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vigorously up to the present day. In the present paper,
the derivation of the model equations is given in depth and
rational use is made of asymptotic methods. Indeed, it is
important to understand that in some cases the derivation
of these approximate equations is intuitive and heuristic. In
fact, it is not clear how to insert the model equation under
consideration into a hierarchy of rational approximations,
which in turn result from the exact formulation of the
selected water wave problem.
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N B Zabusky and M D Kruskal [25], in which the term ‘soliton’ was
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review: ‘‘A quasi-one-dimensional asymptotic theory for non-linear
water waves” published in Journal of Engineering Mat hematics 28 261
(1994). A more complete theory of ‘“Nonlinear long surface waves in
shallow water” is given in the author’s preprint (Universite de Lille 1,
Laboratoire de Mecanique de Lille, 224 pages, 1993). (Author’s note.)
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1. Introduction

The wave motion, under the force of gravity, of a moving
body of water with a free surface in a channel with an
uneven bottom is one of the most interesting and successful
applications of nonlinear hydrodynamics.

Studies of water waves have always been enriched by the
interest coming from diverse fields of science, including
applied mathematics and singular perturbation techniques.
Indeed, waves on the free surface of a body of water have
always been a fascinating subject, for they represent a
familar yet complex phenomenon, easy to observe but very
difficult to describe!

Given that the wave motion of an inviscid and
incompressible liquid (such as water) is irrotational, it
would be the obvious choice to derive the classical Laplace
equation for the velocity potential ¢(¢,x,y,z). However, the
Laplace (elliptic) equation has little to do with waves and this
choice would be wrong, because of curious effects of the free-
surface conditions. Indeed, there is one boundary condition
for the Laplace equation, but only when the boundary is
known (‘classical’ Dirichlet or Neumann problems).

In fact, two conditions are needed for a free (unknown)
surface, z = {(t,x,y), because the surface position {(¢,x,y),
has to be determined as well as ¢(¢,x,y,2).

Moreover, although the Laplace equation is linear, the
two boundary free-surface conditions are unfortunately
nonlinear.

However, it is necessary to note that in the presence of a
free surface, the vorticity of an inviscid and incompressible
body of water does not necessarily remain zero if it is zero
initially! Indeed, the free surface can intersect itself, which
happens when a wave breaks and vortex sheets are formed. In
this case, instead of the Laplace equation, it is necessary to
consider the full Euler equations (this is always the case for an
incompressible fluid). [ shallnot consider here this important,
but very difficult, question and I shall analyse only the
classical nonlinear problem for ¢ and {, when the effects
of the surface tension and an uneven bottom are included.

Naturally, some degree of mathematical intractability
seems inevitable in the initial-value water wave problem
relating to ¢ and {. We recognise the probability that the
initial-value problem cannot be correctly (well) posed: water
waves may break! The (rotational) motion may become
turbulent and so the continuous dependence on the initial
data may be lost. In this case the emergence of chaos via a
strange attractor is possible. This aspect of the subject still
remains largely mysterious and caution regarding it is
essential in order to put any theoretical work on water
waves into a proper scientific perspective. The fact that most
of the existing theory —dealing with linearised, long waves
or with weakly nonlinear approximations—is essentially
tentative does not, of course, impair its practical value.

1.1 Some historical notes

The first rigorous demonstration of the existence of a
velocity-potential ¢(¢,x,y,z) for an inviscid fluid motion
(Lagrange 1781 theorem [1]) is due to Cauchy (1815) [2].
Another proof was given by Stokes (1849) [3]. An excellent
historical and critical account of the whole matter (was
provided by Lamb (1932) [4].1 A fuller proof of the general

T For the steady-state version of the Bernoulli equation, see Bernoulli
(1738) [5].

surface free slip condition

D

Dt (
where D/Dt =0/0t + ¢, 0/0x + ¢,0/0y + ¢,0/0z, is due
to Lord Kelvin [see W Thomson (1848)] [6]. For the first
investigation of progressive waves in a canal see Green
(1839) [7] and also Airy’s (1845) [8] treatise.

The theory of the (infinitesimally small) waves produced
in deep water by a local disturbance of a free surface was
investigated in two classical memoirs by Cauchy (1815) [2]
and Poisson (1816) [9].1

The determination of the waveforms which satisfy the
conditions of uniform propagation without change of type,
when the restriction to ‘infinitesimally small” amplitude of
waves is abandoned, forms the subject of the classical
research by Stokes [3] and of many subsequent investiga-
tions (Stokes expansion). For this problem, see also
Rayleigh’s (1876) results [10]. The validity of the Stokes
expansion requires that:

(a) the amplitude must be smaller than the wavelength;

(b) amplitude of water waves must be less than the
depth or the wave properties must vary little over a distance
of the same order as the depth.

[t is interesting to note also that the convergence proofs
of the Stokes expansion were given by Levi-Civita (1925)
[12] and Struik (1926) [13]. But convergence does not imply
stability (!) and the Stokes waves in deep water are unstable!

A system of exact equations, expressing a possible form
of wave motion when the depth of the fluid is infinite, was
given so long ago as 1802 by Gerstner [14], and at a later
period independently by Rankine (1863) [15].

The ‘shallow-water theory’ is governed by a system of
equations favoured by Airy [8], who first formulated the
limiting equations for the analysis of very long waves of
finite amplitude in shallow water. However, the effects of
the dispersion do not appear in the Airy equations. These
dispersion effects are present in the Boussinesq (1871, 1872
and 1877) equations [16—19]. In the one-dimensional case,
these Airy equations are the Saint-Venant (1871) [20]
hydraulic equations.

Russell (1844) [21]§ in his interesting experimental
investigations paid great attention to a particular type of
wave which he called the solitary wave. This is a wave
consisting of a single elevation, of height not necessarily
small compared with the depth of the fluid, which (if
properly started) may travel for a considerable distance
along a uniform canal with little or no change. But his
description of the wave as a solitary elevation of finite
amplitude and constant profile contradicts Airy’s shallow
water theory prediction that a wave of finite amplitude
cannot propagate without change of profile!

The conflict between Russell’s observations and Airy’s
shallow water theory (and also Stokes’ expansion, for
oscillatory waves of constant profile) was resolved inde-
pendently by Boussinesq [16—19] and Rayleigh [10], who
showed that appropriate allowance for the vertical accel-
eration — which is ultimately responsible for dispersion, but

z={) =0 on z={(tx,y),

fConcerning this problem see, also, the papers by Rayleigh (1883) [10]
and Popoff (1858) [11].

§Many writers (see, for instance, Lamb [4], Section 252) identify
Russell as Scott Russell, but the correct surname is simply Russell
according to: Encyclopaedia Britannica (11th edition).



Nonlinear long waves on water and solitons

1335

is neglected in the Airy’s shallow water theory [see Miles
(1980)] [22]—as well as for the finite amplitude, leads to the
solution:

x —ct ay hy 2
= — 2: — =
. s_ho<l, o <10> O(e) ,
(1.1.1)

where a, is a characteristic amplitude [for the initial
elevation of a free surface characterised by the function
¢°(x/4¢)] and Ay is the characteristic wavelength, in the
horizontal x-direction. Finally, ¢ = [g(ho + a,)]' is the
wave velocity. If we introduce the Froude number,
Fr=c/(ghy)""?, then (Fr)* =1+s.

The characteristic length 4 is determined by the Ursell
criterion:

¢ = ag sech?

=1, (1.1.2)

and the essential quality of the solitary wave is then the
balance between nonlinearity and dispersion.

The dimensionless parameter U appears in the work of
Stokes [3]. However, its full significance as a measure of the
nonlinearity/dispersion balance was first enunciated by
Ursell (1953) [23]. Rayleigh’s derivation [10] of the
equivalents of Eqns (1.1.1) and (1.1.2) is reproduced by
Lamb ([4], Section 252): it is more direct but less penetrating
than that of Boussinesq (according to Miles [22]). As noted
by Miles [22], Boussinesq, in his first paper on the solitary
wave [16], only sketches the derivation of Eqn (1.1.1) for
the profile of this wave. It is necessary to look into his 1871
supplementary paper [17] and into either his 1872 paper [18]
or his 1877 essay [19] to obtain a fuller appreciation of his
contributions. Lamb [4] refers only to the 1871a paper [16]
and, at least in retrospect, appears to have underestimated
the significance of Boussinesq’s work! The Boussinesq
equations, which in their conventional form are evolution
equations for the free surface displacement and the mean
horizontal velocity and are not restricted to unidirectional
propagation, do not appear explicitly in the 1871 and 1872
Boussinesq papers. However, the Boussinesq equation (19)
in Ref. [18] or equation (280) in the essay [19] are, after
dropping several higher-order terms, equivalent equations
for the free surface displacement and the horizontal velocity
at the (flat) bottom of the channel. In fact, in place of these
two equations, it is possible to derive the following single
Boussinesq equation for {(t,x):

by = b (s 5 B 5 ) (113)
where ¢} = ghy. The above equation is reduced below
[Eqn (1.1.4)], to the classical Kordeweg and de Vries (KdV)
equation [24] by factoring the operator ¢} d?/ox? —d°/or?,
invoking the prior assumption of unidirectional propaga-
tion, and integrating with respect to x:

o= Lw 1.1.4

ct+60(2—hoccx +gh0Cxxx> =0. ( ode )

This KdV equation admits only wave solutions moving to
the right.

Interest waned after the resolution of the Airy—Stokes
paradox by Boussinesq and Rayleigh and was sporadic
prior to Zabusky and Kruskal’s (1965) discovery that the
solitary waves typically dominate the asymptotic solution of
the KdV equation [25]. Current interest stems from that

discovery and is intense (see Section 7.4). In fact the original
form of the KdV equation (see p. 423 in the paper of
Korteweg and de Vries [24]) is of the following form:

3

2 1
Cr:_C0<CCx +§aCx +§O-CM/{) ’ (]]5)

2
where « is a small but arbitrary constant, which is related
closely to the exact velocity of the uniform motion
imparted to the liquid; the parameter ¢ is of the form:

1 hoT
o=xhy———,
Po8

3
and depends of the surface tension 7 of the liquid (of
constant density p,). Korteweg and de Vries, who
apparently did not know of the work of Boussinesq and
Rayleigh and who were still trying to answer the objections
of Airy and Stokes,t derived in 1895 the unidirectional
equation (1.1.5)—the KdV equation.

As is noted in Newell’s book [27] (Chapter 1: “The
history of the soliton’’): ““... In this first stage of discovery,
the primary thrust was to establish the existence and
resilience of the wave. The discovery of its universal nature
and its additional properties was to await another day and
an unexpected result from another experiment designed to
answer a totally different question [Fermi—Pasta—Ulam
(FPU) experiment ; see Newell’s book [27], Section 1b...”".
Kruskal and Zabusky [25, 28—-30] approached the FPU
problem} from the continuum viewpoint and demonstrated
that it is sufficient to consider the following KdV equation

(1.1.6)

2
u +un, +K Uy, =0

They solved Eqn (1.1.6) with  u(x,0) =cosmx,
0<x<2, and u,u,, u,, periodic in the interval [0,2]
for all #; they chose ¥ =0.022. A set of their results is
shown in Fig. 1 ([31], p. 14).

Figure 1. Solution of the periodic boundary-value problem for the
KdV equation (1.1.6) [Zabusky and Kruskal (1965)] [25]. Showing the
initial profile at 7 =0 (thick line) the profile at r = 1/m (broken line)
and the profile at ¢ = 3.6/ (full line).

After a short time the wave steepens and almost
produces a shock, but the dispersive term (K2btx”) then
becomes significant and some sort of local balance between
nonlinearity and dispersion ensues. At later times the
solution develops ‘a train of eight well- defined waves’

fLater on, Stokes (1891) was to recognise and admit his errors [26].

fWhy do solids have finite thermal conductivity? A solid is modelled
by a one-dimensional lattice, a set of masses coupled by springs!
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(see Fig. 1), each like sech? functions, with the faster (taller)
waves continuously catching-up and overtaking the slower
(shorter) waves. At the heart of these observations is the
discovery that these nonlinear waves can interact strongly
and then continue thereafter almost as if there had been no
interaction at all. This persistence of the wave led Zabusky
and Kruskal to coin the name soliton to emphasise the
particle-like character of these waves which seem to retain
their identities in a collision. The discovery has led, in turn,
to an intense study over the last twenty five years. The
theory of solitons is attractive and exciting: it brings together
many branches of mathematics, some of which touch upon
profound ideas and several of its aspects are amazing and
beautiful (for instance | can mention the following
important topics: the conservation laws and the Miura
transformation, the inverse scattering transform (IST), the
Lax equation, the Backlund transformation, the Hirota
method,...). T

Naturally, when the nonlinear surface waves in weakly
dispersing shallow water are not strictly one-dimensional, the
KdV equation no longer applies! In fact, it is necessary to
derive a new approximate model equation for this case.]
This Kadomtsev—Petviashvili equation is of the following

form:

O (du 3¢y ou 1 L&u\ 1 u

R (at * > T3 %%
According to the 1970 paper by Kadomtsev and Petviash-
vili (KP) [34], if the y dependence is weak, the KdV
equation can be easily corrected by adding a small term. In
their paper [34], KP deduced the form of this additional
linear (!) term from consideration of the two-dimensional
long-wave dispersion relation, but they did not verify that
there were no additional nonlinear terms!

Now, it is necessary to note that, the IST and the
structure of the KdV equation would have remained a
mathematical curiosity, if further important model equa-
tions (for water waves!) had not been found to be solvable
in this way. However, in 1972, in a paper of fundamental
importance [35], Zakharov and Shabat showed that the
nonlinear Schrodinger (NLS) equation,

—iA, oA, +BIAPA =0,

S coht —0.(1.17
20 “ox T 00 By (117

(1.1.8)

could also be solved by the IST for initial data which
decayed sufficiently fast as |x| — oo. The NLS equation
(1.1.8) for the water wave problem was derived first for the
finite depth (classical problem) by Hasimoto and Ono
(1972) [36]. A similar NLS equation was deduced earlier,
but for the infinite depth, by Zakharov (1968) [37]. For
two-dimensional surface water waves, in place of the NLS
equation (1.1.8), Benney and Roskes (1969) [38] and Davey
and Stewartson (1974) [39], derived a system of two
equations, the NLS — Poisson system of two equations:

1A1+Mu +”Ayy :X|A|2A +XIAB/‘ s

1.1.9
aBy + By, = —blA[} . (1.19)

For the capillary —gravity water waves (when we take into
account the surface tension in a classical problem),

F1 can recommend three books on soliton mathematics: Refs [27, 31, 32].

fFor a formal self-consistent derivation of the KP equation see the paper
by Freeman and Davey (1975) [33].

expressions for the various constant coefficients in
Eqn (1.1.9) were given by Djordjevic and Redekopp
(1977) [40] and Ablowitz and Segur (1979) [41] (see, also
the book by Craik [42], Chapter 6).

For the long waves (in shallow water), Freeman and
Davey [33] derived a generalisation of the KP equation,
which is valid as & — 0 for finite (fixed) 6%/e = k.

If now 1/ky — 0, the long-wave limit (for 6 — 0) of the
system of equations (1.1.9) is recovered for O(1/k,) after a
further slight rescaling (matching between KP and NLS—
Poisson equations, in long-wave limit). In fact, the double
limit, ¢ —» 0 and 6 — 0, is nonuniform(!) and the result
depends on the sequence in which these limits are taken.
However, Freeman and Davey [33] showed that the
introduction of a similarity parameter A = 1/k,, in place
of &, leads to a uniform double limit A — 0, 6 — 0.§

For an uneven bottom of the channel it is also possible
to derive the Boussinesq, KdV and KP equations.q[ In this
case, Eqn (1.1.6) is replaced by the following equation:

Uy 4 ity 4 11, = v(h)u (1.1.10)

where the function v(h) represents the effects of variable
depth. It has been found numerically and confirmed
experimentally that a KdV soliton travelling from one
constant depth to another constant but smaller depth,
disintegrates into several solitons of varying sizes, trailed
by an oscillatory tail. This “fission’ is clearly related to the
result of the IST [see, Gardner et al. (1974)] [49] and the
‘perturbed’ KdV equation (1.1.10) predicts the soliton
fission that occurs as a solitary wave moves into a shelving
region [Madsen and Mei (1969)] [50]. In particular, the
phenomenon of the shelf that appears behind the solitary
wave is now well-understood [Krickerbocker and Newell
(1980)] [S1]. The soliton interactions in two dimensions are
discussed in the review paper of Freeman (1980) [52].

The case of free-surface water waves in a channel with a
rough bottom:

z=—h(x*), x* =

o
N &E=— <]
gl/2 ho <

is very interesting in the relation to the application of the
multiple scale asymptotic method [Rosales and Papanico-
laou (1983)] [53] and this method gives a surprising result: a
KdV equation governing again the evolution of free-surface
one-dimensional disturbances, as in the usual flat bottom
case, but the coefficients in this KdV equation are not
given explicitly! The determination of these coefficients
requires solution of four auxiliary problems. In a recent
paper by Benilov (1992) [54], three types of bottom
topography are distinguished, allowing a simplification
of the basic (two-dimensional) shallow-water wave equa-
tions and for two of them, asymptotic equations of KdV
type are derived. In a paper by Xue-Nong Chen (1989) [55],
a unified KP equation is derived asymptotically, in which
viscous (when the effects of viscosity can be considered only
in the boundary layer on the bottom), topographic, and
transverse modulational effects are incorporated.

§For the derivation of these evolution equations (KdV, KP, NLS and
NLS-Poisson), see the books by Newell [27], Craik [42], Mei [43],
Infeld and Rowlands [44] and the author’s review paper [45, 64a].

YThe Boussinesq cquations for a variable depth, are discussed by
Peregrine (1967) [46]. The modified (by a variable depth) KdV
equation is considered by Ono (1972) [47] and Johnson (1973) [48].
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Finally, in Ref. [45], quasi-one-dimensional generalisa-
tions of different forms of the Boussinesq equations are
asymptotically derived, the influence of the bottom topog-
raphy on the KP equation is elucidated and a significant
second-order approximation for the quasi-one-dimensional
long nonlinear waves in shallow water is obtained. In this
case it is possible to introduce the notion of a ‘dressed KP
soliton’; for the notion of a ‘dressed KdV soliton’, that is a
KdV soliton involving higher-order corrections, see the
paper by Sugimoto and Kakutani (1977) [56] and the
references cited in Jeffrey and Kawahara’s book, Section
7.2 [57]).

The boundary-value classical problem is extremely
difficult, mostly because the boundary conditions on a
free (unknown) surface are nonlinear and are imposed on
an unknown boundary.

Some idea of the difficulty of the problem may be
obtained by asking what is known about it. The simplest
nontrivial statement that a mathematician can make about
a physical problem that it has a solution!

According to Shinbrot’s (1973) book [58], at the end of
sixty years, there are only five situations in which this
statement can be made about our classical problem. These
situations are as follows.}

(1) h = o0. In 1925, Levi-Civita proved that in water of
infinite depth, there is a periodic wave that travels without a
change in shape. This means that the velocity potential
¢(t,x,z) does not depend on x and ¢ separately, but only on
a combination (x —ct) for some constant c¢. The free-
surface elevation {(¢,x) also depends only on (x — ct),
while ¢ and { are both periodic functions of (x — cz).

(2) h = hg = const. Shortly after Levi-Civita proved his
result, Struik (1926) [13] showed that it could be generalised
to the case of a flat horizontal bottom. Again, Struik
proved the existence of a periodic wave travelling without a
change in shape.

(3) A solitary wave. There was a long gap between
Struik’s result and the next step. In 1954, Friedrichs and
Hyers [59] proved, again for 2 = hy = const, the existence of
another type of wave, again travelling without a change in
shape at a constant speed. This solitary wave can be looked
on as a periodic wave, a la Struik, but with an infinite
wavelength.

(4) Waves over a periodic bottom. 1fthe bottom is periodic
and has only one maximum and one minimum per period,
Gerber (1955) [60] proved that there is a steady flow in which
a free surface has the same properties. In addition, the
troughs of the free surface lie directly over the troughs of the
bottom, and the crests lie over the crests of the bottom.

(5) Flow over a monotonic bottom. In the same paper
[60], Gerber proved also that over a monotonic bottom,
there is a flow with a monotonic free surface. Again this can
be looked upon as a flow over a periodic bottom with an
infinite period.

All these examples are essentially examples of steady
flows. The last two are steady to begin with. The first three
become steady when observed in a coordinate system
moving at a velocity ¢ and all the above flows are two-
dimensional. After sixty years, there are no known unsteady
or three-dimensional flows or theorems about existence of
flows over ‘general’ bottoms!

fLater, we shall consider additional information on the ‘correctness’ of
our classical problem.

At last, it is also necessary to mention the Whitham
theory of nonlinear dispersive systems. For a first account,
the reader can see the “‘Epilogue” in Lighthill’s book [61].
Whitham’s book [62] includes a full account of nonlinear
dispersive waves.

The nonlinear instability and bifurcation of water waves
with special reference to the Benjamin-—Feir resonance
mechanism are discussed in Section 13 of a review paper
by Debnath ([63]; pp 233—255). This section of Debnath’s
paper also includes, the Whitham instability theory of deep
water waves, the nonlinear problem of the instability of a

finite-amplitude uniform wavetrain, from the NLS equation,

the FPU recurrence phenomenon and Longuet-Higgin’s
bifurcation analysis of gravity waves on deep water.

The problem of the wave interactions, is discussed in the
book by Craik [42]: these interactions are represented
mainly by the three-wave resonance driven by nonlinearities
which are quadratic in waves amplitudes.

2. Mathematical formulation of the nonlinear
theory of water waves

2.1 Master equations
In the absence of viscosity, tangential stresses in the fluid
are zero everywhere and the stress tensor reduces to —p5,:,-,
where 5,:,- is the Kronecker delta.

Therefore, the equation of motion becomes:

Du 1

=4 2.1.1
Dr 2.1.1)

Vp=g,
where we assume that the body force acting on a liquid is
only due to gravity g = (0,0, —g). The momentum equation
(2.1.1) and the mass conservation equation

Veu=0 (2.1.2)
provide four scalar equations for the determination of u, p
and p as functions of independent variables x and ¢.

In general, one further scalar equation is needed, and it
is usually the equation of state of a liquid. However, if the
liquid behaves as if it were incompressible, we then have the
additional equation

Dp

= 2.1.
D; = 0> (2.1.3)

which is of course simply a particular form of the equation
of state for our liquid.

The explicit use of Eqn (2.1.3) is often rendered
unnecessary by a statement that the density is initially
(at + = 0) homogeneous and consequently remains homoge-
neous.

Finally, for a ‘really’ (when p = p, = const) incompres-
sible inviscid liquid, the set of equations

Du 1

S v 2.1.4
Dt+p0Vp g, ( a)
Veu=0 (2.1.4b)

is now sufficient for determination of the functions u, p,
provided adequate boundary and initial conditions are
known (see Section 2.2).

If we start from the above incompressible system of
equations (2.1.4), we can easily derive a single equation for
the vorticity vector curlu. In view of the vector identities
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Vxu=curlu and (u-V)u=V(¢"/2) —ux curlu, where
q2 =u-u, Eqn (2.1.4a) can be written as:

2
a—u—uxcurlu—i-V[ﬂ—i-q—] =g. (2.1.5)

ot Py 2

Then if g is of the form VG, as is indeed the case when g
represents the force of gravity, and if the curl of the

above equation is assumed to eliminate the term
VH =V[p/py+4¢*/2+G], we obtain the following
Helmholtz’s equation:

Ocurl

c;r " +V X (curlu X u) =0 (2.1.6a)

or

D

D1 curlu = (curlu-V)u (2.1.6b)

in which use has been made of the auxiliary relations:
V-u=0 and V-curlu = 0.

Now, we can use the Lagrangian type of specification, by
noting that @ and X(a, ) are the position vectors of one end
of a material line element at times t = 0 and ¢ respectively. In
this case we can derive the following Cauchy formula at a
time ¢:

curlu = o) a—X

e (2.1.6¢)

where the w,; are the components of curlu and «; are the
components of a; a) is the initial value (for ¢t =0) of w;
(see, [64b], p. 65).

From Eqn (2.1.6b), we see that curlu = 0 is a possible
solution! Therefore if a)? =0, this remains true at all times.
In the case of water waves, typical free-surface problems are
propagation into water at rest or through a uniform stream:
in both cases we have: @) =0 and the above argument
applies. Naturally, the solution is unique provided that all
components of Vu are bounded.

However, it is necessary to note also that in the presence
of a free surface the vorticity of an inviscid incompressible
liquid is not necessarily zero, if it is zero initially! Indeed, a
free surface can intersect itself, as it happens when a water
wave breaks and vortex sheets are formed. Of course, in this
case, in place of the Laplace equation:

V-(V$) =Vp=A¢p =0,

where ¢ is the velocity potential, A is the three-dimensional
Laplace operator, it is necessary to consider, for the
rotational and inviscid flows, the full Euler incompressible
system of equations (2.1.4) for u and p.
But here, in most cases, we shall restrict the discussion
to irrotational potential flows, when curlu = 0 and u = V¢.
In such cases, it follows from, Eqn (2.1.5) that

a(V<i>) o¢ _
& +p0+2 +G> =0.

@2.1.7)

+VH = V( (2.1.8)
This shows that the quantity in the parentheses must be a
function of t alone, say, B(¢).

The form of this unknown function is without signifi-
cance, because we could define a new velocity potential ¢’
such that ¢' = ¢ — [ B(t) dt, V¢' = V¢, and thereby remove
the function of # without affecting the velocity distribution.
It is customary to ignore the arbitrary function of ¢ and to
write the integral of Eqn (2.1.8) as the Bernoulli equation:

2
5 r)

p=po— (2.1.9)

throughout the liquid, where py is an arbitrary constant
and G = —g-x = gz.

The Bernoulli integral of the above relationship pro-
vides an explicit expression for the pressure p, when the
velocity distribution is known. It is particularly useful in the
free-surface problem, because ¢ satisfies the Laplace
equation (2.1.7) and is determined uniquely by certain
types of boundary conditions (see Section 2.2), and can
therefore be determined without regard for the pressure
(since pg=p, on a free surface, assuming that the
atmospheric pressure p, is independent of position on
the free surface).

When the solution of Eqn (2.1.7) is found for the
relevant boundary conditions, the interesting physical
quantities u and p are given by u = V¢ and by Eqn (2.1.9).

2.2 Boundary and initial conditions

Various initial and boundary conditions may be specified for
the Euler equations (2.1.1)—(2.1.3). But for the water wave
motion, those encountered most frequently are the
following:

(a) a complete set of initial conditions is obtained if u, p
and p are specified initially (for ¢ = 0);

(b) at a solid boundary, a liquid does not penetrate the
boundary, i.e., the normal component of the liquid velocity
must be zero relative to the boundary (slip condition);t

(c) at a boundary between two immiscible liquids, the
condition to be satisfied is that the pressure shall be
continuous at the boundary as we pass from on side to
the other (assuming that there is no surface tension');

(d) there is no condition on the density p at the solid
boundary.

Usually, for the Laplace equation (2.1.7), one boundary
condition is given (on the contour line containing the
liquid), but only when the boundary is known! Two
conditions are needed for a free surface, z ={(¢,x,y),
because the surface position {(#,x,y) has to be determined
as well as the potential ¢(z,x,y,z).

On a free surface, the first boundary condition is the
kinematic condition. This condition can be derived most
readily by requiring that the substantial derivative D /D¢ of
the quantity f =2z — { should vanish on the free surface.
The result of this constraint is that:

¢;:cr+¢xcx +¢yCy on Z:c(-xs ys t) .

We shall generally ignore the motion of the atmospheric
air above a free surface, but the kinematic boundary
condition (2.2.1) is not affected by this choice.

The second condition on the free surface is the dynamic
condition. In the derivation of this condition, we shall
assume that for no motion of the air, the pressure is
constant (p,). The pressure on the free water surface
then depends on the surface tension. If we draw a line
on this free surface, the liquid on the right of the line is
found to exert a tension T (per unit length of line) on the
liquid to the left; T is the surface tension: it differs for
different liquids and it also depends on temperature. For

22.1)

fFor an inviscid Eulerian liquid, there is no restriction on the velocity
component tangential to a solid boundary.

I All the available evidence does show that, under conditions common

in moving liquids, both the tangential and normal components of
velocity are continuous across a material boundary between a liquid
and another medium.
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instance, for an interface separating air and ‘pure’ water at
15°C: T=73.5dyn cm™' (or ergem™?). For a three-
dimensional free surface we can show that, for an Eulerian
liquid, we have,

p=p,+71J, (2.2.2)
where J =V.n=1/R,+1/R, is called the sum of the
principal curvatures on the free surface (R, and R, are the
principal radii of curvature of the sections of the interface
formed by two orthogonal planes containing the vertical
axis Oz which is opposite in direction to the gravitational
force). Thus, at any point on a free surface, there must be a
jump in the liquid pressure when passing towards the side
of the surface on which the centre of curvature lies. We
note that at a point near O the unit normal vector n to
the free surface z={(¢,x,y), expressed in terms of
rectangular coordinate axes, has the components
(—C/N; —C,/N; +1/N), where N2=1+ +{. The
exact expression for V-m is:

szjgm+@@—x@@+a+@gy (223)

To apply the surface pressure condition (2.2.2), in
connection with expression (2.2.3), we go back to the
Bernoulli equation (2.1.9), where py =p, and —g-x = gz;
since on a free surface we have z ={ and p is given by
(2.1.9), it follows that

¢,+%(¢i+¢%+¢f)+1(V-n)+gc=0
’ Po

on z={(x,y,1) (2.2.4)

is our dynamic free-surface nonlinear boundary condition.

Now, if we assume that the liquid rests on a horizontal
and impermeable bottom of infinite extent (z = —h,), where
hy = const is finite, we have the following simple (flat)
bottom boundary condition:

¢.=0 at

Naturally, if we take into account the bottom topog-
raphy (but assume that it is independent of time ¢), then in
place of this simple condition (2.2.5), we must write (for
inviscid liquid, we have n-V¢ =0) an uneven bottom
condition:

z=—hy . (2.2.5)

X oy
¢, = 20(¢,G, +¢,G,) at z=—hy +goG(l—; —) ,
0 Mo
(2.2.6)

where g, is a typical elevation of the bottom topography
[g0 = G(0,0)] and [y, my are the scale lengths associated
with the variations in the channel bottom in the x and y
directions.

For the deep-water waves, in place of conditions (2.2.5)
or (2.2.6), we can write the following behavioural condition
for ¢.:

¢.—0, when z— —o0. (2.2.7)

In the case of the conditions relating to x and y, since we
suppose that the liquid rests on a bottom of infinite extent,
it is necessary to impose some behavioural conditions at
infinity in the x and y directions. In fact, usually it is
sufficient to suppose that the water wave motion is periodic
in x and y.

The Laplace equation

Ap=¢, +¢,+¢.=0 for —hy<z<{(x,y,1),

(2.2.8)

with the three boundary conditions (2.2.1), (2.2.4) and
(2.2.5) is our [simplified because we usually have also T =0
in (2.2.4)] classical three-dimensional nonlinear water wave
problem.

In the derivation of the model equations from the
classical problem, a more expedient approach is to replace
the kinematic boundary condition (2.2.1) by the statement
that the substantial derivative of the pressure p is zero on a

free surface. This is a rather pragmatic mixture of the

dynamic and kinematic boundary conditions, since the
statement that Dp/Dr=0 on z ={(x, y, ) implies that
this is precisely the appropriate moving surface on which
the pressure p is constant (p = p,). But, from the Bernoulli
equation (2.1.9), we also have

P—Pa 1
——=¢z+§(¢ﬁ+¢§+¢§)+g1 :
Po

Hence, we obtain the desired boundary condition on a free
surface:
0 0 0 0
0=|(= = ,— =
(at T gt g T az)

X[d)ﬂr%(d)ﬁ + ¢+ ¢7) +g2]

= ¢, +gd. +2¢.0, + 2¢y¢yt +2¢.¢.,

1 0 o )
+5<¢x a+¢,@+¢: a—z>(¢i+¢§+¢§)=0

on z={(x,y, ). (229)

The above boundary condition can also be derived directly
from the two boundary conditions (2.2.1) and (2.2.4) with
T=0.

Not only do nonlinear terms appear in the classical
water wave problem, but the position of a free surface is
also an unknown quantity—an exact analytical theory of
the water wave problem is therefore almost impossible!

In dealing with the free-surface classical pivotal problem
we can first consider a ‘signaling’ (two-dimensional) problem,
when the liquid is initially at rest in a semi-infinite channel
x > 0. We then have

¢(0, x,2) =¢(0,x) =0, for x>0, r=0, (2.2.10)
and at time =0 an idealised wave-maker at x =0
generates a horizontal velocity disturbance:

t
¢.(1,0,2) =W,B <t_) at +>0, (2.2.11)
0

where W, and ¢, are the characteristic velocity and time
scales associated with the wave-maker idealised by the
function B(t/t).

A second category of classical problem of water waves
in an infinite channel is encountered by specifying an initial
surface shape but zero velocity (one could also specify an
arbitrary initial velocity distribution, for example, ¢,,...)
for + =0:

CZHOCO(;_OaL)» ¢(0,X,y,z)=0,

(2.2.12)
Ho
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where 4 and p, are the characteristic wavelengths (in the x
and y directions) for our three-dimensional water wave
motion and gy is the characteristic amplitude for the initial
elevation of a free surface represented by the function
o(x/ A0, ¥/ 1)

A variational derivation of the classical problem is dealt
with in a paper by Luke (1967) [65] and also in a book by
Whitham (1974, [62], p. 435). In this derivation it is
necessary to take into account the following variational
principle:

) Ldrdxdy =0, (2.2.13)
I

where
L',:—pJ [¢,+ (¢? +q5 +¢2) +gz|dz.  (22.14)

Variation with respect to ¢ yields the Laplace equation
(2.2.8) inside a liquid, the bottom boundary condition
(2.2.6) (with h=hy—goG), as well as the kinematic
boundary condition (2.2.1) on a free surface z =¢.

Variation with respect to ( yields the dynamic
boundary condition (2.2.4), but with 7 =0, on a free
surface z = (.

We note that here R in (2.2.13) is an arbitrary region in
the (z,x,y) space. When the expression (2.2.14) is substi-
tuted in Eqn (2.2.13), the integration is over a region R™ of
the (#,x,y,z) time—space consisting of points with (¢,x,y)
in R for —h<z<{.

The extra terms gz and ¢, in the expression (2.2.14),
compared with the Dirichlet principle

1
SJJJE(¢§+¢§+¢§)dtdxdydz=o,
R+
which yields the Laplace equation, affect only the
boundary conditions, since they may be integrated out

and contribute only to the terms originating from the
boundary of R*.

2.3 Dimensionless problem
The dimensionless independent variables (with the primes)
x',y’,z’, and t' are defined by:

2.3.1)

with ¢, = Ag/c, and coz(gho)'/2 and in this case the
Strouhal number is S = 4g/coto = 1. Now, we scale the
functions ¢ and (:

/ ¢ ’ 4 ag
— , ==, =— 232
¢ ECOAO C ap ¢ /’lo ( )
When we drop the primes, we can write, for the

dimensionless velocity potential ¢(z,x,y,z), the following
dimensionless Laplace equation, in place of Eqn (2.2.8)

¢:: +52¢xx +A2¢yy = 0’ 1< EC(X y, ) . (233)

In the Laplace equation (2.3.3), we have the following two
nondimensional parameters:

ho hy A 4
L e (.
5

=—, R (2.3.4)
Ao Ho Ho

In place of the boundary condition (2.2.5), we find the
following simple dimensionless horizontal (flat) bottom
condition:

¢.=0, at (2.3.5)

In place of the boundary conditions (2.2.1) and (2.2.4),
with T =0, on z =¢{(t,x,y), we obtain the following two
dimensionless free surface conditions:

¢, = 8L +e(8 L + A9,0,)

z=—1.

(2.3.6)

¢,+%(s¢ﬁ+a ¢+ ¢)+C=0, (2.3.7)
along the free surface z =¢{(¢,x,y). We note that in the
condition (2.3.7) the Froude number is Fr = ¢y/(gho) 2 =1,

Eqn (2.3.3) with conditions (2.3.5)—(2.3.7) represents
our main dimensionless classical problem.

If we take into account expression (2.2.3) for V-n, then
we can also write down the full dynamic boundary
condition (2.2.4) in the following dimensionless form:

1
¢,+§(8¢§+s ¢+ ¢)
=8 We(l + 828 +24°) 7"

2
< [§—2(1 FEFON, — 28 AL L + (1 + 84 |

on Z:?'C(fyxyy'), (238)
where the dimensionless parameter
T
We=——> (2.3.9)
8Pohy

is the Bond— We ber number. The dimensionless form of the
boundary condition (2.2. 9) is

bt ¢+2s<¢¢1,+ b+ ¢¢,,>
& 0 A 0
S (batEtatnty)

(¢+ O+~ ¢> on z=¢l(tx,y),

(2.3.10)

when We = 0.
Finally, in place of the uneven bottom condition (2.2.6),
we can obtain the following dimensionless condition:

4. =a89,0,+ £9,G] on := 1+ )

(2.3.11)

with the following three dimensionless parameters:

w80, gt K (23.12)
ho Iy my
and with the bottom variables: x* = fx and y* = yy.
In the signaling problem, in place of the boundary
condition (2.2.11), we obtain the following dimensionless
condition:

¢,.(t,0,z) =wB(t) for t+>0, (2.3.13)
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when we assume that 7, in expression (2.2.11), is just 4¢/cq. ¢ = oty x,v,2") + 8¢, (t,x,y,2")
In condition (2.3.13) we have a new dimensionless para- +54¢2(t,x,y,z') +0(56) for 2/ =z+41, G.11)

meter

W Wy /c
w=2o_Wole (2.3.14)
&Cy &
When dealing with the initial surface shape problem we
can write, in place of the first of conditions (2.2.12), the
following initial dimensionless condition for ¢ = 0:

C:CO(xay) .

In the above dimensionless pivotal problem the param-
eter € = ay/4Ag is the nonlinearity parameter and, for ¢ — 0,
with x, v, z, and ¢ fixed and also for fixed values of 4 and 4,
we hav i
the classical linear water wave pivotal problem for ¢,:

(d0).. + 8 (Do) + 4 (d0),, =0, for —1<z<0,
(o). =0 for
(o). +6*(¢o), =0  for

(2.3.15)

(2.3.16)

where lim' ¢ = ¢y, with: lim' = [e — 0; with x,y,z,¢0
and 4 fixed]. The parameter 6 is the long longitudinal (x
direction) water wave parameter and A4 is the long
transverse (y direction) water wave parameter.

In the next sections we shall consider mainly the
following asymptotic situation:

e<l, d6<1, 4<1, 23.17)
with two similarity relationships
& =rKoe, A=, (2.3.18)

where xy and v, are of the order of unity when ¢ — 0. In
fact, we assume that:

(a) the water wave amplitudes are small;

(b) the water is shallow, compared with typical hor-
izontal wavelengths;

(c) the water waves are nearly one-dimensional;

(d) these three small effects all have comparable influ-
ence (all three effects balance, according to the Urcell
criterion [23]).

When a < 1, the effects of the elevation of the uneven
bottom topography are small. We note also that when > 1
and y > 1, we have a rough bottom and for f € l and y < 1,
a slowly varying bottom.

If we now consider the more complete dynamic free-
surface condition (2.3.8), we encounter two cases. In the
first case we suppose that We = O(1) is of the order of
unity, and then, in the linear problem (2.3.16), the last
boundary condition for z =0 must be replaced by the
following condition

(¢o). +0°(do)y + We(¢),, =0, for z=0. (23.19)
In the second case we assume that

We» 1, but 6 We=We* =0(1). (2.3.20)
3. Boussinesq equations
3.1 Two-dimensional Boussinesq equations
In the derivation of the two-dimensional Boussinesq

equations for two-dimensional waves on the surface of
water, we take

and substitute this into the dimensionless three-dimensional
pivotal problem formulated in Section 2.3 (we assume that
We =0 and 4% = %) for { and ¢.

The lowest-order term, according to the dimensionless
Laplace equation (2.3.3)

¢:’:’ + 52(¢xx + ¢yy) =0
is

¢0 :F(t7x7Y) ’
equivalent to assumption that the horizontal velocity
components are independent of the depth:

oF
vo(t,x,y) = ay .

(3.1.2)

oF
o, %,y) = -, (3.1.3)

If ¢, vanishes at the bottom (z’ = 0), and u,, v, are the
horizontal components of the velocity at the bottom, we
can drop a further arbitrary function and find ¢,:

S ey (Tl
¢ = 2 ¢ (6x+6y ’

since 0¢,/0z" =0 at z’ = 0. Substituting the solution for
¢, into the equation for ¢,

o 0 2ot )\ /0 0
4’)22_ ¢ + 4) it M0_|_ Yo .

0z oxz  0y? 2 ox2  9y?/\ox 9y

and integrating, and again using the condition d¢,/0z’ =0

at z/ =0, we can determine the function ¢,

L (@ (S | v

¢ = 24 (6x2 * A Ty oy
since we assume that ¢, vanishes at 7' = 0.
Now, we turn to the two dimensionless boundary

conditions on the free surface z' =14¢e{ [see expres-
sions (2.3.7) and (2.3.6)]:

b+ (¢ F 4 8 )+<:=o,
d):’ :5 [cr—'—s(d)xcx +¢)Cy)] .

(3.1.4)

(3.1.5)

(3.1.6a)
(3.1.6b)

As before, we shall retain up to order %, & and 6% in
Eqn(3.1.6b) and 8%, ein Eqn (3.1.6a). In this case, in place of
Eqns(3.1.6a) and (3.1.6b), we obtain, making use of solutions
(3.1.2), (3.1.4) and (3.1.5), the following two equations:

6C 2 of o ) Ouy  Ov
a+5 ( a—+voa)+6(1+ C)( +ay>

o *\ [ou, ov
5 <6x +6y2) (ax + 6y> 0.,(3.1.7)

aF 2 6 (aMO aVO

o 2 o \ax "oy )+C+ e(ug +1v5) =0. (3.1.8)

We can immediately rearrange Eqn (3.1.7) as:

o¢ 0
3 [(1+&0)vo]

——l——[(l—i—sCuO]
L (O (Qup | Dvp _
6 (@x +6y2 ox +6y =0,

ot
(3.1.9)
since we are assuming that &= Ko§.
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In Eqn (3.1.8) we differentiate first with respect to x,
and then with respect to y, to get two equations:

)
_?%(%+%):0, (3.1.10a)
Sl en)
_?%@%fg—?):o, (3.1.10b)
with
%:%, G.1.11)

since the ‘flow F’ is irrotational.

Finally, for our three unknown functions u,, vy and { we
find three approximate two-dimensional Boussinesq equa-
tions (3.1.9), (3.1.10a) and (3.1.10b).

We specify that, in these above Boussinesq equations, u
and v, are the nonaveraged components of the horizontal
velocity at the bottom z = —1, satisfying also the irrota-
tionality condition (3.1.11).

When x, — 0, in the Boussinesq system (3.1.9), (3.1.10a)
and (3.1.10b), we obtain the nonlinear Airy’s shallow water
equati(ms‘ :

o, d

Fr [(1+3C“0] a[(l‘FEC)Vo] =0,

6u0 6140 abt() aé' .

—ax+g< . + v B )+§_0, 3.1.12)
6vo aVO aVO o¢ _

a-ﬁ*ﬁ( a + vy 3y ) +a—y—

The corresponding velocity potential ¢ for these two-
dimensional Boussinesq equations is of the following form,
according to Eqns (3 1.1), with (3.1.2), (3.1.4) and (3.1.5):

Ouy Ov
_ L 0 0
¢ =F(t,x,y) 5' <6x+ay>
L ﬁJri %Jravo +0(5%) . (3.1.13)
24 o2 2 )\ox | oy I

3.2 Quasi-one-dimensional Boussinesq equations

In the derivation of these equations, let us consider,
according to Zeytounian [45, 64a], the following dimension-
less problem (see Section 2.3), but with an error of 0(82A2),

¢, +8¢, +4¢, =0 for —1<z<el(x,y 1),
(3.2.1a)
$.=0 for z=—1, (3.2.1b)

¢, =L+ e8¢l + 479L)  on z=ell(x, 1),

(3.2.1¢)

¢f+%Gﬁ4w ¢+ ¢)
2
=& We[{u +§2 Loy ——8252C (o +0(£4%)

on z=¢l(x,y, ). (32.1d)

The Laplace equation (3.2.1a) is the only equation which
contains z in its solution and this variant may be made
explicit by formally expanding its solution in powers of &
and 4% and writing:

¢ = oo+ 5 Prg+ 8 Py + Aoy + 3 + 5 APy, +
(3.22)

This above asymptotic representation is consistent with our
main hypothesis described by expressions (2.3.17) and
(2.3.18). Now, for ¢y, we must resolve the following
trivial problem:

(foo),. =0 with  (¢g), =0 for z=-1,
and we find
$oo = Flx, v, 1) . (3.2.3)

Below, for the simplicity we assume again that the
arbitrary function F is the (unknown) value of velocity
potential ¢ on z = —1, and in this case we can write also
the following boundary conditions for the terms of
expansion (3.2.2):

10 =P =g = P30 =¢;; =0 for z=—1I

But, according to Eqn (3.2.1b), we have also, as the

. (3.2.4)

boundary conditions on z = —1, the following bottom
conditions:
(d’lo); = ((1520); = (¢01); = ((1530): = (d’n); =
for z=—-1. (3.2.5)

We can write immediately the solution of the equation for

$10o (910)., = —(F)y :

1
b= _E(Z + 1) (F), (3:2.6)
By analogy, for the functions ¢, ¢¢;, 3 and ¢;;, which
are the solutions of equations (¢,)).. = —(P19) x> (Do1).. =

_(F)»-» (#30).. = —(¢20),» and (¢yy), =— we

¢]0))')"

obtain, respectively, the following explicit solutions in
terms of z:
=—(G+D'F).,.. . 3.2.7
¢20 24( + ) ( ).x;xu ( a)
¢OI = __( ) (F)yy s (327b)
! 6
=———+1)F), ..., 3.2.7
¢30 720( + ) ( ).x;xuu ( C)
1
d)ll :ﬂ(z + ])4(F)xxyy . (327d)

Finally, we obtain, in place of Eqn (3.2.2), the following
asymptotic representation for the velocity potential ¢, as
the solution of the Laplace equation with the bottom
condition for z = —1:

Blx,v,21) = Fle, v, 1) =3 8+ D2,

1 1
+ o7 8 @+ ) (Fluw =3 A2+ 1)(F),

' s 6 1 o 4
735 5 D Fran + 25 FA G+ 1)

xxyy °

(3.2.8)



Nonlinear long waves on water and solitons

1343

Now, by means of the Taylor expansions, we can calculate
the derivatives ¢,, with s = (#,x,y), and ¢_, on z = g{(s):

(B)cst = (=5 P P 5 PP

A2

-5 (F)yys — 26[0(F) oy + L(F) ] } ,(3.2.92)

[Qgﬂwadﬂwu+1¥wuu—§wm

1
DT 54( )nxxxx +g A2(F)xxyy

—&{(F), ]20

2
—%wam”+§w%wuﬂ}. (32.9b)

Finally, if we take into account our two boundary
conditions (3.2.1c) and (3.2.1d) on the free surface
z=2¢{(s), s = (t,x,y), relations (3.2.9) and two similarity
relations (2.3.18), 8> = ko and 4 = vy, and also the hypoth-
esis (2.3.20), We > 1 but §* We = We* = O(1), we obtain the

following two approximate equations [with an error of
O(&’)] for the two unknown functions {(¢,x,y) and F(¢,x,y):

2
(F)t + C - We*Cxx + E{l (F)zx - - V—O WG*CW}
207 Ko -

2 2 2
2] Ko Ko 2 Vo Vo 2
+€ {ﬂ (F)xxxxt +7(F)xx _?(F)yyt + 2k, (F)y

Ko

T(F)ur

(F)xxx( )x - KO[C(F)xx]f} = 0(83) B (32103_)

2 Pee |

+8mewm—mﬁwm] F2[um),),

Cﬁ%ﬂm+*{—w T[],

()} =0

Here, approximate equations (3.2.10a) and (3.2.10b), which
include the terms of order O(g) and also O(¢?), are called
the ‘quasi-one-dimensional generalised Boussinesq (Q1DGB)
equations’.

Naturally, in Eqns (3.2.10a) and (3.2.10b) the unknown
functions {(x, y, t) and F(x, y, r) are implicit functions of &,
and we can write:

(3.2.10b)

(=Co+eli+&0+...
(3.2.11)

Using the above expressions and Eqns (3.2.10a) and
(3.2.10b), we derive successively the following limiting
equations for Fy and {,, F; and {; and also for F, and {,:

F=Fy+¢eF +&F,+...,

(Fo), + 8o —We*({o)e =0,
(Lo); + (Fo)e =0 (3.2.12a)
(F1), + 8 = We'(§1),
_ 1 F)? Ko F V(Q) We (¢
- _E( O)Xx +7( O)X_xf +K_0 € ( O)yy s
2
(O, (F) = =0 (R, = [olFu). ], 47 (Fo) e

(3.2.12b)

(F2), + 6= We' (()
2
Ko Yo *
= _(Fo)x(F])x +7(F|)ur +K_0 We (C‘)yy
2 2 2
ko Ko 2 Y Yo 2
24 F )x‘xur _?(FO)M +?(F0)yyf _Z_KO(FO)yy

+%(Fo)m(1’0)x + 10 [0 (Fo) |, -

2
(&), + (F),, = _Z_o — [Co(Fy), + 6 (Fo), ],
2
+%(F| )xxxx 120 (Fo)n XXXX % [cO(FO)xxX]x
% 1 (F % 3.2.12
—K—O[Co( o)y]y+g( 0y - (3.2.12¢)

In the derivation of the properly called quasi-one-
dimensional Boussinesq (Q1DB) equations, we return to
general equations (3.2.12a) and (3.2.12b), but we suppose
that the Bond —Weber number is We = O(1). In this case,
according to the first of similarity relations (2.3.18), all the
terms are proportional to We* = exyWe, and are therefore
of the order of &.

Hence, in place of Eqns (3.2.12a) and (3.2.12b), we find
the following system of two equations for Fy, and Fi:

(Fo)y — (Fo)y =0, (3.2.13)

(Fl)ﬂ - KOWC(FO)

(FO)XX xx

xXxtt

Ko Ko
- (Fl )xx = ?(FO)XXﬂ _z

2

Vo
—(Fo), (Fo),, — [(Fo), (Fo),], K—O(Fo)yy , 32.14)
after the elimination of the functions ¢, and {;.

Now, if we introduce the following composite func-

tion F* = F, + ¢ F}, we can derive, from Eqns (3.2.13) and

(3.2.14), the following QIDB single equation for
F*(x, y, 1):
2
* * v ] *
()= () =0 (P | (P 4 5
0 t
1Y s
+ &Ky (We—§> (F)ou =0, (3.2.15)
when we take into account that
1
[(Fo), (Fo),], = 3 [(Fo)i + (Fo),z],, (Fo)y = (Fo)
This last, single Boussinesq equation (3.2.15), is a

generalisation of the classical Boussinesq equation

€Ky *
_T(F ).x;xrt =0,

(3.2.16)

()= () | PR 45|

for the nearly two-dimensional long waves in shallow
water.

The above QIDB equation (3.2.15) is also directly
obtained from the initial dimensionless problem described
by the system of equation (3.2.1), with expression (2.3.18),
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if we take into account, in place of representation (3.2.8),
the following representation for ¢(¢,x,y,z):

B,3,3,2) = s 3. 1) +5[6= 2 e+ D),

y

1 1
0 [H 4 g 8+ 1) (e =5 986+ 1208,

- %(z + 1)2((;)'”] +0(&%) , (3.2.17)

where F, G, H, ... are unknown functions of the indepen-
dent variables x,y and ¢. Naturally, in this case, in
Eqn (3.2.17), F(x, y, t) is not the value of ¢ on the bottom
where z = —1.

We assume now that

(F,G,H) = (F,G,H), + &(F,G,H), +...,

(=0 +eli+... (3.2.18)

and, making use of Eqns (3.2.17) and (3.2.18), we can
calculate [as in Eqn (3.2.9)] the derivatives ¢,, with
s=(t,x,y), and ¢, on z =¢{(s).

Finally, from the two boundary conditions (3.2.1c) and
(3.2.1d) for z =¢{(x, y, t), we derive the following equa-
tions for the functions Fy, {,, F; + H, and {;:

(FO)f + cO =0,

(FO),U( + (CO); =0 5 (32]93.)

1 K
[F] + Ho]t +& +§(F0)3 - _O(FO)X.U - KOWG(cO)xx =0,

2
(3.2.19b)
[Fi 4+ Ho) . + (&), + (Fo), (Lo), + Co(Fo)

2
K VY
- KO(FO)WX + K—O (Fo)y, =0 . (3.2.19%)
0

From the system of equations (3.2.19a)—(3.2.19¢c) we derive
immediately the same Q1DB equation (3.2.15), but for the
function F*™ = F, + ¢[F, + H,].

At last, from Eqns (3.2.12a) and (3.2.12b), we can also
obtain a system of quasi-one-dimensional Boussinesq equa-
tions for the free surface position, {(x, y, ) and for the
horizontal velocity components, u(x,y,t)=(F), and
v(x, y, t) = (F),, in the following form (if we assume
that We* = 0):

a 9 evo Ov Ky Ou

ot e+ 2"t as =0 (220

o ou ou exy Ou

CRETRR S T G220

ov  Ou

TR (3.2.22)
with an error of O(&?).

Averaging

0 exg ,0%u 5

ax 4T GHDEa o).

6(15 _ €K 2 62\/ 2

Fad - (@+1) @‘FO(F')

over the depth yields we obtain:

2
_ gkg 07U 2
u=U+-g" =3 +0() . (3.2.23a)
eKy 0V 5

When Eqns (3.2.23a) and (3.2.23b) are used in the
Q1DB equations (3.2.20) —(3.2.22), we obtain the following
form of our Q1DB equations:

o @ evy OV

5 e [(1+eQ)U] +—K0 o 0, (3.2.24a)
o dU U ey O°U

CPRNTAE N TR (3228
oV oU

et (3.2.24c¢)

for the average horizontal velocity components Ul(x, y, t),
V(x,y, t) and {(x, y, t).

We note that our QIDB equations (3.2.24) are not
similar to ‘three-dimensional generalisation of the Boussi-
nesq equations’, derived by Infeld in 1980 ([44], Appendix 1,
B1 equations). Apparently, these Bl Infeld equations, are
inconsistent from the point of view of asymptotic method-
ology. Finally, instead of Eqns (3.2.24), we can also derive
two equations for {(x,y, t) and U(x, y, t), if we differ-

entiate Eqns (3.2.24a) with respect to x and utilise
Eqn (3.2.24c¢):
s & evo O°U
——+—|(1 Ul+——=0 3.2.25
o T (1 He0U+30 57 =0, (3:2:25)
o; U U ek OU
§+E+£U o 3 e (3.2.25b)

3.3 Boussinesq solitary and cnoidal waves
We shall now consider a particular solution of the single

one-dimensional Boussinesq equation [see the equa-
tion (3.2.16)]:

OF_TF | O(0FY 1 (OFV] o OF
o2 ox? or | \ox 2\ Ot 3 ox2orr

3.3.1)
in the following form:
0 d 0 d
F=¢ =x— —=— —=—-C—.
@, e=x-C FTw w @
(3.3.2)

In this case we obtain for ®(&) the following ordinary
differential equation:

2 4
(] (]
(C2—l)d otk d

c?\ d [do)’
=C"— —eCll+—|—|—+
@~ 3 e 8(+2>d€(d6>’
and, in fact, we have C = 1 + O(g), therefore the terms on
the right-hand side of the above equation may be
approximated with C =1, without affecting the accu-
racy. Integrating once with respect to &, we get:

o exy °0 3s<dd§)2

Cl— 1) tA=0C 2 (0
C-Dgti=75 w3\
But, to the leading order, we have 0F, /0t = —({ = —d®/d¢.
Thus
ek, d°¢ 3

(Cz— 1)C+A :Td_éz+§8C2 .
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Cnoidal waves
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Figure 2. Waveforms of cnoidal waves of length 4 and amplitude ay on water of depth hj for six values of a0/12/h8. The solitary wave is the limit

of the cnoidal waves with infinite wavelength.

Finally, we multiply the above equation for { by d{/d¢ and
integrate once more to get:

T 1, 2 e (A0’
— —(c*-1 AL+B=22(= 3.
el (O =NErAlTB="2(3z) . (33)
where the integration constants A and B are both of order

O(e).
Two cases will now be discussed.

3.3.1 Solitary waves. A solitary wave, discovered by John
Scott Russell in 1834 (and published in 1844) [21], has a
single crest whose amplitude diminishes to zero as || — oo.

Since ¢, d{/d¢ and d*{/d& vanish at infinity, so should
the constants A and B. In this case Eqn (3.3.3) becomes
simply:

2 2
o) (1)

and for the right-hand side to be positive we must have
C > 1 or, in physical variables, C > (gho)'/z. This wave
speed is called supercritical. Furthermore, we must insist
that { < (C*—1)/e. Hence, (C*—1)/e is just the max-
imum amplitude of the crest which is unity because of the
normalisation that specifies C*=1+s In this case
Eqn (3.3.4) can be written as

1/2
j—é: (Ki) -,

which can be integrated to give [3/k]"/?[é —&] =
—2arctanh][(1 —C)]/z]a or

1/2
{ = sech? B (%) (¢ - fo)] .

The corresponding profile is a solitary hill with its crest at
& =&, but the integration constant &, may be taken to be
zero. In terms of dimensional physical variables, the surface
wave profile is:

L(x, 1) = agsech® [by(x — Cr)] , (3.3.7)

with C? = g(ag+hy) and by = (3a0/4h(3))]/2. Thus, the
higher the crest, the narrower the profile. Solitary waves
can be easily generated in a long tank by almost any kind
of impulse.

(3.3.4)

(3.3.5)

(3.3.6)

3.3.2 Cnoidal waves. In addition to the solitary wave just
discussed, periodic persistent waves are also possible in the

framework of the
equation (3.3.1).

When A differs from zero but B =0, we can rewrite
Eqn (3.3.3) as follows:

single one-dimensional Boussinesq

Ko dC 2

(5) —t-06-1+p) (338)
where  C*=1+2¢e[l —(B/2)] and 24/e=p—1,
0<1<p.

This time, { has the minimum value of zero, the maximum
value of 1 and oscillates between the two. In this range, we
have (d{/d&€)* > 0; { cannot oscillate between zero and
—(B —1) since (d{/d&)* < 0, although { = —(8 — 1) would
give uniform supercritical flow. The full equation (3.3.8) has
solutions which can be expressed in terms of the Jacobian
elliptic function ‘Cn’, hence the name cnoidal waves:

1/2 1/2
(=l () e-emf. w=(5) 039

where m is the modulus of the elliptic function. The
wavelength is:
0= i?/z K(m) ,
(38)
where K (m) is a complete elliptic integral of the first kind.
The reader is unlikely to be familiar with the elliptic
functions. This is not particularly important and we simply
observe that Cn(v|m) is periodic, so we can now have a
train of periodic waves in shallow water.t

(3.3.10)

T First, we define the integral:
¢ 2 g\—1/2
v=J(l—msin 0)~/7do, o0<m<I1.
0

We can also derive a pair (Jacobi and Abel) of inverse functions from
this integral:

Sn(vlm) =sin¢ , Cn(v|m)=cos¢.

There are two Jacobian elliptic functions. If m = 0, then v = ¢, so that
Cn(v]|0) = cos ¢ = cosv and, if m = 1, the integral can be evaluated to
yield v = arcsech(cos ¢) and so Cn(v|l) =sechv. Now the period of
Cn and Sn corresponds to the period 2w of cos and sin, and so the
period of these elliptic functions can be written as 4K (m), where

/2

K(m) = J (1 —msin® )72 dg

0
and K(m) — co as m — 1; of course, this just demonstrates the infinite
‘period” of the Cn(v|l) = sech v function.
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Note that as f — 1, we get the solitary waves. The wave
train following an undulating bore can be regarded as a
train of cnoidal waves.The cnoidal waveforms are plotted in
the Fig. 2.

4. Korteweg—de Vries
and Kadomtsev— Petviashvili equations

4.1 Direct asymptotic derivation of the

Korteweg — de Vries equation

Here we start from the two-dimensional physical problem
for a free-surface water wave with a horizontal bottom in
the plane z = 0. We neglect the surface tension (7 /p, = 0)
and we introduce the following dimensionless quantities
using the depth of water hy and the velocity ¢y = (gl'lo)]/2

pr= =2

hocg ’ hg ’

G L
t —hot, 4 e
4.1.1)

In this case, we are dealing with the following dimension-
less master problem (dropping the asterisks)

O +¢..=0, 0<z<14L(x), (4.1.2a)
$,=0, z=0, (4.1.2b)
. =0+, z=1+tx), (4.1.2¢)
Bl =0. t=1+lD). @120)

If we want to obtain the KdV equation with respect to
the water surface displacement, then it is necessary to
introduce (from a classical dimensional analysis) the
following asymptotic representation

¢ = 8]/2 [¢I (é,Z,T) + 8¢2(€7Z77) + 32¢3(C,Z,T) +.. ] °

(4.1.3a)

(=eli(&) +E0ED) +-. (4.1.3b)
with the new variables

E=elx—1), t=¢"1, (4.1.4)

where &= (ho/4¢)* <1 and A, is the wavelength for the
long waves.

First, in the new variables (&,z,7), the problem is
rewritten in the following dimensionless form:

e+ .. =0, (4.1.52)
¢.=0 on z=0, (4.1.5b)
¢. = 83/251 +edple — 81/2C¢ ; (4.1.5¢)
33/2¢T+%s¢§—%a‘/2¢é+%¢f+czo, (4.1.5d)

on z=14¢&(&1)+E0LET)+...,

since
O _gn8 8_5p0 pl
Ox o0& ot ot o0&

At a free surface we have z = 1 + &, (&,7) + 620, (6,71)+
..., and, as consequence, the derivatives ¢,, o = (£,1), and

¢. may be expressed by means of the Taylor expansions as:

9o = 2{ (@), +8[(#2)s + 1 (@)sc + ()o(1).]
+&[(83)5 + 81 (D2)g + (1)5(82). + a(1).,
F(@(d1). 438 + LB+ 06}

(4.1.6a)
6. =2 (81). +e[(62). + (6] +2[(43),

T (Ba) + Gz +5 () (B1)c] + 0]

(4.1.6b)

Now, by substitution, in place of the system of
equations (4.1.5) we obtain for different orders of &:

for the order ¢

(¢1).. =0, (¢1).,=0, z=0,

(). T8 =(d)e. (41).=0, z=1, (417
and consequently

¢ =F(¢1), (i =F¢; (4.1.7b)

for the order &'

(7). =—Fee, (¢,),=0, z=0,

($2). + (L) =0, z=1,

G- @)ty B (). =0, :=1.  @lsa)
and consequently

¢, = —% PFe 4+ G(ET) (4.1.8b)

1 1
Ge=0+ [($1)] .o +5 045 e s

for the order &, we have for ¢; the following equation:
_1
(#3)., = —(h2)ee = 7% Feeee — Gee

and consequently

1 1
$3 =13 e —izzcéé +H(¢ ), (4.1.9)
since (¢3), =0 on z=0.
But, for this order &, the free-surface condition (4.1.5b)
yields also the following relationship between ¢, ¢,, @3, {;
and {,

(4.1.10)

As direct consequence of relationship (4.1.10), when we
utilise solutions (4.1.7b), (4.1.8b) and (4.1.9) for ¢,, ¢, and
¢3, and also the third relationship (4.1.8a) for ({;)._,, we
obtain the following reduced KdV equation for {;, which is,
in fact, a compatibility condition for the consistency of our
asymptotic derivation connected with expansions (4.1.3a)
and (4.1.3b):

(@) +3 G0 +g e =0 @11
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Hence, we confirm that the KdV equation emerges ‘very
naturally’ from a consistent asymptotic expansion, with
respect to the small parameter & when we start from the
free-surface dimensionless problem (4.1.5) with expansions
(4.1.3). For dimensional physical variables, in place of the
KdV equation (4.1.11), we obtain:

The linear dispersive relationship for water waves is: o’ =
gk tanh kh, from which, for shallow-water waves, we have

3°° (4.1.12)

kh0<1:w:kc-o[l—%h3k2+...] , (4.1.13)
and we observe that the coefficient of the term on the right-
hand side of the KdV equation (4.1.12) is the same as the
coefficient of k2 in the above (nonlinear) dispersion
relationship (concerning the ‘relation’ between the model
equations and the dispersion relationships, see [62], Section

11.1).

4.2 From the Boussinesq to the Korteweg —de Vries
equations

Naturally, it is possible to derive the KdV equation directly
from the single Boussinesq equation (3.3.1). Indeed, for the
more general transient evolution of nonlinear and
dispersive long water waves propagating in the positive
x direction, we introduce in Eqn (3.3.1) the following new
variables

oc=x—t, O=¢t,

@.2.1)

since the dimensionless scale of the slow time is (1/¢). In
terms of these variables (o, 8), the derivatives become
0/0x — 0/0¢ and 0/0t — £¢0/00 — 0/00, and by substitut-
ing these into Eqn (3.3.1) for F(¢,x), we get immediately
the following equation for F(8/¢,0 +t) =f(0,0):

f 30 [of Ko O*f
3006 430 (60') t5 200 =00
and we see that the similarity parameter x, = 52/8 plays the

6 oot
central role in the consistency of Eqn (4.2.2). But the
leading order 9f/0c ~ {4+ O(e) is
o3 A 0L
9 '2°3 ' 6 35

while for our KdV equation in physical variables and for
stationary coordinates, Eqn (4.2.3) takes the following
form:

a¢ 3\
FTC (thoc)a +€h°a

where ¢y = (gho)'/2.

(4.2.2)

=0, 4.2.3)

=0, (4.2.4)

4.3 A more complete Korteweg — de Vries equation

Here we assume that We =0 in the classical two-
dimensional problem, (3.2.1a)—(3.2.1d), where 4> =0. In
this last problem the parameter is 6 = khy, where k is the
wave number, and it may be regarded as small for either
small depths or long wavelengths. We note that when 6 and
¢ are both small in the problem (3.2.1), the nonlinearity is
exactly balanced by dispersion when x, = 6°/e = O(1) and
%o =1/ko 1is small when the dispersion exceeds the
nonlinearity and is of order of unity when they are
balanced!

For § < 1 the solution is formally

8= Fe,10,20) + 6= 3 (o 1 |

+64[H—%(z+l)Gu+ z+1)* m]+0(56)

4.3.1)

It should be observed that this is only a formal expansion
in powers of &, since F,G,H,... and hence the coefficients
are themselves dependent on 5 we note that y, = 1/ky =
/0. This dependence will be removed by further
expansion at a later stage. In general, we might expect
(with Freeman and Davey [33]) the double limit 6 — 0 and
%o — 0 to be uniform! This expectation motivates the
expansion procedure which is used below where the
problem with finite y, and small  is considered, first, to
derive a ‘generalised KdV’ equation (GKdV-equation). If §
is small with y, of the order of unity, we can write the
following expansion for the functions ¢ and {, in the two-
dimensional classical problem with (4.3.1):

F=Fy(0,7)+ 10°F +

5 (4.3.2)
(=006 0,7) + 10670 +
where we define, according to [33]
E=x—ct, o=pxx—ct), T=x0t, (433)
ford<lic,=1—(1/6)8+...,c, =1—18" +...are the

phase velocity and the group velocity of linearised theory
(see, for instance, Zeytounian [64a], pp 37-39). It is
assumed that a wave packet propagates in the x-positive
direction, so that the motion is unidirectional. Naturally,
when g, is small, then ¢ will be a slow variable modulating
the rapid variation characterised by ¢&.

Now, according to (4.3.3), we have the following
formulae for the new derivatives:

i 0 n 0 =D
ox o Mps= o
43.4)
a0 e w0 5
Substituting Eqns (4.3.2)—(4.3.4) into Eqns (3.2.1a)—

(3.2.1d), with A* =0 and expansion (4.3.1), by equating
terms of order 8% and for fixed y,, we obtain

{o=DFy, (4.3.5)
o, 193, 1 &
_D2F.) — D2 2_0 290 1 G0
1
+1DFyDE + 1olo D*Fo =2 DFy . (43.6)
OF, 10F, 1 OF
_ _DG= %0 100 1, Y
XO(CI DFO) DG X0~ al_ 6 ai 2 0 ao_
1 1
——D’Fy—= 5 %0 (DF,)* (4.3.7)

2

As expected, the first equation (4.3.5) is insufficient to
determine both functions F,, and {; and it is necessary to go
to the second order [Eqns (4.3.6) and (4.3.7)] to obtain a
consistency condition to do this. In fact, it is sufficient to
differentiate Eqn (4.3.7) with respect to D defined by the
first equation in system (4.3.4) and to subtract from
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Eqn (4.3.6). The result is the following GKdV equation for
Co
oy  10¢ 6{
220 O%o
"2 T30 T e
0 0
D=— —
0t TH g,

1
== + 32080 Do + = 3 D¢, =0,
(4.3.8)

which with Eqn (4.3.5) suffices to determine {, and F,
given the appropriate boundary conditions.¥

4.4 Phase plane analysis
We start with the following KdV equation
u Ou Ou
_ —_— _—= 0
P a a0
and we look, here, for a solution which is a function f(5) of
the form

u=fn),

where ¢ is a constant representing the propagation velocity
of a stationary wave.

Substitution of u=f(n) into Eqn (4.4.1) gives an
ordinary differential equation for the function (), namely:

4.4.1)

n=x—ct, (4.4.2)

&’ 1
ﬁd2+ fr—cf=0. (4.4.3)
The integration constant is assumed to be zero in

Eqn (4.4.3) since, using the substitution f=f* +f0 and
c=c"4f° we can choose const = —f*(c* +£°/2).

We must bear in mind, therefore, that an arbitrary
constant can be added to any solution of Eqn (4.4.3) if the
same constant is added to ¢, which is equivalent to transfer
to a moving coordinate system. Now, we note that
Eqn (4.4.3) is equivalent to:

P &’ du
> df”’

which is the equation of motion for a particle of a mass f
in a field of force with a potential U(f) (see, for instance,
Brekhovskikh and Goncharova [66], pp. 296 —299). But, it
is well known that a bounded solution f(n) exists only if the
total energy of the particle E = (B/2)(df/dn)* + U(f) is
located inside a potential hole. The dependence U(f) (for
B >0 and ¢ > 0) is plotted in Fig. 3a. A bounded solution
exists if E(f) <0. We can write Eqn (4.4.4) also as

g-sfoo]”

F It is also interesting to note that, in fact, the above GKdV equation
(4.3.8) follows also casily from the classical KdV equation. Indeed, if
in the classical KdV equation

a(3ac 1a3c0 1 ¢

7t a Tapar 0 T T

U=UP =2 =517 (444

(4.4.5)

for {(x,;,), we introduce the variables 7, £ and ¢ via the following
transformation

1
=YX +5—7 (4.3.9)

1
(=x+—r1 ,
22

6%3 T= Xot s
we obtain again the GKdV equation (4.3.8), but for the function
{(z,&,0). Finally, we note that this GKdV equation (4.3.8) is a very
convenient equation for the derivation of the one-dimensional classical
nonlinear Sc hrodinger (NLS) equation in the shallow-water limit, when
6 — 0 (see Section 5).

Figure 3. Equivalent potential U(f) (a) and phase trajectories in the
(f', f) phase plane for the KdV equation (b).

after integration. In Eqn (4.4.5), the integration constant £
describes the total energy.

Using the value of U(f) from Eqns (4.4.4) and (4.4.5),
we can find the corresponding df/dn = f' for each value of

f. The corresponding curves on the phase plane (f’, f) at

different but fixed E are called phase trajectories. For our
K dV equation, these trajectories are shown in Fig. 3b. They
intersect the f axis at a point which can be found from the
equation E = U(f).The most interesting trajectory corre-
sponds to E = 0, in which case this equation has a double
root fj, =0 and a simple root f3 =3c. This trajectory
separates that part of the (f’, f) plane where the trajectories
are closed (periodic motion) from the part where the
trajectories go to infinity (nonperiodic motion). That is
why it is called the separating trajectory. It can be proved
easily by substitution that the corresponding solution of

Eqn (4.4.5) (E=0) is
128 1/2
-(3) -

which is called a soliton and A =3¢ is its amplitude. Its
velocity is determined in terms of its amplitude ¢ =A /3.
The quantity d is the length scale of the soliton and the
integration constant #° determines the soliton position in
space. The soliton form f(x) is shown in Fig. 4a. Periodic
solutions for E < 0 are called the cnoidal waves. A typical
form of a cnoidal wave is shown in the Fig. 4b (the root f,
can even be negative since an arbitrary constant can always
be added to it!). As E — 0, the phase trajectory approaches
the separating trajectory. A representative point moving
along this trajectory spends most of its time near the root f,
of the equation E = U(f) and the solution becomes a
periodic sequence of solitons. We note, that the soliton with
the largest amplitude (and the greatest speed) is the first
one and that a sequence of solitons is arranged in order of
their strength.

0
f(n) = 3ccosh™ # , (4.4.6)
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Figure 4. Two simple solutions of the KdV equation: (a) soliton,
(b) cnoidal wave.

If we have two solitons and the first has a smaller
amplitude, then the other soliton which was initially behind
will overtake the first in the course of time. We now have a
wave disturbance which is not just the sum of two solitons
during some of the time. Later, however, this disturbance
again breaks into separate solitons but now that with the
greater amplitude is in front! Hence, in a sense, solitons
behave as noninteracting linear waves. It turns out that the
soliton positions after interaction are somewhat different
from those in the absence of an interaction.

We note finally that introduction of Eqn (4.4.2) into the
KdV equation (4.4.1), followed by two integration respect
to #, leads to

AN _ s
3B (—) = —f> +3¢f> + 6Bf + 6C = F(f) .

dn
with F(f)=(f—a)(f —b)(e—)), a<b<e,
c=(a+b+e)/3, B=—(ab+ be+ ea)/6, C = abe/6.

Here we have assumed that F(f) = 0 has three real roots
in order to ensure real bounded solutions. If F(f) =0 has
three distinct roots, the solutions are uniform wavetrains or
cnoidal waves (Fig. 4b). If F(f) = 0 has a double root, say
a = b, then the cnoidal wave solutions reduce to solitary
waves (Fig. 4a), while if b =e¢, only a constant state is
obtained: f=e :fo is a possible solution. The cnoidal
wave solutions can be expressed in terms of the Jacobian
elliptic functions as follows:

_f':b+(e—b)Cn2{(%>l/2[x—%(a+11+e)t]|m} ,

(4.4.7)
with m? = (e —b)/(e —a), 1 =m >0, where m represents
the modulus of an elliptic function. In the limit as b — a
(m — 1), Eqn (4.4.7) reduces to the solitary wave solution

12
f=r"+a sech2{(1a70) [x - (fo +% ao)t]} . (443)

This shows that the wave velocity relative to the
constant state _}"0 is proportional to the amplitude. The
width of the solitary wave is inversely proportional to the
square root of the wave amplitude and, therefore, taller
solitary waves are narrower and travel faster than shorter
ones. The fact that the KdV equation is of the first order in
time means that it only characterises unidirectional wave
motion, so that all solitary waves represented by solu-
tion (4.4.8) will propagate in the direction of increasing x.
Consequently, if two solitary waves are propagating, with
the larger one initially on the left, then this wave will
eventually overtake the smaller one which was initially on
the right. It is well known that the solitary waves described
by expression (4.4.8) show the following remarkable
properties, which were first demonstrated by computer
studies of Zabusky and Kruskal [25]. A single solitary
wave travels without any change in shape, which means that
a solitary wave is stable. When two solitary waves are well
separated initially, with the larger one on the left, the faster
solitary wave overtakes the slower one, they interact
nonlinearly, and when this process is completed their
positions are interchanged with the larger one to the
right. The structure of each solitary wave is exactly the
same after the nonlinear interaction as it was before: only
their relative positions are interchanged. Thus a solitary
wave is stable even when subjected to nonlinear inter-
actions. This remakable stability of solitary waves in which
they exhibit a particle-like behaviour led Zabusky and
Kruskal to coin the name soliton [25]. A more thorough
discussion of the solitary wave—soliton phenomenon is
given in Section 7.

4.5 Kadomtsev— Petviashvili limit

We start with the dimensional equations. As before, a liquid
has a velocity potential ¢(¢,x,y,z), which satisfies the
Laplace equation

G+, +0. =0, —hy<z<{(x,y,1). (451)
The flat-bottom condition is
¢.=0, z=—hy. 4.5.2)

Finally, we have the following two boundary conditions on
a free surface z = {(¢,x,y)

¢. =0+ +0,8, (4.5.3a)

B+ (9} + 87+ )+l

T
poN’?

[(1+3)8, — 2088, + (1 +8)u] . (45.3b)

where N2 =14 +Z§.

Now, we shall consider the full nonlinear pivotal
problem described by Eqns (4.5.1)—(4.5.3) in the following
KP limiting case:

& =ay/hy € 1—small amplitude,

mi(k* +17) < 1—long waves,

(1/k)* < 1—nearly one-dimensional waves,
where (k,[) is the horizontal (x,y) wavenumber character-
istic of disturbances. We shall orient the horizontal
coordinates so that the x direction is the principal direction
of wave propagation. Finally, ¢, denotes, as before, the
characteristic amplitude of the disturbances.
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The KP equation results when all three above-mentioned
small effects balance

R +1%) = 0(s), (é) —0().

Under the above assumption, the first approximation to
our problem (4.5.1)—(4.5.3) reduces to the following
classical linear wave equation for the elevation of a free
surface
L 0%
I _ 22
o2 Cox?
where c% = ghy.
Thus, to the lowest order, the solution of the hyperbolic
equation (4.5.5) for {(¢,x,y) may be approximated by

{ m eho[F(x — cot,y) + G(x + cot,y)] (4.5.6)

where F and G are known in terms of the initial data (for
t =0).

To go to a higher order (in &), we shall define scaled
dimensionless variables

(4.5.4)

—0(e), 4.5.5)

£=gl/? X!

X + ¢yt
o= gl 0 Y
0 ho

’ 11 =&,
(4.5.7)
’ T
‘L'=83/2tc—0, We=—.
ho 8Pl
Let us now look at the following solution for the elevation
of a free surface
C ~ EhO [U(C7 f, T) + V(C7 f, T)] ’

and let us apply the MS method —in this case to eliminate
the secular terms of the next order in &. We then obtain
automatically the following two KP equations for the
unknown functions U and V, respectively:

o [.0U U (1 N oUul U
o’V

o [0V ov (I oV
22 v (L ower ) L o
66[ ot 3 do (3 We)663] on? 0

(4.5.8)

(4.5.9b)

where U=F and V=G, if 1=0.

In most cases of interest, we have 1/3 < We* for water
waves, and it follows from the linearised dispersion
relationship for the initial problem (4.5.1)—(4.5.3) that
the linearised phase velocity has a (local) maximum at
k=0 and [=0. Thus, the waves described by the
system(4.5.9) travel faster than their neighbours in the
(k,]) plane and there should be no disturbances as
¢ — 400 or o — —oo. Consequently, for example,
Eqn (4.5.92) may be integrated with respect to & which
gives

oU U (1 U [(red'u
2— 43U —+ |z —We' | —= —d&*, (4.5.10
o ac+(3 e)@f) J o 47 @210
and this is now in the form of an evolution equation for
U(¢,n,1).

If U and all of its derivatives vanish initially as &€ — —oo0,
it is evident from Eqn (4.5.10) that U will not remain zero at
infinity unless:

J+OO 62 U

Since U is a derivative of the velocity potential,
Eqn (4.5.11) is automatically satisfied at the initial
instant. Indeed, for the linearised form of Eqn (4.5.10),
Eqn (4.5.11) is a constant of motion and it is sufficient to
know it initially!

The constraint (4.5.11) has a simple physical inter-
pretation. One can identify [U(&,n,7)d€" as the total
mass of a wave in a thin strip at #. Then, condi-
tion (4.5.11) assures that the transverse derivative of
mass is constant, and this prevents net flow of mass to
(or from) any particular strip.

4.6 A direct asymptotic derivation of the

Kadomtsev - Petviashvili equation

The asymptotic derivation of the KP equation follows in
fact closely that of the KdV equation (see Section 4.1) and,
therefore, we merely review only the main point of this
asymptotic derivation here. First, as in Eqn (4.1.4), we
employ the new variables

é:el/z(x—t), t, n=gy.

In this case, instead of Eqn (4.1.5), we are faced with the
following dimensionless problem:

3/2

T=¢ (4.6.1a)

82¢'m + 8¢§§ + d):: =0 s (4623.)
¢.=0 for z=0, (4.6.2b)
b, = 62(15,,{,, +8°0 + epele — 8]/2C§ ) (4.6.2¢)

1 1 1 1
532(]537—1—83/2(1),—#5 sd)é ~3 sl/zd)g +§ ¢2 +{=0,
(4.6.2d)

where Eqns (4.6.2¢) and (4.6.2d) are satisfied on z =1+

SCI (67117 1'-) + 82{2(67’17 1") +...
For ¢ we have:

b =e[F(En1,2) +edy +Ehs+...] . (4.63)

We can see from Eqns (4.6.2a), (4.6.2c) and (4.6.2d) that
the dependence on # appears explicitly only at the order &
and, as a consequence, the results of Section 4.1 remain
unchanged up to Eqn (4.1.8b). In place of solution (4.1.9),
we obtain now:
1 1 1

¢y =72 Feete — 57 Gt — 57 CFm +H(EN D)
where F = F(¢,5,7) and {; = F;.

At the order &, relationship (4.1.10) is also unchanged
[at this order the term 82¢,IC,1 ~ 87/2(C|)”F,1 cannot appear].
But, if we now utilise the new solution (4.6.4) for ¢;, in
place of solution (4.1.9), we derive from relation-
ship (4.1.10) the following new ‘two-dimensional’
relationship for F(&,#,1):

4.6.4)

1

3 Fegte + Fa + 3FcFee +2F =0 . (4.6.5)
Finally, if we introduce the function f(£n,0)=

2F:(60,¢,n), where 6 =1/6, we obtain the classical KP

equation in the form

o (Of o OFf of
(=3er+0@) . 6.7)
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To make the model quite explicit, we can also write the KP
equation for the waves travelling to the right in the
dimensional form for the elevation of a free surface:
d (1 o [ 3 ¥ M a%) 19%¢
Ox

;54‘& +§ﬁ_0.(4.6.8)

2hy " 0x | 6 ox°

4.7 Generalised Kadomtsev— Petviashvili equation
In the three-dimensional classical problem, in place of
expansion (4.3.2), we have

F:F0(€a0-7’1ar)+X062Fl +.o..,

{=0o(&0,m,7) + 100°C1 + @.7.1)
with [see definitions (4.3.3)]
E=x—cpt, o=gx—ct), T=x0t, n :vl ,
0
4.72)
where y, = 1/Kk, is small if the dispersion exceeds the

nonlinearity and is of order of unity when they are balanced.
In this case, as in Section 4.3, we can derive easily the

following generalised Kadomtsev—Petviashvili (GKP)

equation for the elevation of a free surface {o(¢,0,7,1):

oy, 10 o 1 O’F,
2 960 0 3 20 fy
Xo a +3 ai—"_ Oa +3X0C0DC0+ D CO _XOa—nQ’
(4.7.3)
0
According to Freeman and Davey [33], this GKP

equation, with definitions (4.7.4), is very convenient for
the derivation of the two-dimensional NLS—Poisson system
of two equations, obtained first by Davey and Stewartson
(1974) [39] in the long-wave limit (see Section 5).

4.8 Second-order Kadomtsev- Petviashvili equation
We return now to the QIDGB equations (3.2.10a) and
(3.2.10b) for the functions F(x, y, f) and {(x, y, t), where
We* = exyWe, according to expressions (2.3.18) and (2.3.20).
Again, in Eqns (3.2.10a) and (3.2.10b), we introduce a slow
time t=2¢ and we suppose that F= F(x,y,t,7) and
{={(x,y,t,7), and that 8/0r = 0/0r+ +&0d/0r.

Then, in place of Eqns (3.2.10a) and (3.2.10b), we
obtain the following system of two equations for
F(x,y,t,7) and {(x,y,,7)

Ko

(), + o3 (0 = 2P, —aWel + ().}

2 Ko

2 Ko Ko 2
2 P+ (P + (P,

_EO(F)yyr +2—£0(F)2 (F)m( F),

—1[L(F)y ], — vﬁWecyy} =0(&), (4.8.1a)

&+ (F)xx +8{_(F + [é(F ] _%(F)xxxx + c‘f}

2 2
“{Soﬂmn—%ﬂwmh+%ma¢

2

—%O(F)uyy} =0() . (4.8.1b)

If the appropriate asymptotic expansions of F and { are
F=Fy+eF,+&F,+..., (=0 +eli+&0+
(4.8.2)

we obtain the following set of equations to different powers
of ¢

0(%): (Fo), +¢ =0, (L), + (Fo), =0; (4.8.3a)
O): (F), +4+3 (R ~ 2 (o),
—KoWe(lo) e + (Fo), =0,
2
(&), + (F1),, *—(Fo A [Go(Fo), ],
—%(Fo)xm (). =0 (4.8.3b)
O): (F2), + o (Fo) (F1), = - (Fi)ye, + (F1),
2
—KOWC(cI )xx - % (FO))()(‘L' + ’26_2_ (FO)xxxxt
+%m&—@mmwux
—ko [Lo(Fo) rx] + (Fo)
—VZ—O(FO)},},, — RWe(l,),, =0,
2
Ko Vo
(C2)r + (F2)u _F(F] )u,x;x +K—0(F] )yy
+ [CO(FI ), +8(Fo), ], + (&),
+ m F0) e xx —% [Co(Fo)e ],
VO V%
+ o [Co(Fo), ], — 3 (Fo)yy =0 . (4.830)

From Eqn (4.8.3a) it follows that F, and {, depend on x
and ¢ either through x —¢ or x +¢. Here we shall only
consider the wave propagating to the right, and hence we
shall assume that the dependences of F, and {, on x and ¢
appear only through the variable £ = x — ¢ and in this case

we have 0/0x =0/0¢ and 0/0r = —0/0f. Furthermore,

when F, and {, depend also only on & 1 and y,
Eqn (4.8.3b) can be reduced to

aFl _ aFO Ko 63F0 63F0 aFO
66_C+ (65) +2 o8 Ko 6§3+

GC] _62F| Ko 64F0 62F0 6 aFO VO 62F0
2~ o8 6 oF Toger Tae\ae) T oy Y

and we derive, again, the classical KP equation for the
function Fy(&,t,y), as a compatibility condition for the
system of two equations (4.8.4), namely

0 |.0F, OF, 1 OF| v OF)
&[2¥+ <6§> +K< We) 663 +KI_0 6y2 =0.
(4.8.5)
In addition, we note that
oF,
lo = ¥ . (4.8.6)
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But, before determination of {;(&,7,y) it is necessary to
find first the function F,(¢,t,y), since

oF
4 :a—é'—A(FO) , (4.8.7)
with
_ (%Y ! O°F, , OF,
A(Fy) —§<¥) +Ko<§—W ) 653 —l——. (4.8.8)
Now, if again F, = F,({,7,y) and { ={(¢,7,5), we
obtain the following result from Eqn (4.8.3c):
aFQ_ aFO aF] 1 63Fl aFl
- BB on )
2
R T We g A0 (4.8.9)
3, OF K 0'F v OF, L0 (0RO,
0~ 02 6 of' ko 0yF |~ OE\OF 0f
O’F, 5 3 oF,
+agae T CF0) — 5 AF0) — 5 [A (FO)E] .(4.8.9b)
with
— KOaFO K_ aFO _@%63!70
B(FO)_ 24 665 2 (a > 2 o 663
aFO a KO 63F0
Ky = | = k
aé o¢ 6 2 o ot
o[ 1 (3R (1 OF,
+V0[2K0 (ay {3 We R ,(4.8.10a)
KO a FO Ko 0 aFO a)FO
C(Fy) = 120 p¢® 6 65(66 653)
A= () - =
vo[ay (66 ay> 6 3¢ ayz] (4.8.10b)

Finally, from the two equations (4.8.9a) and (4.8.9b) for
F, and {,, we can eliminate the function {,; we then obtain
the following inhomogeneous (but linear) equation for the
function F;(&,1,y):

0 [, OF , . OF, OF, o’F, ] v O°F,
6_4‘[ e T (3 We) 8 ] T
0 oF, d 0
66(A(F0) aé)+< +K0Weaé )A(FO)
_O[B(Fy)]
38 — C(F,) . (4.8.11)

Thus the KP equation (4.8.5) for F, and the linear
inhomogeneous equation (4.8.11) for F; describe the second-
order KP approximation. We can also calculate {, [from
Eqn (4.8.6)] and {; [from Eqn (4.8.7) with Eqns (4.8.8) and
(4.8.11)].

It is now well established that the KP equation is the
lowest-order nontrivial consequence of the perturbation
approximation for the QIDGB equations describing
weakly dispersive waves.

[t is also important to note that the KP equation admits
solitary wave solutions. Indeed, if we write the KP equation

(4.8.5) for Fy as an equation for the function {, = 0F,/0¢
when We =0,

0 aCo 3, 0 ) 2’y Vo 6250

o (a > b 38 ac 622 ) T o =0, (48.12)
then we can seek the following solution

Co=0C0(0), O0=E—at+pPy. (4.8.13)

In this case we obtain the KP soliton solution of

Eqn (4.8.12) in the following form

4

¢y = sech? [é - (1 —|—v3—0)1: +v§y] , (4.8.14)
3

Ko=7> B=13, a:1+§v(2), (4.8.15)

where v(2) is a parameter describing a (small) inclination of
the wave relative to the main direction of propagation. In
the absence of the y direction (when v% =0 in the one-
dimensional case), the solution (4.8.14) reduces to the KdV
soliton solution.

Introducing this above solution (4.8.14) for 0F,/0¢& = {
into Eqn (4.8.11) for F;, we can find the second-order term
Fi(0) and we can introduce the notion of a ‘dressed KP
soliton’, that is a KP soliton with second-order corrections.

However, this dressed KP soliton solution may also
involve the appearance of secular terms (as in the KdV
theory). Elimination of these secularities, in addition to ¢
and 7, requires—in our above reductive perturbation
method —introduction of the following new slow vari-
ables: X =¢(x —1), T= th,... . Actually, we are not
certain if it is necessary to introduce also a new slow
transverse variable # =g¢gy. Naturally, in this case
Eqn (4.8.11) for F, changes and in the transformed
equation for F(¢,7,y,X,T,...) we have some new terms
containing derivatives with respect to X, 7,.... As con-
sequence, we can assume the following soliton solution:

F\(6,X,T,...)=Asech’[B(0+ C)] , (4.8.16)

with A =A(X,T,...), B=B(X,T,...)and C =C(X,T,...).

We can now use the added freedom to eliminate the
secular-producing terms. As the secular-free conditions, we
obtain a set of equations for the ‘modulating’ functions
AX,T,..),B(X,T,...)and C(X,T,...). In the KdV theory
these secular-producing terms were eliminated by Sugimoto
and Kakutani (1977) [56] (see, also, the book by Jeffrey and
Kawahara [57]).

4.9 Some features of wave solutions of the
Kadomtsev - Petviashvili equation
The canonical form of the KP equation is

o O O L0
AR % Y )

26t 2 op 3 4.9.1)

where
3 . 2
C=58.f+0(8 ) -

The N-soliton wave solution of the above KP equation
was derived by Satsuma (1976) [67] and its structure was
elucidated by Miles [22] (see, also, the useful review paper
by Freeman [52]).

One interesting use of the computer is to plot known
analytic wave solutions: when the solutions are compli-
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Figure 5. Cnoidal wave solution of the KP equation.

N\

Figure 6. Two-soliton wave solution of the KP equation.

cated, a diagram is often worth pages of analysis! A typical
cnoidal KP wave, a solution of the KP equation, is shown in
Fig. 5; Fig. 6 shows a two-soliton solution and Fig. 7 gives
a three-soliton wave solution of the KP equation. In Fig. 7
there are three plane-wave solitons with an interaction
region where several short sections of waves appear. There
is a phase shift in each plane soliton caused by the
interaction. This diagram corresponds to Fig. 6a in John-
son’s review [48], and the reader is referred to this paper for
further details.

According to Segur and Finkel [68] (Figs5 and 6
corresponds to Figs 1 and 2 in their paper), the KP
equation (4.9.1) is Galilean-invariant, so that spatially
periodic solutions may be normalised by imposing the
condition

1 L
lim —J x+x%y,0)| =0, (4.9.2)
L—oo| L 0
which represents normalisation of a free surface

z={(x, y, t) and which implies that &, (we suppose that
the bottom is the plane z = —hq) is the mean depth of the
liquid, and that z = 0 ({ = 0) in the absence of any motion!
Naturally, the KP equation admits waves that travel along
any direction in (x,y) plane, but we can expect them to

model water waves accurately only if they propagate
primarily in the x direction! In contrast to the KdV
equation, the contribution of transverse (perpendicular)
dynamics seems to be modest in the KP equation (4.9.1).
However, the additional term 39%/dn* in Eqn (4.9.1),
absent from the KdV equation, opens the door to a wealth
of physical effects.

The reader is referred to the recent book by Infeld and
Rowlands [44] for deeper analysis of this KP equation.

In the review paper by Freeman [52], the reader can find
also a very interesting exposition of the soliton interaction
in two dimensions based on an examination of the structure
of the two- and three-soliton solutions of the KP equation.
As in the case of the KAV equation, the general technique
for solution of the KP equation is the inverse scattering
transform (IST, see Section 7), which can be used to
construct a general multisoliton solution. For example,
the interaction of two plane waves in the far field, after
a long time, when t =gt = O(1) [52, 69], can be considered,
and it is sufficient to discuss the far-field development of
such waves. In this situation we assume that the distur-
bances are localised near some line n-r — f = const.

Such waves need only be considered in the neighbour-
hood of their interaction zone, since far from this zone the



1354

R Kh Zeytounian

Y ot
A,

=T

=y

—
—_—
—
=

Figure 7. Three-soliton wave solution of the KP equation.

waves are uninfluenced by the presence of each other. This
interaction was called ‘weak’ by Miles [69]. If we introduce
two plane-wave coordinates &, and &,, where & =n;or — 1,
r=(x,y), n; = (cos6;,sin 6;), and i = 1,2, we obtain [from
the classical three-dimensional classical problem, assuming
that the amplitude parameter ¢ and the dispersive (long
waves) parameter 0 are small, but 52/8 = 1] the KdV
equation if 1 —cos(6; — 6,) = O(1). But the above expan-
sion technique (for the derivation of the KdV equation)
obviously fails when

1 —cos(6, — 6,) = (4.9.3)

In this case the waves are almost aligned and 6, — 0, =
O(¢'?). The interaction is then no longer weak and,
following Miles [69], is referred to as strong. The two
phases now differ only by the order ¢ and it is convenient
to introduce, as coordinates, &, and the normal to &; with
an appropriate scaling of #. Hence we write

(=4

O(e) .

n:sl/z(ycosﬂl —xsin6,), (4.9.4)

For this ‘strong’ case we can derive the following KP
equation:

6(0 6{0 ]aJCO CO_
64‘( §°6_6+§a&>+—2_0’

(4.9.5)

§:8C0+...

The linear dispersion relationship for the above KP
equation can be written as 2wk = k*/3 +m?, where the
phase func-tion is = k& + mn —wt. A convenient para-
metrisation of this relation is obtained by putting
k=+6(1+n), m=6n*—1%), ®=4/6("+nr’). A single
skewed soliton solution of this KP equation thus becomes:

Lo = 2(I+ n)* sech? B B(, n)] , (4.9.6)

which corresponds to a KdV soliton
{o = 817 sech? [\/gl(é —4’7)] ,

when [ =n and the wave propagates in the & direction.
The wave amplitude is now 2(/ + n)* and, in general, the

wave is characterised by the two parameters / and n.
Finally, the two-soliton solution of the KP equation is

4 o
lo = 3 352 log f, (4.9.7)
where
f=1+expf +expp, +Nyexp(B; + B,) , (4.9.8)

Ny =l = b)(ny =) /(i + mo)(l +ny), and B; = B(l;, i),
where i = 1,2, are the phases of the two solitons.

5. Nonlinear Schrodinger
and Schrodinger - Poisson equations

5.1 Nonlinear Schrodinger equation

A truly linear system has a dispersion relationship which is
independent of the amplitude. However, let us assume that
the growth of a harmonic wave in a weakly nonlinear
system can be represented by a dispersion relationship
which is amplitude-dependent! Such a situation actually
occurs in the nonlinear theory of water waves and we can

suppose that
o =a(k; |af) . (5.1.1)

A Taylor expansion around some suitable wave number &
and frequency w, gives:

(e

+(ai?a?) of

(5.1.2)
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Eqn (5.1.2) is the Fourier-space equivalent of an operator
equation which, when operating on the amplitude «, yields:

ii-i- a_w Ea+l 62_60 az_a_ _aw a|a|2—()
ot ok J,0x 2\0k? ) 0x2 a|a|2 0 o

where higher terms are neglected [32].

Eqn (5.1.3) is the nonlinear Schrodinger equation and
the name ‘nonlinear Schrodinger’ (NLS) has been coined
precisely because its structure is that of the Schrodinger
equation of quantum mechanics with |a|2 as the potential,
although in most situations it is unrelated to the real
quantum Schrodinger equation other than in name. In
fact, it plays a significant role in the theory of the
propagation of the envelopes of wave trains in many
stable dispersive physical system in which no dissipation
occurs. The above rather heuristic derivation of the NLS
equation shows how the effect of the nonlinear term can be
crudely modelled by thinking of the system as having an
amplitude-dependent dispersion relationship.

This quick derivation method tells us how the NLS
equation arises but, unfortunately, for a specific set of
model equations it does not give us the values of the
coefficients in the final NLS equation, in particular the
(6(0/6|a|2)0 term. As we shall see below, the sign of this term
is rather important. At this point it is preferable to
introduce a more formal mathematical method which
can be applied in general to a large range of nonlinear
equations when we want to know the development of a
slowly varying envelope modulating a fast carrier wave.

This latter property means that many wavelengths of the
carrier wave are contained in just one wavelength of the
envelope. Consequently,

Ae

o= pa <1,
where A, and A, are typical wavelengths of the carrier wave
and of the envelope, respectively. Since x and ¢ are normal
space and time variables, for a two-dimensional carrier
wave we can define a set of ‘slow’ space and time variables:

(5.1.5)

(5.1.4)

X,=d"x, T,=0d"t.

These variables describe the motion of the envelope and
from now on they will be considered as independent
variables (MS or ‘two time’ method). In searching for the
method to find the evolution equation of the envelope of
oscillations for a given nonlinear equation, it is better to
proceed by example than by a general approach.

5.1.1 Let us choose the KdV equation as the initial
nonlinear equation and let us derive the associated NLS
equation. Therefore, for the function u(f,x), we have the
following KdV equation:

a_u+a_u+ﬁ£ 2+63_u
or "ox Pt T

with the (linear) dispersion relationship: @ =k — k°.
Expanding u as

=0, (5.1.6)

u:au1+a2u2+a3u3+..., 5.1.7)
u, = u,(t,x;X,,T1,To,...), n=1,2,3..., (5.1.8)
0 a+ 0 g 0 +. 0 0 ta 0 N
= — = — —_— —— = —+...
ot ot aT] aTz Ox Ox aX] ’

(5.1.9)
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we find, as expected, at O(«)
9, 0 O
— =0 5.1.10
(6t+ax e ) : (5.1.10)
u :A(X],Tl,Tz,...)E-i‘C.C. N
E=expif, 6O=kx —ot, (5.1.11)
where c.c. denotes the complex conjugate.
At O(a?), we find:
o o @ oA oA
1 —3k? E+c.c.
(6t+6x+6 ) [6T|+( Jox,|ETee
—2ikPA’E* 4 2ikPAET?, (5.1.12)
and the E term is secular, so that we take
X* =X, —(1=3k)T, A =AX*,X5,T5,...) . (5.1.13)
Integrating Eqn (5.1.12) to find u,, we obtain
i :3—5{32(A2E2 +A®E) +B(X*,T)), (5.1.14)

where B(X*,T,) is an integration constant for the fast scales
x and ¢, but can be made a function of the slow scales.
At O(e’), we now find

24_34_6_3 Ur = — 3i+
o ox T ax’) T [Toxox?
[ o o

— |3t —+— A2E? L A®E™?
ox?0x, | aT, +ax|] [3k2( + )

0 * o —1
a—n] [AE +A*E™]

)
+3(x*,rl)] -8 T(A2E2 +APET2 42041
1

_zﬁai[ABE +W(A|A| E+A’E? )—l—c.c.] . (5.1.15)

There are two types of secular terms in Eqn (5.1.15). The
first are functions of the slow scales only, which will give
rise to terms in u3, which are explicit functions of x and y.
Removal of these gives:

[LJF 0 ]B+z/3 AP =0. (5.1.16)

ox, or
Next, removal of the E secular terms gives:

oA N oA 4,3 28’
——+——ik
ox*2 ' 0T, 3k 3k2
Finally, from Eqns (5.1.16) and (5.1.17), we obtain the
following NLS equation for A:
aA +62A +2,3
—i =
aéZ 3k2
where © = kT, and &= X*//3.
Therefore, the time scale on which the envelope NLS

equation operates is quite long, since one unit of time on the
T scale is l/oc2 units of real time (far-field equation).

3ik AAP +ik 2= AJAP =0, (5.1.17)

AlAP =0, (5.1.18)

5.1.2 The amplitude A(z,&) is a complex function and it
therefore contains information about the phase of the
wave. Eqn (5.1.18) may be expressed in terms of real
functions by assuming that

= aow(iwac).

(5.1.19)
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where a = a(t,£) and W = W (z, £). Separating the real and
imaginary parts, we get:

0 » ,0 >

—a —2—-Wa"=0 5.1.20

T . (5.1:202)

w_o la2—“—w2+2—ﬁ2 ) =0 (5.1.20b)

o 0¢\a o2 w2 )T -
These equations are in the form of conservation laws

oP 00

5?‘FEE’—-O.

They were derived for deep-water waves by Chu and Mei
(1970) [70], and by Whitham (1967) [71] without the term
(1/a)d*a/d&*. The connection between Eqns (5.1.20) and
(5.1.18) was pointed by Davey (1972) [72].

5.1.3 It is also necessary to stress that, in general, when the
long-wave parameter J is not small but fixed when & — 0,
the NLS equation describes the amplitude of a harmonic
wave profile as a function of slow space and time variables.
The wavelength of the carrier wave is taken to be O(1) as
& — 0, and this corresponds to ¢ being fixed in going to the
limit. The basic wave is therefore sought in the form

e—0,

{~A(E T)expip +ec.c., (5.1.21)

p=x—cyt, E=¢elx—cgt), T=6t. (5.1.22)

The expansion for { (and ¢) is so constructed that it is
periodic (to all orders) in p. Hence, higher-order terms must
contain higher harmonics generated by the nonlinear
coupling. The carrier wave moves at the phase velocity
(¢p) and the amplitude modulation travels at the corre-
sponding group velocity (c,), although the specific forms of
¢, and ¢, are not assumed a priori! From the pivotal two-
dimensional water wave problem with the flat-bottom
condition, when the surface tension is ignored, the leading
and next-order approximations give

C2_tanh5 c—lc - 20
R sinh28/ °

respectively. The very next order, which

(5.1.23)

incorporates

the cubic nonlinearity, yields the following general
NLS (GNLS) equation:
A A 5
—21cpa+q¥+rA|A| =0, (5.1.24)

where ¢ and r are involved functions of §. The coefficient is
r(®) =0 for 6 =6° = 1.363, and it is well known that the
Stokes wave is then unstable if & = &° [73]. This suggests
that the nature of the Benjami—Feir instability could be
examined via a suitable generalisation of the NLS equation
(5.1.24) valid near r=0 [74]. We must stress that the
coefficient ¢ is always positive, whereas r changes its sign
from positive to negative at = 8° = 1.363, as & increases.

The NLS equation (5.1.24) was first derived (for a finite
depth) by Hasimoto and Ono (1972) in the following form
[36]

104 oA

——:u—+vA|A|2,

s o (5.1.25)

where

=S lo—kohy(1 - ) + ik (1 - )}

8k000m
(5.1.26)

kg ! 2 2 232
V= —E{m [4(0+4(] — 0 )L'OL'g+gh0(l — 0 ) ]

1
+ =— (9 — 106 +904)} , (5.1.26b)
20
o G ]/2
o =tanhkohy, co=-2=(22) | (5.1.26¢)
ko ko

It can be seen from Eqn (5.1.26a) that pu is always negative,
whereas n changes its sign from negative to positive at
kohg = 1.363, as kyh, decreases.

It is known that the NLS equation (5.1.25) has the
following solution representing a nonlinear plane wave

A =Agexpi(ar — k&), (5.1.27)

where A, = const and o = —ux” + v|A0|2.

5.1.4 In the limit kghg — O with ko of the order of unity, the
coefficients m and n in Eqn (5.1.25) become, respectively:

1
wo == cy*koht (5.1.28a)

9 _
V_’Vs:ZCo]/2k0/’la2, (5.1.28b)

where ¢, = (g@o)'/z. In this case the nonlinear plane wave
[for & < (kohy)” < 1] assumes the following form:
{ =¢eacosf 3_ea (1 — cos26,)
=¢ea f—— ———— (1 — .)
" A hg(koho)?
where 6, = kox — (wo — £%a)t and o, = v, g°a* /4],
On the other hand, as is well known, the shallow-water
waves are governed by the KdV equation:
o B el O el O
2/10 Ox

(5.1.29)

070 =0,

6 Ox3
which has the steady periodic solution called a cnoidal
wave

2 2| [ ea 172
{=¢a Coo—i—WDn [(W) (x—cgt)|m] ,(5.1.31)

3 2(2
G =¢C 1+% Coo+§ W_] ,

and the mean depth, say (¥, is given by
¢ =ea(loo +2E/m*K), where K, E and m are respec-
tively, the first and the second kinds of the complete elliptic
integral and its modulus.

As in Hasimoto and Ono [36], putting
3 &d’

a* :__—9
4 h3k3

(5.1.32)

2 3 eam’
T2k

and expanding solution (5.1.31) for small value of m, we
obtain solution (5.1.29). Thus we find that the nonlinear
plane wave solution corresponds to a weak cnoidal wave in
the shallow-water limit.

Finally, we may conclude that a weak cnoidal wave is
modulation-stable against small disturbances because
Vg Uy < 0 (see Section 8).



Nonlinear long waves on water and solitons

1357

5.2 Soliton solution of the nonlinear Schrodinger equation
The sign of B in the NLS equation (5.1.18) is important as
it determines whether the isospectral operator (in this case
the corresponding eigenvalues are independent of time!) of
the NLS equation is self- or skew-adjoint.

For B > 0 the operator is skew-adjoint, giving rise to
imaginary eigenvalues. In this case, solitons originate from
a discrete spectrum which in turn arises from negative
(bound) energy states (these negative energy states are
associated with negative imaginary eigenvalues). One could
consider the condition f < 0 as representing the case when
focusing or bunching of the wave envelope occurs.

We can seek a solution of the canonical NLS equation
(5.1.18) in the form

NG
A = a, sech [<§> a, (&€ =& — Ut)

xexp[—ir(—Vr—9)]. B>0, (5.2.1)
where r=U/2 and a, =2U[(U/8) — V]/B.

The envelope soliton is characterised by the free param-
eters a, and U and by the phases ¢ and &,.

One of the most important characteristics of the NLS
equation is that it can be solved exactly for initial
conditions that decay sufficiently rapidly as |&] — oo.
This was done by Zakharov and Shabat (1972) [35] using
what was then the newly discovered IST (Gardner et al.
[49]).They showed that any initial wave packet eventually
evolves into a number of ‘envelope solitons’ and a
dispersive tail. The bulk of the energy is contained in
the solitons, which have solitary-wave-solution shapes and
propagate with a permanent profile once produced. Solitons
also survive interactions with other solitons or wave
packets. Since the NLS equation describes the envelope
of long waves in shallow water with a carrier frequency, the
theory predicts the existence of packets of long waves in
shallow water with soliton properties. The existence of these
envelope soliton properties would hardly have been
expected on the basis of experience with linear wave
systems in which wave components are uncoupled and
highly dispersive.

We note that the NLS equation yields a rich variety of
nonlinear wave structures, namely solitons, rarefaction
solitons, several kinds of periodic nonlinear waves, and
a pair of shocks. Indeed, as a result of this overabundance,
scientists are not sure that all these solutions correspond to
physical waves!

Naturally, we can look for a simple solution of the NLS
equation (5.1.18):

A(r, &) = a(€) exp(iy*t) ,

where a(€) is a real function, and y is a constant (to be
determined) representing a frequency correction to the
individual waves.

In this case, it follows from the NLS equation (5.1.18)
that a(£) can be described by the equation

¢

d&
and this equation admits solutions in terms of the Dn

function, which is the Jacobi elliptic function of the second
kind:

a(é) =d"Dn [a0(§ - & m] ,

(5.2.2)

+yla+pa’ =0,

(5.2.3)

where m is the modulus of the Dn function with the
properties

0 2 1/2
a:‘y(z_m2> N 0<m<1

In the limit m — 0, we have Dn[£|0] — | and in the limit
m — 1, we find that Dn[&[1] — sech &.

The soliton envelope and the periodic envelope for the
NLS equation are represented schematically in Fig. 8.

(5.2.4)

X — Ut

Figure 8. Soliton (a) and periodic (b) envelopes for the NLS equation.

More precisely, the carrier travels at a velocity u, and
the envelope travels at a velocity u,; the pulse amplitude is

i 1/2
Ay = [ﬁ (u, — ZMC)] )

5.3 Asymptotic derivation of nonlinear

Schrodinger - Poisson equations

We shall now return to the GKP equation (4.7.3) with the
relationships (4.7.4). Hence, in this section, our initial
system of equations for the two functions {, and F, is

3%+% %—%'FXO%‘F?’%{O%—?‘F 3X(2)50%
+% (i—é" + 3y, 6232%’0 + 32 aizcgg +0 aa%)
+xéaaz—,?=0, (5.3.1)
Lo =aai§°+xoa£. (5.3.2)

In these equations the small parameter (in the long-wave
limit) is

(5.3.3)
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First, we expand the unknown functions {;, and F, in terms
of xo

Lo = ho + xohy + 2oha + ..., (5.3.42)

Fo=fo+x0fi+ 20+ (5.3.4b)

If we successively equate like terms in xg, X(l) and xé, we
obtain the following equations for hq, fy, ki, f1, by and f,

_%

hy = R (5.3.5a)
of, o,
hy = é%*% \ (5.3.5b)
of, of
hy = éi§+£ (5.3.5¢)
and
2
(:?Jrl)a—}?:o, (5.3.6a)
0 oh, Ohy Ohy ©h >
— 4 1) = =3 =2+ 3hy—=— , (5.3.6b
(652+ > Z (ao+ "2 Tozas) t COY
0 Oh, h, dhy Oy
(@4’ >a_f_ —3[2 E-f—?)hoa‘#W
d oh, & [(Oh, Oh,
+3 & hoh, +$+% (a_é—i_% . (5.3.60)

Now, from Eqns (5.3.6a) and (5.3.5a), we determine #
and f;, in the following form:

ho :A()]E +A8]E_I N
fo=Byw+ByE+BHE™",

(5.3.7a)
(5.3.7b)
where E = expif and E ' = exp(—if); the asterisk denotes

a complex conjugate. In the above set of relation-
ships (5.3.7), we have

By = —iAg, Bg =iAg . (5.3.8)
Next, we can determine the function Ah; from
Eqn (5.3.5b):
_ « o1, 0N
h=An+ApE+ALE +&, (5.3.92)
where
aBOO aBO] % aBgl
Apy=——, An=——, All=—1—. 3.1
10="35 =735 =3, (5.3.10)

Now, if we take into account the expressions for Ay,
(5.3.7a), and also for Ay, (5.3.9a), we obtain the following
equation for the function f; from Eqn (5.3.6b):

o of 9 o
(@+ 1)@‘% —5(AGE? +AGE ),

and the expression of f; is then

fi=Biw+BpE*+BhHE ™, (5.3.9b)
where
3 3
Buz—iZA%], BEziZAE;%. (5.3.11)

The following expression for &
sions (5.3.9a) and (5.3.9b)

h=Aw+ALE+ALE '+ ALE? +ALE ™, (5.3.9%)
A]2 = 2iB|2, A?2 = —ZIB|*2 . (53]2)

follows from expres-

Moreprecisely, in theaboverelationships(5.3.7)—(5.3.12)
the coefficients Ay, Agi, Boo, Bor, Bors A1, A11y Al Bios
By, B}y, Ay, A], are all functions of ¢, 7 and 7.

Let us now consider Eqns (5.3.5¢) and (5.3.6¢). In fact,
Eqn (5.3.6¢) defines h, and we can write this equation in the
following form

o’ oh
(@‘i‘ 1) 6_52: —3<L0 +LE+LyE?

oA
+9idg —2 E3 + c.c.> , (5.3.13)

Oo
where
0A 0AG, « 0Agr "By
L 3(a A 5.3.14
O—ao_+<0|ao_+0|ao_ +an2’( a)
A A ) . o’B
LI :ZFO]_F] aa-;)l +31(A|0A0] +A0]A12)+W§]’
(5.3.14b)
30 . oA oA
L, :551431 +6iAAg +3A¢ T‘m_“ 6;2 =0,
(5.3.14c)

if we utilise the above expressions (5.3.7a), (5.3.7b) and
(5.3.9'a) for hy, fy and hy.

We see that the Ly and L; terms in (5.3.13) are secular.
However, the E? term is not secular (the E? term is Zero),
because it does not resonate with the homogeneous
solution. Therefore, in order to ensure that perturbation
theory is valid for long times, we must have

Lo=0, L, =0. (5.3.15)

Now, from Eqns (5.3.5¢) and (5.3.9b), we can determine
also the function A,

o

h2:A20+A22E2+A§2E_2+a—6, (5.3.16)
aB]O aB]2 * aBl*2

Ay = =—= =2 5.3.17

20 aO' s 22 aO' 5 22 aO' ( )

It follows from expressions (5.3.15) and (5.3.16), that
the left-hand side of Eqn (5.3.13) obeys the following
relationship:

? oh, 0 (O of, . . o
(6—624-l)a—g:&<@+l)aié—6l(A22E2—A22E 2),
(5.3.18)

and we conclude that, to obtain f,, it is necessary to solve
the following equation

o) .
(2 )
o¢ \a¢ o¢

— i A E? +0ia,, 0412 g3

= —J1 —21A22E +91A0] ?E +c.c. |. (53]9)

But, at this stage the functions Ay, Boo, Bo1» A19, A1; and
A, =2iBy, obey the following four relationships:

. OB
By =—iAg, Ay :_6(:0 ,
e 3 (5.3.20)
n= 12 =—ig Ag
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and two equations [from expressions (5.3.15), (5.3.14a),
(5.3.14b)], since AgAf = Ao |

A A OB
IO+3 | 01| + 00:

0 5.3.21
oo Oo on’ ’ ( a)
A, . OA _ . o’B
26—:‘+1 a6;”+31(A|0AmJFAOIA]Q)JF 611;)] =0
(53.21b)

From relationships (5.3.20) and (5.3.21), we can eliminate
the functions A, Aj;, A and Bjy. We then obtain the
following system of two equations for Ay and Byy:

0°By | 9°Boo A’
3 =0 5.3.22
3 "o 0 oo ’ (53.22)
04y DAy 9 2 DAy 0By
% e 3 Aol =3
(53.23)

These limiting equations (5.3.22) and (5.3.23) represent the
nonlinear Schrodinger— Poisson (NLS —P) system of two
equations (valid in the long-wave limit) obtained first by
Davey and Stewartson (1974) [39] and also by Freeman
and Davey (1975) [33].

Hence, modulation of the amplitude A, of a travelling
wave packet of small amplitude (propagating in quasi-one
direction on water of finite depth) may be described by the
nonlinear Schrodinger equation (5.3.23) coupled to the
Poisson equation (5.3.22) for the middle part of the flow
velocity potential By.

The NLS—P system of two equations (5.3.22), (5.3.23)
was derived by Davey and Stewartson [39] in the long-wave
limit (¢ — 0 and then 6 — 0), but without any formal
justification. According to Freeman and Davey [33], the
above two evolutionary NLS—P equations (5.3.22), (5.3.23)
are derived by a double expansion procedure assuming that
an expansion in terms of d can be used first, followed by an
expansion in y, (o =1/, =¢/8* < 1). This procedure
would seem to imply that the parameters 6 and y, are
quite independent of each other. A close examination of the
method indicates however that the results still remain true
even if y, is dependent on . At first sight, the retention of
terms of order y,0° in the course of derivation of the GKP
equation (4.7.3), neglecting terms of order 8* in the
expansion of ¢ in powers of §, would suggest that some
restriction on the magnitude of y, relative to ¢ is implied.
However, it should be realised that the terms of order *
neglected in the expansion of ¢ are just those terms which
vanish to the first order in y, because the value of ¢, is
chosen in accordance with the linearised theory to achieve
exactly that. A similar observation applies to certain terms
of order 54)(0, because of the choice of c¢,.

We can confidently assert therefore that the double
limit, in which we have first 6 — 0 and then y, — 0, as
described in this present section, is valid and correct. Since a
more formal procedure with first y, — 0 and then 6 — 0
yields the same result, the double limit 6, ), — 0 must be
valid and uniform for Eqns (5.3.22), (5.3.23) as the
appropriate evolutionary equations: the double limit
0, %0 — 0 is uniform since the sequence in which the limits
are taken is immaterial!

Eqns (5.3.22), (5.3.23) suffice to determine Ay, and By,
given appropriate boundary conditions. On physical
grounds a ‘reasonable’ boundary condition is that, at

any fixed time 1, the wave decays completely at a distance
sufficiently far from its centre, so that

aB_OO_)O’ —_)0’
el on

|Agi| — 0, > +1 — .

(5.3.24)

Furthermore, if we suppose that at time t = 0 a travel-
ling wave is formed and the elevation of the free surface is
raised to z==¢&{ (in dimensionless form), where
¢ = {o(xox,m) exp ix + c.c., then the appropriate initial con-
dition on A, is that

AOI (67 f, 0) = CO(X0x7 11) s Or=0 = XoX - (5325)

Thus, at this stage, we can use the following two
asymptotic expansions for the functions {, and Fy:

OB 0A 0Ag
w_ ;9% g, %0

—1
O O O E

lo=AnE+AHE™ +X0<

3

3 Do
+§A3]E2+§AO%E 2>+0(X§), (5.3.26)

Fy=Bg —iAgE+iALE™ 4+ 0(x) (5.3.27)

where E = exp ié.

5.4 Consistent asymptotic expansions
In principle, we can extend the asymptotic expansions
(5.3.26) and (5.3.27) up to the term of X<3) for {,, and up to
the term of the order of y} for F,. But this makes it
necessary to solve, first, Eqn (5.3.19) for f,. Surprisingly,
the expression for f, is then of the following form:

3 043, 3048

. _p 3
% 20+8 O 8 Oo

E*+ E™?
A S B R S
—IEAO]E +1EAO?E N (54])
and from expression (5.3.16) we obtain for A, (the terms
with E% and E 2 cancel out!):
0By, | 27 27

py = B0 27 s gy (2T ymps

4.2
dc 16 16 (542)

Therefore, if we wish to extend expansions (5.3.26) and
(5.3.27), we have to determine the function Biy(a,1,7). We
then must consider the equation for the function A; and
determine the structure of the right-hand side of this
equation. From the initial equation (5.3.1) we deduce easily
the following equation for /A3

o’ Oh, Oh, oh, on, dhy
(@+l>a_¢__3<2¥+$+3h°$+3h' B0
oh, o, ony O,
+3hy =2+ 3hy =+ 3hy —2 +
03¢ ) 08 ol
Pn Ohy O
any 543
toto? T o o (5:4.3)

Now, if we take into account expressions (5.3.7a),
(5.392) and (5.4.2) for hg, h; and h,, respectively, we
obtain the following equation for h;:

0 Ohy )

+N;E* + NJE* +cc), (5.4.4)
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where
0A ) , 0Ay 0A7, « OA
Noy=2——+——4+3Ay — +345 ——
0 ot + Oo 14 Oo t3% Oo
« 0Ag, 0AG, | O°By
3A 3A . 5.4.5
+3A7 o +3A 1 o + o ( )

At this stage we shall not write down the corresponding
expressions for the terms proportional to E, E*, E> and E*,
since we only intend to derive the equation for B;,. For
Eqn (5.4.4) the first compatibility condition is Ny =0.
Then, Eqn (5.4.5), and the relationships Ay = 0B, /00,
Ay =0B /00, A}, =0Bg /00, By=—iAg, Bg =iAg
and A,y = 0B1y/00, yield the following Poisson equation
for By,

By, 9By

)
d0? on?

*By
0t 0o

D*Ay DAY,

— Ay,

902 dg?
(5.4.6)

Finally, we obtain the following consistent asymptotic
expansions for {, and Fj:

+3i(A;;I

OB 0A
—ApE+ASE™! =00 ;=0
o 0E+Ag +X0(ao '3
J0AY . 3 3 o
+1 ao(_)] E ]+§A%]E2+§A0%E 2>
OB 27 2 4 27 N
2 10 ST 43 3 Sl X3 p-3 3
+Xo (_60 + 6 AnE” + 6 Ao > +0(xp) , (54.7)

FO :BOO —_ iA()]E +iA6]E7]

+20 (BIO —i %A%IEZ +i %AS?E‘2) +0(3) . (5.4.8)
The relevant equations for the functions Ay(z,a,7),
By (t,0,n) and Biy(t,0,n) are Eqns (5.3.22), (5.3.23) and
(5.4.6).

In principle, we can also extend the above expansions
(5.4.7) and (5.4.8) for {, and F,, if we consider the
corresponding equations for Ay, hs, ... and f4, f5, ... in
the expansions (5.3.4a), (5.3.4b). But it is then necessary
also to introduce, in addition to the slow variables 7, ¢ and
n, several new slow variables, for example, 7| = ),
01 = X0, --- -

Indeed, if we make explicit the term proportional to E
on the right-hand side of Eqn (5.4.4)

N, :2?"‘3“14201401 +AA 5 +ApAT)
0 L. LA, 104
+3 $(A10A01 +ApAy) +i 60’2” +§ 60';” ,(5.49)

we obtain a new equation from the second compatibility
relation for Eqn (5.4.4) with N; = 0, namely

49%°Ay .. O*Ag 0 OBy 3 5
300 aaar”%[/*o'(aa +3 MAal )]

; 3 04y,
2 0o

+3i(6300 LI _i 0By 0A(,

2 j—
0o Oc do0 Oc A01>—0.(5.4.10)

The above equation is complementary for the unknown
functions Ag;, Bgy and Bjy, which satisfy already three
equations (5.3.22), (5.3.23) and (5.4.6)!

It is not at all evident that Eqn (5.4.10) is an identity.
Therefore, seemingly the problem of Ay, Byy and By, is
overdetermined! To remedy this difficulty, we can assume

that our unknown functions Ay, Bgy, and Bj, are also
dependent of the slow variables: 1;, g1, ...—clearly more
research is needed in this direction!

5.5 Cnoidal wave and soliton solutions

5.5.1 If we introduce new variables (p,T,Y) via the
transformation &= p+ (1/6x)T, &= xo[p+ (1/2%0)T].
n:x(') ’y, T =7, then from the GKP equation (4.7.3)
we can describe the function

1 1 1/2
T,p+—T T Y| =h(p,T,Y),
(:0[%0 7p+6X0 7%0(p+2x0 >7x0 :| (p7 ) )

by the following canonical KP equation

3 2,
JOh L 0 1 Th O

o, Lo, 91, 5501
or "o T3, 57 Tor? 5.1

where h =0f/0p and y, is of order of unity. The above
equation admits transverse cnoidal wave solutions in which
both 4 and f are functions of 8 = Ilp+ mY — cT only.

In this case the relevant equation for A = h(0) is

Ph" 435,317 —2cl+m*)h' =0,
and this equation has solutions of the form

h(6) =a+bCn*[6]y] , (5.5.2)

where Cn represents a Jacobian elliptic function and a, b
and v are constants. These constants must satisfy the
algebraic relationships:

47° 4ly

3% —2dc+m*=—(1-2v), b=—,
3%0( )

(5.5.3)
3%

for given values of /, m, a. Then, in the limit when x, — O,
if the amplitude b is to remain of order of unity, it is clear
that v and (1/c) must both be of order of y,; note also that
¢ will be negative. In this limit, therefore, cnoidal waves
become harmonic and the above solution, together with F
as given by (,=0F,/0f, may be identified with the
corresponding solution of the NLS—P equations (5.3.22)
and (5.3.23).

For example, if we write [=1+ky,cosb,
m :kx(])/2 sin 6, and require that the solution (5.5.2) has
zero mean and unity amplitude, then this solution with
a=0 and b =1 implies that

= exp{i[i—kk(acos@—knsin 0)

2
+(% cos 26 +% cos 20) T] } +c.c.+0(x) , (5.54)

and the leading term on the right-hand side is a solution of
the NLS—P equations (5.3.22) and (5.3.23) for A(; more
precisely, we have

Ag = exp{i[k(ocos@—i— 7 sin 6)

9 k*
+ Zcos20+7cos20 T| s . (5.5.5)

5.5.2 Rather remarkably, Anker and Freeman [75] have
used the two-dimensional IST of Zakharov and Shabat [35]
to show that the NLS—P equations (5.3.22), (5.3.23) are
integrable. These NLS—P equations, together with the KP
equation, are one of the few physically relevant two-
dimensional equations known to be solvable by the IST.
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First, we can rewrite the NLS—P system of two
equations (5.3.22), (5.3.23) in the following new form for
P and Q, if we introduce the relationships

Ao =C Pexp(ipr), 0=0°+0Q,

ag_am o3y L. (5.5.6)
where P, c? and Q0 are constants,
i%—i—g+§7§=—gc°2p(|z>|2—1)+3PQ, (5.5.7)

227? 6627? =3Cc? a;|:2|2 , (5.5.7b)

choosing €% =2(Q° +2p)/3.

In the one-dimensional problem, independent of #, the
system of equations (5.5.7) gives the NLS equation.
Linearisation of the above equations in the one-dimen-
sional case shows that it is stable (see Section 8) in the sense
of Hasimoto and Ono [36]. It has also been shown by
Zakharov and Shabat (1972) [35] that in this case there exist
soliton-type solutions of the form:

_ (A+iv)* +exp [2v(c — 0" + 7))

d 1 +exp[2v(e — 6 + A1)]

, (5.5.8)

with v = (1 — 2%)'/?, and multisoliton solutions can also be
constructed.

In a later (1974) paper, Zakharov and Shabat [76]
describe a general method for constructing equations which
are solvable by the IST and which have soliton and
multisoliton solutions. The one-dimensional NLS equation
is shown to belong to this class of equations. According to
Anker and Freeman [75], the NLS—P (Freeman—Davey)
system of equations (5.5.7) can be constructed by the
method of Zakharov and Shabat (Z-S) [76] and hence
soliton and multisoliton solutions are available. The pseudo-
two-dimensional solutions thus obtained describe the inter-
action of solitons of the form given by solution (5.5.8),
which are skewed with respect to each other.

The first task is to set up operators in the Z—S theory
[76] corresponding to the two-dimensional case. Such
operators describe a set of linear partial differential
equations {see Eqns (2.23)—(2.25) in the paper by Anker
and Freeman [75]} which underlie the nonlinear set of
partial differential equations (5.5.7). Simple exponential
solutions of these linear equations then give the solitons
corresponding to those of solution (5.5.8) for the two-
dimensional case and sums of these solutions describe
the multisoliton interactions.

Examination of the N-soliton solution enables the
phase shift and centre shift of the individual solitons to

e

3
ey =
i
N\ s
= 0":’:'02‘2‘2«\\-11
,lb“ ‘“f,:;‘.-/
3 2

Figure 9. Amplitude variation in a two-soliton interaction for two values of phase shift: 7 and 2 are the incident solitons; 7’ and 2’ are the solitons
after the interaction; 3 is the interaction soliton (in the second case, the incident soliton / is not drawn).
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be calculated. The centre shift describes the displacement of
the wave envelope and the phase shift describes the change
in the phase of the modulated wave. In special cases, the
phase shift becomes infinite and a limiting solution is
obtained in which the resonance condition determines a
third soliton. The results of two numerical computations
are shown in Fig. 9 for two values of the phase shift (from
Anker and Freeman [75]).

5.6 Generalised nonlinear Schrodinger - Poisson equations
and their matching to the Kadomtsev— Petviashvili
equation

First, it is important to note that, in a more general case, it
is possible to derive asymptotically a coupled system of two
evolution equations for a packet of water waves when
¢ — 0 and A = vye, but 6 and v, are fixed. These represent
the GNLS—P system of two equations deduced from the
classical dimensionless problem described by Eqns (2.3.3),
(2.3.5)—(2.3.7). Below, we shall present the main features
of this derivation and we shall consider also the matching
between the KP and these GNLS—P equations.

For the derivation of the GNLS—P equations the reader
can consult the papers by Benney and Roskes [38], Davey
and Stewartson [39], Djordjevic and Redekopp [40],
Ablowitz and Segur [41], and also the book by Mei
([43], pp 607—618). The most general analysis was reported
in Ref. [40]: it includes the effects of surface tension and
arbitrary depth and yields the GNLS—P system of two
coupled evolution equations.

Without surface tension (when We = 0) and with the
dimensionless variables, our initial problem is described by
the Laplace equation (2.3.3), in water, together with the
free-surface conditions (2.3.6) and (2.3.7) and the flat-
bottom boundary condition (2.3.5).

Only a brief outline of the perturbation analysis need be
given here.

5.6.1 The wavelength of the carrier wave is taken to be
O(1) as ¢ — 0, and this corresponds to J being fixed in the
limiting process:

e—0, A=wvue, with 6 and v, fixed . (5.6.1)
Indeed, as shown by the earlier work of Benney and
Roskes (1969) [38] and Davey and Stewartson (1974) [39],
it is convenient to introduce the following multiple slow
scales:

o 0

g=¢ex—cgt), y =e Y=V, t*=¢&r. (56.2)
The carrier wave moves at the phase velocity ¢, and the
amplitude modulation moves at the corresponding group
velocity c¢,, although the specific forms of ¢, and ¢, are not
assumed a priori.

The wavetrain is so constructed that it is periodic (to all
orders in ¢) in

(5.6.3)

with the fundamental periodicity E =expip* and the
amplitude modulation described by the scaled coordinates
(5.6.2). Therefore, higher-order terms (in the series
expansions in g given below) must contain higher
harmonics generated by the nonlinear coupling. Now, if
we assume that the solution of our problem —described by

* __ o
P =x—cpt,

Eqns (2.3.3), (2.3.5)—(2.3.7) and expressions (5.6.1)—

(5.6.3)—is given by the following asymptotic expansions:

d=¢ot+ed +E¢+.... (=l+eli+80L+. ..
(5.6.4)

we are faced with the following set of problems described
by equations for the functions ¢, and {,, n=0,1,2...:

0p, 209 0¢
i < RURP S el £ R —nl =0 5.6.5
= + o = (5.6.52)
a¢n . ZaCn _
5 :=O+cp5 5 = Ol (5.6.5b)
0
Li=c, % L (5.6.5¢)
z=0
(n=0,1,2,...),
where
Fo=0, Gy,=0, H,=0; (5.6.6a)
3¢
_ 2 0
Fi=20 op*oq’
o dp, O gl
52960 | 2990 Ogo 0
G]— (,5 a +5 ap* ap* azz N
6¢o PR 0l 8¢y
Hi=cg 3 b g g T 50 o0
1 (3\* 1 (3¢ .
2(ap*> 20% (62 ’ (56.60)
¢ 3¢, ¢
—252 1 52 0 0
oq <6q +6y*2)’
ol | »0¢, B 0¢. 6(1 62¢
_ 2 061 2 00 06 2 0@ 1
Gy, = —¢,0 0 +6 o o 3
62(150 52080 | 52000 8o | 20 By
or* Oq Op* op* Oq
aco aqbo Lo () o 1 2T
p* Oz ) oz 272
a¢ a2¢ o’ oLy ¢
Hy=cy 5ot alogra-toligaa+a a5
yo 9006 O 0y 1 0 0y Oy
Pop* 0z Op* op* % Oz Oz Ot*
62¢o 0l 8¢y Oy By ) By
Tl ga: Vg B o aa T 5oy
e 650 52¢o _¢, 9% O’y Dby Oy 0Ly
O op* 0zop* op* oz op*
1, 3¢, O
—§c0 gi" aj;‘). (5.6.6¢)
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First, if we combine, for n = 0, Eqns (5.6.5a), (5.6.5b) with
(5.6.5c), we obtain for ¢, the following homogeneous
problem

Py | 20 0¢

——+0 =0, =0, 5.6.7
0z2 op*? 0z ! (5.6.72)
0¢ 2200 _

2 G953 L0 (5.6.7b)

and we can easily find the following results for ¢, and {,:

b0 = boo(q:Y*,1*) + Foo () [A g,y t)E + A*E™'] , (5.6.80)

a¢ ] * * * —
lo=cp P 2 —lcp[A(q,y J)E—A*ET'], (5.6.8b)
with
cosh[d(z + 1)] i -
F = E = - .6.
OO(Z) cosh & 5 exp( p ) 5 (5 6 9)
and ¢, is calculated from the dispersion relationship in the
linear theory,

(9) 5) = (50_)1/2’

G =5 (0) g=tanhd. (5.6.10)

Next, for ¢, we have an inhomogeneous problem

¢ 20 o 0A | 0AT
5 56 2i0°Fun (2) | 5 E aqE ,
(5.6.11a)
9, =0, (5.6.11b)
0z !
o + o’ 4" =N(¢o)._ (5.6.11c)
oz a o z
with
e (WA
N(g,) = —2id*c <a E o E~
+3i6%c, (0 — 1)(A’E* —A¥E™?) . (5.6.12)

The solution of the problem, described by the system of
equations (5.6.11) in combination with expressions (5.6.12),
is:

¢I = ¢10(q7y*7t*) +F00(Z) [B(q7y*7t*)E+B*E7]]

+Fn(2)(A E2 —A¥E?Y), (5.6.13a)
where
Fio(z) = {( +1)sinh[8(z+1)]  acosh [6(z + 1)]} ’
26 cosh o cosh d
(5.6.14a)
Fule) :4372("2 +1)(o” ~ 1)% , (5.6.14b)

and for {; we find:
a¢00 _ (]

e,

—3)(A’E? +AYET?Y) .

G=c¢ o)A} +ic,[BE —B*E™"]

T

5.6.13b
7 ( )

The above results (5.6.13a), (5.6.13b) for ¢, and {; are
obtained when we assume that:

. o+ 06(1 —d?) _ dw(9)

8= 20 kT

(5.6.15)

according to the linear theory.

We can then obtain ¢, and {,, once the solutions for the
mean flow (¢, {;) and second harmonic (¢;, {;) [described
by expressions (5.6.8) and (5.6.13)] have been found: the
evaluation of F,, G, and H, from the set of expres-
sions (5.6.6¢) is a straightforward, but tedious task!

For example, we can find the following solution for ¢,:

& o’ o’
b == e+ 1 (G T2 + bl

+F(2)[Clg,y*,t*)E+ C*E™]

A A . 0B
2 —_——
+6 Flo((.)[<25a o o -2 aq)E—i—cc]

& ) A oA
—?FOO(Z)[(Z‘H) _1](WE+ o7 E >

+ higher harmonic terms. (5.6.16)

Then, imposing the boundary condition at z = 0, described
by expression (5.6.7b) and assuming that n =2, we find
from expression (5.6.6¢) for G, that the leading-order mean

flow or long-wave component, ¢y (q,y*,t*), is described by

the equation

2y g0

Rl
(1—c;) o7 =

ay*2 -

)
—[2¢, + ¢, (1 = 0%)] % A2
(5.6.17)

The above equation shows that the long-wave component
P is generated by the self-interaction of the short-wave
component [characterised by the amplitude function
Alg, y*, 7)1

Finally, comparing the first-harmonic terms in the
boundary condition (5.6.5b) (at z =0) for n =2 with the
corresponding expression (5.6.6¢c) for G,, the expression
(5.6.5¢) for {,, when n =2, the expression (5.6.6¢) for
H,, we find that the derived two equations are compatible
only if the amplitude function A(g,y*,t*) satisfies the
following evolutionary (Schrodinger) equation:

. 0A °A o°A
2ic, 3 [ci -(1 —0'2)(] —0'5)] o + ¢y ay*2

09
. . 2 00
= [2(‘p +Cg(] — 0 )]A W
9 13 , 4 2
+<262 6+ —0 >A|A| (5.6.18)

Eqns (5.6.17) and (5.6.18) taken together describe the
evolution of a travelling wave, to the first order in ¢ and
with d fixed.

For the capillary —gravity water waves (when We # 0) it
is also possible to derive an analogous GNLS -P system of
two coupled equations

A A %A d)oo
IW—'—Aa_qz—'_'uW_XI +7AlAF ., (5.6.19)
a2¢00 62¢00
— %14 5.6.19b
aq2 + ay*2 | | ( )
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4
x>0, 1 <0,
khg v>0 v<0
A <0 A>0
3L F o>0,v<0
E
D a<0,v>0
2 L
v>0
B
Iy%o y>0
A
C v<O0
| ] ] ] ! ]
0 0.25 0.5 0.75 1.0 1.25 1.5
We*

Figure 10. Dependences of 4, x, o and v on khy and We*. Curves

indicate where the various coefticients change sign.

where 4, p, y, x1, @ and f are known real constants. The
expressions for the various constants are given by Ablowitz
and Segur (see [41], p. 697), but note misprint in their
Eqn (2.24d) for the coefficient .

In particular, we note that (in terms of dimensional
quantities) a =1 —(cé/gho), that u, x;, and B are non-
negative and bounded, and that «, 4, y and v=y — (/@)
change sign as shown in Fig. 10. In Fig. 10, the two axes
represent the dimensionless wavenumber khy and the
surface tension parameter [according to  expres-
sions (2.3.9) and (2.3.20): We* =§&We. Each line
denotes a simple zero of the designated coefficient except
for the lines bounding region F, which denote singularities
of v and y.

These singularities arise when We* = ¢?/(3 — ¢?) and
o =tanhkhy, and this is the condition for the second-
harmonic resonance, at which our perturbation expansion
breaks down. Cases where a = 0 are also singular.

5.6.2 We shall now consider the GNLS-P system of two
coupled equations, (5.6.17) and (5.6.18), for the functions
A(q,y*,t") and ¢gy(q,y",t*) in the shallow water limit when
0 — 0. In this case, first, we find the following limiting
values from expressions (5.6.10) and (5.6.15) for ¢, and ¢g:
0—0.

I o I o
Cp:]*gé + ..., Cg:]—§5 + ...,

(5.6.20)

Then, in place of Eqn (5.6.17), we obtain the following
Poisson equation for the limiting value of ¢g:

) 624) 0

20 Poo 00 2 9 0

(5 3t >¢00 3,1 (5.6.21)
since o= 0— (1/3)52 +... when 8 —0; ¢Jy=limg_ Pgo
and A® = lims_,gA.

Next, when 6 — 0, in place of the Schrodinger equation
(5.6.18), we find

0 2,40 2,40
ZA 66A2 522A _352A°a§°°+ A%ACP

62
(5.6.22)

It is now necessary to compare the slow variables
q=¢e(x —cgt), y* =eyd/A4=y5/vy and t* = &’t, described

by expression (5.6.2), with the variables (o,#,7) in the
NLS—P (Freeman—Davey) equations (5.3.22) and (5.3.23).

The variables (o,7,7) are defined, according to expres-
sion (4.7.3), by o= y(x —cyt), T= ¥20%t and 5 =y/vy,
where y, =1/k, =¢/0°. This comparison yields the
following relationships:

g=200c, y'=6dn, *=061, (5.6.23)

since 4 = vpe and y, = /6%
Expression (5.6.23), together with Eqns (5.6.21) and
(5.6.22) for @3, and A°, yield the NLS—P system of two

equations (5.3.22), (5.3.23), but for A°%(g,n,7) and
¢80(67’777):
oo 624)00 6 0p2
— |A 5.6.24
( 302 >¢00 60‘ A7 ( a)
A0 2A0 240
200 a 3A°a¢00 +54 9IA°1 . (5.6.24b)

&% o | o %0

Therefore, it is clear that Eqns (5.6.24) and (5.3.22),
(5.3.23), match, i.c., By = ¢ and Ay =A°.

Thus, the long-wave limit of the GNLS—P equations
(5.6.17), (5.6.18) matches precisely the short-wave limit of
the KP equation (derived in Sections 4.5 and 4.6). It
confirms a measure of agreement between the GNLS—P
equations for long waves (6 — 0) and the KP equation for
short waves (k, — o00). This can be stated more formally:

lim[GNLS-P] = lim [KP], (5.6.25)

Ky—00
and since matching occurs, the coefficients in the GNLS—P
equations, when o&(=khy) — 0, can be checked against
those deduced from the KP equation, when &k, — oo

(o = /%0 = £/8°).4

6. Influence of an uneven bottom

6.1 Quasi-one-dimensional Boussinesq equation

for a variable depth

If we want to take into account the influence of an uneven
bottom, we have to consider the dimensionless classical
problem (3.2.1) but, in place of (3.2.1b), in this case we can
apply the uneven-bottom condition:

¢: = a[52¢XGx +A2¢}'Gy:| on <= _] + aG(x*,y*) >
6.1.1)

according to expansion (3.2.11), where
B =2/l y=po/my and x* = Bx, y* =yy.

Here, we assume that We = 0 and we consider, subject
to the uneven-bottom condition (6.1.1), the dimensionless
Laplace equation

b + 60, +A2¢w: )
—l—i—aG(x ,y)\Z\EC(x’ Y, t)’

o = go/ho,

(6.1.2)

and the following two free-surface dimensionless conditions:

¢, =8 +s(62¢ L+ 40 (6.13)
¢, + (srb +— d> += ¢)+C=0,

on z= sC(x, v, 1) .

(6.1.4)

fFor the KdV and NLS equations, in the one-dimensional case, and
for more details of the matching procedure, see Ref. [77] and Ref. [78],
p. 25.
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As in Section 3.2, from the Laplace equation (6.1.2) and the
uneven-bottom condition (6.1.1), we can find, in place of
expansion (3.2.8), the following asymptotic expansion for
the velocity potential ¢

Oh

_BEKO(Z +h)(F)x a *

¢ = Flx, y. 1) = 52+ 1) (P)y,

2 2
2| Ko 4 Yo 2
24 (" + h) (F),x;xxx 2 (" + h) (F)yy

oh
y a *
2.2
+0(&; &) | (6.1.5)

when we assume again that & = Ko and 4 =vye in the
limit & — 0.

In expansion (6.1.5), we have h{x*,y*;a)=1-—
aG(x*,y*) and we can specify that expansion (6.1.5) is
valid when y = O(1), but it is necessary to postulate that
B> e If B = O(e), then the fifth term in expansion (6.1.5),
proportional to ﬁ£2, is of order of 0(83) and we do not take
this term into account in this case! In the paper by Liu,
Yoon and Kirby [79] this last case is considered correctly
and these authors have conjectured a form of the ‘modified’
KP equation for a variable depth (in Section 6.3 we shall
consider the influence of a variable depth on the KP
equation).

From expansion (6.1.5) we can easily obtain the values
of the derivatives ¢,, with s = (¢,x,y), and ¢_, on z = g{(s):

B2 () (Pl 1+ (P)

6, = (F), — EKO W(F),., )y + . (6.1.62)
6, = (F), =5 1(F),.., — 2oy e+
(6.1.6b)
0
B, = (), — B2 I, — osoh 5 s (F),
_ysxoh A (F)Xx +..., (6.1.6¢)
oh
. = o (P + B 5 e,
0P+ S (Y, 3 oo )
ysvo oh
et —( )] (6.1.6d)

Now, from the free-surface boundary condition (6.1.3), we
find, according to expressions (6.1.6), the following
approximate equation

{i + h(F),,

2
+3 |:cx (F)x + C(F)xx - % h3 (F)xxxx + ,‘::—(()) h(F))')'

Oh

3 ah ysvé oh
=—f—(F). —=
ﬁ ax*( ))c 2

XXX KO ay*( )y ’
6.1.7)

ﬁsx0h2

with an error of O(e?).

Next, the second free-boundary condition (6.1.4), gives,
still according to expressions (6.1.6), a second approximate
equation

oh
/’l2 (F)xxt = ﬁﬁKol’l ax_*(F)U N
(6.1.8)

1 K
(F), +C+e|5(Fr =5
again with an error of O(e?).

The two equations, (6.1.7) and (6.1.8), are our quasi-one-
dimensional Boussinesq equations for a variable, uneven
bottom of the form z = —h(x*,y*; a), with x* = fx and
y =y

If h = 1, we obtain again, from Eqns (6.1.7) and (6.1.8),
the classical Q1DB system of two equations for F and {,
similar to Eqns (3.2.20)—(3.2.23).

If h # 1, we can also write down the above Boussinesq
equations (6.1.7), (6.1.8) for an uneven bottom:

2
e €Ky 3
Gt [+ e0u], +—2 (), — =2 (W uy),
0
= Pekyh’ aah* Uy (6.1.9)
u, 4 eun, + ¢, — —2 hu,,, = 2Pekqh (6.1.10)

a*Xf’

where u = (F),, v=(F),, uy =v,.

Again, from Eqns (6 1. 7) and (6.1.8), we can eliminate
the function { and derive a single Boussinesq equation for F.
Indeed, the following expression for { can be obtained from
Eqn (6.1.8):
€K

+—= [h2(F)xf:|x ’

(==, -5} +5

and if we take into account the above relationship in
Eqn (6.1.7), we find for F(x, y, t) a single approximate
Boussinesq equation for an uneven bottom:

() = )., =22 [4(P),), +s[(F> ] <F)]

EVO

t
XX ’(]x

~Z0 )], + 22 )

+Bexoh’ aah*( F),. =0 (6.1.11)

with an error of O(¢*) when > e.
Naturally, if § = O(g), then in place of Eqn (6.1.11) it is
necessary to write the following reduced Boussinesq

equation, again with an error of O(¢?) and with y = O(1):

(F)rr - h(F)

{[(F) 1 (F)]f

Ko o 1 _
—> h [(F),, -3 h(F)Xx]”} =0, 6.1.12)

syZv—O h(F),.,

2o Oh
Ky ay*

F),.

for F(x,t,y*; h), where h = h(ex,y™; a) and y* = yy.

6.2 Korteweg —de Vries equation for variable depth

We return now to the Boussinesq equations (6.1.9) and
(6.1.10) for an uneven bottom. Here, for one-dimensional
water waves, when

B=e.

we obtain, as the Boussinesq equations for variable depth,
the following two dimensionless equations for u(#,x) and

{(t,x):

y=0, h=h(ex), (6.2.1)
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€K,
Lt [+ e0u], - [Pun], =0,
e (6.2.2)
u, + eun, + ¢, —70h2uu, =0,
with an error of O(¢?). But an alternate form of the
Boussinesq equations (6.2.2), for an uneven bottom
z = —h(ex), can be derived if we introduce the depth-
averaged horizontal velocity U(x,t) defined by

e
U:h+ECJ—h¢XdZ

=z [ - S, +

..]dz,

in accordance with expression (6.1.6b). Hence, we find:

U=u— 8% Ru, +0(), u=(F), . (6.2.3)
which can be inverted to give the following approximate
expression for u:

u=U+20 C 52U, + 0@ . (6.2.4)
After this relationship (6.2.4) for u is substituted into the

system of equations (6.2.2), it follows directly that
L+ [(h+eQU], =0,

s (6.2.5)
Ut+8UUX +C,( _Tl’l UXXI‘ =0 N
where i = h(ex) and with an error of O(¢?).
Let the new variables be
I J dx*
e, E=-| 2 4, (6.2.6)
e ) [h(e)'?

where & is the coordinate moving at the local linear

velocity.
The changes
0 0 0 0 1 0
—=—= —=f—+——F— 2.
ot ot ox ¢ ox* [h(x*)]]/z o¢ 62.7)
make the system of equations (6.2.5)
aC dl’l au ]/2 ac ]/2 al/l
66+ ou — o 6€+ elh™ o
Ou
-1/20u _
+h % 0, (6.2.8a)
ou  du ac o ek s Fu
EAVELI —+£h]/2 0 3294 _
o¢ o¢ oz " og
(6.2.8b)

with an error of O(e’). Adding the two above equations
and using the leading approximation, when ¢ — 0 and
un~h '/2C we get, to the leading order:

o¢ dh ol ¢
B2 1/2 e &8 —h

o ot it e

This extended KdV equation was first deduced by
Kakutani (1971) [80] and may be expressed in several
forms. For example, we can apply the following Ono
transformation [47]

+ {h™ =0. (629)

2 5 Ko [© 1/2 1%
X*O

where the exponents of 4 are chosen to remove most of the
variable coefficient. In this case we obtain for the function

Z(T,&), in place of Eqn (6.2.9), the following reduced KdV
equation for an uneven bottom:

oz oz 63

— —6Z — T)Z = 2.11

ar 6 % 653 + AMT) 0, 6 )
where the coefficient

_3/p dh K 1/2
3/2 0 * *

MT) = 3 T AT =20 Pt (62.12)

represents the effect of variable depth.

6.2.1 Let us consider two invariants of Eqn (6.2.11).
Integrating Eqn (6.2.11) with respect to & from —oo to
+00, we obtain

+00 +o0 +00
a%(l zaa;) [32 +a?f] +z(r)j Zdei=0.

Now, if Z and its derivatives are assumed to vanish at
infinities, then

—+00 T
J Z d¢ [expj AMT) dT] =const =J .
0

—00

(6.2.13)

Now, multiplying Eqn (6.2.11) by Z and integrating with
respect to &, we get

1o ([, &z
Ea_T(LoZ dé) [ o7

+%1(T) rm

19(z2)"
2 0¢

Z%dé=0,

—00

which may be also integrated with respect to 7 to give

T 00
exp H A(T)dT] <J+ szs) =const=H . (6.2.14)
0 —00

Relationships (6.2.13) and (6.2.14) are two invariants of the
extended KdV equation (6.2.11) for an uneven bottom.

But from the expression (6.2.12) describing the coeffi-
cient A(T) it follows that

;
epr AT AT = W%, dT = % W2 dx*
0

and hence our two invariants are

—+00 —+00
J:h9/4j Z do, H:h9/2j Z%do.  (62.15)

—00 —00
6.2.2 We note that the approximate extended KdV equation
(6.2.11), valid for wave propagation to the right, cannot
account for reflection during transmission which, however,
can be predicted by the more complete Boussinesq
equations of Peregrine [46]. In particular, Peregrine notes
that weak reflection should be describable by the linearised
Airy equations but for variable depth, which can be handled
analytically by the method of characteristics.

6.2.3 The KdV equation (6.2.9) with variable coefficients is
often also rewritten [27, 48, 78] in the following form

oz 0z 'z 97 dh
et e i T (6.2.16)

This ‘perturbed’ KdV equation predicts soliton fission that
occurs as a solitary wave moves into the shelf region [40].
This equation (6.2.16) has also been used as the basis for a
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discussion of the effects of a perturbation on the KdV
equation, when (1/h)dh/dT is small. This can be
accomplished either by direct methods [81] or, more
satisfactory, via the inverse scattering methods [82]. In
particular the phenomenon of the shelf that appears behind
a solitary wave is now well understood [51].

6.3 Kadomtsev— Petviashvili equation for an uneven
bottom
We shall use Eqns (6.1.7) and (6.1.8) to derive the KP
equation for an uneven bottom. When vy = 0, we obtain
the classical KdV equation for an uneven bottom in several
forms (see, for instance, the book of Mei [43], pp 560 to
561). For the derivation of the ‘extended KP’ equation for
an uneven bottom it is necessary to consider the Boussinesq
equations (6.1.7) and (6.1.8) with f=¢.

These equations then have the following variables

Y =9y, (6.3.1)

and we can write, with an error of O(&?), the following two
equations for F and {

t,x,y, and also x* =ex,

Ko 3
- F h (F )xxxx

L+ (P, +o [cx (F), + L)

2 2
v _ .. Yo Oh
+K_0 h(F)yy + ) :| = Y€ Ko ay*( )). ) (6.3.23.)
(F), +C+8B(F)§ —% h2(F)m] —0. (6.3.2b)

By analogy with the one-dimensional case (see Section 6.2),
we shall now introduce the following new variables

t=¢, &= J B2 (ex,y*; o) dx —t . 6.3.3)
0

We now have the following fomulae for the derivatives:
°_,0 ,p® d_ 03 .8
ox  ox* oc” o o¢ o’
0 0 0
——y— 4G =
o Yo Y%
with h = h(x*,y*; a) and
0 JX -1/2 *
=~ | h ex,y ;o) dx
oy Jo ( )
If we assume that

F:Fo(T,é,x*,y*) +EF] +... N
C:CO(T7€aX*7y*)+8CI +

G(x*,y") = 6.3.4)

(6.3.5)

then, equating terms of order ¢ and &', we obtain the
following equations for the functions Fy, {, and Fy, {;:

oF
b= a_éo ’ (6.3.6a)
_%+azj:% 1/2 0°F, 1y, Oh OF,
0¢ o8 oo 0&ox* ox* of
(C o'Fy aFo aéo) Ko o'F,
"o TeEee) 6 aE
v [0 ( 6Fo> ( 6Fo>
+— h + G =L
Ko [y o oy ) Ty o¢
o°F, ,0°F,
VG gy ThO 662] : (6.3.6b)

aF] 6F0 Ko a)FO
kA +4 = 2 (66) > h Y (6.3.6¢)

As expected, the first equation (6.3.6a) is insufficient to
determine both functions {, and F;, and it is necessary to go
to the second order in ¢ (terms s') to obtain a consistency
condition to do this.

Differentiating Eqn (6.3.6c) with respect to & and
subtracting from Eqn (6.3.6b), we get the following equa-
tion for the leading term of the elevation {, of the free
surface:

oy 1/2 0lo 1/2 oy
ar+2h a*+ h™ Coa*+3h o = E
a)CO ( 2 0o aCo)
+20 + S

3 o8 ac 7

2

v_o 0 OF)\

Y o < 0] 6y*> =0, (6.3.7)
with

¢

Fy =J Lhde

From the above equation, when {, is independent of the
slow time 1, we get the equation derived by Xue-Nong
Chen {[55], Eqn (22)}.

Naturally, our extended KP equation (6.3.7), in {,, for
an uneven bottom can be also derived directly from the
single Boussinesq equation (6.1.12). If the topography is
even (h=1), Eqn (6.3.7) is reduced to the classical KP
equation and if vy =0, this equation is reduced to a
variable-coefficient KdV equation which is the same
(when 9(,/0t = 0) as that obtained by Johnson [48, 81]
(see Section 6.2).

To get a more concise form of Eqn (6.3.7), we take
lo=h" '/4H( ,¥*, &) corresponding to 0(,/0t = 0, so that
Eqn (6.3.7) becomes

OH _|_§ Ay 2L oH +@ h]/263_H

ox* %6 Gl

h]/2G2a—H

0 WBAG
T2, [ g 7

0 1
o (k= "H)

3F,

+yh~ /4 aa <yh & +h3/4GH> =0, 6.3.8)

with

¢
FO = h_]/4j

oo

Hd¢.

Again, when v, = 0, we can rederive the classical KdV
equation for an uneven bottom in several forms and for this
see the book by Mei [43], pp 560—-561.

7. Some aspects of the solitary wave-soliton
phenomenon

7.1 John Scott Russell’s discovery

The history (story!) of the solitary wave (SW) begins with
the observation by J Scott Russell of ‘the great wave of
translation’ (first observed on the Edinburgh to Glasgow
canal in 1834). Russell reported his discovery to the British
Association for the Advancement of Science in 1844 as


file://-/-yhG

1368

R Kh Zeytounian

follows (the discovery of the SW excited strongly his
scientific and poetic imagination):

“... I was observing the motion of a boat which was
rapidly drawn along a narrow channel by a pair of horses,
when the boat suddenly stopped —not so the mass of water
in the channel which it had put in motion; it accumulated
round the prow of the vessel in a state of violent agitation,
then suddenly leaving it behind, rolled forward with great
velocity, assuming the form of a large solitary elevation, a
round, smooth and well-defined heap of water, which
continued its course along the channel apparently without
change of form or diminution of speed. I followed it on
horseback, and overtook it still rolling on at a rate of some
eight or nine miles an hour, preserving its original figure
some thirty feet long and a foot to a foot and a half in
height. Its height gradually diminished, and after a chase of
one or two miles I lost it in the windings of the channel.
Such, in the month of August 1834, was my first chance
interview with that singular and beautiful phenomenon...”’

In fact, he knew that the velocity was proportional to its
height and proposed after much experimental work the law:

A =glh+a), (7.1.1)
where g, h and a are the acceleration due to gravity, the
undisturbed depth, and the maximum height of the wave,
as measured from the undisturbed level, respectively. The
SW is therefore a gravity wave. He knew about the
interaction of solitary waves, but did not appear to have
noticed their soliton quality, a property [ will discuss
shortly in Sections 7.4 and 7.5. He also knew how to create
them! But, unfortunately, at first, Russell’s idea faced great
hostility and scepticism from the leading lights in the
scientific community of his day. Both Airy and Stokes
questioned whether a wave which travelled without change
in shape could be totally above the water and cited the
diminution of amplitude as an indication that the wave was
inherently nonpermanent. Russell had suggested (cor-
rectly!) that this failure was due to friction. From
expression (7.1.1) we note that higher waves travel faster.

Hidden away in Russell’s “Report on waves’’ (1844) (see
Ref. [83], plate XLVII) is the diagram reproduced in Fig. 11
(this figure is Fig. 1.5 in the book of Drazin and Johnson
[31]) together with the associated description.

Figure 11. A sketch of J Scott Russell’s ‘compound wave’. This figure
‘.. represents the genesis by a large low column of fluid of a
compound or double wave of the first order, which immediately
breaks down by spontancous analysis into two, the greater moving
faster and altogether leaving the smaller’ (see Ref. [83], p. 384).

—_—
t=1)>1

—_— — —_—

t=13>1 t=14>13

Figure 12. The taller wave catches up, interacts with and then passes
the shorter one. The taller one, therefore, appears to overtake the
shorter one and continue on its way intact and undistorted as an SW.

One interpretation of this Russell’s result (with a little
hindsight!) is that an arbitrary initial profile (which is not
an exact SW!) will evolve into two (or more!) waves which
then move apart progressively, approaching the form of
single SWs as t — oo, since an SW is defined for (—oo, +00).

This alone is rather surprising, but another remarkable
property can also be observed. If we start with an initial
profile like that given in Fig. 11, but with the taller wave
somewhat to the left of the shorter, then the evolution is as
depicted in Fig. 12.

The experimental work of Russell, on the SWs,
summarised in Ref. [83], led immediately to the theoretical
work of Airy [8] and Stokes [3], which underlie almost all
subsequent theoretical work on water waves except,
surprisingly, that on the SWs!

This was first described much later by Boussinesq [16 to
19], but has been brought to prominence in recent years by
the development of soliton solutions initially for the KdV
equation, which describes the SWs.

7.2 Boussinesq and Rayleigh solitary wave solution

It was not until the 1870s that Russell’s work was finally
vindicated and its scientific importance can be measured by
the eminence of the men who did the job (according to
Newell’s book [27], p. 3).

The conflict between Russell’s observations and Airy’s
shallow-water theory [see the system of equations (3.1.12)]
was resolved independently by Boussinesq and Rayleigh.
Boussinesq [16] and Rayleigh [10] found the hyperbolic
secant squared solution for the free surface elevation.

To put Russell’s formula (7.1.1) on a firmer footing,
both Boussinesq and Rayleigh assumed that an SW has a
length scale much greater than the depth of water. They
deduced, from the equation of motion for an inviscid
incompressible liquid, Russell’s formula for c.

In fact, they also showed that the profile z = {(x,¢) is
given by

{ =asech’[B(x —ct)] . (7.2.1)

where 2 = 3a/4h*(h + a) for any a > 0, although the sech?
profile is strictly only correct if a/h < 1! But, these authors
did not, however, write down a simple equation (of the
KdV type!), for {(x,7) which admits formula (7.2.1) as a
solution.

Boussinesq derived his solution from the equation

2 2 242 4

ot Cz(ac 39 +1h3§>

3 oxt

o S \ae Tz (7.2.2)
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approximating the water wave equation that now bears his
name. In this approximate equation, the motion can be still
bidirectional, but the basic idea of the balance between
nonlinearity and dispersion is present!

Boussinesq also showed that any local section of a
unidirectional solution of Eqn (7.2.2) moves at the approx-

imate velocity:
¢
M2
2ovbnd).

C:CO(

where C| is the velocity of infinitesimal long waves and the
second and third terms within the parentheses in expression
(7.2.3) represent nonlinearity and dispersion, respectively.
He infers from expression (7.2.3) that an initial elevation of
water for which al® is significantly in excess of the value
determined by U = 35112/4h3 = 1 would tend to disintegrate
into two or more solitary waves (plus, in most cases, a
residual wave train) and that an initial depression would
tend to decay into an oscillatory wave train, all in
conformity with Russell’s observations. We shall assume
that [ is the characteristic length for the SWs. Rayleigh
obtained

(7.2.3)

2 41’ (h + a)
3a ’
which reduces to U=1 for a/h < 1. Rayleigh’s [10]

derivation of the equivalents of expressions (7.1.1) and
(7.2.1) is reproduced by Lamb ([4], Section 252). It is more
direct but less illuminating than that of Boussinesq.

7.3 Korteweg —de Vries and Kadomtsev - Petviashvili
solitary waves
Unfortunately, both Boussinesq and Rayleigh did not
write down a simple equation for {(x,#) which admits
formula (5.3.2) as a solution! This final step (in the first
period of the history of the solitary waves) was completed
by Korteweg and de Vries (1895) [24]. These authors,
who ‘apparently!” did not know the work of Boussinesq
and Rayleigh and who were still trying to answer the
objections of Airy and Stokes, wrote down the unidirec-
tional equation (KdV equation) for {(x,¢) which now bears
their names. In fact, the Boussinesq equation (7.2.2) reduces
to the KdV equation (4.2.4) by factoring the operator
Cj 0% /ox? —?/dr?, invoking the prior assumption of
unilateral propagation, and integrating with respect to x.
Indeed, Korteweg and de Vries [24] derived a somewhat
more general equation, in which they allowed for any
uniform translation of the reference frame and incorpor-
ated surface tension:

o 3 V2090 2 o ¢
i 2<h0> (a_+§ a—+ ax>

where a is a small but arbitrary constant, which is closely
related to the exact velocity of uniform motion imparted to
the liquid, and where

1 hoT
p o

(7.3.1)

== (7.3.2)
37 Po8
depends on the surface tension 7 of a liquid of constant
density p.

They then obtained a family of periodic solutions of the
form { ={(x — Ct), which they called cnoidal waves (see
Section 3.3 for details). Boussinesq [18, 19] also discussed
periodic solutions of Eqn (7.2.2), but did not obtain explicit

integrals. This family of cnoidal waves comprises the
Boussinesq solitary wave described by expression (7.2.1)
in the limit of an infinite period. More precisely, an SW can
be claimed to possess a wavelength A, not in the usual sense
of a spatial period, but in the sense of the distance within
which the surface elevation does not fall below (say) 3% of
its maximum value. In this sense we obtain

dolz
—= 16, (7.3.3)
hy
and in Fig. 2 (Section 3.3) an SW is plotted (lower curve)
for this value of the wavelength (Ref. [61], pp 465 —466).

We have seen that the KdV equation is indeed valid in
an appropriate region of the (x,r)-space for small-ampli-
tude waves (see, for instance, Section 4.1). However, we are
left with one final connection to make: that between the
KdV equation and the sech? profile! To demonstrate this,
according to Ref. [31], let us return to the equation derived
by Korteweg and de Vries themselves, which is Eqn (7.3.1).
This has the advantage that it is written in terms of physical
variables and can therefore more readily be related to the
work of Russell, Boussinesq and Rayleigh as expressed by
relationship (7.1.1) and solution (7.2.1).

[f the solution of Eqn (7.3.4) is stationary in the frame x
[x is a coordinate chosen to be moving (almost) with the
wave], then { = C(x) and

o 2 6C o’
2 t3%%y + o

If we assume that { — 0 as |y| — oo (as is the SW case),
then Eqn (7.3.4) can be integrated twice to yield

2
2002+ +o<%) =0,
o1

the second integration introducing the integration factor
o /0y.

The last equation may be integrated once again, but it is
more easily verified by direct substitution which shows that
{(x) =asech? By is a solution, provided a =4gf”> and
a=—20p"

The coordinate x is defined by Korteweg and de Vries
[24] as

¢ 1/2 o
=x— (X [ ——
r=s <ho> ( h0>t |

and so the SW solution becomes:

{(x,1) :asech2{% (%)W [x - (;%)lﬂ(] +Ziho> ]}

(7.3.6)

This agrees with expressions (7.1.1) and (7.2.1) if we
neglect surface tension (so that o = /;/3) and assume that
afhy <1, for then we have

>\ /2 1/2
e (L) T (142), pat(3) T
ho 2h, 2\n

Thus Russell’s SW is a solution of the KdV equation.

In conclusion, we find that [31]: (a) from the SW
solution (7.3.6), we see that the velocity of the SW relative
to (g/ho)]/2 (the velocity of infinitesimal waves) is propor-
tional to the amplitude a of the SW; (b) the width of the SW
(defined as the distance between the points of height a/2,
say!) is inversely proportional to a'?. In other words: the
taller SWs travel faster and are narrower.

(7.3.4)

(7.3.5)

(7.3.7)
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Finally, it is very interesting to compare the appearance
of the amplitude a in solution (7.3.6) with the way & = a/hy
appears in the scaled variables that were used in our
asymptotic derivation of the KdV equation [see, for
example, Section 4.1, formulae (4.1.3)].

7.3.1 The two-dimensional generalisation of the KdV SW is

performed in accordance with the KP equation [see
Eqn (4.6.8)]:
o (19 o 3,0 mOL\ 109%¢
— | —=+=+— =+ ——=0,(73.8
o (co o Tax Tam a6 o) 2o 00738

with ¢o = (g/h)9"/%, and it is clear that this KP equation
has also solitary wave solutions that are skewed versions of
those given by Boussinesq, by Rayleigh, and by Korteweg
and de Vries. Written in the same notation, they become

1 (3a\"?
2
{(x, y, t) =asech {5 (h_(3)>

2 1/2
a m g
X [x + my <1 +2h0 + 3 ) (h0> t]} ,(7.3.9)

when g = h8/3 and m is a parameter describing the (small)
inclination of the KP SW relative to the main direction of
propagation.

In conclusion, we should note that the SW solution of
the KdV equation remained a curiosity in the literature
until Zabusky and Kruskal (1965) [25] showed by their
numerical studies that, as Russell had intimated, that SWs
were of more ubiquitous nature!

7.4 Zabusky and Kruskal (1965) numerical investigations
Fig. 1 (see Section 1.1), taken from the famous 1965 paper
of Zabusky and Kruskal (ZK) [25] announcing the soliton
(see Section 7.5), shows the results of the ZK numerical
experiment in which they used a centred difference, mass
and (almost) energy conserving scheme, to solve the KdV
equation for u(x,r)

Ou ou ,0u

o a0
They used periodic boundary conditions and their initial
profile was sinusoidal:

(7.4.1)

u(x,0) =cosmx, 0<x<2, (7.4.2)

and u, Ou/0x, 0%u/dx? are periodic in the interval [0, 2] for
all t; they chose 6 = 0.022.

Initially the negative slope steepens, then the third
derivative term induces fine-structure wiggles of wave-
length d near and to the left of the maximum of u. In
time the wiggles separate, forming a train of pulses
travelling to the right, with the largest on the right, each
pulse seeming to take on a life and identity of its own (!) and
having a velocity proportional to its amplitude. These
pulses each may be approximately described by the sech?
SW solution, although strictly this is a solution valid for an
isolated pulse on an infinite line. Because of the periodic
boundary conditions, the solitary pulses eventually reap-
pear on the left boundary and, owing to their higher
velocity, the larger pulses overtake the smaller ones.

At this point, ZK noticed a remarkable phenomenon.
Whereas two pulses behaved in almost a nonlinear way
during the interaction, they afterwards reappeared with the

larger one in front, each bearing precisely its former identity
(height, width, and velocity).

The only evidence of a collision at all was a phase shift
whereby the larger one appeared to be ahead of the position
it would have been had it travelled alone and the smaller
one appeared behind. When the two pulses were almost
equal, the interaction seemed to take place by an exchange
of identities in which the forward and smaller soliton
became taller and narrower when it felt the leading edge
of the larger one which then, in turn, took on the identity of
the smaller one.

When the two pulses had very different amplitudes, the
larger one rode over the smaller one in an adiabatic fashion.
For amplitude differences in the in-between range, the
interaction was more complicated. In a later analysis of
the interaction, Lax (1968) [84] verified these observations
rigorously.

The fact that the SWs emerge from a collision with
exactly the same shape is surprising since it might be
thought that the strong nonlinearity during the collision
process would break up the pulses. This property is
important because it shows that energy can be propagated
in localised stable ‘packets’ without being dispersed. This
behaviour is not a property of the KdV equation alone!

We note also that, after a very long time, the initial
profile—or something very close to it—reappears, a
phenomenon requiring the topology of the torus for its
explanation; this is an example of recurrence.

This persistence of the wave induced ZK to coin the
name ‘soliton’, to emphasise the particle-like character of
these waves which seem to retain their identities in a
collision. The discovery has led, in turn, to an intense
study over the last thirty years!

7.5 From solitary wave to soliton

Although the term soliton was originally applied only to
the SWs of the KdV equation, several nonlinear wave
(NLW) equations are now known to exhibit similar effects
(for example, the NLS equation derived in Section 5), and
the term is often used in a wider context without formal
definition. In fact, a soliton is an SW solution of an NLW
equation (or a soliton equation!) which asymptotically
preserves its shape and velocity upon collision with other
SWs.

It can be proved that arbitrary initial motion (for
example, that predicted by the KdV equation) breaks
up, ultimately, into an ‘ensemble of solitons’. Indeed, the
significance of the name soliton for the SWs of the KdV
equation is that by the use of the IST it can be shown that
solitons appear for a wide range of initial conditions. For
example, Fig. 1 (see Section 1.1) demonstrates formation of
eight more-or-less distinct solitons, whose crests lie close to
a straight line and have a period of 2.

In summary, the initial hump eventually disintegrates
into N solitons, each of which corresponds to a discrete
eigenvalue of the initial ‘potential well’ (in the IST). By a
more elaborate analysis of the Gel’fand —Levitan—March-
enko (GLM) integral equation (see Section 7.6), an
oscillatory tail can be shown to follow a train of
solitons. However, the lag increases with time, so that
the solitons are eventually alone at the front. This
disintegration of an initial pulse into a train of solitons
is also called fission.
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7.5.1 Indeed, it was found numerically and confirmed
experimentally that a soliton travelling from one constant
depth to another constant but smaller depth, disintegrates
into several solitons of varying sizes, trailed by an
oscillatory tail. One the other hand, it was shown
(numerically, but also analytically!) that over an uneven
bottom the SWs exhibit peculiar behaviour such as
damping, growing, or splitting, depending upon the local
slope of the bottom (disintegration or degeneration of a
soliton in shallow water with an uneven bottom). It has
proved also that if the depth decreases to form a shelf, then
for particular new depths an SW breaks up into a finite
number of solitons asymptotically far along the shelf. It has
been shown that if the depth changes from A* to A**, then
only solitons are formed provided [48]:

Ly R

S
= 55 : (7.5.1)

where n (integer) is the number of solitons far enough
along the shelf.

For increasing depth (a wave moving into deeper water)
an oscillatory asymptotic solution can be derived and such a
solution describes an SW (soliton) degenerating into a
cnoidal wave! More precisely, the fission of solitons was
first discovered and studied by Masden and Mei [S0] who
used a numerical method.

7.5.2 Perhaps the most striking discovery resulting from the
computations relating to (numerically) strong solitons is
that the ‘highest’ soliton is not the most energetic. If a
soliton is a localised entity which may keep its identity after
an interaction (almost as if the principle of superposition
were valid), it may be regarded also as a local confinement
of the energy of the wave field and when two solitons
collide, each may come away with the same character as it
had before the collision. When a soliton meets an ‘anti-
soliton’, both may be annihilated. We note that, in fact, a
soliton is a specific solution for waves of permanent form,
although such a solution is not in general a soliton.

The phenomenon of the interaction of two solitons is
shown (schematically) again in Fig. 13.

/Z

b

X

Figure 13. A sketch depicting again the interaction of two solitons.

These special ‘soliton solutions’ of the NLW equation
are likely to be important in many ways. Gardner, Greene,
Kruskal and Miura (1967) [49] developed an ingenious
series of steps to tie the KdV equation to an inverse
scattering problem, i.e. to determination of the scattering
potential from the spectral functions, which can be done
with the aid of the famous GLM integral equation (see
Section 7.6).

7.5.3 Unfortunately, it is not easy to give a comprehensive
and rigorous definition of a soliton! However, following
Drazin and Johnson [31], we shall associate the term with:
any solution of the NLW equation (or system of equations)
which (a) represents a wave of permanent form, (b)is
localised, so that it decays or approaches a constant at
infinity, (c) can interact strongly with other solitons and
retain its identity.

Naturally, there are more formal definitions, some of
which concern discrete eigenvalues of a scattering problem.
In the context of the KdV equation, it is usual to refer to the
single-soliton solution as the SW, but when more than one
of them appear in a solution they are called solitons.

Another way of expressing this is to say a soliton
becomes a SW when it is infinitely far from any other
soliton. We must mention also the fact that, for equations
other than the KdV (or KP) equation, the SW solution may
not be a sech? function! Furthermore, some NLW equations
(or systems of equations) have SWs but not solitons,
whereas others (like the KdV equation) have SWs which
are solitons.

7.5.4 Now, | want to describe some properties related to
‘soliton dynamics’ and I shall follow a very interesting
book [27].

At first, one tends to think of the soliton equation as a
nonlinear evolution equation, a prescription which
describes how a given function of a space-like variable x
evolves with respect to a time-like variable z. This is
certainly the point of view one takes when one applies
the IST, in which the evolution equation is clearly
considered to be a Cauchy initial boundary-value prob-
lem. However, as the various miracles of soliton equation
unfold, it becomes clearer that this equation is best thought
of as a local relationship between a function (or functions)
of an infinite number of independent variables and its
various derivatives with respect to the independent vari-
ables, a relationship which is special because of some
underlying algebraic structure. Because the equation is
local, there is no need to think of any one variable as
space-like and therefore particularly distinguished.

The soliton equation is magic purely for algebraic
reasons which have to do with the structure of the equation
as a very special relationship between a function and its
various derivatives. No global properties are required to
give it its special significance.

The soliton itself is a dramatic new concept in nonlinear
science. Here at last, on the classical level, is the entity that
the field theorists had been postulating for years, a local
travelling wave pulse, a lump-like coherent structure, the
solution of a field equation with remarkable stability and
particle-like properties. It is intrinsically nonlinear and owes
its existence to the balance between two forces, one of which
is linear and acts to disperse the pulse, the other is nonlinear
and acts to focus it.
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Whereas the NLS equation (considered in Section 5)
was the first-born among soliton equations (see, Zakharov
and Shabat [35]), it was the celebrated KdV equation which
fathered the soliton. It, too, is universal and is also
ubiquitous and, just as in the case of the NLS equation,
one can give the recipe for the circumstances under which it
applies (it describes the evolution of shallow water waves).
Both the KdV and NLS equations arise as asymptotic
solvability conditions: such a condition on the leading order
approximation to the solution of a more complicated set of
equations ensures that the later iterates of the approxima-
tion remain uniformly bounded. It is very interesting to
note that many of the equations, derived as asymptotic
solvability conditions under very general and widely
applicable premises, are also soliton equations!

One of the key properties of a soliton equation is that it
has an infinite number of conservation laws and associated
symmetries.

What do we mean by a soliton equation ? A true soliton,
a solution to an equation with very special qualities, is much
more than a solitary wave. The SW solutions of soliton
equations have additional properties, however. One prop-
erty is that two such SWs pass through each other without
any loss of identity: after a nonlinear interaction, two pulses
will emerge again, with the larger one in front, and each will
regain its former identity precisely. There will be no
radiation, no other mode created by the scattering proc-
ess—the only interaction memory will be a phase shift.
Whereas this interaction property is remarkable and indeed
is often used as the test of soliton equations, it is not, by
itself, sufficient. There are equations which admit solutions
that are a nonlinear superposition of two SWs, but which do
not have all the properties enjoyed by the soliton equations.

A soliton equation, when it admits SW solutions, must
admit a solution which is a nonlinear superposition of N
SWs for arbitrary N. To date, all known soliton equations
have Hamiltonian structures and an infinite number of
independent motion constants in involution. There is also a
canonical transformation which converts a soliton equation
into an infinite sequence of separate equations for the
action —angle variables, each member of which can be
trivially integrated. In this way, one can, in principle,
solve the Cauchy initial-value problem.

[t turns out that some of the action variables are the
soliton parameters and this is the reason that a soliton’s
identity (namely the parameters giving its shape, velocity,
amplitude, internal frequency etc.) is preserved under
collision.

Among many of the special properties of the soliton,
there are two which are very interesting:

(a) the first of these is the Hirota property and is due to
Hirota, who discovered a very useful and important method
for calculating multisoliton solutions (see Section 7.6);

(b) the existence of these rational solutions (of Hirota) is
equivalent to another property enjoyed by soliton equa-
tions, the Painleve property.t

The discovery of the soliton, initiated as it was by the
computer, has ironically shown that the modern tendency

FTThe Painleve property in the language of the Hirota f function (see
Section 7.6) seems to demand that the function f(x,7) has no movable
critical point! This observation is significant and has potential
consequences not only in the context of evolution equations, but also
for other exactly solvable models.

to reach for a computer to solve all problems is premature
to say the least. The full power of such techniques as the
inverse scattering theory has yet to be realised. The
ingenuity of workers in this field leads to the speculation
that at least for nondissipative systems there are many more
useful applications yet to be discovered.

The main stumbling block to such advances is at present
the absence of a standard technique for constructing the
associated eigenvalue problem or the lack even of a
criterion for its existence (according to Freeman [52], p. 35).

Finally, the soliton solutions of the KdV equation (for
example!) have received much recent exposure in meetings
and publications. An elementary introduction is Drazin’s
and Johnson’s (1983) book [31]; the more substantial texts
and review papers on ‘soliton dynamics’ are Refs [22, 27,
31, 32, 44, 52, 53, 62, 85—103].

7.6 Soliton ‘mathematics’
7.6.1 Schrodinger equation and conservation laws. If V
satisfies the ‘modified KdV’ equation

ov ,ov v
=—+4aVi_+pf—=
OV) = o +aV G+ B oz =0.
then the function U given by
ov
U=V>+ 7.6.1
+ e ( )
satisfies the classical KdV equation
oU ou U
PU) =—+aU — —=0 68=0.
=g tlagthop=0 =%

In fact, using relationship (7.6.1), after some manipulation
we can show that

0 ov o’V
PU)=|=+2V V)+(@+6B) 5 — - 7.6.2
Naturally, the inverse statement: if P(U)=0, then

Q(V) =0, is not valid.

If U is given, relationship (7.6.1) becomes the Riccati
equation for V, so that the usual transformation to linearise
the Riccati equation

1 oW

V=——— 7.6.3
leads to the equation

orw

— —UW =0, (7.6.4)

o0&
and here U is a solution of the classical KdV equation
P(U) =0.

If we take note of the Galilean invariance of the KdV
equation P(U) =0, which is invariant under the transfor-
mation

U=U—-4, ¢(=é+alt, 1=71, (7.6.5)
we can at once generalise Eqn (7.6.4) to
o*w
—¥+ UW =AW . (7.6.6)

This is just the Schrodinger equation for the function
W (&,1;4) with a potential and P(U) =0.

Nevertheless, it is a result which is essentially different
from the Schrodinger equation in quantum mechanics,
because of the fact that U is the solution of the classical
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KdV equation P(U) =0, so that it changes with time 7.
Hence, in Eqn (7.6.6), the time T must be considered as a
parameter. In other words, it is necessary that at each
instant of time Eqn (7.6.6) is valid for U(&,7) at that time!

The eigenvalue A would thus also seem to be time-
dependent, but surprisingly all the eigenvalues A are time-
independent, provided only that U decreases sufficiently
rapidly at infinity with respect to &, or that it satisfies a
periodic boundary condition.

More precisely, if we use the original form of the KdV
equation:

ol 3(g\*[.00 2 o 1 B¢
5_§<h_0> x 3%%t3%)

the transformation

r_1(g 2 ’ X
t :E /1_0 t, X :m . (7673.)
1 1
u=-—3{-3a (7.6.7b)
gives
Ou du Ou

where we have dropped the primes. For the reduced KdV

equation (7.6.8) the condition o+ 68 = 0 is verified!
Next, let us consider the question of conservation laws of

the KdV equation (7.6.8), namely equations of the form:

ON J
5 T =0 (7.6.9)

where N is a ‘density’ and J is the associated ‘flux’.

Ten such conserved quantities for the KdV equation
(7.6.8) were found [88]. But these conserved quantities have
none of the immediate physical significance that we
associate with the continuity equation.

The first few are:

Ny=u,
2 ou .
Jy=—=3u +7 (KdV equation) ,

0
u ou\’
2 3
Ny=u", J,=—4u +2Max—2— (a) )
Na.= 3+] al/l 2
3= T\ex)

2 2
J3 = —2u4+3u26—u—6u<%>

udu 1 [\’

+6x ox3 2<6x2> '

It was conjectured that the KdV equation had an infinite
number of such conservation laws, and this was later
proved by Kruskal and Miura, and simultaneously by
Gardner (see the survey paper of Miura [88]). To generate
a whole sequence of constants of motion for the KdV
equation, in fact an infinite sequence, we can first introduce
a function w defined by

4 ox? Ox

0
u:w+e—w+e2W2, (7.6.10)
Ox
where e is an arbitrary constant. Substitution of this into
the KdV equation (7.6.8) shows that w must satisfy the
following conservation law

2
a—w—|-£<3wz—i—2e2w3 _a_w> =0

o o o’ (7.6.11)

for all e. Integration over all x, assuming that w and its
derivatives vanish at x — +oo, gives (w) =0, which is a
constant of motion.

One may formally solve Eqn (7.6.10) by expanding in e
to give:

Ox ox?

The important point is that u is independent of e!
Therefore, the condition d({w)/ds = 0 leads to an infinite
set of conditions:

d(w,)
dt

2 al/l 2(2 azl/l)
w=wotew +ew,+...=u—e——e (U ——|+...

—0. (7.6.12)

Thus, we have generated an infinite set of constants of
motion for the KdV equation (7.6.8), which are the
integrated values of w,. One can prove, however, that
only the coefficients of even powers of ¢ lead to nontrivial
constants!

The fact that for the KdV equation one has an infinite
set of constants of motion makes one suspect that the KdV
equation is equivalent to an infinite-order integrable
Hamiltonian system, in which case relatively simple ana-
lytic solutions such as solitons exist! In fact, a necessary (but
not sufficient) condition for that the KdV equation (7.6.8) to
have N soliton-type solutions is just the existence of an
infinite set of constants of motion!

In any case, the above observation concerning the
‘Schrodinger equation’ and the possible importance of
the fact that the KdV equation has an infinite number
of conservation laws, apparently advanced the solution of
the KdV equation very little!

However, the presence of a Schrodinger-like equation
puts a new face on the problem and a new perspective from
which to attack the problem. This has led to collaboration
between some ingenious researchers, each adding his
individual insight, to discover the beautiful and highly
original inverse scattering transform (IST) method.

The general solution of u(x,?) of the KdV equation

Ou du du
P(u)—a—()ua—l-ax—S—O,

is obtained by

(a) considering both scattering and bound solutions of
W (x,0),

(b) finding its time evolution,

(c) obtaining then the inverse solution of the GLM
integral equation.
This general scheme is called the IST, which is a
sophisticated generalisation of the Fourier transform for
solving a linear equation.

7.6.2 Inverse scattering transform (IST). If we return to the
Schrodinger equation (7.6.6), then on the basis this
equation we may write: U =4+ [62W/662]/W. Substitut-
ing this value of U into the KdV equation, assuming that
P(U) =0, and integrating resulting equation over all x = &,
we obtain the following relationship:

d—lj 2dx =0

6.1
- (7.6.13)

if we assume that W and its derivatives approach zero as
X — +o00.
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By hypothesis, we associate with relationship (7.6.13) N
solutions W, (x,t) which are bounded and such that the
integral in this relationship exists and is finite. Hence, if the
potential u(x,¢) in the (linear) Schrodinger (LS) equation

*w

satisfies the KdV equation
3
Ou _ Ou Ou 0. (76.15)

o Manta

then the eigenvalues A, are constants.

More precisely, by virtue of the assumption that u(x,7)
decays rapidly as x — oo for all ¢, the LS equation (7.6.14)
admits a finite number of eigenstates of negative energy
Ay = —k,%, n=1,2,3,..., N and also a continuous spectrum
of positive energy A = k>

The discrete eigenvalues 4, = —kfl, which are the values
A leading to eigenfunction solutions, vanish at infinity and
are square integrable. If the eigenfunction corresponding to
k, is normalised,

+o00
J Widx =1,

—00

(7.6.16)

then the coefficient ¢, is defined by the asymptotic
behaviour of W,:

W, ~c,(t)exp(—k,t), x—o00. (7.6.17)

For the continuous spectrum, the wave function W is a
linear combination of exp(+ikx). Since u(x,) vanishes as
x — Fo00, we have to impose the conditions:

W, ~ exp(—ikx) + b(k, t) exp(ikx ),
W, ~ a(k,t) exp(—ikx),

x — 4oo, (7.6.18a)

X — —00 . (7.6.18b)

Physically, the term on the right corresponds to steady
emission of plane waves propagating into the potential from
infinity, to an amount b(k,t), called the reflection coeffi-
cient, being reflected from the potential, and to an amount
a(k,t), called the transmission coefficient, being transmitted
through the potential. In particular, |a|* + |b]* = 1.

Now, we have the following theorem (Miura [88]):

if u(x,t) vanishes sufficiently rapidly as x — +oo, then

cn(r) = ca(0) exp(4kat) ,
b(k,t) = b(k,0) exp(8ik’t) ,
alk,t) = a(k,0) ,

where ¢,(0), b(k,0) and a(k,0) are determined from the
initial data relating to the KdV equation (7.6.15) for u(x,t).

The literature treating the inverse scattering problem
(ISP) is extensive (see, for example, Gel’fand and Levitan
[104]) and in fact the solution of the ISP is reduced to the
problem of solving a linear integral equation, which is the
Gel’fand —Levitan —Marchenko (GLM) integral equation:

+00

B(y+2)K(x,z)dz=0.

(7.6.19)

K(x,y)+B(x +y) +J (7.6.20)

X

Finally, we wish to solve the initial-value KdV problem for
u(x,t):

6u_ 6u+63u_0
o ax o
—co<x<+oo, >0, ulx,0) =u’(x).

First, we solve the eigenvalue problem:
orw
ox?

from which K, ¢,(0) and b(k,0) are determined.

Then the set of expressions (7.6.19) yields the time-

dependent quantities c,(f) and b(k,t) and these determine
B(x +y) in Eqn (7.6.20) explicitly as:

1 [t
B(x+y) = I J b(k,0) exp [ik (8ik *t +x +y)] dk
oo

[’(x)—2]w =0, (7.6.21)

N
+ 3 [ea(0)] exp[8kar — k,(x +)] .
n=1
so that the GLM equation (7.6.20) is defined.
If we can solve this GLM integral equation, then the
solution of the initial-value problem for the KdV equation
is simply:

(7.6.22)

u(x,t) = —2(% [K(x,x;1)] , (7.6.23)
where ¢ in K is treated as a parameter.

Naturally, one might argue that we have merely
replaced one difficult problem (nonlinear!) with another
one! However, two major simplifications have been
achieved:

(a) the equation
equation are linear;

(b) the time ¢ enters the problem only parametrically.

Unfortunately, it is in general not possible to solve the
basic GLM integral equation (7.6.20) analytically except of
course for the reflection-free potentials u’(x) such that
b(k,0) = 0. In general, the long-term solution is in the form
of N solitons travelling at different velocities to the right
and noise-like behaviour (oscillatory state) travelling to the
left. The major mathematical difficulty arises from the
integral contribution in B(x +y).

Fig. 14 shows the solution of the KdV equation with
both solitons and an oscillatory state (for N =2), in
addition to two solitons propagating to the right, we
have a dispersing oscillatory state propagating to the left
(because of the negative group velocity of the linear waves).

involved, (7.6.21), and the GLM

u(x,r)

Figure 14. Solution of the KdV equation with two solitons and an
oscillatory state.

7.6.3 Backlund transformation. In a particular case, the
Backlund transformation [BT —sometimes called, also,
auto-BT (A-BT)] can be used to transform a zero soliton
solution, u = 0, of the KdV equation
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- 6<§) + e 0, (7.6.24)
to the (non-zero) solution

w = —ko tanh 60 N CO = ko(x - 4k0t) N (7625)

which is simply related to the one-soliton solution of the
KdV equation (7.6.24). Next, the solution (7.6.25) itself can
be transformed to the solution:

kT —k§
==L =0 (7.6.26a)
q—v
with
g=—kjcoth&, & =k [x—4kit], (7.6.26b)

which corresponds to the two-soliton solution of (7.6.24).

This process can be continued to give solutions with an
increasing number of solitons. At each stage, though, one
has to solve two equations:

aw_ Ou

2 2
—=—— - 6.2
o ok +w—u), (7.6.272)
aW_ al/l 4 26” 2 2
E— 54‘4 k" +k a k (W u)
Ou , u
+a (W — M) + ﬁ (W M) (7627b)

with the integrability condition on w: 3*w/dx Ot = 0w/t dx.

Unfortunately, the derivation of these ‘initial’ equations
(7.6.27), such that both w and u satisfy the KdV equation
(7.6.24), is not at all straightforward!

On the other hand, once the BT has been discovered,
one has relatively simple way of generating a hierarchy of
solutions! In our particular case, we start with the two
equations (7.6.27), for u and w, where k is an arbitrary
constant. The integrability condition on w demonstrates,
after little algebra, that both w and u satisfy the KdV
equation (7.6.24), for all k and in this case we have the A-
BT. Differentiation of this KdV equation (7.6.24) with
respect to x shows that F= —29f/0x satisfies the KdV
equation

OF . 0OF O’F

o Pt T
We now choose u to satisfy the KdV equation (7.6.24): one
solution is simply u# = 0, in which case Eqns (7.6.27a) and
(7.6.27b) reduce to

0. (7.6.28)

ow

i —ki+w, (7.6.29a)
ow 4 2 2
i 4(kg — kiw?) (7.6.29b)

where kg is the corresponding value of k.

These equations are readily solved to give (7.6.25). We
now take this to be the value of u# and substitute it on the
right-hand side of (7.6.27a), with a different value of k, for
example k; (permutability!), to obtain the next equation in
the hierarchy:

ov

— = kosech?&) — k4 (v + ko tanh &)* .

& (7.6.30)

Next, if we introduce a function ¢, defined so that
solution (7.6.26a) is true, and use the above equations, we
find that

g—: =—ki+q .
which is identical in form to Eqn (7.6.29a). This last
equation, for ¢, has a solution (physically admissible!) of
the form (7.6.26b), which is admissible as solution
(7.6.26a), since it gives a bounded solution for v.

More details and other results can be found in
Ref. [105]. Here, we shall mention only three important
uses of the BT, namely:

(a) algebraic (as above) construction of solutions by
application of the theorem of ‘permutability’ (due to
Bianchi [106]);

(b) derivation of an associated ISP, since u = v* 4 Ov/dx
essentially corresponds to half the BT relating to the
solution of the KdV equation and the modified KdV
equation;

(c) generation of conservation laws, by virtue of expres-
sion (7.6.10).

Finally, we hasten to point out that, for the KdV
equation, much hindsight has been used in deriving the
above results, but for some other equations for which the
BT, IST and conservation laws have not been found,
derivation of these results is not straightforward! For a
more profound exposition, we refer the reader to a book by
Dodd et al. [32].

(7.6.31)

7.6.4 Hirota method. We shall now consider the KdV
equation in the form:
u Ou  Ou

—+ 12u

= T =0 (7.6.32)

which, with u = Ow/0x, reduces to

o*w ow\>  ow

¥+6<a> + 2. (7.633)
The transformation

w= ° log f (7.6.34)

Oox

reduces the KdV equation to a homogeneous equation for
flx, 1) [107]:
S N o A R )
f@“‘aax—s“(@) e Taxa 0 7639

The transformation (7.6.34) is known as the Cole—Hopf
transformation [108, 109]. In trying to solve Eqn (7.6.35),
we first take note of the fact that the classical single-soliton
wave solution, for the KdV equation (7.6.32), is
2
0
u= il sech? = R

5 5 O=ar— act+b (7.6.36)

and is obtained by taking
f=14+expb,, (7.6.37)
where 6; = a;x —a?t +b;,, i=1,2,3,... . This encourages

us to look for a solution of Eqn (7.6.35) in the form
N

f=14Y 870,
n=1

with & a convenient expansion parameter.

(7.6.38)
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For O(g), we can easily obtain the exact solution in the
form of the single exponential function, as in expres-
sion (7.6.37). However, since in this case we have a
linear homogeneous equation for f(]), we can introduce
as many exponentials as we like, although here we shall
restrict ourselves to two:

) =expf, +expb, . (7.6.39)

Next, this exact solution, forf('), can be substituted on the
right-hand side of the O(e’) equation for @ to give:

647('(2) 6270(2)

o T 3ajas(a) —ay)* exp(8, 4+ 6,) . (7.6.40)
which integrates to
2
() — G~ % 9, +0 7 6.41
! <a1 +a2> exp (0, +6,) . (7.6.41)

Surprisingly, the equation, for £, of the order O(&) is
simply:

4.3 A2
o'f +6j( ) .
ox*  Ox ot
since the right-hand side is zero!

Naturally, we can take as solution f(3) =0 and we can
easily see that with this trivial solution for f(3), all the
subsequent functions are f(") =0 for n>=3. This self-
truncation of the series for f is absolutely crucial to
obtaining the exact solution of the KdV equation (7.6.32).

The factors of & can be absorbed into the phase of each 0
and we have the exact two-soliton solution:

2

T2

f=1+exp0 +expb, +Aexp(6 +6,),
a; —ar\’
4= ( i 2>
ay + ay
The same process will work if we take a three-parameter
solution, but the algebra becomes rather forbidding! The

KdV equation was solved in this way for N solitons by
Hirota [107].

u 10gf(x,t) ’

(7.6.42)

Figure 15. Collision of two KdV solitary waves.

Formula (7.6.42) can be analysed for the case when two
solitons are far apart. The result is that the larger soliton
a; > a; >0 is shifted forward and the smaller a, < q
shifted backward relative to the motion that would have
taken place if no interaction had occurred.

The trajectories of the maxima of the solitons in Fig. 15
make this result plain. Whether we think of the soliton
collision as a process in which the solitons pass through one
another or whether they exchange identities is only a matter
of interpretation. Finally, it is interesting to note that
Hirota noted that the terms in Eqn (7.6.35) were very
like the Leibnitz formulae for the derivatives of prod-
ucts. Except for signs, Eqn (7.6.35) looks somewhat like:

CHARINCN A
o ard

Hirota invented a new operator D,, defined for ordered
pairs of functions g(x), f(x) as follows:

., 0g of
D¢ f=fos g,

but this definition can be extended to functions g(x,1),

o
oxot oxot)’

AN G rAY
D4 =2 f— -4 = —— 4+ 3 —= R
St |:f ox* Ox ox? + (6x2>
and in this notation, the KdV equation (7.6.35) becomes
very compact:

[D.D,+D{]ff=0.

f(x,t). For example,

DD, f-f=2 (f

(7.6.43)

The multisoliton solutions are also easier to obtain. We can
see this if we look at how the operators D, act on
exponential functions. It is easy to show that

DY expkx -explx = (k — )" exp (k + D)x .

8. Well-posed problem:
existence, uniqueness, stability results

8.1 Existence and uniqueness

If we consider the two-dimensional classical problem for
the physical velocity potential ¢(x,z,7), then this boun-
dary-value problem is extremely difficult (even if T =0)
mostly because of the dynamic boundary condition,

G5 (@ + ) el =0, < ={(x,) (8.1.1)
which is nonlinear and one that is imposed at an unknown
boundary z = {(x,y,t).

Some idea of the difficulty of this classical problem may
be obtained by asking what is known about it! Naturally,
we can introduce a new vertical independent variable in
place of z. For example, in the case of deep-water waves, if

n=z-{¢1), x=¢, (8.1.2)
are the new variables, where 0 < # < —oo, we can find the

derivatives:

o_0o %o d_08 9oy 9_0
Ox OF 9oy’ ot ot Oty oz

t=1



Nonlinear long waves on water and solitons

1377

and also
O L% U D (VTP
P =g Top o ez azon *(azz)
_¥¢
¢::_a_'12‘

As consequence, we obtain the following two-dimen-
sional canonical classical problem for the deep-water waves:

@ NI
o +<6€>} o ogogen og on

o¢?
0<n<—00,(81.3a)

6C+g§€g§ [H(gg)]ad) 0, =0, (813b)
¢ P\ 1 ar\ | (g .
A (aé) ‘5[”(@)](&) =0,
n=0. (8.1.3¢)

For deep water, we have also the following behavioural
condition:

(8.1.3d)

The strongly nonlinear water-wave problem (8.1.3) with
the two functions ¢ and { is terribly difficult and it is clear
that a mathematical theory for these deep-water waves
problem is practically impossible to construct! Numerical
integration of this (8.1.3) problem is not easy either!

The simplest nontrivial statement that a mathematician
can make about a physical problem is that it has a solution.
According to Shinbrot’s book [58], p. 87, historically the
first main results proving the existence of a solution were as
follows.

In 1925, Levi-Civita [12] proved that in water of infinite
depth (hy = 00), there is a periodic wave that progresses
without change of shape. This means that ¢ does not
depend on ¢ and x separately, but only on a combination
x —ct for some constant velocity c¢. Naturally, { also
depends only on x — ct, while ¢ and { are both periodic
functions of x — ct.

Shortly after Levi-Civita proved his result, Struik [13]
showed that it could be generalised to the case of a flat
horizontal bottom (hy = const). Again, Struik proved the

existence of a periodic wave progressing without change of

shape.

In 1954, Friedrichs and Hyers [59] proved, again for
hy = const, the existence of another type of wave, once
more progressing without change of shape at a constant
velocity (solitary wave). This can be looked on as a periodic
wave, ‘a la Struik’, but with an infinite wavelength.

[fthe bottom is periodic and has only one maximum and
one minimum per period, Gerber [60] proved that there is
steady flow in which the free surface has the same properties
as the bottom. In addition, the troughs of the free surface lie
directly over the troughs of the bottom, and the crests lie
over the crests. In the same 1955 paper [60], Gerber proved
also that over a monotonic bottom, there is a flow with a
monotonic free surface. Again this can be looked upon as
flow over a periodic bottom with an infinite period. The
results of Gerber has been generalised by Krasovskii [110].

It should be noted that all these examples represent
essentially steady two-dimensional flows—the last two are
steady to begin with and the first three become steady in a
coordinate system moving at the velocity c.

Concerning the three-dimensional problem, we note the
papersby Lavrent’ev [111, 112], in which use was made ofthe
theory of quasi-conformal mappings of three-dimensional
domains. Ter-Krikorov [113—115] proved the existence of
periodic waves which degenerate into a solitary wave and also
the existence of a solitary wave on the surface of a liquid
with vorticity.

The paper of Ovsyannikov [116] given the existence
theorem for the Cauchy — Poisson problem about waves on a
water surface (unsteady incompressible motion of a liquid
with a free surface) as a result of an initial disturbance.
Concerning the works of Soviet scientists, the reader can
consult a review book edited by the Academy of Sciences of
the USSR in 1970 (in Russian, see a survey paper by
Moiseev [117], p. 55).

More recent results, again for the two-dimensional
potential problem, were published by Showalter [118]. In
his paper the existence—uniqueness—stability results are
obtained from the corresponding results for the abstract
Cauchy problem of an evolution equation in a Hilbert
space. The existence theory for irrotational water waves is
discussed in a paper by Keady and Norbury [119].

The justification of the ‘shallow-water’ model equations
[the ‘Airy equations’ (3.1.12)] was provided by Ovsyanni-
kov [120]. A rigorous mathematical justification of the
validity of the shallow-water equations for a two-dimensional
channel with analytical data was given by Kano and
Nishida [121]. For the three-dimensional case with a priori
assumptions about the free surface, the justification was put
forward by Berger (1976) [122].

The existence of travelling-wave solutions of the KdV
model equation (for the KdV and KP equations, see Section
4) was analysed and proved by Showalter (1988) [118].
According to Showatter, the appropriate initial—boundary
problem for the KdV equation is well-posed. A global
existence theorem for the solution of the KdV equation
for a general channel was established by Shen (1983) [123] as
a consequence of the existence results due to Kato [124, 125].

Kato [126] considered a mathematical problem arising
in the theory of solitary water waves in the presence of
surface tension. For an extended survey of nonlinear
waves under external forces (nonlinearly resonant surface
waves), the reader is directed to a review paper [127]. In
more recent work [128, and also 129] there are rigorous
results concerning the Boussinesq equations (derived in
Section 3) and also the KdV limiting equation for water
waves, including a ‘rigorous’ derivation of these equations
and estimates of the differences between solutions. The
results are better justified for the KdV equation, due to
the well-posed nature of the initial-value problem, while
the results for the single Boussinesq equation are less
satisfactory.t

More precisely, Kano and Nishida [128] worked within
a class of analytic functions and used an abstract form of
the Cauchy—Kovalevskaya theorem to prove the existence
and to obtain further estimates. Craig (1985) [129] used a
different functional framework and posed the problem of

T For this initial-value problem for the KdV equation, see Ref. [130],
p. 508.
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existence in a Sobolev space, obtaining a long-term existence
theorem for the water wave problem in the long-wave
scaling regime. Additionally, the latter setting is natural for
the water-wave problem, as it does not display a small-scale
linear instability, in contrast to the Kelvin—Helmholtz
instability problem. Both these papers provide a mathe-
matical justification for the Boussinesq and KdV equations
as approximations to the classical water-wave problem. But,
the results for the Boussinesq equation are different from
those for the KdV equation because of the differences in the
well-posedness of the initial-value problems for these two
equations. The statement of justification for the Boussinesq
equation is roughly that the Boussinesq operator gives rise
to an error of 0(82), in an appropriate function space, when
applied to a solution of the water-wave problem.

In recent work Craig et al. [131], present a rigorous
analysis of the use of modulation theory in the problem
of water waves in a two-dimensional channel, and justify
the approximation of the solution by a wave packet
modulated according to the NLS equation (see, Section
5 for an asymptotic derivation of the NLS equation in the
long-wave limit). The results in Ref. [131] include a rigorous
derivation of the NLS equation and also an estimate within
a class of Sobolev spaces, which shows that the modulation
approximation satisfies the classical water-wave problem to
the leading order in the scaling parameter. The results are
not as well founded as those in the two preceding cited
references for the KdV equation, but they are justified
better than the results in these two references for the
Boussinesq scaling regime.

The justification of the KdV scaling limit in both
Refs [129] and [128] is substantially stronger than the
results on the NLS or Boussinesq equations, basically
proving that solutions to the classical water-wave problem
converge strongly to solutions of the KdV equation as
& — 0. In this case, Craig [129] reached a somewhat stronger
conclusion, stemming from a difference in functional
analytic setting between Refs [129] and [128]. The first
poses the problem in Lagrangian coordinates, which,
according to Nalimov (1974) [132] and Yosihara (1982)
[133], is well-posed in an appropriate Sobolev space.

More precisely, Craig showed [129] that in the long-
wave scaling regime the existence time of 0(873/2) is
obtained. Since the KdV time scaling reveals variations
in the solution only over time intervals of O(s7/?),
solutions to the water-wave problem (with the initial
data satisfying a unidirectional condition) are shown to
converge strongly to solutions of the KdV in an interval of
length O(1) measured in KdV time! Kano and Nishida [128]
formulated the problem in terms of a time-dependent
conformal mapping on a reference domain, for the initial
data in a space of analytic functions, and they appeal to a
generalised version of the Cauchy—Kovalevskaya theorem
to solve the initial-value problem. This gives an existence
time of O(1/g) only!

Finally, we should note that the Lagrangian formulation
of the water-wave problem, is a very convenient setting for
rigorous estimates of the asymptotic procedure. In order to
work with Lagrangian variables, coordinates of the free
surface are taken in the form {(x,1) = [x + X (x,1), Y (x,1)].
Then motion is considered for which (X,Y) are bounded
localised perturbations of the free surface (x,0) for the
liquid at rest. To describe the motion of the surface, we take
the point (x +X,Y) to be the coordinate of a Lagrange

particle on the free surface. Writing X = (X,Y), then

(0.4

Ezu(t,x +X,Y) N
and eliminating the pressure term from the Euler equation,
we can write the equations of motion of the free surface in
the following form:

(8.1.4)

ox\ o’x or o’y
(]+§>?+a(g’+at—2)—0, (8.1.5)
oY (906
E—K(X)E, (8.1.6)

where the operator K is the Hilbert transform for the
variable domain occupied by the liquid. More precisely, the
liquid velocity components u = (u,v) satisfy the Cauchy—
Riemann conditions for an analytic function f(z) with

f=u—iv and z =x + iy and, combined with the bottom

boundary condition v(x,—h) =0, the results lead to a
singular operator on the top surface. The boundary values
of v are obtained from the boundary values of suitably
behaved u: v =K (X)u.

The classical solutions of Eqn (8.1.5), (8.1.6) describing
the free surface and the liquid velocity on that surface were
studied by Craig [129] and Yosihara [133]. Together with
the bottom-boundary condition, this enabled them to
compute the liquid velocity throughout the liquid at each
fixed time by solving the Laplace equation. The operator
K (X) is computed in Ref. [133]. An important observation
made by Coifman and Meyer [134] is that K(X) depends
analytically upon X within a neighbourhood of the origin in
the space of Lipschitz continuous functions. We thus expand

K(X) = 3K, () |
n=0

where K, (X) is an operator homogeneous of degree n in X,
which is a concatenation of powers of X(x) and its
derivatives with explicit Fourier multipliers.t

(8.1.7)

8.2 Stability — instability
8.2.1 Boussinesq showed that the solutions of Eqn (7.2.2)
are characterised by the invariants

+00 400
Q=J {dx, E:J Cdx, (8.2.1a)
—+00 ) 3 s
M:J_ (CX—FC>dx, (8.2.1b)
o0 0

provided that { vanishes sufficiently rapidly as x — +o0. Q
and E evidently represent the volume and energy of a wave.
Boussinesq designated M as the moment of instability and
demonstrated that solitary waves represent the unique
solution of the variational problem: 8(M ) = 0, with E fixed
(Boussinesq omitted the implicit constraint that Q be fixed,
but this has no effect on the end result, for which the
corresponding Lagrange multiplier vanishes).

Boussinesq also showed that the amplitude and volume
of a solitary wave of prescribed energy are given by

3
4ho

and he remarked that (see Ref. [22], p. 15):

E*P, o=2nE' (8.2.2)

ag =

TA simple derivation of these coefficients is presented in Appendix 1 of
the paper [131].
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“When a wave propagates along a canal of which the
depth A is slowly decreasing from one point to the next ...
the bottom of the canal must continuously reflect a small
part of the movement, in a manner such that the volume
and energy of the wave must divide between the direct wave
and this reflected wave, the latter being of an increasing
length and of a height which is at once proportional both to
this volume and to its height, ceasing to remain very small.
The direct wave thus will conserve, approximately, all the
energy of the wave, and, as it retains effectively the form of
a solitary wave, ... its height gy and ... its volume Q ... will be
obtained at any particular instant by means of Eqn (8.2.2),
where E will be invariable: one sees that the wave will
become higher, shorter, and consequently less stable, until
finally it lacks a base and breaks. The opposite would occur
if the depth were increasing”’.

These Boussinesq predictions appear to have been
overlooked in most of the current literature (although
not by Keulegan and Patterson [135]).

8.2.2 We shall now consider the NLS equation (5.1.25):
104 A
Vo a2

As is seen from expression (5.1.26a), p is always negative,

whereas v [according to expression (5.1.26b)] changes its

sign from negative to positive across kohy = 1.363, as kghy,
decreases. It is known that the NLS equation (8.2.3) has
the following solution representing a nonlinear plane wave

A =Ajexp [i(ocr — Kﬁ)], where A, = const and o = —ur’+

+v|Ay|". Let us now consider the meaning of this solution

in terms of the original physical variables. In particular, if
we set k = 0 and Ay = ag/2iw,, a being a real constant, and
if for wq(ky) we assume the classical dispersion relationship

w% = gkoo, then the perturbed free surface takes the

following form:

+VvA|AP . (8.2.3)

2 2

Z:sacose—klg—a(yflcosw) ,

24
4 koo (8:24)

where 0 = kox — (w, — &%)t and oy = vga®/4w}.

In expression (8.2.4) we also have: y = [1/(c} — gho)]
Rawokoc, + (1 — 0%)ghokg) and 4 = (¢° — 3)k5/20°. This is
simply the Stokes wavetrain in the second-order approxima-
tion. Here, o= w,— £2on is the nonlinear dispersion
relationship for a Stokes wave, including the effect of an
induced horizontal current. Moreover, the dispersion term
in Eqn (8.2.3) is unimportant in this solution because k = 0.

In addition to the plane-wave solution described above,
Eqn (8.2.3) has another type of solution in terms of the
Jacobian elliptic functions, exhibiting a dynamical balance
between nonlinear and dispersion effects, which we shall
call the equilibrium solution:

A =B(Eexpiar, (8.2.5)
where a is constant and f is real. If uv >0,
N /2
B(¢)=B°Dn [BO (i> ¢| m] (8.2.6)
u

with the modulus m and m* =2 —2a/v(B°)*.

We shall show that time evolution of the unstable modes
may be regarded as a special case of the general modulation
described by Eqn (8.2.3). In order to reproduce a Stokes
wave, let us set a=o0y, x=0 and Ay=ag/2iw, in

expression (5.1.27). Then we can consider a disturbed
Stokes wave given by

A =[A¢+ A Texp[i(xgr +40")] . (8.2.7)

where A’ and 0’ are assumed to be real functions
representing a disturbance and A is a small parameter.
Substituting the above expression into the NLS equation
(8.2.3) for A(r,£&) and linearising it with respect to 4, we
obtain

oA’ %0’

o + plA | —662 =0, (8.2.82)
00’ oA’

o 2v[Aof A — e = 0 (8.2.8b)

Since these equations form a set of linear differential
equations with constant coefficients, we can assume a
solution of the form:

(A7,0") = (Aq,0p) exp[i(k'é —w'T)] +cc. , (8.2.9)

where A} and ) are constants. From the condition that
Eqns (8.2.8a) and (8.2.8b) have a nontrivial solution, we
obtain the following dispersion relationship:

Nz :#2,(/2(1(;2_% |A6|2) ’

which shows that, if uv <0, then w’ is always real for
arbitrary values of k' so that the Stokes wave given by
expression (5.1.27) is neutrally stable. On the other hand, if
w >0, o' becomes imaginary for

W\ 172
k' <2(ﬁ) Aol -

Hence, the disturbance will grow exponentially. In this
sense, the Stokes wave given by expression (5.1.27) is
unstable against the above modulational disturbance and
the maximum growth rate, say dg.., is given by
duax = [VAQ?| for k' = (v/w)' |,

According to Hasimoto and Ono (1972) [36], if we
return to the original NLS equation (8.2.3), we can
investigate further time evolution of such unstable modes
even to the stage when the linear theory ceases to be valid.
For example, when m = 1, the equilibrium solution (8.2.6)
degenerates into a solitary modulational wave propagating
at the group velocity. This wave is

w0 ()[4

and its width is (u/ae’)"/>. When a = aq, this width agrees
with the wavelength of the unstable mode with the
maximum growth rate. This fact leads us to a conjecture
that modulation of the Stokes wave eventually deforms it into
the solitary wave described by expression (8.2.12).

(8.2.10)

(8.2.11)

(8.2.12)

8.3.3 The instability of deep water waves was also
established in Ref [71, 73, 136—141]: the Stokes waves in
deep water are definitely unstable!

For a liquid of finite depth, the coupling with the
induced mean flow becomes significant and it has a
stabilising effect. In this case the Whitham modulation
equations of the wavetrains are elliptic or hyperbolic for
khy > 1.36 or khy < 1.36, respectively.

In the former case, the modulation process is unstable
and, there is a remarkable agreement between the Benjamin
and Whitham theoretical predictions.
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The discovery of the instability of the weakly nonlinear
Stokes waves has led to questioning of the evolution of the
unstable nonlinear wavetrains. As a consequence, special
attention has been given to the derivation of evolution
equations valid for long times! Indeed, many nonlinear
instability problems of diverse nature can also be described
by the NLS equation.t Finally, when several dominant
(linear) wave modes are present, their mutual interaction is
significant. This is especially so when some of these modes
resonate. The simplest and most important case is the three-
wave resonance. But not all systems exhibit a three-wave
resonance and, ironically, one of the first searches for such a
resonance, among inviscid surface gravity waves, yielded
negative results and Phillips ‘bravely’ (see, Craik’s book
[42], p. 73) continued his analysis to third order in
amplitude, to determine the cubic interaction coefficients
of resonant quartets! For a deep discussion of the three-
wave resonance, cubic three- and four-wave interactions,
strong interactions, local instabilities, and transition to
turbulence see the book by Craik [42], Chapters 5, 7 and 8.

9. Conclusion

As pointed out by Craik ([42], p. 288): “... The key to
understanding nonlinear wave motion and transition to
turbulence is not any one of solitons, bifurcation theory,
catastrophe theory, strange attractors, period-doubling
cascades, et cetera. Fashionable, and fascinating, theoret-
ical bandwagons add momentum to scientific progress but
can also carry the unwary up blind alleys. The richness of
fluid mechanics is such that many new surprises and
insights still await discovery’.
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