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Abstract. A consistent approach to the image restoration 
problem is presented, which does not use Bayesian a priori 
information. Photon noise is taken into account. The 
unknown object is treated as a multidimensional set of 
parameters that have to be statistically estimated in an 
efficient way. The approach is based on an extended notion 
of feasible estimate (in the sense of information theory) and 
on Occam's razor rule of choosing the simplest object 
which is consistent with the data. Occam's rule is applied 
by transformation to principal components of the inverse 
(or maximum likelihood) estimate, which are generated by 
Fisher's information matrix. The same approach can also 
be applied to various other inverse problems. 
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1. Introduction 
Image restoration problem consists of finding as complete 
as possible characteristics of the original object S0(x) by 
using the observed blurred image v 0 (x), as well as a given 
point spread function (PSF) h(x, x') and statistical proper­
ties of stochastic background One-dimensional model 
of image formation with a noncoherent source is usually 
described by the equation (see Frieden's review [1]) 

nb 
y0(x)=\ h(x,xf)S0(xf)dxf + Ux)> (LI) 

Ja 

where £o(*) is the background pattern, and the object S0(x) 
to be found is assumed to be nonnegative within the 
interval [a, b]: 

S0(x)>0. (1.2) 

To keep the notation simple, we consider below only the 
one-dimensional version of the problem but this does not 
incur any loss of generality. 

Although the problem formulation given above does not 
encompass all its aspects, it is representative enough to 
relate the image restoration problem to a broad class of 
inverse problems of mathematical physics. As the name itself 
implies, in inverse problems we have to determine the true 
properties of phenomena from their observed effects. The 
image restoration problem itself, in addition to being of 
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interest as such, is attractive by exposing very sharply the 
main difficulties of the theory of inverse problems, so that 
the results obtained in this field have general significance. 
To be specific, I shall deal here almost exclusively with 
image restoration. 

As has been noted many times, every problem involving 
the interpretation of experimental data is essentially an 
inverse one. In particular, the image restoration theory is at 
the root of computer tomography, electron microscopy, 
radiography, radiolocation, and many branches of optics 
and geophysics. Inverse problems arise most frequently in 
astronomy, which has been dealing so far almost exclusively 
with the interpretation of passive experiments. 

The first studies of the inverse problems in the modern 
context were done at the end of the XIX century by Lord 
Rayleigh [2], who suggested an iterative procedure for 
correcting spectral line profiles. Somewhat later Schuster 
[3, 4] introduced the periodogram of a time series as an 
estimate of its spectral density. Already then, specific 
difficulties appeared that were associated with attempts 
to invert the cause-and-effect relation: the Rayleigh iterative 
process turned out to be divergent, and the Schuster 
periodogram has an extremely 'jagged' shape familiar to 
all investigators in the field. 

I should point out that in Eqns (1.1) and (1.2) photon 
noise is not taken into account, so that these equations do not 
adequately describe the image formation process. An 
unavoidable indeterminacy due to the photon noise is 
not only principally important, but also plays a special 
role because of the known instability of solutions of the 
majority of inverse problems, which manifests itself in the 
fact that substantially different originals correspond to 
almost indistinguishable images. Because of this, solutions 
obtained with and without allowing for photon noise are 
not necessarily close. As von Neumann said with reference 
to analogous matter, if one neglects viscosity in hydro-
dynamic equations, they will describe the properties of 'dry 
water' (cited in Ref. [5]). 

Let me illustrate this by a simple imaginary experiment 
[6]. Let us assume that the required object is a point source 
with an intensity F located at the origin of the coordinates, 
the PSF is the sum of two Dirac 8-functions symmetrically 
arranged relative to the origin of the coordinates, and there 
is no background. This means that the image will appear as 
a double source with point components. The problem is as 
follows. Even when S 0 is not a determinate quantity, such 
as the average count number, but a random representation 
of the count number, then, according to Eqn (1.1), we shall 
always see the components as having equal brightness, 
although the total brightness can fluctuate. This prediction 
of Eqn (1.1) contradicts the experiment: in fact, the 
observed intensity of each component fluctuates randomly 
and independently of the intensity of the other component 
relative to the mean value F/2 with a standard deviation 
close to y/F/2. 

Nevertheless, even with the simplified formulation of the 
problem given by Eqns (1.1) and (1.2), the principal 
difficulty in finding its solution is clear; it is that the 
particular form ^Q(X) of the stochastic background in 
the observed image is unknown. Only statistical properties 
of the background are specified: in particular, its average 
value its power spectrum and, possibly, one-
dimensional distribution density. Attempts to use the 
average background or some typical form of back­

ground as £o(x) are unsuccessful because of the 
aforementioned fundamental problem of the instability 
of inverse solutions with respect to a small change in 
the parameters. 

The instability of the solutions is, in turn, caused by 
inadequate information about the object contained in its 
image. 'Information' is here understood in the strict sense of 
the word as defined by Shannon [7, 8]. Most often it is 
principally impossible to determine in any detail character­
istics of the object that gave rise to the observed image. For 
this reason, one can understand the attempts made by 
investigators to supplement the real information they have 
and obtain a better solution as a result. 

Deterministic a priori information about the required 
object SQ rarely goes beyond the condition of its non-
negativeness, so that in solving inverse problems 
investigators usually rely upon a priori stochastic informa­
tion in the framework of the Bayesian approach [9, 10]. In 
general, this approach assumes that the object S 0 , whose 
blurred image is being analysed, is randomly extracted from 
a set of objects with known properties. For example, the 
classical analysis by Kolmogorov [11] and Wiener [12] 
of the problem of filtration and prediction of time series 
starts from specifying the object as an outcome of a 
standard Gaussian random process with a known cova­
riance function. Turchin et al. [13] clearly demonstrated 
that essentially the same assumption is used in the well-
known papers by Phillips [14], Twomey [15, 16], and 
Tikhonov [17, 18]. The maximum entropy principle [19-
22] assumes that the initial ensemble of objects is formed in 
accordance with the entropy of each of them. Obviously, 
specifying the initial ensemble determines to a large degree 
the solution to the inverse problem. If the investigator has 
no a priori information of any kind, the solution has almost 
always a characteristic 'oscillating' form, which testifies that 
it is unstable. 

Using Bayesian a priori information seems to be quite 
natural for the problem of filtration and prediction of time 
series, for which the Kolmogorov-Wiener theory was 
formulated; earlier experience often gives grounds for 
asserting that the expected signal belongs to an ensemble 
with fully determinate properties. However, such informa­
tion in image restoration, and in many other inverse 
problems, can be regarded as an exception to the rule. 
For this reason use of the Bayesian approach in those cases 
where the researcher does not know whether indeed a 
random choice from a given class of objects has been 
made gives only an illusion that the required solution has 
been obtained. This conclusion is difficult to avoid, if for no 
other reason that already many schools of 'Bayesians' exist, 
which a priori prefer different ensembles of objects (even 
followers of the maximum 'entropy' principle use different 
definitions for this function). 

Thus, a situation arises when the inverse solution proves 
to be of little use without the availability of additional 
information, and substitution of the missing information by 
some plausible assumptions leads to an apparently accept­
able solution, which in fact has a large and, in principle, 
unknown bias. 

The purpose of the present review is to give as simple as 
possible systematic description of the approach evolved in 
the past few years that leads to objective results in the field 
of non-Bayesian approach to the inverse problems, includ­
ing the image restoration problem [23-33]. The need to 
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evolve a unique point of view made it necessary to include 
some classical problems along with recently obtained 
results; some results presented here are new. 

The following three premises are the starting ones. 
(1) The unknown object is given as a set of parameters, 

for which it is necessary to find statistical estimates of 
minimum scattering for given observational results and a 
priori information. Consistent formulation of inverse 
problems in the framework of statistical estimation theory 
made it possible to classify a number of important aspects 
and, in particular, to prove the existence of a natural limit 
to the inverse solution accuracy. 

(2) Use of the mean-square measure L2 for the likeness 
of the images in selecting the solution does not nearly 
exhaust all the possibilities, and here more sophisticated 
methods of statistical analysis were required. Extension of 
the feasible solution notion as a statistical estimate 
satisfying a rigid image randomness test (IRT) leads to 
maximum reduction of the set of possible solutions. 
Nevertheless, for most inverse problems, this set is still 
too large. 

(3) Final choice of the solution, is made by taking into 
account the aforementioned insufficiency of information: in 
the feasible estimates domain we choose the solution that is 
the 'simplest' in a certain sense. As might be expected, this 
choice is based on the principal components of the estimate 
of the object. The principal components, in turn, are 
generated by Fisher's information matrix. 

We also note that, in order to determine natural limits of 
the efficiency of the inverse solution, it is useful to extend its 
a priori information to such an extent that the inverse 
problem is in fact reduced to the problem of testing 
statistical hypotheses. 

Taken all together, the enumerated premises lead to an 
algorithm that ensures stability in the solution of the inverse 
problem without recourse to illusory Bayesian information 
(of course, after the solution has been obtained, one can 
interpret it from the point of view of the Bayesian approach 
for a specially selected ensemble). 

The most important step in finding stable inverse 
solutions consists of the actual use of the condition of 
their maximum simplicity consistent with observational 
data. Apparently, W Occam was the first to clearly 
formulate the maximum simplicity requirement of a model 
for interpretating data, in the XIV century: "Plurality is not 
to be assumed without necessity". Thus, it is proper to call 
the implementation of the non-Bayesian approach consid­
ered here the Occam's razor approach. 

2. Formulation of the problem 
We introduce the following notations (Fig. 1). Let S be an 
arbitrary element from the object space {S}; S0 the object to 
be found that belongs to the same space; f(y\S) the 
conditional probability (defined by the image formation 
model) of obtaining a given set of counts for the original 
element S in the image space {y}; q(S) = (Yf(Y\S)) the 
average image that corresponds to determinate blurring S 
and background averaging; and v 0 the observed image. 

The sign (...) means averaging over the probability 
ensemble. Object space elements {S} are ^-dimensional 
vector-columns, and image space elements {y} are analo­
gous m-dimensional vectors (usually m ^ n). The norm ||x|| 
of vector x is understood to be euclidian length. The fact 

{y} m 

Figure 1. Schematic representation of the image formation model. 

that a random variable £ obeys a distribution with density 
f(x) is, for simplicity, written as £ ~f(x). For example, 

Y~f(y\S)9 Y0~f(y\S0) , (2.1) 

and the observed image v 0 is the realisation of a random 
vector Y0. For an arbitrary object S, the following 
normalisation condition is satisfied 

Y,f(y\s) = i • (2.2) 
y 

Note that the random variable £ and the value x it takes on 
are different notions, and their confusion has often led to 
an ambiguity in physical literature. 

Of fundamental importance to us is discrete representa­
tion of the problem, and we regard continuous description 
as an approximation that sometimes simplifies computa­
tions. 

To focus on more important problems in this context, 
we restrict our discussion to noncoherent sources of 
radiation. In this case, S 0 usually represents the set of 
mean radiation intensities that would be registered by 
individual pixels of a detector with an ideal forming 
system. It is obvious in this case that the counts S 0 are 
nonnegative. Moreover, part of the parameters can describe 
structural properties of the object, and then their non-
negativeness is not a necessary condition [34, 35, 25]. The 
theoretically most efficient way of recording an image, 
consisting of counting individual photoevents, is now most 
often used in experimental practice (see, for example, 
Refs [36-38]). Therefore, the components of vector y in 
the image space are treated as nonnegative integers. 

For a linear model of image formation model and for a 
noncoherent source we have 

q(S) = HS+y , (2.3) 

where the matrix H = [hjk] with nonnegative elements is the 
PSF, and the vector y with components yj = ^ 0 
determines the mean value of the stochastic background. 
When exposure time significantly exceeds the radiation 
coherence time, the statistics of photoevents can be 
approximated with very good accuracy by the Poisson 
law [36-38], so that 

m 
f(y\S) = J ]exp[ - q j ( S ) ] | < / ( ( S ' ) | V - . (2.4) 

7=1
 yr 
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The presence of photon noise is taken into account in this 
model by the probabilistic way of its representation; count 
fluctuations do not vanish even when the external 
background y is zero. 

Generally speaking, some of the requirements listed 
above are not necessary, and one could choose a more 
general image formation model, in particular, take into 
account nonlinear effects and introduce the precise C o x -
Mandel distribution [39-41] for the statistics of photo­
events. The case when information about the statistics of 
photoevents is absent and some other models are discussed 
in Refs [25, 27]; a realistic model of registration with a 
CCD-detector that takes into account its inhomogeneity is 
investigated in Ref. [42]. However, we shall not complicate 
the presentation here, so as to be able to focus on the 
principal difficulties. 

Our problem is to find an estimate S*(y0) that differs 
from the original S 0 as little as possible, using the observed 
image y0, a priori information about the original S0, and the 
given image formation model f(y\S). Since the rule of 
estimation (in other words, of image restoration) must 
apply not only to y0, but also to any other image Y0 

generated by the original S0, the estimate S*(F0) is a 
random variable, and its quality is determined by a degree 
of concentration of the distribution density S* around the 
point SQ. In particular, we would like to have an estimate 
without excessive systematic deviations from the original 
object (that is, with a small bias) 

b(S0) = (S*(Y0))-S0 (2.5) 

and a small variance relative to the mean value. These 
requirements can be combined [43] by defining the mean-
square measure of deviation of the components of S*(F0) 
from the original object S0 as 

*4 (So) = ((S* -S0i)(S*k - S0k)) , i,k = l, ... ,n , 

Q(S0) = [Qlk(So)] = ((S* - S0)(S* - S0)T) , (2.6) 

where T denotes transposition operation. The matrix Q is 
known as the matrix of scatter of the estimate S*. For 
unbiased estimates, Q coincides with the variance matrix D. 

Let a unit vector a specify a direction in the object space. 
Then the dispersion of the estimate S* in this direction (a 
scalar value) can be represented by the quadratic expres­
sion: 

Qa = ([(5* - S0)a]2) = ^^2Qikatak = aTQa . (2.7) 
i k 

The estimate S*(F0) is called an effective estimate in class 
K, if its dispersion in an arbitrary direction does not exceed 
the dispersion of any other estimate for all objects 
belonging to class K. In other words, the effective estimate 
is characterised by the most compact scattering ellipsoid 
around any object from class K. 

The reference to a specific class of objects is important 
because without this specification, the fundamental notion 
of estimate efficiency introduced by Fisher [44] becomes 
meaningless. Indeed, by fixing some point Sc in the object 
space as an estimate for S*, we get an inadmissibly large 
dispersion for almost all objects other than Sc, but just for 
this object the dispersion of our estimate will be zero (a 
clock that has stopped is more precise than any other clock 
once or twice each day!). Usually, the evaluation is carried 
out in class Kb of estimates with a given bias (2.5), in 

particular in class K0 of estimates with no bias. Despite the 
importance of these concepts for correct formulation of the 
inverse problem, we cannot go into this here in greater 
detail. A clear presentation of the related problems can be 
found in Borovkov's handbook [43]. 

Obviously, there are many ways of object evaluation (in 
other words, many ways of solving the inverse problem), but 
only those estimates are of real interest that either coincide 
with the efficient ones, or are close to them. Finding such 
estimates is the objective of solving any inverse problem. 
Because of the unavoidable stochasticity of description of 
internal and external noise, only by formulating the inverse 
problem in the framework of the statistical theory of 
parameter testing (and of the closely connected theory of 
decision making) can one approach the essence of the 
problem. 

The meaning of the notion of 'estimate quality' must be 
defined by the observer, depending on specificity of the field 
the problem relates to. The dispersion Q defined above is, in 
a more general context, the conditional risk of the estimate 
on the assumption of a quadratic loss function. Other 
definitions of estimate quality are also used. For exam­
ple, according to the minimax approach, the optimal 
estimate is that for which the largest dispersion in the 
object space does not exceed the maximum dispersion for 
any other estimate (figuratively speaking, when looking for 
the shortest soldier, we choose the sub-unit in which the 
right-flank man is shorter than in all the other sub-units). 
As specific choice does not play a decisive role, we will keep 
the simple definition of quality based on the scattering 
matrix. 

The kinds of a priori information are so diverse that 
sometimes it is hard to formalise them. Toraldo di Francia 
[45] described this state of affairs in an exhaustive way: 
"The observer is always more or less relying on his past 
experience of what a real object can look like. Moreover, in 
the great majority of particular cases, he has at his disposal 
a much larger amount of a priori information about the 
object than he even realises. This information, if properly 
utilised, enables him to rule out some of the different 
objects which could correspond to the image. He thus may 
have the illusion that he can extract from the image more 
information than there is actually contained". 

Part of the a priori information is included in the 
problem by constructing a stochastic model for image 
formation (usually this is the condition of nonnegativeness 
of the solution, an explicit form of the PSF, mean 
background level, and knowledge of event statistics). If 
the observer has at his disposal additional determinate or 
random a priori information, it should be included in the 
scheme at the appropriate stage. For example, information 
about 'smoothness' of the solution can be taken into 
consideration by narrowing down the domain of feasible 
estimates. If (1) the object S0 belongs to a probability 
ensemble with a density w(S), (2) it was chosen in a non­
selective way from this ensemble and (3) the density w(S) 
itself is known to the investigator, then one should turn to 
the scheme of Bayesian estimation of the parameters 
and introduce a two-dimensional density distribution 
f(y, S) = w(S)f(y\S). Here we restrict ourselves to a 
discussion of the situation when a priori information has 
a deterministic character. Extension of the approach to the 
case with additional stochastic information is straightfor­
ward. 
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3. Model of deterministic image blurring 

What has been said in Section 1 about the role of the 
photon noise means that the model of deterministic image 
blurring is of interest largely from the point of view of 
methodology: its analysis will provide a basis for further 
discussion of more realistic image formation models. In 
particular, the deterministic model enables one to trace the 
instability phenomenon under the simplest conditions. In 
this connection, it is necessary to draw attention to the 
widespread fallacy that the instability does not appear in 
problems with a finite (and all the more so with a small) 
number of estimated parameters. In fact, instability of 
solutions of the inverse problem fully manifests itself even 
when there are only two parameters to be determined. 

*2 

- 5 -

Figure 2. Graphic interpretation of the system of equations (3.4). 

3.1 Basic assumptions 
If the randomness of data is due only to the background 
we get, instead of Eqns (2.1)-(2.4), a model in the form of 
a system of linear equations 

Y0=HS0 + Z, (3.1) 

with the observed image y0 being a sum of the deterministic 
term HS0 and the stochastic background realisation £0 (see 
Fig. 1): 

y0=HS o + ^o . (3.2) 

The matrix / / , with the size m x n, is assumed to be regular, 
i.e. d e t / / ^ 0 . To simplify the model further, we shall 
ignore for a while the condition of the object, image, and 
background nonnegativeness, and assume only that 

= 0 and the background counts in the individual 
pixels are uncorrelated and have an equal variance a1 

which is known to the observer. The stochastic background 
is thus characterised by the following covariance matrix 

cjs = (ZjZs) = a2djs, C = [cjs] = a2Em , (3.3) 

where 3js is the Kronecker symbol and Em is an Tri­

dimensional identity matrix. 
The principal divergence of the present problem from the 

classical least square scheme [46, 47] is that cr2 is considered 
in the latter scheme as an unknown variable which is to be 
estimated along with the object S0. The parameter { is taken 
to be a random measurement error which takes care of the 
discrepancies between the model and the data that cannot be 
systematically explained. In contrast, in image restoration, { 
is a stochastic background whose properties can be readily 
studied in specially designed experiments. As we will see 
below, this fact substantially influences formulation of the 
problem and, of course, the results obtained. 

3.2 Numerical examples 
We consider a system of two simultaneous linear equations 
with two unknowns 

Xi + 2x2 = 4 , 

3 ^ + 8 x 2 = 14 , (3.4) 

the exact solution to which is the vector [2, 1]T . The 
practical value of the exact solution obviously depends on 
its stability relative to unavoidable small errors in the 
coefficients and constant terms of the system. We restrict 
our discussion to uncertainties of the last kind. Equa­
tions (3.4) define the straight lines 1 and 2 in Fig. 2, which 

are perpendicular to the vectors [1,2]T and [3,8]T, 
respectively. As the angle between these vectors is small 
(~ 6°), the straight lines are nearly parallel to each other, 
and their intersection point, the solution to the system, 
proves to be very sensitive to possible errors in the 
representation of the right-hand sides of the equations. 

Of main interest for us is the fact that the solution error 
strongly depends on the direction in the object space 
( j t 1 ? x2). Indeed, by making a small change in the relative 
position of the lines, their intersection point shifts sig­
nificantly along the lines but very little in the perpendicular 
direction. If one decomposes the solution radius-vector into 
two components, one along the average direction of the two 
straight lines and one normal to it, it becomes obvious that 
the longitudinal component of the solution can vary in a 
very wide range, without affecting the uncertainty of the 
given data. A more rigorous analysis in Sections 4 and 6 
shows that the fixed overall uncertainty of the right-hand 
sides of the system Eqns (3.4) corresponds to an ellipse in 
the solution space with a ratio of the principal axes of 39. 
For example, by substituting into (3.4) a test solution 
[5.6; — 0.4]T instead of the exact solution [2.1]T, we obtain 
[4.8; 13.6]T as a constant term, which is very close to the 
values given in equations (3.4). 

A natural description of the anisotropy of the error can 
be obtained by passing over to coordinate systems (Eu E2) 
or (Pu P2) tied to the principal axes of the ellipse 
mentioned above (the solution in the latter coordinate 
frame is given by the principal components). 

Much more impressive examples of instability of the 
solution of the inverse problem relative to a small change in 
the data are known. Morris [48] gave an example of a 
system of equations y = Hx0 with 

' 5 7 6 5 " " 1 ' 
7 10 8 7 1 
6 8 10 9 J

 xo — 1 
5 7 9 10 1 

(3.5) 

Substitution of the vector [2.36, 0.18, 0.65, 1.21]T for x0 

yields here a constant term with components the absolute 
values of which differ from the values in expression (3.5) by 
only 0.01. 

Such examples show that, from the practical point of 
view, solving a system of equations is more naturally 
associated with statistical theory of parameter estimation 
rather than with algebra. 
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We see that attempts to solve inverse problems that are 
'equivalent to within noise' can lead to significantly 
different solutions even when there are only a few para­
meters to estimate. This applies to an even greater extent to 
a multidimensional case, for which the inverse solution 
'profile' usually has an extremely irregular shape. This is 
due to the fact that the solution 'tries to explain' all details 
of the observations, including statistically insignificant 
noise fluctuations. For this purpose it can 'wander' into 
very remote localities of an extremely elongated feasible 
solution region, without affecting the accuracy of repre­
sentation of the observational data. Indeed, as the operator 
H strongly smoothes oscillations of the solution profile, one 
needs to introduce enormous oscillations into the solution 
to explain even small data fluctuations. 

In situations like those described above, it is said that 
the system of equations is 'ill-conditioned' [49]. This prop­
erty of the system is not a simple consequence of the 
smallness of the determinant of matrix H. For example, the 
determinant of system (3.4) is equal to 2, and in the case of 
system (3.5) we have det / / = 1. The point is that the 
determinant of matrix H = [hi,..., hn] depends not only 
on the degree of collinearity of vectors {hk}, but also on 
their lengths. Therefore, a more correct idea about possible 
instability can be obtained by making obvious renormalisa-
tion of the Hadamard inequality [50, 51]. Finally, as was 
shown by Faddeev and Faddeeva [52, 53], a full description 
of the extent to which a system of equations is ill-
conditioned is given by the spectrum of the matrix HTH. 
I shall return to this question in subsequent sections. 

3.3 Structure of the feasible estimate region 
Let r be a space containing all possible deterministically 
blurred images (Fig. 3). In other words, r = {HS} is the 
//-transformation of the object space {S}. In particular, 
element HS0 belongs to r. If {S} comprises a compar­
atively narrow class of functions, then r represents a 
specific enough class as well. For example, if {S} contains 
only 'smooth' objects, then r consists of even 'smoother' 
functions, as the high spatial frequencies of the objects are 
cut off by blurring. Usually T is a subspace of the entire 
object space. The observed image v 0 is obtained from HS 0 

by adding the stochastic background realisation £0, which 
need not have properties of the elements from r (for 
example, need not be 'smooth' or negative). Therefore, y0 

generally does not belong to r. 

Figure 3. Finding the least-square estimate 

To characterise acceptability of some test object S for 
explaining the data y0, we choose a so-called misfit (its 

meaning is clear from Fig. 3): 

d2(y0,S) = \\y0-HS || 2 = (y0 - HS)1(y0 - HS) . (3.6) 

The quantity <5(v0, S) is a distance from y0 to an arbitrary 
element HS of the space r. In the framework of classical 
approach, the sought estimate of object S0 is the element 
SM that minimises this distance: 

Sm(yo) = arg mm S2(y0, S) . (3.7) 

The solution SM is called the least-square estimate (LSE). 
Such formulation of the problem looks quite natural, as the 
observer, having no knowledge about the random error 
variance allots it the least possible role in data 
interpretation. It is easy to find an explicit representation 
of the LSE through the data vector y0. 

The discrepancy obviously reaches minimum for ele­
ment SM for which HSM coincides with the projection of v 0 

onto r. Thus we have (v0 — HSM) J_ T, and for each S the 
following equality holds: 

(HS)T(y0-HSm)=0 . (3.8) 

The arbitrariness of S implies that the operator 
HT(y0 —HSM) is trivial, that is 

HTHSM=HTy0 . (3.9) 

We have thus arrived at Euler's normal system of equations, 
which is characterised by a square matrix HTH. If the 
latter is regular, we finally find 

SM =H+y0, H+ EE (HTH)~LHT . (3.10) 

Matrix H+ is called pseudo-inverse with respect to H. It 
is defined by the general relationship HH+ = H, and when 
H is a square regular matrix, the pseudo-inverse matrix 
coincides with the inverse matrix H~L. Since the solution 
S[ = H~ly0 follows directly from Eqn (3.2) at £ 0 EE 0, it is 
called the inverse solution. The LSE is thus a generalisation 
of the inverse estimate to the case when the number of 
equations does not equal the number of unknowns. 

If the equation HS = v 0 has a solution, then SM is the 
vector which has the minimum length. If there is no 
solution, then SM minimises the sum of squares of 
deviations y^—HS, and has the shortest length among 
all the vectors that have this property [54]. 

As can be easily seen, the LSE is almost always beyond 
the boundaries of the positive hypersquare in the object 
space. Indeed, even when the object S0 is positive, the 
observed realisation of the image v 0 is almost sure to 
contain also negative components that are due to noise 
fluctuations. At the same time, it is easy to prove that the 
LSE applied to the whole set of feasible images Y0 is an 
unbiased estimate, that is 

(Sm(Y0))=S0, (3.11) 

and its variance matrix is 

D[Sm(Yo)] =<r2(HTH)-1 = / " ' , (3.12) 

where 

I = \HTH (3.13) 
a1 

is an n x n matrix. We will see below that / represents a 
particular expression of the familiar Fisher's information 
matrix [55] applied to the problem under consideration. 
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The importance of the LSE for the classical scheme 
stems from the fact that it has the minimum variance among 
the whole class of linear unbiased estimates, and thus is an 
efficient one in this class (Gauss-Markov theorem; its 
validity follows from the information inequality discussed 
below). The LSE efficiency holds for arbitrary unbiased 
estimates, on the additional assumption of normality of the 
background At the same time, the LSE variance is often 
inadmissibly large, so that one has to use a priori 
information to obtain a reliable solution. 

From expressions (3.6) and (3.9) one can easily obtain 
the following representation for the misfit of any element S: 

d2(y0, S) = S2(y0, Sm) + (S - Sm)THTH(S - Sm) ,(3.14) 

where 

82(yo,Sm)=yo(Em-P)y0 (3.15) 

is the LSE misfit, and P = H(HTH)~lHT =HH+ is the 
operator of orthogonal projection onto r. As the second 
term in the right-hand side of Eqn (3.14) is nonnegative, we 
once more verify that the misfit reaches minimum when 
S = Sm. Obviously, the degree of closeness of some estimate 
S to Sm is determined not by the misfit for S itself, but by 
an appropriately normalised difference of the misfits for S 
and Sm. A measure of the quality of estimate S in the 
interpretation of image y0 is therefore defined by the 
relation 

p2(S, y0) = 1 [S2(y0, S) - S2(y0, Sm)] . (3.16) 

It then follows from the expressions (3.13) and (3.14) that 

p2(S,y0) = (S-Sm)TI(S-Sm) , (3.17) 

where / is Fisher's matrix. 
As we have already said, it is unwise to require too small 

a value of p\{S, y0) for the desired S estimates under given 
characteristics of the background attempts to explain 
literally all, including statistically insignificant, image 
fluctua-tions only enhance the instability of the solution. 
Using the exact terminology, one can say that p\{S, Y0) is a 
statistic that characterises S, and for acceptable estimates 
one must not require that the statistic reaches the most 
extreme of all possible values. It is more relevant to define 
the feasible estimates by the condition A ^ Pi(S, Jo) ^ B, 
where the constants A and B restrict the region of the most 
probable values of the statistic p\{S, Y0). Using rela­
tion (3.17), we arrive at the inequality 

A ^ [S-Sm(y0)]Tl[S-Sm(y0)] ^B, (3.18) 

which determines the feasible estimate region (FER) as a 
layer between two ellipsoidal surfaces resembling a hollow 
melon (Fig. 4). As mentioned earlier, the centre of the 
ellipsoid almost always lies outside the positive quadrant in 
{S}. 

We studied the structure of FER for a fixed image y0. As 
regards estimates that are admissible for describing the 
entire image ensemble 7 0 ~f(y\So), it is useful to introduce 
a distance in the object space in analogy with expres­
sion (3.16) in the form of the relation 

p2(S0, S) = 1 <<52(F0, S) - S2(Y0, S0)) . (3.19) 

Figure 4. Feasible estimate region derived with the use of the 
Kul lback-Leib le r distance (single hatching) and of the image 
randomness test (double hatching). 

Using the known results for the moments of quadratic 
forms [46], we readily obtain 

p 2 ( S 0 , S) = (S-S0)TI(S-S()) . (3.20) 

Here the extreme closeness to the object S0 is not, of 
course, a defect of the estimate, so that the average for all 
images in FER is determined by the inequality 

(S-S0)TI(S-S0)^C , (3.21) 

which defines an ellipsoid centred at S0, which is quite 
understandable because the LSE is unbiased. The constant 
C is determined by the adopted confidence level for feasible 
deviations. 

The principal axes of the ellipsoids (3.18) and (3.12) are 
directed along the eigenvectors of the matrix /, and the 
lengths of their semiaxes are proportional to A ^ 2 , 
k = 1, . . . , n, where Xk are the eigenvalues of the matrix 
/. Thus, the form of FER is determined by the eigenvectors 
and the eigenvalues of positively defined Fisher's matrix I. 
Some of the Xk for typical inverse problems are extremely 
small, and then the FER very strongly stretches in the 
corresponding directions, assuming a filament-like form. 
Solution of the inverse problem is very inaccurate in these 
directions, and this extreme prolateness of the FER in fact 
indicates that the solution is unstable. 

I shall discuss in more detail the form and properties of 
the FER, including the condition of nonnegativeness of the 
object in Sections 4 and 6. 

3.4 Maximum likelihood estimate 
So far we have made no assumptions about the shape of 
the background distribution function. If it is known, then 
in addition to the LSE one can construct other useful 
solutions to the inverse problem. The basic solution is the 
maximum likelihood estimate (MLE). By definition, the 
MLE is an object S(y0) for which the probability f(jo\S) of 
getting the observed image y0, treated as a function of S, 
reaches maximum (Fig. 1): 

5(y 0 ) = argmax/fro |S) • (3.22) 

It will be readily seen that in the case of a model with 
Gaussian density f(y\S) and abandonment of the condition 
of nonnegativeness of the object, the MLE coincides with 
the LSE. These estimates remains close for other practically 
important cases as well, so one can expect the MLE to be 
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unstable like the LSE when attempts are made to explain 
statistically insignificant details of the image as precisely as 
possible. 

3.5 Fisher's matrix and information inequality 
Let us extend assumption (3.3) by considering the 
background counts £ to be normally distributed random 
variables. Then the distribution density of vector 7 0 in 
Eqns (3.1) assumes the form 

[(2n)m det C ] " 1 / 2 

1 (y-HS0)TC-\y-HS0) 

f(y\s0) 

x exp (3.23) 

whence 

ds2 ln / (y |S 0 ) HTC~1H . (3.24) 

Under these assumptions, Fisher's information matrix is 
treated as the average value 

'&s2 , 2 l n / ( F 0 | 5 0 ) (3.25) 

and coincides with the right-hand side of expression (3.24), 
or because of expression (3.3), with the representation 
(3.13). Accordingly, the inverse Fisher's matrix is 
r1 =G\HTH)-\ 

An important inequality for the variance of unbiased 
estimates arises in the parameter estimation theory, which 
was first put forward by Fisher [55] and later rigorously 
proved in Refs [57-61]: 

- l D{S) >/" (3.26) 

Here S is taken to be an arbitrary unbiased estimate, and 
the matrix inequality A ^ B means that the matrix A — B is 
nonnegatively defined. Most frequently, the inequality 
(3.26) is called Rao-Kramer's inequality, or information 
inequality, we shall use the latter name. If for some estimate 
equality obtains in (3.26), we will call this estimate the 
boundary estimate. Obviously, any boundary estimate is 
also efficient, i.e. its variance is less than that for any other 
estimate; however, in many cases there are no boundary 
estimates, but efficient estimates are of main interest for the 
investigator as before. Problems related to information 
inequality are discussed in more detail in Section 5. 

According to the variance matrix (3.12), the LSE is a 
boundary estimate in the class of unbiased estimates. This 
means that it is of no use to look for a better unbiased 
estimate; however, the LSE lies outside the region (3.18), so 
we have to look for an unbiased estimate with a larger 
variance, or admit a bias. The latter is preferable, since for a 
biased estimate one can achieve a smaller dispersion in the 
sense of expressions (2.6), than for the LSE. As the notion 
of estimate quality was defined precisely in this sense, such a 
search seems to be fully justified. 

Usually, one can take as a biased estimate the so called 
ridge estimator SY [62, 63] which coincides with the optimal 
estimate according to Wiener [12], Phillips [14], Two-
mey [15, 16], and with a regularised solution according 
to Tikhonov [17, 18]: 

ST = (HTH + iiEn)-lHTy0 (3.27) 

where \i is a parameter which is fitted in accordance with a 
given misfit. Comparison of expressions (3.27) and (3.10) 
shows that the addition \iEn shifts the spectrum of the 

reverse operator in the positive direction, and the scatter 
ellipsoid becomes rounder, which signifies increased 
stability of the problem. One can show [13, 47] that Sr 

is a Bayesian estimate corresponding to the exact a priori 
knowledge of matrix R in the linear relationship 
RSY + cp = 0, where <p is a random vector with zero 
mean value and independent components. Since we are 
interested in the case when the investigator has not at his 
disposal substantial a priori information about the required 
solution, we shall confine ourselves to a few, brief 
comments concerning the Sr estimate. 

The first is connected with Kolmogorov-Wiener 's 
theory of optimal filtration of random processes. This 
theory postulates explicitly that the object belongs to a 
Gaussian ensemble of 'signals', the background to an 
analogical ensemble of 'noises', and the Lagrange multi­
plier fi (a in Tikhonov's notations) is equal to the ratio of 
the background variance to the signal variance: \i = G\IG\. 
Thus, the stabilising role of a priori information manifests 
itself very clearly here. 

Instead of the identity matrix En in expression (3.27), 
Twomey's [15, 16] uses an arbitrary nonnegative definite 
matrix G which minimises the scalar quantity p = STGS for 
a given misfit value. When G = En9 the quantityp = STS is 
the total power of the required estimate. In the general case, 
the solution that is being sought coincides with the point of 
contact of the scattering ellipsoid and the smallest centred 
ellipsoid, STGS = const. 

We draw attention to the fact that the 'regularised' SY 

estimate is biased not only in the direction that corresponds 
to the largest axes of the ellipsoid, but also in the direction 
of the smallest axes. The latter circumstance is very 
undesirable, as one should not degrade the combinations 
of estimated parameters that have been determined with the 
highest accuracy. 

4. Image randomness test (IRT) 
Two procedures basically underly the approach under 
discussion. 

First, by using statistical considerations, we will narrow 
down the FER, an approximate form of which was found in 
Section 3. This is a sufficiently efficient way in the sense 
that a significant part of solutions that fall into the 
ellipsoidal layer (3.18) does not pass more sophisticated 
tests which any acceptable solution must satisfy. Never­
theless, the present statistical criteria insufficiently narrow 
down the FER, and in practice an undesirable freedom of 
choice between the different estimates of the object remains. 
The ultimate estimate choice in the FER is made in the 
framework of the second of the aforementioned procedures, 
which stems from information order considerations (Sec­
tions 5, 6). 

The present section deals with the possibilities provided 
by the first procedure. We abstain here from using a definite 
model of data formation and consider f(y\S) as being an 
arbitrary nonpathological function. The Poisson model will 
be frequently used for the sake of clarity. 

4.1 Formulation of the criteria 
An estimate S has been considered earlier as being feasible 
when the distance (3.16) between its average projection q(S) 
onto the image space and the observed image v 0 is within 
the limits recommended by statistics (see Fig. 1). In general, 
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this is quite a reasonable condition, but the concept of 
misfit (3.6) does not readily take into account all the 
possible types of differences between two images. For 
example, a long series of small-amplitude deviations of one 
sign can yield a misfit that does not stand out in any way, 
although the investigator, intuitively relying upon more 
powerful distinction criteria, may consider the test image, 
and thus the estimate S as well, as being unacceptable. 

For this reason one needs to specify explicitly the 
condition under which the test estimate S is considered 
as explaining satisfactorily the observed image. This con­
dition was formulated by Veklerov and Llacer [23, 24], and 
in a more general context, by Terebizh and Biryukov [29]. 

According to the terminology introduced above, the 
vector q(S0) = [qj(S0)] is the mean projection of the object 
S0 onto the image space; then the observed image y0 itself 
can be considered as being one of the random projections of 
the object S0. The notions of projections are applicable not 
only to the object S0, but also to its arbitrary estimate S (see 
Fig. 1). 

In general form, the image randomness test (IRT) can be 
formulated as follows: only those estimates S(y0) of an 
unknown object SQ are feasible, for which the observed image 
y0 is statistically indistinguishable from a random projection 
ensemble generated by S(y0). A more general definition of 
the FER follows from this: this is the entire population of 
feasible estimates (in the aforementioned sense) in the object 
space. 

Obviously, in the case of the specific model of image 
formation discussed in Section 2, the following particular 
formulation of the IRT applies: only those estimates S(y0) of 
an unknown object S0 are feasible for which the observed 
counts \y0j] can be considered as being realisations of 
independent in totality Poisson random variables with 
mean values equal to respectively. 

Subject to some conditions the IRT can be split into two 
requirements: (1) that random variables generating the 
observed intensity counts \y0j] be independent not only 
mutually, but also in totality, and (2) that these random 
variables obey Poisson distribution with a mean value 
vector [///(£)]. 

Some further elucidation of the IRT can be derived from 
Fig. 5, which shows in an arbitrary form the densities of 
intensity distribution p[xj, qj(S)] in individual image pixels 
for some estimate S (we neglect here the distribution 
discreteness). The feasible object estimate ensures that 
the density maxima [pj\ are not too far removed from 
the observed counts [v0 j], which can be considered as a 
multidimensional realisation of Poisson random variables 
that are independent in totality. 

As we shall see below, such a general and quite obvious 
requirement contained in the IRT allows us to find concrete 
ways of substantially improving the stability of the inverse 
problem. First, I shall show that in a multidimensional case 
an unconditional MLE almost always contradicts the IRT 
(I shall also show in Section 4.6 that the likelihood function 
itself does not provide an exhaustive description of 
solutions that satisfy the IRT). 

4.2 Should the likelihood be maximum? 
Since the maximum likelihood principle was introduced by 
Fisher [56] as a special method for parameter estimation (in 
an implicit form it had been used already at the end of the 
XVIII century), the MLEs have become not only the most 

p[xu qx(S)] 

Figure 5. Intensity distribution densities in the image pixels. 

popular, but also the most thoroughly theoretically studied. 
Under certain conditions the MLEs coincide with 
boundary estimates in the information inequality sense. 
Particularly good results are obtained in the asymptotic 
region when many independent realisations of the 
investigated random variable are available. 

Following Fisher, it is accepted to call the conditional 
density f(y\S) a probability if one means the dependence of 
this function upon y, and a likelihood when it is considered 
as a function of a second argument S. According to 
expressions (2.4) and (3.22), likelihood is a product of 
partial densities of the distribution 

p(n, q) = Qxp(-q) — , (2.4a) 
n\ 

and the MLE S(y) is found by maximising the likelihood in 
the region {S} selected by a priori information. 

Fig. 5 clearly shows why f(y0\S) can be taken as a good 
measure of the closeness of the observed counts \y0j] to the 
corresponding mean values [#,(£)]: if such closeness exists, 
then the product L 0 =f(y0\S) of partial probability den­
sities (shown in Fig. 5 by thick vertical lines) is not too 
small compared to L m a x . The latter corresponds to the 
product of maximum probabilities near [///(£)], which are 
arbitrarily shown by dashed lines. 

Strictly speaking, in the case of image randomness 
Y ~f(y\S), the likelihood L =f(Y\S) is itself a random 
variable, or, as one says, a statistic, whose observed value 
L 0 allows one to judge the generic character of the 
experimental results. It is clear that small values of L 0 , 
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L0 <̂  L m a x , indicate that the estimate S is unacceptable 
owing to poor data interpretation. However, as is usual in 
statistics, the situation when L 0 is too close to L m a x is also 
inadmissible: it is improbable that a single experiment will 
yield the extreme value of the statistic L. In other words, 
'too good' a data explanation conflicts with given statistical 
properties of the stochastic background and with the 
presence of photon noise. 

The tendency of the MLE S to 'explain' literally all 
details of the observed image independently of their 
statistical significance leads to a substantial difference 
between S and the sought estimate. The object nonnegative­
ness condition almost always yields an estimate S+ located 
at the boundary of the positive hyperquadrant, which 
differs from the inverse solution Sm ~ S (see Fig. 4); 
however, in typical inverse problems S+ proves to be an 
unstable estimate. Therefore, the region f(jo\S) > Cx with 
the constant Cx corresponding to a given confidence level 
must be excluded from consideration, as well as the region 
f(jo\S) < C2 that corresponds to test estimates S which are 
insufficiently close to S 0 at the confidence level a 2 . In fact, 
we are repeating here the arguments advanced in Section 3 
for a more general approach that does not use the specific 
data formation model. 

The MLE is unsatisfactory when there is obvious lack of 
information about the object; in contrast, when the number 
of estimated parameters is small and especially when 
samples are taken from a large set of data, the MLE 
often remains attractive. 

One thus should expect that for a single image 
realisation the sample value l n L 0 wil be close to the 
maximum of the statistics of distribution density 
InL = \nf(Y\S). Considering this density as being not 
too asymmetric (in fact it is close to the ^-distribution), 
one can state that the sample value of l n L 0 will be close to 
the mean value (\nf(Y\S)). For this reason it is natural to 
introduce, as suggested in Ref. [29], mean likelihood 
estimates S(y0) determined by the condition 

\nf(y0\S)~(\nf(Y\S)) . 

In the object space, they form a layer around S 
corresponding to the confidence level a ~ l / 2 . I shall 
treat these ideas more rigorously in subsequent sections. 

4.3 Relation to Shannon's information theory 
The probability theory gives two definitions of informa­
tion. The first was introduced by Edgeworth [64, 65] and 
Fisher [55] and characterises information about unknown 
deterministic parameters which is contained in a random 
sample. The second notion, introduced by Shannon [7, 8] in 
relation with the needs of the communication theory, 
characterises information about the realisation of one 
random variable which is contained in the realisation of 
another random variable stochastically connected with the 
first one. Under information theory one understands the 
group of concepts put forward by Shannon. In order not to 
confuse these notions, we will designate information 
defined by Fisher by /, and that defined by Shannon by / . 

Let a be a random variable uniformly distributed within 
a segment [0, 1]. The information / contained in the 
statement that the realisation of a is within the interval 
[x, x + s] is equal to — log2 £ bits. This value corresponds to 
the number of first signs in the binary representation of a 

which must be communicated in order to determine its 
location with an accuracy s (see, e.g., Ref. [66]). 

We consider now a discrete random variable which 
can be equal to 0 , 1 , . . . with probabilities / ? ( 0 ) , . . . , 
respectively. Added up, these probabilities give 1, of course. 
Drawing the random variable £ can be imagined as 
sampling the uniform variable a within a unit interval 
composed of segments with lengths / ? ( 0 ) , . . . If the 
obtained realisation a occurs in the segment p(n), we 
assume that { is equal to n. As was pointed out earlier, 
in this way we get the information Jn = — \og2 p(n) about 
the realisation of a. The same value characterises informa­
tion about the accompanying realisation The mean 
information 

(Jn)=H(i) = -YfP(k)log2p(k)9 

(4.1) 
k=0 

is described by Shannon as the entropy of the random 
variable In what follows, it is convenient to use natural 
logarithms instead of binary ones; the corresponding 
information unit is called nat (after natural digit). As is 
clearly seen, 1 nat = l o g 2 e ~ 1.443 bits. 

An arbitrary image 7 is a set of independent one-
dimensional random variables [Yj\ with partial densities 
[ / ( j j l ^ ) ] - To each of these random variables we can 
therefore attach the information 

J(Yj\S) = -lnf(Yj\S) . (4.2) 

Because of mutual independence of [Yj\, the information 
connected with the whole sample Y is 

m m 
J(Y\S) = "£j(Yj\S) =-lnY[f(Yj\S) = -lnf(Y\S) . 

(4.3) 

Thus, the total information is equal to the logarithm of the 
likelihood function taken with the reverse sign. By 
definition, the mean information is the entropy of the 
object: 

(4.0) H(S) = (J(Y\S)) = - ^f(y\S)lnf(y\S) . (4.4) 

To avoid misunderstanding, we note that the notion of 
entropy used here does not coincide with that used in the 
maximum entropy method. 

It is now clear that the arguments in favour of some 
mean and not the maximum likelihood are equivalent to the 
fact that for a typical random realisation we do not expect 
the minimum Shannon's information, but that close to the 
most probable one. In particular, estimates of the mean 
likelihood S(yo) coincide with mean information estimates 
which are determined by the condition 

J(y0\S)=H(S) (4.5) 

One should require condition (4.5) to be fulfilled only 
within natural statistical fluctuation of the random variable 
J(Y\S) which, as will be shown below, is y/m/2 (m is the 
number of pixels). 

For the most important case in practice, that of Poisson 
distribution of counts, the entropy in one pixel of the image 
can be represented in the form 

f1 dx 
H?(q) = q(l - Inq) + [l - qx - exp(-^x)] —— , 

J o
 x

 m U ~ x ) 

(4.6) 
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Figure 6. Dependence of the entropy of a Poisson random variable on 
its mean value. 

where q(S) is the mean intensity (Fig. 6). Summing 
contributions of the kind given by expression (4.6) over 
all pixels yields the total entropy of the image. The term 
outside the integral in Eqn (4.6) gives the first-order 
asymptotic when q —> 0. In the opposite case, when 
q > 1, we get the known expression for the entropy of a 
Poissonian random variable: H?(q) ~ In ^2uQq. Another 
asymptotic that is important for applications is that to 
Shannon's information variance of a Gaussian random 
variable: 

/ x 1 1 

D ^ 2 +
 4 ^ 

q> 1 (4.7) 

In fact, for the satisfactory fulfillment of the asymptotic 
relationships, only ^ > 2 — 3 is required, so that the entropy 
of an image stretching over m pixels is H ~ m In \/2nQq, and 
the standard deviation of the information is about \/mj2. 
One can find the proof for these relations in Ref. [29]. 

As for Shannon's information distribution function, it is 
easy to show that in the same approximation > 1 the 
quantity 

0(Y\S) =m + 2[j(Y\S)-H(S)] (4.8) 

obeys a ^-distribution with m degrees of freedom. 
Agreement of formulas (4.4) and (4.7) with this result 
becomes quite obvious if one takes into account [61] that 
ixl) = m, D(x2

m) = 2m. 
Thus, the mean information estimate region is achieved 

in image restoration by requiring the equality 
/ ~ H zb y/m/2 to be fulfilled. A more precise formulation 
of the criterion when to stop the iteration, based upon the 
accepted confidence level, can be readily indicated since the 
distribution of the random variable 0(Y\S) is known. Below 
we put forward arguments for the point of view that the 
equality J ~ H must be satisfied not only for the image as a 
whole (which is rather quickly achieved), but also for 
separate parts of the image with dimensions of the order 
of the PSF width (the local mean information principle). 

In practice, in the expression for \n f(y\S) it is useful to 
retain all multipliers that are independent of the inves­
tigated object; this allows us not only to measure 
information in standard units, but also to compare images 
with each other. 

4.4 A numerical example 
We consider a model object t8 (Fig. 7a) taken as a 
Gaussian density with standard deviation crob = 2 pixels 
and total intensity F = 104 events [29]. Fig. 7b presents the 
result of a random blurring of the object with a Gaussian 
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Figure 7. Gaussian object (a), its image (b), conditional M L E (c), and two estimates of the mean information (d, e). 
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PSF at G = 3 pixels with subsequent addition of a stochastic 
Poisson background with a mean level of y = 100 counts/ 
pixel (realisation t8_ 13). If for the image restoration we 
make use of the maximum likelihood method with the object 
nonnegativeness as the only a priori information, we arrive 
at the estimates S+ shown in Fig. 7c. Figs 7d and 7e show 
two global estimates of the mean information S; their 
comparison with the MLE attests to a significant increase 
of the stability of the solution. 

Fig. 8 shows the information and entropy for the 
restoration of two random realisations of object t8 by 
using the maximum and mean likelihood methods. In both 
cases the information calculated for object S0 itself is within 
the limits of one standard deviation from the mean value, 
i.e. the entropy. The entropy of the estimates changes 
comparatively little during the subsequent restoration, 
since H(q) is a slowly varying function (in general the 
entropy can be fixed at its sample value). Unlike the 
entropy, the information of the estimates changes signifi­
cantly and it is on its final value that the result depends. 
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Figure 8. Change of the information (—) and entropy (•) for simulations 
t8-1 (a) and t8-13 (b) restored by different methods. 

4.5 Kullback - Leibler's distance and the structure of the 
feasible estimate region (FER) 
Using Shannon's information J = —]nf(Y\S) as the test 
statistic leads to quite definite conclusions about the 
structure of the FER, which I shall now briefly discuss. 

In the framework of the pure significance test [67], we 
consider the null hypothesis that the true object S 0 coincides 
with its close estimate S9 that is 

(4.9) 

If one takes J(Y\S) as the test statistic, then as a measure 
of the 'distance' between the object S 0 and the test estimate 
S it is natural to choose the information difference between 
these two elements averaged ovqy f(y\S0) (see Fig. 1): 

P k l ( S o > S) = (J(Y0\S)-J(Y0\S0)) 

(4.10) 

The quantity pKL(S0, S) is an information measure of the 
distance between the distributions f(y\S0) and f(y\S) 
introduced by Kullback and Leibler [68]. 

Now let us find Kullback-Leibler 's distance for close 
objects SQ and S. For this purpose, we expand J(Y0\S) in 
Taylor's series in the vicinity of the point S 0 ; to the accuracy 
of second-order terms in s = S — SQ we get 

J(Y0\S) ~ J(Y0\S0) + g(Y0\S0)T s+l-sT <KY0\S0)e , (4.11) 

where the components of the vector g (y 0 | S 0 ) and the 
matrix </>(y0|S0) are determined by the formulae 

gk = 

$ik = 85; 85; 
l n / ( F 0 | 5 ) /, k = 1, . . . , n . 

(4.12) 

When substituting expression (4.11) into formula (4.10) 
one should take into account the relations 

(g{Y\S))=0, 

(<l>(Y\S)) = (g(Y\S)g(Y\S)J)=I(S) 

(4.13) 

(4.14) 

where I(S) is Fisher's information matrix. The first of these 
can be derived from the normalisation condition (2.2) if 
one differentiates it with respect to Sk and then multiplies 
and divides the expression under the summation sign by 
f(y\S). The second equality can be obtained after simple 
transformations for the case under consideration of a 
'good' enough distribution density (see, for example, 
Refs [43, 69]). As a result, we find 

p&L(S0, S)~-eTI(S0)e (4.15) 

which differs from the distance p2(S0, S) defined by 
formula (3.20) by the factor 1/2, and, what is particularly 
important, by the dependence of Fisher's matrix on the 
unknown object S0. It will be readily seen that this last 
circumstance indicates the presence of photon noise in this 
model, which is not there in the model of deterministic 
image blurring. This fact makes the image restoration 
problem essentially a local one, as it should be on simple 
intuitive grounds. 

By specifying the significance level of feasible fluctu­
ations and the corresponding boundary value for 
Kullback-Leibler 's distance of feasible estimates S, we 
arrive at the mean FER in the form 

(S-S0)TI(S0)(S-S0)^C (4.16) 

Like the inequality (3.21), this last inequality describes an 
ellipsoid in the object space with the centre at S0. 

Since the object S 0 we are looking for is still unknown, 
inequality (4.16) is mainly of theoretical interest. In 
practice, we use information about the sample FER that 
corresponds to the observed image y0. It is easy to show 
that in this case the sample FER is determined by 
inequalities similar to the inequality (3.18): 

A ^ (S-S)T <l>(y09 S)(S -S) , (4.17) 

where S(y0) is an estimate that corresponds to the 
unconditional maximum of the likelihood function (see 
Fig. 4), and the constants A and B are determined by the 
significance levels of feasible fluctuations. In deriving 
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inequality (4.17), one should use a distance between S and 
S for a fixed image v 0 given by the formula: 

p\S, S\y0)=J(y0\S)-J(y0\S) = ln f(yo\s) 
(4M 

f(y«\s) 

make an expansion like (4.11) in the vicinity of S(y0), and 
take into account that at the maximum point g(y\S ) = 0. 
The matrix </>[v0, ^(jo)] with elements 

*2 

<l>ik[yo> s(yo)] (4.19) 
s=s 

can be considered as the sample Fisher's matrix for the 
given image. 

For the Poisson model of image formation defined by 
the density (2.4), Fisher's matrix has the form [27] 

hahjk I(S)=HTQ(S)-1H (4.20) 

where 

G ( S ) = d i a g [ 9 l ( S ) , ...,qm{S)] (4.21) 

is a quadratic matrix with qj(S) located on the main 
diagonal and zero remaining elements. As has been pointed 
out earlier, a specific feature of inverse problems is that 
images corresponding to remote objects differ little from 
each other. For this reason we can replace, with an 
acceptable accuracy, in expression (4.20) the mean values 
qj(S0) by really observed counts y0j9 so that 

Iik(S0) : E 
j = i 

HJI HJK 

yoj 
(4.22) 

Since the MLE S(Y0) is on average a feasible estimate, 
we can expect from relation (4.16) that S(Y0) is distributed 
approximately normally with a variance matrix I~l(S0). 
Indeed, let us as an approximation replace the random 
matrix (f)(Y0\S0) by its mean value I(S0) in the second-order 
term of the expansion (4.11), and then differentiate the 
equality s = S — S0. Then, taking into account the defini­
tion of MLE and the relationship 

8 T A 
— a Aa 
oa 

= 2Aa , (4.22a) 

which is valid for an arbitrary vector a and a symmetric 
matrix A [54], we find 

S(Y0) " So * - / - 1 ( S 0 ) g ( F 0 | 5 o ) • (4.23) 

It follows from relations (4.14) and (4.23) that 

D [S(Yo)] = < [S(Yo) - So] [S(Yo) - S0]T ) = / (S„). 

(4.24) 

The last relation extends expression (3.12) to a more 
general data formation model. 

4.6 Insufficiency of the likelihood function 
As one would expect, by using a Gaussian approximation 
for the likelihood function, we arrived at a FER which 
locally has the same form of the ellipsoidal layer as that 
obtained by using misfit as a measure of distance between 
estimates (Section 3). It makes no sense to refer to higher 
orders of the likelihood function expansion, since both 
metrics (3.16) and (4.18) are insufficient for full description 

of possible distinctions between random images generated 
by the objects that are being compared. 

Let us assume, for example, that the original object S 0 is 
an extended source with a flat brightness distribution, and 
the mean background does not change within the format 
limits. If in a randomly blurred image y0 the group of 
maximum counts over the entire field of view is transferred 
to adjacent pixels, the resulting picture Vq will have the same 
probability as the real image. It is, however, clear that 
images y0 and Vq that are equivalent from the likelihood 
point of view cannot be considered as being really 
equivalent, as a statistically significant local brightness 
increase has to be interpreted by the corresponding peak 
in the brightness distribution of the object . 

Thus, instead of the likelihood function (or in conjunc­
tion with it) in the inverse problem solution it is desirable to 
rely upon some noncommutative statistic that takes into 
account smooth systematic deviations of the compared 
images. An analogical need has been felt for a long time 
in the analysis of classical data [69], but the majority of the 
statistics used there have an artificial form. The same 
problem arises in stochastic dynamics and in studies of 
the quality of pseudo-random number generators. 

One could achieve a natural choice of the test statistic by 
juxtaposing a powerful enough alternative to the null 
hypothesis (4.9); however, a subjectivity due to the choice 
of the alternative will then be introduced. For this reason, in 
comparing the images we shall use for the time being a 
number of known statistical criteria like those listed in 
Ref. [70], which are based on studying a sample distribu­
tion of series lengths, the power spectrum, uniformity of 
one- and two-dimensional sample distribution densities for 
specially transformed counts, etc. Taken together, these 
tests check a whole range of alternatives without specifying 
them explicitly. Experience shows that the corresponding 
FER contraction is quite noticeable, especially in the 
restoration of objects with an intense high frequency 
'tail' in the power spectrum, i.e. with sharp details in their 
brightness distribution. 

It is not appropriate here to consider in detail the related 
technically complex questions [29, 31], all the more so 
because no simple and effective statistic which naturally 
generalises the likelihood has as yet been found. Essentially, 
one uses now a particular realisation of the IRT which 
includes a sample of several tests complementing each 
other. The question of the existence of a unique general 
statistic that would allow one to test nonrandomness of a 
given finite number sequence most effectively still remains 
open. 

The notion of complexity (entropy) Kv of a sequence of 
length v which was introduced by Kolmogorov [71, 72] (see 
also Refs [73-77]) appears to be very attractive in this 
context. In fact, the image randomness test requires 
maximum Kolmogorov's complexity of the image gener­
ated by a trial object (after standard 'uniformising' data 
transformation). Thus, by choosing v image fragments, the 
FER is determined by the condition Kv(y0\S) ~ v with the 
usual stipulation about the adopted significance level. 
Theoretical and model studies in this direction would be 
of great significance. 

4.7 Local nature of the inverse problem 
As the total PSF width W ~ 2A is finite, image segments 
with a length of the order of W pixels can be considered as 
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'object-independent' image fragments. If several counts 
(approximately 2; the precise number depends on the PSF) 
are located within each interval with length A, the well-
known counts theorem guarantees conservation of all 
information about the object contained in the image. 
Image discretisation will be considered in Section 7 in more 
detail, but now it is sufficient to assume that the minimum 
image fragments are chosen to satisfy the conditions of the 
sampling theorem. 

Obviously, the preceding analysis can be equally applied 
to the entire image and its individual fragments. For 
example, we may try to achieve statistical closeness of 
information J(yo\S) and entropy H(S) in separate parts of 
the image. However, statistical significance of local devia­
tions depends on the extent of the whole image, so that the 
image restoration quality is also determined by the extent of 
the image. 

Indeed, let us assume that a blurred image of a closely 
spaced binary star is in the field of view. If it occupies a 
significant part of the entire image format, the observed 
deviation from white noise is highly significant, and much 
work is required for restoration in order to establish binary 
nature of the object. Now let us suppose that the field of 
view is much larger than the image of the star. Then 
fluctuations are possible within the boundaries of the whole 
format with a size and amplitude comparable to those of the 
star image, and adequate statistical analysis may require no 
image restoration whatsoever. Essentially the same argu­
ments have been used for a long time in engineering [78] 
and in astronomy, for example when estimating the limiting 
stellar magnitude under given observational conditions. 

This implies that in restoration of an image with a large 
format one should specify the general significance level 
for admissible deviations and then try to make the local-
deviation distribution function consistent with this signifi­
cance level. At the same time, the observer has often at his 
disposal a priori information about individual object 
locations within the field of view, or is interested in a 
particular small region. Then the significance level should 
be locally specified, and the expected image restoration 
quality will be higher. An algorithmic implementation of 
this approach is discussed in Ref. [31]. 

5. Informational constraints 
The main reason for the instability of inverse problem 
solutions became clear quite a long time ago (see, for 
example, Refs [14, 51, 79]): the investigator does not have 
the information needed for determining the original object 
with the required accuracy. However, correct diagnosis is 
insufficient for effective treatment, and a quantitative 
description of the situation is also required. This can be 
partially obtained in the framework of Shannon's informa­
tion theory, corresponding conclusions of which are 
considered here in Sections 5.2-5.4. However, at first 
we need to discuss in greater detail the consequences of 
Fisher's information inequality briefly mentioned in 
Section 3.5. 

5.1 General form of information inequality 
Relationship (3.26) relates to arbitrary unbiased estimates, 
that is estimates which on average coincide with the 
original. Not disputing the importance of unbiased 
estimates, in Section 3.5 I presented arguments in favour 

of the point of view that in multidimensional estimation 
problems one can achieve a smaller dispersion of the 
estimate (2.7), i.e. of the chosen measure of the quality of 
solution of the problem under consideration, by using an 
appropriate bias. Therefore let us consider a general form 
of information inequality for an arbitrary estimate S*(Y) 
from class Kb with some bias vector b(S) defined by 
formula (2.5). We shall consider an arbitrary element S 
from the object space which we shall treat as the original. 

Let f(y\S) be the distribution function of an m-
dimensional data vector Y that depends on n unknown 
parameters S l 5 . . . , Sn, and 

7*(5) = { W , l n / ( F | 5 ) a f c l n / ( F | 5 ) ) ( 5 - 1 } 

be the elements of Fisher's symmetric matrix I=[Iik]; 
i, k = 1, . . . , n. In the cases which interest us the densi ty/ 
satisfies regularity conditions [43] which permit us to 
transform the initial definition (5.1) to a form known from 
expression (3.25) 

7 ^ ) = ( - a s f e , n ^ ) - ( 5 - 2 ) 

Further, let B(S) be a quadratic matrix with components 

Bik(S)= ^-b,{S) . (5.3) 

The scatter matrix Q(S) of the estimate S* is defined by 
relation (2.6), and matrix co of size n x n is specified as 
follows: 

co(S) = [En+B(S)]r\S)[En+B(S)]T +b(S)b(S)T . (5.4) 

Then for any estimate S* that belongs to class Kb the 
following information inequality holds: 

Q(S) ^ co(S) , (5.5) 

where the matrix inequality is equivalent to the matrix 
Q — co being definitely nonnegative. Geometrical sense of 
inequality (5.5) is that the ^-dimensional scattering ellipsoid 
for any estimate does not penetrate in any direction into 
the ellipsoid defined by matrix co. For unbiased estimates 
b(S) = 0, co(S) = / _ 1 ( S ) , and Q(S) coincides with the 
variance matrix so that relation (5.5) takes the form 
(3.26). The information inequality is a consequence of the 
well-known Cauchy-Bunyakovsky-Shwartz inequality 
written in a matrix form [43]. 

From relation (5.5) we find the mean-square scatter of 
individual components of the estimate Sk about the true 
values Sk 

Qkk(S) = ((S*k-Sk)2)^cohk(S) . (5.6) 

As has been said earlier, the investigator's aim is to find an 
estimate S* whose diagonal elements Qkk of the scatter 
matrix are as small as possible. The absolute values of 
nondiagonal elements of this matrix characterise the degree 
of linear dependence between the estimate components; 
obviously, the informativeness of individual components 
decreases when this dependence is strong (see Section 6). 

It is possible to reach the lower boundary of the 
information inequality if and only if the distribution 
density f(y\S) belongs to the so-called exponential family: 

^f(y\s) = ^2s*(y)<Pi(s) + Hs)+x(y), (5.7) 
1=1 
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where ij/(S) and %(y) are scalar functions, and vector (p(S) 
has a matrix of derivatives of the type 

8 5 , 
•<Pi(S) = I(S)[E„+B(S)Y (5.8) 

If the representation (5.7) is valid, then S*(Y) is a unique 
boundary, and hence, an effective estimate of the object S. 

For the Poisson model, we find from relation (2.4) that 

m m m 

In f(y\S) = ^ l n ^ S ) - - £ > > V ! ' < 5 " 9 ) 

j ' = i J'=I J'=I 

and in the general case when m ^ n, the first term on the 
right-hand side of Eqn (5.9) is not in a form required for 
the density to belong to the exponential family. This means 
that for the Poisson model of image formation no 
boundary estimate exists. 

This fact by itself, being due only to the choice of the 
image formation model, introduces no principal difficulties 
into the problem: it was stressed in Section 2 that the 
problem consists of finding an effective estimate indepen­
dently of the existence of the boundary estimate. Moreover, 
from the practical point of view, an efficient estimate may be 
close to the boundary given by the information inequality. 

Fig. 9 shows Monte-Carlo simulations for a model 
object Tron'. The extents of the object and its image are 
n = 17 and m = 21 pixels, respectively, the object intensity 
is F= 12 200 events. In accordance with the Poisson 
distribution, 100 randomly blurred images of the object 
were simulated, and then a uniform Poisson background 
with a total mean brightness of 2100 events was added to 
every image. Each of the images obtained was restored by 
using the maximum likelihood estimate method, with object 
nonnegativeness being the only a priori information (in this 
case MLE instability does not manifest itself; the resons for 
this will be discussed in Section 6). 

As with any method of inverse problem solution, the 
results of restoration of individual image realisations differ 
from each other; our aim must be to obtain object estimates 
that have the smallest possible bias relative to the true 
object and the smallest possible scatter around it. In this 
case the bias (Fig. 9a) proves to be much less than the 
standard deviation of the ensemble of the estimates. Fig. 9d 
compares the real estimates of brightness scatter in 
individual pixels with the minimum scatter dictated by 
the information inequality (in the first approximation we 
assumed that the estimate is unbiased). As is seen from the 
figure, the error corridor of restoration by the maximum 
likelihood method is close to the theoretically narrowest one 
under the conditions considered here. Thus, in the present 
case one can take the conditional MLE S+ as an efficient 
estimate. 

In practice, the situation can be often more complex 
because of a more pronounced instability that manifests 
itself when FER is very elongated. As mentioned earlier, 
this last circumstance arises when some eigenvalues of 
Fisher's matrix I(S0) are small, so that the corresponding 
diagonal elements of the inverse matrix I~l in the 
information inequality are very large. If under these 
conditions we are interested only in unbiased estima­
tions, the information inequality sets the lower boundary 
for their variance at an unacceptably high level. The only 
way to reduce the dispersion is to take estimates from class 
Kb with a bias b(S) such that the terms [En+ B(S)] in 
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Figure 9. Object ' I ron ' (a, solid curve), with examples of its blurred (b) 
and restored (c) images. The solid circles in panel (a) show mean object 
estimates, the dashed lines show the error corridor for individual 
estimates ( i c ) . The solid circles and the dashed line in panel (d) 
correspond to real and theoretically attainable restoration accuracies, 
respectively. 

identity (5.4) compensate 7 - 1 . This does not guarantee by 
itself that the efficient estimate in fact approaches the 
theoretical lower boundary, but at least leaves a possibility 
of obtaining a practically acceptable solution. The difficulty 
is, however, that the investigator studying a particular 
image cannot specify the required bias class in advance. 

The example from Section 2 with the stopped clock 
shows clearly enough that one cannot avoid specifying the 
class in which the object estimates are sought. At the same 
time, the aforesaid makes us look for possibilities of 
specifying such a nontrivial class without resorting to a 
fixed class of estimate bias. The questions connected with 
specifying such a class need further study. 
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5.2 The Kolmogorov-Wiener optimal filter 
The notion of information introduced by Shannon [7, 8] 
relates to two realisations of random variables or random 
processes connected with each other. Since in the classical 
approach the object S0 is not an element of a probabilistic 
ensemble, we cannot find directly Shannon's information 
about S0 contained in a random realisation of its image y0. 
For this reason, a particular image restoration method 
cannot rely upon some representation of Shannon's 
information. However, in discussing a typical situation 
that arises when solving inverse problems from some class, 
it is quite appropriate to introduce the corresponding 
probabilistic ensemble and to analyse the solution in the 
framework of the Bayesian approach. Consequences of this 
point of view are discussed in Sections 5.2-5.4. 

As a probabilistic ensemble of objects (signals, after the 
terminology accepted in radio-physics) with properties 
which are assumed to be known to the investigator, we 
shall consider, as usual, a stationary Gaussian process s(x) 
in an infinitely large interval with a spectral density gs(f), 
where / is the spatial frequency. An additive background, 

belongs to an analogical ensemble of noises with a 
spectral density We neglect photon noise and assume, 
for the sake of simplicity, that the mean signal and the mean 
background are zero and the PSF depends only on the 
difference in the coordinates (i.e. is spatially invariant). 
Then the image 

x — x ') s(x') dx ' + £(x) (5.10) 

also belongs to a Gaussian random functions ensemble. 
From now on we will omit the infinite integration limits. 

As mentioned in the Introduction, the difficulty with the 
conversion of expression (5.10) is connected with the fact 
that one does not know the particular realisation of the 
additive noise. We use the script letter T to designate the 
Fourier transform T of an arbitrary function, so that, for 
example, ^F[s(x)] = S(f). Then, by using Fourier trans­
forms, model (5.10) can be written as 

Y(f)=H(f)S(f)+E(f) , (5.11) 

where H(f) = F[h(x)] is the modulation transfer function 
(MTF). The MTF for any optical system vanishes above the 
cut-off frequency fc [80]. This means that picture details with 
size less than ~ / c

_ 1 are not transmitted by electromagnetic 
radiation; they are said to be 'cut off by the image 
formation system. In contrast, the noise power spectrum 
q^(f) usually extends far above the cut-off frequency into the 
high-frequency region. As seen from expression (5.11), 
under such conditions the image contains very little 
information about the high-frequency 'tail' of the signal 
S(f) which is simply 'drowned' in the noise. In other words, 
one could vary the form of S(f) nea r / c in a wide range with 
practically no change in the image. Thus, instability of the 
inverse solution is most often connected with the presence of 
uncontrollable high-frequency intensity oscillations. 

If one takes the solution (5.10) at £(x) = 0 as an 
estimate close to the original, then, as noted in Sec­
tion 3, we get an inverse estimate S[(x) = T~l[R[(f)Y(f)], 
where we introduced the inverse filter 

/ ? , ( / ) = [ « ( / ) ] _ 1 . (5.12) 

Since at zero noise one ascribes all image fluctuations to 
the original, it is hard to expect a high quality for the 

inverse solution. Indeed, owing to the smallness of \H(f)\ at 
high frequencies, filter (5.12) improperly amplifies the 
amplitudes of random fluctuations which are unavoidably 
present in the image. 

The problem of noise filtration and of simultaneous 
signal deconvolution is posed by Kolmogorov [11] and 
Wiener [12] as follows. It is required to find a linear filter 
r w ( x ) such that, when applied to experimental data in the 
form 

(x) = | r w ( x — x ')y(x ') dx ' (5.13) 

it would give a signal estimate sw(x) that is closer to the 
signal s(x) in the sense of the mean-square deviation: 

£w = ~ s ( x ) ] 2 ) = m i n . (5.14) 

In the case of spatially invariant PSF, the problem is solved 
easily (see for example Ref. [81]). The frequency character­
istic of Wiener's optimal filter ^*[rw(x)] = 7? w ( / ) is found 
to have the form 

Rw(f) = 
H(-f) 

H(f)\2 + Sdf)/Ss(f) 

where we introduced the factor 

\H(f)\2 

\H(f)\2 + gdf)/gs(f) 
(5.16) 

It is the rapid decrease of # w ( / ) at high frequencies that 
prevents oscillations typical for inverse filtration from 
increasing. Please note that appearance of the factor <PW(/) 
is due to the presence of a priori information about the 
ensembles to which the signal and noise belong. 

It can be readily shown that if in expression (5.13) an 
arbitrary linear filter r(x) is used instead of Wiener's one, 
the power spectrum for the resulting solution sr(x) will be 

gr(f) = \R(f)\2[\H(f)\2gs(f) + g((f)] , (5.17) 

and the variance sr(x) is, as usual, equal to the integral of 
this expression over all frequencies. By substituting 
Eqn (5.15) into this expression we get the power spectrum 
of the optimal estimate: 

(5.18) 

Since # w ( / ) ^ 1, the variance of Wiener's solution is less 
than the true signal variance 

(5.18a) 

that is, the optimal filter has apronounced smoothing effect 
on the estimate. The difference of variances, = of — 0w, 
is equal to the mean-square error associated with the use of 
Wiener's filter. We have 

<& = j [ l - * w W ] & W d / = j — g(if) 
(fW+gdfi/sAf) 

df. 

(5.19) 

Knowledge of the signal and noise power spectra is the 
price one has to pay for getting stable object and error 
estimates in the version of the Bayesian approach con­
sidered here. As seen from expression (5.15), the stability is 
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due to the presence of the ratio g^{f)/gs{f) in the 
denominator, which does not allow the optimal filter to 
approach the sharply increasing inverse filter R[(f) at high 
frequencies. If calculation of filtration errors is not 
required, it is enough to know only the signal-to-noise 
ratio, and not each of these functions separately. The 
methods developed by Phillips [14] and Tikhonov [17, 
18] presume that the signal and noise belong to Gaussian 
ensembles with proportional spectral densities, so that 
g^{f)/gs{f) = fi = const. The unknown parameter /JL, which 
is usually referred to as the regularising parameter, is chosen 
in such a way that the solution yields a smooth image which 
is consistent in the mean-square-deviation sense with the 
observational data. 

Expression (5.15) for Wiener's filter is also easy to find 
by using straightforward maximisation of a posteriori 
probability density in the framework of standard Bayesian 
considerations. 

Returning to expression (5.17), we note that the require­
ment gr(f) = gs(f), that is that the signal power spectrum is 
equal to its linear estimate, leads to a homo mo rphous filter 
(first described by Cole [82]) with the frequency character­
istic 

| * h ( / ) | = \H(f)\2 + 
gs(f) 

-1 /2 

(5.20) 

i.e. < ^ h ( / ) — V ^ w C / ) - This filter is used when a better 
restoration of high spatial frequencies is required than that 
possible with Wiener's filter. 

5.3 Information about the original for Gaussian 
ensembles 
Shannon's information theory allows one to look at the 
main concepts used in constructing the optimal filter in a 
new light. 

According to Pinsker [83], the mean information about 
realisation of a Gaussian process s(x) of unit length, which 
is contained in the realisation segment also of unit length 
for a Gaussian process y(x) connected with the first one in a 
stationary mode, is 

. I j i „ [ i - > ^ ' 2 n J(y, s) =J(s, y) 
gyU)gsU)\ 

d / , (5.21) 

where gys(f) is the mutual spectral density of the processes, 
and gy(f) and gs(f) are their partial spectral densities. Here 
and below we use natural logarithms, so that information is 
measured in units of nat c m - 1 . The spectral densities for 
model (5.10) are known to have the form 

gy(f) = \H(f)\2gs(f)+gt(f) , 

gyS(f)=H(f)gs(f) (5.22) 

By substituting Eqn (5.22) into Eqn (5.21), we arrive at the 
expression 

|2 gs(f)] 
J(y, ) = I | l n [ l + | / / ( / ) | 2 

8((J). 
df, (5.23) 

obtained by Fellgett and Linfoot [84] by optical image 
analysis. 

We also take into account the fact that every optical 
system has a cut-off frequency fC9 above which the MTF is 
zero [80]. By choosing the PSF width A = / c

_ 1 as a 
characteristic picture extent, we obtain the following 

expression for the mean mutual information between the 
signal and image portions of length A: 

My>s) = 
fc 

In 1 + | W ) | 2 
s(f) 

fc ' 
(5.24) 

Using the general formula (5.21), one can easily obtain 
an expression analogous to (5.23) for the mean mutual 
information between the image and the background: 

In 1 + -
\H(f)\2gs(f)L 

df. (5.25) 

This information for real systems is infinitively large. If one 
restricts oneself to a spatial frequency range \f\ < / c and 
image and background portions of width A, then 

My, 0 In 1 + : 
gd.f) 

fc ' 
(5.26) 

\H(f)\gs(f)L 

According to expression (5.23), the mutual information 
of the image and background portions is represented as a 
spatial frequency integral of some function Jf(y, s) that can 
be treated as the corresponding spectral information density. 
It is very significant that under typical conditions this 
function rapidly decreases with frequency. In contrast, 
the analogous spectral information density between the 
image and background Jf(y, in expression (5.25) rapidly 
increases with frequency, so that a critical frequency f* which 
depends on the signal-to-noise ratio exists, above which 
information about the signal 'drowns' in the information 
about the noise which is of no interest to us. This is the 
reason why it is difficult to estimate whether the high-
frequency oscillations in the object brightness distribution, 
which are so typical for instability, are real not not. 

The expressions given above are insufficient for further 
analysis, since they enable one to find mutual information 
only between finite parts of the image and the signal, 
whereas we need to estimate object brightness at individual 
points. The concept of mean partial signal s(x) information 
contained in the entire image y(x) should now be introduced. 
We denote this quantity by J[y, s(x)]. In model (5.10) it can 
be found as follows. 

Let y(x) be an arbitrary Gaussian stationary process in 
a possibly infinite interval, £ be a Gaussian random variable 
with a variance o\ connected with the process y(x), and e^ i n 

be the least mean-square error of the linear approximation 
of £ by the process y(x). Then, as was shown by Gel'fand 
and Yaglom [85], the mean mutual information between £ 
and the process y(x) is 

Ay, 0 
l. 
-In (5.27) 

Now we apply this general result to model (5.10). 
Consider the image as the process y(x), and the signal 
at an arbitrary point s(x) as £. Then o\ = a2, and the mini­
mum error of the linear approximation is reached for the 
Kolmogorov-Wiener filter and is e^. As a result, the 
information about a particular value of the object, which is 
contained in its blurred and noisy image, is represented as 

J[y, * ( x ) ] = 5 l n ( | (5.28) 

where = $gs(f) df, and is determined by formula 
(5.19). It is easy to show that J[y, s(x)] is nonnegative. 
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2 
two 

One can get a clearer concept of the information 
J[y, s(x)] by equating it to the known expression 

±ln(l -p2) for the mean mutual information between 
Gaussian random variables with a correlation 

coefficient p. This definition yields a correlation coefficient 
p[y, s(x)] between a stationary Gaussian process y and a 
particular value s(x) of another similar process, which, by 
using expressions (5.19) and (5.28), can be represented in 
the form 

p2[y, s(x)] = 1 - J 
i + \HU)\2g,(f)/gtU) 

J & ( / ) df (5.29) 

The notion of mean information about a particular 
value of the original, which is contained in its blurred 
image, allows us to give a new interpretation of the 
Kolmogorov-Wiener optimal filter. We want to find 
such linear filter of type (5.13) with a kernel r(x — x ' ) 
that the estimate of object sr(x) obtained by using this filter 
has the same information about the particular value of the 
original s(x) as that contained in the entire image y, i.e. that 
the following equality holds 

J[sr(x), s(x)] =j[y, s(x)] (5.30) 

The filter we are looking for turns out to coincide with 
Kolmogorov-Wiener 's one [86], with the above condition 
being necessary and sufficient. Thus, the optimal filter 
'collects' all the information given by the image about the 
corresponding value of the original into a point estimate. 

5.4 A numerical example 
We illustrate the relations given above by a typical enough 
example when the signal correlation function has an 
exponential form so that the corresponding spectral 
density is 

s(f) 
gM s(fi) (5.31) 

i • (///;) */> 
where fs is a characteristic signal frequency. Let the 
background be a white noise, i.e. = const, and the 
PSF have a diffractive form: 

1 2 h(x) = — sine 
A 

(5.32) 

where the function sine (t) is defined by the relation 

sm(jzt) 
sine (t) = -

nt 
(5.33) 

In this case the width of the PSF A is equal to the distance 
from the central maximum to the first zero of h{x). The 
corresponding MTF is a 'triangular' function: 

H(f) l / l / / c 1/1 

1/1 

< / c 

> / o 
(5.34) 

where fc = A~ is the cut-off frequency for the image 
formation system. By the way, expression (5.32) describes 
with good accuracy the known Airy solution [87] for a 
point-source image made by an ideal optical system with 
circular aperture. As was shown by O'Neill [88, 89], the 
precise MTF for this system differs little from that 
described by expression (5.34). 

We introduce dimensionless parameters in the form of 
the ratio of the cut-off frequency to the characteristic 
frequency and the signal-to-noise ratio at zero frequency: 

(5.35) 

Then the formulas (5.24), (5.26), and (5.29) take on the 
following form: 

In 1 + A * ( l - * ) 2 

1 + a2x2 

1 + a2x2 1 

My, s)=\] 
Jo 

p2[y, s(x)] = ^ | a r c t a n a 

dx 

dx 

(5.36) 

(5.37) 

arctan ( — ) + arctan 

R = \Jii + (\ +n)a2 (5.38) 

It is seen from Fig. 10 that information about the signal 
My9 s ) increases with increasing signal-to-noise ratio 
approximately as log/i for all cut-off frequencies. At the 
same time, information about the background dominates at 
low signal-to-noise ratios, so that in that region signal 
restoration is strongly hampered. We stress that this time 
we speak of integral information that relates to all 
frequencies below the cut-off frequency fc. 

log ^ 

Figure 10. Information about the signal (solid line) and background 
(dashed line) as a function of the signal-to-noise ratio for different 
values of parameter a. 

The function p(fi) calculated from expression (5.38) is 
shown in Fig. 11. We see that the correlation coefficient 
between the image and a particular count taken from the 
object reaches a significant value only for those cases when 
the characteristic signal frequency range is located within 
the system transmission band (i.e. at a > 1). In practice, one 
usually comes across the opposite: the image formation 
system cuts off a significant part of the signal power 
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Figure 11. Correlation coefficient between the image and a particular 
value of the original as a function of signal-to-noise ratio for different 
values of parameter a. 

spectrum, so that the information about an individual point 
of the object provided by the entire image is very small. 

The aforesaid unequivocally leads to the conclusion that 
in the general case it is not individual counts from the 
original that will be restored, but only some combinations 
of them, the object's junctionals, about which we have 
enough information. These functionals should as much as 
possible be independent of each other, in order that the 
estimate of each following functional would add more new 
information about the original. These properties are 
inherent to principal components introduced by Hotelling 
[90] in a general statistical context. However, I shall not 
discuss the corresponding approach in the framework of the 
Bayesian scheme, and prefer to use it in the next section, 
where I return to the analysis of the classical scheme with a 
deterministic sought object. 

6. Occam's razor estimation 
It has been often emphasised (see, for example, Ref. [91]) 
that a model constructed for any physical phenomenon is 
in principle not uniquely defined, and the choice of one of 
the models consistent with the data is based on the criteria 
of simplicity and predictive force. I shall try to apply the 
first of these criteria, which was explicitly formulated 
already by Occam, to solve the inverse problems in the 
same spirit as that used for the construction of physical 
models. 

In the previous section we found that the observed 
image usually contains too little information to allow one to 
be able to restore the intensity distribution of the object at 
individual points with the required accuracy. The informa­
tion we have allows us to estimate only some functions of 
the individual counts; for example, at a given mean 
background it is quite possible to estimate the total 
brightness of the object independently of the PSF. It is 
natural to expect that there exist other functions similar to 
the total brightness, more precisely the object's functionals, 
which provide solutions to the inverse problem. The 
stability of the latter means that the set of functionals 

gives a sufficiently complete representation of the properties 
of the local object. Most often we deal with an unstable 
inverse problem, and then the set of functionals available 
for reasonable estimation becomes so narrow that it is 
consistent with a wide set of feasible objects with different 
degrees of complexity that are located in the FER. 

Obviously, the set of functions described here can be 
determined by various means. We could, for example, 
estimate not the brightness distribution of the object, but 
the Fourier components corresponding to it. The part of the 
Fourier components that is estimated with the smallest 
errors contains the main information about the object, so 
that, according to the simplicity criterion, only this part 
should be taken into account in estimating the object. 

With all the attractiveness of this approach, one needs to 
say that the use of Fourier transforms here appears artificial 
in many respects. With even more success we could choose a 
system of Haar 's coefficients, which enables one to give not 
only local, but also uniformly convergent description of the 
object, or settle for another system of functionals. The 
shortcoming of any system selected in advance such as 
generalised Fourier coefficients is that the system is not 
adapted to a particular object; in other words, eigenfunc-
tions of the operator that generates the given system (for 
example, a sinusoid), do not take into account the proper­
ties of a specific brightness distribution in a natural way. 

Meanwhile, the structure of the FER itself, namely its 
extreme elongation in some directions, points towards a 
more natural way of choosing functionals for any particular 
case. As is easy to understand, in the framework of linear 
description the main functionals are linear combinations of 
point counts that are estimated with the highest accuracy, 
i.e. change in the direction of elongation of the FER. These 
combinations prove to be a part of the so-called principal 
components of the inverse estimate of the object, with the 
principal components being generated by the Fisher's 
sample information matrix. The last step in finding the 
inverse solution relies upon Occam's razor principle. This 
step consists of retaining the minimum number of principal 
components, which is sufficient for a satisfactory statistical 
description of data in the context of the image randomness 
test. 

Now I turn to formal presentation of the procedure 
described in Refs [27, 30, 31]. 

6.1 Principal components 
Let £ be an ^-dimensional random vector with a known 
mean value a and a variance matrix Q = ((£ — <z)(£ — a)T). 
The problem is to find a random vector linearly connected 
with £: 

!/ = [!/!,..., rir]T =A£, r^n, (6.1) 

such that a linear combination 

I = B + Crj (6.2) 

yields the best approximation in the mean-square sense to 
the original random vector. This requires that the quantity 

p2{Ll) = {U-l\\2) (6.3) 
be minimum. Thus, we look for an explicit representation 
of the matrices A, B, and C through characteristics of the 
multidimensional random variable In the general case 
these matrices have the sizes r x n, n x 1, and n x r, 
respectively. 
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The idea of the principal components rjl9 ... , rjr intro­
duced by Hotelling [90] is that at r < n we can achieve a 
good approximation of £ in the form (6.2) by using a 
simpler variable rj9 which still contains the main statistical 
information comprised in In the general case such a 
possibility is due to the fact that the components of £ are 
correlated with each other, so that all the components of £ 
contain less information than they would if they had been 
independent. In contrast, the principal components repre­
sent statistically uncorrelated linear combinations of the 
components of so that by choosing an appropriate 
number of principal components we can make the informa­
tion contained in { more compact. The use of principal 
components is most effective when { obeys Gaussian 
distribution or one close to it. Then the fact that the 
principal components are uncorrelated means that they are 
also independent. If r = n, then the formulas (6.1) and (6.2) 
yield the exact representation of the ^-dimensional random 
variable £ through the system of uncorrelated random 
variables rj of the same dimension. 

The variance matrix Q represents a positive definite 
symmetric matrix with real components. Its eigenvalues \ik 

are then positive and the eigenvectors Vk relating to 
different eigenvalues are orthogonal. After normalisation 
of the eigenvectors we get 

AVK = IIKVK, 

vjvk = dik9 i9k = \. 
(6.4) 

(6.5) 

It follows from equalities (6.8a) that 

D(n) = ((r, - b)(rj - b)T) = M , , (6.10) 

that is, the variances of the principal components are equal 
to the eigenvalues of the variance matrix, and their 
covariations are zero. 

In order to make more clear the geometrical sense of 
the principal components, let us consider the case r = n and 
assume £ obeys a multidimensional Gaussian distribution: 
£ ~ N{a, Q). Then the lines of constant density of prob­
ability form ellipsoids 

(x — a)TQ~l(x — a) = const . (6.11) 

The matrix V is orthogonal, that is V~l = V T , so that the 
direct and inverse linear transformations 

Vy , y = VTx (6.12) 

describe rotations of the coordinate system. By using the 
property (6.5) of orthonormalisation of the eigenvectors Vk 

and the equality Q~1V = VM~1 following from expres­
sion (6.4), one can easily show that the transformation 
(6.12) brings Eqn (6.11) to the form 

(y -b)TM~\y -b) = const , (6.13) 

or, because of the diagonal position of M, 

^ { y k - h f 
— = const . (6.14) 

For convenience, we renumerate the eigenvalues in the 
order of their decreasing values, so that 
A*i ^ A*2 ^ • • • ^ A*n > 0> a n d also we introduce square 
n x n matrices 

V=[Vl9 M=d iag [ / i 1 , . . . , / i J (6.6) 

and their 'shortened' variants 

V* = [Vl9 ..., Vr], M* = diag[/xl 9 . . . , /ir], r ^ n . 

(6.6a) 

The columns of the matrices V and V* consist of 
eigenvectors Q; the nonzero elements of M and are 
eigenvalues of Q located at the main diagonals of these 
matrices. 

The solution to the problem stated above dates back to 
Refs [92-94] and can be found in Brillinger's monograph 
[95]. The extreme values of the sought matrices are 

A = Vl, B = (En - V,Vl)a, C = V, , (6.7) 

where En is the identity ^-dimensional matrix. This means 
that the linear transformation of { to be applied to the 
principal components rj and the best linear approximation 
\ are expressed through the eigenvectors of Q as follows: 

n = vU9 (ri)=b: 

% = a + V*(ri-b) . 

Via (6.8a) 

(6.8b) 

This produces the minimum inaccuracy of the approxima­
tion (6.3), which is equal to the summary tail of the 
eigenvalues 

2 
Fmin (6.9) 

The last equations describe ellipsoid (6.11) in the Euclidean 
coordinate system yl9 . . . , yn9 whose axes are parallel to the 
principal axes of the ellipsoid, with the length of the &th 
axis of the ellipsoid being proportional to y/JI^. This means 
that rj ~ Af(b9 M)9 and components of this vector are 
independent of each other. This entire operation represents 
a standard reduction of the quadratic form (6.11) to the 
principal axes. 

The case r < n9 which is of main interest to us, 
corresponds to the coordinate transformation x = V0y9 

instead of the pure rotation x = Vy9 where the matrix 
VQ differs from V in that the eigenvectors Vr+i, Vn9 

which correspond to the minimum eigenvalues / i r + 1 , . . . , \in9 

are replaced by zero vectors. It is easy to see, that V0 is no 
longer an orthogonal matrix, and the transformation 
x = V0y is equivalent to two operations: rotation of the 
coordinate system x = Vy and subsequent projection along 
the axes v r + 1 , . . . , yn onto the subspace (yx,..., yr). Thus, 
isodenses of the principal components rj are r-dimensional 
ellipsoids 

E (yk - h) 
• const (6.15) 

k=r+l 

which differ from ellipsoids (6.14). Naturally, one cannot 
return back to the latter by using a reverse rotation of the 
coordinate system and therefore the approximation (6.8b) 
includes an operation based on the knowledge of the mean 
value (£) = a9 consisting of a shift along those directions 
that were used for the projection. Because some informa­
tion about { is lost during the nonlinear operation of 
projection, the quantity \ given by expression (6.8b) is no 
longer equal to the initial quantity { for r < n9 but it still 
provides the best approximation to the original in the 
mean-square sense. 
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We illustrate the process of finding the principal 
components by the simplest example of solving the system 
of equations (3.4). If one writes down the corresponding 
estimation problem in the form (3.2), Fisher's matrix will, 
according to relation (3.13), be proportional to HTH, i.e. 

"10 26" 
26 68 / oc (6.16) 

The eigenvalues and eigenvectors I are approximately 

lx =11.949, l2 = 0.051 , 

Vi 
"0.357" "-0.934" 
0.934 0.357 (6.17) 

and the corresponding principal components of the 
solution are the components of the vector P = VTX, that is 

Pi = 0.357*! +0.934x 2 , 

p2 = -0.934*! + 0.357x2 . (6.18) 

As mentioned in Section 3.2, the accuracies of estimat­
ing Pl and P2 are different: the ratio of the standard 
deviations (semiaxes of the ellipse of feasible solutions in 
Fig. 2) is 

38.974 . (6.18a) 

Since the accuracies of estimation of the principal 
components differ significantly, in the solution of the 
inverse problem we can restrict ourselves by showing only 
the estimate of Pu as finding the estimate of P2 adds 
almost nothing to the information about the solution. 

6.2 Analysis of the principal components of the maximum 
likelihood estimate (MLE) 
Let us return now to the discussion of restoration of the 
randomly blurred image. Putting aside for the time being 
the condition of nonnegativeness of the object S0, we 
consider the maximum likelihood estimate S (see Fig. 4) as 
the random variable £ studied above. In principle, it 
contains all the available information about S 0 ; however 
this information, like a drop of honey in a barrel of tar, is 
almost entirely hidden by insignificant details of behaviour 
of the MLE. Thus, separate components of the inverse 
solution are so strongly correlated with each other that in 
order to clarify the matter one should add the variance 
matrix of component estimates with all its nondiagonal 
terms to the obtained brightness distribution. Our task is to 
extract real information about the object whilst suffering 
minimum information losses. 

What has been said above provides a clear outline of a 
natural way we should move forward: if we restrict 
ourselves to linear analysis of the estimate S, we need to 
find its principal components. According to expres­
sion (4.24), the variance matrix for S approximately 
equals the inverse Fisher's matrix: 

A~rl(s0). (6.19) 

Let us take into account that the eigenvectors of any 
regular matrix / and of the inverse matrix I~l coincide, and 
the eigenvalues of matrix /, which we denote by [2,k], 
k = 1, . . . , n, are equal to inverse eigenvalues of matrix 
7 - 1 . According to relation (6.19), for the latter we have 

A*i ^ A*2 ^ • • • ^ Afn > 0; it is also convenient to number the 
eigenvalues of I in the order of their decrease, so that 

h = Vn \ • • • > K = lhl, h > • • • > K > 0 , 

Wk=hVk , (6-20) 

where the order of numbering of the eigenvectors now 
corresponds to that of the eigenvalues Xk. The case of some 
eigenvalues of I coinciding does not bring in any principal 
changes; since in practice this occurs extremely rarely, I 
shall not discuss it here. 

Attention should be drawn to the significant difference 
between the ways the principal components are viewed in 
the standard approach and that used here. In the solution of 
typical statistical problems, the multidimensional random 
variable { describes data sample for some set of objects, and 
the principal components corresponding to the maximum 
eigenvalues of the variance matrix Q comprise the main part 
of statistical information contained in In solving inverse 
problems, in contrast, some statistical estimate of the 
object, say S, is used as and its variance matrix Q 
characterises estimation errors of the individual compo­
nents of S0. Obviously, the principal components of S with 
a relatively large variance contain little information about 
the sought object. Therefore in inverse problems we are 
interested in the principal components that correspond to 
the minimum eigenvalues of £2, that is, to the maximum 
eigenvalues [kk] of Fisher's information matrix I(S0). For 
brevity, we shall call them senior principal components of S. 
They correspond to the projection onto the space of the 
principal components of the original dispersion ellipsoid 
not across its elongation directions but along them (see 
Fig. 4). 

The second principal difference of the discussed scheme 
from that used in typical statistical studies is connected with 
the fact that we do not know the mean value a of the 
original vector or, in the context of image restoration, the 
original object S0. Therefore, relation (6.8b) cannot be used 
to approximate S by applying a reverse shift of the feasible 
region from the space of the principal component along the 
projection directions; such approximation, however, is not 
required in the case considered here. Indeed, the whole idea 
of addressing Occam's principle consists of choosing the 
'simplest' estimate of the object consistent with 
observational data, with simplicity being quite uniquely 
defined: the simplest estimate is that which has the minimum 
number of senior principal components. It is at this stage that 
we introduce a bias into the estimate we are seeking, whose 
stabilising role was noted in Section 3. 

By projecting the original FER along the directions with 
maximum variances of the inverse solution, we come to a 
new, significantly 'rounder' FER. This means that the 
components of the biased and smooth estimate S are 
significantly less mutually correlated than the components 
of S, so that each of the components of S contributes a 
significant piece of information about the original object. 
The restored brightness distribution becomes informative 
by itself, without additional specification of all the terms of 
the estimate variance matrix, and only now we can consider 
the image restoration task completed. 

In order not to complicate the discussion, we abandoned 
above the condition of estimate nonnegativeness, which by 
itself stabilises the solution [96]. This condition can be 
included into consideration (see Fig. 4), by changing the 
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unconditional estimate S by its conditional analogue S+ — 
the maximum likelihood estimate in the region S ^ 0. In 
typical inverse problems the estimate S+ is only slightly 
more stable than MLE, so all the considerations presented 
above relate to it to an equal extent. Hence, the pair of 
transformations connecting the estimate S+(;yo) with its 
simplified version S(y0) has the form 

P(y0) = VTJ+(y0) , (6.21a) 

S(y0) = V*P(y0) , (6.21b) 

where P = [Pi, ..., Pr]T is the principal component vector 
(r ^ n), and V* is an n x r matrix with columns formed by 
the eigenvectors Vk of Fisher's information matrix 7(S0) 
that correspond to its r maximum eigenvalues [Xk]. The two 
transformations can be combined into one: 

S(y0) = VS+(y0), V = V*Vj , (6.22) 

where V is a symmetric square n x n matrix. 
The estimate S+(y0) is found by minimising information 

(4.3) in the positive hyperquadrant {S}. The corresponding 
numerical methods have been given, in particular, by 
Bertsekas [97]. To find eigenvectors 7, one can use the 
transformations (4.19) or (4.22) as the first approximation. 
The last of them seems more reliable, but the final choice 
must be based on a special investigation. After a stable 
estimate of the object S(y0) has been found, the eigenvector 
and eigenvalue system for Fisher's matrix can be made 
more precise. 

Of course, the experiment provides us only with a 
sample spectrum of matrix 7, which is different, in 
general, from its real spectrum, and with the corresponding 
sample principal components. Fortunately, sample charac­
teristics of the variance matrix have all the traditional 
properties of 'good' estimates, such as consistency, asymp­
totic efficiency, and normality [69, 98]. 

The equation IV = VA that defines the spectrum of 7, 
where A = diag . . . , Xn], can be rewritten because of the 
orthogonality of V, to give 

/ = VAVT , (6.23) 

which expresses the known spectral theorem. There are 
many numerical methods allowing one to give a spectral 
representation for any symmetric matrix. The method of 
singular value decomposition (SVD) proposed by Autonne 
[99] is especially effective; its algorithm is given, in 
particular, in Refs [100, 101]. 

We note the connection of the approach described here 
with Karunen-Loeve's expansion [102], known in the 
probability theory of a stationary random process £(t), 
into a series in terms of the eigenfunction system of its 
autocovariance function ^ ( T ) . Like the principal compo­
nents, the coefficients [£k] of this expansion are uncorrelated 
random variables, which enables one to achieve the 
maximum information compression in the linear approach 
framework [103]. It is easy to see that in the case of image 
restoration the transition to principal components is 
equivalent to the generalisation of Karunen-Loeve's 
expansion to the case of a nonstationary process which 
includes an additional noise source — the photon noise 
(which is reflected in the dependence of the information 
matrix on the sought object S0). 

For the same reasons, the approach described above can 
be considered as a generalisation of the known method of 

pseudoinversion of a linear system of equations (see 
Refs [100, 101]), which was used for image restoration in 
Refs [104-108]. Formal differences are due to the fact that 
we use the spectral representation not of the PSF but of the 
sample Fisher's matrix depending on the object. 

6.3 Basic features of the image restoration algorithm 
The algorithm used by us relies upon a procedure 
connected with transformations (6.21) and (6.22) which, 
however, is more complex. 

The point is that the ellipsoidal shape of FER, and, as a 
consequence, the possibility of using only Fisher's matrix to 
describe it, are caused by adopting the likelihood function L 
as a statistic for the estimate feasibility test. As shown in 
Section 4, proximity to the mean value of L(y0\S) is not 
sufficient for considering S to be a feasible estimate; the 
image randomness test (IRT) requires deeper statistical 
investigation of the correspondence of the generated 
estimates S with the observed image. The true region 
FER, satisfying all the IRT requirements, constitutes 
only a part of the ellipsoidal FER (see Fig. 4) The study 
of model examples shows that it is insufficient to enter into 
the ellipsoidal FER in order to achieve a good quality image 
restoration. At the same time, ellipsoidal FER reflects quite 
well the general form of the true FER, and, what is most 
important, correctly indicates its excessive elongation 
direction. Therefore it is reasonable to use Fisher's 
information matrix only for finding these directions and 
for establishing the corresponding principal component 
space, and to remove the remaining estimate uncertainty 
by a thorough investigation, in the IRT framework, of the 
statistical properties of the image ensemble generated by the 
IRT. 

The above considerations, together with the local 
approach discussed in Section 4 and adequate choice of 
pixel sizes in the image and object space (see Section 7), 
provide a general description of the principles underlying 
the image restoration algorithm. Of course, particular 
details of the algorithm are not uniquely determined, 
nor is its numerical implementation. As work on optimis­
ing this algorithm still remains to be done, we will not enter 
into detail here; those interested can find a fuller description 
in Ref. [31]. 

It is quite obvious, that the same principles are valid for 
many other problems related to information inversion. 

6.4 A numerical example 
In order to visualise more clearly special features of the 
problem under discussion, we shall consider an example 
when the object includes both low-frequency and high-
frequency components. 

A randomly blurred image (Fig. 12b) was computed 
with a diffractive PSF [Eqn (5.32)] with A =1 pixels for the 
case of a uniform Poisson background with a mean value 
jj = 100 counts/pixel. The MLE, with the object non­
negativeness S+ taken into account, is shown in 
Fig. 12c; we see a typical manifestation of instability 
when the smooth component of the object is strongly 
distorted by random oscillations. Finally, Fig. 12d shows 
the solution S discussed above, obtained in the simplest 
form when the entire object was optimised as a whole. 

It is interesting to examine which eigenvalues of the 
information matrix 7 have been neglected in this example. 
The whole sequence [Xk] is shown in Fig. 13; as in any 
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Figure 13. Eigenvalues of Fisher 's matrix for the example shown in 
Fig. 12. 

unstable problem, it covers an enormous range — twelve 
orders of magnitude in this case! Usually this diapason is 
characterised by the condition number C = -y/A m a x /A m i n , 
which is large for unstable problems. The principal 
components of the true object and its estimates are shown 
in Fig. 14. Again, we see a typical high-frequency noise in 
the MLE, which, however, is fully suppressed in the stable 
estimate S above the 40th principal component. The 
corresponding inversion into the object space is shown 
in Fig. 12d. Even more precise restoration can be achieved 
in the local approach framework. 

7. Superresolution 
The image restoration term itself contains the assumption 
that the visibility of sharp details improves during data 
processing, that is in the course of restoration we progress 
into a high spatial frequency region. A number of questions 
arise in this connection. First, we would like to know the 
factors on which the degree of restoration of shallow 
details depends on, whether a natural limit of attainable 
resolution exists, and if does exist, what is this limit under 
typical conditions. 

It is clear that how far one progresses into the high 
spatial frequency region depends primarily on existing a 
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Figure 14. The principal component of the object (a) and its two 
estimates (b, c) shown in Figs 12 a, b, and c, respectively. 

priori information about the object and only to a lesser 
extent on its shape, signal-to-noise ratio, shape of the PSF, 
and other factors. For this reason, in order to find the 
limiting relationships, we assume in this section that so 
much a priori information is provided that the image 
restoration problem is reduced, in fact, to a pattern 
recognition one. Of course, also under these conditions 
the inverse problem is of major independent interest. For 
example, we can obtain simple analytical expressions 
characterising an appropriately defined 'resolving power' 
for observational conditions usually encountered in prac­
tice. If the investigator has not got so much a priori 
information at his disposal, then the limiting relationships 
allow him to estimate correctly the theoretical possibilities 
both in designing the apparatus and interpreting the data. 

7.1 Rayleigh's problem 
Experience shows that the definition of resolving power 
accepted in some field of study may not be satisfactory 
under other conditions. The classical definition of resolu­
tion suggested by Lord Rayleigh comes from considering a 
situation when the observer tries to determine whether the 
observed blurred image is generated by a single point-like 
source or by a binary object with components of the same 

total brightness. A problem posed in this way will be called 
here Rayleigh's problem in the narrow sense, whereas 
distinguishing objects with arbitrary shapes will be 
designated Rayleigh's problem in the broad sense. For the 
first of these problems the Rayleigh resolution limit is, in 
fact, taken to be equal to an appropriately chosen PSF 
width A. If the image quality is limited only by diffraction 
of radiation on the aperture of the image formation system 
of diameter D, Rayleigh's limit coincides with the 
diffraction limit 

(7-1) 
where X is the radiation wavelength and Ad is measured in 
radians. 

The arbitrary nature of that definition was clear to 
Rayleigh himself, who noted ([2], p. 420) that "The rule is 
convenient on account of its simplicity; and it is sufficiently 
accurate in view of necessary uncertainty as to what is 
meant by resolution". Indeed, if both types of noise — 
photon and external — were entirely absent, one would be 
able to distinguish arbitrarily close sources; to do this, for 
example, one could expand the observed image into a 
Taylor series and trace sufficiently high terms of this 
series. Even more graphic can be Fourier-series expan­
sion, in which the binarity appears in the form of deep 
minima in the power spectrum for harmonics with 
'unsuitable' frequencies. The presence of noise due to 
both the external background and the quantum nature 
of light, principally complicates the problem in view of the 
instability of the inverse solution. Nevertheless, resolution 
of a source with the minimum distance between point 
components p m i n less than the width of PSF A is possible 
even in the presence of noise if one uses image restoration 
methods (Fig. 15). The aforesaid does not diminish the 
importance of Rayleigh's criterion; one must only bear in 
mind the limits of its field of application. For example, the 
use of Rayleigh's criterion is quite appropriate in visual 
data analysis. 

We introduce for convenience a dimensionless resolution 
parameter 

11. . Pmin 
: A 

(7.2) 

and will speak of superresolution, if 1Z < 1 is achieved. Of 
course, having one parameter is not sufficient for 
describing all aspects of the limiting resolution problem 
and even less so for dealing with the Rayleigh problem in 
the broad sense. The corresponding notions will be 
introduced later, as needed. 

In the case of determinate blurring the superresolution 
phenomenon was discovered by Schelkunoff [109] and then 
studied in detail by others [45, 110-119]. An excellent 
description of the early investigations is given in Rautian's 
review [112]. The discussion that follows will be based upon 
papers published earlier [26, 28, 120], in the first of which 
the problem is solved for objects of arbitrary shape in the 
framework of general Neyman-Pearson theory of statis­
tical hypothesis testing; the second paper generalises the 
results, taking into account the photon noise, and the third 
describes numerical simulations which complete the analyt­
ical consideration. A similar approach was used earlier by 
Kozlov [114], Harris [115, 116] and Snyder (see Ref. [119]). 
I shall refrain here from enumerating fairly obvious 
applications of the problem of limiting resolution to 
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Figure 15. (a) A double object with point components of equal 
brightness and one of its blurred images (the near-horizontal curve); 
(b) double object image on a larger scale; (c, d) examples of image 
restoration. 

practical issues in optics, electron microscopy, tomography, 
and so on. 

7.2 Image restoration and pattern recognition 
No matter how the notion of limiting resolution power is 
defined, Rayleigh's setting of the problem involves a 
comparison of two or more alternative objects, one of 
which must be preferred on the grounds of a priori 
information and the observed image realisation. In such 
cases one speaks of pattern recognition, whereas when there 
is almost no a priori information available about the object 
generating the image, one speaks of image restoration. The 
line separating these notions is not quite uniquely defined, 
but this cannot lead to ambiguities. The essence is that 
object classification presumes estimating one or several 
parameters that describe subdivision of the object into 
classes, whereas construction of brightness distribution in 
the object requires estimating a large number of parameters 

that can be represented, for example, by intensity in the 
individual pixels. 

Obviously, the question of detection of a given object in 
the presence of noise cannot be solved in this setting: given 
the same signal-to-noise ratio S/N and any selection test, 
we will prefer one or another alternative depending on the 
particular noise realisation. The problem is of necessity 
statistical, and we shall consider it from the point of view of 
statistical hypothesis testing theory developed by Neyman 
and Pearson (see [67, 69]). 

Let us consider a basic case when two alternative objects 
are possible: S0 and Si (say, a single star and a double star 
of the same brightness with a given separation between the 
components). Let q$ = [q0j] and qx = [qy] be the mean 
brightness distributions, like that given by expres­
sion (2.3), corresponding to the objects, and y = [yj\ be 
the observed image of the unknown object. Naturally, two 
hypotheses about the nature of the object S generating the 
image are possible: 

Ti0 : S — S0 , 

Tii 1 S = S \ . (7.3) 

One needs to construct a decisive rule (criterion) for 
choosing one of the hypotheses for the given image y, and 
to estimate its quality (that is the errors connected with its 
application). The most general formulation of the selection 
criterion is as follows: if y belongs to some critical region w 
in an m-dimensional image space, hypothesis Tii is 
accepted, and when y lies outside the critical region, 
hypothesis HQ is accepted. The problem is thus reduced to 
the determination of the optimal, in some sense critical, 
region w on the basis of available information about the 
background, image formation system, and the objects 
themselves. 

In any choice of w two kinds of errors are possible: 
(1) hypothesis HQ will be rejected when the image is 
generated by object S0; (2) hypothesis Ti0 will be accepted 
when the image is generated by object Si. We denote by a 
and ft the corresponding probabilities of errors of the first 
and the second kind, i.e. 

a = P r ( W 1 | 5 0 ) , j8 = P r ( t t 0 | S i ) (7.4) 

Usually one calls a the test significance level, and 1 — ft its 
power. 

Neyman-Pearson 's approach to the hypothesis testing 
problem is that one should specify first the significance level 
a and then look for a such critical region wa for which the 
probability of the second kind of error ft is minimum (that 
is, the test power 1 — ft is maximum). The choice of a takes 
into account the relative importance of the two types of 
error. For example, if we form a sample of quasars (S0) in a 
field of stars (Si), then the a is the probability of missing a 
quasar, and to obtain a more complete sample we should 
specify a comparatively small a, say a = 0.1. If a is made too 
small, the sample will cover almost all the quasars, but too 
many stars will be included as well. Similar considerations 
usually lead to the investigator being interested in minimis­
ing at a fixed a, thus posing the problem in the Neyman-
Pearson sense. The corresponding region wa is called the 
best critical region, and the selection test obtained on its 
basis is the most powerful (theoretically not capable of being 
improved). 
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Obviously, availability of information about a compar­
atively small class of specified objects in pattern recognition 
simplifies solution of the inverse problem compared to 
direct image restoration when only the condition of 
nonnegativeness of the original is given. For this reason, 
the highest resolution power obtained in the framework of 
the pattern recognition theory must be considered as the 
upper limit of the resolution power that can be attained by 
the most efficient image restoration. Thus, by turning to the 
hypothesis testing theory, we not only obtain results that 
are of interest for their own sake, but also establish the 
limiting capabilities of the inverse problem theory. 

7.3 Analytical results 
Referring the reader to Refs [26, 28] for proofs, I present 
here explicit expressions for the limiting resolution 
obtained by juxtaposing two types of objects of arbitrary 
shape. For the Poisson distribution we use Gaussian 
approximation with the same mean value and variance; 
for close objects we assume fa(qy/qoj) — (qy — qoj)/qoj-

A 'distance' K(SQ, SI) between the alternative objects 
defined as 

K(S0, S i ) = 
j = i 

0? i j - qoj)2 
1/2 

(7.5) 

naturally enters into the problem. Let, as above, 7 be a 
random vector whose realisation produces the observed 
image y. If hypothesis HQ is correct, the statistic 

T ( y , s 0 > s,) 
J'=l 

(Yj-1oj)(<lij-<loj) (7.6) 

obeys standard Gaussian distribution with zero mean and 
unit variance, that is T\HQ ~ @(z), where 

<P(z) = 
2n 

e x P l - y I d x (7.7) 

It follows from this that the best critical region wa is 
determined by the condition 

x(y, S0, Sx) >za (7.8) 

where za is a quantile of normal distribution of the order of 
1 — a, that is the root of the equation 

0(z) = 1 - a . (7.9) 

When inequality (7.8) is valid, hypothesis Hi is accepted, 
and if the opposite inequality holds, one accepts hypothesis 
H0. We shall see below that the only significant parameter 
entering inequality (7.8) is the signal-to-noise ratio xjj. 

The meaning of expression (7.6) is quite clear: its 
structure resembles the formula for the correlation 
coefficient between two random variables. If the differ­
ences yj — q0j have more often the same sign as qy — q0j, the 
sum in expression (7.6) will be large, and inequality (7.8) 
requires that hypothesis Ho be rejected. But correlation of 
the signs of the aforementioned differences does in fact 
mean that object Si is preferable to S0 for the explanation 
of image y. 

As has been said before, the minimum probability of the 
second kind of error corresponds to the choice of the best 
critical region; this minimum value is 

p = *[zA-K(S0,S1)] . (7.10) 

The formulas given above provide the complete solution 
to the problem about the two-alternative choice of the 
object, so that with given a, K(S0, SI), and \p, one can most 
efficiently choose one of the alternatives, and then estimate 
the acceptable probability of the second kind of error. 
However, to determine the limiting resolution under given 
conditions, we are more interested in the minimum distance 
K(S0, SI) which can be established for a fixed reliability and 
xjj. The corresponding expression is obtained by straightfor­
ward inversion of expression (7.10) with account taken of 
equality (7.9) and the relation zi-a = —za: 

K(S0, SI) =Zo,-r-Zp (7.11) 

Formula (7.11) is the one we have been looking for; it 
permits calculation of the minimum distance K(SQ, SI) at a 
fixed reliability level (a, fi) for alternative objects of 
arbitrary shape and a given image formation model. 

To understand more clearly the expressions given above, 
it is useful to consider their continuous analogue, by 
assuming, for the sake of simplicity, that the background 
is uniform (y- = y = const). L e t / C be the cut-off frequency 
of the image formation system, so that the MTF of the 
system H(f) = 0 at \f \ >fc, and A = / c

_ 1 is a characteristic 
width of the PSF. We denote by F the total brightness of 
each of the compared objects, and by \p the signal-to-noise 
ration in the image interval with a length of the order of the 
width of the PSF: 

(7.12) 

Making use of Parseval's theorem, we find from Eqn (7.5) 

k ( S 0 , 5 0 * [ f > w i 2 
8 S C 0 

fc 

1/2 

(7.13) 

where $S(f) is the difference of Fourier transforms of 
brightness distributions in the considered objects. By 
substituting expression (7.13) into relation (7.11), we 
arrive at a general relationship 

\f°\H{f)\2 5SU) 
fc 

1/2 

(7.14) 

The functional in the left-hand side of this equality 
characterises the measure of closeness of the two objects 
that are being compared; in simple cases it depends on one 
parameter only, an appropriately defined limiting resolution 
1Z [see definition (7.2)]. It is indicative that all external 
conditions determining resolution are grouped together in 
the form of the combination 

Zq+Zfi (7.15) 

This means [26] that the limiting resolution does not depend 
on many individual variables describing the observational 
conditions (object brightness, background level, PSF width, 
identification reliability, etc.), but depends only on their 
combination (7.15). One should also note that the 
probabilities a and ft enter into expression (7.15) symmet­
rically. 

7.4 Examples 
As usual, an analytical study of simple particular cases 
brings to light general dependences; such cases are almost 
always of interest for their own sake. 
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7.4.1 Shift of an arbitrary object. Let us suppose that the 
difference between the objects being compared consists 
only of shifting one relative to another by a distance p, so 
that Sx(x) =S0(x - p ) . Then formulae (7.2) and (7.14) at 
\p 5> 1 yield 

N oc Zg+< (7.16) 

where the proportionality constant is of the order of unity 
depending on the form of the PSF and the brightness 
distribution of object S0. Please note that the limiting 
smallest shift which can be detected is proportional to the 
first power of the signal-to-noise ratio (Fig. 16). 

i o g ( P m i n y Ad ) 
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Figure 16. Schematic representation of the relationship between the 
limiting resolution pmin in units of the PDF width A and the signal-to-
noise ratio: 1 — shift of the object, 2 — separation of the double source 
with a single point object as an alternative, 3 — the same as 2 but for a 
Gaussian alternative object. 

7.4.2 Separation of a source with point components. 
Consider the Rayleigh problem in the narrow sense for 
an object with point components of equal intensity F/2, 
which is studied by a device with a diffractive PSF like that 
given by expression (5.32). Then the limiting resolution 
measured as a fraction of the width of the PSF is 

<A J 9 

1Z: (7.17) 

where a more precise signal-to-noise definition than that 
given by expression (7.12) includes the photon noise as 
well: 

(7.18) 
y/F + 2yA ' 

As seen from expression (7.17), the dependence of 1Z on 
\j/ is in this case close to \J/~1^2. In practice, \jj can often be as 
high as 104 —106, so that under such conditions one can 
expect the resolution to exceed the Rayleigh limit by 
102 —103 times (see Fig. 16). The reality of such values is 
confirmed by the simulations described below and by 
practical results. 

7.4.3 A binary source with point components and a Gaussian 
object. Let the alternative objects be a binary star with a 
distance p between the components and an object with a 
continuous brightness distribution described by Gaussian 
law with G = p/2. The two objects are assumed to have 
equal total brightness. Then it follows from expres­
sion (7.14) that 

11'. 
Zg+Zp 1/4 

(7.19) 

The decrease in the value of the exponent compared to 
expressions (7.16) and (7.17) testifies that in the given case 
one cannot reach resolutions as high as that obtained by 
shifting the object or by juxtaposing point sources (see 
Fig. 16). We note that in the absence of background we 
would have \j/= y/F, and expression (7.19) would give 
1Z oc F - 1 / 8 . The last relation was independently obtained 
by Lucy [121] by comparing the fourth moments of the 
observed images of the alternative sources. 

7.5 Monte-Carlo simulations 
To test the theory as well as to make a more profound 
study of some its aspects that cannot as yet be analytically 
examined (in particular, the form of the statistical error 
distribution function), it is necessary to perform numerical 
simulations of the image formation process and of 
subsequent image restoration. Here we shall consider 
part of the results reported in Ref. [120] for the classical 
Rayleigh problem. 

The following information is supposed to be known: (1) 
a randomly blurred and noisy image was generated by an 
object consisting of two noncoherent point sources of equal 
brightness; (2) the total brightness of the object F and the 
mean level of the uniform background y are specified; 
(3) fluctuations of the count number obey Poisson distribu­
tion; (4) the PSF h(x -x') has the diffractive form (5.32). 
On the grounds of a priori information and the observed 
image realisation, it is required to estimate the distance 
between the components of the double source as accurately 
as possible (the distance can also be zero). 

We denote the coordinates of the components by x\ and 
x2, and their true relative distance by 9 = \x\ — x2\/A. In the 
course of the numerical simulations each of the components 
independently of each other was randomly blurred with 
'photon after a photon', and then a random realisation of 
the background was added to the blurred image. The 
resulting image obviously obeys the multidimensional 
Poisson distribution (2.4) with mean counts 

aj=^[hU-xi)+h(j-x2)]+yj9 y = l , . . . , m . (7.20) 

Next, the coordinate estimates xx and x2

 a J e found and, 
finally an estimate of their relative distance 0 = \xi~x2\/A 
is obtained. To construct sample distribution densities 
p(t\0) for the estimates 6 the procedures described above 
were repeated tens to hundreds of thousands times for 
each 6. 

We note that here we consider a more general model 
than that discussed in Sections 7.2-7.4, where one had to 
choose one of only two types of alternative objects. At the 
same time, the present model appears to be closer to the 
practical conditions, since the precise distance between the 
components is very rarely known in advance. 
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Figure 17. Sample distribution densities for the estimate 6 versus the true component separation 6. 

In order to ensure that the high-frequency information 
about the original is retained and in the present case to have 
a possibility, if needed, of taking estimates of the coor­
dinates of the components beyond the limits of one pixel, 
one should provide for a sufficiently small pixel size in the 
object space p0. In contrast to that, in view of the well 
known sampling theorem it makes no sense to take the pixel 
size in the object space px much smaller than the PSF width 

A. The precise relationship between px and p0 depends on 
the signal-to-noise ratio. Indeed, relation (7.17) predicts 
that the minimum detectable component separation is 
approximately times smaller than A; hence one should 
take p0 smaller than A by about the same factor. 

Estimates of the component positions were obtained by 
using the maximum likelihood method. In Sections 3 and 4 it 
was mentioned that multidimensional MLEs are unstable; in 
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the present case, however, one needs to estimate only two 
parameters, so that there are grounds to expect good MLE 
efficiency. This is consistent with the results of test 
calculation. 

Fig. 17 shows the results of simulations for the case 
when F = 104 events; A = 100 pixels, jj = 10 events/pixel. 
Such a broad PSF was chosen because of the danger of 
making the results of restoration unnecessarily coarse, as 
explained above. First, the calculations were done at 
px = p0 = /I/100 (control computations with twice as fine 
discretisation do not change the results). 

As one would expect, in the case of widely spaced pairs 
the calculated estimates 9 are closely grouped around the 
true values 9. As the component separation 9 decreases, the 
variance of estimates 9 increases and cases when the object 
is taken to be a single one occur more and more frequently. 
The peak of the sample distribution p(t\9) at t = 0 is due to 
the nonequivalence of the results for too tight and too open 
image realisations. After some critical value 9 ~ 0.06—0.08 
is reached, the density p(t\9) remains practically unchanged, 
so that restoration of the shape of the object generating the 
observed image becomes impossible. This means that the 
aforementioned value of 9 should be considered as being a 
limiting one under the given conditions. The existence of the 
limit is seen more clearly in Fig. 18, which shows how the 
mean value (9) changes as the components become closer to 
each other. The limiting resolution obtained from the 
simulation is in good agreement with the theoretical limit 
(7.17). 

As mentioned earlier, in virtue of the La Valle-Poussin-
KotePnikov- Shannon sampling theorem (see Refs [122, 
123, 7, 8]), the choice of small image pixels px = 0.01/1 is 
unjustified. According to this theorem, to preserve all the 
information about a determinate function with a limiting 
frequency in the spectrum fC9 it is necessary to ensure a 
sampling rate equal to at least 2fc. In the case under 
consideration fc = A~l

9 and we must locate not less than 
two samples within the PSF 'radius' A. The stochastic 
nature of the image and the departure of samples from 

5 
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Figure 18. Relationship between the sample mean (9) and the true 
component separation 9. 

being point-like strongly complicate analytical approach, so 
during the numerical simulations performed there was a 
good opportunity to determine the required ratio between 
the optimal size of the image pixel and the PSF width. 

Fig. 19 shows sample distribution densities 9 for F = 104 

events, true component separation 9 = 0.10, and a number 
of ratios p-jA. We see that when pxj A ^ 0.5, that is when the 
requirements of the sampling theorem are fulfilled, the 
restoration accuracy changes comparatively little, whereas 
when the image pixels are too coarse, when p-JA > 0.5, it 
rapidly decreases with increasing image pixel size. 

P(t\9) 

Figure 19. Sample distribution densities for the estimate 9 for 9 — 0.10 
and a number of ratios pjA. 

One should draw attention to the fact that when the 
distance between the components is reduced, the transition 
from reliable detection of the binarity to total indetermi­
nacy occurs comparatively rapidly and covers only about 
10% of the PSF width. For this reason one can expect to 
obtain useful results in a sufficiently broad region of 
resolutions between the Rayleigh limit and that given by 
relation (7.17). 

8. Concluding remarks 
The need to remove by some means excessive information 
contained in the inverse solution has been felt for quite a 
long time. For example, Snyder et al. [124, 125] suggested 
smoothing of the maximum likelihood estimate, and Mints 
and Prilepskii [32], and Pina and Puetter [33] first intro­
duced into the object space a rough structure corresponding 
to the object averaged over specially selected areas. Both 
ways point in the right direction; the problem, however, is to 
avoid subjective considerations in the choice of a smoothing 
kernel or a large-granular structure. Moreover, this choice 
should not be final, but should depend on the studied object. 
Transition to the principal components of the sample 
Fisher's matrix (that is generated by a specific object) 
does in fact play the role of Occam's razor in the selection of 
useful information. One can show, in particular, that this 
transition is equivalent to considering the associated inverse 
problem with a coarser PSF depending on the object. 

Thus, Fisher's information matrix plays a fundamental 
role in all inverse problems, irrespective of whether we deal 
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with solving a system of equations, a tomography problem, 
or are concerned with image restoration. 

On the other hand, a significant difference in the 
variances of principal components in the original estimate 
naturally produces nonequivalence of solutions in the object 
space, which can be considered as some analogy of the a 
priori density w(S) invoked in the Bayesian approach. 
However, the nonequivalence is in this case objectively 
caused by the conditions of the problem. 

In the case of determinate smoothing and Toeplitz's 
PSF, the eigenvalues of the matrix / coincide with the 
Fourier power spectrum h(x), and the corresponding 
eigenvectors are equal to exp(i27i/x), where / is spatial 
frequency. Then the principal components of the inverse 
estimate are maximum estimates of the absolute values of 
Fourier coefficients. At first glance it would appear that to 
obtain a stable estimate of the object in the general case we 
can simply cut off in the restoration the high-frequency tail 
of the power spectrum of the object. The true nature of the 
proposed procedure goes far beyond this approach. 

First, we take into account the unavoidable photon 
noise in the image, which makes the image restoration 
problem principally a local one (as is intuitively clear: bright 
parts of the object must be restored with higher accuracy). 
Formally, this property manifests itself in the PSF being 
'weighted' by a factor yjQ(S). Second, instead of removing 
the high-frequency tail of the power spectrum, an optimal 
statistical estimation of the principal components is made. 
In this, not necessarily all those principal components that 
correspond to low spatial frequencies are retained, but only 
those having the maximum statistical weight. Finally, 
instead of the same trigonometrical functions being used 
for all objects, the eigenvectors of / related to each 
particular problem are naturally employed. 

In connection with the problem of discretisation in the 
object space [126, 28, 127] we note that introduction of the 
principal components automatically preserves only the 
really available information even in the case when pixels 
have been chosen that are too small. 

When searching for the optimal solution in the feasible 
estimates region, like the one a two-dimensional version of 
which is shown as an example in Fig. 4, it is useful to bear 
in mind some multidimensionality effects that conflict with 
intuition (see, e.g., Ref. [128]). For example, when the 
number of measurements n 1, an arbitrarily thin 'sur­
face layer' of a hypersphere with radius r covers almost all 
its volume Vn(r). Indeed, we have 

Vn\(\-s)r] , 
L ^ ( r )

; J = ( l - e ) w ^ 0 (8.1) 

when n —> oo for any s G (0, 1). Therefore, undesirable 
FER regions where unstable estimates are located are much 
broader than it would appear by considering a two-
dimensional picture. 

Since interpretation of experimental data belongs to the 
inverse class of problems, the difficulties involved in 
information inversion are encountered everywhere. One 
manages to avoid them only when the model chosen is 
too coarse, such that instability of the inverse solution is 
weak. If one tries to extract from data the information they 
contain, the problem almost always becomes more com­
plicated, and we are forced to invoke the notions introduced 
above. 

Applications of the approach presented here to the 
problem of compensating for atmospheric distortions of 
the image and to the restoration of ordinary and tomo­
graphic images can be found in Refs [127, 129]. 

In the field of numerical data analysis there has been 
very substantial progress during the last years in devising 
improved numerical algorithms and better hardware, so 
that this aspect of the image restoration problem deserves 
separate consideration. 
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