
Abstract. The de Haas – van Alphen effect and the
behaviour of a superlattice in a quantising magnetic field
can be described in terms of an electronic topological
transition. Near the transition, the thermodynamic stability
condition is shown to break down, thus eliminating the 11

2 -
order transition and giving rise to a first-order phase
transition. The latter leads to the formation of diamagnetic
Condon domains.

1. The purpose of the present Note is to suggest a new
perspective for a well-studied phenomenon known as the de
Haas – van Alphen (dHvA) effect. As is well known, the
dependence of the thermodynamic properties (e.g., the
magnetic susceptibility) of metal single crystals on the
magnetic field H at low temperatures is oscillatory in
nature (an exhaustive review of the relevant results is given
in Ref. [1]). The reason is the quantisation of the motion of
electrons in a magnetic field. The traditional approach to
the dHvA effect is [1] that a physical property (say,
susceptibility) is represented as a sum over the quantised
energy states; after this, Poisson’s summation formula is
applied and the property in question emerges as an
expansion in terms of functions periodic in Hÿ1. This is
discussed in somewhat more detail below. In the standard
approach, all occupied quantisation levels are ‘in service’.
Our intention here is to look at how the physical properties
of interest are affected by one level, namely, that which has
just begun, or is about, to be filled. This means that we
change the ‘scale’ of the problem: rather than investigate
the behaviour of the thermodynamic function as the inverse
magnetic field is changed by a period, we will examine the
neighbourhood of a magnetic field value corresponding to
just one particular level. This approach reveals an
electronic topological transition (ETT, see Refs. [2, 3]) in
the system of conduction electrons.

We begin by discussing the basic concepts of the
problem, which are of course common to both
approaches. The motion of conduction electrons in a

magnetic field is determined by the Lorentz force acting
on them. The path of an electron in r space is similar to its
path in p space. The nature of electronic motion is greatly
influenced by the shape of the cross section of the energy
surface in a plane normal to the magnetic field direction. If
the cross section is closed, the path is finite, and if open,
infinite. In the former case, that part of the electronic
energy associated with the motion perpendicular to the field
is quantised. In the quasiclassical case, which is of the
greatest importance for analysis, the quantisation condi-
tions can be written down explicitly (Lifshitz – Onsager
quantisation condition; see, for example, Ref. [4]):

S(e, pz) =
2p�heH

c
(n + g) , n = 0; 1; 2; . . . . (1)

Here H is the strength of the magnetic field directed along
the z axis; S(e; pz) is the cross-sectional area of the energy
surface e( p) = e in the plane pz = const normal to the
magnetic field direction; g is a constant which in most cases
is equal to 1/2. There is also the spin electron quantisation,
which splits in two each energy level given by Eqn (1). In
the simplest case, when the spin – orbital coupling is
ignored, the magnitude of the splitting is eH�h=m0c,
where m0 is the free electron mass.

The quantisation-induced rearrangement of the electro-
nic spectrum clearly changes the electron density of states,
thus substantially affecting the physical properties of the
metal. Suppose the electronic dispersion and the magnetic
field direction are such that the electronic orbits are closed.
The Lifshitz – Onsager quantisation, Eqn (1), transforms
the three-dimensional spectrum into a one-dimensional one.
To each particular specification of the quantum number n
and spin projection s = �1=2, there corresponds a one-
dimensional band (more frequently referred to as Landau
subband) of the form

e = ens( pz) . (2)

The structure of the Landau subband is determined by the
dependence of the cross-sectional area S(e, pz) on pz . At
this point, some simple general statements can be made.
The cross-sectional area S(e, pz) is bound to have a
maximum at a certain value of pz . The greatest of the
maxima determines the lower edge (bottom) of the Landau
subband. The cross-sectional area S(e, pz) may have several
extrema as a function of pz . For each of these, there is a
corresponding maximum in the en = en(pz) dependence.
The quasimomentum pz which maximises S(e, pz) will be
denoted by pzn ; thus e(pzn) = en. According to Eqn (1), pzn

and en are determined by the equations
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S(en, pzn) =
2p�heH

c
(n + g) ,

qS(en, pz)

qpz

�

�

�

�

pz=pzn

= 0 . (3)

Expanding S(e, pz) in powers of pz ÿ pzn yields

ens( pz) � ens( pzn) +
( pz ÿ pzn)

2

2m
k

, pz ' pzn , (4)

where ens differs from en by the spin splitting term,

ens = en �
e�hHs

m0c
, s = �

1
2

,

and where, in terms of the cyclotron mass m�

=

(2p)ÿ1
[qS(e; pz)=qe], the longitudinal effective mass m

k
is

m
k
= ÿ2pm�

�

q
2S

qp2
z

�

ÿ1�
�

�

�

e=ens; pz=pns

. (5)

The sign of m
k

is determined by that of the cyclotron mass
and by the structure of the energy surface (see Table 1).
For the free electron gas, m�

= m0, q
2S=qp2

z = ÿ2p and
m
k
= m0. Eqns (2) and (4) are not limited to the

quasiclassical approximation. The magnetic field renders
the electronic motion one-dimensional, with the quasimo-
mentum pz retaining its meaning. Close to the edges of the
one-dimensional band, Eqn (4) is valid as before (see
Ref. [4], } 19, Ref. [5], and the discussion below).

To illustrate the above ideas, two examples will be
considered:

(a) the dispersion away from Brillouin band edges is{

e =
p2
?

2m
?

ÿ

p2
z

2m
k

+

p4
z

4p2
0m

k

+ ec , (6)

with energy surfaces as shown schematically in Fig. 1.
(b) energy surfaces are warped cylinders (Fig. 2).
In the former case, the quantisation condition becomes

S(e, pz) � pp2
?
= 2pm

?
eÿ ec +

p2
z

2m
k

ÿ

p4
z

4p2
0m

k

" #

=

2p�heH
c

(n + g) , (7)

giving the quantised energy levels

en(pz) = ec +
eH�h
m
?

c
(n + g)ÿ

p2
z

2m
k

+

p4
z

4p2
0m

k

. (8)

The energy band structure, i.e., the energy as a function of
pz , is shown in Fig. 3a for two values of n. As seen from
Eqn (7), the cross-sectional area S(e; pz) at fixed n and e

shows one minimum (at pz = 0) and two maxima (at
pz = �p0) and, as predicted for the general case, the energy
en(pz) also has extrema at these values of pz : at pz = 0 we
have a maximum, and at pz = �p0, we have minima.

In the latter case, e = en(pz) is a periodic function of the
quasimomentum (Fig. 3b), each of the reciprocal space cells
necessarily having one minimum and one maximum.

Let us now return to the general case. The density of
electronic states in a magnetic field is [4]

n(e) =
eH

(2p�h)2c

X

n;s

�

dpz d[eÿ ens(pz)] . (9)

Table 1.

Carriers Cross-sectional area S has a

maximum minimum

Electrons

m�

> 0

m
jj
> 0 m

jj
< 0

Holes

m�

< 0

m
jj
< 0 m

jj
> 0

{By assumption, the points pz = �p0 and pz = 0 are away from the
edges of the Brilliouin zone.

b

c

pz

p0

a

p1

Figure 1. Energy surface of the spectrum given by Eqn (6) for energy
values e < ec ÿ p2

0=2m
k

(a), e = ec (b), and e > ec (c).
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For e = ens, the electron velocity component vz vanishes
and hence n(e) has a square root singularity at e = ens.

In the usual approach, the sum over n is transformed by
the Poisson formula and the density of states becomes a
sum of Hÿ1-harmonic functions whose periods are inversely
proportional to the maximum (in pz) cross-sectional area S m

of the Fermi surface in planes perpendicular to the pz axis:
DHÿ1

= 2pe�h=cSm . Knowledge of the density of states
allows one to find whatever thermodynamic quantities
are of interest. In strong magnetic fields, T5 �hoc

(oc = eH=m�c is the cyclotron frequency of the electronic
orbit), the constant component of the magnetic suscepti-
bility is less than the oscillatory one, and it is the latter

which dominates. The magnetic susceptibility is [6]

~wzz =

1

�h3

1

23=2p7=2

�����

e�h
c

r

1

H 3=2

X

m

S2
m

m�

����������������������

jq
2S=qp2

z jm

q

�

X

1

k=1

c(2p2kT =�hoc)
���

k
p cos

�

k

�

cSm

e�hH
ÿ p

�

�

p

4

�

� cos

�

pk
m�

m0

�

; c(z) =
z

sinh z
. (10)

From Eqn (10), and letting T ! 0, it follows that, since
c(0) = 1, the amplitude of the susceptibility oscillations is
given by the sum of the series in 1=

���

k
p

and hence tends to
infinity. The increase in susceptibility makes the electronic
system unstable and results in separating the metal into
regions of different magnetic induction (Condon domains,
see, for example, Refs [1, 7]). However, the growth of wzz
with temperature or magnetic field is very difficult to
determine since this requires a summation of the series (10).

We shall proceed in a different way. When the energy e

is close enough to ens(pn) to permit the expansion (2) (from
this point on, this value is denoted by en and referred to as
an energy level), then the density of states may be expressed
in the form n(e) = n0(e) + dnn(e), where n0(e) results from
the summation in Eqn (9) over all the levels except for those
near en, and where

dnn(e) =
eH

2(2p�h)2c

�

j2m
k
j

jeÿ enj

�1=2

y[�(eÿ en)] (11)

is the contribution from the level considered. The upper
sign in the argument of the y function refers to the case
where the longitudinal effective mass is positive. To be
specific, let m

k
> 0. Note that as e! en , the density of

states n0(e) remains finite whereas dn(e) goes to infinity, so
that near e = en there is a range of values for which
dn(e)4 n0(e).

The total number of electronic states below the energy e

has an anomalous part,

dNn(e) =
eH

���������

2m
k

p

(2p�h)2c

���������������

jeÿ enj
p

y(eÿ en) , (12)

and the thermodynamic potential is represented in the form
O = O0 + dOn, where

dOn = ÿ

eHn=2m
k

(2p�h)2c

�

e

en

������������

eÿ en
p

de

exp[(eÿ m)=T ] + 1
. (13)

The field Hn is determined from the condition en = m (m is
the chemical potential). At zero temperature

dOn = ÿ

2
3

eHn

���������

2m
k

p

(2p�h)2c
z3=2

y(z) . (14)

The energy parameter z = mÿ en we have introduced will
be important in the discussion below.

Formally, the situation is reminiscent of ETT [2] (see
Ref. [3] for a review). If the Fermi surface of a metal
changes its topology by, say, developing a pocket or losing
a neck, it is known that the Fermi-surface density of states
in a pure crystal acquires a singular term. This term is zero
on that side of the transition which has fewer Fermi-surface

p1

pz0 p=a 2p=a

Figure 2. Energy surfaces of a warped-cylinder spectrum.

ÿp0

pz

b

n2

n1

en

p=a 2p=a

en

pzp0

a

n2

n1

Figure 3. Energy band structure for the spectrum given by Eqn (6) (a)
and for the warped-cylinder spectrum (b). In both cases n2 > n1.
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pockets, while on the other side it depends in a square root
fashion on the parameter z = mÿ ec, where ec is the Fermi
topology change energy. The thermodynamic potential at
zero temperature also acquires a singular term: zero on one
side of the transition and proportional to jzj5=2 on the other.
Thus, in Ehrenfest’s terminology, a three-dimensional ETT
at zero temperature is a 2 1

2 -order phase transition. To avoid
misunderstanding, this is not a temperature-induced phase
transition, but one due to external parameters (such as
pressure, impurity concentration, or magnetic field). At
finite temperature, as well as in a nonideal crystal, the
thermodynamic potential singularity is washed out, and the
ETT is no longer a phase transition but manifests itself in
anomalies. In particular, the anomalous part of the
electronic specific heat increases as a square root of z,
and the thermal coefficient of expansion tends to infinity as
jzjÿ1=2.

A similar argument suggests that, for the case under
consideration, the intersection of Fermi levels ens gives rise
to a 1 1

2-order phase transition, or one-dimensional ETT{,
which is the appearance (or disappearance) of a ‘one-
dimensional pocket’ at the Fermi level [the appearance
of electrons in a new Landau subband, when en corresponds
to the greatest of the maxima of S(e; pz) as a function of pz ].

At finite temperature, as well as in a nonideal crystal,
the singularity is washed out and the phase transition
transforms into an anomaly (see below). What thermody-
namic singularities will then occur? Suppose T5 �hoc,
jzj5 �hoc, and the number of occupied Landau subbands
is large enough, so that the chemical potential may be
considered as weakly dependent on the magnetic field (a
typical dHvA situation). Let us start by determining the
dependence of the parameter z on the temperature, volume,
and magnetic field. From the condition that the number of
electrons N is constant we obtain, for T5 jzj, that

qz
qT

= ÿ

p
2T
3

n
0

(z)
n(z)

,
qz
qV

= ÿ

N

V 2n(z)
. (15)

Since, from Eqn (11), n(z) / 1=
���

z
p

as z ! 0,

qz
qT

=

p
2T
6z

y(z) ,
qz
qV

/

1
���

z
p , z ! 0 . (16)

Since n(z) approaches infinity as 1=
���

z
p

, it follows that for
jzj ! 0 the anomalous part of the density of states is much
larger than the normal part: n05 dnn and jn

0

0j5 jdn
0

nj.
Further, at T = 0 and

0 < m0 ÿ en5

�

eHn
������

m
k

p

c�h2
n2
(m0)

�2

,

we have

z(H) = m(H)ÿ en

= (m0 ÿ en)
2 n

2
(m0)

���

2
p

p
2c�h3

m
k
eHn

/ (Hn ÿ H)

2 , (17)

where m0 is the chemical potential in the absence of a
magnetic field.

The thermodynamic quantities of interest — electronic
specific heat (C), thermal coefficient of electron pressure

(a = Tÿ1
qP=qT ), and compressibility (k = qP=qV) are

conveniently expressed by the use of Eqns (15) and (16)
to give

C =

p
2T
3

n(z) , (18)

a =

p
2T
3

n(z)ÿ
N
V
n
0

(z)
n(z)

� �

, (19)

k = ÿ

N 2

V 2

1
n(z)

. (20)

Thus, the specific heat has a singularity which turns to zero
as z ! 0:

dC
T

=

p
2a1

3
1
���

z
p y(z) . (21)

We have introduced the notation
a1 = [eH n=2(2p�h)c]

�����������

j2m
k
j

q

. The thermal coefficient of
pressure (and similarly the thermal coefficient of expan-
sion) is still more singular:

da =

p
2N

6Vz
y(z) , (22)

and the electronic component of the compressibility at
z > 0 vanishes as a square root:

k = ÿ

N 2

V 2 a1

���

z
p

, z > 0 . (23)

For Z < 0, all the electron characteristics assume their
background values involving the quantity n0. Treating the
magnetic field as a variable, we find that the specific heat
and the thermal coefficient of expansion diverge as
(Hn ÿ H)

ÿ1 and (Hn ÿ H)

ÿ2, respectively, and that the
electronic compressibility is proportional to Hn ÿ H .

We note, however, that the 1 1
2 -order transition gives rise

to a phenomenon which is not found in ETT. This is seen by
calculating the magnetic susceptibility anomaly{ dw =

= ÿq
2
dO=qH 2. Retaining only the term divergent as

z ! 0, we find

dw = ÿ

eHn

c

�

qen

qH

�2 ���������

2m
k

p

(2p�h)2

�

1

0

qnF(e+ en)

qe

de

2
��

e
p . (24)

In the limiting cases we have: for T5 z,

dw =

eHn

2c

�

qen

qH

�2 ���������

2m
k

p

(2p�h)2 ���

z
p y(z)

�

1 +

p
2

8

����

T
z

r

�

, (25)

and for z5 T ,

dw =

eHn

2c

�

qen

qH

�2 ���������

2m
k

p

(2p�h)2 ������

2T
p

�

A 1 +
z
T

A 2

�

, (26)

A 1 =

�

1

0

dx

cosh2
x

2 � 0:953 ,

A 2 =

�

1

0

sinh x2 dx

cosh3
x

2 � 0:298 . (27)

{This is of course because the electron spectrum becomes one-
dimensional in a magnetic field. {For simplicity we neglect anisotropy effects.
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In the low-temperature low-z region (i.e., for the chemical
potential m close enough to en), the susceptibility is highly
positive and tends to infinity. In particular, in the dashed
region of the z – T phase diagram of Fig. 4{ the magnetic
susceptibility exceeds (4p)ÿ1.

The large value of the magnetic susceptibility raises the
question of whether it is the magnetic field H or the magnetic
induction B which determines the thermodynamic potential
O and other thermodynamic characteristics of the conduc-
tion electrons. Normally (in nonmagnetic media) this
question does not arise because the magnetic susceptibility
(of both diamagnetics and paramagnetics) is very limited, so
that B ' H . The most important — oscillatory — compo-
nent of the thermodynamic potential is dominated by
macroscopically large electronic orbits (of size larger
than the crystal cell). In following such an orbit, an
electron feels the average magnetic field, that is, the
induction B. Therefore the argument of the thermody-
namic potential O is B, not H , and hence we must
replace H by B in all the formulas above. Using

H = B ÿ 4pM (B) , (28)

where M (B) = ÿqO(B)=qB is the sample magnetisation, we
can readily show that the thermodynamic stability
condition qH=qB > 0 (see Ref. [8]) becomes the inequality

w >

1
4p

. (29)

Thus, the dashed region in Fig. 4 is one of instability.
The existence of an instability region in the dependence
H = H(B) (Fig. 5) suggests that the electronic subsystem of
the metal must necessarily undergo a first-order phase
transition in which the system breaks down into two phases
differing in induction (Shoenberg effect, see Refs [1, 17]).

Thus, at a given temperature T 1 (see Fig. 4) and
z1 < z < z2, the system consists of two phases whose
inductions correspond to B(z1) and B(z2); these are
diamagnetic Condon domains [9]. The entire situation is
very similar to that of a liquid – vapour transition in a Van
der Waals system.

The region of existence of the domains is easy to
estimate. Thus, at zero temperature the susceptibility

becomes (4p)ÿ1 for z = z0 (see Fig. 4), which from
Eqn (17) implies the induction

H 0 = Hn 1 ÿ
n(m0)e

2
�h2

pc2m2
k

" #

. (30)

The infinite dHvA amplitude and the appearance of
Condon domains may be interpreted as an electronic
topological transition, a first-order phase transition that
precedes (and thereby eliminates) the 1 1

2 -order transition.
Lifshitz [2] notes that in an ETT (without a magnetic

field) the compressibility qP=qV acquires a finite positive
term, which can render the crystal unstable. We emphasise
that at H = 0 the additional term is finite, and the total
compressibility can be negative only for jzj 6= 0. In a
magnetic field (for T ! 0), an instability is bound to
occur, and so also is a first-order phase transition. This
latter fact accounts for the repeatedly observed effect of
metal domains [1] or, in other words, for the repeatedly
observed first-order electronic topological transition.

2. There is currently considerable interest in artificial
(man-made) objects. In particular, these include crystals
with a superstructure — property-periodic superlattices
with a period greatly exceeding the lattice constant. Among
such objects are systems of alternating ‘degenerate semi-
conductor – dielectric’ layers. The motion in a
semiconductor layer may be considered quasifree. Cou-
pling between the layers is generally weak. If the tunnel
penetrability of the dielectric barriers is not too weak, and if
the periodicity is strict enough, band motion across the
layers (i.e., along the z axis) is possible. In actual fact, one
cannot go beyond the weak coupling condition (see, for
example, Ref. [10]), and the carrier dispersion relation has a
simple form (for H = 0) of

e( p) =
p2

x + p2
y

2m
?

+ D sin2

�

pzd
2�h

�

, (31)

where m
?

denotes the effective mass for the motion in a
conducting layer, D is the miniband width related to the
dielectric-layer tunnel transparency, and d is the super-
lattice period. In a magnetic field along the z axis (i.e.,
perpendicular to the layers), the spectrum gets quantised
(the spin splitting is for simplicity neglected):

en(pz) = �hoc

�

n +

1
2

�

+ D sin2

�

pzd
2�h

�

; n = 0; 1; 2; :::; (32)

{The quantities z0 and T 0 are found from (25), (26) and the equality
dw = (4p)ÿ1 for T = 0 and z = 0, respectively (the term w05 1 may of
course be neglected).

T 1

T 0

z1

z0

z2

0

z

T

Figure 4. Phase diagram in z, T coordinates. The dashed part is the
Condon domain region, the enclosing line being that of first-order phase
transitions.

H

BB2B1

Figure 5. Typical dependence of the magnetic field H upon the
induction B close to the phase transition. For B1 < B < B2, the
thermodynamic inequality qH=qB > 0 fails, and the system is unstable
to Condon domain formation.
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the electron cyclotron frequency being oc = eH=m
?

c. The
density of states of such a system is, from Eqn (9),

n(e) =
eH

p2cd �h

X

n

�

eÿ �hoc

�

n +

1
2

��

ÿ1=2

�

�

�hoc

�

n +

1
2

�

+ Dÿ e

�

ÿ1=2

, (33)

where the energy lies of course within the intervals

�hoc

�

n +

1
2

�

< e < �hoc

�

n +

1
2

�

+ D , (34)

while outside these intervals n(e) � 0 provided �hoc > D. It
is seen that in strong magnetic fields (for �hoc > D) there are
gaps in the energy spectrum. The allowed and forbidden
bands alternate but do not overlap. The width of each
allowed band, in a superlattice of volume 1 cm3, is D, and
the total capacity of the band is N H = eH=p�hcd (cmÿ3).
Thus, if the carrier density N is a multiple of NH (N = sNH ,
s = 1; 2; . . .), then at T = 0 the superlattice is a dielectric:
there are only filled and empty bands in the system. It is
true that this is a rather peculiar dielectric. All the
dissipative components of its conductivity are zero,
whereas the Hall component sxy = ÿsyx is not and equals
e2s=p�hd. It is easy to realise that we are dealing with a
three-dimensional analogue of the quantum Hall effect (see
Refs [11, 12]). Introducing two-dimensional conductivity
s
(2)
ik = dsik , the steps in question assume their usual form of

s
(2)
ik = 2e2s=h.

For N = sN H and T = 0, the electron chemical poten-
tial, m, lies in the middle of the forbidden band. For
T5 �hoc, the number of electrons in the first ‘empty’
(conduction) band and the number of holes in the last
‘filled’ (valence) band are exponentially small:
N e = N h / exp(ÿ�hoc=2T). The occupation of the bands
at a constant carrier density can be controlled by varying
the magnetic field. For H 6= Hs = = p�hcNd=es, there is
necessarily a partly filled band, and the system is a ‘metal’
(degenerate semiconductor). Thus, varying the magnetic
field enables a metal – dielectric transition to be modelled
[11]. This latter is also an example of a 1 1

2 -order topological
phase transition. However, as in the case above, a 1 1

2 -order
transition does not actually occur. As the magnetic field
approaches Hs, the susceptibility increases causing the loss
of stability. As a result, a first-order phase transition takes
place. Such a situation arises, at least for T = 0, when the
magnetic susceptibility is given by

w =

2e2

pc2d m

s + 1=2
��������������

1 ÿ X 2
p , X = 2 sin2 pN

N H

� �

ÿ 1 . (35)

This formula may also be considered true for T5m
0, where

m
0 is the chemical potential measured from the band edge.

Sufficiently close to the metal – dielectric transition,
when the inequality

�hoc4 T4 m
0

holds (or for H ! Hs: jH ÿ Hsj5Hs

������������

pT=D
p

), the degen-
eracy of the system is removed and the electron gas
becomes a Boltzmann one. In this case, the chemical
potential lies in the centre of the forbidden gap, and the
magnetic susceptibility is given by

w =

2e2

pc2d m
�hocT exp

�

ÿ

�ho
c

ÿ D

2T

���

s +
1
2

�2

+

�

s +
3
2

�2�

, �hoc ÿ D4 T . (36)

It is seen that in this region the susceptibility is
exponentially small. Figs 6a and 6b present the variation
of the magnetic susceptibility with the field for T = 0 and
T 6= 0, respectively. At zero temperature, an increase (or
decrease) of the magnetic field is accompanied by two first-
order phase transitions (i.e., breaking of the system into
Condon domains). The fields H 1 and H 2 (Fig. 6a) are
readily found to be

H 1;2 = Hs 1 �
4e2

pc2d m

�

s +
1
2

�

" #

. (37)

At finite temperature the maximum value of the suscepti-
bility occurs at the fields

H � H s 1 �

������

pT
D

r

 !

. (38)

HH 1 Hs H 2

w

1
4p

a

H

b

1
4p

w

Hs

Figure 6. Magnetic susceptibility versus magnetic field for a superlattice
for T = 0 (a) and T 6= 0 (b). Dashed regions correspond to magnetic
fields for which w > (4p)ÿ1 (Condon domain region). For T ! 0, the
maxima move off to infinity, and the minimum disappears.
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At temperatures
������

pT
D

r

>

4e2

pc2d m

�

s +
1
2

�

(39)

the susceptibility never exceeds 1=4p, and the Condon-
domain instability region is absent: the system exhibits only
a metal – dielectric transition (although clearly a smeared
one since T 6= 0).

It should be noted that, in contrast to the three-
dimensional case, in superlattices (at low temperatures)
equilibrium electrons appear only as a result of doping.
Because of the collisions of electrons with impurities,
Landau levels are broadened. This reduces the amplitude
of susceptibility oscillations, the amount of reduction being
characterised by the effective Dingle temperature T D, where
T D ' �h=t, and t is the characteristic time for electron
scattering by impurities. In reference [13] it was found
that the electron scattering time in the point-defect field
U(r) = = U0

P

i d(rÿ ri) is

t
ÿ1

=

U2
0N

im

eH

2p2
�hcdD

�

x(1 ÿ x)
�1=2

, x =

m
0

D
, (40)

where N im is the impurity concentration. Its value controls
the existence (or otherwise) of the first-order phase
transition.

It should be remembered, however, that populating
Landau subbands can also be achieved without introduc-
ing impurities (say, by light pumping). This may prove
convenient for the observation of phase transitions in
superlattices.
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