STR), 
which describes events both in inertial and in noninertial 
reference frames. For this purpose, the geometrisation 
principle that reflects the universal character of the 
gravitational interaction between the field and matter 
will be employed and the mass of the graviton intro­
duced. It is the geometrisation principle that may prove 
helpful in the search for the infinite-dimensional non-
commutative gauge group necessary to construct the 
Lagrangian density of the gravitational field proper. This 
line of reasoning has led to the relativistic theory of 
gravitation (RTG) [3], which contains all conservation 
laws, as is the case with all other physical theories. 

This theory assumes the conserved total tensor of matter 
and gravitational field to be the source of the field, in 
conformity with Einstein's idea of the gravitational theory. 
It will be shown that general physical requirements lead to 
unambiguous construction of the complete system of 
equations for the massive gravitational field. Eqns (66) 
and (67) in this theory are fundamentally different from 
the Gilbert-Einstein equations since they retain the notion 
of an inertial coordinate system, and forces due to gravity 
are fundamentally different from those due to inertia, as the 
former are generated by a physical field. It should be 
specially emphasised that the rest mass being a property of 
gravitational field is a matter of principle (see below). This 
paper presents, once again, the basic principles and 
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equations of the theory, with some amendments and 
modifications. 

The relativistic theory of gravitation with graviton mass 
is a field theory in the same sense as classical electro­
dynamics; therefore, it may be called classical 
gravidynamics. 

2. Basic propositions of RTG 
In developing the theory of the gravitational field, we shall 
proceed from the following basic propositions. 

Proposition I 
RTG is based on the special theory of relativity, which 
means that Minkowski space (a pseudo-Euclidean space-
time geometry) is the fundamental space for all physical 
fields, including the gravitational field. This proposition is 
necessary and sufficient for the laws of conservation of 
energy-momentum and angular momentum to be valid for 
matter and gravitational field taken together. In other 
words, the Minkowski space reflects the dynamic proper­
ties shared by all forms of matter. This ensures their having 
common physical characteristics, which in turn allows 
interconversion of these forms to be quantitatively 
described. 

The Minkowski space is not to be regarded as a priori 
existent; it reflects properties of matter and is therefore 
inseparable from it. Nevertheless, its independence of the 
form of matter is sometimes considered a formal reason to 
examine it regardless of matter. 

Minkowski space admits description both in inertial 
(e.g. Galilean coordinates) and in noninertial (accelerated) 
coordinate systems. This appears evident from the math­
ematical point of view because Minkowski space allows for 
the introduction of a broad class of possible coordinate 
systems, including curvilinear ones. Nevertheless, this rather 
simple consideration has long remained unperceived even 
by prominent physicists. This can be accounted for by the 
fact that many authors considered Minkowski space to be a 
formal geometric interpretation of the special theory of 
relativity. This view tends to a narrowing of the limits of 
STR. The most general thesis of STR was assumed as the 
basis in the development of RTG that runs as follows: all 
physical processes, including gravitational ones, occur in a 
four-dimensional world, that is in space and time with 
pseudo-Euclidean geometry. In such a representation of 
STR, the process of clock synchronisation and the principle 
of the constant velocity of light, become immaterial because 
they are considered to be of little and limited importance, 
and only the interval is supposed to have physical sense. 

At the beginning of this century, H Poincare wrote in 
his book Science and Hypothesis that although 
"...experience necessarily played a role in the origin of 
geometry, it would be a mistake to conclude that geometry 
is, at least partially, an experimental science. If it were an 
experimental science, it would have only transient and 
approximate — highly approximate — significance." He 
also noted: "Geometry studies but a specific 'group' of 
displacements whereas the general notion of the group 
preexists in the human mind, at least as a possibility. 

"Experience directs us in this choice but does not make 
it obligatory; it prompts which geometry is more convenient 
rather than which is correct." This statement indicates the 
necessity of using a pseudo-Euclidean spacetime geometry if 

one proceeds from such fundamental physical principles as 
the laws of energy-momentum and angular momentum 
conservation. But this choice is not only convenient, it is 
actually the only one possible as long as the conservation 
laws are considered valid. In 1921, A Einstein wrote in his 
paper on "Geometry and experiment": "the question 
whether this continuum has a Euclidean, Riemannian, or 
any other structure is a question of physics proper which 
must be answered with the aid of experiment, rather than a 
matter of agreement of choice on the grounds of mere 
expediency." 

Of course, the statement is basically correct, but the 
question arises as to which experimental facts are necessary 
unambiguously to characterise geometry. I believe such 
facts to be the fundamental laws of energy-momentum and 
angular momentum conservation because these laws reflect 
general dynamic properties of matter. It is precisely these 
facts that lead to pseudo-Euclidean spacetime geometry as 
the simplest one. 

This means that in establishing the structure of the 
spacetime geometry, it is reasonable to proceed not from 
selected experimental facts (e.g. light propagation and test 
body motion) but from the basic physical principles 
deduced by generalising numerous experimental findings 
which characterise different forms of matter. 

The Minkowski space has deep physical sense because it 
determines universal properties of matter such as energy, 
momentum, and angular momentum. 

The gravitational field is described by a symmetric 
second-rank tensor and is a real physical field 
possessing energy-momentum density, rest mass m, and 
polarisation states corresponding to spin 2 and 0. Elimina­
tion of representations corresponding to spin 1 and 0 from 
field states is accomplished by the constraining of the 
components <^v by the field equation 

D„<r=o, (i) 
where is the covariant derivative in the Minkowski space. 

Eqn (1) not only excludes nonphysical field states but 
also introduces the metric y^v of the Minkowski space into 
the theory, which makes it possible to separate forces of 
inertia from the action of the gravitational field. The choice 
of the Galilean metric y^v makes it possible to eliminate 
completely the action of inertial forces while the Minkowski 
metric allows the notions of standard length and time 
interval to be introduced in the absence of a gravitational 
field. It will be shown below that the interaction between 
tensor gravitational field and matter can be introduced as 
though it deformed the Minkowski space, changing metric 
properties without affecting causality. 

Proposition II 
The gravitational field being described by the symmetric 
second-rank tensor <^v, and its interaction with other fields 
being considered universal, there is a unique opportunity to 
'join' this field in the Lagrangian density of matter directly 
to tensor y^v, according to the following rule: 

LM(g"\ 4>A) . 

where 

r = f v + <^v 
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where cf>A represents matter fields; g = det g^v; y = det y^v; 
S^Sva — K- Tensor y^v is determined from the last equality. 
Tensor y v is used to raise and lower indices in y^v, and the 
metric tensor of the Riemannian space performs the same 
operations with tensor g ^ v . By 'matter' we mean all its 
forms excepting the gravitational field. 

Such a mode of interaction between the gravitational 
field and matter introduces the notion of the effective 
Riemannian space in which motion of matter occurs. 
This mode is referred to as the geometrisation principle. 
According to the geometrisation principle, the motion of 
matter under the action of the gravitational field <^v in the 
Minkowski space with metric y^v is identical to its motion in 
the effective Riemannian space with metric g ^ . The 
effective Riemannian space is literally of field origin 
because of the presence of the gravitational field <^v. 

Metric properties are determined by the effective 
Riemann space tensor in the presence of a gravitational 
field and by the Minkowski space tensor y v in the absence 
of the field. For this reason, the theory can explain how the 
size of a body and the rate at which a clock runs change 
under the influence of a gravitational field. A theory that 
does not contain tensor y^v in its field equations is unable, in 
principle, to answer such questions. GTR characterises the 
field by the metric tensor g^v, whereas in RTG it is 
determined by the tensor value <^v, and the effective 
Riemannian space is constructed with the help of the field 
4>^v and the Minkowski metric tensor y^v to fix the choice of 
the coordinate system. 

Our theory includes the Galilean (inertial) system of 
coordinates, and acceleration has the absolute meaning. 
The movement of a test body in the effective Riemannian 
space occurs along its geodesic line, but it is not free motion 
since it is induced by the gravitational field. Had the test 
body been charged, it would have emitted electromagnetic 
waves because its motion in the field would have been an 
accelerated motion. 

Because the effective Riemannian space is produced by 
the gravitational field <^v in the Minkowski space, it is 
essential that the former can always be defined in the same 
coordinate system. This means that the theory has to do 
only with Riemannian spaces which are covered by a single 
map. From the standpoint of our theory, Riemannian 
spaces with complicated topology are totally excluded as 
not being of field-like nature. It is worthwhile to note that 
the equations of motion for matter do not include the 
metric tensor y v of the Minkowski space since matter 
travels in the effective Riemannian space. The Minkowski 
space is supposed to interfere with the motion of matter 
only via the Riemannian space metric tensor g^v derived 
from equations which contain metric tensor y v. 

In conclusion, although the geometrisation principle 
allows for the description of motion in the effective 
Riemannian space, the metric of the initial Minkowski 
space is not eliminated; rather, it is retained in the 
gravitational field equations to preserve the notion of an 
inertial system in which the forces of inertia are identically 
zero. 

3. Gauge transformation group 
Since the Lagrangian density of matter has the form 

Luir, <M , (4) 

it is easy to find the gauge group of transformations at 
which this density is changed only by a divergence. To this 
end, the invariance of the action 

5 M = J L M ( r , < M d 4 (5) 

may be used under an arbitrary infinitesimal change of 
coordinates 

+ , (6) 

where <f* is the infinitesimal four-vector of the coordinate 
shift. Under these coordinate transformations, the field 
functions g^v, (f>A are changed in the following manner: 

= f ( x ) + ( * ) + , 

4>'A (*') = 4>A (*) + k<t>A (*) + f {*)VAA (X) , (7) 

where the expressions 

kg"v(x)=r^{x)+r^{x) - D a ( a n , 

htfA (x) = -t*(x)Da(f>A (x) + F*A* 4>B{x)Dal*{x) (8) 

are Lie variations. 
Operators 6^ fulfil the conditions of a Lie algebra, that is 

the commutation relation 

[ % > % ] ( • ) = % ( • ) (9) 
and the Jacobi identity 

[%> [8&.S&]] + [««„ [6 { l > 8 & ] ] + p & , [8 { 3 ,8 { l ] ] = 0 , 

where 

« = D „ £ - #D„fl[ = tf8„S - #8„fl[ . (10) 

In order to have (9), it is necessary to fulfil the following 
conditions 

r A ; v rB-J RA-JrB;v ~ J v j 8 ; a rA;x ' V A A J 

where the structure constants / are given by 

It is easy to see that they satisfy the Jacobi identity 

and possess properties of antisymmetry, 

ra,v;p ^ v a ; p 
Under coordinate transformation (6), variation of the 

action is zero: 
5 C S M = [ L'M{x') d4x f - I LM(x) d4x = 0 . (14) 

icy JQ 

The first integral in Eqn (14) can be written as 

f L'M(x') d V = f JL'M(x') d4x , 

JQ' JQ 

8x 

where 

./ = det 

To the first order in £ a , determinant / is 

/ = l + 8 a f ( x ) . (15) 
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Taking into account the expansion 

and Eqn (15), one may represent the expression for the 
variation in the form 

5 C S M = f { 5 L M ( x ) + 8 a [ f L M ( x ) ] } d 4 x = 0 . 
JQ 

Since the integration volume Q is arbitrary, one has the 
identity 

SLM(x) =-dx[l?(x)LM(x)} , (16) 

where the Lie variation 8 L M is given by 

Hence, if the scalar density depends only on d^g1™ and its 
derivatives, transformation (8) will result in its change by a 
divergence: 

bL\T(x)] = -dx{e(x)L[g>"(x)]} , (16a) 
where the Lie variation is 

+ 
8L 

(17a) 

Lie variations (8) were obtained in the context of 
coordinate transformations (6). However, it is possible to 
approach this problem from the other side and examine 
transformations (8) as gauge transformations. In this case, 
the arbitrary infinitesimal four-vector <f*(x) would be a 
gauge vector rather than a coordinate shift vector. In the 
following discussion, the designation sa(x) is used to 
emphasise the difference between the gauge group and 
the coordinate transformation group, whereas the trans­
formations of the field functions 

(l>A(x) -> <j>A{x) +HA{X) (18) 

with the additions 

hr\x) = f D / W + f D / W - D a ( 8 » r ) , 

«.^W = -8"(*)Da0A(x) +FB

A\^B{x)T)J{x) , (19) 

are referred to as gauge transformations. 
In perfect conformity with formulas (9) and (10), these 

operators conform to the same Lie algebra, i.e. the 
commutation relation 

[8„, 8 ^ ( 0 =8^( . ) (20) 

and the Jacobi identity 

[8.,, [8S 2, SEJ] + [5S 3, [8,„ 5SJ] + [5E 2, [5 % , 8,,]] = 0 . (21) 

Similarly to Eqn (10), one has 

The gauge group arose from the geometrised structure 
of the scalar Lagrangian density for matter, LM(gfiV, </>A), 
which changes by no more than a divergence under gauge 
transformations (19), on account of identity (16). There­
fore, the geometrisation principle that determines the 
universal character of the interaction between matter and 
the gravitational field enabled us to formulate a non-
commutative infinite-dimensional gauge group (19). 

A significant difference between gauge and coordinate 
transformations will be apparent in the critical point of the 
theory dealing with the construction of a scalar Lagrangian 
density for the gravitational field proper. The difference is 
due to the fact that the metric tensor y v does not change 
under gauge transformations, which leads, because of 
Eqns (3), to 

8 E g " v M = 8 s ^ ( x ) . 

Based on Eqn (19), one has the following transformation 
for the field: 

However, this transformation for the field is somewhat 
different from that based on the coordinate shift: 

^ r \ x ) = D . f ( * ) + 4 > m D , ? ( i ) - D . ( f . 

Gauge transformations (19) do not result in altered 
equations of motion for matter since any transformation 
of this kind leads to a change in the Lagrangian density of 
matter of no more than a divergence. 

4. Lagrangian density and equations of motion 
for the gravitational field proper 
It is well known that the use of the tensor g^v alone does 
not allow one to construct a scalar Lagrangian density of 
the gravitational field proper with respect to the rather 
arbitrary coordinate transformations in the form of 
quadratic derivatives of not higher than first order. This 
accounts for the Lagrangian density inevitably comprising 
the metric y^v along with the metric g ^ . But the former 
metric does not change under gauge transformation (19). 
Therefore, strong limitations on the Lagrangian density of 
the gravitational field proper are needed to ensure that this 
transformation causes no more than a divergence change in 
the density. It is here that the basic difference arises 
between gauge and coordinate transformations. 

While coordinate transformations impose virtually no 
limits on the structure of the scalar Lagrangian density of 
the gravitational field proper, gauge transformations allow 
the Lagrangian density to be found. A direct general 
method for constructing the Lagrangian has been 
described in monograph [3]. 

Here, a simpler method of constructing the Lagrangian 
is employed. Based on Eqn (16), it may be concluded that 
the simplest scalar densities y/—g and R = y/^R, (where R 
is the scalar curvature of the effective Riemannian space) 
undergo the following changes under gauge transforma­
tion (19): 

R ^R-Dv(svR) . 

(22) 

(23) 
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The scalar density R is expressed via the Christoffel 
symbols 

(24) 

in the form 

R = - r K r i - rvl) - 6 v ( r r% - r r%). (25) 
Since the Christoffel symbols are not tensor values, none of 
the items in Eqn (25) is a scalar density. However, 
introduction of the tensor values G^v, where 

allows scalar density to be written in the form 

(26) 

(27) /i(7 6 W / X ( T / 

It should be noted that each group of terms in Eqn (27) 
taken separately behaves as scalar density under arbitrary 
coordinate transformations. Because of Eqns (22) and (23), 
the expression 

(28) 

is invariant up to a divergence under arbitrary gauge 
transformations. By choosing the vector density 

j / t o ­

rt is possible to remove from the previous expression terms 
with derivatives of higher than first order and obtain the 
Lagrangian density 

-Mg"v(G" G L - G* G°x) + ky/=g (29) 

It is therefore evident that the requirement that the 
Lagrangian density of the gravitational field proper should 
change by a divergence under gauge transformation (19) 
unambiguously defines the structure of Lagrangian den­
sity (29). However, if we restrict ourselves to this density, 
the gravitational field equations will be gauge invariant and 
the Minkowski space metric y^v will not appear in the 
system of equations determined by the Lagrangian den­
sity (29). Since this approach results in the disappearance of 
the Minkowski space metric, the gravitational field cannot 
be represented as a physical field of the Faraday-Maxwell 
type in the Minkowski space. 

In the Lagrangian density (29), the introduction of the 
metric y^v with the help of Eqn (1) does not seem 
appreciably to redeem the situation, because the physical 
values (the interval, the tensor of Riemannian space 
curvature , and the tensor t^v of the gravitational field) 
are dependent on the choice of gauge, which is physically 
irrelevant. In order to retain the field concept in the 
Minkowski space and avoid such an ambiguity, it is 
necessary to add to the Lagrangian density of the gravita­
tional field a term which breaks the gauge group. At first 
sight, this appears to clear the way for arbitrariness as 
regards the choice of Lagrangian density, since the gauge 
group can be broken in more than one fashion. However, 
this turns out not to be the case because the physical 
limitation imposed by Eqns (1) on the polarisation proper­
ties of the gravitational field as a field with spin 2 and 0 
requires that the term breaking group (19) be chosen in 
such a way as to ensure that Eqns (1) are corollaries of the 
system of equations for the gravitational field and matter 
fields; only then is it possible to avoid the emergence of an 
over-determined system of differential equations. This can 

be achieved by introducing into the scalar Lagrangian 
density of the gravitational field a term of the form 

(30) 

which [given conditions (1) and transformations (19)] also 
changes by a divergence, but only with respect to the class 
of vectors meeting the condition 

g"vD„Dv8f f(x) = 0 (31) 

There is a very similar situation in electrodynamics 
with the nonzero photon rest mass. Using terms (28)-(30), 
one can present the total scalar Lagrangian density:! 

L g = - A i ^ v ( G ^ v G\a - G^a G°x) 

(32) 

The last term in Eqn (32) is introduced to make the 
Lagrangian density vanish in the absence of a gravitational 
field. The contraction of the class of gauge vectors 
following introduction of term (30) automatically makes 
Eqns (1) a corollary of the gravitational field equations. 
This will be clear from the forthcoming discussion. 

In agreement with the principle of least action, the 
equations for the gravitational field proper have the form 

1 
(33) 

Here, 

8L„ 9L„ 9L 

L9(9^"v). 

where tensor R^v is the Ricci tensor written in the form 

Rfiv = D A G> - Glx + G^v Gx

aX - G^x Gx

va . (34) 

Eqns (33) are expected to be identically satisfied in the 
absence of a gravitational field. Hence, 

X2 = -2X, . (35) 

The energy-momentum tensor density of the gravitational 
field in the Minkowski space is found to be 

2 | ^ = 2 V = y ( W 
5 y „ v V 

+ x x r -2X3r -hT (36) 

where 

r=v^rf+f y - f " r - r gxP) • (37) 

fQuestion: it is stated on p . 180 that in GTR the scalar Lagrangian 
density of the gravitational field contains second derivatives of g ^ . 
However, in GTR they are combined into the total derivative term, 
which does not vary. This is precisely what the author does in paragraph 
3 of the paper. What are the differences and the advantages? 

In GTR, the elimination of terms with second derivatives forming a 
divergence from the Lagrangian density of the gravitational field results 
in a certain expression which contains only first-order derivatives [see 
the first term in formula (25)]. But this expression is not a scalar density 
with respect to arbitrary coordinate transformations. R T G , similar to all 
other physical theories, deals with a scalar density which contains 
derivatives of not higher than the first order [see formula (32)]. This 
allows the notion of ene rgy -momen tum tensor of the gravitational field 
to be introduced. And this makes the difference. 
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Provided expression (36) takes into account the dynamic 
equations (33), the following equation is available for the 
gravitational field proper: | 

(38) 

In order to have this equation satisfied in the absence of a 
gravitational field, it has to be assumed that 

X\ — —2 A3 . 

Since the equality 

D ^ 0 , 

(39) 

(40) 

always holds for the gravitational field proper, it follows 
from Eqn (38) that 

D „ g " v = 0 . (41) 

Therefore, Eqn (1) — which defines the polarisation 
states of the field — directly ensues from Eqn (38). Taking 
into consideration Eqns (41), one can write the field 
equations (38) in the form 

1 
(42) 

In Galilean coordinates, this equation has the simple form 

1 (43) 

It is natural to interpret the numerical factor = m2 

as the squared graviton mass, while the value — must 
be taken to be equal to 16TL This allows all the unknown 
constants included in the Lagrangian density to be defined: 

1 
1671 

-2 > L 
m 
16rc 

(44) 

The scalar Lagrangian density of the gravitational field 
proper has the following form: 

1 
1671 

GX s~<o \ 

m 
16TC 

(45) 

The corresponding dynamic equations for the gravitational 
field proper may be written as 

r - m2 <k -16TC^ 

or 

(46) 

(47) 

f Question: Eqn (33) is the equation for the gravitational field, and 
Eqn (36) defines t^. Then, Eqn (43) also defines t£v. At the same time, 
Eqn (43) looks like a wave equation for ^ with source t^v on the right-
hand side which needs a separate expression to be given through first-
order derivatives of (/>MV, if the gravitational field is to be described as an 
ordinary physical field. Where is such an expression for t^l 

Relation (36) is an identity (or a definition). But this identity also 
turns into equation as soon as field equation (33) is applied. An 
expression for can be obtained by substituting Eqns (44) and (55) 
into (36). ?g V inevitably contains terms with second derivatives since the 
gravitational field gives rise to the effective Riemannian space, due to 
geometrisation. It is this part of the gravitational field tensor that 
contributes to the formation of Riemannian space. The gravitational 
field is a special field because its interaction involves second-order 
derivatives in the field equations. This distinguishes it from any other 
field. 

These equations significantly restrict the class of gauge 
transformations, leaving only the trivial ones that meet the 
Killing constraints. Such transformations follow from 
Lorentz invariance and occur in any theory. 

The Lagrangian density obtained as above leads to 
Eqns (47), which imply that Eqns (41) must follow from 
them. For this reason, one has ten equations for ten 
unknown field functions outside matter. By means of 
Eqns (41), unknown field functions </>0a are readily 
expressed through the field functions (j)lk, where the labels 
/ and k take the values 1,2, 3. Therefore, the structure of the 
mass term which breaks the gauge group in the Lagrangian 
density of the gravitational field proper is unambiguously 
determined by the field polarisation properties}. 

5. Equation of motion for the gravitational field 
and matter 
The total Lagrangian density of matter and gravitational 
field is 

L = L G + L M ( ^ V , 0A), (48) 

where L g is defined by expression (45). 
Based on Eqn (48) and the principle of least action, the 

complete system of equations for matter and gravitational 
field is 

5L 

5</>A 

0 , 

= 0 . 

(49) 

(50) 

Variation of the action 5 C S M by an arbitrary infinitesimal 
change of the coordinates is zero. Therefore, 

5 C S M = 5 C J L M ( ^ V , $A)d4x=0 

Hence, the following identity can be obtained [3]: 

5L Xv 

WA AL^B{X\ HA 
DMx). (51) 

Here, Tkv = — 2(8L M /8g^ v ) is density of matter tensor in 
the Riemannian space, and is the covariant derivative in 
this space with metric g^v. Identity (51) yields the equation 

V A Th = 0 , (52) 

provided the equations of motion for matter (50) are 
fulfilled. 

In the case when the number of equations (50) for 
matter equals four, the equivalent equations (52) may be 
used instead of them. Since we are going to deal only with 

{Question: the reason for introducing graviton mass is unclear. Does it 
not coincide with the reason for the introduction of the yl-term? If not, 
why is the massive gravitational field not regarded as a material one? 

In R T G , a Minkowski space is introduced which allows the notion of 
the inertial coordinate system to be retained. Acceleration has absolute 
meaning. The gravitational field is considered as a physical tensor field 
of the F a r a d a y - M a x w e l l type with polarisation properties 
corresponding to representations with spin 2 and 0. The source of the 
gravitational field in such an approach is the ene rgy -momen tum tensor 
of matter. The gravitational field creates the effective Riemannian space 
because of the geometrisation principle. 
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such equations below, we shall always use equations for 
matter in the form of Eqn (52). Thus, the complete system 
of equations for matter and gravitational field will look like 

5L 
• = 0 , (53) 

W:Th = 0 (54) 

The behaviour of matter is described by velocity v, density 
p, and pressure p. The gravitational field is defined by the 
ten components of the tensor ^ . 

All in all, there are 15 unknowns. To determine them, an 
equation of state for matter needs to be added to the 
previous 14 equations (53)-(54). If one takes into con­
sideration the relations 

2 

(55) 
5L0 1 

^v \6nRfiV + 32n<<gfiV 

5L 1 (56) 

the system of Eqns (53)-(54) may be presented as 

871 rfiV 

V. TXv = 0 . 

(57) 

(58) 

It follows from the Bianchi identity 

^JR^-IITR) = o , 

(59) 

(60) 

and Eqns (57) that, 

«»2 V = g ( g ' V - \ «*Y*) V, )v = 16 n V„ T>" 

Taking into account the equation 

Vfi y<xp = ~G% - yaa, 

where G^a is defined by formula (26), one finds that 

( * V - \ *"Y*) V, y a f i = 7 ^ ( D f f g°x + G% g-*) . (61) 

However, 

which accounts for expression (61) taking the form 

v ^ fVy" - \ / Y " ) v„ = v g"v D f f f • 

With the aid of Eqn (63), expression (59) may be presented 

(62) 

(63) 

as 

and rewritten in the form of 

i n 2 D < F ^ = 1 6 j t / , V „ 7 7 , (64) 

The latter relation allows substitution of Eqn (58) by the 
equation 

(65) 

Finally, the system of equations (57) and (58) can be 
reduced to a system of gravitational equations of the form 

= 0 . 

i 
g"vgH y*v 

8TC , 

7^ (66) 

(67) 

These equations are form-invariant with respect to Lorentz 
transformations. In other words, events are described by 
the same equations in any inertial (Galilean) coordinate 
system. 

A specific inertial (Galilean) system of coordinates is 
defined by the nature of the physical problem (i.e. initial and 
boundary conditions). The description of a given physical 
problem appears to be different in different inertial 
(Galilean) coordinate systems, but this is not in conflict 
with the relativistic principle. Introduction of the tensor 

N»V=R^-^ or - g "y%) , N = AT*, 
allows the system of equations (66) and (67) to be written 
in the form 

871 

2~ y/~g 

D „ r = 0 . 

Alternatively, it can be presented as 

8TT / „ „ 1 

= 0 , 

8TC 

(66a) 

(67a) 

(68) 

(69) 

(68a) 

(69a) 

It should be specially emphasised that both systems of 
equations (68) and (69) include the metric tensor of the 
Minkowski space. 

Transformations of coordinates in which the Minkowski 
space metric remains form-invariant establish links between 
physically equivalent reference frames. Inertial systems 
constitute their simplest variety. For this reason, possible 
gauge transformations satisfying the Killing constraints, 

D^ev + Dvfy = 0 , 

leave us within the class of physically equivalent reference 
frames. 

Provided that changes in the characteristics of the 
Riemannian space and the motion of matter can be 
measured with infinite accuracy, Eqns (68a) and (69a) 
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may be used to determine the Minkowski space metric and 
find Galilean (inertial) coordinate systems. This implies that 
the Minkowski space is, in principle, observable. 

The existence of the Minkowski space is reflected in the 
conservation laws. Therefore, their verification in physical 
phenomena means a concurrent check of the spacetime 
structure. 

The system of gravitational equations can assume 
another equivalent form:| 

y a / ? D a D ^ v + m2 frv = 16n ^ , (70) 

D ^ v = 0 , (71) 

where = — 2(8L/8y/ x v) is the conserved density of the 
energy-momentum tensor of matter and gravitational field 
in the Minkowski space. Such a form resembles the 
equations of electrodynamics with the photon mass \i in 
the absence of gravity: 

y a / ? D a D / ? A v + i u 2 A v = 4 7 i / , (72) 

D v A v = 0 . (73) 

The vector field source A v in electrodynamics is the 
conserved electromagnetic current j v generated by charged 
bodies. In RTG, the source of the tensor field is the 
conserved total tensor of energy-momentum of matter 
and gravitational field. This accounts for the nonlinearity of 
the gravitational equations even for the gravitational field 
proper. 

It should be particularly noted that Eqns (66) contain 
not only the known cosmological term but also the term 
with metric y^v of the Minkowski space, both terms entering 
the equations with the common constant that coincides with 

fEquation (70) provides the simplest derivation of the interval for the 
Riemannian space in the first approximation in the gravitational 
constant. It is this interval that explains all gravitational effects in the 
solar system with the exception of the shift of Mercury's perihelion, 
which requires the next approximation in the gravitational constant. 

For a static spherically symmetric body in the given approximation in 
the Galilean coordinates of an inertial system, Eqn (70) assumes the 
form of 

V 0 o o = -167tf0 0 , V 0 O / = O, 

= 0 , i,k = 1,2,3 . 

Hence, 

0O," = O, 0 ' * = O , 

For (/>00 far from the source, the expression (/>00 —4M/r holds, and 
M — JV0 0 d 3 x is the inertial mass of the source. In compliance with the 
geometrisation principle (3) 

| » = 1 + ^ , « « = 0 , = * » = - ! , « * = 0 . 
r 

Hence, 
, 2M / 2M\ 

#00 = 1 - — > #11 = 822 = £ 3 3 = "I 1 + — J • 

It follows from these expressions that the inertial mass takes the place of 
the active gravitational mass of the body. This can be accounted for by 
the fact that the ene rgy -momen tum tensor of matter serves as the 
source of the gravitational field rather than by the local identity of 
gravitational and inertial forces. The gravitational mass being small, its 
influence on the values obtained in examining effects in the solar system 
may be neglected. 

the graviton mass which is therefore very small. The second 
mass term in Eqns (66) containing metric y^v accounts for 
the appearance of repulsive forces which are especially 
potent in strong gravitational fields. This influences both 
the collapse and the development of the universe}. 

It has been demonstrated in the foregoing discussion 
that graviton rest mass is crucial for the elaboration of the 
gravitational field theory. It is due to the presence of 
graviton mass that the theory predicts that the homoge­
neous and isotropic universe cannot be other than flat. 

To conclude, it is worthwhile to note that the theory of 
the tensor gravitational field in the Minkowski space which 
introduces the effective Riemannian spacetime is valid only 
on the condition that the gravitational field possesses rest 
mass. 

6. Causality principle in RTG 
Similar to other physical field theories, RTG has been 
elaborated in the framework of STR. The latter theory 
maintains that any motion of a point test body occurs 
within the causality light cone in Minkowski space. This 
implies that noninertial reference frames associated with 
test bodies are also located inside the causality light cone of 
the pseudo-Euclidean spacetime. In this way, the total class 
of possible noninertial systems is defined. The local 
equality of three-dimensional forces of inertia and gravity 
in their action on a material point may be expected to 
apply if the causality light cone in the effective Riemannian 
space does not spread beyond that of the Minkowski space. 
Only in this case, the three-dimensional force of the 
gravitational field that affects the test body can be locally 
compensated by turning to the admissible noninertial 
reference system associated with this body. 

Had the light cone of the effective Riemannian space 
spread beyond the causality light cone of the Minkowski 
space this would have meant that there is no admissible 
noninertial reference frame for such a 'gravitational field' in 
which this 'field of force' is liable to compensation while it 
acts on a material point. In other words, local compensa­
tion of the three-vector of gravitational force by the force of 

J Question: graviton mass is supposed to have the meaning specified by 
Hubble ' s constant 

( ? ~ « ~ i o - » - ) . 

From the physical point of view, it is unclear how such a small mass 
would be able to stop stellar collapse. Evidently, the term with graviton 
mass becomes important only when the radius of the star differs from its 
gravitational radius by not more than 

A r~r«(ir''") • 
For stars having a mass comparable with that of the Sun, this value is 
around 1 0 - 4 0 cm, i.e. many orders of magnitude smaller than the Planck 
length. What has the classical theory of gravitation to do with all this? 

Graviton mass is actually of significance in the zone adjoining the 
Schwarzschild sphere. It is here that the singularity of metric coefficient 
V is apparent. At variance with GTR, this singularity does not arise in 
the gravitational radius, but rather appears at a different but close point 
Z g . Metric coefficient U at this point differs from zero and is always 
higher than zero. This makes point Z g a turning point for a falling test 
body. The difference between Z g and 2M is very small indeed, but it has 
no physical sense. Therefore, the question is irrelevant. 
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inertia is possible only when the gravitational field, as a 
physical field, acts on the particles but does not let their 
world-lines go beyond the causality cone in the pseudo-
Euclidean spacetime. This condition is to be regarded as the 
causality principle which allows solutions of the system of 
equations (66) and (67) to be selected which have physical 
sense and correspond to gravitational fields. 

The causality principle is not automatically satisfied 
because the gravitational interaction enters the coefficients 
as second derivatives in infield equations, that is it alters the 
initial spacetime geometry. This specific feature is inherent 
only in gravitational fields. For all other known physical 
fields, the interaction does not normally affect the second 
derivatives of field equations and is therefore unable to alter 
the initial pseudo-Euclidean spacetime geometry. 

Now it is time to suggest an analytic formulation of the 
causality principle in RTG. In this theory, the motion of 
matter caused by the gravitational field in the pseudo-
Euclidean spacetime is equivalent to that in the correspond­
ing effective Riemannian spacetime. Therefore, on the one 
hand, the condition 

ds2 = gfiV dx" dxv ^ 0 (74) 

must hold for causally related events (world-lines of 
particles and light). On the other hand, such events 
require the inequality 

da2 = y^ dx" dxv ^ 0 . (75) 

to be satisfied. For the given reference frame associated 
with physical bodies, the condition 

7oo > 0 . (76) 

is satisfied. In expression (75), the timelike and spacelike 
parts can be separated: 

- sik dxl dx 

Here, Latin indices / and k take the values 1, 2, 3; 

sik 
7oo 

(77) 

(78) 

sik is the metric tensor of the three-dimensional space in the 
four-dimensional pseudo-Euclidean spacetime. The square 
of the spatial distance is 

dl2 = sik dx1 dxk (79) 

If the velocity vl = dx1/dt is presented in the form 
vl = vel (where v is the modulus of the velocity and el is an 
arbitrary unit vector in the three-dimensional space), then 

stke e 1 (80) 

In the absence of a gravitational field, the velocity of light 
in the given coordinate system is easy to determine from 
expression (77), assuming it to equal zero: 

%~0dt + y-^^] =sik dx1 dxk 

Hence, 

/Too Km* (81) 

Therefore, the arbitrary four-dimensional isotropic vector 
in the Minkowski space is 

= ( l ,v , ' ) (82) 

For the conditions (74) and (75) to be simultaneously 
fulfilled, it is necessary and sufficient that for any isotropic 
vector 

y^v ii = 0 , 

the causality condition 

g ^ u y ^ 0 , (84) 

be satisfied. This would indicate that the light cone in the 
effective Riemannian space does not go beyond the 
causality light cone of the pseudo-Euclidean spacetime. 
The causality conditions can be written in the following 
form: 

(83) 

y,ys > o . 

(83a) 

(84a) 

In GTR, solutions of the Gilbert-Einstein equations 
have physical sense if they satisfy, at every point of the 
spacetime, the following inequality: 

S < 0 , 

and also the requirement known as the energy-dominance 
condition and formulated as described below. For any 
timelike vector Kv, the inequality 

T^KpKy ^ 0 , 

must be satisfied, and the vector T^KV for given Kv should 
not be spacelike. 

In our theory, physical meaning is possessed by such 
solutions of Eqns (68a) and (69a) which fulfil both the 
above requirements and causality conditions (83a) and 
(84a). The last condition can be written, on the basis of 
Eqn (68a), in the form 

871 

(85) 

Taking the energy-momentum density of matter to be of 
the form 

and using Eqn (68a), one can establish the following 
relation between the interval dcr of the Minkowski space 
and the interval ds of the effective Riemannian space: 

m 2 ds1 4n(p + 3p) + -

where 

Uli = 
dx^_ 
ds 

Owing to the causality principle, one has the inequality 
2 

m 
R^VIT <4n(p + 3p)+—, 

which is a particular case of inequality (85), or 

^ / ?„ v vV < 8 7tT„vvV . (85a) 



The theory of the classical gravitational field 189 

In 1918, A Einstein proposed the following formulation 
of the equivalence principle: "Inertia and gravity are 
identical; hence and from the results of the special theory 
of relativity, it inevitably follows that the symmetric 
'fundamental tensor' g p L V defines the metric properties of 
space, inertial motion of bodies in this space, and also 
effects of gravitation." In GTR, identification of gravita­
tional field and metric tensor g f l v of the Riemannian space 
allows all components of the Christoffel symbol to be made 
zero at all points along an arbitrary line by choosing an 
appropriate coordinate system. But the choice of coordinate 
system in GTR does not eliminate the gravitational field, 
the motion of two close material points not being free 
because of the presence of the curvature tensor, which can 
never be nullified by the choice of coordinate system, 
because of its tensor properties!. 

In RTG, the gravitational field is a physical field of the 
Faraday-Maxwell type, which accounts for the description 
of the gravitational force by a four-vector. For this reason, 
the choice of the coordinate system may be helpful for 
balancing the three-dimensional part of the gravitational 
force with forces of inertia only if conditions (83) and (84) 
are satisfied. The content of the equivalence principle in 
RTG is strikingly changed, being reduced to conditions (83) 
and (84) which allows a coordinate system to be chosen in 
which the gravitational force can be balanced by the force 
of inertia}. The motion of a material point in a gravita­
tional field, independently of the coordinate system, can 
never be free. This lack of freedom is especially evident if 
the geodesic equation is written in the form [1] 

fQuestion: does the author agree with the GTR statement that 
gravitation is apparent because the relative acceleration of two close 
test particles cannot be nullified even though the acceleration of one test 
particle can, by the choice of coordinate system? 

This is precisely what follows from GTR, but things are quite different 
with R T G . In the latter theory, the gravitational field is described not only 
by the curvature tensor but also by the four-vector of force. This means 
that the field described by the four-vector of force cannot be made zero. 
Therefore, transition to the coordinate system associated with the test 
body in the gravitational field is in fact the transition to the accelerated 
coordinate system with respect to the inertial coordinate system of the 
Minkowski space rather than to the locally inertial coordi-nate system as 
is the case with G T R . This accounts for the test body movement along the 
geodesic of the Riemannian space not to be a free movement under the 
body's own momentum independent of the action force. 

{Question: the author 's statement that the equivalence principle in R T G 
is fundamentally different from that in GTR remains obscure. The 
author just calls it the 'geometrisation principle'. For the meaning in 
GTR see for instance Teoriya Polya (Field Theory) by Landau and 
Lifshitz, para-graph 87. 

The equivalence principle in GTR and the geometrisation principle in 
R T G have nothing in common. According to many authors (e.g. 
Landau and Lifshitz in the Teoriya Polya, paragraph 87), the 
equivalence principle in GTR implies that the gravitational field can be 
locally eliminated by the transition to a locally inertial coordinate 
system. The gravitational field in R T G is a physical field and cannot 
be even locally excluded by the choice of a coordinate system. Forces of 
inertia may be used to locally balance only the three-dimensional force 
of gravity. In R T G , the notion of an inertial coordinate system is 
retained which explains why a system considered to be locally inertial in 
GTR is regarded as accelerated in our theory. Field equations in R T G 
contain the metric tensor of the Minkowski space. For this reason, 
forces of inertia are separated from gravitational forces as being defined 
by the Christoffel symbols in the Minkowski space, in compliance with 
the geometrisation principle. There can be no such separation in G T R . 

Here, 

d ( j 2 = v dx"dx v , Uv=^-
d<7 

Free motion in the Minkowski space is described by 

d<7 

dUv 

d<7 

where denotes Christoffel symbols in the Minkowski 
space. Clearly, motion along a geodesic of the Riemannian 
space is in fact that of a test body under the force 

FV = -c^vu^s; - UVUP) , 

this force being a four-vector. This situation is precisely the 
same as in the case of other known physical forces. 

In STR, forces of inertia and physical forces (electro­
magnetic, nuclear, etc.) are essentially different. Forces of 
inertia can always be nullified by a simple choice of 
reference frame, whereas physical forces cannot, in princi­
ple, be made zero (whatever the choice of the reference 
frame) since they are of vector nature in the Minkowski 
space. In GTR, gravitational forces are locally identical to 
forces of inertia, which makes them essentially different 
from all other physical forces§. Unlike GTR, RTG is 
concerned with gravitational forces that, similar to all 
other physical forces, have the same (vector) nature in 
the four-dimensional space. 

Einstein believed the local identity of inertia and 
gravitation to be the principal cause for the equality of 
inertial and gravitational masses. In contrast, my opinion is 
that the actual cause of this equality lies in the fact that the 
conserved total density of the tensor of matter and 
gravitational field serves as the source of the latter. It is 
for this reason that the equality of inertial and gravitational 
masses does not require local identification of inertial and 
gravitational forces. Still, geometrisation in the sense of the 
geometrisation principle proves to be indispensable. 

7. Some physical implications of RTG 
The RTG system of equations (66) and (67) leads to 
qualitatively new physical conclusions which are utterly 
different from those of GTR. For example, the notion of 
collapse is altogether altered. Specifically, the process of 
compression in the region adjoining the Schwarzschild 
sphere, which is associated with the collapse of a 
spherically symmetric body with arbitrary mass, is 
terminated and replaced by dilation. This suggests the 
occurrence of both contracting and dilating objects in 
nature. Therefore, RTG rules out entirely the presence of 

§Question: The author argues that "in GTR, gravitational forces are 
identical to forces of inertia". This is not true (see paragraphs 81 and 82 
in Teoriya Polya by Landau and Lifshitz). 

Einstein and many other authors (see Teoriya Polya by Landau and 
Lifshitz, paragraphs 81 and 82) maintain that in GTR forces of gravity 
and inertia are dissimilar in a finite region or in the entire space. As 
regards the infinitesimal region, Einstein (followed by Landau and 
Lifshitz in Teoriya Polya paragraph 87) argued that it is possible locally 
to exclude the gravitational field by the choice of coordinate system. 
This assertion is in a sense correct since gravitational forces enter the 
equations of motion for the point body without spin through the 
Christoffel symbols of the Riemannian space, i.e. through inertial 
forces. This is how my words must be understood. In this paper, I 
added the word 'locally', to be more precise. 
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'black holes', i.e. objects having no material bounds and 
cut off from the outside world"}". 

Another important conclusion pertains to the develop­
ment of the homogeneous and isotropic universe. It follows 
from Eqns (66) and (67), and from causality conditions (83) 
and (84), that the homogeneous and isotropic universe has 
been in existence for an infinitely long time and its three-
dimensional geometry is Euclidean. The universe develops 
in a series of alternating cycles, from maximum finite 
density towards the minimum density and vice versa (if 
there is no dissipation). The theory predicts a large amount 
of 'latent' mass to be present in the universe because 
Eqns (66) and (67) suggest that the total density of matter 
currently equals 

2\2 
P = Pc + 

1 Imc 
16TCG [~h 

(86) 

It is therefore clear that the density of matter for a 
sufficiently small graviton mass is close to the critical 
density p c defined by Hubble's constant H: 

3H2 

P c " 8 ^ G ' 
(87) 

RTG explains all known gravitational experiments in 
the solar system and allows the notion of the energy-
momentum tensor to be introduced for the gravitational 
field (as above) as well as for other physical fields. The 
conserved total density of the tensor of matter and 
gravitational field being the source of the latter (in 
conformity with the geometrisation principle), it imme­
diately follows from Eqn (70) that the inertial mass of a 
static body is exactly equal to its active gravitational mass. 
This equality does not suggest local identity of gravitation 
and inertia}. 

On the other hand, the motion of a neutral test body in 
a given gravitational field is independent of the body's mass 
because it occurs along a geodesic curve in the effective 

fQuestion: assuming that the theory prohibits black holes, is it not 
possible to demonstrate this by an explicit solution of the R T G 
equations analogous to the Schwarzschild solution in G T R ? 

Yu M Loskutov (TM F 82 304 1990) has demonstrated that the 
metric coefficients of the Riemannian space for a spherically symmetric 
static body in the domain near the Schwarzschild sphere have the 
following form: 

ds2 = U{Z) dt2 - V{Z) dZ2 - Z2 dQ2 , 

V ( Z ) : U(Z) (1 + 2mM) z - z, 
z - z g

 v ' v ' z 
Singularity V arose at the point Z g equal to 

Z g = 2M + (6 - c2)m2M3 In—U , c2 < 4 , 

'- + qmzMz , q > 0 . 

mM 

-g = UVZ4 sin2 0 . 

The sphere of radius Z g is singular, and this singularity cannot be 
eliminated by the choice of a coordinate system. It is therefore evident 
that black holes do not exist in nature, in accordance with R T G . 
Unfortunately, an exact solution of the spherically symmetric static 
problem remains to be found. 

{Question: What are active and passive gravitational masses? 
A mass which generates a gravitational field is referred to as active. 

The action of this field on another body is determined by the passive 
gravitational mass. In Newtonian mechanics, the active mass of an 
object is exactly equal to its passive mass, by virtue of Newton ' s third 
law. 

Riemannian space. This brings about the conclusion that 
the passive gravitational mass of the test body is also equal 
to its inert mass. Hence, the passive mass of the test body is 
equal to its active gravitational mass. The density of 
energy-momentum tensor — 2(8L g /8g / x v ) in the gravita­
tional field of the Riemannian space outside matter 
vanishes in accordance with Eqn (66). However, this 
does not imply the absence of gravitational radiation since 
gravitational waves carrying energy travel against an 
effective gravitational background. 

The problem of gravitational radiation by massive 
gravitons has been discussed in Ref. [4] where it was 
shown that early calculations were based on an incorrect 
general expression for the intensity. Derivation of this 
expression was performed without due regard to the 
important fact that gravitons actually propagate in the 
effective Riemannian space rather than in the Minkowski 
space. This consideration brought me to the conclusion that 
the intensity of gravitational radiation by massive gravitons 
is a positive-definite value. The expression for it is presented 
in Ref. [4]. The system of gravitational equations (66) and 
(67) offers a new possibility for further studies both of basic 
problems and of selected gravitational phenomena. 

Finally, there are several important points worthy of 
discussion. Is it possible to assume that the graviton mass is 
zero? Since in our theory the graviton mass serves to lift 
gauge degeneracy, it would be incorrect to omit it in 
Eqns (66) and (67). In other words, the graviton mass 
must remain nonvanishing in our theory. The system of 
gravitational equations (66) and (67) is hyperbolic, and the 
causality principle ensures the presence of a spacelike 
surface in the entire space which every nonspacelike curve 
in the Riemannian space crosses only once. There is a global 
Cauchy surface on which the initial physical conditions for 
problems may be specified 

Penrose and Hawking [5] have proved singularity 
theorems in GTR for certain general conditions. The 
inequality 

RUv^vv ^ 0 , (88) 

has been shown to hold true for isotropic vectors in the 
Riemannian space outside matter as follows from 
Eqn (68a) and as a consequence of causality conditions 
(85a). Therefore, the conditions of the singularity theorem 
are not fulfilled in RTG and its assertions are not 
applicable to this theory. In this theorem, spacelike events 
in the absence of a gravitational field will never become 
timelike under the effect of a gravitational field. The 
causality principle dictates that the effective Riemannian 
spacetime in RTG should be possessed of isotropic and 
timelike geodesic completeness. 

This line of reasoning brings the following general 
conclusion. If the source of the gravitational field in the 
Minkowski space is assumed to be the conserved tensor of 
the energy-momentum of matter and the massive gravita­
tional field, because of the universal character of 
gravitation, then this field will be apparent as a tensor 
field of the second rank. By analogy with electrodynamics, 
it is natural to write down field equations in the form 

But such a system of equations follows from the 
Lagrange formalism only if the interaction between matter 
and the gravitational field occurs in compliance with the 
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geometrisation principle, which reduces the action of this 
field to the effective spacetime geometry. 

Therefore, the assumption of a conserved tensor of 
energy-momentum of matter as a universal source of the 
gravitational field inevitably leads to the effective Riemann­
ian geometry. 

Gravitational field theory requires the introduction of 
the graviton mass and in structural terms is reminiscent of 
electrodynamics. It is therefore very likely that the photon 
rest mass is also nonvanishing. 

8. Mach's principle 
In formulating laws of mechanics, Newton introduced the 
notion of absolute space which always remains unaltered 
and motionless. It is with respect to this space that Newton 
described the acceleration of a body. The acceleration was 
supposed to be absolute. Introduction of such abstraction 
proved to be very fruitful. Specifically, it gave rise to the 
notion of inertial reference frames in the entire space and 
the relativity principle for mechanical processes. It also 
contributed to the idea of physically distinguished states of 
motion. In 1923, Einstein wrote: "Systems of coordinates 
in such states of motion are peculiar for the simplest form 
assumed by the laws of nature formulated in these 
coordinates." He further noted: "...according to classical 
mechanics, there is relativity of velocity but not of 
acceleration". This is how the notion of inertial reference 
frames in which material points unaffected by forces do not 
experience acceleration and remain at rest or in uniform 
and rectilinear motion found its way into the theory. 
However, Newton's absolute space and reference frames 
were actually introduced a priori without due regard to 
matter distribution in the universe. 

Mach took the liberty of seriously criticising certain 
basic principles of Newtonian mechanics. He wrote later 
that he had met with great difficulties in publishing his 
ideas. Although Mach failed to suggest a theory devoid of 
the drawbacks he criticised, his ideas had great influence on 
the development of physical theory. Suffice it to say that 
Mach drew the attention of scientists to the analysis of basic 
physical notions. 

It is appropriate to cite a few extracts from Mach's 
works [6] which collectively constitute the so-called Mach 
principle. Mach stated: "Nobody can tell anything about 
absolute space and absolute motion which are conceivable 
entities beyond the grasp of experience." Then, he went on: 
"Instead of referring a travelling body to the space (i.e. to a 
certain coordinate system), let us consider its relation to 
world bodies which appear to be the only tools available to 
determine the system of coordinates. ...even in the simplest 
case, when we seem to examine the interaction between two 
masses, we can not be altogether abstracted from the 
remaining world. ...If a body rotates relative to the sky 
of motionless stars, there appear centrifugal forces; if the 
body rotates relative to another body rather than the sky of 
motionless stars, there are no centrifugal forces. I have 
nothing against calling the former mode of rotation 
absolute provided it is kept in mind that this implies 
nothing but rotation relative to the sky of motionless stars." 

Hence, the following assertion by Mach: "...it is not 
necessarily to associate the law of inertia with any specific 
absolute space. The matter-of-course approach of a true 
naturalist would be to first consider the law of inertia as the 

approximate one, correlate it spatially with the sky of 
motionless stars, ...then corrections or further development 
of our knowledge should be anticipated based on the 
accumulated experience. Lange has recently published a 
critical paper in which he tells how it would be possible, 
following his principles, to introduce a new coordinate 
system in case the usual rough correlation with the 
motionless starry sky turned out to be no longer suitable 
in view of more accurate astronomical observations. There 
is no discrepancy between Lange's opinion and mine 
concerning the theoretical formal value of his inferences, 
namely that the motionless starry sky is currently the only 
practically suitable reference frame; nor do we disagree as 
regards the method for determining a new reference frame 
by means of gradual adjustment." Moreover, Mach cited 
C Neumann as stating: "Since any motion must be 
considered in the alpha system (inertial system), it appar­
ently serves to indirectly connect all processes that take 
place in the universe and, hence, contains a universal law as 
enigmatic as it is complicated." Mach concludes the 
quotation with the following remark: "I think everybody 
would agree with this." 

This utterances of Mach raise the question of inertial 
reference frames and their relation to the distribution of 
matter, since Mach is evidently concerned here with the law 
of inertia, which was formulated by Newton as follows: 
"Any body taken alone as a self-contained entity tends to 
maintain its state, be it rest or uniform rectilinear motion..." 
Mach and his contemporaries appear to have had the clear 
understanding that such a relationship must occur in 
nature. The term 'Mach principle' will be further used 
precisely in this sense. 

Mach also wrote: "Although I believe that astronomical 
observations will first require only minor amendments, I do 
admit that the law of inertia in the simple form suggested by 
Newton is of limited and transient significance for us 
humans." It will be shown below that Mach was in the 
wrong. He failed to propose a mathematical formulation of 
his ideas which accounts for different authors interpreting 
the Mach principle in their own way. We are trying 
henceforth to adhere to the essence of the principle as 
stated by Mach. 

Poincare, followed by Einstein, extended the principle of 
relativity to all physical phenomena. Poincare [2] formu­
lated it in the following way: "...the relativity principle 
implies that the laws of physical phenomena must be the 
same for a motionless observer and an observer in a state of 
uniform translational motion, which does not permit us to 
have any way to decide whether we are in the same state of 
motion or not." Application of this principle to electro­
magnetic phenomena led Poincare and then Minkowski to 
the discovery of the pseudo-Euclidean geometry of space-
time and provided further support for the hypothesis of 
inertial reference frames in the entire space. Such reference 
frames are physically distinguished, which accounts for the 
absolute meaning of acceleration with respect to these 
frames. 

There are no global inertial reference frames in GTR. In 
1929, Einstein noted: "The starting point of the theory is 
the assertion that there is no physically distinguished state 
of motion, which means that neither velocity nor accelera­
tion has absolute sense." 

The Mach principle as formulated in the framework of 
GTR was not required. However, it is worth mentioning 
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that the notion of global inertial reference frames is fairly 
well supported by experimental findings. Specifically, the 
transition from the terrestrial coordinate system to that of 
the Sun and then of the metagalaxy leads, with increasing 
accuracy, to an inertial reference frame. Therefore, there is 
no serious reason to reject such an important notion as the 
inertial reference frame. On the other hand, the fundamental 
laws of energy-momentum and angular momentum con­
servation necessarily provide for the existence of global 
inertial reference frames. Pseudo-Euclidean spacetime 
geometry reflects general dynamic properties of matter 
and at the same time introduces inertial reference 
frames. Despite the fact that the pseudo-Euclidean geom­
etry of spacetime arose as a result of the study of matter and 
is therefore inseparable from it, there is formally every 
reason to examine Minkowski space in the absence of 
matter. However, neither Newtonian mechanics nor special 
relativity explains how inertial reference frames are asso­
ciated with the distribution of matter throughout the 
universe. 

The discovery of the pseudo-Euclidean geometry of 
spacetime allowed a common approach to be used for 
examining both inertial and accelerated reference frames. 
Forces of inertia and forces generated by physical fields 
have been found to be totally different. Forces of inertia can 
always be nullified by the choice of an appropriate reference 
frame, whereas forces generated by physical fields cannot in 
principle be made zero by the proper choice of a reference 
frame since they have vector nature in the four-dimensional 
spacetime. Because the gravitational field in RTG is a 
physical field of the Faraday-Maxwell type, forces that it 
gives rise to cannot be made zero by the choice of a 
reference frame. 

The situation is quite different in general relativity. 
Gravitational forces in this theory do not exhibit vector 
nature in the four-dimensional spacetime and are therefore 
subject to be locally made zero by the choice of a reference 
frame. The principal RTG equations (66) and (67) contain 
both the Riemann metric and the metric tensor of the 
Minkowski space because of the presence of the rest mass of 
the gravitational field. This implies the possibility, in 
principle, of expressing the metric of this space through 
geometric characteristics of the effective Riemann space as 
well as through those values that characterise the distribu­
tion of matter in the universe. This is easy to achieve if 
contravariant values in Eqns (66) are replaced by covariant 
ones. This results in 

m , x 8TI / 1 \ m2 

— ^ v ( x ) = - - g f i V TJ - R ^ + — Sfiv • (89) 

This equation contains on the right-hand side only 
geometric characteristics of the effective Riemannian 
space and values describing the distribution of matter in 
this field. 

In principle, experimental studies on the motion of 
particles and light propagation in the Riemannian space 
may be helpful in finding the metric tensor of the 
Minkowski space and hence in constructing an inertial 
reference frame. This means that RTG elaborated in the 
framework of special relativity allows for the mathematical 
formulation of the Mach principle. Thus, the special 
principle of relativity has universal implications regardless 
of the form of matter. 

Its requirements for the gravitational field are specified 
in the condition of form-invariance of Eqns (66) and (67) 
with respect to the Lorentz group. Lorentz form-invariance 
of physical equations remains the most crucial physical 
principle in the construction of the theory and allows 
universal characteristics for all forms of matter to be 
introduced. 

In 1950, Einstein asked "...should we not eventually try 
to retain the notion of the inertial frame giving up all 
attempts to explain a fundamental feature of gravitational 
phenomena which is apparent in the Newtonian system as 
the equivalence of inertial and gravitating masses?" It has 
been shown in Section 6 that the equality of inertial and 
gravitational masses is an immediate corollary of Eqns (70), 
in which the total density of the tensor of energy-
momentum of matter and gravitational field serves as 
the source of the field, in conformity with the geometrisa­
tion principle. This equality by no means excludes the 
notion of the inertial frame. In RTG, this notion is 
preserved totally unaltered and reflects general dynamic 
properties of matter, i.e. the laws of conservation of 
energy-momentum and angular momentum. Therefore, 
the equivalence of inertial and gravitating masses does 
not necessarily require one to abandon the notion of the 
inertial frame. Einstein answered his own question as 
follows: "Anyone who believes in the cognosciblity of 
nature would say — no, we should not", which is in conflict 
with our conclusion. 

Mach's ideas greatly influenced Einstein's views of 
gravitation in constructing his general theory of relativ­
ity. Einstein made the following remark in one of his works: 
"The Mach principle: G-field is totally determined by body 
masses." However, even this proposition fails to be fulfilled 
in GTR, for solutions are possible in the absence of matter. 
The attempt to obviate this fact by introducing the A-term 
was in vain because equations with this term in the absence 
of matter proved also to have nonzero solutions. It is easy 
to see that Einstein put quite a different meaning into the 
notion of 'Mach principle'. But even so, the Mach principle 
failed to find its way into GTR. 

Is the Mach principle as formulated by Einstein included 
in RTG? Unlike GTR, this theory contains (in agreement 
with the causality principle) spacelike surfaces filling the 
entire space (Cauchy global surfaces). If matter is absent on 
one such surface, it will always be absent, in conformity 
with the requirement of energy dominance imposed upon 
the tensor of matter [5]. Since matter does exist in nature, 
the system of equations homogeneous over the entire space 
has no solutions realisable in nature. In other words, all 
solutions of this system are physically meaningless in a 
given scenario of the development of the universe. That it is 
possible to discard solutions of the system of homogeneous 
gravitational equations is due not only to the equations 
themselves but also to the intrinsic properties of the real 
universe. 

In principle, the equations of our theory do not reject 
universes constructed from a gravitational field without 
matter. But such universes have been rejected by the proper 
development of matter. The theory is currently unable to 
explain why our universe contains matter. Solutions of only 
inhomogeneous systems of gravitational equations have 
physical meaning when matter is present in all or a part 
of space. This means that neither the gravitational field nor 
the effective Riemannian space of the real universe could 
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arise in the absence of parent matter. It may be inferred that 
the Mach principle as formulated by Einstein also occurs in 
RTG. 

For all that, there is an important difference in the 
understanding of the G-field in our theory and in GTR. The 
G-field was understood by Einstein to be the Riemannian 
metric whereas we regard it as a physical field. Such a field 
enters the Riemannian metric together with the flat metric 
which ensures that the metric does not disappear in the 
absence of matter and gravitational fields; instead, it is 
retained as the Minkowski space metric. Other formulations 
of the Mach principle have been suggested which differ 
from those given by Mach himself and Einstein, but their 
examination is beyond the scope of the present communica­
tion as I consider them to be obscure. Because the forces of 
gravity in RTG are due to a physical field of the Fa raday -
Maxwell type, their identity with forces of inertia is in the 
main out of the question. 

The gist of the Mach principle is sometimes viewed as 
the dependence of inertial forces on interaction with matter 
contained in the universe. From the field standpoint, such a 
principle is irrelevant and may not occur in nature. The 
thing is that although inertial reference frames are asso­
ciated with matter distribution in the universe (see above), 
forces of inertia do not actually result from the interaction 
with matter in the universe because any effect of matter is 
possible only via physical fields. But this means that forces 
generated by these fields cannot be nullified by the choice of 
a reference frame. Therefore, forces of inertia are imme­
diately related not to the physical fields, but to a strictly 
determined geometry structure and the choice of a reference 
frame. 

On the one hand, the pseudo-Euclidean geometry of the 
spacetime which reflects dynamic properties common to all 
forms of matter confirmed the hypothesis of inertial 
reference frames; on the other hand, it demonstrated 
that forces of inertia arising from the appropriate choice 
of a reference frame are expressed through the Christoffel 
symbols of the Minkowski space. Therefore, they are 
independent of the body's nature. All this has become 
clear after the special theory of relativity was shown to be 
applicable to noninertial (accelerated) reference frames just 
as well as to inertial ones. This allowed for a more general 
definition of the relativity principle [7]: "Whatever a 
physical reference frame is chosen (inertial or noniner­
tial), it is always possible to indicate an infinitely great 
number of other reference frames in which all physical 
phenomena occur in the same fashion as they do in the 
initial reference frame; thus, we do not and can not have 
any experimental tool to decide in which particular system 
we are located within this infinite set of them." 

In RTG, the forces of inertia and gravity are essentially 
different! in that the gravitational field becomes progres­

sively weaker as distances from the bodies increase whereas 
forces of inertia may be arbitrarily strong depending on the 
choice of reference frame. It is only in an inertial reference 
frame that these forces are zero. It would therefore be 
improper to think that forces of inertia are inseparable from 
gravitational forces. The possibility of distinguishing 
between them is all but clear in everyday life. 

Construction of RTG allowed a relationship between 
the inertial reference frame and the distribution of matter in 
the universe to be established and provided a deeper insight 
into the nature of forces of inertia as utterly distinct from 
material forces. Our theory assigns to the forces of inertia 
just the same role which they are known to play in any other 
field theory. 
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fQuestion: we stated that "in R T G , forces of inertia and gravitational 
forces are essentially different..." and the final impression is that there is 
no such difference in G T R . However, it is precisely this difference that 
GTR claims (see Teoriya Polya by Landau and Lifshitz, paragraphs 81 
and 82). 

There is no connection whatsoever between forces of inertia and 
gravity in R T G . The three-dimensional gravitational force can be 
balanced by the force of inertia by the choice of an appropriate 
coordinate frame alone. In GTR, it is possible to speak in a narrow 
context (following Einstein) about the local identity of inertial and 
gravitational forces. See the last footnote on p . 189 

However, things are not so simple as regards G T R . According to 
Synge, the gravitational field in GTR is characterised by the curvature 
tensor alone; hence, the possibility of even a local difference between 
gravitation and inertia. This accounts for the free fall acceleration (980 
cm s - 2 ) being unrelated to the gravitational field as was demonstrated 
by Synge. In R T G , the gravitational field is characterised by both the 
curvature tensor and the four-vector of force, which makes acceleration 
of a free-falling body field-dependent. 


