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Abstract. The water wave p rob lem has been pivota l in the 
his tory of nonl inear wave theory . This p rob lem is one of 
the most interest ing and successful appl icat ions of n o n ­
linear hydrodynamics . Waves on the free surface of a b o d y 
of water (perfect l iquid) have always been a fascinating 
subject, for they represent a familiar yet complex 
p h e n o m e n o n , easy to observe bu t very difficult to 
describe! The archetypical mode l equa t ions of K o r d e w e g 
and de Vries and of Boussinesq, for example, were 
originally derived as approx imat ions for water waves, 
and research into the p rob lem has been sustained 

vigorously up to the present day. In the present paper , 
the der ivat ion of the mode l equa t ions is given in depth and 
ra t iona l use is m a d e of asymptot ic me thods . Indeed, it is 
impor t an t to unde r s t and tha t in some cases the derivat ion 
of these approx ima te equa t ions is intuitive and heurist ic. In 
fact, it is no t clear h o w to insert the mode l equat ion under 
considerat ion into a h ierarchy of ra t iona l approx imat ions , 
which in tu rn result from the exact formulat ion of the 
selected water wave p rob lem. 
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1. Introduction 

The wave mot ion , under the force of gravity, of a moving 
b o d y of water with a free surface in a channel with an 
uneven b o t t o m is one of the mos t interest ing and successful 
appl icat ions of nonl inear hydrodynamics . 

Studies of water waves have always been enriched by the 
interest coming from diverse fields of science, including 
applied ma themat i c s and singular pe r tu rba t ion techniques. 
Indeed, waves on the free surface of a b o d y of water have 
always been a fascinating subject, for they represent a 
familar yet complex p h e n o m e n o n , easy to observe bu t very 
difficult to describe! 

Given tha t the wave mot ion of an in viscid and 
incompressible liquid (such as water ) is i r ro ta t ional , it 
would be the obvious choice to derive the classical Laplace 
equat ion for the velocity poten t ia l x , v , z ) . However , the 
Laplace (elliptic) equat ion has little to do with waves and this 
choice would be wrong , because of cur ious effects of the free-
surface condi t ions . Indeed, there is one b o u n d a r y condi t ion 
for the Laplace equat ion , bu t only when the b o u n d a r y is 
k n o w n ( 'classical ' Dirichlet or N e u m a n n problems) . 

In fact, two condi t ions are needed for a free (unknown) 
surface, z = £(£ ,x ,v) , because the surface posi t ion £(^ ,x ,v) , 
has to be determined as well as (j)(t,x,y,z). 

Moreover , a l though the Laplace equat ion is linear, the 
two b o u n d a r y free-surface condi t ions are unfor tuna te ly 
nonl inear . 

However , it is necessary to no te tha t in the presence of a 
free surface, the vorticity of an inviscid and incompressible 
b o d y of water does no t necessarily remain zero if it is zero 
initially! Indeed, the free surface can intersect itself, which 
h a p p e n s when a wave b reaks and vortex sheets are formed. In 
this case, instead of the Laplace equat ion , it is necessary to 
consider the full Euler equa t ions (this is always the case for an 
incompressible fluid). I shall no t consider here this impor tan t , 
bu t very difficult, quest ion and I shall analyse only the 
classical nonl inear p rob lem for </> and £, when the effects 
of the surface tension and an uneven b o t t o m are included. 

Na tura l ly , some degree of ma themat i ca l intractabi l i ty 
seems inevitable in the initial-value water wave p rob lem 
relat ing to </> and £. W e recognise the probabi l i ty tha t the 
initial-value p rob lem cannot be correctly (well) posed: water 
waves m a y break! The ( ro ta t ional ) mo t ion m a y become 
turbulent and so the con t inuous dependence on the initial 
da ta m a y be lost. In this case the emergence of chaos via a 
s t range a t t rac tor is possible. This aspect of the subject still 
remains largely myster ious and caut ion regarding it is 
essential in order to pu t any theoret ical work on water 
waves into a p roper scientific perspective. The fact tha t most 
of the existing theory — dealing with linearised, long waves 
or with weakly nonl inear approx imat ions — is essentially 
tentat ive does not , of course, impair its pract ical value. 

1.1 Some historical notes 
The first r igorous demons t ra t ion of the existence of a 
veloci ty-potential (j)(t,x,y,z) for an inviscid fluid mo t ion 
(Lagrange 1781 theorem [1]) is due to Cauchy (1815) [2]. 
Ano the r p r o o f was given by Stokes (1849) [3]. A n excellent 
historical and critical account of the whole mat te r (was 
provided by L a m b (1932) [ 4 ] . | A fuller p r o o f of the general 

f For the steady-state version of the Bernoulli equation, see Bernoulli 
(1738) [5]. 

surface free slip condi t ion 

- 5 - ( z - £ ) = 0 on z = £(t,x,y), 

where D / D t = d/dt + <f>x d/dx + <f>y d/dy + <f>z 6 /8z, is due 
to Lo rd Kelvin [see W T h o m s o n (1848)] [6]. F o r the first 
investigation of progressive waves in a canal see Green 
(1839) [7] and also Ai ry ' s (1845) [8] treatise. 

The theory of the (infinitesimally small) waves p roduced 
in deep water by a local d is turbance of a free surface was 
investigated in two classical memoi r s by Cauchy (1815) [2] 
and Poisson (1816) [9]. J 

The de terminat ion of the waveforms which satisfy the 
condi t ions of uni form p ropaga t i on wi thout change of type, 
when the restrict ion to 'infinitesimally small ' ampl i tude of 
waves is abandoned , forms the subject of the classical 
research by Stokes [3] and of m a n y subsequent investiga­
t ions (Stokes expansion). F o r this p rob lem, see also 
Rayle igh ' s (1876) results [10]. The validity of the Stokes 
expansion requires tha t : 

(a) the ampl i tude mus t be smaller than the wavelength; 
(b) ampl i tude of water waves mus t be less t han the 

depth or the wave properties must vary little over a distance 
of the same order as the depth. 

It is interest ing to no te also tha t the convergence proofs 
of the Stokes expansion were given by Levi-Civita (1925) 
[12] and Struik (1926) [13]. But convergence does no t imply 
stability (!) and the Stokes waves in deep water are uns table! 

A system of exact equat ions , expressing a possible form 
of wave mot ion when the depth of the fluid is infinite, was 
given so long ago as 1802 by Gers tner [14], and at a later 
per iod independent ly by R a n k i n e (1863) [15]. 

The 'shallow-water theory' is governed by a system of 
equa t ions favoured by Airy [8], who first formulated the 
limiting equa t ions for the analysis of very long waves of 
finite ampl i tude in shallow water . However , the effects of 
the dispersion do no t appear in the Airy equat ions . These 
dispersion effects are present in the Boussinesq (1871, 1872 
and 1877) equa t ions [ 1 6 - 1 9 ] . In the one-dimensional case, 
these Airy equa t ions are the Saint-Venant (1871) [20] 
hydraulic equat ions . 

Russel l (1844) [21 ]§ in his interest ing exper imental 
invest igations pa id great a t tent ion to a par t icular type of 
wave which he called the solitary wave. This is a wave 
consist ing of a single elevation, of height no t necessarily 
small compared with the depth of the fluid, which (if 
p roper ly s tar ted) may travel for a considerable distance 
along a uniform canal with little or no change. But his 
descript ion of the wave as a solitary elevation of finite 
ampl i tude and constant profile contradic ts A i ry ' s shallow 
water theory predict ion tha t a wave of finite ampl i tude 
cannot p r o p a g a t e wi thout change of profile! 

The conflict between Russel l ' s observat ions and Ai ry ' s 
shallow water theory (and also S tokes ' expansion, for 
oscil latory waves of cons tant profile) was resolved inde­
pendent ly by Boussinesq [ 1 6 - 1 9 ] and Rayleigh [10], who 
showed tha t app ropr i a t e al lowance for the vertical accel­
e r a t i o n — w h i c h is ul t imately responsible for dispersion, bu t 

{Concerning this problem see, also, the papers by Rayleigh (1883) [10] 
and Popoff (1858) [11]. 

§Many writers (see, for instance, Lamb [4], Section 252) identify 
Russell as Scott Russell, but the correct surname is simply Russell 
according to: Encyclopaedia Britannica (11th edition). 
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is neglected in the Ai ry ' s shallow water theory [see Miles 
(1980)] [22] — as well as for the finite ampl i tude , leads to the 
solut ion: 

C = a o S e c h 2 ^ , 8 = ^ < \ , 52=(^)2 = 0(8), 

(1.1.1) 

where a0 is a characterist ic ampl i tude [for the initial 
elevation of a free surface characterised by the function 
£°(x/A 0 ) ] and A0 is the characterist ic wavelength, in the 
hor izon ta l x-direct ion. Final ly, c = [g(h0 + a0)]1^2 is the 
wave velocity. If we in t roduce the Froude number, 
Fr = c/igho)1"2, then (Frf = 1 + 8 . 

The characteris t ic length A0 is determined by the Ursel l 
criterion: 

U = ^ = \ , (1.1.2) 

and the essential qual i ty of the solitary wave is then the 
balance between nonlinearity and dispersion. 

The dimensionless pa ramete r U appears in the work of 
Stokes [3]. However , its full significance as a measure of the 
nonl inear i ty /dispers ion ba lance was first enunciated by 
Ursel l (1953) [23]. Rayle igh ' s der ivat ion [10] of the 
equivalents of E q n s (1.1.1) and (1.1.2) is reproduced by 
L a m b ([4], Section 252): it is m o r e direct bu t less pene t ra t ing 
than tha t of Boussinesq (according to Miles [22]). As no ted 
by Miles [22], Boussinesq, in his first paper on the solitary 
wave [16], only sketches the derivat ion of Eqn (1.1.1) for 
the profile of this wave. It is necessary to look into his 1871 
supplementary paper [17] and into either his 1872 paper [18] 
or his 1877 essay [19] to obta in a fuller apprecia t ion of his 
cont r ibut ions . L a m b [4] refers only to the 1871a paper [16] 
and, at least in retrospect , appears to have underes t imated 
the significance of Boussinesq 's work! The Boussinesq 
equations, which in their convent ional form are evolut ion 
equa t ions for the free surface displacement and the mean 
hor izonta l velocity and are no t restricted to unidi rect ional 
p ropaga t ion , do no t appear explicitly in the 1871 and 1872 
Boussinesq papers . However , the Boussinesq equat ion (19) 
in Ref. [18] or equat ion (280) in the essay [19] are, after 
d ropp ing several h igher-order terms, equivalent equa t ions 
for the free surface displacement and the hor izon ta l velocity 
at the (flat) b o t t o m of the channel . In fact, in place of these 
two equat ions , it is possible to derive the following single 
Boussinesq equation for C(^,x): 

if 3 2 1 2 \ 

Ctt — co\Cxx ~^2h~^xx "^3 ^oCxxxxJ •> (1.1.3) 

where c\ = gh0. The above equat ion is reduced below 
[Eqn (1.1.4)], to the classical K o r d e w e g and de Vries (KdV) 
equat ion [24] by factoring the opera tor C Q 6 2 / 8 X 2 — d2/dt2, 
invoking the pr ior assumpt ion of unidi rect ional p r o p a g a ­
t ion, and integrat ing with respect to x: 

C . + c 0 ( 2 ^ C k + ^ C * » ) = 0 . (1-1-4) 

This K d V equat ion admi ts only wave solut ions moving to 
the right. 

Interest waned after the resolut ion of the A i r y - S t o k e s 
p a r a d o x by Boussinesq and Rayleigh and was sporadic 
pr ior to Z a b u s k y and Kruska l ' s (1965) discovery tha t the 
solitary waves typically dominate the asymptotic solution of 
the KdV equation [25]. Cur ren t interest stems from tha t 

discovery and is intense (see Section 7.4). In fact the original 
form of the K d V equat ion (see p . 423 in the paper of 
Kor t eweg and de Vries [24]) is of the following form: 

3 / 2 1 \ 
Ct =2CoUCx + 3 ° 4 + 3 rtxxx J , (1-1-5) 

where a is a small bu t a rb i t ra ry constant , which is related 
closely to the exact velocity of the uniform mot ion 
impar ted to the liquid; the pa ramete r a is of the form: 

3 Pog 

and depends of the surface tension T of the liquid (of 
constant density p 0 ) . Kor t eweg and de Vries, who 
apparen t ly did no t k n o w of the work of Boussinesq and 
Rayleigh and who were still t rying to answer the objections 
of Airy and S t o k e s , | derived in 1895 the unidi rect ional 
equat ion (1.1.5) — the KdV equation. 

As is no ted in NewelPs b o o k [27] (Chapter 1: " T h e 
his tory of the sol i ton") : "... In this first stage of discovery, 
the p r imary thrus t was to establish the existence and 
resilience of the wave. The discovery of its universal n a t u r e 
and its addi t iona l proper t ies was to await ano ther day and 
an unexpected result from ano ther experiment designed to 
answer a total ly different quest ion [Fermi-Pasta-Ulam 
( F P U ) experiment]; see NewelPs b o o k [27], Section l b . . . " . 
K r u s k a l and Z a b u s k y [25, 2 8 - 3 0 ] approached the F P U 
p r o b l e m j from the con t inuum viewpoint and demons t ra ted 
tha t it is sufficient to consider the following KdV equation 

ut + uux + K2UXXX = 0 . (1.1.6) 

They solved Eqn (1.1.6) with 0) = COSTIX, 
0 ^ x ^ 2, and u, ux, uxx, per iodic in the interval [0,2] 
for all t; they chose K = 0.022. A set of their results is 
shown in Fig. 1 ([31], p . 14). 

u(x, t) 

2 

0 

- 1 

-

T 

|J*\ 11 

1 \ 1 1 
1 T S j / I A 

2 
X 

Figure 1. Solution of the periodic boundary-value problem for the 
K d V equation (1.1.6) [Zabusky and Kruskal (1965)] [25]. Showing the 
initial profile at t — 0 (thick line) the profile at t — \/n (broken line) 
and the profile at t — 3.6/n (full line). 

After a short t ime the wave steepens and almost 
p roduces a shock, bu t the dispersive term (K2UXXX) then 
becomes significant and some sort of local ba lance between 
nonl inear i ty and dispersion ensues. At later t imes the 
solution develops 'a train of eight well- defined waves' 

fLater on, Stokes (1891) was to recognise and admit his errors [26]. 

j W h y do solids have finite thermal conductivity? A solid is modelled 
by a one-dimensional lattice, a set of masses coupled by springs! 
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(see Fig . 1), each like sech 2 functions, with the faster (taller) 
waves cont inuously catching-up and over tak ing the slower 
(shorter) waves. At the heart of these observat ions is the 
discovery tha t these nonl inear waves can interact strongly 
and then cont inue thereafter almost as if there had been no 
interact ion at all. This persistence of the wave led Z a b u s k y 
and K r u s k a l to coin the n a m e soliton to emphasise the 
particle-like character of these waves which seem to retain 
their identities in a collision. The discovery has led, in turn , 
to an intense s tudy over the last twenty five years . The 
theory of solitons is at t ract ive and exciting: it br ings together 
m a n y branches of mathemat ics , some of which touch u p o n 
profound ideas and several of its aspects are amaz ing and 
beautiful (for instance I can ment ion the following 
impor t an t topics: the conservation laws and the Miura 
transformation, the inverse scattering transform (1ST), the 
Lax equation, the Backlund transformation, the Hi rota 
method,...).^ 

Natura l ly , when the nonl inear surface waves in weakly 
dispersing shallow water are not strictly one-dimensional, the 
K d V equat ion no longer applies! In fact, it is necessary to 
derive a new approx ima te mode l equat ion for this case.} 
This K a d o m t s e v - P e t v i a s h v i l i equat ion is of the following 
form: 

8 /8w 3c 0 8w 1 o d3u\ 1 d2u „ + „^ 

^ ( ¥ + ^ + ^ M + 2 c ° ^ = 0 - ( U - 7 ) 

Accord ing to the 1970 paper by K a d o m t s e v and Petv iash-
vili (KP) [34], if the y dependence is weak, the K d V 
equat ion can be easily corrected by add ing a small term. In 
their paper [34], K P deduced the form of this addi t iona l 
linear (!) term from considerat ion of the two-dimens iona l 
long-wave dispersion relat ion, bu t they did no t verify tha t 
there were no addi t iona l nonl inear te rms! 

N o w , it is necessary to no te tha t , the 1ST and the 
st ructure of the K d V equat ion would have remained a 
mathemat i ca l curiosity, if further impor t an t mode l equa ­
t ions (for water waves!) had no t been found to be solvable 
in this way. However , in 1972, in a paper of fundamenta l 
impor tance [35], Z a k h a r o v and Shabat showed tha t the 
nonl inear Schrodinger (NLS) equat ion , 

-\At + aAxx +P\A\2A = 0 , (1.1.8) 

could also be solved by the 1ST for initial da ta which 
decayed sufficiently fast as |x| —> oo. The N L S equat ion 
(1.1.8) for the water wave p rob lem was derived first for the 
finite depth (classical p rob lem) by H a s i m o t o and Ono 
(1972) [36]. A similar N L S equat ion was deduced earlier, 
bu t for the infinite depth , by Z a k h a r o v (1968) [37]. F o r 
two-dimens iona l surface water waves, in place of the N L S 
equat ion (1.1.8), Benney and Roskes (1969) [38] and Davey 
and Stewartson (1974) [39], derived a system of two 
equat ions , the NLS -Poisson system of two equations: 

\At + XAXX + pAyy = x\A \2A + XiABx , 

aBxx +Byy = -b\A\2

x . 

F o r the c a p i l l a r y - g r a v i t y water waves (when we take into 
account the surface tension in a classical p roblem) , 

f l can recommend three books on soliton mathematics: Refs [27, 31, 32]. 

j F o r a formal self-consistent derivation of the KP equation see the paper 
by Freeman and Davey (1975) [33]. 

expressions for the var ious cons tant coefficients in 
E q n (1.1.9) were given by Djordjevic and R e d e k o p p 
(1977) [40] and Ablowi tz and Segur (1979) [41] (see, also 
the b o o k by Craik [42], Chap te r 6). 

F o r the long waves (in shallow water) , F r e e m a n and 
Davey [33] derived a general isat ion of the K P equat ion , 
which is valid as 3 —> 0 for finite (fixed) S2/s = K0. 

If n o w 1/KQ —> 0, the long-wave limit (for 3 —> 0) of the 
system of equa t ions (1.1.9) is recovered for O(1/K0) after a 
further slight rescaling (matching between K P and N L S -
Poisson equat ions , in long-wave limit). In fact, the double 
limit, e —> 0 and 3 —> 0, is nonuniform(!) and the result 
depends on the sequence in which these limits are taken . 
However , F r e e m a n and Davey [33] showed tha t the 
in t roduct ion of a similarity pa ramete r A = l/k0, in place 
of 8, leads to a uniform double limit A —> 0, 3 —> 0.§ 

F o r an uneven b o t t o m of the channel it is also possible 
to derive the Boussinesq, K d V and K P equat ions . 1} In this 
case, E q n (1.1.6) is replaced by the following equat ion: 

ut + uux + K2Uxxx = v(h)u , (1.1.10) 

where the function v(h) represents the effects of var iable 
depth . It has been found numerical ly and confirmed 
experimental ly tha t a K d V soliton travell ing from one 
constant depth to ano ther cons tant bu t smaller depth , 
disintegrates into several soli tons of varying sizes, trailed 
by an oscil latory tail. This 'fission' is clearly related to the 
result of the 1ST [see, G a r d n e r et al. (1974)] [49] and the 
'pe r tu rbed ' K d V equat ion (1.1.10) predicts the soliton 
fission tha t occurs as a solitary wave moves into a shelving 
region [Madsen and M e i (1969)] [50]. In par t icular , the 
p h e n o m e n o n of the shelf tha t appears behind the solitary 
wave is n o w wel l -unders tood [Krickerbocker and Newell 
(1980)] [51]. The soliton in teract ions in two dimensions are 
discussed in the review paper of F r e e m a n (1980) [52]. 

The case of free-surface water waves in a channel with a 
rough bottom: 

Z = -h(x ) , X = —-p: , 8 = — <̂  1 
8 i / z n0 

is very interesting in the relat ion to the appl icat ion of the 
mult iple scale asymptot ic me thod [Rosales and P a p a n i c o ­
laou (1983)] [53] and this m e t h o d gives a surprising result: a 
K d V equat ion governing again the evolut ion of free-surface 
one-dimensional dis turbances , as in the usua l flat b o t t o m 
case, bu t the coefficients in this K d V equat ion are no t 
given explicitly! The de terminat ion of these coefficients 
requires solution of four auxiliary p rob lems . In a recent 
paper by Benilov (1992) [54], three types of b o t t o m 
t o p o g r a p h y are dist inguished, al lowing a simplification 
of the basic ( two-dimensional) shal low-water wave equa ­
t ions and for two of them, asymptot ic equa t ions of K d V 
type are derived. In a paper by X u e - N o n g Chen (1989) [55], 
a unified K P equat ion is derived asymptot ical ly, in which 
viscous (when the effects of viscosity can be considered only 
in the b o u n d a r y layer on the b o t t o m ) , topograph ic , and 
transverse modu la t iona l effects are incorpora ted . 

§For the derivation of these evolution equations (KdV, KP , N L S and 
N L S - P o i s s o n ) , see the books by Newell [27], Craik [42], Mei [43], 
Infeld and Rowlands [44] and the author ' s review paper [45, 64a]. 

yrhe Boussinesq equations for a variable depth, are discussed by 
Peregrine (1967) [46]. The modified (by a variable depth) K d V 
equation is considered by Ono (1972) [47] and Johnson (1973) [48]. 
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Final ly, in Ref. [45], quas i -one-dimensional generalisa­
t ions of different forms of the Boussinesq equa t ions are 
asymptot ical ly derived, the influence of the b o t t o m t o p o g ­
r aphy on the K P equat ion is elucidated and a significant 
second-order approx ima t ion for the quas i -one-dimensional 
long nonl inear waves in shal low water is obta ined. In this 
case it is possible to in t roduce the no t ion of a 'dressed KP 
soliton'; for the no t ion of a 'dressed K d V soli ton' , tha t is a 
K d V soliton involving higher-order correct ions, see the 
paper by Sugimoto and K a k u t a n i (1977) [56] and the 
references cited in Jeffrey and K a w a h a r a ' s book , Section 
7.2 [57]. 

The boundary -va lue classical p rob lem is extremely 
difficult, most ly because the b o u n d a r y condi t ions on a 
free (unknown) surface are nonl inear and are imposed on 
an u n k n o w n b o u n d a r y . 

Some idea of the difficulty of the p rob lem m a y be 
obta ined by asking wha t is k n o w n abou t it. The simplest 
nontr iv ia l s ta tement tha t a mathemat ic ian can m a k e abou t 
a physical p rob lem tha t it has a solut ion! 

Accord ing to Sh inbro t ' s (1973) b o o k [58], at the end of 
sixty years, there are only five s i tuat ions in which this 
s ta tement can be m a d e abou t our classical p rob lem. These 
s i tuat ions are as fo l lows . ! 

(1) h = oo. In 1925, Levi-Civita p roved tha t in water of 
infinite depth , there is a per iodic wave tha t travels wi thout a 
change in shape. This means tha t the velocity poten t ia l 
(j)(t,x,z) does no t depend on x and t separately, bu t only on 
a combina t ion (x — ct) for some constant c. The free-
surface elevation C{UX) a l s o depends only on (x — ct), 
while (f> and £ are bo th per iodic functions of (x — ct). 

(2) h = h0 = const . Short ly after Levi-Civita proved his 
result, Struik (1926) [13] showed tha t it could be generalised 
to the case of a flat hor izon ta l b o t t o m . Again , Struik 
proved the existence of a per iodic wave travell ing wi thout a 
change in shape. 

(3) A solitary wave. There was a long gap between 
Struik 's result and the next step. In 1954, Fr iedr ichs and 
Hyers [59] proved , again for h = h0 = const, the existence of 
ano ther type of wave, again travell ing wi thout a change in 
shape at a cons tant speed. This solitary wave can be looked 
on as a per iodic wave, a la Struik, bu t with an infinite 
wavelength. 

(4) Wa ves over a periodic bottom. If the b o t t o m is per iodic 
and has only one m a x i m u m and one min imum per per iod, 
Gerber (1955) [60] p roved tha t there is a steady flow in which 
a free surface has the same proper t ies . In addi t ion, the 
t roughs of the free surface lie directly over the t roughs of the 
b o t t o m , and the crests lie over the crests of the b o t t o m . 

(5) Flow over a monotonic bottom. In the same paper 
[60], Gerber p roved also tha t over a m o n o t o n i c b o t t o m , 
there is a flow with a m o n o t o n i c free surface. Again this can 
be looked u p o n as a flow over a per iodic b o t t o m with an 
infinite per iod. 

All these examples are essentially examples of steady 
flows. The last two are steady to begin with. The first three 
become steady when observed in a coord ina te system 
moving at a velocity c and all the above flows are two-
dimensional. After sixty years, there are no known unsteady 
or three-dimensional flows or theorems about existence of 
flows over 'general' bottomsl 

fLater, we shall consider additional information on the 'correctness' of 
our classical problem. 

At last, it is also necessary to ment ion the Whitham 
theory of nonl inear dispersive systems. F o r a first account , 
the reader can see the " E p i l o g u e " in Lighthi l l ' s b o o k [61]. 
W h i t h a m ' s b o o k [62] includes a full account of nonl inear 
dispersive waves. 

The nonl inear instabili ty and bifurcat ion of water waves 
with special reference to the Benjamin-Feir resonance 
mechanism are discussed in Section 13 of a review paper 
by D e b n a t h ([63]; pp 2 3 3 - 2 5 5 ) . This section of D e b n a t h ' s 
paper also includes, the Whitham instability theory of deep 
water waves, the nonl inear p rob lem of the instability of a 
finite-amplitude uniform wavetrain, from the N L S equat ion , 
the F P U recurrence phenomenon and Longue t -Higg in ' s 
bifurcation analysis of gravity waves on deep water . 

The p rob lem of the wave interactions, is discussed in the 
b o o k by Craik [42]: these interact ions are represented 
mainly by the three-wave resonance driven by nonlineari t ies 
which are quadra t i c in waves ampl i tudes . 

2. Mathematical formulation of the nonlinear 
theory of water waves 
2.1 Mas ter equations 
In the absence of viscosity, tangent ia l stresses in the fluid 
are zero everywhere and the stress tensor reduces to —pbtj, 
where 8̂  is the Kronecker delta. 

Therefore, the equat ion of mot ion becomes: 

D M 1 „ 
(2.1.1) 

where we assume tha t the b o d y force act ing on a liquid is 
only due to gravity g = (0 ,0 , —g). The m o m e n t u m equat ion 
(2.1.1) and the mass conservat ion equat ion 

V-u = 0 (2.1.2) 

provide four scalar equa t ions for the de terminat ion of u, p 
and p as functions of independent variables x and t. 

In general, one further scalar equat ion is needed, and it 
is usual ly the equat ion of state of a liquid. However , if the 
liquid behaves as if it were incompressible, we then have the 
addi t iona l equat ion 

D p 

Dt 
= 0 (2.1.3) 

which is of course simply a par t icular form of the equat ion 
of state for our liquid. 

The explicit use of E q n (2.1.3) is often rendered 
unnecessary by a s ta tement tha t the density is initially 
(at t = 0) h o m o g e n e o u s and consequent ly remains h o m o g e ­
neous . 

Final ly, for a ' really ' (when p = p0 = const) incompres ­
sible inviscid liquid, the set of equa t ions 

D M 1 „ 
— + — V/;: 
Dt p0 

V-w = 0 

g , (2.1.4a) 

(2.1.4b) 

is n o w sufficient for de terminat ion of the functions u, p, 
provided adequa te b o u n d a r y and initial condi t ions are 
k n o w n (see Section 2.2). 

If we start from the above incompressible system of 
equa t ions (2.1.4), we can easily derive a single equat ion for 
the vorticity vector curlw. In view of the vector identities 
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V x u = curlw and (w«V)w = V ( g 2 / 2 ) — u x curlw, where 
g 2 = u*u, E q n (2.1.4a) can be wri t ten as: 

du 
dt 

— ux curl u + V 
Po 2 

(2.1.5) 

Then if g is of the form VG, as is indeed the case when g 
represents the force of gravity, and if the curl of the 
above equat ion is assumed to eliminate the te rm 
V / / = V [ p / p 0 + # 2 / 2 + G], we obta in the following 
He lmhol tz ' s equat ion: 

6 c u r l + y x ^ c u r l u x u j = q ^2.1.6a) 
8; 

or 
D 
Dt 

curlw = (curlw*V)w , (2.1.6b) 

in which use has been m a d e of the auxil iary relat ions: 
V*w = 0 and V*curlw = 0. 

N o w , we can use the Lagrang ian type of specification, by 
no t ing tha t a and X(a, t) are the posi t ion vectors of one end 
of a mater ia l line element at t imes t = 0 and t respectively. In 
this case we can derive the following Cauchy formula at a 
t ime t: 

curl u = C0j — , 
GClj 

(2.1.6 c) 

where the cot are the componen t s of curlw and at are the 
componen t s of a; is the initial value (for t = 0) of cot 

(see, [64b], p . 65). 
F r o m E q n (2.1.6b), we see tha t curlw = 0 is a possible 

solut ion! Therefore if (D® = 0, this remains t rue at all t imes. 
In the case of water waves, typical free-surface p rob lems are 
p ropaga t i on into water at rest or t h rough a uni form stream: 
in b o t h cases we have: CQ® = 0 and the above a rgument 
applies. Na tu ra l ly , the solut ion is un ique provided tha t all 
componen t s of Vw are b o u n d e d . 

However , it is necessary to no te also tha t in the presence 
of a free surface the vorticity of an inviscid incompressible 
liquid is no t necessarily zero, if it is zero initially! Indeed, a 
free surface can intersect itself, as it h a p p e n s when a water 
wave b reaks and vortex sheets are formed. Of course, in this 
case, in place of the Laplace equation: 

V - (V0) = V2</> = A</> = 0 , (2.1.7) 

where </> is the velocity potential, A is the three-dimensional 
Laplace operator, it is necessary to consider, for the 
ro ta t iona l and inviscid flows, the full Euler incompressible 
system of equa t ions (2.1.4) for u and p. 

But here, in mos t cases, we shall restrict the discussion 
to i r ro ta t iona l po ten t ia l flows, when curlw = 0 and u = V</>. 

In such cases, it follows from, E q n (2.1.5) tha t 

dt 
+ VH = V 

dt po 2 
0 (2.1.8) 

This shows tha t the quant i ty in the parentheses must be a 
function of t a lone, say, B(t). 

The form of this u n k n o w n function is wi thou t signifi­
cance, because we could define a new velocity poten t ia l <// 
such tha t <// = 4> — $B(t) dt, V<// = V</>, and thereby remove 
the function of t wi thout affecting the velocity dis t r ibut ion. 
It is cus tomary to ignore the a rb i t ra ry function of t and to 
wri te the integral of Eqn (2.1.8) as the Bernoulli equation: 

p=Po-p°(*w+j-g'x)' ( 2 L 9 ) 

t h r o u g h o u t the liquid, where p0 is an a rb i t ra ry constant 
and G = —g-x = gz. 

The Bernoull i integral of the above relat ionship p r o ­
vides an explicit expression for the pressure p, when the 
velocity dis t r ibut ion is known . It is par t icular ly useful in the 
free-surface p rob lem, because </> satisfies the Laplace 
equat ion (2.1.7) and is determined uniquely by certain 
types of b o u n d a r y condi t ions (see Section 2.2), and can 
therefore be determined wi thout regard for the pressure 
(since p0 = pa on a free surface, assuming tha t the 
a tmospher ic pressure pa is independent of posi t ion on 
the free surface). 

W h e n the solution of Eqn (2.1.7) is found for the 
relevant b o u n d a r y condi t ions , the interest ing physical 
quant i t ies u and p are given by u = V</> and by E q n (2.1.9). 

2.2 Boundary and initial conditions 
Var ious initial and boundary conditions m a y be specified for 
the Euler equa t ions (2 .1 .1) - (2 .1 .3) . But for the water wave 
mot ion , those encountered most frequently are the 
following: 

(a) a complete set of initial condi t ions is obta ined if u, p 
and p are specified initially (for t = 0); 

(b) at a solid b o u n d a r y , a liquid does no t pene t ra te the 
b o u n d a r y , i.e., the n o r m a l componen t of the liquid velocity 
must be zero relative to the b o u n d a r y (slip condition);^ 

(c) at a b o u n d a r y between two immiscible l iquids, the 
condi t ion to be satisfied is tha t the pressure shall be 
continuous at the b o u n d a r y as we pass from on side to 
the other (assuming tha t there is no surface tension\);X 

(d) there is no condi t ion on the density p at the solid 
b o u n d a r y . 

Usual ly , for the Laplace equat ion (2.1.7), one b o u n d a r y 
condi t ion is given (on the con tour line conta in ing the 
liquid), bu t only when the b o u n d a r y is k n o w n ! Two 
condi t ions are needed for a free surface, z = £(^ ,x ,v) , 
because the surface posi t ion i^(t,x,y) has to be determined 
as well as the poten t ia l <j)(t,x,y,z). 

On a free surface, the first b o u n d a r y condi t ion is the 
kinematic condition. This condi t ion can be derived mos t 
readily by requir ing tha t the substant ia l derivative D/Dt of 
the quan t i ty f = z~C should vanish on the free surface. 
The result of this constra int is tha t : 

0 Z = Ct + + <l>yCy on z = C(x, y, t) . (2.2.1) 

W e shall generally ignore the mot ion of the a tmospher ic 
air above a free surface, bu t the k inemat ic b o u n d a r y 
condi t ion (2.2.1) is no t affected by this choice. 

The second condi t ion on the free surface is the dynamic 
condition. In the derivat ion of this condi t ion, we shall 
assume tha t for no mot ion of the air, the pressure is 
cons tant ( p a ) . The pressure on the free water surface 
then depends on the surface tension. If we d r aw a line 
on this free surface, the liquid on the right of the line is 
found to exert a tension T (per uni t length of line) on the 
liquid to the left; T is the surface tension: it differs for 
different l iquids and it also depends on t empera tu re . F o r 

fFor an inviscid Eulerian liquid, there is no restriction on the velocity 
component tangential to a solid boundary. 

J All the available evidence does show that, under conditions common 
in moving liquids, both the tangential and normal components of 
velocity are continuous across a material boundary between a liquid 
and another medium. 
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instance, for an interface separa t ing air and ' pu re ' water at 
15 °C: T = 73.5 dyn c m - 1 (or erg c m - 2 ) . F o r a th ree-
dimensional free surface we can show that , for an Euler ian 
liquid, we have, 

-Pa + TJ , (2.2.2) 

where J = ¥'n=l/Ri + 1/R2 is called the sum of the 
pr incipal curvatures on the free surface (Ri and R2 are the 
pr incipal radi i of curva ture of the sections of the interface 
formed by two o r thogona l p lanes conta in ing the vertical 
axis Oz which is opposi te in direction to the gravi ta t ional 
force). Thus , at any poin t on a free surface, there must be a 
j u m p in the liquid pressure when passing t owards the side 
of the surface on which the centre of curva ture lies. W e 
no te tha t at a poin t near O the uni t n o r m a l vector n to 
the free surface z = £(^ ,x ,v) , expressed in te rms of 
rectangular coord ina te axes, has the componen t s 
(-tx/N;-Cy/N;+l/N), where tf2 = l + £ + £ T h e 

exact expression for V*w is: 

V-II = - ^ 3 [(1 + £ X - XAytxy + (1 + CJ)C»] • (2.2.3) 

To apply the surface pressure condi t ion (2.2.2), in 
connect ion with expression (2.2.3), we go back to the 
Bernoul l i equa t ion (2.1.9), where po = pa and —g>x = gz; 
since on a free surface we have z = C a n d p is given by 
(2.1.9), it follows tha t 

^ + ^ ( ^ + ̂  + 0 z ) + - ( V - » ) + g C = O 
z Po 

on z = C(x, y, t) (2.2.4) 

is our dynamic free-surface nonlinear boundary condition. 
N o w , if we assume tha t the liquid rests on a hor izonta l 

and impermeable b o t t o m of infinite extent (z = —ho), where 
h0 = const is finite, we have the following simple (flat) 
b o t t o m b o u n d a r y condi t ion: 

4>z = 0 at -h0 . (2.2.5) 

Na tura l ly , if we take into account the b o t t o m t o p o g ­
r aphy (but assume tha t it is independent of t ime t), then in 
place of this simple condi t ion (2.2.5), we must wri te (for 
inviscid liquid, we have w-V0 = 0) an uneven b o t t o m 
condi t ion: 

</>z = §o(^xGx + <l>yGy) at z = - h 0 +g0G[y; — j , 

Vo moJ 
(2.2.6) 

where g0 is a typical elevation of the b o t t o m t o p o g r a p h y 
[g0 = G(0,0)] and / 0 , m 0 are the scale lengths associated 
with the var ia t ions in the channel b o t t o m in the x and y 
directions. 

F o r the deep-water waves, in place of condi t ions (2.2.5) 
or (2.2.6), we can write the following behav ioura l condi t ion 
for (f>z: 

4>z —> 0 , when z —> —oo . (2.2.7) 

In the case of the condi t ions relat ing to x and y, since we 
suppose tha t the liquid rests on a b o t t o m of infinite extent, 
it is necessary to impose some behav ioura l condi t ions at 
infinity in the x and y directions. In fact, usual ly it is 
sufficient to suppose tha t the water wave mo t ion is periodic 
in x and y. 

The Laplace equat ion 

A</> = 4>xx + 4>yy + </>zz = 0 for - h o ^ z ^ C(x, y, t), 

(2.2.8) 

with the three b o u n d a r y condi t ions (2.2.1), (2.2A) and 
(2.2.5) is our [simplified because we usually have also T = 0 
in (2.2.4)] classical three-dimensional nonlinear water wave 
problem. 

In the derivat ion of the mode l equa t ions from the 
classical p rob lem, a m o r e expedient app roach is to replace 
the k inemat ic b o u n d a r y condi t ion (2.2.1) by the s ta tement 
tha t the substantial derivative of the pressure p is zero on a 
free surface. This is a ra ther p ragmat i c mixture of the 
dynamic and kinemat ic b o u n d a r y condi t ions , since the 
sta tement tha t Dp/Dt = 0 on z = C(x, y, t) implies tha t 
this is precisely the appropr i a t e moving surface on which 
the pressure p is constant (p = pa). But , from the Bernoull i 
equat ion (2.1.9), we also have 

Po z 

Hence , we obta in the desired b o u n d a r y condi t ion on a free 
surface: 

. / 9 j . 9 j . 9 j . -

on z = C(x, y, t) . (2.2.9) 

The above b o u n d a r y condi t ion can also be derived directly 
from the two b o u n d a r y condi t ions (2.2.1) and (2.2.4) with 
T = 0. 

N o t only do nonl inear te rms appear in the classical 
water wave p rob lem, bu t the posi t ion of a free surface is 
also an u n k n o w n quan t i ty — an exact analyt ical theory of 
the water wave p rob lem is therefore a lmost impossible! 

In dealing with the free-surface classical p ivota l p rob lem 
we can first consider a 'signaling' (two-dimensional) problem, 
when the liquid is initially at rest in a semi-infinite channel 
x > 0. W e then have 

0 (0 , x, z) = C(0, x) = 0 , for x > 0 , t = 0, (2.2.10) 

and at t ime t = 0 an idealised wave-maker at x = 0 
generates a hor izon ta l velocity d is turbance: 

4x(t9 0, z) = W0B at t > 0 , (2.2.11) 

where W0 and t0 are the characterist ic velocity and t ime 
scales associated with the wave-maker idealised by the 
function B(t/t0). 

A second category of classical p rob lem of water waves 
in an infinite channel is encountered by specifying an initial 
surface shape bu t zero velocity (one could also specify an 
arb i t ra ry initial velocity dis t r ibut ion, for example, 4 > t , . . . ) 
for t = 0: 

C = a0Co <l>(0,x,y,z) = 0i (2.2.12) 
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where a0 and Ho are the characterist ic wavelengths (in the x 
and y directions) for our three-dimensional water wave 
mot ion and a0 is the characterist ic ampl i tude for the initial 
elevation of a free surface represented by the function 

Co(*M)> y/Po)-
A variational der ivat ion of the classical p rob lem is dealt 

with in a paper by L u k e (1967) [65] and also in a b o o k by 
W h i t h a m (1974, [62], p . 435). In this derivat ion it is 
necessary to t ake into account the following var ia t ional 
principle: 

jCdtdx dy = 0 , 

where 

(2.2.13) 

dz . (2.2.14) 

Var ia t ion with respect to </> yields the Laplace equat ion 
(2.2.8) inside a liquid, the b o t t o m b o u n d a r y condi t ion 
(2.2.6) (with h = h0 — goG), as well as the k inemat ic 
b o u n d a r y condi t ion (2.2.1) on a free surface z = £• 

Varia t ion with respect to £ yields the dynamic 
b o u n d a r y condi t ion (2.2.4), bu t with T = 0, on a free 
surface z = £• 

W e no te tha t here R in (2.2.13) is an a rb i t ra ry region in 
the (t,x,y) space. W h e n the expression (2.2.14) is subst i ­
tu ted in E q n (2.2.13), the integrat ion is over a region R+ of 
the (t,x,y,z) t i m e - s p a c e consist ing of po in ts with (t,x,y) 
in K for -h < z < £. 

The extra te rms gz and 4>t in the expression (2.2.14), 
compared with the Dirichlet principle 

+ $ + dt dx d v d z = 0 , 

which yields the Laplace equat ion , affect only the 
b o u n d a r y condi t ions , since they m a y be integrated out 
and cont r ibu te only to the te rms or iginat ing from the 
b o u n d a r y of 1Z+. 

2.3 Dimensionless problem 
The dimensionless independent variables (with the pr imes) 
x'9y'9 z', and t' are defined by: 

' x ' y ' z +' 1 n-xw 
* =^-> y = —, z = r > f =~r> ( 2 - 3 - r ) 

a0 Ho n0 t0 

with t0=X0/c0 and c0 = (gh0)1^2 and in this case the 
S t rouha l n u m b e r is S=A0/c0t0 = \. N o w , we scale the 
functions </> and £: 

(f> = — T > C = — , e = — 
8c0a0 a0 n0 

(2.3.2) 

W h e n we drop the pr imes, we can write, for the 
dimensionless velocity po ten t ia l (fi(t9x9y9z), the following 
dimensionless Laplace equat ion , in place of E q n (2.2.8) 

4>a + <52</>„ + A2<f>yy = 0 , - 1 < z < e{(x, y, t) . (2.3.3) 

In the Laplace equat ion (2.3.3), we have the following two 
nond imens iona l pa ramete r s : 

A0 ' Ho ' Ho & 
(2.3.4) 

In place of the b o u n d a r y condi t ion (2.2.5), we find the 
following simple dimensionless hor izon ta l (flat) b o t t o m 
condi t ion: 

</>_ = 0 , at z = -l (2.3.5) 

In place of the b o u n d a r y condi t ions (2.2.1) and (2.2.4), 
with T = 0, on z = s£(t,x,y)9 we obta in the following two 
dimensionless free surface condi t ions: 

<PZ = 8% + 8 ( « 5 2 < k C + A2<Py{y) , (2.3.6) 

* / + ^ ( « ^ + « ^ # + ^ # ) + C = 0 , (2.3.7) 

a long the free surface z = s£(t,x,y). W e no te tha t in the 
condi t ion (2.3.7) the F r o u d e n u m b e r is Fr = Co/(gho)1^2 = 1. 

E q n (2.3.3) with condi t ions (2 .3 .5) - (2 .3 .7) represents 
our main dimensionless classical problem. 

If we t ake into account expression (2.2.3) for V*w, then 
we can also wri te down the full dynamic b o u n d a r y 
condi t ion (2.2.4) in the following dimensionless form: 

= S2 W e ( l + s2d2C2

x + s2A2C2y3/2 

% (1 + s2S2C2

x)Cyy - 2E2A2UyLy + (1 + s2A2C2)C, 
0 

on z = e£(t,x,y) , (2.3.8) 

where the dimensionless pa ramete r 

T 
W e = (2.3.9) 

8Pohl 
is the Bond-Weber number . The dimensionless form of the 
b o u n d a r y condi t ion (2.2.9) is 

<t>tt + ^ 2 + 2 8 ($x4>xt + ^2" Wyt + ^2 ^z^zt 

- + -
dx ' 32 *y dy 32 " z dz 4>z 

0 , on z = eC(t,x,y) , 

(2.3.10) 

when W e = 0. 
Final ly, in place of the uneven b o t t o m condi t ion (2.2.6), 

we can obta in the following dimensionless condi t ion: 

---l+aG(x*,y*) 

(2.3.11) 

4>z = *[524>xGx+A24>yGy] on 

with the following three dimensionless pa ramete r s : 

Ao Po 
h0 m0 

(2.3.12) 

and with the b o t t o m variables: x* = fix and y* =yy. 
In the signaling p rob lem, in place of the b o u n d a r y 

condi t ion (2.2.11), we obta in the following dimensionless 
condi t ion: 

<j)x(t,0,z) = coB(t) for t>0 9 (2.3.13) 
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when we assume tha t t0, in expression (2.2.11), is just a0/C0. 

In condi t ion (2.3.13) we have a new dimensionless p a r a ­
meter 

W0 

CO = — = -
sc0 

Wo/co 
(2.3.14) 

W h e n dealing with the initial surface shape p rob lem we 
can write, in place of the first of condi t ions (2.2.12), the 
following initial dimensionless condi t ion for t = 0: 

(2.3.15) 

In the above dimensionless p ivota l p rob lem the p a r a m ­
eter 8 = aolAo is the nonlinearity parameter and, for s —> 0, 
with x , v, z, and t fixed and also for fixed values of 3 and A, 
we have — in place of expressions (2.3.3), (2 .3 .5) - (2 .3 .7) — 
the classical linear water wave pivotal problem for </>0: 

^0)zz+32Wo)xx+A2($o)y = 0 , for - l ^ z ^ O , 

(</>0)z = 0 for z = - l , 

(</>0)z+<52(</>0)„ = 0 for z = 0 , (2.3.16) 

where l im 1 cf> = </>0, with: l im 1 = [e —> 0; with x , y, z, t,3 
and A fixed]. The pa ramete r 3 is the long longitudinal (x 
direction) water wave pa ramete r and A is the long 
transverse (y direct ion) water wave pa ramete r . 

In the next sections we shall consider mainly the 
following asymptot ic s i tuat ion: 

e < | l , < 5 < | 1 , A ^ l , 

with two similarity re la t ionships 

K 0 £ , v 0 e , 

(2.3.17) 

(2.3.18) 

where K0 and v 0 are of the order of uni ty when e —> 0. In 
fact, we assume tha t : 

(a) the water wave ampl i tudes are small; 
(b) the water is shallow, compared with typical h o r ­

izontal wavelengths; 
(c) the water waves are nearly one-dimensional ; 
(d) these three small effects all have comparable influ­

ence (all three effects ba lance , according to the Urcel l 
criterion [23]). 

W h e n a <̂  1, the effects of the elevation of the uneven 
bottom topography are small. W e no te also tha t when ft > 1 
and y 1, we have a rough b o t t o m and for ft <̂  1 and y <̂  1, 
a slowly varying b o t t o m . 

If we n o w consider the m o r e complete dynamic free-
surface condi t ion (2.3.8), we encounter two cases. In the 
first case we suppose tha t W e = 0 ( 1 ) is of the order of 
uni ty, and then, in the linear p rob lem (2.3.16), the last 
b o u n d a r y condi t ion for z = 0 must be replaced by the 
following condi t ion 

( ^ ) , + ^ ( W « + W e ( ^ = 0 , for z = 0 . (2.3.19) 

In the second case we assume tha t 

W e > l , bu t 32Wq = We* = 0 ( 1 ) . (2.3.20) 

3. Boussinesq equations 
3.1 Two-dimensional Boussinesq equations 
In the derivat ion of the two-dimens iona l Boussinesq 
equa t ions for two-dimens iona l waves on the surface of 
water , we take 

4> = <i>o{t,x,y,z') + 52<t>\{t,x,y,z') 

+ <54</>2(;,x,v,z,) + 0(<56) for z ' = z + l , (3.1.1) 

and subst i tute this into the dimensionless three-dimensional 
p ivota l p rob lem formulated in Section 2.3 (we assume tha t 
W e = 0 and A2 = 32) for £ and </>. 

The lowest-order term, according to the dimensionless 
Laplace equat ion (2.3.3) 

(3.1.2) 

equivalent to assumpt ion tha t the hor izon ta l velocity 
componen t s are independent of the depth: 

, . 8 f dF 
(3.1.3) 

If (f>l vanishes at the b o t t o m (z' = 0), and w0, v 0 are the 
hor izon ta l componen t s of the velocity at the b o t t o m , we 
can drop a further a rb i t ra ry function and find <f>x: 

1 , 2 / 9 w 0 8v0^ 
(3.1.4) 

since d(fil/dzf = 0 at z = 0. Subst i tut ing the solution for 
4>l into the equat ion for </>2 

9 z ' 2 \dx2 dy2 J ~ 2 \dx2 dy2J\dx + dy 

and integrat ing, and again using the condi t ion 9(/>2/9z' = 0 
at z ' = 0, we can determine the function <f>2 

* 2 ~ 2 4 Z [dx2+dy2)\dx+ dy 
(3.1.5) 

since we assume tha t (f>2 vanishes at z ' = 0. 
N o w , we tu rn to the two dimensionless b o u n d a r y 

condi t ions on the free surface z ' = 1 + s £ [see expres­
sions (2.3.7) and (2.3.6)]: 

W . 9 . .9 . 1 
2 

( / > ? + - 8 ( ^ + ^ + ^ ^ ) + £ = 0 , (3.1.6a) 

(3.1.6b) 

As before, we shall retain up to order 34, s2 and 32s in 
E q n (3.1.6b) and 32, s in Eqn (3.1.6a). In this case, in place of 
E q n s (3.1.6a) and (3.1. 6b), we obta in , m a k i n g use of solut ions 
(3.1.2), (3.1.4) and (3.1.5), the following two equat ions : 

& 9C, 8 C \ , 0 2 / ! t 0 r \ ( Q u o Q v 0 

S + g f i M + v 0 5 - + 5 ( 1 + e O — - + dx ' u 8v, 

,2 * 2 

dx dy 

dF 1 ^ 8 {duo dvo\ 1 , ? ? x n _ „ ^ 
W~23

 8 7 ( 6 7 + 6 7 j + C + 2 ^ + ^ = 0 - ( 3 - L 8 ) 

W e can immediate ly rea r range E q n (3.1.7) as: 

^ + ^ [ ( 1 + 8 0 w o ] + l [ ( 1 + 8 0 v o ] 
8; 8x 

0v0 

6 \dx2 dy2J\dx dy 

since we are assuming tha t 32 = K0S. 

(3.1.9) 
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In E q n (3.1.8) we differentiate first with respect to x9 

and then with respect to y9 to get two equat ions : 

du0 9f / du0 du0 

2 dtdx \dx d y / v J 

8v 0 8C / 8v 0 8v 0 

2 8;8v \ 9 * d y / v 7 

with 

du0 8v 0 

9v 8x 
(3.1.11) 

since the 'flow F ' is i r ro ta t ional . 
Final ly, for our three u n k n o w n functions w0, v 0 and £ we 

find three approximate two-dimensional Boussinesq equa­
tions (3.1.9), (3.1.10a) and (3.1.10b). 

W e specify tha t , in these above Boussinesq equat ions , w0 

and v 0 are the nonaveraged componen t s of the hor izon ta l 
velocity at the b o t t o m z = — 1, satisfying also the i r ro ta -
t ional i ty condi t ion (3.1.11). 

W h e n KQ —> 0, in the Boussinesq system (3.1.9), (3.1.10a) 
and (3.1.10b), we obta in the nonl inear Ai ry ' s shallow water 
equations: 

8C: + | : [ ( i + « f ) « o ] + ^ [ ( i + 6 0 v o ] = o > 8^ dx 

8w0 / 8w0 8w0 _ + ^ M o _ + V o + 
8C : 

8x 

8v 0 / 8v 0 8 v 0 \ 8C _ + 8 ^ _ + V o _ j + _ : 

0 , 

0 

(3.1.12) 

The Laplace equat ion (3.2.1a) is the only equat ion which 
conta ins z in its solut ion and this var iant m a y be m a d e 
explicit by formally expanding its solution in powers of S2 

and A2 and writ ing: 

0 = 000 + <5201O + ^ 0 2 0 + ^ 0 0 1 + ^ 0 3 0 + < ^ 2 0 1 1 + . . . • 

(3.2.2) 

This above asymptot ic representa t ion is consistent with our 
main hypothes is described by expressions (2.3.17) and 
(2.3.18). N o w , for </>00 we must resolve the following 
trivial p rob lem: 

(0oo) z z = 0 w i t h (0oo) z = 0 for z = - 1 , 

and we find 

$00=F(x9y9t) . (3.2.3) 

Below, for the simplicity we assume again tha t the 
arbitrary function F is the (unknown) value of velocity 
potential </> on z = — 1, and in this case we can wri te also 
the following b o u n d a r y condi t ions for the te rms of 
expansion (3.2.2): 

0io = 02o = 0 o i = 0 3 o = 0 i i = 0 f o r z = - 1 . ( 3 . 2 . 4 ) 

But , according to E q n (3.2.1b), we have also, as the 
b o u n d a r y condi t ions on z = — 1, the following b o t t o m 
condi t ions: 

( 0 io ) z = (02o)z = (001 ) z = (03o) z = (011 ) z = 0 

for z = - 1 . (3.2.5) 

W e can wri te immediate ly the solution of the equat ion for 

*io . (4>io)zz = -(F),, • 

4>io = - k + i ) 2 0 F L • (3.2.6) 

The cor responding velocity po ten t ia l </> for these t w o -
dimensional Boussinesq equa t ions is of the following form, 
according to Eqns (3.1.1), with (3.1.2), (3.1.4) and (3.1.5): 

3.2 Quasi-one-dimensional Boussinesq equations 
In the derivat ion of these equat ions , let us consider, 
according to Zey toun ian [45, 64a], the following d imens ion­
less p rob lem (see Section 2.3), bu t with an error of 0(s2A2)9 

4>zz+&<l>xx +*<l>yy 0 for - 1 ^ z ^ eC(x, y, t) , 
(3.2.1a) 

</>_ = 0 for z = - 1 , (3.2.1b) 

</>z = 32Ct + s(d24>x£x + d24>y£y) on z = eC(x, y9 t) , 

(3.2.1c) 

By analogy, for the functions </>20, 0oi , 030 a n d 0 n , which 
are the solut ions of equa t ions (02o) z z = ~(4>io)xx^ ( 0 o i ) z z = 
- ( F )yy> (03O)Z Z = - ( 0 2 O L > *nd ( 0 n ) z z = " ^ l o ) ^ , W e 
obta in , respectively, the following explicit solut ions in 
te rms of z: 

020 =^{z + \)\F)xxxx 

0 o i =-\(z + l)2(F)yy , 

03O = - ^ t + l ) 6 ( ^ ) , 

0 n = ^ t + l ) 4 ( n xx y y ' 

(3.2.7a) 

(3.2.7b) 

(3.2.7c) 

(3.2.7d) 

Final ly, we obta in , in place of E q n (3.2.2), the following 
asymptot ic representa t ion for the velocity poten t ia l </>, as 
the solution of the Laplace equat ion with the b o t t o m 
condi t ion for z = — 1: 

<Kx,y,z,t) = F(x, y, t)-\d\z + \)2(F)XX 

1 

2 

sjCyy 

2 

:<5 2We Cxx "I" c.0 Cy 

on z = eC(x ,y , r) . (3.2.1 d) 

+ ^ ^ 4 ( z + l ) 4 ( ^ L „ - ^ 2 ( z + l ) 2 ( % 

- — S6(z + 1 ) 6 ( F ) „ _ + ^ <52A2(z + \)\F)xxyy 720 

(3.2.8) 



Nonlinear long waves on water and solitons 1343 

N o w , by means of the Taylor expansions, we can calculate 
the derivatives (j)s, with s = (t,x,y), and </>z, on z = s£(s): 

~ ( F ) Y Y S - 2b[C{F)„S + } , (3.2.9a) 

l<t>. - 1 (F)xx + ^ <5 (F)xxxx O2 (F)yy 

1 * 4 , R T , 1 ,2, 

(3.2.9b) 

( F 2 ) , + C 2 - W e * ( C 2 ) „ 

z 7C0 

^O , 
2 2 

^ 0 / ^ x 2 . v 0 / r \ v 0 \ 2 
~^(Fo)xxxxt ~ y ( ^ o ) ^ + y C ^ o ) ^ ~2^(Fo")yy 

+ ^-(Fo)xxx(Fo)x+K0 [UFo)xx]t 

(C2), + (F2)xx = ~f(Fl)yy ~ [UFl)x + UFo)x]x KQ 

K 0 

( F o ) M x * + ^ [ £ o ( ^ o ) m L 

Final ly, if we t ake into account our two b o u n d a r y 
condi t ions (3.2.1c) and (3.2.Id) on the free surface 
z = e£(s), s = (t,x,y), re la t ions (3.2.9) and two similarity 
relat ions (2.3.18), S2 = K0S and A = v 0 e, and also the h y p o t h ­
esis (2.3.20), W e > 1 bu t 32 W e = We* = 0 ( 1 ) , we obta in the 
following two approx ima te equa t ions [with an error of 
0 ( e 3 ) ] for the two u n k n o w n functions £(^ ,x ,v) and F(t,x,y): 

(F\ + C - W e * C „ + e { ± (Ft ~ F ( F ) „ , " | W e * C , } 

+ e2{f4(F)^,+^(Ft -|(%, + ^ 

" y " K b [ C ( F ) J , } = 0 ( e 3 ) , (3.2.10a) 

C + (Ft + + [Wx]x ~ f } 
+ 8' 

\ 1 2 0 XX XX xx 2 KQ y\y 

(3.2.10b) 

Here , app rox ima te equa t ions (3.2.10a) and (3.2.10b), which 
include the te rms of order 0(e) and also 0 ( e 2 ) , are called 
the 'quasi-one-dimensional generalised Boussinesq ( Q 1 D G B ) 
equations'. 

Natura l ly , in E q n s (3.2.10a) and (3.2.10b) the u n k n o w n 
functions y, t) and F(x, y, t) are implicit functions of 8, 
and we can write: 

F = F 0 + 8 F 1 + 8 2 F 2 + . . . , £ = £ 0 + £ £ 1 + £ 2 £ 2 + . . . 

(3.2.11) 

Us ing the above expressions and E q n s (3.2.10a) and 
(3.2.10b), we derive successively the following limiting 
equa t ions for F0 and £ 0 , Fx and £i and also for F2 and £ 2 : 

( F 0 ) , + C o - W e * ( C 0 ) « = 0 , 

(Co), + (Fot = 0 ; (3.2.12a) 

| [ C o ( F 0 ) y ] y + | ( F o L w . (3.2.12c) 

In the derivat ion of the proper ly called quas i -one-
dimensional Boussinesq (Q1DB) equat ions , we re turn to 
general equa t ions (3.2.12a) and (3.2.12b), bu t we suppose 
tha t the B o n d - W e b e r number is W e = 0 ( 1 ) . In this case, 
according to the first of similarity relat ions (2.3.18), all the 
te rms are p r o p o r t i o n a l to We* = 8 f c 0 W e , and are therefore 
of the order of s. 

Hence , in place of E q n s (3.2.12a) and (3.2.12b), we find 
the following system of two equa t ions for F0 and Fx\ 

(Fo)tt ~ (Fo)xx = 0 , 

( * i ) , - ( * i L = ? 

(3.2.13) 

" K o W e ( F o ) ^ 

2 

-(FoWot ~ [(Fo)x(F»),]x +^(Fo)yy , (3.2.14) 
KQ 

after the el imination of the functions £ 0

 a n d Ci-
N o w , if we in t roduce the following composi te func­

t ion F* = F0 +eFi, we can derive, from Eqns (3.2.13) and 
(3.2.14), the following Q 1 D B single equat ion for 
F*(x,y, t): 

( n t t - ( n x x - z v j ( n y y + z 
KQ 

(F*)2

x+\(F*?t 

+ 8 J c 0 ( W e - - J ( F * ) „ a = 0 , (3.2.15) 

when we t ake into account tha t 

[(FoUFo)t]x = \ [(F0)l + (F0)2]t, (F0)tt = (F0t • 

This last, single Boussinesq equat ion (3.2.15), is a 
general isat ion of the classical Boussinesq equat ion 

( F ^ + C i - W e ' t f , ) , 

= -\(Fot+Y (Fott+^^(Co)yy, 

(Ci), + (Fit = ~^(Fot ~ [Co(F0)x]x +i(Fo\ ^ v/xxxx 

(3.2.12b) 

( F X - ( n x x + z - s f ( n X x t t = ° , 

(3.2.16) 

for the nearly two-dimens iona l long waves in shal low 
water . 

The above Q 1 D B equat ion (3.2.15) is also directly 
obta ined from the initial dimensionless p rob lem described 
by the system of equat ion (3.2.1), with expression (2.3.18), 
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if we t ake into account , in place of representa t ion (3.2.8), 
the following representa t ion for <f>(t,x,y,z): 

<p(t,x,y,z) = F(x, y, t) +e G - F (z + lf(F)x 

H+~4(z + \)\f)x \vl(z+\)2(F)y 

- Y ( z + l ) 2 ( G ) « J + 0 ( e 3 ) , (3.2.17) 

where F, G, / / , . . . are u n k n o w n functions of the indepen­
dent variables x , y and t. Na tura l ly , in this case, in 
E q n (3.2.17), F(x9 y9 t) is not the value of </> on the bottom 
where z = — 1. 

W e assume n o w tha t 

(F, G, H) = (F, G, H)0 + e(F, G,H)l + ... , 

C = Co + eCi + . . . 
(3.2.18) 

and, m a k i n g use of E q n s (3.2.17) and (3.2.18), we can 
calculate [as in E q n (3.2.9)] the derivatives (f>s9 with 
s = (t,x,y)9 and </>z, on z = e£(s). 

Finally, from the two b o u n d a r y condi t ions (3.2.1c) and 
(3.2 . Id) for z = e£(x, y, t)9 we derive the following equa ­
t ions for the functions F 0 , £ 0 , Fx +H0 and Ci-

( F 0 ) , + C o = 0 , ( F 0 ) „ + (Co), = 0 , (3.2.19a) 

+ H0] , + d + \ ( F 0 ) 2 - ^ ( F 0 ) „ ( - KOWE (CoL = 0 > 

(3.2.19b) 

[ F i + H o L + (Ci), + ( W C o ) , + Co(^o). 

K 0 

( ^ o ) „ „ + ^ ( ^ o ) w = 0 . (3.2.19c) 

F r o m the system of equa t ions (3 .2 .19a) - (3 .2 .19c) we derive 
immediately the same Q 1 D B equat ion (3.2.15), bu t for the 
function F** = F 0 + + H0]. 

At last, from E q n s (3.2.12a) and (3.2.12b), we can also 
obta in a system of quasi-one-dimensional Boussinesq equa­
tions for the free surface posi t ion, y, t) and for the 
hor izon ta l velocity componen t s , u(x9 y9 t) = (F)x and 
v(x9 y9 t) = (F)y9 in the following form (if we assume 
tha t We* = 0): 

8 v 0 8v 8?c0 8 u 

dt dx 1 J K0 dy 

8£ 8w 8w SKQ d3u 
dx'+di + s u d x ' ~ ^ d x Y d i : 

dv du 
dx dy ' 

with an error of 0(s2). 
Averaging 

8 0 

6 8 x 3 

0 , 

= 0 (3.2.20) 

(3.2.21) 

(3.2.22) 

d2u 
e v = „ _ ? ( : + 1 ) ^ + 0 ( t ! ) 

dd> SKQ , A x 2 d2v ^ / 2 \ 

over the depth yields we obta in : 

SKQ d2U , 9 x 

v = y + 

6 8 x 2 

8 K 0 8 2 V 
~6~ dx2 

+ 0 ( 8 2 ) . 

(3.2.23a) 

(3.2.23b) 

W h e n E q n s (3.2.23a) and (3.2.23b) are used in the 
Q 1 D B equat ions (3 .2 .20)- (3 .2 .22) , we obta in the following 
form of our Q 1 D B equat ions : 

8C dU dU SK0 d3U 
dx dt S U dx 

dV _dU 

dx dy 

3 8 x 2 8 ; 
= 0 , 

(3.2.24a) 

(3.2.24b) 

(3.2.24c) 

for the average hor izonta l velocity componen t s U(x9 y9 t)9 

V(x9 y9 t) and y9 t). 
W e no te tha t our Q 1 D B equat ions (3.2.24) are no t 

similar to ' three-dimensional general isat ion of the Bouss i ­
nesq equa t ions ' , derived by Infeld in 1980 ([44], Append ix 1, 
B l equat ions) . Apparen t ly , these B l Infeld equat ions , are 
inconsistent from the poin t of view of asymptot ic m e t h o d ­
ology. Final ly, instead of E q n s (3.2.24), we can also derive 
two equa t ions for y9 t) and U(x9 y9 t)9 if we differ­
entiate E q n s (3.2.24a) with respect to x and utilise 
E q n (3.2.24c): 

a * + £ [ ( 1 + 8 C ) , ] + ^ 0 , ( 3 . 2 , 5 , , 
8; 8x 8x 

dU rdU SK0 d3U 

dx dt dx 3 8 x 2 8 ; 
0 . (3.2.25b) 

3.3 Boussinesq solitary and cnoidal waves 
W e shall n o w consider a par t icular solut ion of the single 
one-dimensional Boussinesq equat ion [see the equa ­
t ion (3.2.16)]: 

F.Krx D f ^ 8 2 F 9 2 F 

dt dx2 + sdt dx 

l / 8 F Y 
+ 2 y 8 K 0 

3 Qx2dt2 

(3.3.1) 

in the following form: 

F = # ( £ ) , Z=x-Cti 

_8___d_ ^ _ _ _ C A 
dx~~~d~C dt~ dT 

(3.3.2) 

In this case we obta in for the following ord inary 
differential equat ion: 

( C 2 - l ) 
d2<P „ 2 e/c0 d4<P n(^ , C 2 \ d /d<P 

eC l + -
d£Vd£ d £ 2 ~ 3 dt 

and, in fact, we have C = l + 0(s), therefore the te rms on 
the r igh t -hand side of the above equat ion m a y be 
approx imated with C = l, wi thout affecting the accu­
racy. In tegra t ing once with respect to we get: 

( C 2 - l ) ^ + A 
d ^ 

df 
But, to the leading order , we have dF0/dt •• 
T h u s 
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£/a0 

Figure 2. Waveforms of cnoidal waves of length X and amplitude a0 on water of depth h0 for six values of a0X2/hl. The solitary wave is the limit 
of the cnoidal waves with infinite wavelength. 

Final ly, we mult iply the above equat ion for £ by d £ / d £ and 
integrate once m o r e to get: 

k 2 

lsC3+l(C2-l)C2+AC + B = 
SKQ ( d£ 

6 Vd£ 
(3.3.3) 

where the integrat ion cons tan ts A and B are b o t h of order 
0(e). 

Two cases will n o w be discussed. 

3.3.1 Solitary waves. A solitary wave, discovered by John 
Scott Russell in 1834 (and publ ished in 1844) [21], has a 
single crest whose ampl i tude diminishes to zero as |£| —> oo. 

Since £, d£ /d£ and d 2 £ / d £ 2 vanish at infinity, so should 
the cons tan ts A and B. In this case Eqn (3.3.3) becomes 
simply: 

and for the r igh t -hand side to be posit ive we must have 
C > 1 or, in physical variables, C > (gh0)1^2. This wave 
speed is called supercritical. F u r t h e r m o r e , we must insist 
tha t £ ^ ( C 2 - l ) / e . Hence , ( C 2 - l ) / e is just the m a x ­
imum ampl i tude of the crest which is unity because of the 
normal i sa t ion tha t specifies C 
E q n (3.3.4) can be wri t ten as 

= 1 + 8 . In this case 

K 0 

1/2 
1/2 (3.3.5) 

which can be integrated to give [3/K0]1^2[^ — £0] 
- 2 a r c t a n h [ ( l - £ ) 1 / 2 ] , or 

£ = sech 
K0 

1/2 

(3.3.6) 

The cor responding profile is a solitary hill with its crest at 
£ = £0> bu t the integrat ion constant £ 0 m a y be t aken to be 
zero. In te rms of d imensional physical variables, the surface 
wave profile is: 

- 2 r £(x, t) = a0 sech 2 [b0(x — Ct)] (3.3.7) 

Thus , the with Cz = g(a0 + /z0) and b0 = (3a0/4ho) 
higher the crest, the na r rower the profile. Soli tary waves 
can be easily generated in a long t ank by almost any kind 
of impulse. 

3.3.2 Cnoidal waves. In addi t ion to the solitary wave jus t 
discussed, per iodic persistent waves are also possible in the 

f ramework of the single one-dimensional Boussinesq 
equat ion (3.3.1). 

W h e n A differs from zero bu t B = 0, we can rewrite 
E q n (3.3.3) as follows: 

C X C - 1 + / 0 

l + 2 s [ l - ( / ? / 2 ) ] and 

(3.3.8) 

2A/s = p - 1, where C 
0 < 1 < p . 

This t ime, £ has the m i n i m u m value of zero, the m a x i m u m 
value of 1 and oscillates between the two. In this range, we 
have ( d £ / d £ ) 2 > 0; £ cannot oscillate between zero and 
- ( j8 - 1) since ( d £ / d £ ) 2 < 0, a l though £ = - Q 8 - 1) would 
give uniform supercrit ical flow. The full equa t ion (3.3.8) has 
solut ions which can be expressed in te rms of the Jacobian 
elliptic function 'Cn ' , hence the n a m e cnoidal waves: 

c 
1/2 

m — \ — ,(3.3.9) 

where m is the 
wavelength is: 

m o d u l u s of the elliptic function. The 

4h3

0 K ( m ) (3.3.10) 
u m l / 2 

where K ( m ) is a complete elliptic integral of the first kind. 
The reader is unlikely to be familiar with the elliptic 
functions. This is no t par t icular ly impor t an t and we simply 
observe tha t Cn(v |m) is per iodic , so we can n o w have a 
t ra in of per iodic waves in shal low w a t e r . | 

f First, we define the integral: 

v = (1 -m sin 2 0 ) ~ 1 / 2 d0 , 0 < m < 1. 
Jo 

We can also derive a pair (Jacobi and Abel) of inverse functions from 
this integral: 

Sn(v|ra) = sin (j) , Cn(v|ra) = cos (j). 

There are two Jacobian elliptic functions. If m — 0, then v = (j), so that 
Cn(v|0) = cos(/> = cosv and, if m — 1, the integral can be evaluated to 
yield v = arcsech(cos (j)) and so Cn(v | l ) = sech v. N o w the period of 
Cn and Sn corresponds to the period 2n of cos and sin, and so the 
period of these elliptic functions can be written as 4K(m), where 

f7T./2 
K(m) = (1 - m sin2 0 ) " 1 / 2 d0 

Jo 
and K(m) —> oo as m —> 1; of course, this just demonstrates the infinite 
'period' of the Cn(v | l ) = sechv function. 
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N o t e tha t as —> 1, we get the solitary waves. The wave 
t ra in following an undu la t ing bo re can be regarded as a 
t ra in of cnoidal waves .The cnoidal waveforms are p lot ted in 
the Fig. 2. 

4 . Korteweg - de Vries 
and Kadomtsev-Petviashvili equations 
4.1 Direct asymptotic derivation of the 
K o r t e w e g - d e Vries equation 
Here we start from the two-dimens iona l physical p rob lem 
for a free-surface water wave with a horizontal bottom in 
the p lane z = 0. W e neglect the surface tension (T/p0 = 0) 
and we in t roduce the following dimensionless quant i t ies 
using the depth of water h0 and the velocity c0 = (gho)1^2 

0* 0 fa i z) ^* £o ^ C 
noco no no ^ 

(4.1.1) 

In this case, we are dealing with the following d imension­
less master p rob lem (dropping the asterisks) 

fc+</>zz=0, 0 < z < 1 + C ( ; , x ) , (4.1.2a) 

</>_ = 0 , z = 0 , (4.1.2b) 

0 Z = + z = l + £ ( * , * ) , (4.1.2c) 

h + C + ^ + 0z) = 0 > * = 1 + C('> * ) • (4.1 -2d) 

If we wan t to obta in the K d V equat ion with respect to 
the water surface displacement, then it is necessary to 
in t roduce (from a classical d imensional analysis) the 
following asymptot ic representa t ion 

</> = 8 1 / 2 (f, Z, T) + 8(/>2 (f, Z, T) + 82(/>3 (f, Z, T) + . . .] , 

(4.1.3a) 

(4.1.3b) C = 8 d ( £ , T ) + 8 2 C 2 ( £ , T ) + . 

with the new variables 

£ = sl/2(x-t), T = s 3 / 2 t , (4.1.4) 

where s = (h0/A0)2 <̂  1 and a0 is the wavelength for the 
long waves. 

Firs t , in the new variables ( £ , z , T ) , the p rob lem is 
rewri t ten in the following dimensionless form: 

8 0 ^ + (f)zz = 0 , 

4>z = 0 on z = 0 , 

^ = e 3 / 2 C T + e ^ C { - « 1 / 2 C « ; 

(4.1.5a) 

(4.1.5 b) 

(4.1.5 c) 

i>2^ +\s4>\-\ e 1 / 2 ^ + \<t>\ + C = 0 , (4.1.5d) 

on z = 1 + 8 C I ( ^ T ) + 8 2 C 2 ( ^ T ) + . . . , 

since 

8 
p l / 2 S_ = g 3 / 2 _^ g l / 2 

8x 8£ ' 8; 8T 8£ ' 

At di free surface we have z = 1 + e £ i ( £ , T ) + 8 2 £ 2 

. . , and, as consequence, the derivatives 0 f f , cr = ( £ , T ) , and 

</>z m a y be expressed by means of the Taylor expansions as: 

*c = 8 1 / 2 { ( < ^ i ) , + + C i ( * i ) « + ( C i ) , ( * i ) J 

+ £

2[(4>3) f f + + ( C i U f c ) , + C 2 (* i ) O T 

+ ( C 2 ) ^ , ) z + ^ ? ( ^ , ) < r a + C l ( C l ) ^ l ) a ] + 0 ( 8 3 ) } j = i , 

(4.1.6a) 

^ = C 1 / 2 { ( ^ ! ) z + 8 [ ( & ) z + C l ( * l ) a ] + £2 

+ C i ( & ) a + C 2 ( * , ) a + i ( C i ) 2 ( ^ 1 k ] + o ( e 3 ) } z = i • 

(4.1.6b) 

N o w , by subst i tut ion, in place of the system of 
equa t ions (4.1.5) we obta in for different orders of s: 
for the order 8° 

(<MZ J = o, (h)z = o, z = o , 

( 0 i ) z + C i = ( * i ) 4 , W>i)2= 0 , z = l , (4.1.7a) 

and consequent ly 

^ = F ( { , T ) , C I = F { ; (4.1.7b) 

for the order 81 

W > 2 ) z = 0 , z = 0 , 

( * 2 ) z + (Ci) { = 0 , z = l , 

C2 - (<A2)4 + | + ( ^ ) T = 0 , z = l , 
and consequent ly 

0 2 = - ^ 2 * « + G ( £ , T ) , 

^ = C2 + [ ( 0 i ) T U + i c ? + i ^ « ; 

(4.1.8a) 

(4.1.8b) 

for the order 8 , we have for </>3 the following equat ion: 

1 2 

O ^ L = - ( 0 2 ) ^ = 2 Z F f t « % ' 

and consequent ly 

(4.1.9) 

since (</>3)z = 0 on z = 0. 
But , for this order 8 2 , the free-surface condi t ion (4.1.5b) 

yields also the following relat ionship between (f>l9 </>2, </>3, Ci 
and £2 

[ ( f c ) z U + Cl [(02)zz]z=l - (fl)« t ( ^ l ) d z = l = (fOx - • 

(4.1.10) 

As direct consequence of relat ionship (4.1.10), when we 
utilise solut ions (4.1.7b), (4.1.8b) and (4.1.9) for </>l9 </>2 and 
0 3 , and also the thi rd relat ionship (4.1.8a) for (£2)2=1? w e 

obta in the following reduced K d V equat ion for £ 1 , which is, 
in fact, a compat ibi l i ty condi t ion for the consistency of our 
asymptot ic derivat ion connected with expansions (4.1.3a) 
and (4.1.3b): 

( C i ) t + | C i ( C i ) { + i ( C i ) { « = 0 (4.1.11) 
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Hence , we confirm tha t the K d V equat ion emerges Very 
na tu ra l ly ' from a consistent asymptot ic expansion, with 
respect to the small pa rame te r 8, when we start from the 
free-surface dimensionless p rob lem (4.1.5) with expansions 
(4.1.3). F o r d imensional physical variables, in place of the 
K d V equat ion (4.1.11), we obta in : 

3 c 0 

(Ci )X+gCi (Ci) , = - | ^ ( C i ) , « (4.1.12) 

The linear dispersive relat ionship for water waves is: co = 
gktanhkh0, from which, for shallow-water waves, we have 

kh0 <̂  1 co = kc{ \ h\k2 + . . , (4.1.13) 

and we observe tha t the coefficient of the term on the r ight-
h a n d side of the K d V equat ion (4.1.12) is the same as the 
coefficient of k2 in the above (nonl inear) dispersion 
relat ionship (concerning the ' re la t ion ' between the mode l 
equa t ions and the dispersion relat ionships, see [62], Section 
11.1). 

4.2 From the Boussinesq to the Korteweg - de Vries 
equations 
Natura l ly , it is possible to derive the K d V equat ion directly 
from the single Boussinesq equat ion (3.3.1). Indeed, for the 
m o r e general t ransient evolut ion of nonl inear and 
dispersive long water waves p ropaga t i ng in the posit ive 
x direction, we in t roduce in Eqn (3.3.1) the following new 
variables 

•t, 9 = st , (4.2.1) 

since the dimensionless scale of the slow t ime is (1 /e) . In 
te rms of these variables (cr, 0), the derivatives become 
9/9x —> 9/9(7 and 9/9^ —> 8 9 / 9 0 — 9/9(7, and by subst i tu t ­
ing these into E q n (3.3.1) for F(t,x), we get immediately 
the following equat ion for F(9/E,g +1) =f(9,a)\ 

d2f 3 _9_ / Q A 2 Kp_ 9 V 

9(7 90 + 4 da \da) + ~6d^'' 
0 ( 8 ) (4.2.2) 

and we see tha t the similarity pa rame te r K0 = S2/s plays the 
central role in the consistency of Eqn (4.2.2). But the 
leading order df/da ~ £ + 0(E) is 

80 2 ^ 9<r 6 6<73 
(4.2.3) 

while for our K d V equat ion in physical variables and for 
s ta t ionary coordinates , Eqn (4.2.3) takes the following 
form: 

dt + co 

where c0 = (gh0) 
1/2 

dx~ + J h ° d ? 
(4.2.4) 

F o r 3 <̂  1 the solution is formally 

<P = F(x,t;d,x0)+S2 G-\(z + \)2F„ 

+ d4 tf-I(z + L ) 2 G „ +^(z + \)4Fa + 0(S6) . 

(4.3.1) 

It should be observed tha t this is only a formal expansion 
in powers of 32, since F , G , / / , . . . and hence the coefficients 
are themselves dependent on 3; we no te tha t %0 = 1/K0 = 
s/S2. This dependence will be removed by further 
expansion at a later stage. In general , we might expect 
(with F r e e m a n and Davey [33]) the double limit 3 —> 0 and 
Xo —> 0 to be uni form! This expectat ion mot iva tes the 
expansion p rocedure which is used below where the 
p rob lem with finite Xo a n d small 3 is considered, first, to 
derive a 'generalised K d V equat ion (GKdV-equa t ion ) . If 3 
is small with Xo °f the order of unity, we can wri te the 
following expansion for the functions </> and £, in the t w o -
dimensional classical p rob lem with (4.3.1): 

F = F0(^a,T) + XoS2Fl+..., 

C = C 0 ( £ , M + Xo<5 2 Ci+- - - , 

where we define, according to [33] 

£ = x - c p t , a = Xo(x - cgt), T = xl32t, (4.3.3) 

for 3 < 1: cp = 1 - (1 /6)32 + . . . , cg = 1 - \ 3 2 + . . . are the 
phase velocity and the group velocity of linearised theory 
(see, for instance, Zey toun ian [64a], pp 3 7 - 3 9 ) . It is 
assumed tha t a wave packet p ropaga te s in the x-posit ive 
direction, so tha t the mo t ion is unidirect ional . Na tura l ly , 
when Xo is small, then a will be a slow variable modu la t ing 
the rapid var ia t ion characterised by 

N o w , according to (4.3.3), we have the following 
formulae for the new derivatives: 

_9_ 

9x 

9_ 

dt'~ 

: 9 £ + X o 9 ( 7 ! 
D 

1 
: ^ + 6 ^ + ^ 2 ^ 

(4.3.4) 

Subst i tut ing E q n s (4 .3 .2) - (4 .3 .4) into E q n s ( 3 . 2 . 1 a ) -
(3.2.Id) , with A2 = 0 and expansion (4.3.1), by equat ing 
te rms of order 32 and for fixed Xo> w e ob ta in 

C o = D F 0 , 

X 0 ( D d - D 2 F 0 ) -

(4.3.5) 

• D G = * 0 ^ + 6 9 f + 2 * 9 ^ 

+ XoDF 0 DCo+XoCoE> 2 Fo 
1 

D 4 F 0 (4.3.6) 

4.3 A more complete Korteweg - de Vries equation 
Here we assume tha t W e = 0 in the classical two-
dimensional p rob lem, (3 .2 .1a) - (3 .2 .1d) , where A2 = 0. In 
this last p rob lem the pa ramete r is 3 = kh0, where k is the 
wave number , and it m a y be regarded as small for either 
small depths or long wavelengths . W e no te tha t when 3 and 
8 are b o t h small in the p rob lem (3.2.1), the nonl inear i ty is 
exactly ba lanced by dispersion when K0 = 32/s = 0 ( 1 ) and 
Xo = 1/K0 is small when the dispersion exceeds the 
nonl inear i ty and is of order of uni ty when they are 
ba lanced! 

X o ( £ i - D F 0 ) - D G : 

1 

*° 9T 
1 8/<o 
6 9£ 

1 QFo 
' 2 X o 9CT 

(4.3.7) 

As expected, the first equa t ion (4.3.5) is insufficient to 
determine b o t h functions F0 and Co a n d it is necessary to go 
to the second order [Eqns (4.3.6) and (4.3.7)] to obta in a 
consistency condi t ion to do this. In fact, it is sufficient to 
differentiate E q n (4.3.7) with respect to D defined by the 
first equat ion in system (4.3.4) and to subtract from 
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E q n (4.3.6). The result is the following G K d V equat ion for 
C.: 

. , < 4 3-8 ) 

which with E q n (4.3.5) suffices to determine £ 0

 a n d F0, 
given the app rop r i a t e b o u n d a r y c o n d i t i o n s . ! 

4.4 Phase plane analysis 
W e start with the following K d V equat ion 

n d3u du du 
H dx3 dx dt 

(4.4.1) 

and we look, here, for a solut ion which is a function f(rj) of 
the form 

u = f(r\), rj = x — ct , (4.4.2) 

where c is a cons tant represent ing the p ropaga t ion velocity 
of a s ta t ionary wave. 

Subst i tut ion of u=f(rj) into E q n (4.4.1) gives an 
o rd inary differential equa t ion for the function f(rj), namely: 

1 
(4.4.3) 

The integrat ion constant is assumed to be zero in 
E q n (4.4.3) since, using the subst i tut ion f=f* +f° and 
c = c* + / ° , we can choose const = -f°(c* +f°/2). 

W e mus t bear in mind, therefore, tha t an arbitrary 
constant can be added to any solution of Eqn (4.4.3) if the 
same constant is added to c, which is equivalent to transfer 
to a moving coord ina te system. N o w , we no te tha t 
E q n (4.4.3) is equivalent to : 

P dr,2 
^ , u=U(f) = l-f-C-f2 , (4.4.4) 

which is the equat ion of mo t ion for a part icle of a mass ft 
in a field of force with a po ten t ia l U(f) (see, for instance, 
Brekhovskikh and G o n c h a r o v a [66], p p . 2 9 6 - 2 9 9 ) . But , it 
is well k n o w n tha t a bounded solution f(rj) exists only if the 
total energy of the particle E = (P/2)(df/dr])2 + U(f) is 
located inside a potential hole. The dependence U(f) (for 

> 0 and c > 0) is p lot ted in Fig. 3a. A b o u n d e d solution 
exists if E(f) ^ 0. W e can write Eqn (4.4.4) also as 

= ± (E-U) 
1 1/2 

(4.4.5) 

f It is also interesting to note that, in fact, the above G K d V equation 
(4.3.8) follows also easily from the classical K d V equation. Indeed, if 
in the classical KdV equation 

dt dx 
1 83C 

= 0 . 
1 

Kq 
* 0 - „ - d 2 , 

for C(x,t',Xo)> w e introduce the variables T, £ and a via the following 
transformation 

--x+- •-Xo1 • (4.3.9) 

we obtain again the G K d V equation (4.3.8), but for the function 
£ ( t , £ , & ) . Finally, we note that this G K d V equation (4.3.8) is a very 
convenient equation for the derivation of the one-dimensional classical 
nonlinear Schrodinger (NLS) equation in the shallow-water limit, when 
<5 —> 0 (see Section 5). 

Figure 3. Equivalent potential U(f) (a) and phase trajectories in the 
( / ' » / ) phase plane for the KdV equation (b). 

after integrat ion. In Eqn (4.4.5), the integrat ion constant E 
describes the to ta l energy. 

Us ing the value of U(f) from E q n s (4.4.4) and (4.4.5), 
we can find the cor responding df/dn =ff for each value of 
/ . The cor responding curves on the phase plane ( / ' , / ) at 
different bu t fixed E are called phase trajectories. F o r our 
K d V equat ion , these trajectories are shown in Fig. 3b. They 
intersect the / axis at a po in t which can be found from the 
equat ion E = U(f).The mos t interest ing trajectory cor re ­
sponds to E = 0, in which case this equat ion has a double 
roo t f i 2 = 0 and a simple roo t f3 = 3c. This t rajectory 
separates tha t pa r t of the (/"', f) p lane where the trajectories 
are closed (periodic motion) from the pa r t where the 
trajectories go to infinity (nonperiodic motion). Tha t is 
why it is called the separating trajectory. It can be proved 
easily by subst i tut ion tha t the cor responding solution of 
E q n (4.4.5) (E = 0) is 

rj + rj° j _ ( \ 2 f \ 1 1 1 

3c 
f(rj) = 3c cosh d = (4.4.6) 

which is called a soliton and A =3c is its ampl i tude . I ts 
velocity is determined in te rms of its ampl i tude c=A/3. 
The quan t i ty d is the length scale of the soliton and the 
integrat ion cons tant rj° determines the soliton posi t ion in 
space. The soliton form f(rj) is shown in Fig. 4a. Per iodic 
solut ions for E < 0 are called the cnoidal waves. A typical 
form of a cnoidal wave is shown in the Fig. 4b (the r o o t / 2 

can even be negative since an a rb i t ra ry constant can always 
be added to it!). As E —> 0, the phase trajectory approaches 
the separat ing trajectory. A representat ive poin t moving 
a long this t rajectory spends most of its t ime near the r o o t / 2 

of the equat ion E = U(f) and the solution becomes a 
periodic sequence of solitons. W e note , tha t the soliton with 
the largest ampl i tude (and the greatest speed) is the first 
one and tha t a sequence of soli tons is a r ranged in order of 
their s trength. 
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a 

Figure 4. Two simple solutions of the K d V equation: (a) soliton, 
(b) cnoidal wave. 

If we have two soli tons and the first ha s a smaller 
ampl i tude , then the other soliton which was initially behind 
will over take the first in the course of t ime. W e n o w have a 
wave d is turbance which is no t just the sum of two soli tons 
dur ing some of the t ime. Later , however , this d is turbance 
again b reaks into separate soli tons bu t n o w tha t with the 
greater ampl i tude is in front! Hence , in a sense, soli tons 
behave as nonin te rac t ing linear waves. It t u rns out tha t the 
soliton posi t ions after interact ion are somewhat different 
from those in the absence of an interact ion. 

W e no te finally tha t in t roduct ion of E q n (4.4.2) into the 
K d V equat ion (4.4.1), followed by two integrat ion respect 
to rj, leads to 

3p -f+3cf2 + 6Bf + 6C = F(f) 

with F(f)=(f-a)(f-b)(e-f), a < b < e, 
c = (a + b + e)/3, B = —{ab + be + ea)/6, C = abe/6. 

H e r e we have assumed tha t F(f) = 0 has three real roo t s 
in order to ensure real b o u n d e d solut ions. If F(f) = 0 has 
three distinct roots , the solut ions are uniform wavetrains or 
cnoidal waves (Fig. 4b). If F(f) = 0 has a double roo t , say 
a = b, then the cnoidal wave solut ions reduce to solitary 
waves (Fig. 4a), while if b = e, only a cons tant state is 
obta ined: f=e=f° is a possible solution. The cnoidal 
wave solut ions can be expressed in te rms of the Jacobian 
elliptic functions as follows: 

= b + (e - b) C n 2 

12)8 

1/2 

^(a + b + e)t 

(4.4.7) 

with m2 = (e — b)/{e — a), 1 ^ m ^ 0, where m represents 
the m o d u l u s of an elliptic function. In the limit as b —> a 
(m —> 1), E q n (4.4.7) reduces to the solitary wave solution 

/ = / ° + f l Q sech 2 

12)8 

1/2 

f (4.4.8) 

This shows tha t the wave velocity relative to the 
constant state f° is p ropo r t i ona l to the ampl i tude . The 
width of the solitary wave is inversely p ropo r t i ona l to the 
square roo t of the wave ampl i tude and, therefore, taller 
solitary waves are na r rower and travel faster t han shorter 
ones. The fact tha t the K d V equat ion is of the first order in 
t ime means tha t it only characterises unidi rect ional wave 
mot ion , so tha t all soli tary waves represented by solu­
t ion (4.4.8) will p r o p a g a t e in the direction of increasing x. 
Consequent ly , if two solitary waves are p ropaga t ing , with 
the larger one initially on the left, then this wave will 
eventually over take the smaller one which was initially on 
the right. It is well k n o w n tha t the solitary waves described 
by expression (4.4.8) show the following r emarkab le 
proper t ies , which were first demons t ra ted by compute r 
studies of Z a b u s k y and K r u s k a l [25]. A single solitary 
wave travels wi thout any change in shape, which means tha t 
a solitary wave is stable. W h e n two solitary waves are well 
separated initially, with the larger one on the left, the faster 
solitary wave over takes the slower one, they interact 
nonl inearly, and when this process is completed their 
pos i t ions are in terchanged with the larger one to the 
right. The s t ructure of each solitary wave is exactly the 
same after the nonl inear interact ion as it was before: only 
their relative pos i t ions are in terchanged. T h u s a solitary 
wave is stable even when subjected to nonl inear inter­
act ions. This r emakab le stability of solitary waves in which 
they exhibit a particle-like behaviour led Z a b u s k y and 
K r u s k a l to coin the n a m e soliton [25]. A m o r e t h o r o u g h 
discussion of the solitary w a v e - s o l i t o n p h e n o m e n o n is 
given in Section 7. 

4.5 Kadomtsev-Petv iashvi l i limit 
W e start with the dimensional equat ions . As before, a liquid 
has a velocity poten t ia l (j)(t,x,y,z)9 which satisfies the 
Laplace equat ion 

$ x x + </> + </>zz = 0 , - h ^ z ^ £(x, y, t) . (4.5.1) 

The f la t -bot tom condi t ion is 

4>z = 0 , z = -h0 . (4.5.2) 

Final ly, we have the following two b o u n d a r y condi t ions on 
a free surface z = C(f ,Jt ,v) 

</>z = Ct + ^xCx + </>X (4.5.3a) 

j [(1 + ~ 2 W * y + 0 + C'Xx*] , (4.5.3b) 

where N2 = 1 + g + £ r 

N o w , we shall consider the full nonl inear p ivota l 
p rob lem described by E q n s (4 .5 .1) - (4 .5 .3) in the following 
K P limiting case: 

s = a0/h0 <̂  1 — small ampl i tude , 
hl(k2 + I2) <̂  1 — l o n g waves, 
(l/k)2 <̂  1—near ly one-dimensional waves, 

where (&,/) is the hor izon ta l (x,y) wavenumber charac ter ­
istic of d is turbances . W e shall orient the hor izonta l 
coordina tes so tha t the x direction is the principal direction 
of wave p ropaga t ion . Final ly, a0 denotes , as before, the 
characterist ic ampl i tude of the dis turbances . 
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The KP equation results when all three above-mentioned 
small effects balance 

h2

0(k2 + l2) = O(s), =0(s). (4.5.4) 

U n d e r the above assumpt ion , the first approx ima t ion to 
our p rob lem (4 .5 .1) - (4 .5 .3) reduces to the following 
classical linear wave equat ion for the elevation of a free 
surface 

§ - 4 § = 0(e), (4.5.5) 

Since U is a derivative of the velocity potent ia l , 
E q n (4.5.11) is au tomat ica l ly satisfied at the initial 
instant . Indeed, for the linearised form of E q n (4.5.10), 
E q n (4.5.11) is a cons tant of mo t ion and it is sufficient to 
k n o w it initially! 

The const ra int (4.5.11) has a simple physical inter­
pre ta t ion . One can identify J t ) d£* as the to ta l 
mass of a wave in a thin strip at rj. Then, condi ­
t ion (4.5.11) assures tha t the t ransverse derivative of 
mass is constant , and this prevents net flow of mass to 
(or from) any par t icular strip. 

where c0 = gh0. 
Thus , to the lowest order , the solut ion of the hyperbol ic 

equat ion (4.5.5) for £(^ ,x ,v) m a y be approx imated by 

C ~ sh0 [F(x - c0t,y) + G(x + c0t,y)] , (4.5.6) 

where F and G are k n o w n in te rms of the initial da ta (for 
t = 0). 

To go to a higher order (in e), we shall define scaled 
dimensionless variables 

•c0t 
h0 

rj = 8 
y 

(4.5.7) 

? = 83'2tC-±, 
h0 

W e = 
gPoh2

0 

Let us n o w look at the following solution for the elevation 
of a free surface 

C«f iAo[ t / ( f , i / ,T ) + y ( f , i / , T ) ] , (4.5.8) 

and let us apply the M S me thod — in this case to el iminate 
the secular t e rms of the next order in 8. W e then ob ta in 
automat ica l ly the following two KP equations for the 
u n k n o w n functions U and V, respectively: 

8£ 

_6_ 

to 

2 6 7 + 3 ^ + ( 3 

' 8 t 
•3V 

dV 

8 * ' 

We* 

We* 

d3U 

W 

8<73 

+ 
d2U 
drj2 

V 

drj2 

0 , 

8 2 v 

(4.5.9a) 

(4.5.9b) 

where U = F and V = G, if t = 0. 
In mos t cases of interest, we have 1/3 < We* for water 

waves, and it follows from the linearised dispersion 
relat ionship for the initial p rob lem (4 .5 .1) - (4 .5 .3) tha t 
the linearised phase velocity has a (local) m a x i m u m at 
k = 0 and / = 0. Thus , the waves described by the 
system(4.5.9) travel faster t han their ne ighbours in the 
(&,/) p lane and there should be no dis turbances as 
£ —> + o o or a —> —oo. Consequent ly , for example, 
E q n (4.5.9a) m a y be integrated with respect to which 
gives 

8*7 , 8 * 7 
8 t oq \ 3 

4.6 A direct asymptotic derivation of the 
Kadomtsev-Petv iashvi l i equation 
The asymptot ic der ivat ion of the K P equat ion follows in 
fact closely tha t of the K d V equat ion (see Section 4.1) and, 
therefore, we merely review only the main poin t of this 
asymptot ic der ivat ion here. Firs t , as in Eqn (4.1.4), we 
employ the new variables 

£ = 8l/2(x-t), T = 83/2t, rj = 8y. (4.6.1a) 

In this case, instead of E q n (4.1.5), we are faced with the 
following dimensionless p rob lem: 

8 2 § m + 8 0 ^ + </>zz = 0 , 

(f)z = 0 for z = 0 , 

1/2* 

(4.6.2a) 

(4.6.2b) 

(4.6.2c) 

\ 82</>2 + 8 3 ' 2 ^ + \ * l > \ - \ S 1 / 2 ^ + \ & + C = 0 , 

(4.6.2d) 

where E q n s (4.6.2c) and (4.6.2d) are satisfied on z = 1 + 
e C i ( ^ ^ , T ) + 8 2 C 2 ( ^ ? / , T ) + . . . . 

F o r (j) we have: 

(/> = 8 1 / 2 [ F ( ^ y / , T , z ) + 8 ( / > 2 + 8 2 ( / > 3 + . . . ] . (4.6.3) 

W e can see from E q n s (4.6.2a), (4.6.2c) and (4.6.2d) tha t 
the dependence on rj appears explicitly only at the order 8 2 

and, as a consequence, the results of Section 4.1 remain 
unchanged up to Eqn (4.1.8b). In place of solut ion (4.1.9), 
we obta in now: 

k 1 4*7 1 2 r 1 

b ^ = ~ ^ \ z u u ~ 2~! ^ ~ 2~! 
z2Fm+H(^n,T) , (4.6.4) 

where F = F(^rj^) and £i = F%. 
At the order 8 2 , re lat ionship (4.1.10) is also unchanged 

[at this order the term 82§n^n ~ 81^2(^i)nFr] cannot appear] . 
But , if we n o w utilise the new solution (4.6.4) for </>3, in 
place of solut ion (4.1.9), we derive from re la t ion­
ship (4.1.10) the following new ' two-dimens ional ' 
re lat ionship for F(^rj^): 

(\ \ d3U f + 0 ° 8 2 £ / 1 

V3 " J W = l W ^ * ' ( 4 ' 5 1 0 ) 3 ^ + F m + 3 ^ + = ° 
(4.6.5) 

and this is n o w in the form of an evolution equation for 
£ / (£ , ! / , t ) . 

If U and all of its derivatives vanish initially as { —> —oo, 
it is evident from E q n (4.5.10) tha t U will no t remain zero at 
infinity unless: 

f+OO tfjj 

8 ^ 

Final ly, if we in t roduce the function f(£,Y\,0) = 
\F^(66,^rj), where 6 = t / 6 , we obta in the classical K P 
equat ion in the form 

8 / 9 / r 8 / 8 3 A . 8 2 / „ 
' ^ + 6 / ^ + ^ J + 3 ^ 4 = 0 , 

0 . (4.5.11) 

8£ \d6 J 8£ 8 f 

C = 3-8f+0(82) . 

drj2 

(4.6.6) 

(4.6.7) 
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To m a k e the mode l quite explicit, we can also write the K P 
equat ion for the waves travell ing to the right in the 
d imensional form for the elevation of a free surface: 

hi e 3 c 1 62C 
dx \c0 dt + dl + 2h0 ^ d l + 6 a / 3 ) + 2 dy2 0 - ( 4 A 8 ) 

4.7 Generalised Kadomtsev-Petv iashvi l i equation 
In the three-dimensional classical p rob lem, in place of 
expansion (4.3.2), we have 

C = C 0 ( £ , < w ) + X ( / C i + - - - , (4-7.1) 

with [see definitions (4.3.3)] 

£ = x - c p t , a = Xo(* ~ cgt), ? = Xod2t, n = — , 
vo 

(4.7.2) 
where %o = 1/K0 is small if the dispersion exceeds the 
nonl inear i ty and is of order of unity when they are balanced. 

In this case, as in Section 4.3, we can derive easily the 
following generalised K a d o m t s e v - P e t v i a s h v i l i ( G K P ) 
equat ion for the elevation of a free surface £0(<i;, cr, 77, T ) : 

2 X o 6 T + 3 8 £ + X o 6 < 7 + 3 X O C O D C O + 3 D C o _ X o dn

2 ' 

C o = D F 0 , D . - + Z o - . 

(4.7.3) 

(4.7.4) 

Accord ing to F r e e m a n and Davey [33], this G K P 
equat ion , with definitions (4.7.4), is very convenient for 
the derivat ion of the two-dimens iona l N L S - P o i s s o n system 
of two equat ions , ob ta ined first by Davey and Stewartson 
(1974) [39] in the long-wave limit (see Section 5). 

4.8 Second-order Kadomtsev-Petv iashvi l i equation 
W e re turn n o w to the Q 1 D G B equat ions (3.2.10a) and 
(3.2.10b) for the functions F(x, y, t) and y, t), where 
We* = £ K 0 W e , according to expressions (2.3.18) and (2.3.20). 
Again , in E q n s (3.2.10a) and (3.2.10b), we in t roduce a slow 
t ime T = st and we suppose tha t F = F(x,y,t,T) and 
£ = £(x,y,t,T), and tha t d/dt = d/dt+ + £ 8 / 8 T . 

Then , in place of E q n s (3.2.10a) and (3.2.10b), we 
obta in the following system of two equa t ions for 
F(x,y,t,T) and £(x,y,t,T) 

(F)t+t; + sQ(F)2

xx - | ( F ) ^ - K 0 W e ^ + ( F ) T } 

2K0 

-Ko[aF)xx]t-v2oWQCyy^ = 0(s3) , (4.8.1a) 

[120 

_KQ 
j x x x x x x ^ KQ Y 

(4.8.1b) 

If the app rop r i a t e asymptot ic expansions of F and C are 

F = F 0 +eFl +e2F2 + ... , C = Co + eCi +Hi + •••, 

(4.8.2) 

we obta in the following set of equa t ions to different powers 
of e 

0 ( 8 ° ) : (F„), + Co = 0 , (Co), + (Fo)„ = 0 ; (4.8.3a) 

0(el): (FO. + C i + ^ ^ - f ( F 0 ) „ , 

- K O W E ( C 0 ) „ + (Fo\ = 0 , 

(Ci)( + ( ^ L - ^ ( ^ o ) ) y + [ C o ( ^ ] x 

KQ 

- f ( ^ o L „ + ( C o ) T = 0 ; (4.8.3b) 

0(e2): (F2), + C2 + ( F o U F O , -1(F,)^ + (F1\ 
2 

- K 0 W e ( C i ) « - y ( ^ o ) « T + § ( F o ) „ « / 

+ ^(Fot 
KQ 

(Fo)x(Fo)xxx 

-MUFo)xx]t+^(F0)2

y 

-Vj(FQ)yyt-v2WQ(Co)yy=0, 

{^2)t + (F2)xx - - r ( F i ) x x x x 

O KQ 
+ [ C O C U + C I ( F 0 ) ^ + (CI), 

K0 (17 \ 

x x x x x x 2 [UFo)x 

+ VJ[UFo) 
KQ 

(Fo)x 
0 . (4.8.3c) 

F r o m Eqn (4.8.3a) it follows tha t F0 and £ 0 depend on x 
and t either t h rough x — t or x + 1 . He re we shall only 
consider the wave p ropaga t ing to the right, and hence we 
shall assume tha t the dependences of F 0 and £ 0

 o n x a n d t 
appear only t h rough the var iable { = x — t and in this case 
we have 8/8x = 8 / 8 ^ and 8/8^ = —8/8^ . F u r t h e r m o r e , 
when F\ and Ci depend a/s<? tw/v on T and v, 
E q n (4.8.3b) can be reduced to 

8Fi 1 / 8 F 0 \ 2 K 0 8 3 F 0 

6£ 
= Ci + 2 V 8£ 

2z7 „ «4 

+ 2 8 f 
— K 0 W e 

8'Fo . 8 F 0 

8<f + " 8 T ' 

8Ci = 8 2 ^ KQ 8 4 FQ 8 2 FQ 8 / 8 F 0 \ 2 v 2 8 2 F 0 

8£ 8 £ 2 6 8 £ 4 + 8 £ 8 T 8 £ V ^ 7 K 0 8y 2 A } 

and we derive, again, the classical K P equat ion for the 
function F 0 ( { , T ,V) , as a compat ibi l i ty condi t ion for the 
system of two equa t ions (4.8.4), namely 

_8_ 

6£ 

8 F 0 3 / 8 F 0 \ 2 (\ W \ 8 3 F 0 

K 0 dy2 

In addi t ion , we no te tha t 

8Fo 

' 9£ ' 
Co 

(4.8.5) 

(4.8.6) 
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But , before de terminat ion of it is necessary to 
find first the function T ,V) , since 

C l = - g ^ - A ( F 0 ) , 

with 

x 1 f^Fo\2 (1 \ &Fo S F 0 

(4.8.7) 

(4.8.8) 

N o w , if again F2 = F 2 ( ^ , T , V ) and C2 = £ 2 ( ^ 5 T5>0> w e 

ob ta in the following result from Eqn (4.8.3c): 

6 F 2 6 F 0 8 F ! A \ 6 ^ 8 ^ 

+ J B ( F 0 ) - K 0 W e - 5 A ( F 0 ) 
8<T 

(4.8.9a) 

8C2 _ 8 2 F 2 K 0 8 4 F ! V2, 8 2 F t 8 / 8 F 0 8 F t 

6£ 6 £ 2 6 6 £ 4 K 0 8 y 2 + 6 ^ 6 £ 6£ 

MFo) 
8FQ 

8£ 
, (4.8.9b) 

with 

B(F0) 4 8 5 F 0 

24 + 2 

K 0 / 8 2 F 0 \ 2 /c0 8 F 0 8 3 F 0 

2 6£ 6 £ 3 

+*o 
8 / 6 F 0 6 2 F 0 \ K 0 8 3 F 0 

+ V Q 

e^2 

2 

2 8 £ 2 6 T 

i . . . \ e 3 F 0 W e 

C ( F 0 ) 

i ( f o > + V2-vvc;8w 
4 8 6 F 0 K 0 8 / 8 F 0 8 3 F 0 ' 

120 8 £ 6 6 8£ V 8£ 8r 
, (4.8.10a) 

+Vo 
_8_ /8Fo8Fo 8 y V ^ 8y 

1 8 4 F n 

6 6<f 8 y 2 . 

Final ly, from the two equa t ions (4.8.9a) and (4.8.9b) for 
F 2 and £2> we can el iminate the function £ 2 ; we then obta in 
the following inhomogeneous (but l inear) equat ion for the 
function Fi(^,x,y): 

8 

8£ 

„ 8F; „ 8 F 0 8F; ( \ 
W e 

, vo &F, 
K0 dy2 

+ 

&F1 

8<f 

8 T + K 0 W e ^ ) A ( F 0 ) 

8 [g (^o) ] 

8£ 
- C ( F 0 ) . (4.8.11) 

T h u s the K P equat ion (4.8.5) for F 0 and the linear 
i nhomogeneous equat ion (4.8.11) for Fx describe the second-
order KP approximation. W e can also calculate Co [from 
Eqn (4.8.6)] and Ci [from Eqn (4.8.7) with Eqns (4.8.8) and 
(4.8.11)]. 

It is n o w well established tha t the K P equat ion is the 
lowest-order nontr iv ia l consequence of the pe r tu rba t ion 
approx ima t ion for the Q 1 D G B equat ions describing 
weakly dispersive waves. 

It is also impor t an t to no te tha t the K P equat ion admi ts 
solitary wave solut ions. Indeed, if we wri te the K P equat ion 

(4.8.5) for F0 as an equat ion for the function £o = dF0/d£ 
when W e = 0, 

d_fc 3 6Co , Ko 9 C< 
+ - 2K0 dy2 

(4.8.12) 

9£ V9T ' 2 * u 9£ ' 6 8£ 3 

then we can seek the following solution 
C o = C o ( 0 ) , 0 = £ - a T + £y . (4.8.13) 

In this case we obta in the KP soliton solut ion of 
E q n (4.8.12) in the following form 

Co = sech 

K0 : p = v2 

1+f ) T + V§3> 

a = l + ^ v § 

(4.8.14) 

(4.8.15) 

where v 0 is a pa ramete r describing a (small) inclination of 
the wave relative to the main direction of p ropaga t ion . In 
the absence of the y direction (when v2, = 0 in the one -
dimensional case), the solution (4.8.14) reduces to the K d V 
soliton solution. 

In t roduc ing this above solution (4.8.14) for dF0/d^ = Co 
into E q n (4.8.11) for F l 9 we can find the second-order te rm 
Fi(6) and we can in t roduce the no t ion of a 'dressed KP 
soliton\ tha t is a K P soliton with second-order correct ions. 

However , this dressed K P soliton solution m a y also 
involve the appearance of secular te rms (as in the K d V 
theory) . El iminat ion of these secularities, in addi t ion to £ 
and T, requires — in our above reductive pe r tu rba t ion 
me thod — in t roduct ion of the following new slow var i ­
ables: X = s(x — t), T = s2t,.... Actually, we are no t 
certain if it is necessary to in t roduce also a new slow 
transverse var iable rj = sy. Na tu ra l ly , in this case 
E q n (4.8.11) for Fx changes and in the t ransformed 
equat ion for Fx(^T, V , X , T , . . . ) we have some new te rms 
conta in ing derivatives with respect to X, T , . . . . As con­
sequence, we can assume the following soliton solution: 

(4.8.1 Ob) F i X ' ?,...)= * sech 2 [B(9 + C)] (4.8.16) 

with A = A(X,T,...),B =B(X,T,...) and C =C(X, T,...). 
W e can n o w use the added freedom to eliminate the 

secular-producing te rms. As the secular-free condi t ions , we 
obta in a set of equa t ions for the 'modu la t ing ' functions 
A (X, r , . . . ) , B(X, T,...) and C(X, T,...). In the K d V theory 
these secular-producing te rms were el iminated by Sugimoto 
and K a k u t a n i (1977) [56] (see, also, the b o o k by Jeffrey and 
K a w a h a r a [57]). 

4.9 Some features of wave solutions of the 
Kadomtsev-Petv iashvi l i equation 
The canonical form of the K P equat ion is 

_8_ 

9£ 

where 

8 / r £ 8 / Qf 
8^ + 6/8^V, + 3 8V: 

8f/2 
0 (4.9.1) 

c = £ £ / + 0 ( £ 2 ) . 

The A/-soliton wave solution of the above K P equat ion 
was derived by Sa tsuma (1976) [67] and its s t ructure was 
elucidated by Miles [22] (see, also, the useful review paper 
by F r e e m a n [52]). 

One interest ing use of the computer is to plot k n o w n 
analytic wave solut ions: when the solut ions are compl i -
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cated, a d iagram is often wor th pages of analysis! A typical 
cnoidal KP wave, a solution of the K P equat ion , is shown in 
Fig. 5; Fig. 6 shows a two-sol i ton solution and Fig. 7 gives 
a three-soliton wave solution of the K P equat ion . In Fig. 7 
there are three plane-wave soli tons with an interact ion 
region where several short sections of waves appear . There 
is a phase shift in each p lane soliton caused by the 
interact ion. This d iagram cor responds to Fig. 6a in J o h n ­
son 's review [48], and the reader is referred to this paper for 
further details. 

Accord ing to Segur and Finkel [68] (Figs 5 and 6 
cor responds to Figs 1 and 2 in their paper ) , the K P 
equat ion (4.9.1) is Gal i lean- invar iant , so tha t spatially 
per iodic solut ions m a y be normal ised by imposing the 
condi t ion 

lim 
Jo 

y-> t) o (4.9.2) 

which represents normal i sa t ion of a free surface 
z = C(x, y, t) and which implies tha t h0 (we suppose tha t 
the b o t t o m is the p lane z = —h0) is the mean depth of the 
liquid, and tha t z = 0 (£ = 0) in the absence of any mot ion ! 
Na tura l ly , the K P equat ion admi ts waves tha t t ravel a long 
any direction in ( J C , V ) p lane , bu t we can expect them to 

mode l water waves accurately only if they p r o p a g a t e 
pr imari ly in the x direction! In contras t to the K d V 
equat ion , the cont r ibu t ion of t ransverse (perpendicular) 
dynamics seems to be modes t in the K P equat ion (4.9.1). 
However , the addi t iona l te rm 3d2f/drj2 in E q n (4.9.1), 
absent from the K d V equat ion , opens the door to a wealth 
of physical effects. 

The reader is referred to the recent b o o k by Infeld and 
R o w l a n d s [44] for deeper analysis of this K P equat ion . 

In the review paper by F r e e m a n [52], the reader can find 
also a very interesting exposit ion of the soliton interact ion 
in two dimensions based on an examinat ion of the s t ructure 
of the t w o - and three-sol i ton solut ions of the K P equat ion . 
As in the case of the K d V equat ion , the general technique 
for solution of the K P equat ion is the inverse scattering 
t ransform (1ST, see Section 7), which can be used to 
construct a general mult isol i ton solution. F o r example, 
the interact ion of two p lane waves in the far field, after 
a long time, when T = st = 0 ( 1 ) [52, 69], can be considered, 
and it is sufficient to discuss the far-field development of 
such waves. In this s i tuat ion we assume tha t the dis tur­
bances are localised near some line w*r — t = const . 

Such waves need only be considered in the neighbour­
hood of their interaction zone, since far from this zone the 
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Figure 7. Three-soliton wave solution of the KP equation. 

waves are uninfluenced by the presence of each other . This 
interact ion was called 'weak ' by Miles [69]. If we in t roduce 
two plane-wave coordina tes ^ and £ 2 , where ^ = n^r — t, 
r = ( x ,v ) , nt = (cos 0;, sin 0,), and / = 1,2, we obta in [from 
the classical three-dimensional classical p rob lem, assuming 
tha t the ampl i tude pa rame te r s and the dispersive (long 
waves) pa ramete r S are small, bu t S2/s = 1] the K d V 
equat ion if 1 — cos(0! — 0 2 ) = 0 ( 1 ) . But the above expan­
sion technique (for the der ivat ion of the K d V equa t ion) 
obviously fails when 

1 - c o s ( 0 i - 0 2 ) = 0 ( e ) . (4.9.3) 

In this case the waves are almost aligned and Qx — 0 2 = 
0(s1/2). The interact ion is then no longer weak and, 
following Miles [69], is referred to as strong. The two 
phases n o w differ only by the order s and it is convenient 
to in t roduce , as coordinates , ^ and the n o r m a l to ^ with 
an appropr i a t e scaling of rj. Hence we wri te 

rj = sl/2(y c o s 0 ! — x sin 0 2 ) , £ = £i (4.9.4) 

F o r this ' s t rong ' case we can derive the following K P 
equat ion: 

3 + dri2 
0 (4.9.5) 

C = e£o + . - -

The linear dispersion relat ionship for the above K P 
equat ion can be wri t ten as 2cok = k4/3 + m 2 , where the 
phase func-tion is = k£ + mrj — COT. A convenient p a r a -
metr isa t ion of this relat ion is obta ined by pu t t ing 
k = y/6(l m = 6(n2 - I2), co = 4 A / 6 ( / 3 + n3). A single 
skewed soliton solution of this K P equat ion thus becomes: 

Co = 2 ( / + ?z) 2 sech 2 (4.9.6) 

which cor responds to a K d V soliton 

Co = 8 / 2 s e c h 2 [ v / 6 / ( ^ - 4 / 2 T ) ] , 

when / = n and the wave p ropaga te s in the { direction. 
The wave ampl i tude is n o w 2(1 + n)2 and, in general, the 

wave is characterised by the two pa rame te r s / and n. 
Finally, the two-sol i ton solution of the K P equat ion is 

4 8 2 

C o ^ l o g / , (4.9.7) 

where 

/ = 1 + exp flx + exp p2 + N2 exp (ft + ft) , (4.9.8) 

N2 = (h-l2)(nl-n2)/(h+n2)(I2+ni)9 and Pi = P(li,ni)9 

where / = 1,2, are the phases of the two solitons. 

5. Nonlinear Schrodinger 
and Schrodinger-Poisson equations 
5.1 Nonlinear Schrodinger equation 
A truly linear system has a dispersion relat ionship which is 
independent of the ampl i tude . However , let us assume tha t 
the growth of a h a r m o n i c wave in a weakly nonlinear 
system can be represented by a dispersion relat ionship 
which is ampl i tude-dependent ! Such a s i tuat ion actually 
occurs in the nonl inear theory of water waves and we can 
suppose tha t 

co = co(k; \a\2) . (5.1.1) 

A Taylor expansion a r o u n d some suitable wave number k0 

and frequency co0 gives: 

co — co0 

dco 1 ftfco 

a W « ( * - * o ) M a F , ( * - * o ) 

+ 
dco 

« r + . . . . (5.1.2) 
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E q n (5.1.2) is the Four ie r - space equivalent of an opera tor 
equat ion which, when opera t ing on the ampl i tude a, yields: 

8; + 
dco 
dk , dx 

a + ; 
1 d2co 
2 \dk2 / n dx 

d2a dco 

d\aj2 

a\a\ = 0 , 

(5.1.3) 

where higher t e rms are neglected [32]. 
E q n (5.1.3) is the nonl inear Schrodinger equat ion and 

the n a m e 'nonl inear Schrodinger ' (NLS) has been coined 
precisely because its s t ructure is tha t of the Schrodinger 
equat ion of q u a n t u m mechanics with \a\2 as the potent ia l , 
a l though in mos t s i tuat ions it is unre la ted to the real 
q u a n t u m Schrodinger equat ion other t han in name . In 
fact, it plays a significant role in the theory of the 
p ropaga t i on of the envelopes of wave t ra ins in m a n y 
stable dispersive physical system in which no dissipation 
occurs. The above ra ther heurist ic derivat ion of the N L S 
equat ion shows h o w the effect of the nonl inear te rm can be 
crudely model led by th inking of the system as having an 
ampl i tude-dependent dispersion rela t ionship. 

This quick derivat ion me thod tells us h o w the N L S 
equat ion arises but , unfor tunate ly , for a specific set of 
mode l equa t ions it does no t give us the values of the 
coefficients in the final N L S equat ion , in par t icular the 
(dco/d\a\2)0 t e rm. As we shall see below, the sign of this te rm 
is ra ther impor tan t . At this po in t it is preferable to 
in t roduce a m o r e formal ma themat i ca l me thod which 
can be applied in general to a large range of nonl inear 
equa t ions when we wan t to k n o w the development of a 
slowly varying envelope modulating a fast carrier wave. 

This latter p rope r ty means tha t m a n y wavelengths of the 
carrier wave are conta ined in just one wavelength of the 
envelope. Consequent ly , 

(5.1.4) 

where Xc and Xe are typical wavelengths of the carrier wave 
and of the envelope, respectively. Since x and t are n o r m a l 
space and t ime variables, for a two-dimens iona l carrier 
wave we can define a set of ' s low' space and t ime variables: 

Xn OC X . •• art . (5.1.5) 

These variables describe the mot ion of the envelope and 
from n o w on they will be considered as independent 
variables (MS or ' two t ime ' me thod) . In searching for the 
me thod to find the evolut ion equat ion of the envelope of 
oscillations for a given nonl inear equat ion , it is bet ter to 
proceed by example t han by a general app roach . 

5.1.1 Let us choose the K d V equat ion as the initial 
nonl inear equat ion and let us derive the associated N L S 
equat ion . Therefore, for the function w(^,x), we have the 
following K d V equat ion: 

du du d 2 ^ u 
(5.1.6) 

with the (linear) dispersion re la t ionship: co = k — k . 
Expand ing u as 

u = OLU\ + (x2u2 + a 3 w 3 + . . . , (5.1.7) 

un = un(t,x,XuT1,T2,...)9 n = 1 , 2 , 3 , . . . , (5.1.8) 

6_ 6_ _6_ 2 _6_ 6 6 6 
6 ^ 6 ; + a 6 r ! + a 6 r 2

 + ---' Qx^Qx + *QX1

 + "' ' 
(5.1.9) 

we find, as expected, at 0 ( a ) 

ui = A ( x 1 , r 1 , r 2 , . . . ) £ + c . c . , 

E = exp \6, 6 = kx — cot , 

where c.c. denotes the complex conjugate. 
At 0(oT), we find: 

dt + dx~ + d ? j U 2 

(5.1.10) 

(5.1.11) 

E + c.c. 

-2ikpA2E2 + 2ikpA*2E~2 , (5.1.12) 

and the E te rm is secular, so tha t we take 

X* =XX - (1 -3k2)Tl —>A = A ( X * , X 2 , r 2 , . . . ) . (5.1.13) 

In tegra t ing E q n (5.1.12) to find w2, we obta in 

± 
3k2 

u2=—2{A2E2+A*2E-2)+B{X*,Tl), (5.1.14) 

where B (X*, 7^) is an integrat ion cons tant for the fast scales 
x and t, bu t can be m a d e a function of the slow scales. 

At 0 ( a 3 ) , we n o w find 

6 
6x 6x ; u3 = - dx dX2 dT 

[AE + A * £ - ! ] 

6 3 6 6 
6 x 2 6 X 1

 + 6 7 ^ + 6x; 
P (A2E2+A*2E~2) 

3k 

+ B(X*,TX) 

6 

•P^(A2E2+A*2E-2 + 2\A\2) 

-2)8 6x 
ABE +-^(A\A\2E + A 3 E3) + c.c. 

3k2 K 1 1 J 
(5.1.15) 

There are two types of secular t e rms in E q n (5.1.15). The 
first are functions of the slow scales only, which will give 
rise to te rms in w3, which are explicit functions of x and y. 
R e m o v a l of these gives: 

dXx

 +dTy 

B ^ ^ - \ A \ 2 0 . (5.1.16) 

Next , r emova l of the E secular t e rms gives: 

3 i ^ | ^ + | ^ - - i ^ ^ A | A | 2 + i ^ ^ A | A | 2 = 0 . (5.1.17) 

Final ly, from E q n s (5.1.16) and (5.1.17), we obta in the 
following N L S equat ion for A: 

6A 6 2 A 2p2

 A i A i 2 „ 
• + — + ^ A | A | 2 = 0 , (5.1.18) 

6T ' 6<f 3 £ 2 

where T = kT2 and £ = X*/y/3. 
Therefore, the t ime scale on which the envelope N L S 

equat ion opera tes is qui te long, since one uni t of t ime on the 
T scale is 1/a 2 uni t s of real t ime (far-field equat ion) . 

5.1.2 The ampl i tude A ( T , {) is a complex function and it 
therefore conta ins informat ion abou t the phase of the 
wave. E q n (5.1.18) m a y be expressed in te rms of real 
functions by assuming tha t 

: aexp I l (5.1.19) 
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where a = a(r, and W = W(T, £). Separa t ing the real and 
imaginary par t s , we get: 

9 9 9 9 - a 2 - 2 — Wa2 = 0, 
CT OQ 

dW 9 (\ d2a _ 9 2/?2 

0 . 

(5.1.20a) 

(5.1.20b) 
9 T 9£ V* 9<f 3 £ 2 

These equa t ions are in the form of conservat ion laws 

9P 9 g ^ 
h — = 0 . 

8 T 9<J 

They were derived for deep-water waves by Chu and M e i 
(1970) [70], and by W h i t h a m (1967) [71] wi thout the term 
(\/a)d2a/d^2. The connect ion between E q n s (5.1.20) and 
(5.1.18) was po in ted by Davey (1972) [72]. 

5.1.3 It is also necessary to stress tha t , in general , when the 
long-wave pa ramete r 3 is not small bu t fixed when e —> 0, 
the N L S equat ion describes the ampl i tude of a h a r m o n i c 
wave profile as a function of slow space and t ime variables. 
The wavelength of the carrier wave is t aken to be 0 ( 1 ) as 
e —> 0, and this cor responds to 3 being fixed in going to the 
limit. The basic wave is therefore sought in the form 

C ~ A (£, T ) exp ip + c.c. , e —> 0 , (5.1.21) 

p = x—cvt, £ = e(x—cgt)9 T = s2t. (5.1.22) 

The expansion for £ (and </>) is so constructed tha t it is 
per iodic (to all orders) in p. Hence , h igher-order t e rms mus t 
contain higher ha rmon ics generated by the nonl inear 
coupling. The carrier wave moves at the phase velocity 
( c p ) and the ampl i tude modu la t i on travels at the cor re ­
sponding group velocity (c g ) , a l though the specific forms of 
c p and c g are no t assumed a priori] F r o m the p ivota l t w o -
dimensional water wave p rob lem with the f la t -bot tom 
condi t ion, when the surface tension is ignored, the leading 
and next-order approx ima t ions give 

t a n h d 1 
: 2 ^ 

1 + 
23 

sinh 23 
(5.1.23) 

respectively. The very next order , which incorpora tes 
the cubic nonl inear i ty , yields the following general 
N L S ( G N L S ) equat ion: 

9A 

97 + ^ + r A | A | 

9 2A 
0 , (5.1.24) 

where q and r are involved functions of 3. The coefficient is 
r{3) = 0 for 3 = 3° = 1.363, and it is well k n o w n tha t the 
Stokes wave is then uns tab le if 3 ^ 3° [73]. This suggests 
tha t the na tu re of the B e n j a m i - F e i r instabili ty could be 
examined via a suitable general isat ion of the N L S equat ion 
(5.1.24) valid near r = 0 [74]. W e must stress tha t the 
coefficient q is always positive, whereas r changes its sign 
from posit ive to negative at 3 = 3° = 1.363, as 3 increases. 

The N L S equat ion (5.1.24) was first derived (for a finite 
depth) by H a s i m o t o and Ono (1972) in the following form 
[36] 

1 9A 
i 9 T 

92A 
: f l — + VA\A\\ (5.1.25) 

where 

8k0(T(Q0 

{[a - k0h0(\ " O f + <h\G2{\ - < T 2 ) } 

(5.1.26a) 

v = - ^ { ^ N + 4 ( l - ^ g + ^ 0 ( l - O 2 ] 

+ ^ ( 9 - 1 0 < T 2
 + 9 < 7 4 ) } 

a = t anh k0h0 , c0 = ^ = ( 
1/2 

(5.1.26b) 

(5.1.26c) 

It can be seen from E q n (5.1.26a) tha t \i is always negative, 
whereas n changes its sign from negative to posit ive at 
k0h0 = 1.363, as k0h0 decreases. 

It is k n o w n tha t the N L S equat ion (5.1.25) has the 
following solution represent ing a nonlinear plane wave 

A =A0 exp [i(aT — K£)] , 

where A 0 = const and a = — \XK2 + v |A 0 | 2 . 

(5.1.27) 

5.1.4 In the limit k0h0 —> 0 with k0 of the order of unity, the 
coefficients m and n in E q n (5.1.25) become, respectively: 

2 

9 - 1 / 2 l 

ns = - - < V k0h0 , (5.1.28a) 

(5.1.28b) 

where c0 = (gh^)1^2. In this case the nonl inear p lane wave 
[for 8 < (k0h0)3 <̂  1] assumes the following form: 

£ = sa cos 6S — - • 
2 2 

s a r(l - C O S 2 0 S ) (5.1.29) 
4 / z 0 ( M o ) 2 

where 9S = k0x — (co0 — s2ocs)t and as = vs g2a2/4coq. 
On the other hand , as is well known , the shallow-water 

waves are governed by the K d V equat ion: 

6£ 
Qt +C°dx + 2h0 dx+ 6 dx' ° ' 

(5.1.30) 

which has the steady periodic solution called a cnoidal 
wave 

C = 8 a U o o + A D n 2 sa 
6m2 

1/2 

(x — Cgt) I m 

3sa 
3 \m 

,(5.1.31) 

(5.1.32) 

and the mean depth , say £*, is given by 
C = £tf(Coo + 2E/m2K), where K, E and m are respec­
tively, the first and the second k inds of the complete elliptic 
integral and its modu lus . 

As in H a s i m o t o and Ono [36], pu t t ing 

4=1 san 
2 m2h\K2 

# _ _ 3 e V 
4 h3k2 ' 

and expanding solution (5.1.31) for small value of m, we 
obta in solution (5.1.29). T h u s we find tha t the nonl inear 
p lane wave solution cor responds to a weak cnoidal wave in 
the shallow-water limit. 

Final ly, we m a y conclude tha t a weak cnoidal wave is 
modula t ion-s tab le against small d is turbances because 
v s / i s < 0 (see Section 8). 



Nonlinear long waves on water and solitons 1357 

5.2 Sol i ton solution of the nonlinear Schrodinger equation 
The sign of ft in the N L S equat ion (5.1.18) is impor t an t as 
it determines whether the isospectral opera tor (in this case 
the cor responding eigenvalues are independent of time!) of 
the N L S equat ion is self- or skew-adjoint. 

F o r ft > 0 the opera tor is skew-adjoint, giving rise to 
imaginary eigenvalues. In this case, soli tons or iginate from 
a discrete spectrum which in tu rn arises from negative 
(bound) energy states (these negative energy states are 
associated with negative imaginary eigenvalues). One could 
consider the condi t ion ft < 0 as represent ing the case when 
focusing or bunch ing of the wave envelope occurs. 

W e can seek a solution of the canonical N L S equat ion 
(5.1.18) in the form 

(ffS1!2 

k2j 
, sech 

: exp [ - i r (£ -VT-<p)], fi > 0 , (5.2.1) 

where r= U/2 and am = 2U[(U/8) - V]/p. 
The envelope soliton is characterised by the free p a r a m ­

eters am and U and by the phases cp and £ 0 . 
One of the mos t impor t an t characterist ics of the N L S 

equat ion is tha t it can be solved exactly for initial 
condi t ions tha t decay sufficiently rapidly as |£| —> oo. 
This was done by Z a k h a r o v and Shabat (1972) [35] using 
wha t was then the newly discovered 1ST (Gardne r et al. 
[49]).They showed tha t any initial wave packet eventually 
evolves into a number of 'envelope sol i tons ' and a 
dispersive tail. The bulk of the energy is conta ined in 
the solitons, which have soli tary-wave-solut ion shapes and 
p r o p a g a t e with a pe rmanen t profile once p roduced . Soli tons 
also survive interact ions with other soli tons or wave 
packets . Since the N L S equat ion describes the envelope 
of long waves in shal low water with a carrier frequency, the 
theory predicts the existence of packe ts of long waves in 
shallow water with soliton proper t ies . The existence of these 
envelope soliton proper t ies would hard ly have been 
expected on the basis of experience with linear wave 
systems in which wave componen t s are uncoupled and 
highly dispersive. 

W e no te tha t the N L S equat ion yields a rich variety of 
nonl inear wave structures, namely soli tons, rarefact ion 
solitons, several k inds of per iodic nonl inear waves, and 
a pair of shocks. Indeed, as a result of this ove rabundance , 
scientists are no t sure tha t all these solut ions cor respond to 
physical waves! 

Na tura l ly , we can look for a simple solution of the N L S 
equat ion (5.1.18): 

A(T,£) = a ( £ ) e x p ( i y T) , (5.2.2) 

where a(£) is a real function, and y is a cons tant (to be 
determined) represent ing a frequency correct ion to the 
individual waves. 

In this case, it follows from the N L S equat ion (5.1.18) 
tha t a(£) can be described by the equat ion 

d 2 a 9 . * 
—T + ya + Ba = 0 , 
d<f 

and this equat ion admi ts solut ions in te rms of the D n 
function, which is the Jacobi elliptic function of the second 
kind: 

fl(<9 = f l 0 D n [ f l 0 ( f - f 0 ) | m ] , (5.2.3) 

where m is the m o d u l u s of the D n function with the 
proper t ies 

a° = y 
2 — mz 

1/2 

0 ^ m ^ 1 (5.2.4) 

1 and in the limit In the limit m —> 0, we have D n [ 
m —> 1, we find tha t Dn[{ | l ] —> sech 

The soliton envelope and the per iodic envelope for the 
N L S equat ion are represented schematically in Fig. 8. 

Figure 8. Soliton (a) and periodic (b) envelopes for the N L S equation. 

M o r e precisely, the carrier travels at a velocity uc and 
the envelope travels at a velocity ue; the pulse ampl i tude is 

I1/2 

2P 
(uQ - 2uc) 

5.3 Asymptotic derivation of nonlinear 
S c h r o d i n g e r - P o i s s o n equations 
W e shall n o w re turn to the G K P equat ion (4.7.3) with the 
re la t ionships (4.7.4). Hence , in this section, our initial 
system of equa t ions for the two functions £ 0

 a n d is 

2 8Co . 1 8Co , d£o 
2 X o ^ r + T ^ + X o ^ + 3 X o C o ^ + 3XoC, 

9T 3 9£ 

+ 3 V d^3 + X o 9 £ 2 9 a + X o 9 a 2 9£ + X o 9 a 3 

+ X o 9 ^ 2 - ° ' 

Co - ^ +Xo 8 f f • 

(5.3.1) 

(5.3.2) 

In these equa t ions the small pa ramete r (in the long-wave 
limit) is 

]_=s_ 
K0 32 

(5.3.3) 
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Firs t , we expand the u n k n o w n functions £ 0

 a n d F0

 m t e rms 
of Xo 

£o=h0+ Xoh + Xoh2 + • 

^ o = / o + X o / i + X o / 2 + -

(5.3.4a) 

(5.3.4b) 

If we successively equate like te rms in Xo a n d Xo, we 
obta in the following equa t ions for h0, f0, hx, fi, h2 and f2 

9/o ho = 
9£ 

i 9/i 9/o 

i 9 / 2 , 9 / 1 

and 

8 1 . A 8*o 

8 { 2 7 8 ^ 

8 { 2 7 8£ 

0 , 

= - 3 

= - 3 

dh. 

9(7 8£ 2 9ff 

9/?p 
9T 

+ 

dh *2 

(5.3.5a) 

(5.3.5b) 

(5.3.5c) 

(5.3.6a) 

(5.3.6b) 

2 ^ + 3 / z 0 ^ + 
0 ^ / 0 

9cr drj2 

9 , , 9/1! 9 2 /9/z! 9/z0 

+ 3 ^ 1 + ^ + 9 ^ U f + 9 ^ 
(5.3.6c) 

N o w , from E q n s (5.3.6a) and (5.3.5a), we determine h0 

and /o in the following form: 

h0=A0lE+A*0lE-1 , (5.3.7a) 

/ o ^ ^ o o + ^ ^ + ^ o * ^ - 1 , (5.3.7b) 

where E = exp i^ and E~l = exp(—i£); the asterisk denotes 
a complex conjugate. In the above set of re la t ion­
ships (5.3.7), we have 

BT 01 -iA 01 j #0*1 = i^oi (5.3.8) 

Next , we can determine the function hi from 
E q n (5.3.5b): 

h1=A10+AnE+A*nE-l+^ 

where 

9£n 9£n 
9(7 ' 9(7 ' 

A t ! 
9^01 

9(7 ' 

(5.3.9a) 

(5.3.10) 

N o w , if we take into account the expressions for h0, 
(5.3.7a), and also for hi, (5.3.9a), we obta in the following 
equat ion for the function fx from Eqn (5.3.6b): 

^ + ! ) l l = - ? ( ^ 2 + ^ - 2 ) 

and the expression of fx is then 

fi = B\o +Bi2E2 -\-B*2E 2 , 

where 

B12 #1*2 — i 7 ^ 0 1 

(5.3.9b) 

(5.3.11) 

The following expression for hi follows from expres­
sions (5.3.9a) and (5.3.9b) 

hi = A 1 0 + A 1 1 £ + A 1 1 £ - 1 +AUE2 + A\2E~2 , (5.3.9'a) 

A 1 2 = 2 i £ 1 2 , A\2 = -2iBx\ . (5.3.12) 

M ore precisely, in the above relat ionships (5.3.7) - (5.3.12) 
the coefficients A 0 1 , Aqi, B00, B0\, BQX, A 1 0 , A N , A * L 5 Bxo, 
B\2-> B*2, A 1 2 , A * 2 are all functions of a, x and rj. 

Let us n o w consider E q n s (5.3.5c) and (5.3.6c). In fact, 
E q n (5.3.6c) defines h2 and we can write this equat ion in the 
following form 

V8£2 / 8£ 
^ 7 2 + 1 )-^=-3[L0+L1E + L2EI 

+ 9 i A 0 1 ^ 2 - £ 3 + c . c . ) , (5.3.13) 

where 

L 0 ~~Q^~+ \ 0 1 

8<7 

8 ^ i , „ . QAoi\ , 8 2 S 0 0 

8(7 6<7 
+ -

dtj2 
(5.3.14a) 

82Bn 
L 1 = 2 + 1 ^ + 3 i ( A I o A 0 1 + A S l A 1 2 } + u 0 0 1 

9?/2 

(5.3.14b) 
3 9 9 9 A m 9Ai9 

L2=--A2i+6iAnA0i+3A0i -^L - 4 = 0 ? 

(5.3.14c) 

if we utilise the above expressions (5.3.7a), (5.3.7b) and 
(5.3.9'a) for h0, / 0 and Z^. 

W e see tha t the L 0 and Lx t e rms in (5.3.13) are secular. 
However , the E3 te rm is no t secular (the E2 te rm is zero), 
because it does no t resonate with the h o m o g e n e o u s 
solut ion. Therefore, in order to ensure tha t pe r tu rba t ion 
theory is valid for long t imes, we mus t have 

L 0 = 0 , L \ =0 (5.3.15) 

N o w , from E q n s (5.3.5c) and (5.3.9b), we can determine 
also the function h2 

h2 =A20 +A22E2 +A*22E~2+^, (5.3.16) 

_ 9 5 1 0 _dBu _dBi\ 
A 2 0 " ^ ' A 2 2 " ^ ' A 2 2 " ^ - ( 5 ' 3 - 1 7 ) 

It follows from expressions (5.3.15) and (5.3.16), tha t 
the left-hand side of Eqn (5.3.13) obeys the following 
re la t ionship: 

8<f 

dh2 8 / 6 2 8 / 2 

+ l m = t r A w + l ) M - 6 i { A 2 2 E A * E h 

(5.3.18) 

and we conclude tha t , to obta in f2, it is necessary to solve 
the following equat ion 

9£ W 7 9£ 

= - 3 i ^ - 2 i A 2 2 £ 2 + 9iA 0 i E3 + c .c .^ . (5.3.19) 

But , at this stage the functions A 0 1 , 5 0 0 , 5 0 1 , A 1 0 , A n and 
A 1 2 = 2 i 5 1 2 obey the following four relat ionships: 

9 £ 0 0 

B0i = - i A 0 1 , A io 

dBoi 
9(7 ' 

B 12 

9(7 ' 
(5.3.20) 
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and two equa t ions [from expressions (5.3.15), (5.3.14a), 
(5.3.14b)], since A 0 1 A 0 1 oil 

9 A 1 0 6 | A 0 1 | 

8 ( 7 ^ 8 ( 7 

d2B{ 00 

drj2 
= 0 , 

8T 

8 2 A 01 

8 ( 7 2 

+ 3 i ( A 1 0 A 0 i + A S i A 1 2 ) + 
8?/2 

0 . 

(5.3.21b) 

F r o m rela t ionships (5.3.20) and (5.3.21), we can eliminate 
the functions A 1 0 , A n , A 1 2 and B0\. W e then obta in the 
following system of two equa t ions for A 0 1 and B00: 

|2 

= 0 , (5.3.22) 
8 2 5 0 0 + 8 25oo + 3 8 | A 0 1 | 

8 ( 7 2 drj2 8 ( 7 

2i 
8 A Q I 

8T 

8 2 A 8 2 A oi _ a , 9 5 0 0 

— J A o i 
8 ( 7 ' 

(5.3.23) 

These limiting equa t ions (5.3.22) and (5.3.23) represent the 
nonlinear Schrodinger-Poisson (NLS-P) system of two 
equations (valid in the long-wave limit) obta ined first by 
Davey and Stewartson (1974) [39] and also by F r e e m a n 
and Davey (1975) [33]. 

Hence , modu la t i on of the ampl i tude A 0 1 of a travell ing 
wave packet of small ampl i tude (p ropaga t ing in quas i -one 
direction on water of finite depth) m a y be described by the 
nonl inear Schrodinger equat ion (5.3.23) coupled to the 
Poisson equat ion (5.3.22) for the middle pa r t of the flow 
velocity poten t ia l 5 0 0 . 

The N L S - P system of two equa t ions (5.3.22), (5.3.23) 
was derived by Davey and Stewartson [39] in the long-wave 
limit (e —> 0 and then 3 —> 0), bu t wi thout any formal 
justif ication. Accord ing to F r e e m a n and Davey [33], the 
above two evolut ionary N L S - P equat ions (5.3.22), (5.3.23) 
are derived by a double expansion p rocedure assuming tha t 
an expansion in te rms of 3 can be used first, followed by an 
expansion in Xo (Xo = l / ^o = s/32 <̂  1). This p rocedure 
would seem to imply tha t the pa rame te r s 3 and Xo a r e 

quite independent of each other . A close examinat ion of the 
me thod indicates however tha t the results still remain t rue 
even if Xo is dependent on 3. At first sight, the re tent ion of 
t e rms of order Xo<>2 m the course of der ivat ion of the G K P 
equat ion (4.7.3), neglecting te rms of order 34 in the 
expansion of </> in powers of 3, would suggest tha t some 
restrict ion on the magn i tude of Xo relative to 3 is implied. 
However , it should be realised tha t the te rms of order 34 

neglected in the expansion of </> are just those te rms which 
vanish to the first order in Xo because the value of c p is 
chosen in accordance with the linearised theory to achieve 
exactly tha t . A similar observat ion applies to certain te rms 
of order 34Xo> because of the choice of c g . 

W e can confidently assert therefore tha t the double 
limit, in which we have first 3 —> 0 and then Xo —> 0? as 
described in this present section, is valid and correct. Since a 
m o r e formal p rocedure with first Xo ~^ 0 a n d then 3 —> 0 
yields the same result, the double limit 3,Xo —> 0 must be 
valid and uniform for E q n s (5.3.22), (5.3.23) as the 
appropr i a t e evolut ionary equat ions : the double limit 
3, Xo ~^ 0 is uniform since the sequence in which the limits 
are taken is immaterial] 

E q n s (5.3.22), (5.3.23) suffice to determine A 0 1 and 5 0 0 , 
given appropr i a t e b o u n d a r y condi t ions . On physical 
g rounds a ' r easonable ' b o u n d a r y condi t ion is tha t , at 

any fixed t ime T, the wave decays completely at a dis tance 
sufficiently far from its centre, so tha t 

(5.3.21a) |A q dffoo _^ q 9#oo 0 , cr2 + rj2 —> oo 
8 ( 7 ' drj 

(5.3.24) 

F u r t h e r m o r e , if we suppose tha t at t ime t = 0 a t ravel­
ling wave is formed and the elevation of the free surface is 
raised to z = s £ (in dimensionless form), where 
C — Co(Xoxirl) e x P + c x - > then the appropr i a t e initial con­
dition on A oi is tha t 

A o i K ^ O ) ^ o G f o * ^ ) * ^t=O = Xox (5.3.25) 

Thus , at this stage, we can use the following two 
asymptot ic expansions for the functions Co a n d 

r - A F + A * F~l + v fdB°° i U / i ° 8A n E + i-
dAl 

8 ( 7 

+ Ia2

01E2 + 3-A*0

2E-2)+0(x2o) , (5-3.26) 

F0 = B00 ~ iAoiE + i A o \ £ _ 1 + Ofo) , 

where E = exp i£. 

(5.3.27) 

5.4 Consistent asymptotic expansions 
In principle, we can extend the asymptot ic expansions 
(5.3.26) and (5.3.27) up to the term of xl f ° r Co? a n d up to 
the term of the order of xl f ° r ^o- But this makes it 
necessary to solve, first, E q n (5.3.19) for f2. Surprisingly, 
the expression for f2 is then of the following form: 

fl — # 2 0 + 
3 S A 0 1 c,2 , 3 S A 0 1 ^ - 2 

8 8 ( 7 
•E'+-

8 ( 7 

(5.4.1) 

and from expression (5.3.16) we obta in for h2 ( the te rms 
with E2 and E~2 cancel out!): 

dB i 27 27 
+ — AilEi+ — A%\E 

8 ( 7 16 16 
(5.4.2) 

Therefore, if we wish to extend expansions (5.3.26) and 
(5.3.27), we have to determine the function 5 1 0 ( c r , T , rj). W e 
then mus t consider the equat ion for the function h3 and 
determine the s t ructure of the r igh t -hand side of this 
equat ion . F r o m the initial equat ion (5.3.1) we deduce easily 
the following equat ion for h3 

- + i ^ " 3 ' 2 ^ + e 7 + 3 / l ° 6^ + 3 ^ 6^ 

o, 8/i2 „, „, 9^o 83/i2 

8£ 9£ 8£ 8r8o-

8J/M 8 % d2fx 

8£6<x2 6<x3 dt]2 
(5.4.3) 

N o w , if we t ake into account expressions (5.3.7a), 
(5.3.9a) and (5.4.2) for h n , hi and h 2 , respectively, we 
obta in the following equat ion for h 3 : 

8<f 
• + l 

8^3 

8£ 
- 3 ( W 0 + 7 V l £ + i V 2 £ 2 

+N3E3 +N4E4 + c . c . ) , (5.4.4) 
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where 

^ 9 A 1 0 8 A 2 0 „ , 9A*! ^ . 8 A n 

A f 0 = 2 — ^ + — ^ + 3 A 0 i - 5 ^ - + 3A51-
8T 8(7 8(7 8(7 

tha t our u n k n o w n functions A 0 1 , 5 0 0 and 5 1 0 are also 
dependent of the slow variables: T 1 ; (7 L 9 . . . — clearly m o r e 
research is needed in this direction! 

^ „ * 9A 0 i ^ A 8Am 
+ 3 A t 1 ^ i + 3 A 1 1 ^ + ^ r (5.4.5) 

At this stage we shall not write down the cor responding 
expressions for the te rms p r o p o r t i o n a l to E, E2, E3 and E4, 
since we only intend to derive the equat ion for 5 1 0 . F o r 
E q n (5.4.4) the first compatibi l i ty condi t ion is N0 = 0. 
Then , E q n (5.4.5), and the relat ionships A 1 0 = 85 0 0 /8cr , 
A n = 9 5 0 i / 9 ( 7 , A\i = 9 5 0 * i / 9 ( 7 , 5 0 i = - i A 0 i , £0*i = i A ^ 
and A20 = 95 1 0 /9cr , yield the following Poisson equat ion 
for B10 

9 2 £ 1 0 + 9 2 £ 1 9 2 £ oo 
9T 9(7 

+ 3i A 
9 2 A 0 1 

9(7 2 
- A f 

9 2 A ^ 

9(7 2 9(7 2 drj2 

(5.4.6) 

Final ly, we obta in the following consistent asymptot ic 
expansions for £o and F 0 : 

C o = A 0 1 £ + A S 1 £ - 1

+ Z o f ^ - i ^ » £ 
\ d a 1 da 

+ ^ E - l + J - A l l E 2 + J - A f l E - 2 

9 / 9 5 1 0 27 5 ^ I 27 A + 0 ( X g ) , (5.4.7) 

oo i A 0 1 £ + iAS,£ 1 

+XO(bw - i \ A 2

m E 2

 + [lAflE-^j + 0(xl) . (5.4.8) 

The relevant equa t ions for the functions A 0 I ( T , CT,rj), 
5 0 O ( T , ( 7 , y f i and 5 1 0 (T ,c r ,? / ) are E q n s (5.3.22), (5.3.23) and 
(5.4.6). 

In principle, we can also extend the above expansions 
(5.4.7) and (5.4.8) for Co a n d F0, if we consider the 
cor responding equa t ions for /z4, /z5, . . . and / 4 , f5, . . . in 
the expansions (5.3.4a), (5.3.4b). But it is then necessary 
also to in t roduce , in addi t ion to the slow variables T, g and 
rj, several new slow variables, for example, %\ = Xox^ 
ffi = Xo°> 

Indeed, if we m a k e explicit the term p r o p o r t i o n a l to E 
on the r igh t -hand side of E q n (5.4.4) 

Nx =2 ^ l i + 3 i ( A 2 0 A 0 i + A 1 0 A N + A 1 2 A 1 1 ) 
9T 

+ 3 ^ ( A i 0 A o i + A 1 2 A ^ i ) + i 
, 1 9 ^ 

^ 3 8(73 
(5.4.9) 

we obta in a new equat ion from the second compatibi l i ty 
relat ion for Eqn (5.4.4) with Ni = 0, namely 

4 9 3 A n , 6 2 A n l . , 9 

3 8(7 3 
2 i ^ i + 3 

6<T6T 8<7 !01 
'8Boo 3 

8(7 2 

+ 3 ^ e | o o 8 | 1 o _ . ejoo 8 A o 1 + . 3 S A ^ , = Q ( 5 4 1 Q ) 

8(7 8(7 8(7 8(7 2 8(7 

The above equat ion is complementa ry for the u n k n o w n 
functions A 0 i , B00 and 5 1 0 , which satisfy a l ready three 
equa t ions (5.3.22), (5.3.23) and (5.4.6)! 

It is not at all evident tha t E q n (5.4.10) is an identity. 
Therefore, seemingly the p rob lem of A 0 i , B00 and Bi0 is 
over determined] To remedy this difficulty, we can assume 

5.5 Cnoidal wave and soliton solutions 
5.5.1 If we in t roduce new variables (p, T, Y) via the 
t rans format ion £ = p + (l/6x0)T, CT = x0 [p + (l/2x0)T], 
Y\ — Xo T — XQT, then from the G K P equat ion (4.7.3) 
we can describe the function 

Co 
1/2,7 Hp,T,Y) , 

by the following canonical K P equat ion 

dh dh J_<?h dzf 
df+ dp + Jgd^ + d~Y2 

= o , (5.5.1) 

where h = df/dp and Xo * s ° f order of uni ty. The above 
equat ion admi ts t ransverse cnoidal wave solut ions in which 
b o t h h and / are functions of 9 = Ip + mY — cT only. 

In this case the relevant equat ion for h = h(9) is 

/ V " + 3x0(3l2h - 2cl + m2)h' = 0 , 

and this equat ion has solut ions of the form 

h{9) =a + bCn2[0\v] , (5.5.2) 

where Cn represents a Jacobian elliptic function and a, b 
and v are cons tants . These cons tan ts mus t satisfy the 
algebraic relat ionships: 

3l2a — 2lc + m2 ( l - 2 v ) , b-
4/v 

3Xo 
(5.5.3) 

for given values of /, m, a. Then , in the limit when Xo ~~̂  0> 
if the ampl i tude b is to remain of order of uni ty, it is clear 
tha t v and (1 /c) must b o t h be of order of Xo? n ° t e also tha t 
c will be negative. In this limit, therefore, cnoidal waves 
become h a r m o n i c and the above solution, together with F 0 

as given by Co — 9 F 0 / 9 ^ , m a y be identified with the 
cor responding solution of the N L S - P equa t ions (5.3.22) 
and (5.3.23). 

F o r example, if we wri te l=\+kxocos9, 
m = k % Q 2 smQ, and require tha t the solut ion (5.5.2) has 
zero mean and uni ty ampl i tude , then this solution with 
a = 0 and b = 1 implies tha t 

Co = exp £ + &((7cos0 + rj sin 9) 

/ 9 k 
+ ( - c o s 2 0 + y c o s 2 0 )T + c.c. + 0(Xo) , (5 .5 .4) 

and the leading term on the r igh t -hand side is a solution of 
the N L S - P equa t ions (5.3.22) and (5.3.23) for A 0 i ; m o r e 
precisely, we have 

: exp k(a cos 9 + rj sin 9) 

/ 9 k 
+ ( - cos20 + y c o s 2 0 )T (5.5.5) 

5.5.2 R a t h e r remarkab ly , Anker and F r e e m a n [75] have 
used the two-d imens iona l 1ST of Z a k h a r o v and Shabat [35] 
to show tha t the N L S - P equa t ions (5.3.22), (5.3.23) are 
integrable. These N L S - P equat ions , together with the K P 
equat ion , are one of the few physically relevant t w o -
dimensional equa t ions k n o w n to be solvable by the 1ST. 
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with v = (1 — A 2 ) 1 / 2 , and mult isol i ton solut ions can also be 
constructed. 

In a later (1974) paper , Z a k h a r o v and Shabat [76] 
describe a general me thod for const ruct ing equa t ions which 
are solvable by the 1ST and which have soliton and 
mult isol i ton solut ions. The one-dimensional N L S equat ion 
is shown to be long to this class of equat ions . Accord ing to 
Anker and F r e e m a n [75], the N L S - P ( F r e e m a n - D a v e y ) 
system of equa t ions (5.5.7) can be constructed by the 
me thod of Z a k h a r o v and Shabat ( Z - S ) [76] and hence 
soliton and mult isol i ton solut ions are available. The p s e u d o -
two-dimens iona l solut ions thus obta ined describe the inter­
action of soli tons of the form given by solution (5.5.8), 
which are skewed with respect to each other . 

The first task is to set up opera to r s in the Z - S theory 
[76] cor responding to the two-dimens iona l case. Such 
opera to r s describe a set of linear par t ia l differential 
equa t ions {see Eqns (2 .23) - (2 .25) in the paper by Anker 
and F r e e m a n [75]} which underl ie the nonl inear set of 
par t ia l differential equa t ions (5.5.7). Simple exponent ia l 
solut ions of these linear equa t ions then give the soli tons 
cor responding to those of solution (5.5.8) for the t w o -
dimensional case and sums of these solut ions describe 
the mult isol i ton interact ions. 

Examina t ion of the A/-soliton solut ion enables the 
phase shift and centre shift of the individual soli tons to 

Figure 9. Amplitude variation in a two-soliton interaction for two values of phase shift: 1 and 2 are the incident solitons; 1' and 2' are the solitons 
after the interaction; 3 is the interaction soliton (in the second case, the incident soliton 1 is not drawn). 

Firs t , we can rewrite the N L S - P system of two 
equa t ions (5.3.22), (5.3.23) in the following new form for 
P and Q, if we in t roduce the re la t ionships 

AQI = c ° P e x P ( i P T ) , e = e ° + e , 

8 5 0 0 „ _ (5-5.6) 

8(7 
= G - 3 | A C 

where P, C° and Q° are constants , 

^ - U + w — l d ° , ^ - i ) + v a - < 5 - 5 7 a ) 

» a + t o y c ° W ( 5 , . 7 b ) 

ocr orjz orjz 

choosing C 0 2 = 2 ( g ° + 2p)/3. 
In the one-dimensional p rob lem, independent of rj, the 

system of equa t ions (5.5.7) gives the N L S equat ion . 
Linear isa t ion of the above equa t ions in the one-d imen­
sional case shows tha t it is stable (see Section 8) in the sense 
of H a s i m o t o and Ono [36]. It has also been shown by 
Z a k h a r o v and Shabat (1972) [35] tha t in this case there exist 
sol i ton-type solut ions of the form: 

p_(X + iv)2 + exV[2v(a-a°+lt)] 

1 + exp [2v(o- - (7° + AT)] 
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be calculated. The centre shift describes the displacement of 
the wave envelope and the phase shift describes the change 
in the phase of the modu la t ed wave. In special cases, the 
phase shift becomes infinite and a limiting solution is 
obta ined in which the resonance condi t ion determines a 
third soliton. The results of two numer ica l compu ta t ions 
are shown in Fig. 9 for two values of the phase shift (from 
Anker and F r e e m a n [75]). 

5.6 Generalised nonlinear S c h r o d i n g e r - P o i s s o n equations 
and their matching to the Kadomtsev-Petv iashvi l i 
equation 
First , it is impor t an t to no te tha t , in a m o r e general case, it 
is possible to derive asymptot ical ly a coupled system of two 
evolut ion equa t ions for a packet of water waves when 
e —> 0 and A = v 0 e, but 3 and v 0 are fixed. These represent 
the G N L S - P system of two equa t ions deduced from the 
classical dimensionless p rob lem described by E q n s (2.3.3), 
(2 .3 .5) - (2 .3 .7) . Below, we shall present the main features 
of this derivat ion and we shall consider also the ma tch ing 
between the K P and these G N L S - P equat ions . 

F o r the derivat ion of the G N L S - P equa t ions the reader 
can consult the paper s by Benney and Roskes [38], Davey 
and Stewartson [39], Djordjevic and R e d e k o p p [40], 
Ablowi tz and Segur [41], and also the b o o k by M e i 
([43], pp 6 0 7 - 6 1 8 ) . The most general analysis was repor ted 
in Ref. [40]: it includes the effects of surface tension and 
arb i t ra ry depth and yields the G N L S - P system of two 
coupled evolut ion equat ions . 

Wi thou t surface tension (when W e = 0) and with the 
dimensionless variables, our initial p rob lem is described by 
the Laplace equat ion (2.3.3), in water , together with the 
free-surface condi t ions (2.3.6) and (2.3.7) and the flat-
b o t t o m b o u n d a r y condi t ion (2.3.5). 

Only a brief outl ine of the pe r tu rba t ion analysis need be 
given here. 

5.6.1 The wavelength of the carrier wave is taken to be 
0 ( 1 ) as 8 —> 0, and this cor responds to 3 being fixed in the 
limiting process: 

e —> 0 , A = v0s, with 3 and v 0 fixed (5.6.1) 

Indeed, as shown by the earlier work of Benney and 
Roskes (1969) [38] and Davey and Stewartson (1974) [39], 
it is convenient to in t roduce the following mult iple slow 
scales: 

/ x * <5 3 
' = s(x — cj), y — — y , 

A v 0 

t =8 t (5.6.2) 

The carrier wave moves at the phase velocity c p and the 
ampl i tude modu la t ion moves at the cor responding group 
velocity c g , a l though the specific forms of c p and c g are no t 
assumed a priori. 

The wavetra in is so const ructed tha t it is per iodic (to all 
orders in e) in 

p* = x — cvt , (5.6.3) 

with the fundamenta l periodici ty E = exp ip* and the 
ampl i tude modu la t i on described by the scaled coordina tes 
(5.6.2). Therefore, h igher-order t e rms (in the series 
expansions in 8, given below) mus t conta in higher 
ha rmonics generated by the nonl inear coupling. N o w , if 
we assume tha t the solution of our p rob lem — described by 

E q n s (2.3.3), (2 .3 .5) - (2 .3 .7) and expressions ( 5 . 6 . 1 ) -
(5.6.3) — is given by the following asymptot ic expansions: 

0 = 0 O + 80! + 8202 + . . . , C = Co + fi Cl + S2£l + • • • , 

(5.6.4) 

we are faced with the following set of p rob lems described 
by equa t ions for the functions cpn and £„, n = 0 , 1 , 2 . . . : 

dz 

d1^ 2d2<^n 

dz2 

dz :=0 

dp* 

cvL dp* 

= 0 

\z=0 

C =C ^ 
dp 

+Hn\ 

(5.6.5a) 

(5.6.5b) 

(5.6.5 c) 
z=0 , z = u 

(11 = 0 , 1 , 2 , . . . ) , 

where 

F 0 = 0 , G 0 = 0 , # < , = < > ; (5.6.6a) 

23: 9 2 0 o 

dp* dq 

8 2 0 o , aCo S(/>o 
dq

 + C p ; ° dP*dz

 + C v dp* dz 

l / 8 0 o 
2 8 ; 

W 8 0 o 

2<52 V & 
(5.6.6b) 

= 232 ^ + 32 | 8 2 

dp* dq dq2 dy ,*2 

C g dq ^ dp* dp* + dp* dp* 8z 2 

r

 8 2 < />0 , c2 SCo , e 2
 S 0 O

 SCo , c2 8 0 O

 SCo 

" C l ~dz^ + 3 dt^ +
 3 ^q~W 

'8C0\28(/>o 1 r 293</>o 2 8C0 S ^ o 2 ^ C o V S ( / > 0 1 2 
+ d Codfd^~z + d WJ ~dz~~2Co dz3 9 

H _ r + c r , r r &<l>0 , . 9Co90 i 
H l " C g ~dq~ + C ^ 0 8 7 & + C p C l 8 7 & + C p 8 ^ ~ & 

d£i 9(/>o 60Q 1 60Q 60Q 
p dp* dz dp* dp* 32 dz dz dt* 

, r , % ^ o _ ^ o ^ o , r i 9 3 0 o 
+ C g ; ° 8 ^ 8 z + C g 8</ dz dp* dq ^C^°dz2dp* 

6Co 92</>o r

 s 0 o 92(/>o 80o 80o 3Co 
8p* 8z2 * u dp* dzdp* dp* dz dp* 

,2 . 
_ } _ r 90o 8 2 0q 

<52 t o 8z 8z 2 
(5.6.6c) 
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Firs t , if we combine , for n = 0, E q n s (5.6.5a), (5.6.5b) with 
(5.6.5c), we obta in for 0 O the following h o m o g e n e o u s 
p rob lem 

| 2 0 o + ^ 9 2 < / > o _ A 9 0 o 

dz2 

80o 
dz 

dp* 
= 0 , 

dz 
= 0 , 

+ c 2 J 2 d ^ 
z=0 dp ,*2 = 0 , 

(5.6.7a) 

(5.6.7b) 

and we can easily find the following results for 0 O and £o: 

K = ^00(qy,n+F00(z)[A(qy,nE+A*E-1] , (5.6.8a) 

Co =c] 

with 

80o 
p dp* z=0 

icv[A(q,y*,t*)E -A*E~1] , (5.6.8b) 

cosh[<5(z + l)] x 

F o o { z ) - cosh 5 ' E 
e x p ( - i / ) , (5.6.9) 

and c p is calculated from the dispersion relat ionship in the 
linear theory, 

c - ^ 1 , co(S) = (S(j)l/2 , a = tanh S . (5.6.10) 

Next , for 0 1 we have an inhomogeneous p rob lem 

'8A ^ 8A* , 
— E —-— E 1 

dq dq 

9 0 i 
8z 

9 0 i 
dz 

= 0 

, 2c2 9 01 
z=0 8p* 

: ^ ( 0 o ) z = o , 

(5.6.11a) 

(5.6.11b) 

(5.6.11c) 

with 

+ 3 i ( 5 2 c P ( ( 7 2 - 1 ) ( A 2 £ 2 - A * 2 £ ~ 2 ) . (5.6.12) 

The solut ion of the prob lem, described by the system of 
equa t ions (5.6.11) in combina t ion with expressions (5.6.12), 
is: 

0 ! =$l0(qy,n+F00(z)[B(qy,t*)E + B*E-1] 

'9A 8A* 

where 

f i o ( z ) : 

+ F n ( z ) ( A 2 £ 2 - A * 2 £ ~ 2 ) , (5.6.13a) 

1 / ( z + l ) s i n h [ 3 ( z + l )] ( jcosh[^(z + l ) ] ' 

2(5 cosh 3 cosh (5 

(5.6.14a) 

3i , 9 w ? x cosh[2(5(z + 1)1 
M z ) = ^ + D ( ^ - 1 ) j j ^ ^ (5.6.14b) 

and for £i we find: 

^ = c v ^ - ( l - a 2 ) \ A \ 2 + icv[BE-B^E-'] 

fdA r 8A* , 

+ ^ ( ( 7 2 - 3 ) ( A 2 £ 2 + A * 2 £ - 2 ) . (5.6.13b) 

The above results (5.6.13a), (5.6.13b) for cf>l and £i are 
obta ined when we assume tha t : 

v + 3(1 - v2) _ dco(3) 

2 ( 7 d<5 
(5.6.15) 

according to the linear theory. 
W e can then obta in 0 2 and £2? once the solut ions for the 

mean flow ( 0 O , Co) a n d second ha rmon ic ( 0 l 5 £1) [described 
by expressions (5.6.8) and (5.6.13)] have been found: the 
evaluat ion of F2, G2 and H2 from the set of expres­
sions (5.6.6c) is a s t ra ightforward, bu t tedious task! 

F o r example, we can find the following solution for 0 2 : 

920oo + -dy*2 

+F00(z)[C(qy,nE + C*E-1] 

d2A d2A 9£\ 
2 3 < T w - ^ - 2 l ^ ) E + c - c : 

- ^ [ ( z + l ) 2 - ! ] ^ ^ ^ ^ 

+82Fw(z) 

+ higher ha rmon ic t e r m s . (5.6.16) 

Then , imposing the b o u n d a r y condi t ion at z = 0, described 
by expression (5.6.7b) and assuming tha t n = 2, we find 
from expression (5.6.6c) for G2 tha t the leading-order mean 
flow or long-wave component, 4>oo(q,y*,t*), is described by 
the equat ion 

(\ ^2N,920OQ , 9 2 0 Q Q r . 9N1 9 , | 2 

( g ) ^ 2 " + ^ 2 " = _ L p + g ( 1 ' 
1 8g 

(5.6.17) 

The above equat ion shows tha t the long-wave componen t 
0oo is generated by the self-interaction of the shor t -wave 
componen t [characterised by the ampl i tude function 
A(q, /,,*)]• 

Finally, compar ing the f i rs t -harmonic te rms in the 
b o u n d a r y condi t ion (5.6.5b) (at z = 0) for n = 2 with the 
cor responding expression (5.6.6c) for G 2 , the expression 
(5.6.5c) for £ 2 , when n = 2, the expression (5.6.6c) for 
H2, we find tha t the derived two equa t ions are compat ib le 
only if the ampl i tude function A(q,y*,t*) satisfies the 
following evolut ionary (Schrodinger) equat ion: 

8A ,8 2 A 82A 
2 k p 8 r " [ C g " ( 1 " a 2 ) ( 1 " ^ dq2 + CpCg dT2 

= [ 2 c p + c g ( l - ( 7 2 ) ] A 
90 00 

dq 

13 
(5.6.18) 

E q n s (5.6.17) and (5.6.18) taken together describe the 
evolut ion of a travell ing wave, to the first order in s and 
with 3 fixed. 

F o r the c a p i l l a r y - g r a v i t y water waves (when W e ^ 0) it 
is also possible to derive an ana logous G N L S -P system of 
two coupled equa t ions 

8A „ 8 2 A 8 2 A 80, 
H ^ + / ^ = * i A ^ + x A | A | 2 , (5.6.19a) 

dt* dq2 rdy 

„ 9 2 0 o o , 9 2 0 o o . 
• + - / » s - | A | 2 

dq2 dy*2 y dq 
(5.6.19b) 
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kh0 

D 

v > 0 

% > 0 , 
v > 0 . 

X<0, 
.v < 0 

a > 0,v < 0 

a < 0,v > 0 

v > 0 

Figure 10. Dependences of A, a and v on kh0 and We*. Curves 
indicate where the various coefficients change sign. 

where A, /i, x> Xi> a a n d are k n o w n real cons tants . The 
expressions for the var ious cons tan ts are given by Ablowi tz 
and Segur (see [41], p . 697), bu t no te misprint in their 
E q n (2.24d) for the coefficient %. 

In par t icular , we no te tha t (in te rms of d imensional 
quanti t ies) a = 1 — (c 2 /g / z 0 ) , tha t /i, Xi a n d P are n o n -
negative and b o u n d e d , and tha t a, A, x a n d v = % — ( /V a )Xi 
change sign as shown in Fig. 10. In Fig. 10, the two axes 
represent the dimensionless wavenumber k h 0 and the 
surface tension pa ramete r [according to expres­
sions (2.3.9) and (2.3.20)]: We* = 3 2 W Q . Each line 
denotes a simple zero of the designated coefficient except 
for the lines b o u n d i n g region F, which denote singularities 
of v and X-

These singularities arise when We* = < 7 2 / ( 3 - a2) and 
g = t anh k h o , and this is the condi t ion for the second-
h a r m o n i c resonance, at which our pe r tu rba t ion expansion 
b reaks down. Cases where a = 0 are also singular. 

5.6.2 W e shall n o w consider the G N L S - P system of two 
coupled equat ions , (5.6.17) and (5.6.18), for the functions 
A(q,y*,t*) and 4>00(q,y*, t*) in the shal low water limit when 
3 —> 0. In this case, first, we find the following limiting 
values from expressions (5.6.10) and (5.6.15) for c p and c g : 

c p = 1 
1 

<52 + . . . C\r = 1 
1 

<52 + . . . 0 . 

(5.6.20) 

Then , in place of E q n (5.6.17), we obta in the following 
Poisson equat ion for the limiting value of 0 O O : 

:2 9_0OO 8_0op_\ o 

~dq2~ + ~ d r r r ° ° ~ ~*q 
-3 0i2 (5.6.21) 

since g = 3— (l/3)32 + . . . when (5 —> 0; 0o O = l i m ^ o 0 O O 

and A0 = l i m ^ o A . 
Next , when 3 —> 0, in place of the Schrodinger equat ion 

(5.6.18), we find 

2iev 
8A1 

2 82A° 80; 
= 3 S

Z A V ^ + -A()\A 
*2 dq 2 1 

0i2 
dt* " dq2 ' " dy* 

(5.6.22) 

It is n o w necessary to compare the slow variables 
q = s(x — cgt), y* = sy3/A = y3/v0 and t* = s2t, described 
by expression (5.6.2), with the variables (cr, J / ,T) in the 
N L S - P ( F r e e m a n - D a v e y ) equa t ions (5.3.22) and (5.3.23). 

The variables (cr, J / ,T) are defined, according to expres­
sion (4.7.3), by a = x0(x - cgt), z = x2

032t and rf=y/v0, 
where Xo = ^/Ko — s/<>- This compar i son yields the 
following relat ionships: 

= 3\ (5.6.23) q = 32g , y* = 3rj, t 

since A = v0s and Xo = ^/32. 
Expression (5.6.23), together with E q n s (5.6.21) and 

(5.6.22) for 0qO and A0, yield the NLS-P system of two 
equat ions (5.3.22), (5.3.23), bu t for A U ( < 7 , 7 / , T ) and 

d% 

8<7 2 ' dry2 

00 + 9 0 O O 

0oo = " 3 |A 
0i2 

dG 

2i 
8A l 82A° 

+ -
82A° 

8T dG2 drj 
• = 3A o

8 0oo + 9 A o | A o | 2 

dG 

(5.6.24a) 

(5.6.24b) 

Therefore, it is clear tha t E q n s (5.6.24) and (5.3.22), 
(5.3.23), match , i.e., B00 = 4>°00 and A 0 l = A 0 . 

Thus , the long-wave limit of the G N L S - P equa t ions 
(5.6.17), (5.6.18) matches precisely the shor t -wave limit of 
the K P equat ion (derived in Sections 4.5 and 4.6). It 
confirms a measure of agreement between the G N L S - P 
equa t ions for long waves (3 —> 0) and the K P equat ion for 
short waves (JC0 —> oo). This can be stated m o r e formally: 

l i m [ G N L S - P l = lim [KPl , 
<5^0L

 J K 0 ^ O O L J 

(5.6.25) 

and since ma tch ing occurs, the coefficients in the G N L S - P 
equat ions , when 3(= k h 0 ) —> 0, can be checked against 
those deduced from the K P equat ion , when K0 —> oo 

(Xo = V'Co = fi/52).t 

6. Influence of an uneven bottom 
6.1 Quasi-one-dimensional Boussinesq equation 
for a variable depth 
If we wan t to t ake into account the influence of an uneven 
b o t t o m , we have to consider the dimensionless classical 
p rob lem (3.2.1) bu t , in place of (3.2.1b), in this case we can 
apply the uneven-bo t tom condi t ion: 

0 Z = OL[324)xGX +A24>YGY] on z = - 1 + a G ( x * , v * ) , 

(6.1.1) 

according to expansion (3.2.11), where a = g 0 Ao> 
P = A 0 / / 0 , y = fi0/m0 and x* = y* = yy. 

Here , we assume tha t W e = 0 and we consider, subject 
to the uneven-bo t tom condi t ion (6.1.1), the dimensionless 
Laplace equat ion 

0 Z Z + < 5 2 0 ^ + A 2 0 3 7 } ; = 0 , 

- 1 +aG(x*,y*) ^z^s£(x, y, t) , (6.1.2) 

and the following two free-surface dimensionless condi t ions: 

on z = e£(x, y, t) . 

(6.1.3) 

(6.1.4) 

fFor the K d V and N L S equations, in the one-dimensional case, and 
for more details of the matching procedure, see Ref. [77] and Ref. [78], 
p. 25. 
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As in Section 3.2, from the Laplace equat ion (6.1.2) and the 
uneven-bo t tom condi t ion (6.1.1), we can find, in place of 
expansion (3.2.8), the following asymptot ic expansion for 
the velocity potent ia l </> 

4> = F{x, y , t ) - ^ ( z + h)2(F)„ ~ PBK,{Z + h)(F)x ^ 

+ 8 Z fA{z + h)\F)x 
% z + h)2{F)y 

dh 
+/?e21(Z + hf{F)xxx ^ - ys2vl(z + h)(F)y ^ 

+0(e3; P2s2) , (6.1.5) 

when we assume again tha t 32 = K0S and A = v0s in the 
limit e —> 0. 

In expansion (6.1.5), we have /z(x*,v*; a) = 1 — 
aG(x*,v*) and we can specify tha t expansion (6.1.5) is 
valid when y = 0 ( 1 ) , bu t it is necessary to pos tu la te tha t 
P 5> 8. If ft = 0(E), then the fifth te rm in expansion (6.1.5), 
p r o p o r t i o n a l to / te 2 , is of order of 0(s3) and we do no t t ake 
this te rm into account in this case! In the paper by Liu, 
Y o o n and Ki rby [79] this last case is considered correctly 
and these au tho r s have conjectured a form of the 'modified ' 
K P equat ion for a var iable depth (in Section 6.3 we shall 
consider the influence of a var iable depth on the K P 
equat ion) . 

F r o m expansion (6.1.5) we can easily obta in the values 
of the derivatives (f>s, with s = (t,x,y), and (f>z, on z = s£(s): 

4>t = (F), - B-f fe2(F)„( - fiBKoh ^ (F)xt + . . . , (6.1.6a) 

4>x 

4>z 

•S-fh\F)x •2Pac0h^;(F)xx+..., 

n - e f h 2 ( F ) x 

dh 
(6.1.6b) 

(6.1.6 c) 

- 8 K 0 

/c0 dy*V h + ... 

dh 
- 2 ^ h 2 - { F ) x 

(6.1.6d) 

N o w , from the free-surface b o u n d a r y condi t ion (6.1.3), we 
find, according to expressions (6.1.6), the following 
approx ima te equat ion 

+ 8 UF)X+C(F), 
Kih\F)x 4^ 

3 n , 2 dh , . ysv0 dh 

(6.1.7) 

with an error of 0(s2). 
Next , the second f ree-boundary condi t ion (6.1.4), gives, 

still according to expressions (6.1.6), a second app rox ima te 
equat ion 

(F)t+C + e h\F)xxt 

dh 
fcKOh~^(F)X 

(6.1.8) 
again with an error of 0(s ) . 

The two equat ions , (6.1.7) and (6.1.8), are our quasi-one-
dimensional Boussinesq equations for a variable, uneven 
bottom of the form z = —/?(x*,v*; a) , with x* = fix and 
y* = yy-

If h = 1, we obta in again, from E q n s (6.1.7) and (6.1.8), 
the classical Q 1 D B system of two equa t ions for F and £, 
similar to E q n s (3 .2 .20)- (3 .2 .23) . 

If h ^ 1, we can also write down the above Boussinesq 
equa t ions (6.1.7), (6.1.8) for an uneven b o t t o m : 

1 / / 3 
- (n ux 

£ + [ ( A + 8 0 ] + - ° (hv)y--
KQ 

dh 
= P^0h2—uxx , (6.1.9) 

ut + suux +Cx-~y h2uxxt = 2PsK0h ^ uxt , (6.1.10) 

where u = (F)x, v = (F)y, uy =vx. 
Again , from E q n s (6.1.7) and (6.1.8), we can eliminate 

the function £ and derive a single Boussinesq equation for F. 
Indeed, the following expression for £ can be obta ined from 
E q n (6.1.8): 

C = - ( / 0 , - f ( / 0 , 2 + ? [ ^ ] , , 

and if we t ake into account the above relat ionship in 
E q n (6.1.7), we find for F(x, y, t) a single approximate 
Boussinesq equation for an uneven bottom: 

(F)n-[KF)x}x-e-^W)y}y+e 

dh 
+P™»h2 — {F)X~ = 0 (6.1.11) 

with an error of 0(s2) when P ^> s. 
Natura l ly , if P = 0(E), then in place of E q n (6.1.11) it is 

necessary to write the following reduced Boussinesq 
equat ion , again with an error of 0(s2) and with y = 0(1): 

(F),,-KF)X. 

+£ 
1 

1 K0 8 v * 1 ) y 

- K 4 h 2 
1 

= 0 (6.1.12) 

for F(x,t,y*; h), where h = h(sx,y*; a) and y* = yy. 

6.2 Korteweg - de Vries equation for variable depth 
W e re turn n o w to the Boussinesq equa t ions (6.1.9) and 
(6.1.10) for an uneven b o t t o m . Here , for one-dimensional 
water waves, when 

P = s, y = 0, h = h(sx) , (6.2.1) 

we obta in , as the Boussinesq equa t ions for var iable depth, 
the following two dimensionless equa t ions for u(t,x) and 
t(t,x): 
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C, + [(h + eC)u]x - 8-^[h3

Uxx]x = 0 , 

ut + suux -\- Cx Y~ h2uxxt — 0 J 

(6.2.2) 

with an error of 0(s2). But an a l ternate form of the 
Boussinesq equa t ions (6.2.2), for an uneven b o t t o m 
z = —h(ex), can be derived if we in t roduce the dep th -
averaged hor izon ta l velocity U(x,t) defined by 

U = 
1 

h + e£ j _ h \-h 

l 
dz , 

h + eC 

in accordance with expression (6.1.6b). Hence , we find: 

8 K 0 r.2.. , ^ , / „ 2 V = u--±h1uxx +0(ez), u = (F)x, (6.2.3) 

which can be inverted to give the following app rox ima te 
expression for u: 

u = U +

 e!^h2U_a +0(e2) (6.2.4) 

After this relat ionship (6.2.4) for u is subst i tuted into the 
system of equa t ions (6.2.2), it follows directly tha t 

C , + [(h + a{)U]x = 0 , 

Ut+eUUx+Cx-e-yh2Uxxt=0 

where h = h(sx) and with an error of 0(s ) . 
Let the new variables be 

(6.2.5) 

J ' 
dx* 

(6.2.6) 
[h(x*)]1'2 

where £ is the coord ina te moving at the local linear 
velocity. 

The changes 

_ 8 _ _ _ 8 _ _ 8 _ _ _ 8 _ 1 6 

dt~~d~C te-eW + [h(x*)]Wdt 

m a k e the system of equa t ions (6.2.5) 

^ r ^ , - 1 / 2 ^ C *», - 1 / 2 

(6.2.7) 

8£ + 8 W d x ^ + 8 / Z 8 x 6£ 

-1/2 

6£ 

8w 

6£ 

(6.2.8a) 

, du du ,8 3 w 
0 

* 8£ + 8 W 8 £ + 8 / Z 8X* + 8£ + 3 * d^3 

(6.2.8b) 

with an error of 0(s2). A d d i n g the two above equa t ions 
and using the leading approx imat ion , when e —> 0 and 
u ~ h~l/2£, we get, to the leading order: 

h"2 £ + Uh~+ 3 / T 1

 C g + ? ^ = o . (6.2.9) 
8x* 2 dx* 8£ 3 8<f 

This extended KdV equation was first deduced by 
K a k u t a n i (1971) [80] and m a y be expressed in several 
forms. F o r example, we can apply the following Ono 
t rans format ion [47] 

£ = - l K o h 2 Z , T = ^ \ X hl'2dx\ (6.2.10) 
3 6 Jx*o 

where the exponents of h are chosen to remove mos t of the 
var iable coefficient. In this case we obta in for the function 
Z(r, £), in place of Eqn (6.2.9), the following reduced K d V 
equat ion for an uneven b o t t o m : 

dZ ^ dZ d3Z „ , x 

^ - 6Z — + — r + X(T)Z = 0 , 
dT 8£ 8<f 

where the coefficient 

(6.2.11) 

K T ) = ^ h ~ 3 , 2 - & ' d T = I ^ V 2 d X * ( 6 ' 2 - 1 2 ) 

represents the e/jfert of variable depth. 

6.2.1 Let us consider two invar iants of E q n (6.2.11). 
In tegra t ing E q n (6.2.11) with respect to £ from —oo to 
+oo, we obta in 

dT ( i : 
-3ZZ+-

d2Z 

w 
+OO 

+ 
r+OO 

A(r) z d ^ o . 
J—OO 

N o w , if Z and its derivatives are assumed to vanish at 
infinities, then 

r+OO r nT 
Z d d e x p A(T) 

J - O O L Jo 
dT = const = J (6.2.13) 

N o w , mult iplying E q n (6.2.11) by Z and integrat ing with 
respect to we get 

1 A 
2 df 

z2dn + - 2 z 3 + z 
8 2 Z 1 8 ( Z 2 ) ' 

de 2 8^ 

+OO 

+• Z 2 d £ = 0 , 

which m a y be also integrated with respect to T to give 
CT -| / r+OO 

exp 2 Z z d < M = const = H . (6.2.14) 

Rela t ionships (6.2.13) and (6.2.14) are two invariants of the 
extended KdV equation (6.2.11) for an uneven bottom. 

But from the expression (6.2.12) describing the coeffi­
cient A(T) it follows tha t 

exp f X{T) dT = h9'A , dT = ^ h1'2 dx* , 
. n 6 

and hence our two invar iants are 

Z d < 7 , H = h 9 ' 2 Z2da (6.2.15) 

6.2.2 W e no te tha t the approx ima te extended K d V equat ion 
(6.2.11), valid for wave p ropaga t i on to the right, cannot 
account for reflection dur ing t ransmiss ion which, however , 
can be predicted by the m o r e complete Boussinesq 
equa t ions of Peregrine [46]. In par t icular , Peregrine notes 
tha t weak reflection should be describable by the linearised 
Airy equa t ions bu t for var iable depth , which can be handled 
analytically by the me thod of characterist ics. 

6.2.3 The K d V equat ion (6.2.9) with variable coefficients is 
often also rewri t ten [27, 48, 78] in the following form 

8Z 8Z 3 j Z _ 9 Z dh 
df~ d£ + 8 ? ~ ~ 4 l ~df ' 

(6.2.16) 

This ' pe r tu rbed ' K d V equat ion predicts soliton fission tha t 
occurs as a solitary wave moves into the shelf region [40]. 
This equat ion (6.2.16) has also been used as the basis for a 
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discussion of the effects of a pe r tu rba t ion on the K d V 
equat ion , when (\/h) dh/dT is small. This can be 
accomplished either by direct m e t h o d s [81] or, m o r e 
satisfactory, via the inverse scattering m e t h o d s [82]. In 
par t icular the p h e n o m e n o n of the shelf tha t appears behind 
a solitary wave is n o w well unde r s tood [51]. 

6.3 Kadomtsev-Petv iashvi l i equation for an uneven 
bottom 
W e shall use E q n s (6.1.7) and (6.1.8) to derive the K P 
equat ion for an uneven b o t t o m . W h e n v 0 = 0, we obta in 
the classical K d V equat ion for an uneven b o t t o m in several 
forms (see, for instance, the b o o k of M e i [43], pp 560 to 
561). F o r the derivat ion of the 'extended KP' equat ion for 
an uneven bottom it is necessary to consider the Boussinesq 
equa t ions (6.1.7) and (6.1.8) with = s. 

These equa t ions then have the following variables 

t,x,y, and also x* = sx , y ••yy , (6.3.1) 

and we can write, with an error of 0(s ), the following two 
equa t ions for F and £ 

Ct + h(F)xx+s UF)x+aF)xx-^h\F\ 

V Q dh 
Y S K 0 d r ^ F ) y 

K 0 . 2 0 

(6.3.2a) 

(6.3.2b) 

By analogy with the one-dimensional case (see Section 6.2), 
we shall n o w in t roduce the following new variables 

: St, • [ h-l/\sx,y*; a)dx 
Jo 

t . (6.3.3) 

W e n o w have the following fomulae for the derivatives: 

dx 8 dx* ^ 
-1/2 _ 

9 £ : 8£ 9T : 

— = y h G — , 
dy r dy* 8£ ' 

with h = h(x*, v*; a) and 

c ( ^ / ) = ^ J V 1 / 2 ( « , / ; « ) d * 

If we assume that 

F = F0(x,Z,X;y')+ & ! + . . . , 

C = Co(T, + 8 C l + . . . 

(6.3.4) 

(6.3.5) 

then, equat ing t e rms of order e° and e 1 , we obta in the 
following equa t ions for the functions F 0 , £ 0 and Fx, d: 

dh 6 F 0 

2 " ' 

Co (6.3.6a) 

9Ci . 9 2 ^ i 
6T 

+ 2h 1/2 8 F0 | I ft-1/2 
d£dx* dx* di 

+ K0 dy* V" dy* 

-\-yhG _ _ ^ + hG — 5 - (6.3.6b) 

• ^ + C l = " 2 / Z 9 ^ 2 8£ 3 ' 
(6.3.6c) 

As expected, the first equat ion (6.3.6a) is insufficient to 
determine b o t h functions £ 0

 a n d F 0 , and it is necessary to go 
to the second order in s ( terms e 1 ) to obta in a consistency 
condi t ion to do this. 

Differentiat ing E q n (6.3.6c) with respect to £ and 
subt rac t ing from E q n (6.3.6b), we get the following equa ­
t ion for the leading te rm of the elevation £o of the free 
surface: 

9Co , l h 1/2 9Co , 1 . - i / 2 r dh i 8Co 

a3Co 
K 0 

. 2 9Co 
9£ 

K0 dy* \ dy* 

dy" 

= 0 , (6.3.7) 

with 

- f 
JCX 

Cod^ 

F r o m the above equat ion , when £o is independent of the 
slow t ime T, we get the equat ion derived by X u e - N o n g 
Chen {[55], E q n (22)}. 

Na tura l ly , our extended K P equat ion (6.3.7), in £ 0 , for 
an uneven b o t t o m can be also derived directly from the 
single Boussinesq equat ion (6.1.12). If the t o p o g r a p h y is 
even (h= 1), E q n (6.3.7) is reduced to the classical K P 
equat ion and if v 0 = 0, this equat ion is reduced to a 
variable-coefficient K d V equat ion which is the same 
(when 8£O/9T = 0) as tha t obta ined by Johnson [48, 81] 
(see Section 6.2). 

To get a m o r e concise form of E q n (6.3.7), we t ake 
Co = h~l/4H(x*, v*, £) cor responding to 8 £ 0 / 9 T = 0, so tha t 
E q n (6.3.7) becomes 

™ + l h - V * H ™ + ^ h 1 ^ 
dx*+2 6£ + 6 d^3 

+ A 
2Kn 

h ^ G 2 ^ L + y h 3 / 4 G ^ _ ( h - l / 4 H ) 

9£ dy* 

+yh 
-1/4 _ 

with 

-1/4 

dy* 

J o o 

(6.3.8) 

Again , when v 0 = 0, we can rederive the classical K d V 
equat ion for an uneven b o t t o m in several forms and for this 
see the b o o k by M e i [43], pp 5 6 0 - 5 6 1 . 

7. Some aspects of the solitary wave-soliton 
phenomenon 
7.1 John Scott Russell's discovery 
The his tory (story!) of the solitary wave (SW) begins with 
the observat ion by J Scott Russell of ' the great wave of 
t r ans la t ion ' (first observed on the Ed inburgh to Glasgow 
canal in 1834). Russel l repor ted his discovery to the British 
Associat ion for the Advancemen t of Science in 1844 as 

file://-/-yhG
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follows (the discovery of the SW excited strongly his 
scientific and poet ic imaginat ion) : 

"... I was observing the mot ion of a boa t which was 
rapidly d rawn a long a n a r r o w channel by a pair of horses, 
when the boa t suddenly s topped — not so the mass of water 
in the channel which it had pu t in mot ion ; it accumula ted 
r o u n d the p r o w of the vessel in a state of violent agi tat ion, 
then suddenly leaving it behind, rolled forward with great 
velocity, assuming the form of a large solitary elevation, a 
round , smooth and well-defined heap of water , which 
cont inued its course a long the channel apparen t ly wi thout 
change of form or d iminut ion of speed. I followed it on 
horseback , and over took it still roll ing on at a ra te of some 
eight or nine miles an hour , preserving its original figure 
some th i r ty feet long and a foot to a foot and a half in 
height. I ts height gradual ly diminished, and after a chase of 
one or two miles I lost it in the windings of the channel . 
Such, in the m o n t h of Augus t 1834, was m y first chance 
interview with tha t singular and beautiful p h e n o m e n o n . . . " 

In fact, he knew tha t the velocity was p r o p o r t i o n a l to its 
height and p roposed after much exper imental work the law: 

c2=g(h + a) , (7.1.1) 

where g, h and a are the acceleration due to gravity, the 
undis tu rbed depth , and the m a x i m u m height of the wave, 
as measured from the undis tu rbed level, respectively. The 
SW is therefore a gravity wave. H e knew abou t the 
interact ion of solitary waves, bu t did no t appear to have 
not iced their soliton quali ty, a p rope r ty I will discuss 
short ly in Sections 7.4 and 7.5. H e also knew h o w to create 
them! But , unfor tunate ly , at first, Russel l ' s idea faced great 
hostil i ty and scepticism from the leading lights in the 
scientific communi ty of his day. Both Airy and Stokes 
quest ioned whether a wave which travelled wi thout change 
in shape could be total ly above the water and cited the 
d iminut ion of ampl i tude as an indicat ion tha t the wave was 
inherent ly n o n p e r m a n e n t . Russell had suggested (cor­
rectly!) tha t this failure was due to friction. F r o m 
expression (7.1.1) we no te tha t higher waves t ravel faster. 

H idden away in Russel l ' s " R e p o r t on w a v e s " (1844) (see 
Ref. [83], p la te X L V I I ) is the d iagram reproduced in Fig. 11 
(this figure is Fig. 1.5 in the b o o k of Draz in and Johnson 
[31]) together with the associated descript ion. 

Figure 11. A sketch of J Scott Russell's 'compound wave' . This figure 
"... represents the genesis by a large low column of fluid of a 
compound or double wave of the first order, which immediately 
breaks down by spontaneous analysis into two, the greater moving 
faster and altogether leaving the smaller" (see Ref. [83], p . 384). 

t = t3 > t2 t = t4>t3 

Figure 12. The taller wave catches up , interacts with and then passes 
the shorter one. The taller one, therefore, appears to overtake the 
shorter one and continue on its way intact and undistorted as an SW. 

One in terpre ta t ion of this Russel l ' s result (with a little 
hindsight!) is tha t an arb i t ra ry initial profile (which is not 
an exact SW!) will evolve into two (or more!) waves which 
then move apar t progressively, app roach ing the form of 
single SWs as t —> oo, since an SW is defined for (—oo, +oo). 

This a lone is ra ther surprising, bu t ano ther r emarkab le 
p rope r ty can also be observed. If we start with an initial 
profile like tha t given in Fig. 11, bu t with the taller wave 
somewhat to the left of the shorter , then the evolut ion is as 
depicted in Fig . 12. 

The exper imental work of Russell , on the SWs, 
summarised in Ref. [83], led immediate ly to the theoret ical 
work of Airy [8] and Stokes [3], which underl ie almost all 
subsequent theoret ical work on water waves except, 
surprisingly, tha t on the SWs! 

This was first described much later by Boussinesq [16 to 
19], bu t has been b r o u g h t to p rominence in recent years by 
the development of soliton solut ions initially for the K d V 
equat ion , which describes the SWs. 

7.2 Boussinesq and Rayleigh solitary wave solution 
It was no t unt i l the 1870s tha t Russel l ' s work was finally 
vindicated and its scientific impor tance can be measured by 
the eminence of the men who did the job (according to 
Newel l ' s b o o k [27], p . 3). 

The conflict between Russel l ' s observat ions and Ai ry ' s 
shallow-water theory [see the system of equa t ions (3.1.12)] 
was resolved independent ly by Boussinesq and Rayleigh. 
Boussinesq [16] and Rayleigh [10] found the hyperbol ic 
secant squared solution for the free surface elevation. 

To pu t Russel l ' s formula (7.1.1) on a firmer footing, 
b o t h Boussinesq and Rayleigh assumed tha t an SW has a 
length scale much greater t han the depth of water . They 
deduced, from the equat ion of mo t ion for an inviscid 
incompressible liquid, Russel l ' s formula for c. 

In fact, they also showed tha t the profile z = £(x,t) is 
given by 

C = a s e c h 2 [ £ ( x -ct)] , (7.2.1) 

where ft2 = 3a/4h2(h + a) for any a > 0, a l though the sech 2 

profile is strictly only correct if a/h <̂  1! But , these au tho r s 
did not , however , write down a simple equat ion (of the 
K d V type!), for C(*?0 which admi ts formula (7.2.1) as a 
solut ion. 

Boussinesq derived his solut ion from the equat ion 

82C o / 8 2 C 3 8 2 C 2 1 ? 8 4 C \ 

^=cKd+^+3h°d) (7-2-2) 
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approx ima t ing the water wave equat ion tha t n o w bears his 
name . In this app rox ima te equat ion , the mo t ion can be still 
bidirect ional , bu t the basic idea of the ba lance between 
nonl inear i ty and dispersion is present! 

Boussinesq also showed tha t any local section of a 
unidi rect ional solut ion of E q n (7.2.2) moves at the a p p r o x ­
imate velocity: 

3 • • 1 " - - ! ) , (7.2.3) 
o 62<r 

6C vdx: 

where C 0 is the velocity of infinitesimal long waves and the 
second and thi rd te rms within the parentheses in expression 
(7.2.3) represent nonl inear i ty and dispersion, respectively. 
H e infers from expression (7.2.3) tha t an initial elevation of 
water for which al2 is significantly in excess of the value 
determined by U = 3al2/4h3 = 1 would tend to disintegrate 
into two or m o r e solitary waves (plus, in most cases, a 
residual wave t ra in) and tha t an initial depression would 
tend to decay into an oscil latory wave t ra in , all in 
conformity with Russel l ' s observat ions . W e shall assume 
tha t / is the characteris t ic length for the SWs. Rayleigh 
obta ined 

^ _4h2(h + a) 
3a 

which reduces to U = 1 for a/h <̂  1. Rayle igh ' s [10] 
der ivat ion of the equivalents of expressions (7.1.1) and 
(7.2.1) is reproduced by L a m b ([4], Section 252). It is m o r e 
direct bu t less i l luminat ing than tha t of Boussinesq. 

7.3 K o r t e w e g - d e Vries and Kadomtsev-Petv iashvi l i 
solitary waves 
Unfor tuna te ly , b o t h Boussinesq and Rayleigh did no t 
wri te down a simple equat ion for C(*?0 which admi ts 
formula (5.3.2) as a solut ion! This final step (in the first 
per iod of the his tory of the solitary waves) was completed 
by Kor t eweg and de Vries (1895) [24]. These au thors , 
who 'apparent ly! ' did no t k n o w the work of Boussinesq 
and Rayleigh and who were still t rying to answer the 
objections of Airy and Stokes, wro te down the unidi rec­
t ional equat ion ( K d V equat ion) for £(x, t) which n o w bears 
their names . In fact, the Boussinesq equat ion (7.2.2) reduces 
to the K d V equat ion (4.2.4) by factoring the opera tor 
Cq d2/dx2 — d2/dt2, invoking the pr ior assumpt ion of 
uni la tera l p ropaga t ion , and integrat ing with respect to x. 

Indeed, Kor t eweg and de Vries [24] derived a somewhat 
m o r e general equat ion , in which they allowed for any 
uniform t rans la t ion of the reference frame and incorpor ­
ated surface tension: 

1/2 
(7.3.1) 

dt 2 \h0 

8f 2 8f 1 
c ^ + 3 a ^ + 3 ' a F j ' 

where a is a small bu t a rb i t ra ry cons tant , which is closely 
related to the exact velocity of uni form mot ion impar ted to 
the liquid, and where 

1 . 

Po8 
(7.3.2) 

depends on the surface tension T of a liquid of cons tant 
density p 0 . 

They then obta ined a family of per iodic solut ions of the 
form £ = £(x — Ct), which they called cnoidal waves (see 
Section 3.3 for details). Boussinesq [18, 19] also discussed 
per iodic solut ions of E q n (7.2.2), bu t did no t obta in explicit 

integrals. This family of cnoidal waves comprises the 
Boussinesq solitary wave described by expression (7.2.1) 
in the limit of an infinite per iod. M o r e precisely, an SW can 
be claimed to possess a wavelength X, no t in the usua l sense 
of a spatial per iod, bu t in the sense of the distance within 
which the surface elevation does not fall be low (say) 3 % of 
its m a x i m u m value. In this sense we obta in 

« 16 , (7.3.3) 
a0l 

h3 

and in Fig . 2 (Section 3.3) an SW is p lot ted (lower curve) 
for this value of the wavelength (Ref. [61], pp 4 6 5 - 4 6 6 ) . 

W e have seen tha t the K d V equat ion is indeed valid in 
an appropr i a t e region of the (x,^)-space for smal l -ampli­
tude waves (see, for instance, Section 4.1). However , we are 
left with one final connect ion to make : tha t between the 
K d V equat ion and the sech 2 profile! To demons t ra t e this, 
according to Ref. [31], let us re turn to the equat ion derived 
by Kor t eweg and de Vries themselves, which is E q n (7.3.1). 
This has the advan tage tha t it is wri t ten in te rms of physical 
variables and can therefore m o r e readily be related to the 
work of Russell , Boussinesq and Rayleigh as expressed by 
relat ionship (7.1.1) and solution (7.2.1). 

If the solut ion of E q n (7.3.4) is s ta t ionary in the frame % 
\X is a coord ina te chosen to be moving (almost) with the 
wave], then £ = and 

,9£ 2 8£ 1 
t 8 Z

 + 3 a 8 Z

 + 3 f f ' 8 z 3 -
0 . (7.3.4) 

If we assume tha t £ —> 0 as \x\ —> oo (as is the SW case), 
then Eqn (7.3.4) can be integrated twice to yield 

2aC2 + C 3 + < 7 0 , (7.3.5) 

the second integrat ion in t roducing the integrat ion factor 
6C/6*. 

The last equat ion m a y be integrated once again, bu t it is 
m o r e easily verified by direct subst i tut ion which shows tha t 
COc) — a sech 2 fix is a solution, provided a = 4cr/?2 and 
a = -2(7 P2. 

The coord ina te % is defined by Kor t eweg and de Vries 
[24] as 

1/2 

HQ 
t , 

and so the SW solution becomes: 

12 U t) = a sech 2 

x — 
1/2 

1 + ; h0J \ 2h0yl 

' (7-3.6) 

This agrees with expressions (7.1.1) and (7.2.1) if we 
neglect surface tension (so tha t a = h0/3) and assume tha t 
a/h0 <̂  1, for then we have 

V2 / „ \ i 1/2 
C> 1 + 

2h( 

(7.3.7) 

T h u s Russel l ' s SW is a solut ion of the K d V equat ion . 
In conclusion, we find tha t [31]: (a) from the SW 

solution (7.3.6), we see tha t the velocity of the SW relative 
to (g/h0)1/2 ( the velocity of infinitesimal waves) is p r o p o r ­
t ional to the ampl i tude a of the SW; (b) the width of the SW 
(defined as the distance between the po in ts of height a/2, 
say!) is inversely p ropo r t i ona l to a1/2. In other words : the 
taller SWs travel faster and are narrower. 
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Final ly, it is very interest ing to compare the appea rance 
of the ampl i tude a in solution (7.3.6) with the way s = a/h0 

appears in the scaled variables tha t were used in our 
asymptot ic derivat ion of the K d V equat ion [see, for 
example, Section 4 .1 , formulae (4.1.3)]. 

7.3.1 The two-dimens ional general isat ion of the K d V SW is 
performed in accordance with the K P equat ion [see 
E q n (4.6.8)]: 

dx \c0 dt dx 
3_ 

2h0 

hi 63C 
dx 

1 82C 

with c0 = (g/h)91/2, and it is clear tha t this K P equat ion 
has also solitary wave solut ions tha t are skewed versions of 
those given by Boussinesq, by Rayleigh, and by Kor t eweg 
and de Vries. Wri t ten in the same no ta t ion , they become 

12 W 
1/2 

t 

£(x, y, t) = a sech2 

x + my 
a m 

2h0 2 
, (7.3.9) 

when a = h0/3 and m is a pa rame te r describing the (small) 
inclination of the K P SW relative to the main direction of 
p ropaga t ion . 

In conclusion, we should no te tha t the SW solution of 
the K d V equat ion remained a curiosity in the l i terature 
unt i l Z a b u s k y and K r u s k a l (1965) [25] showed by their 
numer ica l studies tha t , as Russell had int imated, tha t SWs 
were of m o r e ub iqu i tous na tu re ! 

7.4 Zabusky and Kruskal (1965) numerical investigations 
Fig. 1 (see Section 1.1), t aken from the famous 1965 paper 
of Z a b u s k y and K r u s k a l ( Z K ) [25] announc ing the soliton 
(see Section 7.5), shows the results of the Z K numer ica l 
experiment in which they used a centred difference, mass 
and (almost) energy conserving scheme, to solve the K d V 
equat ion for u(x,t) 

du „ du -9 d3u 
— + 6u — + <r —T = 
8; 8x 8 x 3 

0 . (7.4.1) 

They used per iodic b o u n d a r y condi t ions and their initial 
profile was sinusoidal: 

u(x,0) = c o s 7 t x , 0 ^ x < 2 , (7.4.2) 

and w, du/dx, d2u/dx2 are per iodic in the interval [0, 2] for 
all t; they chose 3 = 0.022. 

Initially the negative slope steepens, then the third 
derivative term induces fine-structure wiggles of wave­
length d near and to the left of the m a x i m u m of u. In 
t ime the wiggles separate , forming a t ra in of pulses 
travell ing to the right, with the largest on the right, each 
pulse seeming to take on a life and identi ty of its own (!) and 
having a velocity p ropo r t i ona l to its ampl i tude . These 
pulses each m a y be approximate ly described by the sech 2 

SW solution, a l though strictly this is a solut ion valid for an 
isolated pulse on an infinite line. Because of the per iodic 
b o u n d a r y condi t ions , the solitary pulses eventually r e a p ­
pear on the left b o u n d a r y and, owing to their higher 
velocity, the larger pulses over take the smaller ones. 

At this point , Z K noticed a r emarkab le p h e n o m e n o n . 
Whereas two pulses behaved in a lmost a nonl inear way 
dur ing the interact ion, they af terwards reappeared with the 

larger one in front, each bear ing precisely its former identi ty 
(height, width , and velocity). 

The only evidence of a collision at all was a phase shift 
whereby the larger one appeared to be ahead of the posi t ion 
it would have been had it travelled alone and the smaller 
one appeared behind. W h e n the two pulses were a lmost 
equal , the interact ion seemed to t ake place by an exchange 
of identities in which the forward and smaller soliton 
became taller and nar rower when it felt the leading edge 
of the larger one which then, in tu rn , t ook on the identi ty of 
the smaller one. 

W h e n the two pulses had very different ampl i tudes , the 
larger one rode over the smaller one in an adiabat ic fashion. 
F o r ampl i tude differences in the in-between range, the 
interact ion was m o r e complicated. In a later analysis of 
the interact ion, Lax (1968) [84] verified these observat ions 
r igorously. 

The fact tha t the SWs emerge from a collision with 
exactly the same shape is surprising since it might be 
though t tha t the s t rong nonl inear i ty dur ing the collision 
process would b reak up the pulses. This p rope r ty is 
impor t an t because it shows tha t energy can be p ropaga t ed 
in localised stable 'packe ts ' wi thout being dispersed. This 
behaviour is no t a p rope r ty of the K d V equat ion alone! 

W e no te also that , after a very long t ime, the initial 
profile — or something very close to it — reappears , a 
p h e n o m e n o n requir ing the topo logy of the to rus for its 
explanat ion; this is an example of recurrence. 

This persistence of the wave induced Z K to coin the 
n a m e ' sol i ton ' , to emphasise the particle-like character of 
these waves which seem to retain their identities in a 
collision. The discovery has led, in tu rn , to an intense 
s tudy over the last thir ty years! 

7.5 From solitary wave to soliton 
Al though the term soliton was originally applied only to 
the SWs of the K d V equat ion , several nonl inear wave 
( N L W ) equa t ions are n o w k n o w n to exhibit similar effects 
(for example, the N L S equat ion derived in Section 5), and 
the term is often used in a wider context wi thout formal 
definition. In fact, a soliton is an SW solution of an N L W 
equat ion (or a soliton equation!) which asymptot ical ly 
preserves its shape and velocity u p o n collision with other 
SWs. 

It can be proved tha t a rb i t ra ry initial mo t ion (for 
example, tha t predicted by the K d V equa t ion) b reaks 
u p , ul t imately, into an 'ensemble of sol i tons ' . Indeed, the 
significance of the n a m e soliton for the SWs of the K d V 
equat ion is tha t by the use of the 1ST it can be shown tha t 
soli tons appear for a wide range of initial condi t ions . F o r 
example, Fig. 1 (see Section 1.1) demons t ra tes format ion of 
eight more-or- less distinct solitons, whose crests lie close to 
a straight line and have a per iod of 2. 

In summary , the initial h u m p eventually disintegrates 
into N soli tons, each of which cor responds to a discrete 
eigenvalue of the initial 'potent ia l well ' (in the 1ST). By a 
m o r e e labora te analysis of the G e l ' f a n d - L e v i t a n - M a r c h -
enko ( G L M ) integral equat ion (see Section 7.6), an 
oscil latory tail can be shown to follow a t ra in of 
soli tons. However , the lag increases with t ime, so tha t 
the soli tons are eventually a lone at the front. This 
dis integrat ion of an initial pulse into a t ra in of soli tons 
is also called fission. 
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7.5.1 Indeed, it was found numerical ly and confirmed 
experimental ly tha t a soliton travell ing from one constant 
depth to ano ther cons tant bu t smaller depth , disintegrates 
into several soli tons of varying sizes, trailed by an 
oscil latory tail. One the other hand , it was shown 
(numerically, bu t also analytically!) tha t over an uneven 
b o t t o m the SWs exhibit peculiar behaviour such as 
damping , growing, or splitting, depending u p o n the local 
slope of the b o t t o m (disintegrat ion or degenerat ion of a 
soliton in shal low water with an uneven b o t t o m ) . It has 
proved also tha t if the depth decreases to form a shelf, then 
for par t icular new depths an SW breaks up into a finite 
number of soli tons asymptot ical ly far a long the shelf. It has 
been shown tha t if the depth changes from h* to h**, then 
only soli tons are formed provided [48]: 

where n (integer) is the number of soli tons far enough 
a long the shelf. 

F o r increasing depth (a wave moving into deeper water ) 
an oscil latory asymptot ic solution can be derived and such a 
solut ion describes an SW (soliton) degenerat ing into a 
cnoidal wave! M o r e precisely, the fission of soli tons was 
first discovered and studied by M a s d e n and M e i [50] who 
used a numer ica l me thod . 

7.5.2 Pe rhaps the mos t str iking discovery result ing from the 
compu ta t ions relat ing to (numerically) s t rong soli tons is 
tha t the 'highest' soliton is not the most energetic. If a 
soliton is a localised entity which m a y keep its identi ty after 
an interact ion (almost as if the principle of superposi t ion 
were valid), it m a y be regarded also as a local confinement 
of the energy of the wave field and when two soli tons 
collide, each m a y come away with the same character as it 
had before the collision. W h e n a soliton meets an ' an t i -
sol i ton ' , b o t h m a y be annihi la ted. W e no te tha t , in fact, a 
soliton is a specific solut ion for waves of pe rmanen t form, 
a l though such a solution is no t in general a soliton. 

The p h e n o m e n o n of the interact ion of two soli tons is 
shown (schematically) again in Fig . 13. 

t 

x 
Figure 13. A sketch depicting again the interaction of two solitons. 

These special 'soliton solu t ions ' of the N L W equat ion 
are likely to be impor t an t in m a n y ways. Ga rdne r , Greene , 
K r u s k a l and M i u r a (1967) [49] developed an ingenious 
series of steps to tie the K d V equat ion to an inverse 
scattering p rob lem, i.e. to de terminat ion of the scat tering 
poten t ia l from the spectral functions, which can be done 
with the aid of the famous G L M integral equa t ion (see 
Section 7.6). 

7.5.3 Unfor tuna te ly , it is not easy to give a comprehensive 
and r igorous definition of a soliton! However , following 
Draz in and Johnson [31], we shall associate the term with: 
any solution of the N L W equat ion (or system of equat ions) 
which (a) represents a wave of permanent form, (b) is 
localised, so tha t it decays or approaches a constant at 
infinity, (c) can interact s t rongly with other soli tons and 
retain its identity. 

Natura l ly , there are m o r e formal definitions, some of 
which concern discrete eigenvalues of a scat tering p rob lem. 
In the context of the K d V equat ion , it is usua l to refer to the 
single-soliton solution as the SW, bu t when m o r e t han one 
of them appear in a solut ion they are called soli tons. 

Ano the r way of expressing this is to say a soliton 
becomes a SW when it is infinitely far from any other 
soliton. W e must ment ion also the fact tha t , for equa t ions 
other t han the K d V (or K P ) equat ion , the SW solution m a y 
no t be a sech 2 function! F u r t h e r m o r e , some N L W equat ions 
(or systems of equat ions) have SWs bu t not solitons, 
whereas o thers (like the K d V equa t ion) have SWs which 
are solitons. 

7.5.4 N o w , I wan t to describe some proper t ies related to 
'soliton dynamics ' and I shall follow a very interest ing 
b o o k [27]. 

At first, one tends to th ink of the soliton equat ion as a 
nonl inear evolut ion equat ion , a prescr ipt ion which 
describes h o w a given function of a space-like var iable x 
evolves with respect to a t ime-like variable t. This is 
certainly the poin t of view one takes when one applies 
the 1ST, in which the evolut ion equat ion is clearly 
considered to be a Cauchy initial boundary -va lue p r o b ­
lem. However , as the var ious miracles of soliton equat ion 
unfold, it becomes clearer tha t this equat ion is best t hough t 
of as a local relat ionship between a function (or functions) 
of an infinite n u m b e r of independent variables and its 
var ious derivatives with respect to the independent var i ­
ables, a relat ionship which is special because of some 
under ly ing algebraic s t ructure. Because the equat ion is 
local, there is no need to th ink of any one var iable as 
space-like and therefore par t icular ly dist inguished. 

The soliton equat ion is magic purely for algebraic 
reasons which have to do with the s t ructure of the equat ion 
as a very special relat ionship between a function and its 
var ious derivatives. N o global proper t ies are required to 
give it its special significance. 

The soliton itself is a d ramat i c new concept in nonl inear 
science. Here at last, on the classical level, is the entity tha t 
the field theoris ts had been pos tu la t ing for years , a local 
travell ing wave pulse, a lump-l ike coherent s t ructure, the 
solut ion of a field equat ion with r emarkab le stability and 
particle-like proper t ies . It is intrinsically nonl inear and owes 
its existence to the ba lance between two forces, one of which 
is linear and acts to disperse the pulse, the other is nonl inear 
and acts to focus it. 
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Whereas the N L S equat ion (considered in Section 5) 
was the first-born a m o n g soliton equa t ions (see, Z a k h a r o v 
and Shabat [35]), it was the celebrated K d V equat ion which 
fathered the soliton. It, t oo , is universal and is also 
ub iqu i tous and, just as in the case of the N L S equat ion , 
one can give the recipe for the circumstances under which it 
applies (it describes the evolut ion of shal low water waves). 
Bo th the K d V and N L S equa t ions arise as asymptot ic 
solvability condi t ions: such a condi t ion on the leading order 
approx ima t ion to the solution of a m o r e complicated set of 
equa t ions ensures tha t the later i terates of the app ro x i ma­
t ion remain uniformly b o u n d e d . It is very interest ing to 
no te tha t m a n y of the equat ions , derived as asymptot ic 
solvability condi t ions under very general and widely 
applicable premises, are also soliton equat ions! 

One of the key proper t ies of a soliton equat ion is tha t it 
has an infinite number of conservat ion laws and associated 
symmetries . 

W h a t do we mean by a soliton equat ion ? A t rue soliton, 
a solution to an equat ion with very special qualities, is much 
m o r e t han a solitary wave. The SW solut ions of soliton 
equa t ions have addi t iona l proper t ies , however . One p r o p ­
erty is tha t two such SWs pass t h rough each other wi thout 
any loss of identity: after a nonl inear interact ion, two pulses 
will emerge again, with the larger one in front, and each will 
regain its former identi ty precisely. There will be no 
radia t ion , no other m o d e created by the scattering p r o c ­
e s s — the only interact ion m e m o r y will be a phase shift. 
Whereas this interact ion p rope r ty is r emarkab le and indeed 
is often used as the test of soliton equat ions , it is not , by 
itself, sufficient. There are equa t ions which admit solut ions 
tha t are a nonl inear superposi t ion of two SWs, bu t which do 
no t have all the proper t ies enjoyed by the soliton equat ions . 

A soliton equat ion , when it admi ts SW solut ions, mus t 
admit a solution which is a nonl inear superposi t ion of N 
SWs for a rb i t ra ry N. To date , all k n o w n soliton equa t ions 
have Hami l ton i an s t ructures and an infinite n u m b e r of 
independent mot ion cons tan ts in involut ion. There is also a 
canonical t r ans format ion which converts a soliton equat ion 
into an infinite sequence of separate equa t ions for the 
a c t i o n - a n g l e variables, each member of which can be 
trivially integrated. In this way, one can, in principle, 
solve the Cauchy initial-value p rob lem. 

It tu rns out tha t some of the act ion variables are the 
soliton pa rame te r s and this is the reason tha t a sol i ton 's 
identi ty (namely the pa rame te r s giving its shape, velocity, 
ampl i tude , in ternal frequency etc.) is preserved under 
collision. 

A m o n g m a n y of the special proper t ies of the soliton, 
there are two which are very interesting: 

(a) the first of these is the Hi rota property and is due to 
Hi ro ta , who discovered a very useful and impor t an t m e t h o d 
for calculat ing mult isol i ton solut ions (see Section 7.6); 

(b) the existence of these ra t iona l solut ions (of H i ro t a ) is 
equivalent to ano ther p rope r ty enjoyed by soliton equa ­
t ions, the Painleve property.^ 

The discovery of the soliton, initiated as it was by the 
computer , has ironically shown tha t the m o d e r n tendency 

fThe Painleve property in the language of the Hirota / function (see 
Section 7.6) seems to demand that the function f(x, t) has no movable 
critical point! This observation is significant and has potential 
consequences not only in the context of evolution equations, but also 
for other exactly solvable models. 

to reach for a compute r to solve all p rob lems is p r e m a t u r e 
to say the least. The full power of such techniques as the 
inverse scattering theory has yet to be realised. The 
ingenuity of workers in this field leads to the speculat ion 
tha t at least for nondiss ipat ive systems there are m a n y m o r e 
useful appl icat ions yet to be discovered. 

The main s tumbl ing block to such advances is at present 
the absence of a s t andard technique for const ruct ing the 
associated eigenvalue p rob lem or the lack even of a 
criterion for its existence (according to F r e e m a n [52], p . 35). 

Final ly, the soliton solut ions of the K d V equat ion (for 
example!) have received much recent exposure in meet ings 
and publ ica t ions . A n elementary in t roduct ion is Draz in ' s 
and Johnson ' s (1983) b o o k [31]; the m o r e substant ia l texts 
and review paper s on 'soliton dynamics ' are Refs [22, 27, 
31 , 32, 44, 52, 53, 62, 8 5 - 1 0 3 ] . 

7.6 Sol i ton 'mathematics' 
7.6.1 Schrodinger equation and conservation laws. If V 
satisfies the 'modified K d V equat ion 

then the function U given by 

2 dV 
U = V2 + (7.6.1) 

6£ ' 

satisfies the classical K d V equat ion 

, N dU W nd3U 
P ( ^ _ + a [ / + = 0 , a + 6/? = 0 . 

In fact, us ing relat ionship (7.6.1), after some manipu la t ion 
we can show tha t 

P(U) = ( I + 2 v ) Q(V) + (« + 6fi) g 0 . (7.6.2) 

Na tura l ly , the inverse s ta tement : if P(U) = 0, then 
Q(y) = 0, is not valid. 

If U is given, relat ionship (7.6.1) becomes the Riccat i 
equat ion for V, so tha t the usua l t r ans format ion to linearise 
the Riccat i equa t ion 

1 dW 
V = — — , (7.6.3) 

W d£ 9 v ) 

leads to the equat ion 

tfw 
"8? 

- - uw = 0 , (7.6.4) 

and here U is a solution of the classical K d V equat ion 
P(U) = 0. 

If we t ake no te of the Gali lean invariance of the K d V 
equat ion P(U) = 0, which is invar iant under the t ransfor­
ma t ion 

we can at once generalise E q n (7.6.4) to 

- + UW = xw . d2W 

8<r 

(7.6.5) 

(7.6.6) 

This is just the Schrodinger equation for the function 
W(£,T;X) with a potential and P(U) = 0. 

Nevertheless , it is a result which is essentially different 
from the Schrodinger equat ion in q u a n t u m mechanics , 
because of the fact tha t U is the solution of the classical 
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K d V equat ion P(U) = 0, so tha t it changes with t ime T. 
Hence , in Eqn (7.6.6), the t ime T must be considered as a 
pa ramete r . In other words , it is necessary tha t at each 
instant of t ime Eqn (7.6.6) is valid for U(£,T) at tha t t ime! 

The eigenvalue X would thus also seem to be t ime-
dependent , bu t surprisingly all the eigenvalues X are time-
independent, p rovided only tha t U decreases sufficiently 
rapidly at infinity with respect to or tha t it satisfies a 
per iodic b o u n d a r y condi t ion. 

M o r e precisely, if we use the original form of the K d V 
equat ion: 

®L=l(8\ll2(r®L+l ®!T 
Qt 2 L J V a* 3 a* 3 f f 8 * 3 

t 

the transformation 
1 / g \ W 

2 \h0 

1 „ 1 
-2C—3a 

X 

u -

gives 

, x du ^ du d3u 

(7.6.7a) 

(7.6.7b) 

(7.6.8) 

where we have d ropped the pr imes. F o r the reduced K d V 
equat ion (7.6.8) the condi t ion a + 6/? = 0 is verified! 

Next , let us consider the quest ion of conservation laws of 
the K d V equat ion (7.6.8), namely equa t ions of the form: 

cW dJ_ 
dt dx 

0 (7.6.9) 

where N is a 'density' and J is the associated 'flux'. 
Ten such conserved quant i t ies for the K d V equat ion 

(7.6.8) were found [88]. But these conserved quant i t ies have 
n o n e of the immedia te physical significance tha t we 
associate with the cont inui ty equat ion . 

The first few are: 

Ni = u , 

dlu 
J\ = —3u ( K d V equat ion) , 

dx 
2u fdu^2 

N2=S, h = ~ ^ + 2 u - 2 - [ -

3 1 fdu 
N3 = u3 +-hr-2 \dx 

y 3 = — — u + 3 u 
dx2 

6u 
dxj + dx dx3 2 \ dx 

9 a „ 9 8 u ^ / 8 w \ du d u 1 (d u 

It was conjectured tha t the K d V equat ion had an infinite 
number of such conservat ion laws, and this was later 
p roved by K r u s k a l and Miu ra , and s imultaneously by 
G a r d n e r (see the survey paper of M i u r a [88]). To generate 
a whole sequence of cons tan ts of mo t ion for the K d V 
equat ion , in fact an infinite sequence, we can first in t roduce 
a function w defined by 

dw 
u = w + e -—Yew 

ox 
(7.6.10) 

where e is an a rb i t ra ry constant . Subst i tut ion of this into 
the K d V equat ion (7.6.8) shows tha t w mus t satisfy the 
following conservat ion law 

dw 8 / 9 ^ 9 -i 8 2v 

8^ ~^8x 
3w2 + 2e2w3 

dx: 
• 0 (7.6.11) 

for all e. In tegra t ion over all x, assuming tha t w and its 
derivatives vanish at x —> =boo, gives (w) = 0, which is a 
cons tant of mot ion . 

One m a y formally solve Eqn (7.6.10) by expanding in e 
to give: 

2 du 2 (2 d2u\ 
w= w 0 + ewx + e w2 + ... = u - e — - e \u - ^-^ J + ... . 

The impor t an t po in t is tha t u is independent of e\ 
Therefore, the condi t ion d(w)/dt = 0 leads to an infinite 

set of condi t ions: 

d(wn) 
dt 

= 0 (7.6.12) 

Thus , we have generated an infinite set of cons tan ts of 
mo t ion for the K d V equat ion (7.6.8), which are the 
integrated values of wn. One can prove , however , tha t 
only the coefficients of even powers of e lead to nontr iv ia l 
cons tants ! 

The fact tha t for the K d V equat ion one has an infinite 
set of cons tan ts of mo t ion makes one suspect tha t the K d V 
equat ion is equivalent to an infinite-order integrable 
Hami l t on i an system, in which case relatively simple a n a ­
lytic solut ions such as soli tons exist! In fact, a necessary (but 
not sufficient) condition for that the KdV equation (7.6.8) to 
have N soliton-type solutions is just the existence of an 
infinite set of constants of motionl 

In any case, the above observat ion concerning the 
'Schrodinger equa t ion ' and the possible impor tance of 
the fact tha t the K d V equat ion has an infinite number 
of conservat ion laws, apparen t ly advanced the solution of 
the K d V equat ion very little! 

However , the presence of a Schrodinger-l ike equat ion 
pu t s a new face on the p rob lem and a new perspective from 
which to a t tack the p rob lem. This has led to col labora t ion 
between some ingenious researchers, each adding his 
individual insight, to discover the beautiful and highly 
original inverse scat tering t ransform (1ST) me thod . 

The general solution of u(x,t) of the K d V equat ion 

ou 
dt' 

du 8 u 
6Hdx- + d? 

0 

is obta ined by 
(a) considering b o t h scattering and b o u n d solut ions of 

W(x,0), 
(b) finding its t ime evolut ion, 
(c) obta in ing then the inverse solution of the G L M 

integral equat ion . 
This general scheme is called the 1ST, which is a 
sophist icated general isat ion of the Four ie r t ransform for 
solving a linear equat ion . 

7.6.2 Inverse scattering transform (1ST). If we re turn to the 
Schrodinger equat ion (7.6.6), then on the basis this 
equat ion we m a y write: U = X+ [d2W/d^2]/W. Subst i tu t ­
ing this value of U into the K d V equat ion , assuming tha t 
P(U) = 0, and integrat ing result ing equat ion over all x = 
we obta in the following rela t ionship: 

d A f ~ ' ' ~ (7.6.13) 
dt 

Wzdx =0 

if we assume tha t W 
x —> +oo. 

and its derivatives app roach zero as 
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By hypothesis , we associate with relat ionship (7.6.13) N 
solut ions Wn(x,t) which are b o u n d e d and such tha t the 
integral in this relat ionship exists and is finite. Hence , if the 
poten t ia l u(x,t) in the (linear) Schrodinger (LS) equat ion 

d2W 
I k 2 " ' 

(u-X)W = 0 (7.6.14) 

satisfies the K d V equat ion 

du ^ du 

dt 
JU 0 u 

6Udx- + d? 
0 

then the eigenvalues Xn are constants. 
M o r e precisely, by vir tue of the assumpt ion tha t u(x,t) 

decays rapidly a s x —> =boo for all t, the LS equat ion (7.6.14) 
admi ts a finite numbe r of eigenstates of negative energy 
Xn = —k2, n = 1 , 2 , 3 , . . . , N and also a continuous spectrum 
of posit ive energy X = k2. 

The discrete eigenvalues Xn = —k2

n, which are the values 
X leading to eigenfunction solut ions, vanish at infinity and 
are square integrable. If the eigenfunction cor responding to 
kn is normal ised, 

w: dx = i (7.6.16) 

then the coefficient cn is defined by the asymptot ic 
behav iour of W„: 

Wn~cn(t) Qxp(-kj), (7.6.17) 

F o r the con t inuous spectrum, the wave function W is a 
linear combina t ion of exp (+ i£x ) . Since u(x,t) vanishes as 
x —> =boo, we have to impose the condi t ions: 

Wn ~ exp(—ikx) + b(k, t) e x p ( f c ) , x —> +oo , (7.6.18a) 

Wn ~ a(k, t) exp(— ikx) , x —> — oo . (7.6.18b) 

Physically, the term on the right cor responds to steady 
emission of p lane waves p ropaga t ing into the po ten t ia l from 
infinity, to an a m o u n t b(k, t), called the reflection coeffi­
cient, being reflected from the potent ia l , and to an a m o u n t 
a(k,t), called the transmission coefficient, being t ransmi t ted 
t h rough the potent ia l . In par t icular , \a\2 + \b\2 = 1. 

N o w , we have the following theorem (Miura [88]): 
if u(x,t) vanishes sufficiently rapidly as x —> =boo, then 

cn(t)=cn(0) exV(4k3

nt), 

b(k, t) = b(k, 0) exp(8ifc3f) , (7.6.19) 

a(k, t) = a(k, 0) , 

where cn(0), b(k,0) and a(k,0) are determined from the 
initial data relating to the KdV equation (7.6.15) for u(x,t). 

The l i terature t rea t ing the inverse scattering p rob lem 
(ISP) is extensive (see, for example, Gel ' fend and Levi tan 
[104]) and in fact the solution of the ISP is reduced to the 
p rob lem of solving a linear integral equat ion , which is the 
G e l ' f a n d - L e v i t a n - M a r c h e n k o ( G L M ) integral equat ion: 

r+oo 
K(x,y)+B(x+y)+\ B(y + z)K(x, z) dz = 0 . (7.6.20) 

JX 

Finally, we wish to solve the initial-value K d V prob lem for 
u(x,t): 

du ^ du d3u q 
8^ dx dx3 

—oo < x < + o o , t > 0 , w(x, 0) = u°(x) . 

First , we solve the eigenvalue p rob lem: 

^ . - [ U \ X ) - X ] W = 0 , (7.6.21) 

from which Kn, cn(0) and £(&,0) are determined. 
Then the set of expressions (7.6.19) yields the t ime-

dependent quant i t ies cn(t) and b(k,t) and these determine 
B(x + y) in E q n (7.6.20) explicitly as: 

f + O O I r+oo 
(7.6.15) B(x+y)=— b(k, 0) exp [\k(%\k2t + x + y)] dk 

^ J - o o 

+ £M0)]2
 e x P [*kl* - k n ( * +y)] (7.6.22) 

so tha t the G L M equat ion (7.6.20) is defined. 
If we can solve this G L M integral equat ion , then the 

solut ion of the initial-value p rob lem for the K d V equat ion 
is simply: 

u(x,t) = [K(X)X] 0 ] ' (7.6.23) 

where t in K is t reated as a pa ramete r . 
Na tura l ly , one might a rgue tha t we have merely 

replaced one difficult p rob lem (nonlinear!) with ano ther 
one! However , two major simplifications have been 
achieved: 

(a) the equat ion involved, (7.6.21), and the G L M 
equat ion are linear, 

(b) the t ime t enters the p rob lem only parametrically. 
Unfor tuna te ly , it is in general not possible to solve the 

basic G L M integral equa t ion (7.6.20) analytically except of 
course for the reflection-free potent ia ls u°(x) such tha t 
b(k, 0) = 0. In general, the long-term solution is in the form 
of N soli tons travell ing at different velocities to the right 
and noise-like behaviour (oscillatory state) t ravell ing to the 
left. The major ma themat i ca l difficulty arises from the 
integral cont r ibu t ion in B(x +y). 

Fig. 14 shows the solution of the K d V equat ion with 
b o t h soli tons and an oscil latory state (for N = 2), in 
addi t ion to two soli tons p ropaga t i ng to the right, we 
have a dispersing oscil latory state p ropaga t i ng to the left 
(because of the negative group velocity of the linear waves). 

u(x,t) 

Figure 14. Solution of the K d V equation with two solitons and an 
oscillatory state. 

7.6.3 BackluIK1 transformation. In a par t icular case, the 
Backlund t rans format ion [BT — sometimes called, also, 
au to -BT (A-BT)] can be used to t ransform a zero soliton 
solution, u = 0, of the K d V equat ion 
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df fdf\2 d3f 
4 - 6 h - M + - 4 = 0 , (7.6.24) 
8; \dx) dx3 v J 

to the (non-zero) solut ion 

w = -k0 t anh £ 0 , £ 0 = £o(* - 4 M ) > (7.6.25) 

which is simply related to the one-soliton solution of the 
K d V equat ion (7.6.24). Next , the solution (7.6.25) itself can 
be t ransformed to the solution: 

k\ -kl 

with 

' = -kx coth £ j , £j = ^ ! [x - 4£2^] , 

(7.6.26a) 

(7.6.26b) 

which cor responds to the two-soliton solution of (7.6.24). 
This process can be cont inued to give solut ions with an 

increasing n u m b e r of soli tons. At each stage, though , one 
has to solve two equat ions : 

dw du l 2 , X 2 
(7.6.27a) 

dw du 
~di=~dt + 

du 

k ^ + k 2 ^ _ k 2 { w _ u ) 2 
dx 

d2u 
(7.6.27b) 

with the integrability condition on w: d2w/dx dt = d2w/dtdx. 
Unfor tuna te ly , the derivat ion of these ' init ial ' equa t ions 

(7.6.27), such tha t b o t h w and u satisfy the K d V equat ion 
(7.6.24), is not at all s t ra ightforward! 

On the other hand , once the BT has been discovered, 
one has relatively simple way of generat ing a hierarchy of 
solut ions! In our par t icular case, we start with the two 
equat ions (7.6.27), for u and w, where k is an arb i t ra ry 
constant . The integrabil i ty condi t ion on w demons t ra tes , 
after little algebra, tha t b o t h w and u satisfy the K d V 
equat ion (7.6.24), for all k and in this case we have the A -
BT. Differentiat ion of this K d V equat ion (7.6.24) with 
respect to x shows tha t F =—2df/dx satisfies the K d V 
equat ion 

dF ^ dF d3F „ 
—- + 6 F —- + —-r = 0 
8; 8x 8 x 3 

(7.6.28) 

W e n o w choose u to satisfy the K d V equat ion (7.6.24): one 
solution is simply u = 0, in which case E q n s (7.6.27a) and 
(7.6.27b) reduce to 

dw 
dx 

dw 

-k2

0 + w2 

=4(*J- r2 2 

(7.6.29a) 

(7.6.29b) 

Next , if we in t roduce a function q, defined so tha t 
solut ion (7.6.26a) is t rue , and use the above equat ions , we 
find tha t 

dq , 2 , 2 (7.6.31) 

which is identical in form to E q n (7.6.29a). This last 
equat ion , for q, has a solution (physically admissible!) of 
the form (7.6.26b), which is admissible as solution 
(7.6.26a), since it gives a b o u n d e d solution for v. 

M o r e details and other results can be found in 
Ref. [105]. Here , we shall ment ion only three impor t an t 
uses of the BT, namely: 

(a) algebraic (as above) const ruct ion of solut ions by 
appl icat ion of the theorem of 'permutabi l i ty ' (due to 
Bianchi [106]); 

(b) derivat ion of an associated ISP, since u = v2 + 8v/8x 
essentially cor responds to half the BT relat ing to the 
solution of the K d V equat ion and the modified K d V 
equat ion; 

(c) generat ion of conservat ion laws, by vir tue of expres­
sion (7.6.10). 

Final ly, we hasten to poin t out tha t , for the K d V 
equat ion , much hindsight has been used in deriving the 
above results, bu t for some other equa t ions for which the 
BT, 1ST and conservat ion laws have no t been found, 
der ivat ion of these results is no t s t ra ightforward! F o r a 
m o r e p ro found exposit ion, we refer the reader to a b o o k by 
D o d d et al. [32]. 

7.6.4 Hirota method. W e shall n o w consider the K d V 
equat ion in the form: 

8 u _ du du 

which, with u = dw/dx, reduces to 
L 2 8 w ,(dw 

6 ^
 + 6 W dw 

The t rans format ion 

8 
8x 

l o g / 

(7.6.32) 

(7.6.33) 

(7.6.34) 

reduces the K d V equat ion to a homogeneous equa t ion for 
f{x,t) [107]: 

» 4 , 

1 dxA dx dx3^ \dx2 ^ J 

d2f df df 
TT4T-^^- = 0 . (7.6.35) 
8x 8; 8x 8; v J 

The t rans format ion (7.6.34) is k n o w n as the C o l e - H o p f 
t rans format ion [108, 109]. In t rying to solve E q n (7.6.35), 
we first t ake no te of the fact tha t the classical single-soliton 
wave solution, for the K d V equat ion (7.6.32), is 

2 

: — sech 2 -
2 2 

-a t + b (7.6.36) 

where k0 is the cor responding value of k. 
These equa t ions are readily solved to give (7.6.25). W e 

n o w take this to be the value of u and subst i tute it on the 
r ight -hand side of (7.6.27a), with a different value of k, for 
example kx (permutabil i ty!) , to obta in the next equat ion in 
the hierarchy: 

and is obta ined by tak ing 

/ = l + e x p f l 1 , (7.6.37) 

where 9t = atx — att + bh i = 1,2, 3 , . . . . This encourages 
us to look for a solution of Eqn (7.6.35) in the form 

f = l + S T £ n f { n ) , (7-6.38) 

8x 
: £ 0 s e c h 2 ^ 0 - k\ + (v + k0 t anh £ 0 ) 2 (7.6.30) with 8 a convenient expansion pa ramete r . 
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F o r 0(E), we can easily obta in the exact solut ion in the 
form of the single exponent ia l function, as in expres­
sion (7.6.37). However , since in this case we have a 
linear h o m o g e n e o u s equat ion for we can in t roduce 
as m a n y exponent ia ls as we like, a l though here we shall 
restrict ourselves to two: 

= e x p 0 ! +exp 0 2 . (7.6.39) 

Next , this exact solution, for can be subst i tuted on the 
r ight -hand side of the 0(s2) equa t ion for f^2\ to give: 

8 4 F ( 2 ) E 2 F ( 2 ) 

- ^ + ^ ^ = 3ala2(al-a2)2

QxV(0l+02) . (7.6.40) 

which integrates to 

(2) = / a l - a2 
a\ + a2 

Qxp(91 +62) . (7.6.41) 

Surprisingly, the equat ion , for of the order 0(s3) is 
simply: 

+ ^ - ^ = 0 , 

F o r m u l a (7.6.42) can be analysed for the case when two 
soli tons are far apar t . The result is tha t the larger soliton 
ax > a2 > 0 is shifted forward and the smaller a2 < ax 

shifted backward relative to the mot ion tha t would have 
taken place if no interact ion had occurred. 

The trajectories of the max ima of the soli tons in Fig. 15 
m a k e this result plain. Whe the r we th ink of the soliton 
collision as a process in which the soli tons pass t h rough one 
ano ther or whether they exchange identities is only a mat te r 
of in terpre ta t ion. Finally, it is interest ing to no te tha t 
H i ro t a noted tha t the te rms in E q n (7.6.35) were very 
like the Leibni tz formulae for the derivatives of p r o d ­
ucts . Except for signs, E q n (7.6.35) looks somewhat like: 

8 4 / ( 2 ) ^ ( 2 ) 

dx4 dx dt 

dxdt dx4 

Hiro t a invented a new opera to r Dx, defined for ordered 
pa i rs of functions g(x), f(x) as follows: 

bu t this definition can be extended to functions g(x,t), 
f(x,t). F o r example, 

since the r ight -hand side is zero! 
Na tura l ly , we can take as solut ion f® = 0 and we can 

easily see tha t with this trivial solution for f^\ all the 
subsequent functions are = 0 for n ^ 3. This self-
truncation of the series for / is absolutely crucial to 
obta in ing the exact solution of the K d V equat ion (7.6.32). 

The factors of s can be absorbed into the phase of each 6 
and we have the exact two-soliton solution: 

d2 

M = Q^2 l 0 g / ( * , f ) > 

f = 1 + exp 0X + exp Q2+A exp(0! + 0 2 ) , (7.6.42) 

f a\ — a2 

\p>\ + ai 

DxDtf.f=2[f 
d2f df df 

dxdt dx dt J 

Vxf-f=2 
8V 
dx4 

A 9 / 9 3 / „ 
• 4 — + 3 

dx dx3 \dx2 

d2f 

and in this no ta t ion , the K d V equat ion (7.6.35) becomes 
very compact : 

[DxDt + D$]f.f=0 (7.6.43) 

The mult isol i ton solut ions are also easier to obta in . W e can 
see this if we look at h o w the ope ra to r s Dx act on 
exponent ia l functions. It is easy to show tha t 

Dx exp kx • exp Ix = (k - l)m exp (k + l)x . 

The same process will work if we take a three-parameter 
solut ion, bu t the algebra becomes ra ther forbidding! The 
K d V equat ion was solved in this way for N soli tons by 
Hi ro t a [107]. 

Figure 15. Collision of two KdV solitary waves. 

8. Well-posed problem: 
existence, uniqueness, stability results 
8.1 Existence and uniqueness 
If we consider the two-dimens iona l classical p rob lem for 
the physical velocity potent ia l (j)(x,z,t)9 then this b o u n ­
dary-value p rob lem is extremely difficult (even if T = 0) 
most ly because of the dynamic b o u n d a r y condi t ion, 

<t>,+\(.4>2x+4>l)+gC = 0, z = ((x,t) (8.1.1) 

which is nonlinear and one tha t is imposed at an unknown 
boundary z = C(x,y,t). 

Some idea of the difficulty of this classical p rob lem m a y 
be obta ined by asking wha t is k n o w n abou t it! Na tura l ly , 
we can in t roduce a new vertical independent var iable in 
place of z. F o r example, in the case of deep-water waves, if 

I / = Z -C(£ ,T) , X = £, t = T (8.1.2) 

are the new variables, where 0 < rj < —oo, we can find the 
derivatives: 

_8___8__8C_8_ A - A 
dx dt; dt; dn ' 8̂  8T 8T dn ' dz dn ' 
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and also 

82</> 8 ^ 8 0 
8<f drj a j s 2 ft- ^ fte 

8C 82</> + 1 ^ 
8f 858*/ V8£ 

82</> 
8?/2 

As consequence, we obta in the following two-d imen­
sional canonical classical problem for the deep-water waves: 

82</> 

8 ? + 1 + 
d24> 

drf 

8C 82</> a 2 c 6 0 
8^ 6^8f/ ~ 8 ? 8^ 

= 0 

0 < n < - o o ,(8.1.3a) 

8C 8 C 8 0 
8T 85 85 - I * - 0 . 

or) 
i/ = 0 , (8.1.3b) 

3 ^ 1 / # Y _ 1 
8T 2 V 8 ^ 2 

iy = 0 . (8.1.3c) 
F o r deep water , we have also the following behav ioura l 
condi t ion: 

8 0 
drj 

0 , n —> —oo .1.3d) 

The strongly nonl inear water -wave p rob lem (8.1.3) with 
the two functions </> and £ is terribly difficult and it is clear 
tha t a ma themat i ca l theory for these deep-water waves 
p rob lem is pract ical ly impossible to construct! Numer i ca l 
in tegrat ion of this (8.1.3) p rob lem is no t easy either! 

The simplest nontr ivia l s ta tement tha t a ma themat ic i an 
can m a k e abou t a physical p rob lem is tha t it has a solution. 
Accord ing to Sh inbro t ' s b o o k [58], p . 87, historically the 
first ma in results p rov ing the existence of a solut ion were as 
follows. 

In 1925, Levi-Civita [12] p roved tha t in water of infinite 
depth (h0 = oo), there is a periodic wave tha t progresses 
wi thout change of shape. This means tha t </> does no t 
depend on t and x separately, bu t only on a combina t ion 
x — ct for some cons tant velocity c. Na tu ra l ly , £ also 
depends only on x — ct, while </> and £ are b o t h periodic 
functions of x — ct. 

Short ly after Levi-Civita p roved his result, Struik [13] 
showed tha t it could be generalised to the case of a flat 
horizontal bottom (h0 = const) . Again , Struik proved the 
existence of a periodic wave progressing without change of 
shape. 

In 1954, Fr iedr ichs and Hyers [59] proved, again for 
h0 = const, the existence of ano ther type of wave, once 
m o r e progress ing wi thout change of shape at a cons tant 
velocity (solitary wave). This can be looked on as a per iodic 
wave, 'a la Struik9, bu t with an infinite wavelength. 

If the b o t t o m is per iodic and has only one m a x i m u m and 
one m i n i m u m per per iod, Gerber [60] proved tha t there is 
steady flow in which the free surface has the same proper t ies 
as the b o t t o m . In addi t ion , the t roughs of the free surface lie 
directly over the t roughs of the b o t t o m , and the crests lie 
over the crests. In the same 1955 paper [60], Gerber p roved 
also tha t over a monotonic bottom, there is a flow with a 
monotonic free surface. Again this can be looked u p o n as 
flow over a per iodic b o t t o m with an infinite per iod. The 
results of Gerber has been generalised by Krasovsk i i [110]. 

It should be noted tha t all these examples represent 
essentially steady two-dimensional flows — the last two are 
steady to begin with and the first three become steady in a 
coord ina te system moving at the velocity c. 

Concern ing the three-dimensional problem, we no te the 
paper s by Lavren t ' ev [111, 112], in which use was m a d e of the 
theory of quas i -conformal mapp ings of three-dimensional 
domains . Te r -Kr iko rov [113-115] proved the existence of 
periodic waves which degenerate into a solitary wave and also 
the existence of a solitary wave on the surface of a liquid 
with vorticity. 

The paper of Ovsyannikov [116] given the existence 
theorem for the Cauchy-Poissonproblem abou t waves on a 
water surface (unsteady incompressible mot ion of a liquid 
with a free surface) as a result of an initial d is turbance. 
Concern ing the works of Soviet scientists, the reader can 
consult a review b o o k edited by the A c a d e m y of Sciences of 
the U S S R in 1970 (in Russ ian , see a survey paper by 
Moiseev [117], p . 55). 

M o r e recent results, again for the two-dimens iona l 
po ten t ia l p rob lem, were publ ished by Showalter [118]. In 
his paper the e x i s t e n c e - u n i q u e n e s s - s t a b i l i t y results are 
obta ined from the cor responding results for the abst ract 
Cauchy p rob lem of an evolut ion equat ion in a Hi lber t 
space. The existence theory for i r ro ta t iona l water waves is 
discussed in a paper by K e a d y and N o r b u r y [119]. 

The justification of the 'shallow-water' mode l equa t ions 
[the 'Airy equa t ions ' (3.1.12)] was provided by Ovsyanni ­
kov [120]. A r igorous ma themat i ca l justification of the 
validity of the shallow-water equations for a two-dimens iona l 
channel with analyt ical da ta was given by K a n o and 
Nish ida [121]. F o r the three-dimensional case with a priori 
assumpt ions abou t the free surface, the justification was pu t 
forward by Berger (1976) [122]. 

The existence of travelling-wave solutions of the KdV 
model equation (for the K d V and K P equat ions , see Section 
4) was analysed and proved by Showalter (1988) [118]. 
Accord ing to Showat ter , the appropr i a t e initial-boundary 
problem for the KdV equation is well-posed. A global 
existence theorem for the solution of the K d V equat ion 
for a general channel was established by Shen (1983) [123] as 
a consequence of the existence results due to K a t o [124, 125]. 

K a t o [126] considered a ma themat i ca l p rob lem arising 
in the theory of solitary water waves in the presence of 
surface tension. F o r an extended survey of nonl inear 
waves under external forces (nonlinearly resonant surface 
waves), the reader is directed to a review paper [127]. In 
m o r e recent work [128, and also 129] there are r igorous 
results concerning the Boussinesq equa t ions (derived in 
Section 3) and also the K d V limiting equat ion for water 
waves, including a ' r igorous ' derivat ion of these equa t ions 
and est imates of the differences between solut ions. The 
results are bet ter justified for the K d V equat ion , due to 
the well-posed na tu re of the initial-value p rob lem, while 
the results for the single Boussinesq equat ion are less 
sa t i s fac tory . ! 

M o r e precisely, K a n o and Nish ida [128] worked within 
a class of analyt ic functions and used an abstract form of 
the C a u c h y - K o v a l e v s k a y a theorem to p rove the existence 
and to ob ta in further est imates. Cra ig (1985) [129] used a 
different functional f ramework and posed the p rob lem of 

f For this initial-value problem for the KdV equation, see Ref. [130], 
p. 508. 
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existence in a Sobolev space, ob ta in ing a long-term existence 
theorem for the water wave p rob lem in the long-wave 
scaling regime. Addi t ional ly , the latter setting is na tu ra l for 
the water -wave p rob lem, as it does no t display a small-scale 
linear instability, in contras t to the K e l v i n - H e l m h o l t z 
instabili ty p rob lem. Both these papers provide a m a t h e ­
mat ica l justification for the Boussinesq and K d V equa t ions 
as approx ima t ions to the classical water -wave p rob lem. But , 
the results for the Boussinesq equat ion are different from 
those for the K d V equat ion because of the differences in the 
well-posedness of the initial-value p rob lems for these two 
equat ions . The s ta tement of justif ication for the Boussinesq 
equat ion is roughly tha t the Boussinesq opera to r gives rise 
to an error of 0 ( e 2 ) , in an appropr i a t e function space, when 
applied to a solution of the water-wave p rob lem. 

In recent work Cra ig et al. [131], present a r igorous 
analysis of the use of modu la t i on theory in the p rob lem 
of water waves in a two-dimens iona l channel , and justify 
the approx ima t ion of the solution by a wave packet 
modu la t ed according to the N L S equat ion (see, Section 
5 for an asymptot ic der ivat ion of the N L S equat ion in the 
long-wave limit). The results in Ref. [131] include a r igorous 
derivat ion of the N L S equat ion and also an est imate within 
a class of Sobolev spaces, which shows tha t the modu la t ion 
approx ima t ion satisfies the classical water -wave p rob lem to 
the leading order in the scaling pa ramete r . The results are 
no t as well founded as those in the two preceding cited 
references for the K d V equat ion , bu t they are justified 
bet ter t han the results in these two references for the 
Boussinesq scaling regime. 

The justif ication of the K d V scaling limit in b o t h 
Refs [129] and [128] is substant ial ly stronger t han the 
results on the N L S or Boussinesq equat ions , basically 
p rov ing tha t solut ions to the classical water -wave p rob lem 
converge strongly to solut ions of the K d V equat ion as 
e —> 0. In this case, Craig [129] reached a somewhat stronger 
conclusion, s temming from a difference in functional 
analytic setting between Refs [129] and [128]. The first 
poses the p rob lem in Lagrang ian coordinates , which, 
according to N a l i m o v (1974) [132] and Yos ihara (1982) 
[133], is well-posed in an appropr i a t e Sobolev space. 

M o r e precisely, Cra ig showed [129] tha t in the long­
wave scaling regime the existence t ime of 0(s~3^2) is 
obta ined. Since the K d V t ime scaling reveals var ia t ions 
in the solution only over t ime intervals of 0 ( e - 3 / 2 ) , 
solut ions to the water -wave p rob lem (with the initial 
da ta satisfying a unidi rect ional condi t ion) are shown to 
converge strongly to solut ions of the K d V in an interval of 
length 0 ( 1 ) measured in K d V time! K a n o and Nish ida [128] 
formulated the p rob lem in te rms of a t ime-dependent 
conformal m a p p i n g on a reference domain , for the initial 
da ta in a space of analyt ic functions, and they appea l to a 
generalised version of the C a u c h y - K o v a l e v s k a y a theorem 
to solve the initial-value p rob lem. This gives an existence 
t ime of 0(1/e) only! 

Final ly, we should no te tha t the Lagrang ian formulat ion 
of the water -wave prob lem, is a very convenient setting for 
r igorous est imates of the asymptot ic p rocedure . In order to 
work with Lagrang ian variables, coordina tes of the free 
surface are taken in the form = [x + X ( x , t), 7 ( x , t)]. 
Then mot ion is considered for which (X, 7 ) are b o u n d e d 
localised pe r tu rba t ions of the free surface (x ,0) for the 
liquid at rest. To describe the mot ion of the surface, we take 
the poin t ( x + X , 7 ) to be the coord ina te of a Lagrange 

part icle on the free surface. Wri t ing X = (X, 7 ) , then 

(8.1.4) 
dX 
— = u(t,x+X,Y) , 

and el iminating the pressure term from the Euler equat ion , 
we can write the equations of motion of the free surface in 
the following form: 

dX\ d2X 8 7 / 8 2 7 
(8.1.5) 

(8.1.6) 

where the opera tor K is the Hilbert transform for the 
var iable domain occupied by the liquid. M o r e precisely, the 
liquid velocity componen t s u = (w,v) satisfy the Cauchy -
R i e m a n n condi t ions for an analyt ic function f(z) with 
f=u — iv and z = x + iy and, combined with the b o t t o m 
b o u n d a r y condi t ion v(x,— h) = 0, the results lead to a 
singular opera tor on the top surface. The b o u n d a r y values 
of v are obta ined from the b o u n d a r y values of suitably 
behaved u: v = K(X)u. 

The classical solut ions of Eqn (8.1.5), (8.1.6) describing 
the free surface and the liquid velocity on tha t surface were 
studied by Craig [129] and Yos iha ra [133]. Together with 
the b o t t o m - b o u n d a r y condi t ion, this enabled them to 
compu te the liquid velocity t h r o u g h o u t the liquid at each 
fixed t ime by solving the Laplace equat ion . The opera tor 
K ( Z ) is computed in Ref. [133]. A n impor t an t observat ion 
m a d e by Coifman and Meyer [134] is tha t K ( X ) depends 
analytically u p o n X within a ne ighbourhood of the origin in 
the space of Lipschitz con t inuous functions. W e thus expand 

K ( X ) = X > „ ( X ) .1.7) 
n=0 

where K n ( X ) is an opera tor h o m o g e n e o u s of degree n in X, 
which is a conca tena t ion of powers of X(x) and its 
derivatives with explicit Four ie r mul t ip l ie r s . ! 

8.2 Stabi l i ty- instabi l i ty 
8.2.1 Boussinesq showed tha t the solut ions of Eqn (7.2.2) 
are characterised by the invar iants 

n+OO n+OO 

Q=\ C d x , E=\ £2dx , (8.2.1a) 

M 

- i 

h3 
C)dx (8.2.1b) 

provided tha t £ vanishes sufficiently rapidly as x —> =boo. Q 
and E evidently represent the volume and energy of a wave. 
Boussinesq designated M as the m o m e n t of instabili ty and 
demons t ra ted tha t solitary waves represent the un ique 
solution of the variational problem: 8 (M) = 0, with E fixed 
(Boussinesq omit ted the implicit constra int tha t Q be fixed, 
bu t this has no effect on the end result, for which the 
cor responding Lagrange multiplier vanishes). 

Boussinesq also showed tha t the ampl i tude and vo lume 
of a solitary wave of prescribed energy are given by 

3 
4h0 

2 / 3 , 1 / 3 Q=2h0EL 

and he r emarked tha t (see Ref. [22], p . 15): 

(8.2.2) 

f A simple derivation of these coefficients is presented in Appendix 1 of 
the paper [131]. 
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" W h e n a wave p ropaga te s a long a canal of which the 
depth h0 is slowly decreasing from one poin t to the next ... 
the b o t t o m of the canal must cont inuously reflect a small 
pa r t of the movement , in a manne r such tha t the vo lume 
and energy of the wave must divide between the direct wave 
and this reflected wave, the latter being of an increasing 
length and of a height which is at once p ropo r t i ona l b o t h to 
this vo lume and to its height, ceasing to remain very small. 
The direct wave thus will conserve, approximate ly , all the 
energy of the wave, and, as it re ta ins effectively the form of 
a solitary wave, ... its height a0 and ... its vo lume Q ... will be 
obta ined at any par t icular instant by means of E q n (8.2.2), 
where E will be invariable: one sees tha t the wave will 
become higher, shorter , and consequent ly less stable, unt i l 
finally it lacks a base and breaks . The opposi te would occur 
if the depth were increasing". 

These Boussinesq predic t ions appear to have been 
over looked in most of the current l i terature (a l though 
no t by Keulegan and Pa t te r son [135]). 

8.2.2 W e shall n o w consider the N L S equat ion (5.1.25): 

._! 8A _ 8 2 A 
1 8r _ / i 

••II—j + vA\A\2 . 2.3) 

As is seen from expression (5.1.26a), \i is always negative, 
whereas v [according to expression (5.1.26b)] changes its 
sign from negative to posit ive across k0h0 = 1.363, as k0h0 

decreases. It is k n o w n tha t the N L S equat ion (8.2.3) has 
the following solution represent ing a nonlinear plane wave 
A = A0exp[i(aT — K£)\, where A0 = const and a = — JHK2-\-
+ v | A 0 | . Let us n o w consider the mean ing of this solut ion 
in te rms of the original physical variables. In par t icular , if 
we set K = 0 and A 0 = ag/2ico0, a being a real constant , and 
if for co0(k0) we assume the classical dispersion relat ionship 
col — gk0(T9 then the pe r tu rbed free surface takes the 
following form: 

1 s2a2 

C = sa cos 0 + - -— (y - A cos 26) , (8.2.4) 
4 KQCT 

where 9 = k0x — (co0 — s2oc0)t and a 0 = vg2a2/4co2

). 
In expression (8.2.4) we also have: y = [I/(c2 — gh0)] 

[2co0k0cg + (1 — (T2)gh0kl] and X = (cr2 — 3)k\j2a2. This is 
simply the Stokes wavetrain in the second-order approxima­
tion. Here , co = co0 — e 2 a 0 is the nonl inear dispersion 
relat ionship for a Stokes wave, including the effect of an 
induced hor izon ta l current . Moreover , the dispersion term 
in Eqn (8.2.3) is u n i m p o r t a n t in this solut ion because K = 0. 

In addi t ion to the p lane-wave solution described above, 
E q n (8.2.3) has ano ther type of solut ion in te rms of the 
Jacobian elliptic functions, exhibit ing a dynamica l ba lance 
between nonl inear and dispersion effects, which we shall 
call the equilibrium solution: 

A = B(£) exp ion; , 

where a is cons tant and is real. If pcv > 0, 

fl(c;) = £ ° D n 

(8.2.5) 

(8.2.6) 

with the m o d u l u s m and ml —2 — 2a/v(B0)2. 
W e shall show tha t t ime evolut ion of the uns tab le modes 

m a y be regarded as a special case of the general modu la t ion 
described by Eqn (8.2.3). In order to reproduce a Stokes 
wave, let us set a = a0, K = 0 and A 0 = agjTxco^ in 

expression (5.1.27). Then we can consider a dis turbed 
Stokes wave given by 

A = [ A 0 + XA '] exp [ i(a 0 T + XO')] , (8.2.7) 

where Af and 0' are assumed to be real functions 
represent ing a d is turbance and X is a small pa ramete r . 
Subst i tut ing the above expression into the N L S equat ion 
(8.2.3) for A ( T , £) and linearising it with respect to X, we 
obta in 

dAf , , d29f 

— + / * | A 0 | — R = 0 , (8.2.8a) 8T 9<r 

•2v\A0\2Af-fi 
7-A ' dzA 

dT - 8 £ 2 
= 0 . (8.2.8b) 

Since these equat ions form a set of linear differential 
equa t ions with constant coefficients, we can assume a 
solut ion of the form: 

( A / , 0 / ) = ( ^ o , 0 o ) e x p [ i ( ^ / f - G ) / T ) ] + c . c . , (8.2.9) 

where A Q and 9Q are cons tants . F r o m the condi t ion tha t 
E q n s (8.2.8a) and (8.2.8b) have a nontr iv ia l solution, we 
obta in the following dispersion rela t ionship: 

co'2=n2kn[k'2 (8.2.10) 

which shows tha t , if fiv < 0, then co' is always real for 
arbitrary values of k' so tha t the Stokes wave given by 
expression (5.1.27) is neutrally stable. On the other hand , if 
fiv > 0, co' becomes imaginary for 

k ' < 2 \ j \ l A o l - (8-2.11) 

Hence , the d is turbance will g row exponential ly. In this 
sense, the Stokes wave given by expression (5.1.27) is 
uns tab le against the above modu la t iona l d is turbance and 
the m a x i m u m growth rate , say d m a x , is given by 

< a x = K 2 | for * ' = ( V / J I ) 1 / 2 H O | . 
Accord ing to H a s i m o t o and Ono (1972) [36], if we 

re turn to the original N L S equat ion (8.2.3), we can 
investigate further t ime evolut ion of such uns tab le modes 
even to the stage when the linear theory ceases to be valid. 
F o r example, when m = 1, the equil ibrium solution (8.2.6) 
degenerates into a solitary modu la t iona l wave p ropaga t i ng 
at the group velocity. This wave is 

1/2 

sech (8.2.12) 

and its width is (/n/as2)1^2. W h e n a = a0, this width agrees 
with the wavelength of the uns tab le m o d e with the 
m a x i m u m growth ra te . This fact leads us to a conjecture 
tha t modulation of the Stokes wave eventually deforms it into 
the solitary wave described by expression (8.2.12). 

8.3.3 The instabili ty of deep water waves was also 
established in Re f [71, 73, 1 3 6 - 1 4 1 ] : the Stokes waves in 
deep water are definitely unstable] 

F o r a liquid of finite depth, the coupl ing with the 
induced mean flow becomes significant and it has a 
stabilising effect. In this case the W h i t h a m modu la t i on 
equa t ions of the wavet ra ins are elliptic or hyperbolic for 
kh0 > 1.36 or kh0 < 1.36, respectively. 

In the former case, the modu la t i on process is uns tab le 
and, there is a r emarkab le agreement between the Benjamin 
and W h i t h a m theoret ical predict ions . 
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The discovery of the instabili ty of the weakly nonl inear 
Stokes waves has led to quest ioning of the evolut ion of the 
uns tab le nonl inear wavetra ins . As a consequence, special 
a t tent ion has been given to the derivat ion of evolut ion 
equa t ions valid for long times\ Indeed, m a n y nonl inear 
instabili ty p rob lems of diverse na tu re can also be described 
by the N L S e q u a t i o n . ! Finally, when several dominan t 
(linear) wave modes are present , their mutual interaction is 
significant. This is especially so when some of these modes 
resonate. The simplest and most impor t an t case is the three-
wave resonance. But no t all systems exhibit a three-wave 
resonance and, ironically, one of the first searches for such a 
resonance , a m o n g inviscid surface gravity waves, yielded 
negative results and Phillips 'bravely ' (see, C ra ik ' s b o o k 
[42], p . 73) cont inued his analysis to thi rd order in 
ampl i tude , to determine the cubic in teract ion coefficients 
of resonant quartetsl F o r a deep discussion of the three-
wave resonance, cubic th ree- and four-wave interact ions, 
s t rong interact ions, local instabilities, and t ransi t ion to 
turbulence see the b o o k by Craik [42], Chap te r s 5, 7 and 8. 

9. Conclusion 
As poin ted out by Craik ([42], p . 288): " . . . The key to 
unde r s t and ing nonl inear wave mot ion and t ransi t ion to 
turbulence is no t any one of solitons, bifurcat ion theory, 
ca tas t rophe theory, s t range a t t rac tors , per iod-doubl ing 
cascades, et cetera. Fash ionab le , and fascinating, theore t ­
ical b a n d w a g o n s add m o m e n t u m to scientific progress bu t 
can also carry the u n w a r y up bl ind alleys. The richness of 
fluid mechanics is such tha t m a n y new surprises and 
insights still await d iscovery" . 
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