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Abstract. Phys ico-mathemat ica l aspects of fluid flow in 
elastic thin-walled tubes have been examined and nonl inear 
equa t ions describing it have been derived and solved. It is 
shown tha t an auto-osci l lat ing flow regime (flutter) can 
occur and ma themat i ca l models of soli tons (pulse waves) 
based on the K o r t e v e g - d e Vries equat ion and on the 
modified nonl inear Schrodinger equat ion have been 
developed. The appropr ia teness of us ing the elastic th in -
walled tube mode l for the descript ion of b lood flow in 
major b lood vessels is discussed. 

1. Introduction 
Fluid flow in elastic thin-walled tubes is an interest ing and 
complex physical p rob lem. N u m e r o u s a t t empts to find its 
solut ion have been repor ted , especially in the context of 
b lood circulation b iomechanics , since the F rench scientist 
Poiseuille first a t tacked this p rob lem [ 1 - 3 ] . Some inter­
esting results have been obta ined , with major progress 
having been m a d e in the studies of the effect of rheological 
proper t ies of the fluid on flow hydrodynamics and the use 
of var ious electric analogues in which characterist ics of the 
flow and the elastic walls are simulated by electrical 
pa ramete r s , e.g. po ten t ia l difference, capacity, inductivity, 
etc. [ 4 - 6 ] . 

The present s tudy is largely focused on two aspects: 
— the relat ionship between the na tu re of fluid flow and 

the geometry of the elastic tube which varies under the 
effect of the flow; 

— the use of nonl inear hyd rodynamic equa t ions for the 
descript ion of fluid flow in elastic tubes . 
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H o w well the passive elastic tube mode l employed in the 
present s tudy approx imates a real b lood vessel will be 
discussed further on, bu t here it should be ment ioned tha t in 
this paper certain geometr ic re lat ions inherent in the 
cardiovascular system of living organisms are used. 

Wi th the objective of the s tudy in mind, the h y d r o -
dynamic mode l has been considerably simplified. Firs t , the 
ideal fluid approx ima t ion has been adop ted ; second, the 
momentum-f ree elastic tube theory is being used. 

F lu id flow in elastic thin-walled tubes can be arbi trar i ly 
divided into three relatively independent h y d rodynamic 
p h e n o m e n a : (1) fluid t r anspor t a long the tube , (2) p res ­
sure wave p ropaga t i on at a speed higher than tha t of the 
fluid (in b lood circulation b iodynamics such a wave is 
referred to as the pulse wave), and (3) high-frequency 
oscillations caused by the loss of stability of the ' f l o w -
wal l ' type (flutter). Each of these p h e n o m e n a is described by 
appropr i a t e equa t ions ensuing from the N a v i e r - S t o k e s 
equa t ions and the cont inui ty condi t ion. 

N onlineari ty of the N avier - Stokes equa t ions implies tha t 
at least some of the above three p h e n o m e n a lack linearity. It 
should be emphasised tha t the nonl inear turbulence p r o b ­
lems are beyond the scope of the present paper . 

2. Hooke's law for an elastic tube 
To obta in a closed system of hyd rodynamic equat ions , it is 
necessary to define the relat ion between deformat ion of the 
elastic thin-walled tube and the excess pressure within the 
tube . In the simplest case of small deformat ions , this 
relat ionship can be described by H o o k e ' s law. However , 
formulat ion of this law depends on the na tu re of the 
p rob lem and can to be different for different ra tes of 
change of the tube cross-section area. F o r relatively low 
velocities of fluid flow and change of the tube cross-section 
area, it is app ropr i a t e to use a formula tha t relates excess 
pressure inside the tube to its cross-section area: 

AS 
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where AS = S — S0, S is the tube cross-section area at a 
given site, S0 is the tube cross-section area at zero excess 
pressure P t , and C is the elasticity of tube walls. It follows 
from the theory of thin shells tha t C = Eh/d, where E is the 
effective m o d u l u s of tube wall elasticity, h is wall thickness, 
and d is the mean tube diameter . 

W h e n the changes in the tube cross-section area are 
greater, H o o k e ' s law can be wri t ten down in the following 
form [1]: 

dS 
dPt = C (2.2) 

In this formula, the linear relat ionship between changes 
in excess pressure and deformat ion of the tube cross-section 
area is retained, bu t the dependence of area on excess 
pressure is nonl inear : 

: S0 exp (2.3) 

If we retain only the first te rm in the expansion, formula 
(2.3) reduces to E q n (2.1). W h e n changes in the tube cross-
section area are very rapid , H o o k e ' s law must include 
pa rame te r s describing fluid flow within the elastic tube . 
In this case, H o o k e ' s law m a y be applied in the following 
form [7]: 

A ( d V ) 
Pt = C 

dV 
(2.4) 

where dV = S dX is the tube vo lume element (Fig. 1). 
W h e n the fluid is s ta t ionary, dV = S dl where dl is a fixed 
length of the tube . In this case, formula (2.4) reduces to 
E q n (2.2). The t rans format ion is m o r e involved when the 
fluid flows in the tube (see Fig. 1): 

_A(dV) _V\-
dV 

V* ( dV* \ 1 
dV V dV dV 

dV* d(uS) 
~dV~ Sdx 

(2.5) 

where s is the deformat ion of the tube vo lume element dV 
as the fluid is displaced by distance u within the tube , and 
V\ — V* is the accompany ing change in the tube vo lume 
element. 

At S = const, formula (2.5) becomes the convent ional 
expression for the strain of a solid: s = du/dx. 

y* = uS V* = V* + dV* 

dV = S dx 

Figure 1. Deformation of the elastic tube volume element dV during 
fluid flow (V* — V* is the change of the tube volume element during 
fluid flow). 

The following comment should be m a d e with regard to 
the displacement u. If high-frequency auto-osci l la t ions of 
b o t h the flow and the walls occur in an elastic tube , they 
m a y be described as oscillations with velocity v o s c super­
imposed on average fluid flow at a velocity of v 0 , so tha t the 
result ing velocity is 

v = v 0 + v o s c . (2.6) 

The quant i ty u is the displacement of the tube vo lume 
element in the course of longi tudinal oscillations relative to 
a poin t moving with velocity v 0 , so tha t v o s c = du/dt (where 
t is t ime). 

Therefore, it follows from E q n (2.4) tha t 

d(uS) Pt = C 
Sdx 

(2.7) 

F o r m u l a s (2 .1 ) - (2 .4 ) and (2.7) relate excess pressure to 
tube geometry. However , if we wish to derive an equat ion 
for the oscillations, it is necessary to use the relat ionship 
between the react ion of the elastic tube wall and its 
geometry. Reac t ion of the tube wall P is the force with 
which the uni t of the inner tube surface area acts on the 
fluid. Since P = -Pt9 formulas (2 .1 ) - (2 .4 ) and (2.7) mus t 
t ake into account the minus sign. 

3. Auto-oscillating (flutter) regime of fluid flow 
in an elastic tube 
Pressure waves (pulse waves) are no t necessary for the 
flutter regime to occur. This regime is qui te possible at a 
cons tant discharge ra te in the elastic tube , tha t is at a 
cons tant pressure difference a long the tube . 

F lu id flow in an elastic tube is an essentially uns tab le 
process . A n y accidental increase in flow velocity causes a 
decrease of static pressure in the fluid, in accordance with 
the 'Bernoull i law' . This results in a reduct ion of the tube 
cross-section area which in tu rn leads to a further rise in the 
flow velocity. This process progresses as an avalanche 
(owing to posit ive feedback) and finally leads to tube 
occlusion. Nonetheless , a certain a m o u n t of fluid has to 
be p u m p e d th rough the tube , thus opening it again. This 
accounts for the generat ion of auto-osci l la t ions of the 
' f l o w - w a l l ' instabili ty type or surface m o d e flutter. This 
process is no t directly dependent on fluid viscosity which 
allows us to examine init iat ion of the auto-osci l lat ing 
(autowave) regime in an ideal fluid and thereafter consider 
the effect of viscosity. 

Let us derive the impulse equat ion for this process . A 
change in the tube cross-section area at the half-wave of the 
newly-generated oscillations comprises two componen t s : 
those of inflation and deflation (Fig. 2). Project ion of 
N e w t o n ' s second law on the x axis for a fluid vo lume 
element dV can be wri t ten down as 

dF{ + N - (N + dN) - dFd=p dV 
dV 

~di 
(3.1) 

where dF{ = dFd = P dS are longi tudinal const i tuents of 
the forces tha t act on vo lume element dV from the 
inflation and the deflation sides of the tube (according to 
N e w t o n ' s third law, these forces are equal) ; N = PS is the 
longi tudinal componen t of pressure forces tha t main ta ins 
fluid flow; p is fluid density. 

The force Fx tha t acts on the tube vo lume element dV 
over the entire inner surface on the inflation side is 



Fluid flow in tubes with elastic walls 171 

Figure 2. Schematic representation of direct components of the forces 
that act on volume element dV from the inflation and the deflation sides 
of the tube. 

counterba lanced by the force Fd which acts from the 
deflation side. At d F d = 0, i.e. when the tube is open, 
E q n (3.1) assumes the form 

dP 

dx 

dV 

~dt 
(3.2) 

The impulse equat ion at S = const has a similar form. 
However , in the case of symmetr ic geometry of the deflation 
and inflation sides, the impulse equat ion (3.1) is t r a n s ­
formed to 

d(PS) 

Sdx = P 
dV 

~dt 
(3.3) 

Therefore, the Euler equat ion (3.2) is equally applicable 
to widening and na r rowing tubes and to those with a 
uni form cross section. Conversely, E q n (3.3) ho lds for tubes 
in which expansion is followed by cont rac t ion . Equa t i ons of 
similar form are used to solve Z h u k o v s k y ' s p rob lem of 
hydraul ic shock in an elastic tube [8]. 

By subst i tut ing H o o k e ' s law (2.7) into E q n (3.3) with 
due regard for the sign, and using E q n (2.6) and tak ing into 
considerat ion tha t dv0/dt = 0, we obta in 

C 
d2(uS) 

Sdx2 
• + v 0 

9v n 

dx 
(3.4) 

W h e n the ampl i tude of oscillations is low, the nonl inear 
convective term in the right side of Eqn (3.4) can be 
neglected [9]. The velocity of au towave p ropaga t i on a long 
the tube is given by 

F c S 0 .5) 
p v p d 

The use of the relat ion v n 

2 d\uS) 

~dx2~ a = S 
d \ 

dt2 

• du/dt and E q n (3.5) yields 

(3.6) 

which is a two-paramete r wave equat ion . The second 
equat ion tha t relates the u n k n o w n variables u and S is the 
cont inui ty equat ion [1]: 

as | d(voscs) 
8^ dx 

0 (3.7) 

This equat ion includes only the oscillation componen t 
v o s c of the velocity since var ia t ions of b o t h the area and the 
discharge (Q = vS) are due solely to v o s c . 

The system of equa t ions (3.6) and (3.7) can be solved by 
the Four ie r m e t h o d of separat ion of variables. W e pu t 

u = Fl(x)$l(t), S = F2(x) <P2(t) , 

uS = Fl(x)F2(x) 0x(t) *2(t) = F(x) *(t) . (3.8) 

Subst i tut ing expressions (3.8) into E q n (3.6) and cancel­
ling factors 4*2(0 we separate the variables: 

1 d2<2>! 2 \ d2F 2 

=- = a T = -co = const 
$i dt2 F dx2 

This yields two equat ions : 

d2<2>! 
+ co2$l = 0 , 

d2F (cox2 

• + F=0 

Their solut ion has the form of 

$i(t) = A0sin(cot + cp0) , 

F(x) = A i sin ( — x + cpx j , 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

where co is the angular frequency of oscillation and At and 
cpt are integrat ion cons tants . Func t ions 4*2(0> F\{x)> a n d 
F2(x) can be obta ined from the cont inui ty equat ion (3.7). 
Recal l ing tha t v o s c = du/dt, we obta in 

d0>2 ^ d<2>! dF ^ 
dt dt dx 

(3.13) 

Therefore, the cont inui ty equat ion splits into two equa t ions 

(3.14) 
1 dF _ \ d02 _ e 

F2 dx 02 d&i 

where © is a cons tant . Solution of these equat ions , with 
account of Eqn (3.12), ha s the form 

<p2 = A 2 e x p ( - 0 < P 1 ) , 

A \CO (co 
F ' = - 0 ^ C ° \ - a X + ^ 

(3.15) 

(3.16) 

The function Fx is given by the condi t ion 

F a© (co \ 
Fl= — = t an I — x + (px\ . 

F2 co \a J 

The system of functions (3.11), (3.15), and (3.16) allows 
the solution of Eqns (3.6) and (3.7): 

A\A2co 

u = Fi$i 

©a 
cos ( — x + cp} 

a 

x exp [—©A 0 sin(atf + cp0)] , 

a ©A0 

co 

(co 
t an I — x + cpx 

(3.17) 

sin(atf + (p0).(3.18) 

In dealing with E q n s (3.6) and (3.7), it is necessary to 
remember tha t these equa t ions show weak nonl inear i ty . 
They are linear in each of the individual pa rame te r s bu t also 
contain p roduc t s of these pa ramete r s . This imposes some 
addi t iona l const ra in ts on the solution of the system of 
equa t ions (3.6), (3.7). The area of the elastic tube is a 
posit ive quant i ty which makes it necessary to t ake the 
absolute value of the function cos(cox/a + cpx). The absolute 
value of the function t an (cox /a + cpx) should be used, 
according to the cont inui ty equat ion (3.7), also in expres­
sion (3.18). 

Let us n o w determine the flow velocity and fluid 
pressure: 

du _ (co \ , x 

t an ( — x + cpx I cos(atf + cp0) . v0+ — = v0+a©A{ 

(3.19) 
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The pressure is deduced from relat ion (2.7): 

8(F<2>) 
= 8 ( I I 5 ) = 

1 S 8 x F2&2dx 

Pt = CGA0 sin(cot + (j90) . 

= C00l , 

(3.20) 

N o t surprisingly, the pressure gradient is zero, the fluid 
being ideal one. Therefore, auto-osci l la t ions of the tube 
cross-section area, flow velocity, and fluid pressure m a y 
occur in elastic tubes . Such auto-osci l la t ions (flutter) are 
k n o w n to develop in b lood vessels dur ing arterial pressure 
reading with a sphygmomanomete r . They are referred to as 
K o r o t k o v ' s sounds . 

If the m a x i m u m strain is denoted by e m a x and the 
ampl i tude of pressure oscillations Pt m a x = C e m a x , it follows 
from Eqn (3.20) tha t e m a x = 0AO. 

T a k e the following b o u n d a r y condi t ions based on the 
mode l of arterial pressure measurement by the me thod of 
K o r o t k o v (Fig. 3). At x = 0, we have S = S0, u = u0 = 0, 
and v = v 0 where S0, u0, and v 0 s tand for the cross-section 
area, displacement, and flow velocity outs ide the cuff of the 
sphygmomanomete r , respectively. It follows from 
E q n (3.19) tha t cpx = 0. Tak ing as initial condi t ions 
u\t=o = uo — 0 and S\t=0 = S0, we obta in cp0 = 0 from 
E q n (3.18) and AlA2co/(0a) = S0 from E q n (3.17). Hence , 
the final solut ion of the system of equa t ions (3.6), (3.7) at 
the given initial and b o u n d a r y condi t ions has the form 

co 
t an sin(atf) 

v = v 0 + asn 

CO 
t an | — x 

a 
cos(atf) , 

S =Sr 
CO 

cos ( — X 
a 

e x p [ - "£max Sin (cot)] , 

Pt = C e m a x sin (aw) . (3.21) 

Figure 3. Auto-oscillations in elastic tube walls (see diagram of arterial 
pressure measurement by the method of Korotkov. The cuff of the 
sphygmomanometer is not shown). 

Fig . 4 shows the var ia t ion of the elastic tube cross-
section area and the fluid flow velocity a long the tube , at 
the m o m e n t of t ime cor responding to sin(atf) = 0 and 
cos(atf) = 1, i.e. at t = 2kn/co where k = 0 , 1 , 2 , . . . The 
p lo ts are based on formulas (3.21). F o r the sake of 
convenience, cox/a is shown on the axis of abscissas. 

Fig. 4 demons t ra tes tha t the flow velocity increases to 
infinity on tube occlusion, when S = 0. This is due to the 
fact tha t the formulas for fluid velocity and tube cross-
section area per ta in to in viscid fluid. A similar effect is 
encountered in the case of forced oscillations when their 
ampl i tude at resonance tends to infinity owing to the 

Figure 4. Calculated curves showing the variation of the elastic tube 
cross-section area and flow velocity along the tube. Solid and dashed 
lines relate to ideal and viscous fluids, respectively. 

absence of damping . Dashed lines show real behaviour 
after correct ion for fluid viscosity. 

Let us determine the possible auto-osci l lat ion frequen­
cies dur ing arter ial pressure measurement by the me thod of 
K o r o t k o v . Wi th the length of the sphygmomanome te r cuff 
denoted by /, the addi t iona l b o u n d a r y condi t ion is tha t at 
x = I at any instant of t ime v = v 0 . It follows from 
E q n (3.21) tha t col/a = Jen, where k = 0,1,2, . . . , i.e. k is 
an integer. Hence , the auto-osci l lat ion frequency is 

ka k 
V = Yl=2l 

(3.22) 

The latter equat ion allows effective m o d u l u s of elasticity 
of the vascular wall to be determined in vivo by measur ing 
the frequency of K o r o t k o v ' s sounds . 

4. Modelling solitons in an elastic tube with the 
use of the Korteveg - de Vries equation 
Soliton p ropaga t i on will be examined by using the mode l 
of sudden injection of a fluid vo lume into an elastic th in -
walled tube . The cont inui ty equat ion for this case with 
axial -symmetry m a y be wri t ten as follows [10]: 

8(vr) 8(wr) 
8x 

- + - = 0 , (4.1) 

where v and w are the longi tudinal and t ransversal 
componen t s of fluid velocity, and x and r are the 
longi tudinal and radia l coordinates , respectively (Fig. 5). 

The impulse equat ion has the form 

1 8 [ P ( S 0 + S)] 8v 8v 8w 
h v h w — : 

8^ 8x 8x p(S0 + S) dx 
(4.2) 

S0 in E q n (4.2) is the cross-section area of the und i s ­
tu rbed elastic tube and S is the addi t iona l area due to 
inflation of the tube by the p ropaga t i ng wave. It is also 
assumed tha t no vortices are formed in the flow, i.e. 
cur lv = 0 where v is the velocity vector. 

Solut ion of the system of equa t ions (4.1), (4.2) will be 
sought by using the velocity poten t ia l cp = q>(x,r,t): 

8 (7 ) 8 (7 ) 
V = 7T— , W = — . 

ox or 
(4.3) 
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W e shall in t roduce dimensionless variables: 

x=Mxx\ r = Mrr\ S = Ms S*, P = M PP* , 

<p = M(p<p*, t = Mtt\ v = M v v * . (4.4) 

Let Smax/S = £, where Smax is the m a x i m u m incrementa l 
increase of area S p roduced by the soliton. W e shall choose 
dimensions tha t cor respond to those of real functioning 
b lood vessels in the body . In other words , we shall assume 
tha t the ampl i tude of the soliton (pulse wave) is much less 
t han its diameter : 

Let us n o w expand the velocity poten t ia l into a series in 
powers of r* : 

(p = ^ r q>n(x , t ) (4.5) 
n=0 

Subst i tut ion of E q n (4.5) into expression (4.1) with the use 
of E q n s (4.3) and (4.4) and compar i son of coefficients for 
equal powers of r* yields: 

s d2cp*n 

<Pn+2 (4.6) 
(n + 2)2 dx*2 ' 

F r o m the symmetry condi t ion we have tha t at r* = 0 on 
the flow axis w = 0 and dcp*/8r* = 0. F r o m E q n (4.5) we 
find q>\ = 0 and tak ing into account Eqn (4.6) we obta in 
(Pin+i — 0- Moreover , if q>l is the dimensionless velocity 
poten t ia l at the flow axis, then 

<p =(p0-r' 
6 2 * 

n 
22 dx*2 

+ r 3 > o 
2 2 x 4 2 dx*4 

(4.7) 

To find expansion of the impulse equat ion (4.2) in 
dimensionless form, we shall m a k e values of the pa rame te r s 
obey the condi t ions 

M<pMt _MPMt 

1 . (4.1 
S0 pM(p 

In t roduc ing dimensionless velocity at the flow axis 
V Q = 8 ( 7 ) Q / 8 X * , then per forming ra ther simple bu t cumber ­
some t rans format ions using E q n (4.7), and neglecting te rms 
of the order s2 or higher we obta in 

dt*+dx~* + £ 8^* ' dx 

+ 
dP*S* 

dx* 

*2 63 * 

2 2 Qt*dx*2 
= 0 ( e 2 ) .(4.9) 

In deriving E q n (4.9), we took into considerat ion tha t 

, m 2 

8 r * / m2 

since (dcp*/8r*)2 ~ s2. 
Let us apply E q n (4.9) to the inner surface of the elastic 

tube . The dimensionless rad ius of the tube is T Q = 
r 0 / M r = r 0 / 'V^o- I n the unpe r tu rbed state, rl = l/y/n. 
W h e n the ampl i tude of the soliton is small, i.e. 
8 = S m a x / S ( ) <̂  1, it m a y be assumed tha t r* w r j . M o r e ­
over, it should be b o r n e in mind tha t the t ime scale for 
b lood flow is substantial ly different from tha t for the pulse 
wave. F o r this reason, correct description of soliton 
p ropaga t i on requires the in t roduct ion of 'slow t ime ' [11] 

8 TI ' 

where the coefficient 1 / 8 T C is in t roduced to facilitate further 
t rans format ions . Tak ing into account tha t V Q = V Q ( ^ * , T ) , 

we obta in 

8;* 8 TI 8 T 

instead of 8 V Q / 8 ^ * , and then from Eqn (4.9) 

8 V Q dP* 
8 F + 8 ^ + 8 

' 1 S V Q 8 V Q * 8 V Q 

8 ^ + ^ W + V°dx^ 

+ 
dP*S* 

dx* 
1 

4TC 8^* dx*2 

v 0 = 0(s2). (4.10) 

W h e n the cross-section of the elastic tube is no t 
changed very quickly under the act ion of the p ropaga t ing 
soliton, the relat ionship between excess pressure in the tube 
and its cross-section area S can be found from Eqn (2.1): 

C (4.11) 

F o r the sake of convenience, in E q n (4.11) and further 
on in this section the index t is omit ted, and the addi t iona l 
area p roduced by inflation is denoted by S instead of the 
symbol for incremental increase AS [see E q n (4.2)]. H o o k e ' s 
law in dimensionless form m a y be represented as 

p* CMS 

SnM, 
Ce 

S* (4.12) 



174 A N Volobuev 

In Eqn (4.12), for the pressure scale we have chosen 
MP = Cs. Subst i tut ion of this expression into Eqn (4.10) 
gives 

8;* + 8x* + 8 

"1 8 V S * 9 V S / 8 V S 8S ' 
8 T ^ ¥ + V o 8 ? + 5 l 8 ^ + 2 8 ? 

1 V 0 

4TC 8^* dx*2 
0(e2). (4.13) 

In Eqn (4.13), the variables can be separated by 
in t roducing new, independent ones: 

r_=x*-t\ l + = x * + t*. (4.14) 

W e shall look for solution of Eqn (4.13) in the form 

S* 
An 

3 

[f(r.;r)+g(l+; t)] , 

V o = ^ [ / ( r _ ; t ) - g ( / + ; t) (4.15) 

Subst i tut ion of Eqns (4.14) and (4.15) into Eqn (4.13) 
yields after some simple bu t cumber some t rans format ions 

' 8 / 8 / 8 3 / 

8 t + fQr_+QrL 

6/+ +
 8 / 3 

= 0 ( £

2 ) (4.16) 

Since the te rms in bracke ts include a n u m b e r of 
dependent and independent variables, E q n (4.16) is in 
fact a sum of two independent K o r t e v e g - d e Vries equa ­
t ions in which the first expression in parentheses describes a 
soliton travell ing to the right and the second a soliton 
p ropaga t i ng to the left. These waves are separated in space 
and do no t affect each other: 

df df 8 3 f 

8 t j 8r_ dr3 

d-? + 6gdT+

 + dii = 0 
(4.17) 

Pulse waves described by the K o r t e v e g - d e Vries 
equa t ions are soli tons because they have some proper t ies 
tha t are characterist ic of part icles [11]. 

Soliton g t ravell ing to the left has no physical sense as 
far as the cardiovascular system is concerned. R e m o v a l of 
function g from formulas (4.15) indicates similarity of 
behav iour of flow velocity and tube cross-section area 
which is t rue of the pulse wave travell ing in a b lood 
vessel: where the b lood flow starts , the cross-section area 
of the tube increases. Therefore, solution of Eqn (4.13) to 
the first order in s does no t obey the 'Bernoull i l aw ' 
pos tu la t ing a fall in static pressure of the fluid with 
increasing flow velocity. W h a t happens is the reverse: as 
the fluid pressure increases so do the cross-section area of 
the elastic tube and the flow velocity within it. 

Solution of E q n (4.17) for / has the form [11]: 

2k* 

) sh 2 [k*(r r-o)} 9 

(4.1* 

where 2k*2 is the ampl i tude of the pulse wave and r_ 0 is a 
cons tant . Chang ing over to variables x* and t* gives 

/ = 
2k* 

cosh 2 [k*{x* - t* - k*2 et*/2n - r_0)] 
(4.19) 

In accordance with formula (4.15), solut ion of 
E q n (4.19) is valid for b o t h V Q and S*. Firs t , let us examine 
a soliton with area S*. Dimensionless ampl i tude of the wave 
m a y be defined as 

2k *2 . 
fm 

471 4n Sn 4n 
(4.20) 

j 3 Ms 

Hence , the dimensionless wavenumber k* = y/2n/3 and 
the to ta l cross-section area of the soliton is 

cosh 
2nSn 

3S2 
•x0 - a 1 + 

3Sn 

(4.21) 

where a = Mx/Mt. It follows from Eqn (4.21) that the 
wave p ropaga t e s with a velocity 

a 1 + 
3 S n 

(4.22) 

Let us examine the velocity soliton. Its ampl i tude is 

^ /max ^ ^Omax ~^ •> 

where v 0 m a x is the max ima l velocity at the flow axis. Hence : 
. . . -2 

2KSmax ( / _ Sn v 0 = v 0 m a x < cosh 
3S2 

-x0—a[l + 
3Sn 

(4.23) 

N o t e tha t formula (4.23) specifies the dependence of 
longi tudinal fluid velocity at the flow axis on the coord ina te 
x. However , in the soliton, because of the local increase of 
the elastic tube diameter , there is a dis t r ibut ion of ideal fluid 
velocities across the tube section which, to the first order in 
8, can be found from formula (4.7). Bear ing in mind 
E q n (4.3), we have 

*2 6 
: V Q " 

2 2 8x *2 ' (4.24) 

It follows from E q n (4.24) tha t the velocity profile has a 
parabol ic shape. Moreover , the ideal fluid is k n o w n to slip 
a long the tube wall with a velocity v w a l l which can be 
calculated with the use of condi t ion r = r 0 , where r0(x) is 
the internal rad ius of the zone where wave mot ion occurs 
and is a function of x. Chang ing back to variables with 
d imensions we have 

: V Q • 
r\ d \ 
4 dx2 

Put t ing x 0 = 0 as the origin of the coordinates , we can 
calculate the addi t iona l vo lume of the fluid sucked in by the 
soliton (Fig. 6). In the case of aor ta , this vo lume m a y be 
considered to be equivalent to the hear tbea t volume, V h b . 
In tegra t ion of Eqn (4.21) at t = 0 gives: 

V h b = 2 
cosh (kx) 

dx = : 
2Sn 

k 
t anh (£x ) 

2Sn 

k 

Hence , k = 2Smax/Vhh. Therefore, the shape of the 
soliton (Fig. 7) is 

: S 0 + 
cosh 2 [ 2 ( S m a x / V h b ) ( x -ast)] 

(4.25) 
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Figure 6. Calculation of the additional fluid volume V h b , sucked in by 
the soliton. 

10.5 

0 

So' 
1 

- 1 0 1 x /m 

Figure 7. Variation of the cross-section area of an elastic tube caused by 
a soliton travelling along the tube. 

we find from E q n (4.22) 

C (. . S m (4.27) 

To the leading order at Smax = 0, expression (4.27) 
coincides with the approx ima te M o e n s - K o r t e v e g formula 
for pulse wave velocity [1] if ar ter ial wall elasticity is 
assumed to be C = Eh/d, where E is the m o d u l u s of 
elasticity, h is the wall thickness, and d is the average 
diameter of the vessel. 

To conclude this section, let us derive the dispersion 
relat ion for a soliton, s tar t ing with the definition of group 
velocity: 

-dk=a° = a { l + ^ 

where co is the angular frequency of the oscillation. Bear ing 
in mind tha t the wavenumber k = (2nSmax/3Sl)1^2 and 
tha t co = 0 at k = 0 we obta in 

co = a[ k + ^ k3 

0 7 1 
(4.28) 

5. Modelling solitons in an elastic tube with the 
use of the nonlinear Schrodinger equation 
Let us examine the impulse equat ion in the form of 
expression (3.3) assuming tha t the t ransversal componen t 
of velocity w is small. Then , the impulse equat ion has the 
form 

8v 8v 1 d(PS) 
dt dx p Sdx 

= 0 . (5.1) 

The cont inui ty equat ion can be wri t ten in the form of 
E q n (3.7) wi thout dist inguishing between the main and 
oscil latory componen t s of velocity, tha t is ignoring wha t 
was done in E q n (2.6): 

| 8(vS) = Q 

dt dx 
(5.2) 

The length of the soliton (pulse wave in the case of the 
artery) can be deduced from the condi t ion k = 2Smax/Vhh = 
2n/k. Hence , k = 7 t V h b / S m a x . Assuming tha t for h u m a n s 
y h b = 60 c m 3 and S m a x = 0.7 c m 2 , we obta in k = 2.7 m, 
which is in good agreement with exper imental findings [1]. 

Accord ing to Eqn (4.11), the expression for the pressure 
wave is fully ana logous to the expression for the cross-
section area of the elastic tube dur ing soliton p ropaga t ion : 

P = 
cosh 2 [2(Smax/Vhb)(x-ast) 

(4.26) 

where Pmax = CSmax/S0. 
W e can n o w find the final velocity of the pressure wave 

(pulse wave) p ropaga t ion . M a k i n g use of E q n (4.8) and 
equali ty MP = Cs we obta in Mq 

follows from Eqn (4.8) tha t Mt = 
Taking into considerat ion tha t 

= ^CeSq/P Also, it 

: So/My = y/pS0/(Ce). 

The relat ionship between excess pressure in the elastic 
tube and its cross-section area can be defined by analogy 
with Eqn (2.2): 

AS 
(5.3) 

In Eqn (5.3), the area differential dS is replaced by the 
area increment AS = S — S0 to facilitate the use of H o o k e ' s 
law in the impulse equat ion (5.1). 

Solution of the system of equa t ions (5.1), (5.2) is 
a t t empted by using the complex velocity poten t ia l 
cp = cp(x,t). This is expanded in powers of the small 
pa ramete r X by ana logy with the t rans i t ion from the 
Schro'dinger equat ion to the H a m i l t o n - J a c o b i equat ion 
in q u a n t u m mechanics [12]: 

cp = cp0+-{cpl + l - \ <p2 + ... , (5.4) 

where i is the square roo t of — 1 . W e n o w define function 0 
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U s e of the first two te rms of expansion (5.4) leads to 

(5.6) 

In this expression, \&\ = exp(cp1) is the m o d u l u s of function 
<P; V = dcp0/dx is fluid velocity in the tube since cp0 is (to 
within X2) the real pa r t of the velocity potent ia l . 

Pu t t ing 1 = y/S/S0 and using E q n (5.3) we obta in 

PS = -C(S - S0) = -CSo(\0\2 - 1) . (5.7) 

As ment ioned in Section 2 the minus sign in Eqn (5.7) 
reflects the wel l -known fact tha t the react ion of the elastic 
element has to be subst i tuted in the impulse equat ion 
(Newton ' s second law) to obta in the oscillation equat ion . 
In our case the react ion of the tube wall is equal to the 
excess internal pressure with a change of the sign. 

Tak ing into account E q n (5.7), we can wri te the last 
te rm in E q n (5.1) in the form 

2 9<Pi \d(PS)_ ^9 (1111*1) 
p S dx dx 

-2az 

dx 
(5.1 

where a = y/C/p is the pressure wave velocity in the elastic 
tube and cpx = In \0\. 

Using the velocity potent ia l , we can integrate once the 
impulse equat ion (5.1). Then the system of equa t ions (5.1), 
(5.2) takes on the form 

8^o v 
dt 2 

2a2cpl 

8|<2>|2 6(v|<l>|2) 
8; • + dx 

0 . 

(5.9) 

(5.10) 

The integrat ion constant in E q n (5.9) is m a d e zero by 
choosing an appropr i a t e initial value of the poten t ia l cp0 [9]. 

N o w we shall demons t ra t e tha t the system of equa ­
t ions (5.9), (5.10) is equivalent to the nonl inear Schro'dinger 
equat ion 

d<P Xd2& 
8f" + 2 dx2 

2az 

"T" (pi® • (5.11) 

Tak ing into account , in accordance with E q n (5.5), tha t 

d& 
8 T X dt 

As with expansion (5.4), only te rms linear in the small 
pa ramete r X are left in E q n (5.13). Therefore, E q n s (5.13), 
(5.14), and hence (5.11) are fully equivalent to the system of 
equa t ions (5.9), (5.10). 

The nonl inear Schrodinger equat ion can be wri t ten in 
the form 

d& a d20 
~di + kdxT' 

-co (Pin \0\ (5.15) 

where co = 2a jX is the angular frequency and k = 2a/X is 
the wavenumber . Solution of E q n (5.15) is sought , as 
described in Ref. [13], in the form 

0 =f(kx — cot) exp [i(rx — St)] , (5.16) 

where the cons tan ts r and 3 and the function f(kx — cot) 
are as yet u n k n o w n . Tak ing into account E q n (5.6), we 
conclude tha t = f(kx — cot). Subst i tut ion of E q n (5.16) 
into expression (5.15) gives 

a k ^ + i^(-co + 2ar) + / ^ - ^ + G ) / l n / = 0 . 

(5.17) 

T h e derivatives in Eqn (5.17) are with respect to the 
var iable £ = kx — cot. Since the function / = \<P\ is a real 
variable, Eqn (5.17) canno t conta in imaginary te rms. 
Pu t t ing r = co/(2a) and recalling that co = ak we find 

d 2 f 4+f 
+ / l n / = 0 (5.1* 

A similar equat ion was first examined in Ref. [14] where 
vor tex s t ructures in an ideal fluid were investigated. 

Solution of E q n (5.18) m a y be found in the form 

f=Cx exp ~Y (kx - cot)2 (5.19) 

where Cx and C2 are cons tants . Subst i tut ion of Eqn (5.19) 
into E q n (5.18) gives 

S__]_ 
co 4 

C2 + ( - - t ) + l n C i + (kx - < D t ) z [ c Z + ^ ) = 0 . (5.20) 

82<l> 1 
0 

dcp 
dx 

1 * 8 <P 
^ i dx2 

(5.12) 

and separat ing the real and imaginary pa r t s of Eqn (5.11), 
we obta in : 

8; 2 
'8^o 
8x 

• 2a2cpl 

2 

dcpx dcp0 dcpx 1 d2cp0 

dt dx dx 2 dx2 

'8^1 
8x 

= 0 . 

+ 
9 V 
dx2 

•0(X2) , (5.13) 

(5.14) 

E q n (5.14) is fully equivalent to Eqn (5.10) since 

The last te rm in E q n (5.20) must be independent of 
coord ina te x and t ime t, i.e. C 2 = —1/2, and then 
Ci = exp (3 /4 — S/co). Hence , 

/= \<p\ = e x p Q - ^ - ] e x p 
(kx — cot)2 

(5.21) 

Tak ing into account tha t the cross-section area 
S = So\0\ with the b o u n d a r y condi t ion S | M ± 0 0 = S0, we 
finally obta in the shape of the soliton p ropaga t i ng in the 
elastic tube : 

\2 -

S = S0 + A S a exp 
(kx — cot) 

(5.22) 

where ASa cor responds to the m a x i m u m value of the 
addi t iona l area in Eqn (5.3) and m a y be represented as 
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In this equat ion , 3 is a characterist ic of the elastic tube 
mater ia l . At high values of 3, which are characterist ic for 
rigid tubes , ASa t ends to zero, whereas low values of 3 are 
peculiar to elastic tubes . 

The excess pressure in the tube is determined from 
E q n (5.3): 

Pt = C s-s0 : C exp 
(kx — cot) 2 1 

Tak ing into account tha t Pmax = C ASa/S, we finally 
obta in the m a x i m u m excess pressure in the soliton: 

— ^max e x P 
(kx — cot) 

(5.23) 

Thus , it follows from E q n s (5.22) and (5.23) tha t the 
laws describing the var ia t ion of the cross-section area of the 
elastic tube and of the pressure are similar, while the shape 
of the soliton cor responds to a Gauss ian curve. 

Fig. 8 shows the difference between the soliton shapes 
as described by the K o r t e v e g - d e Vries equat ion and the 
Gauss ian curve. 

A S / A S a 1 

\ \ ( ?\ 

i 

\ \ L (cosh£)- 2 

1 1 
- 2 - 1 0 1 2 { 

[6]. The use of equa t ions for the ideal fluid does no t br ing 
model l ing as described above closer to reality. Therefore it 
should be poin ted out tha t the existing b iomechanica l 
models of b lood flow in major vessels can describe only 
some p h e n o m e n a peculiar to the cardiovascular system. Let 
us briefly review a few of them. 

It has been demons t ra ted in Section 3 tha t an a u t o -
oscillating regime of fluid flow m a y develop in a passive 
elastic tube . This is in fact k n o w n to occur under some 
condi t ions in b lood vessels of the living organism. F o r 
example, high-frequency oscillations of up to 10 H z have 
been repor ted to occur, imposed on the pulse wave, in 
equine co rona ry arteries [19]. A similar observat ion was 
m a d e in experiments on canine aor ta when the mechanisms 
control l ing the b lood flow were dis turbed [7]. However , the 
most c o m m o n example of an auto-osci l lat ing regime in the 
circulatory system is p robab ly provided by high-frequency 
oscillations generated in ar ter ial vessels dur ing b lood 
pressure measurement by the me thod of K o r o t k o v . Bio­
mechanica l solution of this p rob lem is given in Section 3. 
Analysis of the var ia t ions of the frequencies of the 
K o r o t k o v sounds allows changes in the m o d u l u s of 
elasticity of the vascular wall to be est imated in vivo. 

Ano the r impor t an t h a e m o d y n a m i c p h e n o m e n o n is the 
occurrence of the pulse wave. Resul ts of model l ing repor ted 
in Sections 4 and 5 indicate tha t this p h e n o m e n o n is entirely 
due to the nonl inear i ty of h y d ro d y n ami c equa t ions the 
solution of which is in the form of soli tons. Since it is the 
first order te rm of the expansion of hyd rodynamic equa ­
t ions tha t is of p r imary impor tance in the descript ion of the 
pulse wave, the 'Bernoull i law' associated with the zero 
order te rm does no t p lay a major role in pulse p ropaga t ion 
in circulating b lood . Synchronous changes of int ravascular 
pressure, cross-section area of the vessel, and b lood flow 
velocity are a wel l -known physiological p h e n o m e n o n . 

Figure 8. Difference between the shapes of solitons described by the 
K o r t e v e g - d e Vries model and the nonlinear Schrodinger equation 
(£ = kx — cot). 

6. Use of the passive elastic tube model for the 
approximate description of a blood vessel 
Invest igat ions into basic aspects of circulation, tha t is 
b lood flow in arteries and veins of the body , have a long 
history. They have been largely developing a long two 
major lines: one involves extensive physiological studies 
with theoret ical in terpre ta t ion of n u m e r o u s exper imental 
findings (see, for example, Refs [15, 16]), the other is based 
on a m o r e specific biophysical app roach and its aim is to 
roughly calculate the b lood flow velocity in the vessels 
[1, 2]. The two lines over lap, and m a n y au tho r s have no t 
infrequently used b o t h approaches in one s tudy (see 
Refs [3, 17]). 

The flow of b lood in b lood vessels of a living organism 
is a complicated process, largely dependent on mechanisms 
of vascular regulat ion. This regulat ion takes place at several 
levels including self-regulation, central and a u t o n o m o u s 
neura l reflex regulat ion, h o r m o n a l control , etc. [18]. The re ­
fore, the b lood vessel can by no means be regarded as a 
passive elastic tube . 

Ano the r impor t an t feature of b lood flow is tha t b lood 
behaves like a s t ructured n o n - N e w t o n i a n visco-plastic fluid 

7. Conclusion 
In spite of the l imitat ions of b iomechanica l models of 
b lood flow in major vessels discussed in the previous 
sections, these models al low certain wel l -known phys io ­
logical p h e n o m e n a to be explained, such as the occurrence 
of high frequency oscillations in b lood vessels and specific 
features of pulse wave p ropaga t i on related to the n o n -
linearity of the equa t ions of hydrodynamics . 

Model l ing ideal fluid flow in an elastic tube requires the 
appl icat ion of the modified Euler equat ion apparen t ly first 
suggested by Z h u k o v s k y in the form of expression (3.3). 

The possibili ty of establ ishment of an auto-osci l lat ing 
regime, and hence enhanced hydraul ic resistance, in passive 
elastic tubes places addi t iona l d eman d s on vascular p r o s ­
theses which must be m a d e of sufficiently h a rd mater ia ls . 
Mani fes ta t ions of the auto-osci l lat ing regime are diverse 
and m a y include noise, m u r m u r , etc. 

In designing ins t ruments and equipment incorpora t ing 
elastic thin-walled tubes , e.g. pulse p u m p s for b io technol ­
ogy or artificial b lood circulation machines , it is necessary 
to take into account resonance p h e n o m e n a in fluid flow 
which m a y cause tube occlusion and m a y p roduce reflected 
waves interfering with the n o r m a l functioning of the 
equipment . 

Non l inea r model l ing of soli tons in elastic tubes confirms 
the hypothesis tha t nonl inear processes m a y give rise to 
quali tat ively new features even after very minor quant i ta t ive 
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changes in the pa rame te r s of the model . This suggestion is 
suppor ted by the results of compar i son between the pulse 
wave models based on the K o r t e v e g - d e Vries equat ion (see 
Section 4) and the nonl inear Schrodinger equat ion (Sec­
t ion 5). The use of H o o k e ' s law in the form of E q n (5.3), 
ra ther t han (2.1), accounts for the appea rance of a n o n -
dispersing soliton tha t p ropaga te s at a velocity independent 
of the excess pressure in the elastic tube . 
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