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Abstract. The physical properties of atoms, molecules, and
solids in the ultrahigh magnetic fields B > 10° G that are
believed to exist on the surface of neutron stars are
discussed. In these fields, atoms are strongly deformed and
elongated along the magnetic field lines; the binding energy
and ionising energy of the atoms are substantially increased
and the interatomic interaction is dramatically changed.
This strongly modifies the properties of matter at the
surface of magnetic neutron stars which are crucial for
modelling the pulsar magnetosphere. A scenario for
magnetosphere evolution is proposed which suggests free
emission for a young pulsar and strong binding of the
matter to the surface at a later stage. This latter stage is due
to strongly bound chains of alternate heavy atoms and
light atoms accreted on the surface of the star.

1. Introduction

1.1 High and ultrahigh magnetic fields
There are a variety of well-known effects of magnetic fields
in various areas of physics. A strong magnetic field can
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magnetise a piece of metal and influence the electric
conductivity of metals or semiconductors. Strong magnetic
fields are indispensable if thermonuclear plasma is to be
confined and thermally insulated. Magnetic fields are
referred to as being strong if their effects bring about
marked changes in the properties of matter, e.g. electric
conductivity, diffusion, etc. However, the definition of
‘strong’ magnetic field in all such cases remains obscure.
Whether a magnetic field should be considered weak or
strong depends on its effect on the system and its
characteristic parameters, that is, density, temperature,
etc. For example, the effect of magnetic field on a
ferromagnet is a collective effect that is dependent on a
large number of elementary magnetic moments.

Magnetic field effects on electric and thermal con-
ductivity, diffusion, and other kinetic parameters, are
identified by minor deviations from equilibrium. For
instance, the effect of magnetic field on plasma transport
coefficients depends on the ratio of electron collision
frequency v, to the Larmor frequency of electron rotation
in a magnetic field

wczﬁz 1.76 x 10’B .

mecC

In the case of plasma, the magnetic field may be
regarded as strong if v./w, < 1. Taking into account the
electron collision frequency in a totally ionised plasma

4/2me* 7% n, A
©T 3 meT
me T

where Z is the ion charge and A is the Coulomb logarithm,
one can obtain the following condition for the strong
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magnetic field:

A Zn

—12
B>»1.6x10 IOW.

In this expression and those below, temperature is given in
electron-volts, magnetic field in Gauss, and density in cm ™3
(if not stated otherwise). Therefore, given typical para-
meters of the laboratory thermonuclear plasma (i.e.
n~10"%m™, T ~5keV), ‘strong’ magnetic fields are
those of the order of 10 kG, whereas in the case of
cosmic interstellar plasma, even magnetic fields of the order
of 1 G should be regarded as very strong.

It should be emphasised that it is impossible to develop
an absolute classification of the strength of magnetic fields
in the framework of classical physics. Such a classification is
only feasible in quantum physics where it follows from the
comparison between the magnetic moment energy

eh
2mgc

B

uB =

and the characteristic energy of the system or the particle.
Magneticfield which affectsspinorientation ofelectronsor
atomsin a gas with temperature T is defined by the condition

UB > kT, or B/G » 1.49 x 10*T/K . (1.1)

Magnetic fields in which the energy of a magnetic moment

uB is higher than the characteristic binding energy of atoms

or molecules (of the order of Ry = mce4/2h2), that is fields

such that

mie’c
e

B>By= =235%x10° G, (1.2)
markedly influence the atomic and molecular structures
and their binding and ionisation energies. In a magnetic
field such that the radius of the electron orbit for the lowest
Landau level p, = ()’h‘/eB)'/2 is less than the Compton

length of the electron wave, that is if the condition

23
m.c

uB >me?, B>Biy=——=44x10°G, (1.3)

is satisfied, relativistic effects become important. A

magnetic field B > B3 has a marked effect on the
propagation of electromagnetic waves in vacuum: vacuum
is polarised, while electrodynamics in such magnetic fields
becomes nonlinear. Relativistic effects in magnetic fields
B> 10" G (specifically the effect of a strong magnetic
field on B-decay and inverse P-decay, i.e. electron capture
by the nucleus) have been examined in Ref. [1]. Effects of
such a field on the neutrino flow emitted by a neutron star
appear to be of special interest [2].

Further discussion will be limited to nonrelativistic
effects and events in ultrahigh magnetic fields which are
characteristic of neutron stars. In other words, we shall
proceed from the assumption that B;; > B > By. Note that
B; = onBg, where a = ez/ﬁc is the fine structure constant.

The objective of the present review is to examine the
physical properties of matter in the ultrahigh magnetic
fields usually generated at the surface of neutron stars, on
the assumption that the magnetic fields satisfy inequality
(1.2). In such magnetic fields, the distance between Landau
levels is significantly greater than the energy of the
Coulomb interaction between electrons and nuclei. Elec-
tron shells undergo complete restructuring, atoms take the
shape of thin tubules stretched parallel to the magnetic field

lines, and electron spins are oriented strictly against the
magnetic field. Specific features of the interaction between
completely polarised and grossly deformed atoms account
for the creation of matter with significantly new and
unusual properties. Depending on the quantum state of
the atoms (i.e. ground or weakly excited state), they may
exhibit either weak interaction leading to the formation of a
Bose-condensate and transition to superfluidity, or strong
interatomic interaction which is sufficient to form long
polymeric chains of molecules and crystals with high
binding energy.

It should be emphasised that Bose condensation is
theoretically feasible for spin-polarised hydrogen [3-5]
provided inequality (1.1) is satisfied. Such magnetic fields
are achievable under laboratory conditions where inequality
(1.1) is satisfied for fields of several Tesla, at T <1 K.
However, the gas of spin-polarised hydrogen atoms is
thermodynamically unstable with respect to recombina-
tion, which gives rise to hydrogen molecules in the
ground state Zg showing enormously high binding energy
(4.6 eV) compared with uB. For this reason, Bose con-
densation of spin-polarised hydrogen is possible only at
sufficiently low density, and hence at very low temperature.

Of special interest under terrestrial conditions are
excitons, for which the ultrahigh magnetic field condition
(1.2) takes the form
mgff(!SC

&n
In this situation, the strength of an ultrahigh magnetic field
depends on the properties of the semiconductor. The
magnetic field for excitons becomes already ‘ultrahigh’ if its
strength is of the order of 1 T, owing to the small effective
mass mqy and large dielectric constant ¢ (particularly for
direct-band semiconductors). For example, the field for Ge
is strong at 9 kG or higher whereas the field for InSb may
be considered strong starting from 2 kG. Modified
properties of excitons in ultrahigh magnetic fields can be
responsible for new, interesting physical phenomena. Owing
to a marked rise of the exciton binding energy in a high
magnetic field, the exciton fluid acquires the properties of a
quasi-ideal Bose-gas which can give rise to Bose condensa-
tion, superfluidity of the exciton fluid, formation of exciton
crystals, etc. Note that the formation of a Bose condensate
of excitons in a high magnetic field is possible up to a density
of the exciton liquid greater by a factor of (B/B.,) In (B/B.)
than the maximum density of excitons a;~ for which the
Bose condensation is possible without a magnetic field. For
higher exciton densities, when the overlap of the wave
functions of excitons becomes noticeable, the ground state
of the system will be an electron-hole liquid instead of the
Bose condensate [101]. These effects are interesting not only
for basic physics but also for the development of
semiconductors with new unusual properties, such as
supertransparency, superthermal conductivity, etc. [6, 7].

B> B, = (1.4)

1.2 Pulsars — rotating magnetic neutron stars

Anyone dealing with physical aspects of magnetism would
consider magnetic fields of 10 to 10° G utterly
unrealistic, if not fantastict. However, in 1967, a Cam-

fMaximal pulsed magnetic fields available in the laboratory can reach
25 MGs for explosive magnetic generators [1] and 40 MGs for pinch
plasma linear compression of magnetic flux [9, 10].
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bridge group of astronomers reported the discovery of
pulsars, that is rotating magnetic neutron stars, having at
their surface incredibly high magnetic fields of around
102-10° G [11, 12]. Since then, studies of the properties
of matter in such ultrahigh magnetic fields have exceeded
the bounds of a purely academic problem.

The discovery of pulsars was a signal success of both
astronomy and theoretical physics. The existence of neutron
stars had been predicted long before the first pulsar was
found [13, 14]. Interestingly, only a few months before
Hewish and co-workers first reported their pulsar discovery
in Nature, this journal had published a paper [15] in which
the possibility of the generation of regular electromagnetic
pulses by rapidly rotating magnetic neutron stars was
introduced. In fact, pulsars appear to have been first
invented by theoreticians and only afterwards proved to
be existing entities.

Very soon after pulsars had been discovered, it was
deduced, following a most trivial line of reasoning, that
they were actually rapidly rotating magnetic neutron stars
[16]. It was equally clear that such stars had to have
extended atmosphere because of the enormously high
electric field

Em%QRB ~ 102 vem™!, (1.5)
near their surface, which is normally induced by the
rotation of a highly magnetised neutron star with radius R
and rotation frequency Q. Actually, even if in the ‘vacuum
approximation’ a pulsar generates magnetodipole emission
(as it does in vacuum), all currently known pulsars may be
expected to have QB values in the range 10" to 10", In
other words, the electric force that acts on a charged
particle on the surface of a pulsar with pulsar mass close to
that of the sun (Mgy=1.99 x 10**g) and radius
107°Ry ~ 10°cm  (Rg = 6.96 x 10'%cm) is estimated as
being seven or eight orders of magnitude higher than
the gravitational force.

Huge magnetic fields of neutron stars (about 10" —
108 G) are formed in the course of their evolution.
According to stellar evolution theory, a neutron star—
i.e. the final phase of the evolution —is the product of a star
with initial mass near the Chandrasekhar limit of
1.5M ;, < M < 3M which has exhausted its thermonuclear
energy and collapsed. Such stars are believed to be largely
composed of iron atoms since it is known that a thermo-
nuclear reaction becomes an endothermic reaction with
elements heavier than “°Fe [17].

A typical scenario for the formation of a neutron star
normally implies the concurrent explosion of a supernova.
The most ‘famous’ pulsar, PSR-0531 + 21, can be seen in the
Crab nebula exactly where Chinese astronomers observed
the bright explosion of a supernova in 1054. This pulsar has
a rotation period of P =~ 0.033 s. Rotation periods of more
than 1000 currently known pulsars are in the range 0.015 to
3.74 s [18].

Gravitational compression at the incredibly high den-
sities in the centre of a star makes electron capture by
protons as a result of the reaction p ¢~ — v, + n energet-
ically favourable. The balance of pressure between the newly
formed degenerate neutron fluid and the gravitational field
accounts for the star reaching equilibrium and compression
being terminated. The mass of a neutron star in equilibrium
can be easily estimated by equating the pressure of the

strongly degenerate neutron fluid with the density n in a star
of radius R:

3 hieN 43
P, = hen'l ~ — (1.6)
(where N is the total number of neutrons) with gravita-
tional pressure

M2

where G = 6.67 x 107% dyn cm? g72 is the gravitational
constant. In this case, the mass of the neutron star is

1 fic 3/2
M, zm<5°> ~14M,

n

(1.8)

where m, is the neutron mass and M is the mass of the
sun. Density at the centre of the neutron star may be
expressed as

L
(4m/3) (A /myc)’
whence the radius of the neutron star is

P~ ~ 10'° g em™ (1.9)

M\
R, ~ ( > ~107°Ry ~ 10° cm . (1.10)

p

At high temperature and electric conductivity of the
stellar matter, the initial magnetic field is compressed
during collapse, frozen in the matter, and grows as

By o Bo R0 ]
n X O(R_n> >
where (By, Ry) and (B,, R,) denote the initial and the final
values of the magnetic field and radius, respectively. Hence,
for typical stellar magnetic fields of about 10°—10° G, the
magnetic field of a pulsar must be approximately 102 -
10° G, in agreement with the observed values.

It is worthwhile to note that the maximum value of the
magnetic field for a neutron star can be estimated by means
of the virial theorem and the assumption that a star of
radius R has magnetic energy (B”/8m) x 4nR> /3 identical to
the gravitational energy GM2/R. Hence, the maximum
magnetic field of the neutron star may be described as

-2
M R
Bn,max ~ IO]XM (R_> G.
n n

(1.11)

Interestingly, magnetic fields (unlike electric fields) have
no upper limit on maximum value because of their
conservatism. However, since the rotation of a neutron
star induces electric field E ~ ¢"'QRB, the upper limit on
this field implies that the maximum value of the parent
magnetic field must likewise be limited. Hence, the highest
magnetic field in pulsars presumably can hardly exceed
B < CEpa/QR ~ 107 G.

The surface temperature of newborn neutron stars is
extremely high. However, the stars cool down very quickly
owing to intense emission. For this reason, the surface
temperature of even relatively young neutron stars must be
around 100 eV. Older neutron stars (over one million years
of age) are likely to have surface temperatures of 10—20 eV.

Huge magnetic fields ( B ~ 102G > By) are responsible
for gross deformation of atoms in the thin surface layer of
neutron stars, which results in complete restructuring of the
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atomic shells and dramatic alteration of the interatomic
interaction. Specifically, binding energy and ionisation
potential of the atoms are greatly increased as compared
with those observed under normal terrestrial conditions.
This accounts for the high abundance of neutral atoms even
at the fairly high temperatures at the surface of a neutron
star. The properties of matter on the surface undergo
equally pronounced changes. For instance, hydrogen
atoms normally show strong interaction giving rise to
molecules with binding energy of about 4.5 eV and they
solidify forming a crystal at sufficiently low temperatures.
However, interaction between these atoms becomes weaker
following their complete polarisation in the magnetic field
B > By. Moreover, totally polarised hydrogen atoms appear
to acquire certain properties of helium. Gas of completely
polarised hydrogen atoms in the ground state fails to solidify
even at zero temperature. Indeed, it can form a Bose
condensate and become superfluid at low temperatures.

Properties of matter and heavy atoms are also subject to
marked alteration in ultrahigh magnetic fields. Atoms in the
ground state exhibit weak interaction when polarised in a
high magnetic field. This suggests that the surface layer of
neutron stars should be composed either of fluid or of gas.
The binding energy of the matter on the stellar surface is
comparable with the surface temperature and is evidently
smaller than the distance between the Landau levels
uB ~ ho, ~ 11.7 keV at B = 10'? G. At the same time,
excited atoms can be strongly interacting and assemble into
molecules, long polymeric chains, and crystalline structures
with binding energies considerably exceeding those of
ordinary molecules and solids. It is worthwhile to note
that the effects of magnetic fields on the properties of stellar
matter are apparent only in the thin surface layer of neutron
stars (about 1 m thick). Such effects are less conspicuous as
the density of deeper layers grows and the mean distance
between electrons n '~ becomes smaller than their cyclo-
tron radius at the lowest Landau level, that is at densities
where the Fermi temperature 7’12n2/3/mc exceeds the mag-
netic energy uB. The corresponding density for the
magnetic field B ~ By, = 102 G is about 10° g cm™.

It should be emphasised that the state of the stellar
matter in ultrahigh magnetic fields at the surface of a
neutron star surface remains to be elucidated. At the same
time, the properties of the surface matter are crucial for
both the theory of the pulsar magnetosphere and for
understanding the nature of its emission. Moreover, this
knowledge is indispensable for modelling the magneto-
sphere of pulsars. Indeed, rotation of a magnetised star
produces an electric field with a component which is parallel
to the magnetic field lines which can accelerate electric
charges up to relativistic energies. These particles are
thought to fill the pulsar magnetosphere and account for
its electromagnetic radiation.

In early studies [19, 20] it was hypothesised that the
strong interatomic interaction at the surface of a star may
be responsible for the formation of matter with very high
binding energy and work function (in excess of 3 keV)
which can completely block the release of matter from the
star. In such a case, a vacuum gap is likely to form near the
surface in which a large part of the electric potential
Ap ~ 10V is developed. Breakdown in the gap results
from the cascade process of formation of electron —positron
pairs [21] or from their production by y-quanta [22, 23].
The theory of the pulsar magnetosphere for the case of

stellar matter completely trapped in the surface layer has
been examined at greater length in monograph [24].

During the last 10 years, different authors [25—-29] have
demonstrated that in the case of atoms completely polarised
in a strong magnetic field, interatomic interactions are
much weaker, and hence binding energy and work function
are lower (always below 1 keV), than they were believed to
be in earlier studies. Therefore, models assuming large work
function and complete trapping of charged particles appear
to be lacking in self-consistency [30—32].

If the work function is small, a ‘free-emission’ model of
the pulsar is applicable which implies that the domains
where the magnetic lines are closed are filled with plasma
whereas in the domains with open magnetic lines, release of
particles is very near to the limit associated with the entire
screening of the electric field in this domain [33, 34]. It cannot
be ruled out that other processes, e.g. electrohydrodynamic
instability [35], also affect the structure of the pulsar
magnetosphere.

It may be concluded that structural features of the
magnetosphere largely depend on the scenario of charge
outflow, which actually occurs. Therefore, understanding
the physical properties of the surface matter in a strong
magnetic field is of paramount importance for pulsar
physics.

According to stellar evolution theory, the surface of a
neutron star is composed of heavy elements, in the first
place of iron atoms. However, neutron stars are believed
eventually to contain light atoms as well (especially those of
helium) owing to their accretion from the interstellar space
or from a companion star (in the case of binary stars) [36, 37].
This process should be accompanied by sinking of heavy
atoms, with light ones remaining at the surface. Therefore,
‘old” neutron stars can be expected to have both their
atmosphere and their surface grossly enriched with hydro-
gen and helium at relatively low surface temperatures
(10 eV) whereas the surface of ‘younger’ stars must be
largely composed of iron at the surface temperature of
about 100 eV. Thus, the properties of matter in a strong
magnetic field are of great interest whether it consists of
light atoms or heavy ones.

It is equally conceivable that an intermediate scenario
applies as regards certain pulsars, in compliance with the
model of the magnetosphere with free emission at the
beginning of the pulsar’s life or the model with trapped
emission for older pulsars if the binding energy of the lattice
of alternate heavy and light atoms is sufficiently high.

2. Hydrogen atom in an ultrahigh magnetic field

The problem of the hydrogen atom in ultrahigh magnetic
fields was first examined in connection with the behaviour
of hydrogen-like excitons (the so-called Vanie—Mott
excitons) in semiconductors placed in a strong magnetic
field [38 —40]. It the case of hydrogen-like excitons in a
semiconductor the ‘ultrahigh’ magnetic field is actually not
very high because of the small effective mass of the electron
and high dielectric permeability of the semiconductor. For
excitons in InSb, for example, a magnetic field of 2 kG is
readily available in the laboratory, corresponding to a
magnetic field By = 2.35 x 10° G for a hydrogen atom.
The nonseparability of the Schrodinger equation for an
electron in a combined uniform magnetic field and the
Coulomb field makes it impossible to obtain an exact
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solution even for such a simple problem as the hydrogen
atom in a uniform magnetic field. This problem has been a
challenge to novel methods of perturbation theory as well as
other methods, including the variational approach, the
adiabatic approximation, etc. This is by no means the
case for the quadratic Zeeman effect, and the problem
becomes quite difficult when the two field strengths are
comparable. There are difficulties with the classification of
the energy terms even for a weak magnetic field (linear
Zeeman effect)—despite numerous investigations (includ-
ing perturbation, semiclassical and quantum calculations,
and numerical calculations), it is not yet possible to predict
even quantitatively the evolution of arbitrary energy levels
as a function of magnetic field strength from the zero-field
limit for the regime where the magnetic field is comparable
with Coulomb fields. So far, the quadratic Zeeman effect
and the general problem of a hydrogen atom in a magnetic
field labelled as ‘trouble with hydrogen’ remain one of the
major unsolved basic problems of atomic physics. The
intrinsic theoretical interest of such a problem together
with its obvious applications to atomic spectroscopy,
astrophysics, and the physics of semiconductors have
generated a great deal of interest in the subject. A good
general review of the Zeeman effect up to 1977 has been
given by Garstang [53], while more specialised articles have
appeared in Refs [49—56].

For the limiting case of a very high magnetic field
the solution of the problem can be easily obtained with
logarithmic accuracy (see also Ref. [41], p. 112 and prob-
lems 1-3). The distance between Landau levels 7w, in
ultrahigh magnetic field B > By is much greater than the
energy of Coulomb interaction, which is equivalent to the
condition

2

e
- < hwc )
do

@.1)

where aozﬁz/mce2 is the Bohr radius. This condition
implies that the electron is at the lowest Landau level while
the atom undergoes deformation and turns into a thin
tubule with radius p, = (fic/eB)'* < a, and length L <
oriented parallel to the magnetic field lines.

The energy of the hydrogen atom’s ground state can be
estimated from a simple model. Assume that the energy of
the ground state consists of the kinetic energy of motion
along the magnetic field lines (axis z) with momentum
p. = h/L, and the potential energy of a uniformly charged
tubule of radius p, and length L:

s & " L
2mcL2 L Po ’

Er 2.2)

By minimising &, it is possible to obtain from Eqn (2.2),
with logarithmic accuracy,

L~apln™ Z—O , 2.3)
0
Fl2
Ex 20 2.4)

— 3 .
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Formally, a more strict solution is available by use of
the so-called adiabatic approximation. Consider the Cou-
lomb interaction between the electron and the nucleus to be
a small perturbation of the electron motion in a homoge-

neous magnetic field. The Schrodinger equation for the
hydrogen atom in a magnetic field has the form

1/ e N2 11, B
[5(—V+A) —;+§a‘-B]Y’—EY’. @.5)

Here, it is convenient to use atomic units e =m, =h =
c=1 and express the magnetic field in units of
By =2.35x10°G. Let the axis z be along the direction
of the magnetic field lines and choose the usual gauge for
the vector potential A = (B xr)/2. In the first order in
1/B < 1, the electron wave function can be presented as

() =, (P 0) £,(2) , (2.6)
where
‘p ( ) _ eXp(im§0) —1—|m| [(|m| + np)!:| 12
ny,m p7(p ,_271'. pO 2""Inp!|m|!
2 2
] (_ P_> (P_>

x plexp Py m 2.7

4p3) " \2p5

is the wave function of free transverse motion of the
electron in the magnetic field [41] and f,(z) is the solution
of the Schrodinger equation obtained by averagin
Eqn (2.5) over functions lpnmm(p,(p). Here, p = /x> +?
is the polar coordinate in the x —y plane, ¢ is the angular
coordinate, and P, ,(x) are the Laguerre polynomials.
Note that the radius of the lowest Landau orbit in atomic
units is p, = 1/v/B.

The lowest Landau level at n, = m = 0 corresponds to
the minimum energy state. The corresponding equation for

f,(z) has the form

1 d? : .
_E d_Z2+U(Z) fv:gfv’ (28)
where the binding energy is
1
E=-B-E,
2
and the potential is
0 =~ [ exo ”2> 29)
)=—=|——exp| ——| . .
P o+ 2 205

For the approximate solution of Eqn (2.8), potential
(2.9) may be approximated by the expression [42]

1 A

Uz) = — + ,
a+lzl  (a+z))?

(2.10)

where the parameters ¢ and A depend on the magnetic field
and the quantum numbers n, and m. The problem can be
reduced to the one-dimensional Shrodinger equation with
potential U(z) turning to the 1d-Coulomb potential at
distances which may be considered great compared with
the ‘size’ of the atom, i.e. atz ~ 1> 1/\/5 The solution of
Eqn (2.8) with the potential (2.10) which describes ground
state f(z) =f,—(z) can be expressed through the Whittaker
functions:

1

flz) = 7a Wi E (z+ po)] \ (2.11)
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where symbol a in Eqn (2.11) is analogous to the principal
quantum number in the hydrogen atom problem, i.c.

1
202

En~ (2.12)

[t is possible to derive an asymptotic expression for the

ground state energy. For InB » 1, with logarithmic accu-

racy a =~ 1/In B, Eqn (2.12) implies expression (2.4) for the

ground state energy:
12

€~—§1n B . (2.13)
It should be noted that the solution of the problem for
the binding energy of hydrogen in a strong magnetic field is
asymptotic and can be obtained only with logarithmic
accuracy. Formula (2.13) provides only the main term  of
the expansion; not only is B — oo required but also
InB — co. Therefore, for magnetic fields B =10 G,
intrinsic in neutron stars, expression (2.13) gives correct
values of the ground state energy only up to the order of
magnitude. Many authors used different approximate
approaches that allowed hydrogen energy (at B > 1) to
be estimated with accuracy acceptable for the comparison
with the observed values [39, 43 -46]. However, it appears
impossible to obtain better than 20% accuracy of the
approximate formulas if calculation methods are in one
way or other based on the approximate problem of one-
dimensional motion in a modified Coulomb field.

Since the problem is of great interest in astrophysics, the
spectrum of a hydrogen atom in a strong magnetic field has
been calculated [47—51] (see also the review of approximate
and numeric methods in Ref. [52]). Fig. 1 shows the ground
state binding energy of hydrogen atoms as a function of the
magnetic field strength for the lowest Landau level n, = 0,
m =0, and for the projections of orbital momentum
m =1,2, 3. For the magnetic field B = 10'?> G character-
istic of neutron stars, the hydrogen ionisation potential is
about 160 eV.

In the ground state, electron spin is tightly fixed and
directed against the field. The energy needed for spin flip is
unusually high. Specifically, it amountsto uB ~ 11.6 keV for

S/CV
0

—100

—200

/

— | |
3001010 10” 1012 10]3
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Figure 1. Binding energy, &, of the ground state (m = 0) and the first

excited states of a hydrogen atom for m =1, 2, 3, as a function of the
magnetic field strength, B.

the magnetic field B = 10 G. Excited states in the discrete
spectrum arise as solutions of the Shrodinger equation (2.8)
in the one-dimensional Coulomb field and corre-spond to
the wave functions having zeros at finite z. (The ground
state wave functions have no zeros in z). The spectrum of
the excited states of hydrogen in a strong magnetic field is in
a way reminiscent of that of the hydrogen atom without a
magnetic field. &, ~ —1/2n* is the expression for energy
levels with logarithmic accuracy. These excited states are
close to the top of the discrete spectrum, and their binding
energy does not significantly differ from that of a normal
hydrogen atom (13.6 ¢V). Complete solution of the problem
of the hydrogen spectrum in an arbitrary magnetic field
requires rather cumbersome computation [50, 51, 53 —56].

The complete set of quantum numbers for hydrogen in a
strong magnetic field consists of spin projection s,, Landau
level number ny, the number of nodes v of the wave function

f+(z), and projection of orbital momentum m. The first two

quantum numbers in the ground state at B > 1 are fixed. At
B> 1, the spin projection s, =—1/2, which makes it
possible to restrict examination to the lowest Landau level
n, = 0. In this case, the radial part of the wave function
together with the usual dependence on azimuthal angle is:

Vo, m (P @)

exp(imp) 1 1 (p)'""e p( p2>
= = xp| —— ] .
V2r /a2l o \po 4p5
Unlike energy for free electron motion, which is indepen-
dent of the angular moment projection, the ground state
energy shows weak dependence on m [19, 57, 58,], and the
discrete spectrum contains excitations corresponding to
different values of cyclotron radius p,, =+/2m+ 1p,.
Respective energy values can be obtained from Eqn (2.4)
after the substitution p, — p,, so that
1 B
Encom X —= In?—— .
p=0s 2 V2m+1

Note once again that analytical expressions for the
energy are in fact asymptotic formulas derived with
logarithmic accuracy, i.e. with InB > 1 at least. For this
reason, they give correct values of binding energy only to
within an order of magnitude. It follows from Eqn (2.15)
that the distance between levels m and m + 1 for m > 1 is
approximately

(2.14)

(2.15)

1

2
2m—|—lln <In“B .

Agm,erl ~ (2]6)

B
Vv2m +1

Note also that the problem for a hydrogen-like atom
with nuclear charge Z may actually be reduced to that of
the hydrogen atom, taking into account that [57, 59]

B
E(Z,B)=Z2E<l, ?> .
3. Hydrogen molecule in an ultrahigh
magnetic field

Interatomic interaction in an ultrahigh magnetic field and
the formation of molecules and bound states is one of the
most intriguing problems in pulsar physics. Its simplest
version is the problem of the hydrogen molecule in an
ultrahigh magnetic field.

It should be borne in mind that two hydrogen atoms in
the ground state give rise to a system with two molecular
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terms: singlet ' and triplet >Z [41]. A major contribution
to the interatomic interaction at large distances is provided
by the van der Waals forces, whereas the exchange
interaction plays a key role at smaller distances compar-
able with the atom’s size. The ground term is 'S while the
term > has a higher energy since the coordinate part of the
wave function of two electrons for > is antisymmetric, in
conformity with the Pauli principle, and becomes zero in the
symmetry plane of the molecule. In other words, the
antisymmetric wave function corresponds to the electron
density distribution (with electrons being located near their
nuclei) and to the effective repulsion of atoms which
accounts for the monotonic growth of the interatomic
interaction potential for term 3% as the atoms draw
together. On the other hand, overlapping of wave functions
for term ' results in a deep potential well which leads to
the formation of hydrogen molecules at the internuclear
distance of the order of ¢y and the binding energy of around
4.5 eV.

The situation dramatically changes in the presence of an
ultrahigh magnetic field where atoms, grossly deformed and
elongated parallel to the magnetic field lines, interact at
large distances as quadrupoles. The most significant differ-
ence is that the ground state in this situation is term °Z,
since atoms in this state have negative additional energy of
the order of uB > Ry.

Interatomic interaction in both singlet and triplet terms
of the hydrogen molecule placed in an ultrahigh magnetic
field can be calculated with logarithmic accuracy [60, 61].
The Shrodinger equation for two hydrogen atoms (in
atomic units) has the form:

| N 1
§(P|+A1)2 5 P2+A2

ZRI; R21

1 I 1, 1.
+—+—+—0']'B+§0'2

3.1
ri2 R 2 ( )

-B] Y=EVY.
where R is the distance between atomic nuclei 1 and 2, Ry;
and R,; are distances between the ith electron and nuclei 1
and 2 respectively, and ry, is the distance between electrons.

By choosing the gauge for the vector potential
A = (B xr)/2, one can present Eqn (3.1) as
1 1
[’H(l, 2)+§&]-B+§&2-B]Y’:EY’, 3.2)
where
1, 1., 1 1
H(l, 2) = —§V 1 —EVQ —EB'(I'I X V]) —EB'("2 X Vz)
P] +p3
- . (33
ZR]I ZRZ! Pé ( )
Here, axis z is directed along the magnetic field lines, and

atoms in the x —y plane have coordinates

X1, =Fa= :Fgcosﬂ, 21 =Fb= qi%sin 0, (34
where 6 is the angle between the molecule axis and the
direction of the magnetic field lines, while p% :y%—i—
+(b+x,)* and p} =y3+ (b —x,)* are the polar coordi-
nates of electrons 1 and 2, respectively, in the x —y plane.

Denoting the symmetric (s) and antisymmetric (a)
coordinate parts of the wave function for the singlet and

the triplet terms by ¥ and ¥, respectively, also taking into
account that for 'Z the total spin § =0 and the ground
state for ° in an ultrahigh magnetic field corresponds to

the total spin projection S = —1, one can write equations
for ¥, and ¥, as
H(], Z)Ws =LY, (3.5)

1
—2:| qla :anla .

0

[H(l, 2) — (3.6)
It is convenient to rewrite these equations for ¥ and ¥, as
a single equation introducing Ey = E, — 1/p3. Then,
1
[H(], 2) - _2:| q]s,a = Esl,a q]s,a . (3.7
Py
Using the approach described in [62, 63], one can obtain
asymptotically accurate expressions for the difference
between energies of singlet and triplet terms owing
to the exchange interaction. To this end, it is necessary
to examine the functions ¥;=(¥,+¥.)/2 and
¥, = (¥, — ¥,)/2 corresponding to the respective states
in which each electron at large R is located near its own
nucleus.
Functions ¥, and ¥, can be found in the form of the
product of wave functions for two hydrogen atoms:
| 02+ p
=3 2x|exp(— ! 22
fieors 4p5

2 2
XW,, 1/2[ (a+z +P0)] Wa,12 [&(U—ZI +P0)] ,(3.8)

¥

where y; is a function changing slowly compared with
the exponent in Eqn (3.8). The equation for y; with
accuracy up to terms of the first order of magnitude in
o <€ 1 has the form

1o 18 2,1 1\ _,
«dz;, «aOz, Ry rp, R n==u.

obtainable with the

(3.9)

(A similar equation for yx, is
substitution 1 < 2.)

Energy splitting in singlet and triplet terms is expressed
through the integral of the product ¥|¥, over the hyper-
surface S(z; =z;) in the space {ry, rp} [62, 63]:

E,—E, = 2§f (P,V, ¥, —P,\V,%,)ds .  (3.10)

S(z1=22)

Based on the solutions of Eqn (3.9) [60] and calculating the
integral in Eqn (3.10), the following expression can be
found for the exchange part of the term splitting energy:

AE = (E,— B) — E,

2R In* B 1
:_—r; 2¢cosf@InB +~ RB sin’
cos? 0 2

1
X exp [—R (ZCosﬂlnB +Z RB sin’ 0)] .(3.11)

At distances exceeding the atomic size along the
magnetic field lines (> 1/InB), the interatomic inter-
action is of the quadrupole—quadrupole type. Bearing in
mind that quadrupole momentum of the atom at
a~1/InB <1 is Q=2(z") ~a’/2, the equation for the
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potential of quadrupole—quadrupole interaction has the
form

1

1
U,=—- —— —<P,(cosB) , 3.12
qq ln4B Rs 4( ) ( )

| O

where
1
Py(cos ) = §(35 cos*0 — 30 cos’0 + 1)

is the 4th-degree Legendre polynomial.

Formulas (3.11) and (3.12) give expressions for the
potentials of the interaction between two hydrogen atoms
in the ground state in an ultrahigh magnetic field for singlet
and triplet terms:

1

1
Up =5 AE + Uy . (3.14)

The negative energy minimum for the quadrupole—
quadrupole interaction is reached at 6 =49°. Note that
the exchange energy of term splitting at r — oo, minus the
energy difference AU = B, becomes exponentially small
compared with the power fall-off of the quadrupole—
quadrupole interaction. Therefore, the difference between
energies Ug and Ur is on the whole determined by the
magnetic field B > 1 whereas the depth of the potential
well Us and Ur at R <1 is largely dependent on the
exchange interaction.

Us/eV
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2 3
Ur/evV 02
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Figure 2. Potential of hydrogen interatomic interaction in (a) singlet
and (b) triplet terms in a magnetic field B = 100 By = 2.35 x 10 G.
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Figure 3. (a) The sizes of the potential well, and (b) the depth of the
potential well for the singlet (Rs, Ug) and for the triplet (Ry, Ur)
terms of a hydrogen molecule as functions of the strength of the
magnetic field (B is in units of By = 2.35 x 10° G).

The interaction potential of two hydrogen atoms in a
strong magnetic field (B =100 By =2.35x 10" G) for
singlet and triplet terms are shown in Fig. 2. In the ground
state corresponding to the triplet term, the interaction
between hydrogen atoms is very weak, with the depth of
the potential well being smaller than 0.1 eV. At the same
time, the well depth in the singlet term is about 500 eV.
However, the energy difference between the singlet and
triplet terms at B = 100 By is AE =~ uB =~ 2.7 keV.

The depth of the potential well for both singlet and
triplet terms increases with increasing magnetic field,
whereas positions of minima (molecular size), Rg and
R, decrease. In strong magnetic fields where the molecular
size approaches that of atoms (B > 1000 By), the difference
between the singlet and the triplet states appears to be
insignificant; instead, the formation of molecules becomes
energetically favourable (Fig. 3).

For intermediate magnetic fields, singlet and triplet
terms in the ground states of hydrogen molecules have
been examined numerically at an arbitrary field orientation
relative to the molecular axis [64]. The results of numerical
calculations are in good agreement with analytic solutions
of Eqns (3.13) and (3.14).
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4. Bose-condensation and superfluidity
of hydrogen in a strong magnetic field

Terms of a hydrogen molecule yield the potential of the
pair interatomic interaction, which is sufficient for the
description of a low-density gas, i.e. at Ronl/3 < 1, where
R, is the characteristic scale of interatomic interaction
(position of minimum in the pair interaction potential) and
n is the gas density. Since the atomic size decreases with a
rise in the magnetic field strength, the ‘diluted’ gas
condition in an ultrahigh magnetic field is true even for
relatively high densities. That is, the condition Ronl/3 <Llis
met for B =102 G up to n < 10% em™3.

The shallowness of the potential well in the ground state
of the triplet term, and hence in the weak interatomic
interaction, is associated with a conspicuous change in the
properties of hydrogen gas in an ultrahigh magnetic field.
Specifically, the interatomic interaction is so weak that
hydrogen, similar to helium, fails to be frozen even at
absolute zero. Also, it forms a Bose condensate and
undergoes phase transition to the superfluid state at
sufficiently low temperaturest 7 < in 2/3/M [65]. Indeed,
the energy of zero oscillations of the hydrogen atom is
Bn*3 M =~ 0.5—5¢V, at a density of n = 10 —10% cm ™,
where M is the atomic mass. The energy of interatomic
interaction in the ground state is comparable with the depth
of the potential well in the triplet term Uy, = 1072—10""
at B =10'""—10'2 G, whereas electron binding energy in the
atom is of the order of 100 eV or higher.

The pair-interaction potential between hydrogen atoms
in a strong magnetic field can be represented as

2
U(R,B):%exp( 2@)+erxp—P4(cos0) 4.1

where R is the distance between the centres of mass of two
atoms and the atomic nucleus, while U, and R, are the
depth and the effective size of the potential well,
respectively, which depend on the magnetic field strength
and may be approximately written in the form

7.9
Ry~ —,
0 \/E

InB
Uo| ~2331n* B <10.34 “—+41.6)

VB

InB BS/Z
X exp (—10.34“—\/5—8.92) ~3.66 x 10—5l 5
n

The hydrogen atom gas is supposed to be a weakly
nonideal Bose gas of structureless particles because of the
high binding energy of the electrons in hydrogen atoms and
weak interatomic interaction. At temperatures lower than
the temperature of transition to the Bose condensate, the

TA possibility of hydrogen being superfluid on the neutron star’s surface

scarcely affects its properties or those of the pulsar magnetosphere. Of

greater importance is the low energy of interatomic bonds. The
behaviour of excitons in a semiconductor placed in a strong magnetic
field is responsible for quite a different situation because the small mass
and high dielectric permeability of excitons allow for their Bose
condensation and superfluidity at the magnetic field values of several
Teslas attainable under laboratory conditions and cven at room
temperature [6, 7].

properties of such a gas are defined by normal and
anomalous Green functions:

Gu(p) = [iw+%—u+A(—p)]

X{[iw+%—u+/4(—p)]
x[iw—%w—fx(p)] +|B(p)|2}] . @)
G () = -8} [M%_ utA )|

2 —1
X[im—g—m+u—f\(p)]+|3(p)l2} s (43)

where p = (k, ®), ® = w, = 2nsT (s being an integer), p is
the chemical potential, and A(p) and B(p) are the
irreducible self-energy functions [68].

The summation of diagrams making major contribution
to the self-energy functions A (p) and B(p) can be expressed
through the scattering amplitude in the momentum repre-
sentation:

4
—flk, k' Ulk —k’ ... dk
mf(’ ) ( +Z(2 )nJ n

U —ky)... Uk, —k)
[(k2 —k%)/m +1id].. [(k2 —k2)/m+id)°

where U(k —k') is the Fourier representation of the
potential (4.1).

In calculating (4.4), a major contribution comes from
the integration region with k > 1/R,, i.e. the isotropic part
of the potential in the momentum representation
Uk —k') = V,. Therefore, it follows from (4.4) with
accuracy to the small terms of the order of py/Ry < 1 that

4.4)

47
;_f'(k,k’)zvo—i—UA(k—k’), (4.5)
where V and U, are the isotropic and anisotropic parts of
U(k —k"), respectively. It is possible to demonstrate [65]
that in the Born approximation (at k < 1/p,)
4n

Vo =~ 41'Cp(2) =3 = const . (4.6)
Taking into account (4.1) for the anisotropic part of the
potential we obtain

Up(k) =U, Jexp [—ik-R — Rﬁ] P,(cos 0) d*r 4.7
0
from which
Ua (k) = 4nURk*J (kR o) P4(cos 6) , (4.8)

is derived by simple calculation, where the function J(kR,)

is expressed through the 4th-order spherical Bessel
functions jy:
J(kR o) ! Joo'(kR Yex%d (4.9)
=—0l] J x x“dx . .
TR R

If the total atomic density is denoted by n, particle
density in the condensate by ny, and noncondensed particle
density by n,, expressions for the self-energy functions can
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be given through the momentum representation of the
scattering amplitude:

Ak) ~ n2Vo + Un (k)] .
B(k) ~ n[Vo+ Uy (k)] .

(4.10)
@.11)

Using the Hugenholtz—Pains relation for chemical
potential p=A(0) —B(0), one can write the equation
for the particle density in the condensate as

u

ny =

-0 (4.12)

—2np .

The density of noncondensed particles can be presented
in the form

n, = —§ > exp(ios) G°(p) = £3/2) (mT)*?*, (4.13)

P
p,e—0 (21‘5)3/2

where {(x) is the Riemann zeta function, {(3/2) =2.612,
and
1

GCp)=——— 4.14
(P) = = v s (414
is the unexcited Green function.
There is only one normal Green function, G(p), above
the Bose condensation critical temperature. Since ny = 0 at

a temperature higher than critical, it follows that
1
iw— (k2/2m —p) —A(k)’
where A (k) is defined by Eqn (4.10).
The excitation spectrum of the system is determined by
the poles of the Green function. Therefore, taking into

account relations (4.10) and (4.11) for A(k) and B(k), we
have

w-[(5-4)

+2<ﬁ— u)A(k) +A%(k) — B2(k)]]/2 . (4.16)

2m

G(p) =

(4.15)

The use of the expression for the chemical potential and the
explicit form of A (k) and B(k) gives

k2 2
E(k) = {[%-Fl’l X 4EU0R(7)I(4 Jo(kRo) P4(C050) +110V0:|

1/2
_[l’l X 41'CU0R8k4J0(kR 0) P4(COS 0) =+ l’l0V0]2} . (4]7)

Expression (4.17) for E(k) is actually the Bogolyubov
excitation spectrum, which fulfils the Landau criterion for
superfluidity. It can be shown that in spite of the fact that
the energy spectrum has a strong angular dependence on the
direction of the magnetic field, the velocity of sound does
not depend on the direction of the magnetic field to the first
approximation, and the phonon branch at k — 0 satisfies
the Landau criterion for superfluidity:

(4.18)

Therefore, the speed of sound in the superfluid phase is

47'5/10
ug ~ .

mB

(4.19)

The temperature of transition to the Bose condensate is
found from the condition that particle density beyond the
condensate, n,, in the transition point (at 7 = 7 ) must be
equal to the total particle density n. Density n, is expressed
through the normal Green function. Above the transition
temperature we have

T .
ny = — V,,;o exp(iwe) G( p)

I &’k
= ) 4.20
(zn)3jexp[E(k)/T]—1 20
Substitution of the expression for E(k) into Eqn (4.20)
yields

V2

mT)3/2 + ? m3/2T

LB
P (271:)3/2

X[\/_E]nl—'_i "8]/82_1/8]_,10‘/0 R
2 1 — \/31/82

Assuming that in Eqn (4.21), n, = n, ny =0, it is possible
to obtain the equation for the critical temperature of
transition to the superfluid state. The T.(n) dependence for
three magnetic field values (B:lOI, 102, and 103) is
illustrated in Fig. 4. The critical temperature for hydrogen
in a strong magnetic field is virtually identical to the Bose
condensation temperature for the ideal Bose gas. The
principal difference is attributable to the critical density
n = n, being specific to each B value so that the critical
temperature at n — n, vanishes due to the strong inter-
action at a relatively small interatomic distance.
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Figure 4. Critical temperature, 7, of the transition of hydrogen into
the superfluid state depending on density, n, of the hydrogen gas for
three values of B (in atomic units): (1) 10, (2) 10%, (3) 10°.

5. Superfluidity of deuterium in a strong
magnetic field

Deuterium atoms in the ground state placed in an ultrahigh
magnetic field form the Fermi gas with weak anisotropic
interaction, the potential of which is given by Eqn (4.1). It
is natural to suppose that deuterium, similar to *He, should
be able to acquire the property of superfluidity when in a
strong magnetic field at low temperature [69]. However,
pair interaction in the case of deuterium is anisotropic
unlike that of *He which shows isotropic pair interaction
but anisotropic superfluid phase [70, 71].
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The properties of deuterium at low temperature can be
naturally described on the basis of the results of the
Bardeen —Cooper —Schrieffer theory (BCS) [71]. In the
BCS model, the equation for the order parameter 4; at
zero temperature has the form

Ukk'Ak'

A =—y — KTk
1/2 °
T2 + 4

(5.1)

where Uy, is the Fourier representation of the potential of
the pair interaction and g, is the energy of elementary one-
particle excitations.

Because deuterium in the strong magnetic field is
completely polarised and the spins of all atoms are oriented
opposite to the magnetic field lines, the expansion in
spherical harmonics near the Fermi surface is likely to
contain only those associated with the odd angular
momentum:

Ut = by Y70(2') Y30(2) + by Y3(2') Y 19(2)
—b Y (2)Y5(2) — b Y3, (Q) Y1, (Q)
—b1 Y1_1(Q)Y5_(2) = b Y3_(2)Y,(2) . 5.2)

Here, the solid angles 2 and Q' describe the directions of
the momenta k and k’ in the coordinate system with axis z
that parallels magnetic field lines while coefficients b, and
b, are given by

ki UyRY J(keRy)

b
© 7 945 \/

16n> 2
b] :m\/;kéUoRg j(kFRo) N

where ky is the value of the momentum on the Fermi
surface. Other symbols have the same meanings as in
Eqn (4.8). The critical temperature of transition into a
superfluid state can be found from the BCS equation for
the energy gap, if one bears in mind that its width vanishes
at T —T..

At T # 0, the BCS equation for the energy gap can be
written in the form

/A T E’T
ZUkk w(T) tanh w(T)

A1) = 2E,(T) 2kgT °

(5.3)

where kg is the Boltzman constant and

2
Eo(T) = /8, + |4, ()]

In the case of the strong anisotropy in question, there
are two options for the order parameter to be chosen,
according to the angular momentum projection m =0 or
m=1. It can be shown that the superfluid phase of
deuterium is in fact the ground state of the system with
the order parameter corresponding to m = 0, which is to be
sought for in the form

Ao = AoY 10(R2) — Apa1Y3(R2) . (54)
Here, a; is a constant of the order of unity, and the energy
gap is defined by the expression

4
Ay~ 28 yexp (_[70N0> ,

where Ny = mpy /(27°1) is 1 of the density of states on the
Fermi surface, & <¢ is the width of the zone in the
momentum space near the Fermi surface, and the
numerical coefficient

In y~ ——J Y10 — Yol In|Y g — Y3| d2 = 0.2597 .

The following expression for the critical temperature can
be derived from Eqn (5.4) with the aid of Eqn (5.3):

4m >
|bo|No/

This expression defines the temperature of the transition of
deuterium to the superfluid state as a function of gas
density. The T,(n) dependence for the above three magnetic
field values (B = 102, 10°, and 10%) is shown in Fig. 5.

kgT, = 1.14 Eexp <— (5.5)
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Figure 5. The critical temperature, 7., of the transition of deuterium
into the superfluid state as a function of the density, n, of the

deuterium gas for three values of B (in atomic units): (1)102,(2)
10°, (3) 10%.

6. Hydrogen molecules in an ultrahigh
magnetic field

6.1 A hydrogen molecule in an ultrahigh magnetic field

Hydrogen atoms in a strong magnetic field (B > By) are
completely polarised and their electron spins are oriented
against the magnetic field lines, which accounts for the very
weak interatomic interaction in the ground state of
hydrogen atoms (see the previous section). In this case,
the pair-interaction potential associated with the triplet
term is characterised by a shallow potential well, while
Coulomb repulsion of electrons acquires the role of the
dominant factor because of the antisymmetry of the
coordinate part of the wave function. At the same time,
interatomic distances are relatively large, in accordance
with the Pauli principle, which accounts for incomplete
overlapping of the electron wave functions and makes it
possible to neglect the exchange interaction that falls
exponentially with the increasing distance. As regards the
quadrupole—quadrupole interaction between atoms, it
equally fails to contribute significantly to the interatomic
interaction in the triplet term since the potential
Uy(R) ~ 1/R°. It has been shown in Sections 3 and 4
that the depth of the potential well in the triplet term is so
small as to make possible, in principle, formation of the
Bose condensate and transition to the superfluid state,
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provided that the temperature is sufficiently low. Con-
versely, the pair-interaction potential in the singlet term has
a very deep potential well facilitating transition to the
bound state. However, the energy needed for spin flip of an
electron is much higher than the binding energy of the
molecule and is even in excess of the atom’s ionisation
potential.

The situation is quite different in the case of a multi-
electron system where the excited states of electrons at the
lowest Landau level with nonvanishing projection of orbital
momentum (m # 0) acquire greater importance. Unlike the
m-independent energy of free electrons in the magnetc field,
the energy of bound electrons at higher Landau orbitals
(p, = V2m + 1py) increases with growing m even though
the energy difference between these excited states and the
ground state is small compared with the latter’s energy.
Excitation energy in the state with m # 0 is asymptotically
(at InB > 1) small: O(1/1n B.) of the ground state energy.
In principle, this situation allows for the atoms to form into
molecules of a new type [19, 72] in which “‘the electron
cloud is totally collectivised” (B B Kadomtsev).

Mechanisms of molecular formation in the ultrahigh
magnetic field and in its absence are quite different. In a
normal hydrogen molecule, the atoms are held together by
covalent bonds. Generally speaking, the H, molecule can
join the third atom only if this atom is excited. In this case,
however, the excitation energy is of the same order of
magnitude as that of the atom’s ground state and as the
binding energy in the H, molecule which makes formation
of such a molecule energetically unfavourable.

Conversely, hydrogen atoms in a strong magnetic field
are unable to produce even an H, molecule because the
interaction between them is weak. Nevertheless, in this
situation a hydrogen atom can join an electron of the lowest
Landau level with the projection of orbital momentum
m =1 by producing a negative ion H™, since the Coulomb
repulsion is not very strong for such a configuration. The
variation method similar to that mentioned in the beginning
of Section 2 may be employed in order roughly to evaluate
the binding energy of the H™ ion. In other words, the
binding energy can be estimated if the minimum of the
energy functional is found. With this technique, a binding
energy of about In> B has been obtained. Also, it has been
shown with this method that two hydrogen atoms in states
m =0 and m =1 give rise to a hydrogen molecule which
has binding energy in the limit of an ultrahigh magnetic
field of the same order In®B.

It should be borne in mind, however, that binding
energy estimates thus obtainable are lacking in accuracy
because they are derived as the difference between two
higher values: the ground state energy of the molecule with
‘collectivised’ electrons and the combined energy of indi-
vidual atoms, each value being calculated with only
logarithmic accuracy. Binding energy of isolated molecules
and long molecular chains has been calculated by many
authors [19, 20, 25, 28, 29, 72—74] who used a variety of
techniques (variational method, density-functional method,
etc.). The Hartree—Fock method proved to yield the best
results because it made possible consistent consideration of
the exchange interaction [29, 75].

It has been mentioned in the foregoing discussion that
binding energy is calculated with logarithmic accuracy.
Because the use of the adiabatic approximation implies
satisfaction of the inequality (InB)/vB <1, the results

obtained for magnetic fields of practical interest
(B ~ 10" — 10" G) cannot be regarded as reliable. Specif-
ically, for By, = 10'2 G, there is only (InB)/v/B ~ 0.3, and
the asymptotic expression for the binding energy
&= —(InB)/2 is attainable only at very high values of
the magnetic field, e.g. B ~ 107Bq ~ 10" G).

Binding energies (dissociation energies) of the hydrogen
molecule, H,, and a chain of molecules, H, with
n=3,4,...,00 and the molecule axis parallel to the
magnetic field lines, was found with the use of the
molecular orbital method and the method of Hartree—
Fock [75] to calculate the Hamiltonian matrix ele-
ments (3.1) proceeding from the respective basic functions.

The Hamiltonian of a chain of n atoms arranged along
the z axis at an equal distance a from each other, with the
magnetic field B oriented along the z axis, has the form

H=Hy+H,+H,+Hy . 6.1
where
A —zn:L(iJ +5A)2+2n:1p3 62)
’ —2me N =2 ’ .
N e2
A, =-S—¢ | 6.3
74 %:lr,‘_luz| ( )
A 1 &
Hee:_i I (64)
i i
=33 «
. 28 all = J| '

Here, symbols i, j and I, J label electrons and ions,
respectively.

Assume that all electrons in the ground state are at the
lowest Landau level, with their spins directed against the
magnetic field. Choose a gauge for the vector potential in
the form

A:%(er) . (6.6)

In order to reduce the system of Hartree—Fock
equations to a system of one-dimensional equations,
represent basic wave functions of one-electron states as

qlnp:O,m,v(ps ®, Z) = WO,m (p’ ¢) fm,v(z) s (67)

where ¥, ,(p, @) are free-electron wave functions at the

lowest Landau level (2.7) at n, = 0 while m =0, 1,2..., and

f,,,,‘,(z) are wave functions to be found. For the two-atom

H, molecule, the wave function f, ,(z) may be supposed to
have no nodes (quantum number v = 0) since states with
v # 0 have been shown to have by far higher energy (see
Section 3).

The normalised antisymmetric electron wave function is
given by the determinant of Slater functions (6.7) and, in
the case of the two-electron wave function, has the form

Y(ri, ry) = S{¥0(r) Yo (r2)}

1
:%{Woo(rl) Yo, (r2) — Poo(ra) Poi (r)} . (6.8)

where the quantum number v = 0 is omitted for the sake of
simplicity.

As is known [41], the Hartree—Fock equations follow
from the variation principle when the functions ¥, and ¥y,
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are varied independently. In order to choose basic functions
in the form of Eqn (6.7), it is necessary to average over
radial Landau wave functions while the functional (H) is
varied only with respect to functions f; and f;. Therefore,
the problem in fact is solved in the adiabatic approximation
which allows one-dimensional Hartree—Fock equations for
functions f,,(z) to be obtained in the form
”odt e , e

[_Z—V%P - g Vu(2) + aKm (2) — gm:| fu(2) = r_OJm (2),

(6.9)

where m =0, 1 for the two-atomic molecule, and the
potentials averaged over the basic functions are defined as

1
V@) = | o Won(o 0 5=z (6.10)
I

Kn(e) = 35 [ 6/ a @) Dz = 2)

Jm (Z) = Z.f;n’ (Z) J dzlfm’ (ZI) fm (Z’) Em,m’ (Z - Z’) ’ (6]2)

Dm,m’ (Zl - ZZ)

(6.11)

1
= J dzpl d2p2 N/m (pl)|2 |¢m (p2)|2 E > (6]3)
Em,m’ (Zl - ZZ)
1
= J dzpl d2p2 l/Im (pl ) ‘pm’ (p2) W:I (p2) W;z’(pl ) a .
(6.14)

For the H, hydrogen molecule, the symbols m and m’
in Eqns (6.9)—(6.14) acquire the values of 0 and 1,
respectively, while the boundary conditions for the func-
tion f,,(z) look like

Ju(z=0)=0,

2mepy \"
fole = o0) e | (Z2l) | (619)
Knowledge of solutions for Hartree—Fock equa-
tions (6.9) allows the total H, energy to be computed as
2
E=(PH|®) =S+ Ep+Ey —ET—E™" | (6.16)
a
where E9T and E™" are the energies of electron —electron
and exchange interactions, respectively:
2

ir 3 ¢
Ed :J d r d3r2|Y’00(r1)|2|q101("2)|2 E

2
¢ J Az, dzy % f2(2)f2(2) Dot (1 —22) . (6.17)

)

2
X * * e
E®" = —J d3"1 d3"2 X Woo(r1) Poi (ra) Yoo (ra) ¥oi(r1) E

2
e

= ——J dZ] dZ2
o

x fo(z1) f1(z2) fo(22) fi(z1) Eqi(z1 — 22) (6.18)

At o — oo, the total energy (6.16) must undergo
transformation to the sum of energies of individual atoms
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Figure 6. The size (a), and the binding energy (b) of a hydrogen
molecule for the bound molecular state (£y, Rp) and for singlet
(Eo0s Roos) and triplet (Egor Ropr) terms of the ground state of the
atoms.

in the ground state £y (at m = 0) and in the excited state
50] (at m = 1)

The binding (dissociation) energy of the H, molecule is
reported [75] to have been found from a numerical solution
by means of the molecular orbital method and from
numerical solution of the Hartree—Fock equation (6.9).
The field-dependent molecule (H,) size and binding energy
values &y, as obtained in Ref. [75] are shown in Fig. 6. For
comparison, this figure also presents the binding energy (the
depth of the potential well) and the size (minimum in the
potential of interatomic interaction) of the H, molecule for
triplet (Eqor»> Roor) and singlet (Egpg, Rggg) terms when both
hydrogen atoms occur in the lowest state (n, =0, m =0,
v=0) [61]. Specifically, dissociation energy of the H,
molecule for the magnetic field B=10"G s
€y =454 eV and its size is Ry = 0.24ay [75] whereas
the binding energy in the triplet term is Eygr = 1 eV and
the size of the ‘molecule’ is Ryor =~ 0.4 ay. For the singlet
term the binding energy is g = 1 keV and the size is
Rys =~ 0.1ay. Energies of the ground state (m = 0) and the
first excited state (m =1) of the hydrogen atom are
—161 eV and —117 eV, respectively.

6.2 Formation of large polymeric hydrogen molecules

It has already been noted that in a vanishing magnetic
field, the hydrogen molecule (H,) is formed because of
covalent bonding, which makes addition of another
hydrogen atom energetically unfavourable. The situation
is quite different in an ultrahigh magnetic field since the
energy difference between excited states with m # 0 at the
lowest Landau level is insignificant as compared with the
ground state energy n, =0, m = 0. In this case, atoms are
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likely to draw together even if they are completely
polarised (see Section 3), and the formation of large
hydrogen molecules H, with n > 1 may prove energetically
preferable.

At large distances, atoms are believed to have the shape
of thin needles oriented parallel to the magnetic field lines
and interact as quadrupoles. For distribution of electron
density n, ~ exp(—2alz|), the energy of the quadrupole—
quadrupole interaction with momentum Q. = 2(z N =d?/2
is

L P,(cos6) . (6.19)

Qqq = 8 n“B R°
if the interatomic distances are greater than the atom’s size.
When on one line, atoms may be either reciprocally
repulsive or attractive (at = 0, and 6 ~ 49° respectively).
The potential of the quadrupole—quadrupole interaction
progressively decreases at greater distances, which allows
the interaction at R > 1/« to be neglected.

When atoms draw together, the electrons are ‘collecti-
vised’ and occupy the lowest levels associated with
longitudinal (along the magnetic field) motion. Owing to
this, n atoms (n > 1) placed in an ultrahigh magnetic field
form a molecule which is extended parallel to the field lines
and has an electron shell radius (in the plane perpendicular
to the magnetic field) identical with the maximum Landau
orbit radius

2
=1 py ~ n

(The electrons are assumed sequentially to fill in orbits
with m =0, 1, ..., n—1.) To estimate the binding energy
of such a molecule, the variation method used in Ref. [72]
to calculate the energy of a two-atom molecule of heavy
atoms in an ultrahigh magnetic field (B » 2Z°) may be
applied. Similar numerical calculations of binding energy
by the method of Hartree—Fock were reported in Ref. [75]
for the H, molecule comprising n hydrogen atoms.

If the exchange interaction is disregarded, the energy of
the molecule of n hydrogen atoms interacting at distances a
may be approximately presented as a sum of electron
kinetic energy and Coulomb energy V,,, V,;, and Vj:

oY n—1 /1

3 2
e[ [ (&) 5 ()
n/2

1 1
= “"z] T

I<J

(6.20)

—n

Here, ¥? is the average wave function normalised by the
condition n¥? =n, (where mean electron density n, =

3, ¥7) and

G-l

The ground state energy can be estimated from minimising
the functional (6.20), subject to the additional constraint

J &Ervir)=1.

Bearing in mind that a molecule in an ultrahigh
magnetic field has the shape of a thin needle of length
L ~ na > R and electron density outside atoms vanishes as

6.21)

exp(—2alz|) along the z axis and as exp(—p?/R?) radially,
one takes test functions from

2
: p
¥ (r) = RIS { — 2afz| _P} ,

where o is the free parameter. Substitution of (6.22) into
Eqn (6.20) gives, with logarithmic accuracy, the following

expression for the energy:
1
. (6.23)

(6.24)

(6.22)

2 n/2
E~ {2 +2nocln(ocR)——nocln(ocR)+Z

The energy per atom can be presented as [75]

K
o

3 2
z———mxln——f—

E
n 22 2"

where y = 0.577 is the Euler constant.
Variation with respect to a yields

(6.25)

S|

R —on In4 /=,
8n n n

where aR < 1 and In(2/naR) > 1.

It is worthwhile to note that the solution for the ‘long’
hydrogen molecule thus obtained is in a way equivalent to
the approximate solution for a heavy atom in a high
magnetic field [76, 77] (see also Section 7). The distance
between atomic nuclei rapidly decreases with increasing n;
therefore o« = (4/9n*) In~" \/B/n’.

The ground state energy of the H, molecule can be
estimated from simple qualitative considerations similar to
those described in [19]. Suppose that n hydrogen atoms are
situated on the z axis at similar distances o. The molecule
length and radius are L ~ na and R ~ v/2n/B, respectively,
and it is assumed that n> 1 and L » R. Treating the
molecule as a thin, uniformly charged cylinder with radius
R and length L yields, with logarithmic accuracy, the
following expression for the total energy, i.e. the sum of
kinetic and potential energies:

2 1 n. 2a
E =1 ~n|l —=——In—| . 6.26
(2m > "(L2 L"R> (620
Variation of Eqn (6.26) with respect to L gives
1
L~—, Ex-n'l, (6.27)
nl
where
2a B'/?
[=1n In
R n*2In B

It should be emphasised that these expressions for the
hydrogen molecule energy are only asymptotic and valid
only under the strong condition InB > 1. Numerical
calculations indicate that the asymptotic formulas are
actually correct only at B > 107.

A rise in n is accompanied by electrons in the molecular
shell of H, occupying progressively higher orbits
R = +/2n —1p, until saturation corresponding to n =n,
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is achieved at R ~ a. From n > ng on, filling states which
correspond to wave functions with nodes in z, i.e. v#0,
becomes energetically favourable. It is evident [19, 75] that
in the limit n > ny > 1 the energy of a uniformly charged
cylinder with radius R does not depend on n and is

B\
E=-039B*°=-10.6 (—) eV, (6.28)
By
while
17 _
R~ am188R. (6.29)

It should once again be emphasised that all these
formulas are valid only if considered as distant asymptotics
at B> 1, and even for the magnetic field B = 10" their
accuracy is no better than an order of magnitude.

In the numerical calculation of binding energy for H,
molecules at n = 2, 3, ...co reported in Ref. [75], the electron
density was assumed to be uniform along the z axis, and
products of plane waves in z and Landau functions xp()’m (o, )
served as basic functions. The binding energy &, for Hy,
molecules, dissociation energy €% (H ., — Hoo + H), and
equilibrium distance between atoms as functions of the
magnetic field strength as obtained in Ref. [75] are shown in
Fig. 7.

£fev 10*

d/ao

10%

1072 1 1 1
10" 10" 10" 10"

10" B/G

Figure 7. Binding energy €, dissociation energy &Y and interatomic
distance for the infinite molecule chain of hydrogen atoms as functions
of the strength , B, of the magnetic field.

Note that the order of magnitude of the number of
molecules formed in the atmosphere of a neutron star is
determined by the small ratio (kzT/In” B). The number of
molecules both on the star’s surface and in its atmosphere at
a surface temperature of around 10 eV should be great if
the dissociation energy of hydrogen molecules in the case of
B =10" G ranges from 46 eV for H, to 29 eV for H, as
was calculated in Ref. [75]. The presence of a large number
of molecules must influence the cooling rate of the star and
can be revealed in the analysis of UV and x-ray spectra.

However, it should be emphasised that the binding
energy for a hydrogen molecule and for the H, molecule
calculated in Ref. [75] can be considered only as a tendency
to form a molecular state. These authors used the adiabatic
approximation in order to reduce the problem to one-
dimensional Hartree—Fock equations. The accuracy of this
method is rather low, especially in the region of fields
B < 500. Second, methods based on the use of atomic

orbitals as a first approximation to set up an approximate
solution for any system with exchange interaction, for
instance the Heitler—London method, yields wrong results
at large separations (see the detailed discussion in
Refs [41, 62, 63]. As a matter of course, when the authors
of Ref. [75] employed the molecular-orbital and HF
methods to calculate the interaction energy of the mole-
cule, they also came to this. To resolve the difficulty, they
were forced to employ an artificial approach based on the
idea of configuration interaction (a detailed critique of these
methods may be found in Ref. [63]). There is also another
serious shortcoming in the calculations in Ref. [75]. The
minimum of the interaction energy of the molecule found
there lies at interatomic distances a greater than or equal to
the atomic size a in fields 1 < B < 300. The quadrupole
forces = 4.50" P, (cos 0) /a’, where  is the angle between the
molecular axis and the field, acting between atoms at all
a > a are of the same order as the dissociation energy D,
calculated in Ref. [75], and these forces become repulsive,
destroying the ‘accuracy’ of calculation, when the molecular
axis coincides with the magnetic field direction. Thus, the
picture of interaction presented in Ref. [75] needs serious
revision.}

7. Heavy atoms in strong magnetic fields.
The Thomas — Fermi model

The problem of binding energy and ionisation energy of a
heavy atom with Z > 1 is one of the most important to
solve if the surface structure of neutron stars is to be
understood. Calculation of the multielectron system for
this purpose by the Hartree—Fock method is cumbersome.
For this reason, the simpler method of Thomas—Fermi [41]
is used in the case of heavy atoms even though it is far less
precise than the previous one. Properties of heavy atoms
and molecules in the ultrahigh magnetic fields thought to
be inherent on the surface of neutron stars were first
examined in Refs [19, 43, 72, 73, 76, 77]. More extensive
studies were the subjects of further reports [57, 58, 78 —81].
Evidently, the accuracy of the Thomas—Fermi approach
increases as the number of electrons rises, that is at higher Z.
Indeed, it has rigorously been demonstrated that the
Thomas—Fermi model is asymptotically accurate in the
limit n, — oo0,Z — oo. This appears to be equally true of
heavy atoms (Z — oo) in an ultrahigh magnetic field [84].
Mathematical aspects of this model in the limit
Z — o0,B — oo have been discussed in Refs [84 —86].
For the case of heavy atoms (Z > 1), the definition of
ultrahigh magnetic field needs to be made more specific. If
the total number of electrons is denoted by N and the
nuclear charge by Z, then N < Z and N = Z correspond to
positive ion and neutral atom, respectively. There are no
solutions that describe negative ions N >Z and bound
molecular states in the Thomas—Fermi model [87—89].
Electrons in the ground state in a strong magnetic field
are located on cyclotron orbits with radii p,, = v2m + 1p,
where m changes from m = 0 to m = mp,,,. The spins of all
electrons are directed against the magnetic field lines since
B > 1. A magnetic field may be considered strong provided

ay
e .1
l)lﬂ< Z (7 )

fParagraph added in proof of English edition.
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If condition (7.1) is satisfied for m,,, = N, i.e. for all m
including m,, = Z, filling the lowest Landau level alone
becomes energetically favourable. In this case, electron
motion along the z-axis corresponding to the ground
state can be described by wave functions which have no
zeros in z. Electrons fill up cyclotron orbits from m = 0 to
m =N, and the electron shell of the atom is markedly
extended along the magnetic field lines. The ultrahigh
magnetic field condition corresponding to condition (7.1)
has the form

B>27° . (7.2)

Strictly speaking, it is necessary to distinguish between
the following strength ranges of the magnetic field [84]:

() B <z,

) B~z
)z <B<Z’,
@ BrZ,

B)YB>Z*. (7.3)

In ranges (1), (2), and (3), electron density exhibits
spherical symmetry. Electrons in ranges (3), (4), and (5)
are at the lowest Landau level. Atoms in ranges (4) and (5)
appear to be markedly extended parallel to the magnetic
field lines rather than appearing to be spherical. The ranges
of moderately high (3) and ultrahigh (5) magnetic fields are
believed to be of primary importance to the physics of
neutron stars. Respective numerical values of the magnetic
field in the case of iron (Z = 26) are

B=26""By=18x10""G, B=26By=4.1x10"3G.

7.1 Heavy atom in a moderately strong magnetic field
Let us examine the moderately strong magnetic field
assuming that M, < N, Z. In this case, electrons are
at the lowest Landau level. Because the width of the wave
functions ¥(p) ~ exp(—p?/B) is of the order of 1/+/B, the
wave functions of adjoining cyclotron orbits are likely to
overlap unless B is too high. In this situation, the filling of
excited levels with small m values becomes energetically
favourable. Respective wave functions f,(z) with v # 0 have
zeros, while electron density is more or less uniform along
the z-axis. Each m level in the ground state is occupied by
at least several electrons, which allows for the Thomas—
Fermi approximation to be used. In the adiabatic
approximation, the number of electron states in the
phase space is easy to evaluate if one takes into account
that the radius of the cyclotron orbit in the plane
perpendicular to the magnetic field lines is p,, = /2m/B,
that is the number of possible ‘transverse’ states
dN, = dm = pB dp. The motion of an electron along
the magnetic field within the adiabatic approximation is
assumed to be one-dimensional with momentum p,; so that
dN” =p; dZ/21'C.

Hence, the total number of states in the elementary cell is

B
AN dN) = pz"—npm dp,, dz = ne(r)mp dp dz, (7.4)
from which it ensues that the electron density is
n(r)=-=p, . (7.5)

2n?

The total kinetic energy of the electrons inside the Fermi
surface is

2
Klng ()] = dzvﬂjl .
P| < Pr

= > (7.6)

This, with the use of Eqn (7.5), leads to the kinetic energy
density:
2nt 3
k(r)zﬁnc(r) . (77)
If one neglects the exchange interaction, the Thomas—
Fermi equations are implied by the minimum condition for
the total energy functional:

4 /
E— 2n Jng(r)d3rfzjne(r) d3r+lj”e(")”e(") dr &
r

T 3B? 2] =7
(7.8)
subject to the additional normalisation constraint
N = Jnc(r) d’r . (7.9)

Variation of Eqn (7.8) gives the relation which expresses
electron density in terms of the electrostatic field potential:

ner) =53 V20 — 90) -

This relation follows explicitly from the energy conserva-
tion law p?/2 = @ — ¢,, where the electrostatic potential is
defined as

(7.10)

Z /
go(r):—7+Jm d’r . (7.11)

It will be recalled (see Ref. [41]) that ¢, is the maximum
energy; moreover, ¢, > 0 and ¢, =0 for ion and neutral
atom, respectively.

Substitution of expression (7.10) into the Poisson
equation,
Vio(r) = —4nmn, , (7.12)
gives the final equation for ¢ in the form
Vio(r) =—— V20— ¢,). (7.13)

The latter equation is spherically symmetric [57, 76], that is
both its solution ¢(r) and the function n.(r) which
minimises the energy functional (7.8) depend only on
r = |r|. Natural boundary conditions for ¢(r) imply that at
r — 0, the potential ¢(r) tends to the Coulomb potential of
the nucleus with charge Z:

lirr(1) ro(r)=-2 (7.14)
whereas at r — 0o, the potential ¢(r) must decrease at least
faster than 1/r because of screening of the nucleus by the
shell electrons.

It is convenient to introduce a new variable x and
function y, instead of r and ¢@(r):

=2 )/ 1) =~ 21o() ]

— 7.15
27 (7.15)
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In the variables defined in Eqns (7.15), Eqn (7.13) and the
boundary conditions take the form

() = Vxx s

x0) =1,

The case of the positive ion (N < Z) requires addition-
ally that the condition y(x,) =0 be satisfied on the ion’s
boundary (with x = x). Taking into account this condition,
one can obtain from Eqns (7.9) and (7.16),

(7.16)

1(x = 00)=0. (7.17)

V=2 [ T )~ )] x = 21+ w e) )]
(7.18)

Because Eqn (7.16) and boundary conditions (7.17) in
the variables x and y are independent of N and Z, the
transformation formulas to the new variables of Eqns (7.15)
may be considered to determine the universal dependence of
the atomic radius, potential, and electron density on the
nuclear charge Z and the magnetic field. Knowledge of
solutions of Eqn (7.16) allows electron density, atomic
energy, and ionisation energy to be expressed in terms
of x(x). Representation of ¢ in terms of x(x) in Eqn (7.10)
gives for the electron density,

0 — i ]/522/536/5 x(x) 2
(8 n]] .

X

(7.19)

With Eqn (7.19) taken into account, the total atomic
energy can be written as [78]

8\ 1 NY
— (2 /5n2/5 ./ o _w
E (n2> z°/°B [X(O)+x0<l z)] (7.20)

while the ionisation energy is considered to be the energy
difference:

E,=E(Z,N—-1)—E(Z,N).

Therefore, atomic radius and atomic energy in a
moderately strong magnetic field depend on Z and B as

R(Z,B)xz'°*B7*°, E(Z,B)x—2°B*S . (121

The range of a moderately strong magnetic field is
determined by the applicability of the Thomas—Fermi
method together with the method of adiabatic approxima-
tion used to find the solution. Therefore, it is necessary that
the Coulomb interaction in the atom should be small
compared with the gap between the Landau levels, i.e.
Z/R < hw.. Since the characteristic atomic size
R x Z'/°B%* [in compliance with Eqn (7.15)], a limit
on the magnetic field B < Z*P can be obtained. At the
same time, for the Thomas—Fermi model to be applicable,
the Fermi length of the electron wave must be small
compared with the atom’s size. The condition that the
magnetic field should be moderately strong means that each
level with the quantum number m is occupied by at least
several electrons, i.e. p, > 1/Z. Hence, with p, ~ /2Z /B,
it follows that B < Z°. Therefore, situations to which
solutions in the Thomas—Fermi model may be applied
are defined by the relation

VAGRY: RYVAN (7.22)

The Thomas—Fermi method is known to be especially
convenient because it allows simple analytic solutions to be
obtained. However, its accuracy is significantly lower than
that of other techniques, e.g. the Hartree—Fock method.
The lack of accuracy in the Thomas—Fermi method in the
case of a strong magnetic field can be accounted for by at
least two factors: its inability to take into consideration the
exchange interaction and the use of the adiabatic approx-
imation. It is known that the exchange interaction
effectively diminishes the electrostatic repulsion of elec-
trons, which results in their higher density in the shell than
is predicted by the simple Thomas—Fermi model. This, in
turn, makes the radius of the atom smaller and enhances its
energy. Results of numerical calculation in the framework
of the Thomas—Fermi—Dirac model as reported in
Ref. [78] indicate that the relative contribution of the
exchange interaction (especially to ionisation energy)
may be of the order of 30% —60% depending on Z, N,
and B. When the exchange interaction is taken into account,
the total binding energy of the atom rises while its radius
becomes smaller. However, the relative contribution of the
exchange interaction to binding energy and ionisation
energy decreases as the magnetic field grows.

The inaccuracy of the Thomas—Fermi method related
to the use of the adiabatic approximation in calculating
kinetic energy as the electron density functional has been
discussed in Ref. [79]. More exact calculations of the
electron density [79, 90] were reported to lead to an
equation for the potential which [even if spherically
symmetric as in Eqn (7.16)] explicitly contains parameters
Z and B in both the equation and the boundary conditions;
from this point of view, the scaling of expressions (7.21) is
approximate and asymptotically exact at B — oo. Accord-
ing to numerical calculations in Ref. [79], the solution at
B = (10-50)B, is at variance with that obtained in the
adiabatic approximation, but at B > 1000 B, the results are
in good agreement with the adiabatic approximation.

7.2 Heavy atom in an ultrahigh magnetic field

When m,,, > N, condition (7.2) for an ultrahigh magnetic
field is fulfilled. In this case, electrons are at the lowest
levels (with respect to azimuthal quantum number m) of
cyclotron orbits in the lowest Landau zone, each occupying
one level. The atom is elongated parallel to the magnetic
field lines, and its shell radius is comparable with the radius
of the maximal cyclotron orbit p, ~ 4/2Z/B. Under these
conditions, the ground state of a heavy atom is analogous
to that of a hydrogen atom at B > 1. The energy of a heavy
atom can be computed in the mean field approxima-
tion [77], following the approach used in Section 6.2. It is
clear from what was said at the end of Section 7.1 that the
adiabatic approximation in the case in question must
ensure sufficient accuracy and requires no significant
correction for the exchange interaction. By analogy with
expression (6.20), the atomic energy is found as

1 oy
E:Jd3r| d3rN {Ez(a—Z’>

i

Zz 1 1
STy )
7 i 2!7&/ |r,-—rj|

If the exchange interaction is neglected, the wave function
¥ is merely the product of one-particle electron wave
functions in a self-consistent electric field, and the energy is

(7.23)
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expressed in terms of the mean electron density n, = >, y?,
This leads to an equation similar to Eqn (6.20):

10N N—-1/1\,, Z.,
—| = — ()P ——V
2 (az) + 2 <r> r
Here, ¥ is the mean wave function normalised by the
condition N¥? = n, while (1/r) is given by Eqn (6.21).
Similar to Section 6.2, the wave function may be chosen

in the form of Eqn (6.22). Substitution of Eqn (6.22) into
Eqn (7.24) yields, with logarithmic accuracy,

E= NJ d’r . (7.24)

No?

1
Em———2NZ In(aR) +5aN(N — 1)In (aR) . (7.25)

where R = py and apy < 1.

Variaton of expression (7.25) with respect to o gives,
from the energy minimum condition with logarithmic
accuracy [77],

1
N (7.26)
E= —§L2(4Z ~N+1).

The expression for L in Eqns (7.26) is similar to the
expression for / in Eqn (6.25) and, when N =Z, has with
logarithmic accuracy the form

1 B

L~ 5 In 73 (7.27)

To sum up, both the shape of the heavy atom and the
expression for energy in an ultrahigh magnetic field B > Z;
are similar to the respective characteristics of the hydrogen
atom at B > 1. Specifically, the formula for energy (7.26) at
Z =N =1 tends to the asymptotic formula for the binding
energy of a hydrogen atom &, = (In> B)/2. The ionising
energy of a neutral atom,

3
E,=-L%2Z%,

. (7.28)

grows rapidly with increasing Z, unlike the ionisation
energy in a moderately strong magnetic field. It should be
emphasised that the numerical value of the ionisation
energy for heavy atoms with Z > 1 amounts to hundreds of
kiloelectron-volts and appears to be enormously high if
judged by ‘terrestrial criteria’.

7.3 Molecules. Equations of state

The cooling rate of a neutron star depends on the state of
its matter, density profile, and temperature gradient in the
surface layer. It is therefore important to know the
equation of state for the matter on the stellar surface in
a strong magnetic field.

By virtue of the simplicity of the Thomas—Fermi model,
it is tempting to extend its use to studies of bound molecular
states and the equation of state, in spite of the low accuracy
of the model as compared with that provided by the mean
field approximation method.

The results of such an approach have been reported in a
review [81] and in Refs [91-94], and only a few more
general observations as regards applicability of the Tho-
mas— Fermi method seem to be appropriate in the
following discussion.

In its simplest form (i.e. ignoring exchange interaction
between electrons), the Thomas—Fermi equation can be
derived by variation of the total energy functional [see
expression (7.8)] to which a term describing the Coulomb
interaction between nuclei should be added. Introduction of
the exchange interaction does not result in any substantial
complication. The equation of state for cold matter in a
strong magnetic field, with the exchange interaction taken
into account (Thomas—Fermi—Dirac model), has been
considered in Refs [81, 92].

As is known, neither the Thomas—Fermi approach nor
the Thomas—Fermi—Dirac model have solutions corre-
sponding to stable bound molecular states. In this
context, there is no solution corresponding to the con-
densed state with zero pressure. The statement of the
absence of solutions corresponding to stable molecules in
the Thomas—Fermi model (known as the Teller theo-
rem [88, 89]) is evident from the fact that in the
Thomas—Fermi approximation, the atomic energy and
the radius of the atom are proportional to 73 and
Z7'/3, respectively, while the binding energy of the
molecules and their size dependent on the electrons in
the external shell of the atom must be unrelated to the
nuclear charge or show only a weak relation.The problem
may be posed in a more general context as the problem of
matter stability (see the discussion in Refs [95, 96]). It is
possible to evaluate the exchange energy of molecules in the
modified Thomas—Fermi—Dirac— Weitszeker model, which
takes into account terms with the electron density gradient
in the kinetic energy functional. Estimates of molecular
binding energy in a strong magnetic field on the basis of the
modified model [94] agree qualitatively with the results
obtained by the mean field approximation method.

8. Matter in ultrahigh magnetic fields

The problem of the binding energy of the matter in a
strong magnetic field on the surface of a neutron star
appears to be of primary importance for the theory of the
pulsar magnetosphere. The matter may either exist in the
solid phase, giving rise to a one-dimensional metallic
lattice, or form the liquid (gaseous) layer on the stellar
surface, depending on whether the value of the binding
energy is high or low. The mode of existence dictates
boundary conditions for the electric field at the surface of
the pulsar, which provide the basis for a variety of
theoretical models of the magnetosphere [22, 24, 33, 34, 97].

There is a choice between a magnetosphere model with
free emission of particles from the star and that with
trapped emission and finite electric field on the stellar
surface. The specific field value at the surface is a function
of temperature. However, it shows even greater dependence
on the binding energy of the surface matter, thermal
emission being the prevalent process. The thermoemission
constant is difficult to calculate in this situation. Never-
theless, it is concluded that, on the basis of extrapolation of
thermoemission rates attainable in the laboratory, the
minimum binding energy of the matter compatible with
the models of a magnetosphere with finite electric field is
E.i, =3keV at a surface temperature of 100 eV.

Crystal structures in the solid phase with optimal
binding energy are possible because of the cylindrical
shape of the atoms in an ultrahigh magnetic field. There-
fore, they should be expected to be either body-centered
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tetragonal (Dy4,) or rhombohedral (Dj4) lattices. What is
actually needed is a reasonably reliable estimation of the
binding energy of an infinitely long chain of molecules.

In earlier studies [20, 98], the binding energy of poly-
meric molecules was calculated on the assumption that long
molecules are densely packed because of adhesion, giving
rise to solids. Typical values of binding energy obtained in
Refs [20, 98] for the crystal lattice of iron atoms were found
to range from 2.6 keV for B = 102 G, to 10 keV for
B =5 x 102 G. However, more accurate calculations [99]
demonstrated that these values are overstated by approx-
imately one order of magnitude.

Simple estimates of the atom’s binding energy in a
crystal lattice placed in a strong magnetic field (see, for
instance, those in Section 6.1) are not in the least bit reliable
since they have been calculated on the assumption that
binding energy in a crystal lattice is the difference between
two large numbers, each obtained with insufficient accu-
racy. Generally speaking, it is a priori evident that singlet
terms responsible for strong interatomic bonding cannot be
effective because atoms in an ultrahigh magnetic field are
completely polarised. Therefore, the binding energy must be
small. This inference is confirmed by numerical calculations
of binding energy on the basis of either the density
functional method [25—27] or the Hartree—Fock approach
[28, 29].

Attempts to calculate the binding energy for body-
centered tetragonal and rhombohedral crystal lattices of
iron atoms in a strong magnetic field have been reported in
Refs [25-27]. Electrons were supposed to show exchange
interaction as if they formed a homogeneous gas in the
absence of a magnetic field. The binding energy of the body-
centered lattice thus obtained turned out to be no more than
0.12 keV for B =10"> G and 0.5 keV for B =5x 10" G.

A more consistent account of the exchange interaction
is available in the Hartree—Fock model. However, calcula-
tion of the binding energy of a crystal lattice remains a
cumbersome and tedious task. Binding energy values for
molecule chains calculated in the Hartree—Fock approx-
imation [28, 29] indicate that heavy atoms do not produce
bound states in a strong magnetic field. It has been shown
that isolated atoms are energetically more preferable than
chains of molecules [29]. This is true for atoms with Z > 2
in a magnetic field B > 10'? G and for atoms with Z > 4 in
a magnetic field B > 5 x 102 G. The binding energy of the
molecule of helium atoms found in Ref. [29] is about 25 eV
per atom at B = 102 G, while atoms with Z >3 at
B > 102 G do not assemble into chains at all.

Evaluation of binding energy for a polymeric molecule
of iron atoms in a strong magnetic field in the Hartree—
Fock approximation yields values below 1 keV, while
possible binding energy between polymeric chains is less
than 0.5 keV [29]. To sum up, the calculations indicate that
in both the density functional approximation and the
Hartree—Fock approximation, heavy atoms do not form
the bound states in ultrahigh magnetic fields.

9. Conclusion

The physical properties of matter have been shown to
change drastically in the presence of an ultrahigh magnetic
field. In particular, the electron shell structure of the atom
is subject to radical alteration. Atoms show marked
lengthwise extention along the magnetic field lines, with

their binding energy and ionisation potential being
substantially increased. Concurrently, there is a change
in both the form and the intensity of the interatomic
interaction, with the accompaning restructuring of matter.

Atoms in the ground state are completely polarised in
a strong magnetic field and therefore exhibit only weak
interaction. Moreover, a gas of hydrogen-like atoms gives
rise to a weakly nonideal Bose gas which does not solidify
until zero temperature is reached. At the same time, weakly
excited hydrogen atoms are able to form molecules with
relatively high binding energy as well as long chains of
polymeric molecules. The presence of hydrogen (or helium)
molecules in the atmosphere of a pulsar can affect its cool-
ing rate and is most likely to be detected in UV and x-ray
spectra.

Estimates of the binding energy of matter at the neutron
star’s surface appear to confirm the validity of the magneto-
sphere models for free emission. Indeed, it has been shown
that the binding energy of iron atoms is of the order of the
surface temperature [25—-27, 29], i.e. too low to interfere
with free emission in strong electric fields.

However, an alternative scenario is conceivable, which
has until now not been discussed in the literature. Hydrogen
and helium accretion onto the surface of the pulsar can, in
the course of time, result in the formation of molecules
composed of alternating heavy and light atoms. Preliminary
estimates suggest that the binding energy of such mixed
molecules may be rather high. If more accurate calculations
prove to support this conjecture, it will be possible to
introduce the following new scenario of pulsar emission.
Immediately after the birth of a pulsar, its magnetosphere is
best described by the free-emission model. However,
accumulation of light atoms on the stellar surface because
of accretion eventually results in complete inhibition of the
release of matter from the star (trapped emission). If pulsars
are actually destined to develop along this line, free-
emission models would be more appropriate to character-
ise younger stars, whereas trapped-emission models appear
to be more suitable to describe older pulsars.

In conclusion, it seems appropriate to mention the novel
mechanism of molecular laser radiation by hydrogen at the
neutron star’s surface. Such radiation is thought to
originate from the transition between the strongly bound
high-energy metastable state of hydrogen-like atoms in the
singlet term and the practically unbound ground state of
atoms. It is worthwile to note that the required pumping of
the laser is provided by the reverse flow of high-energy
particles, as stipulated by any model of the pulsar magneto-
sphere [22, 100].
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