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Abstract. Physico-mathematical aspects of fluid flow in How well the passive elastic tube model employed in the

elastic thin-walled tubes have been examined and nonlinear
equations describing it have been derived and solved. It is
shown that an auto-oscillating flow regime (flutter) can
occur and mathematical models of solitons (pulse waves)
based on the Korteveg—de Vries equation and on the
modified nonlinear Schrodinger equation have been
developed. The appropriateness of using the elastic thin-
walled tube model for the description of blood flow in
major blood vessels is discussed.

1. Introduction

Fluid flow in elastic thin-walled tubes is an interesting and
complex physical problem. Numerous attempts to find its
solution have been reported, especially in the context of
blood circulation biomechanics, since the French scientist
Poiseuille first attacked this problem [1-3]. Some inter-
esting results have been obtained, with major progress
having been made in the studies of the effect of rheological
properties of the fluid on flow hydrodynamics and the use
of various electric analogues in which characteristics of the
flow and the elastic walls are simulated by electrical
parameters, e.g. potential difference, capacity, inductivity,
etc. [4—6].

The present study is largely focused on two aspects:

—the relationship between the nature of fluid flow and
the geometry of the elastic tube which varies under the
effect of the flow;

—the use of nonlinear hydrodynamic equations for the
description of fluid flow in elastic tubes.
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present study approximates a real blood vessel will be
discussed further on, but here it should be mentioned that in
this paper certain geometric relations inherent in the
cardiovascular system of living organisms are used.

With the objective of the study in mind, the hydro-
dynamic model has been considerably simplified. First, the
ideal fluid approximation has been adopted; second, the
momentum-free elastic tube theory is being used.

Fluid flow in elastic thin-walled tubes can be arbitrarily
divided into three relatively independent hydrodynamic
phenomena: (1) fluid transport along the tube, (2) pres-
sure wave propagation at a speed higher than that of the
fluid (in blood circulation biodynamics such a wave is
referred to as the pulse wave), and (3) high-frequency
oscillations caused by the loss of stability of the ‘flow—
wall’ type (flutter). Each of these phenomena is described by
appropriate equations ensuing from the Navier —Stokes
equations and the continuity condition.

Nonlinearity ofthe Navier —Stokes equations implies that
at least some of the above three phenomena lack linearity. It
should be emphasised that the nonlinear turbulence prob-
lems are beyond the scope of the present paper.

2. Hooke’s law for an elastic tube

To obtain a closed system of hydrodynamic equations, it is
necessary to define the relation between deformation of the
elastic thin-walled tube and the excess pressure within the
tube. In the simplest case of small deformations, this
relationship can be described by Hooke’s law. However,
formulation of this law depends on the nature of the
problem and can to be different for different rates of
change of the tube cross-section area. For relatively low
velocities of fluid flow and change of the tube cross-section
area, it is appropriate to use a formula that relates excess
pressure inside the tube to its cross-section area:
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where AS =S — S, S is the tube cross-section area at a
given site, S is the tube cross-section area at zero excess
pressure P, and C is the elasticity of tube walls. It follows
from the theory of thin shells that C = Eh/d, where E is the
effective modulus of tube wall elasticity, & is wall thickness,
and d is the mean tube diameter.

When the changes in the tube cross-section area are
greater, Hooke’s law can be written down in the following
form [1]:

dpP, =C E . 2.2)

S

In this formula, the linear relationship between changes
in excess pressure and deformation of the tube cross-section
area is retained, but the dependence of area on excess
pressure is nonlinear:

P,
S =Syexp <)

If we retain only the first term in the expansion, formula
(2.3) reduces to Eqn (2.1). When changes in the tube cross-
section area are very rapid, Hooke’s law must include
parameters describing fluid flow within the elastic tube.
In this case, Hooke’s law may be applied in the following
form [7]:

2.3)

A(dV)

P, =C ,
t dv

2.4)

where dV =SdX is the tube volume element (Fig. 1).
When the fluid is stationary, dV = § d/ where dl is a fixed
length of the tube. In this case, formula (2.4) reduces to
Eqn (2.2). The transformation is more involved when the
fluid flows in the tube (see Fig. 1):

CAY)  Vi—VE (vt A

=~ ——av VT wdvV)w
dv*  9(uS)

_dvr 25
dv Sox ’ 2:3)

where ¢ is the deformation of the tube volume element dV
as the fluid is displaced by distance u within the tube, and
V] — V* is the accompanying change in the tube volume
element.

At § = const, formula (2.5) becomes the conventional
expression for the strain of a solid: ¢ = Ou/0x.

vV =uS Vi=V*+dv*
u u+du
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|1
— o .|-|‘_. o m—
N \\ |\\
\\
dx dx \
dV =Sdx

Figure 1. Deformation of the elastic tube volume element dV during
fluid flow (V] — V* is the change of the tube volume element during
fluid flow).

The following comment should be made with regard to
the displacement u. If high-frequency auto-oscillations of
both the flow and the walls occur in an elastic tube, they
may be described as oscillations with velocity v, super-
imposed on average fluid flow at a velocity of vy, so that the
resulting velocity is

(2.6)

The quantity u is the displacement of the tube volume
element in the course of longitudinal oscillations relative to
a point moving with velocity vy, so that vy, = Ou/0f (where
t is time).

Therefore, it follows from Eqn (2.4) that

0(us)
Sox

V="V + Vosc -

P, =C

2.7)

Formulas (2.1)—(2.4) and (2.7) relate excess pressure to
tube geometry. However, if we wish to derive an equation
for the oscillations, it is necessary to use the relationship
between the reaction of the elastic tube wall and its
geometry. Reaction of the tube wall P is the force with
which the unit of the inner tube surface area acts on the
fluid. Since P = —P,, formulas (2.1)—(2.4) and (2.7) must
take into account the minus sign.

3. Auto-oscillating (flutter) regime of fluid flow
in an elastic tube

Pressure waves (pulse waves) are not necessary for the
flutter regime to occur. This regime is quite possible at a
constant discharge rate in the elastic tube, that is at a
constant pressure difference along the tube.

Fluid flow in an elastic tube is an essentially unstable
process. Any accidental increase in flow velocity causes a
decrease of static pressure in the fluid, in accordance with
the ‘Bernoulli law’. This results in a reduction of the tube
cross-section area which in turn leads to a further rise in the
flow velocity. This process progresses as an avalanche
(owing to positive feedback) and finally leads to tube
occlusion. Nonetheless, a certain amount of fluid has to
be pumped through the tube, thus opening it again. This
accounts for the generation of auto-oscillations of the
‘flow—wall’ instability type or surface mode flutter. This
process is not directly dependent on fluid viscosity which
allows us to examine initiation of the auto-oscillating
(autowave) regime in an ideal fluid and thereafter consider
the effect of viscosity.

Let us derive the impulse equation for this process. A
change in the tube cross-section area at the half~-wave of the
newly-generated oscillations comprises two components:
those of inflation and deflation (Fig. 2). Projection of
Newton’s second law on the x axis for a fluid volume
element dV can be written down as

dv

dF;+N — (N + dN)—dFd:pdVE, 3.1
where dF; = dFy = PdS are longitudinal constituents of
the forces that act on volume element dV from the
inflation and the deflation sides of the tube (according to
Newton’s third law, these forces are equal); N = PS is the
longitudinal component of pressure forces that maintains
fluid flow; p is fluid density.

The force F; that acts on the tube volume element dV
over the entire inner surface on the inflation side is
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Figure 2. Schematic representation of direct components of the forces
that act on volume element dV from the inflation and the deflation sides
of the tube.

counterbalanced by the force Fy which acts from the
deflation side. At dFy; =0, i.e. when the tube is open,
Eqn (3.1) assumes the form

dpP dv

& Par

(3.2)

The impulse equation at § = const has a similar form.
However, in the case of symmetric geometry of the deflation
and inflation sides, the impulse equation (3.1) is trans-
formed to

_3(ps) _ av

sox P ar 3-3)

Therefore, the Euler equation (3.2) is equally applicable
to widening and narrowing tubes and to those with a
uniform cross section. Conversely, Eqn (3.3) holds for tubes
in which expansion is followed by contraction. Equations of
similar form are used to solve Zhukovsky’s problem of
hydraulic shock in an elastic tube [8].

By substituting Hooke’s law (2.7) into Eqn (3.3) with
due regard for the sign, and using Eqn (2.6) and taking into
consideration that 0v,/0t =0, we obtain

2
Io 0 (“S) _ p(avosc F oy aVosc> .
Ox

= 3.4
S ox? 34
When the amplitude of oscillations is low, the nonlinear
convective term in the right side of Eqn (3.4) can be
neglected [9]. The velocity of autowave propagation along
the tube is given by

V- i
a= >\
The use of the relation v, = Ou/0t and Eqn (3.5) yields

*(uS) u

2
a =5 —,
Ox? ot?
which is a two-parameter wave equation. The second
equation that relates the unknown variables u and S is the
continuity equation [1]:
aS a(VOSCS)

a0

3.5)

(3.6)

3.7)

This equation includes only the oscillation component
Vose Of the velocity since variations of both the area and the
discharge (Q = vS) are due solely to vy

The system of equations (3.6) and (3.7) can be solved by
the Fourier method of separation of variables. We put

u="Fx),(t), S=Fx)o(),

uS = Fy(x) Fy(x) @, (1) @2(t) = F(x) (1) . (€RY)

Substituting expressions (3.8) into Eqn (3.6) and cancel-
ling factors @,(t) we separate the variables:

1 d*e, ,1 d°F )
a] dt2 =da FW:—(U = const . (39)
This yields two equations:

e, &F (o)’

D, =0 — —] F=0. 3.10
iz "=t ety (3.10)
Their solution has the form of
&, (t) = Ay sin(wr + @) , (3.11)
F(x) = A, sin (9x +(p]) : (3.12)
a

where w is the angular frequency of oscillation and A; and
@, are integration constants. Functions @,(¢), F;(x), and
F,(x) can be obtained from the continuity equation (3.7).
Recalling that v, = Ou/0t, we obtain

do, do, dF
Fp—+®, ——=0 3.13
TR PR (3-13)
Therefore, the continuity equation splits into two equations
1 dF 1 0@
———=— =0, (3.14)
F2 dx ¢2 a¢]

where @ is a constant. Solution of these equations, with
account of Eqn (3.12), has the form

¢2 = Az exp(—@@l) N

A
Fzzl—wcos(gx—i-(p]) . (3.15)
Oua a
The function F; is given by the condition
F a® w
F]:E:Ktan<zx+¢]) . (3]6)

The system of functions (3.11), (3.15), and (3.16) allows
the solution of Eqns (3.6) and (3.7):

A A
S =F%®, = 1229 cos(gx—f—qo])‘
a
X exp [—O Agsin(wr + @)] , (3.17)
OA
u=F o =270 ltan (gx—f—go]) sin(wt + ¢,).(3.18)
a

In dealing with Eqns (3.6) and (3.7), it is necessary to
remember that these equations show weak nonlinearity.
They are linear in each of the individual parameters but also
contain products of these parameters. This imposes some
additional constraints on the solution of the system of
equations (3.6), (3.7). The area of the elastic tube is a
positive quantity which makes it necessary to take the
absolute value of the function cos(wx /a + ¢,). The absolute
value of the function tan(wx/a+ ¢,) should be used,
according to the continuity equation (3.7), also in expres-
sion (3.18).

Let us now determine the flow velocity and fluid

pressure:
w

tan (— x + go]>
a

Qu

= +aBA,

v=yvy+ cos(wt + @) .

(3.19)
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The pressure is deduced from relation (2.7):
0(us) O(F @)
t S ax F2¢2 ax 1

P, = C @A sin(wt + @) .

(3.20)

Not surprisingly, the pressure gradient is zero, the fluid
being ideal one. Therefore, auto-oscillations of the tube
cross-section area, flow velocity, and fluid pressure may
occur in elastic tubes. Such auto-oscillations (flutter) are
known to develop in blood vessels during arterial pressure
reading with a sphygmomanometer. They are referred to as
Korotkov’s sounds.

If the maximum strain is denoted by &, and the
amplitude of pressure oscillations P; j.x = Cénax, it follows
from Eqn (3.20) that g,,, = OA,.

Take the following boundary conditions based on the
model of arterial pressure measurement by the method of
Korotkov (Fig. 3). At x =0, we have S =S, u=uy =0,
and v = vy, where S, ug, and v, stand for the cross-section
area, displacement, and flow velocity outside the cuff of the
sphygmomanometer, respectively. It follows from
Eqn (3.19) that ¢, =0. Taking as initial conditions
ul,_g=uy=0 and S|,_, =Sy, we obtain ¢, =0 from
Eqn (3.18) and A A,w/(Oa) = S, from Eqn (3.17). Hence,
the final solution of the system of equations (3.6), (3.7) at
the given initial and boundary conditions has the form

a (o))
U = Emax P tan P X
)
tan| —x
a
(0]
cos| —x
a

Pt = Csmax Sin(wt) :

sin(wt) ,

V=V + aEmayx cos(wt) ,

S=S5, eXp [—&may sin (1)) ,

(3.21)

Figure 3. Auto-oscillations in elastic tube walls (see diagram of arterial
pressure measurement by the method of Korotkov. The cuff of the
sphygmomanometer is not shown).

Fig. 4 shows the variation of the elastic tube cross-
section area and the fluid flow velocity along the tube, at
the moment of time corresponding to sin(wt) =0 and
cos(wt) =1, i.e. at t =2kn/w where k =0,1,2, ... The
plots are based on formulas (3.21). For the sake of
convenience, wx /a is shown on the axis of abscissas.

Fig. 4 demonstrates that the flow velocity increases to
infinity on tube occlusion, when § = 0. This is due to the
fact that the formulas for fluid velocity and tube cross-
section area pertain to inviscid fluid. A similar effect is
encountered in the case of forced oscillations when their
amplitude at resonance tends to infinity owing to the

v, S
/| ik
So
Yo
0 n/2 T 3n/2 2n

o
—Xx
a
Figure 4. Calculated curves showing the variation of the elastic tube
cross-section area and flow velocity along the tube. Solid and dashed
lines relate to ideal and viscous fluids, respectively.

absence of damping. Dashed lines show real behaviour
after correction for fluid viscosity.

Let us determine the possible auto-oscillation frequen-
cies during arterial pressure measurement by the method of
Korotkov. With the length of the sphygmomanometer cuff
denoted by I the additional boundary condition is that at
x =1 at any instant of time v=v, It follows from
Eqn (3.21) that wl/a = km, where k =0,1,2, ..., i.e. k is
an integer. Hence, the auto-oscillation frequency is

ka k |ER
_fRa _Kk JEh 22
21~ 21\ pd (3:22)

The latter equation allows effective modulus of elasticity
of the vascular wall to be determined in vivo by measuring
the frequency of Korotkov’s sounds.

4. Modelling solitons in an elastic tube with the
use of the Korteveg —de Vries equation

Soliton propagation will be examined by using the model

of sudden injection of a fluid volume into an elastic thin-

walled tube. The continuity equation for this case with

axial-symmetry may be written as follows [10]:
o(vr)  O(wr)

42 o,

Ox or @1

where v and w are the longitudinal and transversal

components of fluid velocity, and x and r are the

longitudinal and radial coordinates, respectively (Fig. 5).
The impulse equation has the form

o w1 QP(Sy+9)
o ax " ax T p(Se+s) .

So in Eqn (4.2) is the cross-section area of the undis-
turbed elastic tube and S is the additional area due to
inflation of the tube by the propagating wave. It is also
assumed that no vortices are formed in the flow, i.e.
curlv =0 where v is the velocity vector.

Solution of the system of equations (4.1), (4.2) will be
sought by using the velocity potential ¢ = @(x,r,1):

_0 _%

T VT

4.2)

4.3)



Fluid flow in tubes with clastic walls

173

Figure 5. Schematic representation of soliton (pulse wave) propagation in an elastic tube.

We shall introduce dimensionless variables:
S = MS S* i
v=My".

r=M,r",

t=M,t",

x=M,x", P=MpP*,

p=M,0p", “4.4)

Let Spax/S = & where S ., is the maximum incremental
increase of area S produced by the soliton. We shall choose
dimensions that correspond to those of real functioning
blood vessels in the body. In other words, we shall assume
that the amplitude of the soliton (pulse wave) is much less
than its diameter:

S
MSZSSOZSmaXa Mx: ?Oa Mr:VSO'
Let us now expand the velocity potential into a series in
powers of 7* :
00
(P* — Zr*nq):(x*’ f*) )
n=0
Substitution of Eqn (4.5) into expression (4.1) with the use
of Eqns (4.3) and (4.4) and comparison of coefficients for
equal powers of r* yields:

4.5)

oy o9,
n+2 (n+2)2 ox*2
From the symmetry condition we have that at 7* = 0 on
the flow axis w=0 and 0¢*/0r* =0. From Eqn (4.5) we
find ¢} =0 and taking into account Eqn (4.6) we obtain
@341 = 0. Moreover, if @g is the dimensionless velocity

potential at the flow axis, then
« € 62903 x4 &

¢ =7 22 9x*2

(4.6)

P vl
2 x4 oxt

4.7

To find expansion of the impulse equation (4.2) in
dimensionless form, we shall make values of the parameters
obey the conditions

MM, _MpM, _

SO pM

1. (4.8)
4

Introducing dimensionless velocity at the flow axis
vy = 0@y /0x™, then performing rather simple but cumber-
some transformations using Eqn (4.7), and neglecting terms
of the order & or higher we obtain

vy oP* Lo o v
az*+¥“[5 at*+ax*(7
oP*s* 7 v
o 22 arrox?

] =0(e) .(4.9)

In deriving Eqn (4.9), we took into consideration that

2 2 M; 6(p*2 a‘P*2 _M,,Z, a‘P*2

e G G -5 5
since (3p*/0r*)* ~ €.

Let us apply Eqn (4.9) to the inner surface of the elastic
tube. The dimensionless radius of the tube is rj =
ro/M, =ry/+/Sy. In the unperturbed state, ry = 1/4/m.
When the amplitude of the soliton is small, i.e.
&€= Spna/So <1, it may be assumed that r* =~ rj. More-
over, it should be borne in mind that the time scale for
blood flow is substantially different from that for the pulse
wave. For this reason, correct description of soliton
propagation requires the introduction of ‘slow time’ [11]

& *
T=—1",
8m
where the coefficient 1/8w is introduced to facilitate further
transformations. Taking into account that vy = vy(¢%, 1),
we obtain
O, & 0%
or*  8n Ot
instead of Ovg/0t*, and then from Eqn (4.9)

o, oprP* 1 Ovg Lo L O
—teg|— =48
o Tar Tegnar T o 0
oP*s* 1

=0(e?) .

*  Am ot ox*2 (4.10)

When the cross-section of the elastic tube is not
changed very quickly under the action of the propagating
soliton, the relationship between excess pressure in the tube
and its cross-section area S can be found from Eqn (2.1):

S

P=C—. 4.11
5. @11
For the sake of convenience, in Eqn (4.11) and further
on in this section the index ¢ is omitted, and the additional
area produced by inflation is denoted by S instead of the
symbol for incremental increase AS [see Eqn (4.2)]. Hooke’s
law in dimensionless form may be represented as
cM
— S S* — E S* — S:« )
SoM p M,

p* (4.12)
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In Eqn (4.12), for the pressure scale we have chosen
M p = Ce. Substitution of this expression into Eqn (4.10)
gives

o, os* [ 1 dvg O (6\13 os *>

o T Gl ar T 0 o o

] 63 Va _ 2
_ﬁwmA_(”'

In Eqn (4.13), the variables can be separated by
introducing new, independent ones:

(4.13)

*

ro=x"—r", Il =x"4r". (4.14)

We shall look for solution of Eqn (4.13) in the form
[f(rs ) +5(ls 7]

(4.15)

4_
PO
e

[frs o) =gl o)
Substitution of Eqns (4.14) and (4.15) into Eqn (4.13)
yields after some simple but cumbersome transformations

of f ff
[(a -t 6,3)

+<—%+6ag+aﬁ]:owy

3 3 a (4.16)

Since the terms in brackets include a number of
dependent and independent variables, Eqn (4.16) is in
fact a sum of two independent Korteveg—de Vries equa-
tions in which the first expression in parentheses describes a
soliton travelling to the right and the second a soliton
propagating to the left. These waves are separated in space
and do not affect each other:

of of of
Y Ter =0
Og 0g 0g
5, 6 a1++ali (4.17)

Pulse waves described by the Korteveg—de Vries
equations are solitons because they have some properties
that are characteristic of particles [11].

Soliton g travelling to the left has no physical sense as
far as the cardiovascular system is concerned. Removal of
function g from formulas (4.15) indicates similarity of
behaviour of flow velocity and tube cross-section area
which is true of the pulse wave travelling in a blood
vessel: where the blood flow starts, the cross-section area
of the tube increases. Therefore, solution of Eqn (4.13) to
the first order in & does not obey the ‘Bernoulli law’
postulating a fall in static pressure of the fluid with
increasing flow velocity. What happens is the reverse: as
the fluid pressure increases so do the cross-section area of
the elastic tube and the flow velocity within it.

Solution of Eqn (4.17) for f has the form [11]:

B 2k*2
 cosh? [k*(r_ — 4k*2 1 —r_g)]
where 2k is the amplitude of the pulse wave and r_ is a
constant. Changing over to variables x* and * gives
k¥
r—k2er/an—r)]

, (4.18)

= 4.19
cosh® [k* (x* — *19)

In accordance with formula (4.15), solution of
Eqn (4.19) is valid for both vj and S*. First, let us examine
a soliton with area S*. Dimensionless amplitude of the wave
may be defined as
4_‘“:5* :4_1T'Smax:4_n
3 max 3 MS 3 M

Hence, the dimensionless wavenumber k* = 4/21/3 and
the total cross-section area of the soliton is

S‘\.:S0+S :SO

-2
2nSmax Smax
+Smax{COSh|: 353 (x—xo—a(l +E>t>:|} N

.21

2k* = frax =

(4.20)

where a =M, /M,. 1t follows from Eqn (4.21) that the
wave propagates with a velocity

1 + SlﬂdX
dg
35,

Let us examine the velocity soliton. Its amplitude is

(4.22)

4
T Vomax =

4n V0 max

U =F = g ,
.flﬂdX 3 MV

where vy ., is the maximal velocity at the flow axis. Hence:

-2
TS S max
Vo = VOmax{COSh[ T:);d(x - <] + 32,‘:)) >:|}

(4.23)

Note that formula (4.23) specifies the dependence of
longitudinal fluid velocity at the flow axis on the coordinate
x. However, in the soliton, because of the local increase of
the elastic tube diameter, there is a distribution of ideal fluid
velocities across the tube section which, to the first order in
g, can be found from formula (4.7). Bearing in mind
Eqn (4.3), we have

*2£ 62"3
22 ax*2 :

It follows from Eqn (4.24) that the velocity profile has a
parabolic shape. Moreover, the ideal fluid is known to slip
along the tube wall with a velocity v,,; which can be
calculated with the use of condition r = ry, where ro(x) is
the internal radius of the zone where wave motion occurs
and is a function of x. Changing back to variables with
dimensions we have

* *
Vv =Vy—

(4.24)

V=Vyvy)— —0 a— .
40
Putting x, = 0 as the origin of the coordinates, we can
calculate the additional volume of the fluid sucked in by the
soliton (Fig. 6). In the case of aorta, this volume may be
considered to be equivalent to the heartbeat volume, V.
Integration of Eqn (4.21) at r+ = 0 gives:

S me 28 e < 28,
Vhb — ZJ ll2ldx dx — max tanh(k_x) — max .
o cosh®(kx) k 0 k

Hence, k = 2S¢/ Vip-
soliton (Fig. 7) is

Therefore, the shape of the

Smax
COSh2 [Z(Smax/vhb)(x - a‘\'t)] . (425)

SA‘ :SO+
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Figure 6. Calculation of the additional fluid volume Vy,,, sucked in by
the soliton.

S/cm2

0.5+

SO B

Figure 7. Variation of the cross-section area of an elastic tube caused by
a soliton travelling along the tube.

The length of the soliton (pulse wave in the case of the
artery) can be deduced from the condition k =25 . /Vi, =
2n/A. Hence, A =mVyp/Spnax. Assuming that for humans
Vip =60 cm® and S, = 0.7 cm?, we obtain A=2.7 m,
which is in good agreement with experimental findings [1].

According to Eqn (4.11), the expression for the pressure
wave is fully analogous to the expression for the cross-
section area of the elastic tube during soliton propagation:

Pmax
F = o 2/ Vi) —a)] (%20

where P = CSnax/So-

We can now find the final velocity of the pressure wave
(pulse wave) propagation. Making use of Eqn (4.8) and
equality Mp = Ce we obtain M, =/CeSo/p. Also, it
follows from Eqn (4.8) that M, =S,/M, = /pSy/(Ce).

Taking into consideration that

_Mx \/SO/S _ C

M.~ \/pS,/(Ce) \p’

we find from Eqn (4.22)

_ E ]+Smax _ g ]+Pmax
4= p 3. ) \p 3Cc )

To the leading order at S,., =0, expression (4.27)
coincides with the approximate Moens—Korteveg formula
for pulse wave velocity [1] if arterial wall elasticity is
assumed to be C =Eh/d, where E is the modulus of
elasticity, /4 is the wall thickness, and d is the average
diameter of the vessel.

To conclude this section, let us derive the dispersion
relation for a soliton, starting with the definition of group
velocity:

dw Smax
Ve =g = =all T35 )

(4.27)

where w is the angular frequency of the oscillation. Bearing
in mind that the wavenumber k = (21tSm,(/3502)]/2 and
that w =0 at kK =0 we obtain

s
w:a<k +20 k3) .
on

5. Modelling solitons in an elastic tube with the
use of the nonlinear Schrodinger equation

(4.28)

Let us examine the impulse equation in the form of
expression (3.3) assuming that the transversal component
of velocity w is small. Then, the impulse equation has the
form

ov ov 1 0(PS)

a w5 5.1

The continuity equation can be written in the form of
Eqn (3.7) without distinguishing between the main and
oscillatory components of velocity, that is ignoring what
was done in Eqn (2.6):

oS  o(vS)

o T ox

=0. (5.2)

The relationship between excess pressure in the elastic
tube and its cross-section area can be defined by analogy
with Eqn (2.2):

Pt = C T .
In Eqn (5.3), the area differential dS is replaced by the
area increment AS =S — S, to facilitate the use of Hooke’s
law in the impulse equation (5.1).

Solution of the system of equations (5.1), (5.2) is
attempted by using the complex velocity potential
¢ = @(x,t). This is expanded in powers of the small
parameter A by analogy with the transition from the
Schrodinger equation to the Hamilton—Jacobi equation
in quantum mechanics [12]:

(5.3)

A N
(P:(P0+T‘P1+(T) @+, (5.4
where i is the square root of —1. We now define function @
@ =exp (% go) . (5.5)
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Use of the first two terms of expansion (5.4) leads to

® = |P|exp G (P0> :
In this expression, |®| = exp(¢,) is the modulus of function
®; V =0¢,/0x is fluid velocity in the tube since ¢, is (to
within A%) the real part of the velocity potential.

Putting |®| = +/S/S, and using Eqn (5.3) we obtain

PS = —C(S —Sg) = —CSo(|®] — 1) . (5.7)

(5.6)

As mentioned in Section 2 the minus sign in Eqn (5.7)
reflects the well-known fact that the reaction of the elastic
element has to be substituted in the impulse equation
(Newton’s second law) to obtain the oscillation equation.
In our case the reaction of the tube wall is equal to the
excess internal pressure with a change of the sign.

Taking into account Eqn (5.7), we can write the last
term in Eqn (5.1) in the form

19(Ps) _ oy o(In |@])

—242 %
p Sox Ox

ox ’

= (5.8)
where a = 4/C/p is the pressure wave velocity in the elastic
tube and ¢, =In|P|.

Using the velocity potential, we can integrate once the
impulse equation (5.1). Then the system of equations (5.1),
(5.2) takes on the form

a% v’ 2 2

F'F?—ZUQD]—O(/{), (5.9)
2 a ¢2

M_FM:(). (5.]())

ot Ox

The integration constant in Eqn (5.9) is made zero by
choosing an appropriate initial value of the potential ¢, [9].

Now we shall demonstrate that the system of equa-
tions (5.9), (5.10) is equivalent to the nonlinear Schrodinger
equation

o0 L0024
i —F =", ® . 11
T P (.11
Taking into account, in accordance with Eqn (5.5), that
0 _i,0
o A o’

oo 1 [3p\* i 0
a—‘?q’(a) 1P (512

and separating the real and imaginary parts of Eqn (5.11),
we obtain:

2
o9, 1 (%) —2dp,
Ox

o 2
2 2 2
. K%) 48 (’"] =0(2), (5.13)

ox?

39, 3 dp, 1%y _
ot ox Ox 2 ox2

0. (5.14)

Eqn (5.14) is fully equivalent to Eqn (5.10) since

0p; 1

or  2lpf Ot

a|q)|2 O0p, 1

O¢, oo’
Ox _2|¢p|2 ox

E}

As with expansion (5.4), only terms linear in the small
parameter A are left in Eqn (5.13). Therefore, Eqns (5.13),
(5.14), and hence (5.11) are fully equivalent to the system of
equations (5.9), (5.10).

The nonlinear Schrodinger equation can be written in
the form
0P a0’
IE—FE@: —w¢ln|¢| .
where @ = 24°/A is the angular frequency and k = 2a/A is
the wavenumber. Solution of Eqn (5.15) is sought, as
described in Ref. [13], in the form

@ = f(kx — wr)exp[i(rx — 67)] ,

(5.15)

(5.16)

where the constants r and ¢ and the function flkx — wt)
are as yet unknown. Taking into account Eqn (5.6), we
conclude that |@| = f (kx — wt). Substitution of Eqn (5.16)
into expression (5.15) gives
$2f df 2
ak d—é+i d—-g (— + 2ar) +f<5 7%> toflnf=0.
(5.17)

The derivatives in Eqn (5.17) are with respect to the
variable & = kx — wr. Since the function f = |®| is a real
variable, Eqn (5.17) cannot contain imaginary terms.
Putting r = w/(2a) and recalling that w = ak we find

(5.18)

A similar equation was first examined in Ref. [14] where
vortex structures in an ideal fluid were investigated.
Solution of Eqn (5.18) may be found in the form

f=C,exp [% (kx — wt)2] , (5.19)

where C; and C, are constants. Substitution of Eqn (5.19)
into Eqn (5.18) gives

o 1 C
o (5‘2) Gy + (ke —wt)z(c§+72) ~0. (520

The last term in Eqn (5.20) must be independent of
coordinate x and time ¢, ie. C,=—1/2, and then
C, =exp(3/4 — d/w). Hence,

2
f=1®|=exp (% - g) exp [—M] . (5.21)

4

Takin% into account that the cross-section area
S = S,|®|” with the boundary condition S|,_, . =S, we
finally obtain the shape of the soliton propagating in the
elastic tube:

2
S =S, +AS, exp [—M] , (5.22)

2

where AS, corresponds to the maximum value of the
additional area in Eqn (5.3) and may be represented as

AS, :Soexp<%—i—5) .
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In this equation, & is a characteristic of the elastic tube
material. At high values of 8, which are characteristic for
rigid tubes, AS, tends to zero, whereas low values of § are
peculiar to elastic tubes.

The excess pressure in the tube is determined from
Eqn (5.3):

S —5S,
=C
S S

Taking into account that P, = CAS,/S, we finally
obtain the maximum excess pressure in the soliton:

(kx — wt)*]
|

Thus, it follows from Eqns (5.22) and (5.23) that the
laws describing the variation of the cross-section area of the
elastic tube and of the pressure are similar, while the shape
of the soliton corresponds to a Gaussian curve.

Fig. 8 shows the difference between the soliton shapes
as described by the Korteveg—de Vries equation and the
Gaussian curve.

AS, [ (kx —ot)

P, =C exp 2

Pt = Pmax eXp (523)

AS[AS. | |

1
-2 -1

Figure 8. Difference between the shapes of solitons described by the
Korteveg—de Vries model and the nonlinear Schrodinger equation
(¢ =kx — wt).

6. Use of the passive elastic tube model for the
approximate description of a blood vessel

Investigations into basic aspects of circulation, that is
blood flow in arteries and veins of the body, have a long
history. They have been largely developing along two
major lines: one involves extensive physiological studies
with theoretical interpretation of numerous experimental
findings (see, for example, Refs [15, 16]), the other is based
on a more specific biophysical approach and its aim is to
roughly calculate the blood flow velocity in the vessels
[1, 2]. The two lines overlap, and many authors have not
infrequently used both approaches in one study (see
Refs [3, 17]).

The flow of blood in blood vessels of a living organism
is a complicated process, largely dependent on mechanisms
of vascular regulation. This regulation takes place at several
levels including self-regulation, central and autonomous
neural reflex regulation, hormonal control, etc. [18]. There-
fore, the blood vessel can by no means be regarded as a
passive elastic tube.

Another important feature of blood flow is that blood
behaves like a structured non-Newtonian visco-plastic fluid

[6]. The use of equations for the ideal fluid does not bring
modelling as described above closer to reality. Therefore it
should be pointed out that the existing biomechanical
models of blood flow in major vessels can describe only
some phenomena peculiar to the cardiovascular system. Let
us briefly review a few of them.

It has been demonstrated in Section 3 that an auto-
oscillating regime of fluid flow may develop in a passive
elastic tube. This is in fact known to occur under some
conditions in blood vessels of the living organism. For
example, high-frequency oscillations of up to 10 Hz have
been reported to occur, imposed on the pulse wave, in
equine coronary arteries [19]. A similar observation was
made in experiments on canine aorta when the mechanisms
controlling the blood flow were disturbed [7]. However, the
most common example of an auto-oscillating regime in the
circulatory system is probably provided by high-frequency
oscillations generated in arterial vessels during blood
pressure measurement by the method of Korotkov. Bio-
mechanical solution of this problem is given in Section 3.
Analysis of the variations of the frequencies of the
Korotkov sounds allows changes in the modulus of
elasticity of the vascular wall to be estimated in vivo.

Another important haemodynamic phenomenon is the
occurrence of the pulse wave. Results of modelling reported
in Sections 4 and 5 indicate that this phenomenon is entirely
due to the nonlinearity of hydrodynamic equations the
solution of which is in the form of solitons. Since it is the
first order term of the expansion of hydrodynamic equa-
tions that is of primary importance in the description of the
pulse wave, the ‘Bernoulli law’ associated with the zero
order term does not play a major role in pulse propagation
in circulating blood. Synchronous changes of intravascular
pressure, cross-section area of the vessel, and blood flow
velocity are a well-known physiological phenomenon.

7. Conclusion

In spite of the limitations of biomechanical models of
blood flow in major vessels discussed in the previous
sections, these models allow certain well-known physio-
logical phenomena to be explained, such as the occurrence
of high frequency oscillations in blood vessels and specific
features of pulse wave propagation related to the non-
linearity of the equations of hydrodynamics.

Modelling ideal fluid flow in an elastic tube requires the
application of the modified Euler equation apparently first
suggested by Zhukovsky in the form of expression (3.3).

The possibility of establishment of an auto-oscillating
regime, and hence enhanced hydraulic resistance, in passive
elastic tubes places additional demands on vascular pros-
theses which must be made of sufficiently hard materials.
Manifestations of the auto-oscillating regime are diverse
and may include noise, murmur, etc.

In designing instruments and equipment incorporating
elastic thin-walled tubes, e.g. pulse pumps for biotechnol-
ogy or artificial blood circulation machines, it is necessary
to take into account resonance phenomena in fluid flow
which may cause tube occlusion and may produce reflected
waves interfering with the normal functioning of the
equipment.

Nonlinear modelling of solitons in elastic tubes confirms
the hypothesis that nonlinear processes may give rise to
qualitatively new features even after very minor quantitative
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changes in the parameters of the model. This suggestion is
supported by the results of comparison between the pulse
wave models based on the Korteveg—de Vries equation (see
Section 4) and the nonlinear Schrodinger equation (Sec-
tion 5). The use of Hooke’s law in the form of Eqn (5.3),
rather than (2.1), accounts for the appearance of a non-
dispersing soliton that propagates at a velocity independent
of the excess pressure in the elastic tube.
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