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I. Hydrodynamics of superfluid in general relativity; I1. Equation for gravimagnetic field

Abstract. The phenomenon of superfluidity (as well as the
related phenomenon of superconductivity) is of quantum
nature and as such looks paradoxical from the standpoint
of both classical physics and common sense. Suffice it to
say that these phenomena imply the ability to flow without
exhibiting viscosity or resistance (for this reason, for
example, the circulation of a superconducting current
within a closed circuit in the absence of external sources
would last without damping for a period much in excess of
the age of the universe). At the same time, a number of
unusual and quite unexpected features appear to be
intrinsic to specific events of superfluid physics. Some of
them will be considered in the present study.

1. Preliminary data

The following discussion will be confined to slow rotation
of a superfluid with an angular velocity below the critical
level for the formation of the first vortex filament [1, 2]
Rotation is considered to be steady and to occur at a fixed
momentum of the system. The order parameter of the
superfluid is assumed to be scalar. This study is specifically
concerned with the case of a nonrelativistic superfluid
medium whose pressure is small compared with the resting
energy density.

Hereinafter, we understand by ‘superfluid’ electrically
neutral media: liquid *He and neutron fluid. The latter is
known to form the core of neutron stars, pulsars (see, for
instance, Ref. [3]). However, results of the present study
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cannot be directly applied to pulsars because their real
angular velocity is many orders of magnitude higher than
Q. and the core contains a broad network of vortex
filaments [4]. Nevertheless, we are going to use selected
facts of pulsar physics by way of a starting point in the
formulation of paradoxes discussed below which actually
have more general implication.

This introductory section examines certain universally-
known statements concerning the rotation of fluids
(including superfluids) in a vessel. The velocities of points
of a solid container which rotates at an angular velocity £ is
defined by the elementary formula

v=Q Xxr.

M

The same law of ‘solid-body rotation’ describes the regime
of fluid rotation which ensures the minimum value of
E—Q-M, ic. energy E at a given momentum M. In this
situation, the continuity condition for the velocity vector
(for a viscous fluid) or of its normal component with
respect to the vessel surface (for a superfluid) is fulfilled at
the fluid —wall interface.

This law (1) is really satisfied for the rotation of a
viscous fluid. However, it corresponds to the non-potential
flow curlv =28 and cannot be fulfilled for a superfluid
because the superfluid velocity v, must obey the condition

@

(see Appendix I). In the case of an axially symmetric vessel,
considered in this section, the normal component of its
velocity is equal to zero, and the superfluid is not brought
into rotation together with the vessel:

curlvy =0

vy =0,

©)

which directly corresponds to the absence of frictional
forces in the superfluid.

However, this is true only of the case of a sufficiently
slow rotation 2 < Q.. The thing is that, as was mentioned
before, it is the solid-body rotation (1) rather than the
resting state (2) of the fluid that corresponds to the energy
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minimum, and even partial involvement of the fluid at a
sufficiently large 2 would result in energy saving. Such a
motion of the fluid does occur at 2 > €. when the thin
normal ‘core’ of a vortex filament forms on the axis of
rotation, and the superfluid enters into the state of potential
‘irrotational’ rotation in the non-simply connected domain
thus formed. The number of vortex filaments increases with
rising angular velocity whereas the averaged velocity of the
induced complex flow approaches Eqn (1) [I, 2].

This picture is in line with the general analogy of
rotational and magnetic phenomena of which an earlier
example was given by the Larmor theorem [5] implying the
possibility to substitute the effect of a weak magnetic field
with induction B by transition to the coordinate system
which rotates with angular velocity @ = eB/2mc. Accord-
ingly, Q< B, M < H (similar to momentum M, the
magnetic field H or the field of external sources is fixed)
allows for the comparison of superfluid rotation patterns
and the behaviour of a type 2 superconductor in the
magnetic field [1]: as H (M) grows, the complete expulsion
of field B (angular velocity ), i.e. the Meissner effect or the
absence of superfluid rotation, is replaced by the appear-
ance of one and then many vortex filaments until field B
(velocity rotor) completely penetrates the system.

2. Non-axially symmetrical rotation

If the axis of rotation does not coincide with the axis of
superfluid axial symmetry, the component of its velocity
normal with respect to the vessel surface is not zero, and
the superfluid cannot remain at rest. However, the
superfluid is carried along by friction against the vessel
wall and must execute a potential motion [see Eqn (2)].
This requires that the superfluid rotate relative to the vessel
in the direction opposite to that of the vessel’s rotation in
order that the velocity rotors of these two motions may
compensate each othert.

Figure 1.

We shall consider three problems (see Fig. 1): (a) central
rotation of a nonequilibrium ellipsoid (or elliptic cylinder),
(b) eccentric rotation of a sphere (or circular cylinder) with
the axis of rotation inside the body, and (c) a similar sphere
or cylinder with the axis of rotation outside the body.

fCertain authors postulate flow patterns in which a part of superfluid
that is not immediately caused to rotate together with the vessel
(shown as the shaded arca in Fig. 1) remains at rest. This picture is
wrong (see below).

These problems arise in the description of a nonspherical
atomic nucleus, a cylinder with helium at the North Pole
slightly shifted relative to the Earth’s axis and involved in
its daily revolutions, and a pulsar of a binary system
participating in the orbital motion about the system’s
centre of mass, respectively. In considering these prob-
lems, let us assume the boundary between the superfluid
and the vessel wall to be a surface of second order:

a1x2 +a2y2 +bix+by=c,

where (quadratic) dependence on z is moved to the right-
hand side. Focusing on the streamline patterns in the
established flow, it is possible to confine oneself strictly to
the examination of the moment of time when axes x and y
coincide with the axes of symmetry (main axes) of the
system (see Ref. [6], paragraph 10, where the solution of
the first problem is proposed). Axis x is taken to be the axis
of rotation.

Since the flow turns out to be planar (it occurs in planes
parallel to plane xy) and the fluid is assumed to be
incompressible (V-v; =0), it seems convenient to use the
complex potential method [6]. This method detects the
analytic function w = ¢ + 1y of variable { = x + iy, where
@ is the velocity potential (proportional to the condensate
phase, see Appendix I), and ¥ is the function of the flow
which defines streamlines by the equation Y = const. The
condition at the superfluid —vessel interface requires that it
should coincide with one of the streamlines in the reference
system in which the vessel is at rest (transition to it may be
accomplished by subtracting quantity € xr from the
velocity). All these conditions are satisfied by the expression

Q i (Ll] — az)

W:al—i—az 3 G+ (b, +ib)) {4 const| , (4)

whose analyticity rules out the possibility of a partially
resting superfluid (see the previous footnote).

The streamline patterns in the reference system of a
resting vessel are presented in Fig. 2. They appear to
correspond to the relative motion of the superfluid which is
known to restore potential flow (see above). A similar
picture in a laboratory system is shown in Fig. 3. The result
is really surprising in the case of eccentric rotation (Figs 3b,
3c): potentiality is achieved by the superfluid flowing as a
whole with constant velocity which does not depend on the
distance from the axis of rotation:

o

v)( - 2(,{ s v)' = 26{ (a:al :Ll2) .

(42)

Figure 2.
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Figure 3.

To conclude this section, it is worthwhile to emphasise
certain facts pertaining to the eccentric rotation of a circular
cylinder. It is possible to demonstrate that the critical
angular velocity for the formation of the first vortex
filament [which appears in the centre of the cylinder
because only this point of the superfluid remains at rest
during rotation in the reference system of the resting vessel
(see above)] will not change as compared with Q_ for the
symmetrical rotation (see Refs [1, 2]). On the assumption
that the angular velocity of the eccentric rotation of a
circular cylinder is Q > Q. and there exists a vortex massif,
the superposition of the averaged velocity caused by the
vortex massif and the velocity (4a) leads to the solid-body
rotation of the superfluid about the eccentric axis.

3. Frictionless rotation of superfluid

Transference of rotation from a vessel to the enclosed
superfluid occurs not only as a result of the direct contact
between them but also under the influence of a long-range
field caused by the rotation of the vessel (or a part of it).
We shall consider this and related problems in application
to the simplest axially symmetric case (see Ref. [7]).

Let us start from the well-studied problem of super-
conductor behaviour in the external magnetic field B
induced by the rotational motion of electrons in the
electromagnet winding with velocity v,. This field gives
rise to a counterflow of superconductor electrons (they
form a charged superfluid) which serves as a screen for the
source of the external field and repels this field from the
superconductor volume (the Meissner effect). The effect of
the magnetic field is quantitatively described by the ‘long’
gradient of the order parameter V —ieA in the expression
for superconducting current which leads to the London

relation curlv, = —eB/m or, in the gauge V:A =0, to
vo=—SA. 5)
m

Here A is the vector potential, ¢ and m are the charge and
the mass of the electron, respectively. Therefore, it can be
seen that in contrast to the uncharged superfluid case [see
Eqn (3)], the effect of the field that ‘lengthens’ the order
parameter gradient causes the superfluid to rotate. It is in
this way that the direct dynamic relationship between
electrons of the ‘vessel’ (i.e. electromagnet winding) and the
superfluid is established.

This inference could be of value for pulsar physics. It is
well known that the period of a pulsar monotonically grows
on scales ranging from hundreds to one thousand years but
is from time to time subject to sudden drops followed by
relaxation within a few months to one year [3]. Such a huge
relaxation time suggests abnormally weak dynamic links
between the shell of the pulsar (whose rotation determines
the period) and its core (containing the bulk of the mass).
This anomaly gives evidence of superfluidity of the neutron
matter in the core which results from the Cooper pairing of
nucleons by nuclear forces.

It should be emphasised that this explanation requires
sufficiently low efficiency of mechanisms other than
viscosity for dynamic links between the core and the
shell. One of them resembles the mechanism discussed in
a previous paragraph which underlies the relationship
between the outer and superconducting currents and takes
into account magnetoid (velocity-dependent) forces of the
general theory of relativity caused by shell rotation. Such
gravimagnetic forces are defined by components g,
(¢ =1, 2, 3) of the metric tensor and lead to the Lense—
Thirring effects [5, 8].

In the assessment of the efficacy of this mechanism as
applied to a real pulsar, a well-developed network of vortex
filaments needs to be taken into consideration (see the
beginning of the paper). The remaining part of this study
will be confined to a simpler problem which is beyond the
scope of pulsar physics, that is whether the superfluid is
caused to rotate by gravimagnetic forces (as a super-
conducting fluid is under the action of a magnetic field)
or remains at rest (as an uncharged superfluid like 4He).
Paradoxically, both options appear to occur concurrently.

4. Gravimagnetic rotation of superfluid

The problem in question turns out to be conflicting as soon
as it is approached. Arguments ensuing from structural
considerations with regard to the order parameter gradient
(see Section 3) seem to be in favour of the absence of
superfluid rotation: ‘lengthening’ in the general theory of
relativity consists in the transition from the ordinary
derivative to the covariant one; in application to the scalar
order parameter Y, the latter coincides with the ordinary
derivative (see formula A.2). Hence, the superfluid should
be regarded as motionless, as is the case with helium, and
relation (3) holds true.

On the other hand, there is close similarity between the
equations of general relativity (for a weak field) and of
electrodynamics, which is apparent on substitution (for
transversal field components):

eA & mg (goc = gOa) P 6)
& — —4m’G 0

where G is the gravitational constant. If applied to Eqn.
(5), this substitution leads to the Dewitt relation [9]

vy=—¢, ®)

whereas its application to the equation VA = 4mepv/m (p
being density) yields the hydromagnetic analogue of the
London equation of superconductivity theory:

(V2 +3d)g =%y, (o =161Gp) , Q)
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where s and n are indices of the superfluid and normal
components of matter, respectively.

Formulas (8) and (9) point to similarity between the
gravimagnetic and superfluid cases. In either case a
respective field forces the superfluid to rotate, and this
rotation gives rise to a secondary field, etc. However, these
cases are significantly different in that there is the ‘wrong’
sign in front of the second term in the brackets in Eqn (9)
which is caused by the ‘minus’ sign in expression (7) (in
gravitation, in contrast to electrodynamics, the like charges,
i.e. masses, are mutually attractive rather than repulsive).
Therefore, in the gravimagnetic case, the superfluid is
brought into rotation instead of being involved in the
countercurrent, and the secondary field amplifies the
primary one rather than weakens it (ideal paramagnet-
ism, see Ref. [10], chapter 9). In the dynamic conditions
corresponding to Eqn. (9), the tachyonic excitation spec-
trum o’ =k* —x’ would arise which could result in
‘gathering self-rotation’ by the system (a rotational ana-
logue of the Jeans instability).

To resolve the contradiction between Eqns (3) and (8), it
is necessary to take into consideration the difference
between covariant and contravariant components of
velocity, one of which can vanish if the other is finite,
namely in the case of gy, # 0. Moreover, one needs to get
rid of the excess accuracy in Eqn (9) (the second term in the
brackets has an extra order in G). All this can be achieved
by the transition to the consistent (in terms of general
relativity) description of a spherical body (the Schwarzs-
child problem) brought into the state of slow rotation, in
the linear approximation over €. In the spherical coor-
dinates x* = (r, 0, @) with the axis parallel to the axis of
rotation, only components of vectors with spatial index 3
differ from zero, and physical quantities are independent of
the coordinate x° as a result of axial symmetry.

Specifically, the normal velocity corresponding to solid-
body rotation (1) x° :x% + Q¢ is not zero:

vi=2 P =0 (h=gy) .

With regard to the superfluid velocity, the equality (3)
contains the covariant component of'the 4-velocity vector [5]

w=(h",0,0,v), w=(H"?00),
and may be written in the form

(3a)

This results from the fact that the phase gradient of the
order parameter (see Appendix I) is proportional to
quantity u; whereas equality (3a) immediately follows
from the axial symmetry of the system. This equality,
written as g3 u' =0, defines the contravariant component
of the 4-velocity by the relation which generalises Eqn (8):

(8 =80/83) - (8a)

Therefore, the velocity contained in Eqn (8) is in fact the
contravariant component of the 4-velocity.

Vg3 = 0.

v; = —g3h7]/2

s

5. Gravimagnetic rotation of superfluid
(physical aspects)
After having formally settled the above contradiction by

the statement that superfluid behaves like a superconductor
in terms of the contravariant component of its velocity and

like superfluid “He in terms of the covariant component,
we may turn to examining nontrivial physical aspects of
this statement.

The vanishing of the covariant component of velocity
[see Eqn (3a)] cannot but lead to the disappearance of at
least a part of the dynamic manifestation of superfluid
rotation. This specifically refers to the generation of a
gravimetric field by rotating matter, the source of the
generation being rotation of the normal but not the
superfluid component of the matter. This is immediately
apparent from the Einstein equation (where p is pressure):

1 x

Ros =5 8osR == uovs — 8nGpgos
in which the source corresponding to the superfluid is zero.
By deriving an equation analogous to Eqn (9) from the
Einstein equation for R(3), it is possible to show (see
Appendix I) that there is correspondence between the
source (%°/2) ugv? on the right-hand side and the geometric
term of the highest order in G on the left-hand side, the
latter accurately compensating the former source as a
consequence of Eqn (8a). Accordingly, there is no
contribution of superfluid rotation to asymptotics of the
gravimagnetic field g¢°  at large distances from the body
which defines the system’s momentum (see Ref. [S]):

¢ = 26M [P (r—o0).

Thus, the superfluid rotation does not contribute to the
momentum of the system.

However, such rotation, i.e. nonzero velocity vf [see
Eqn (8a)], is apparent in the next order in @ as the
appearance of a meniscus on the free surface of the
superfluid, if any. This immediately follows from the
Bernoulli equation of the potential flow which can be
derived from hydrodynamic equations of general relativity
and has the standard form in the limit of small velocities,
nonrelativistic matter, and weak field:

2
14

2—|—)(:const,

pt+p h=1+2x+...,
where V2 = 8up VP (one should distinguish between v and
3a v} because these quantities are actually the covariant
components of the 4-vector and the 3-vector respectively).
This becomes especially clear after a new reference
system is introduced (respective quantities are denoted
by a prime) which rotates with respect to the initial one
(the Galilean system at infinity) with the angular velocity
about the same axis. Since x3 =x3 + wt (the remaining
coordinates in the two systems coincide), the following
transformation law holds for tensor gy:

W =h—2wg'gy; +w’gsy

3 .
§'=g -0, gs=gy. (10)
and components of the 4-velocity (see Section 4):
uézuo—wv3, V3’:V3;
W’ =u’ VvV =y tou’. (11)

It appears from Eqn (10) that the choice of w = g3 leads to
g3' =0 which means cancellation between the Coriolis
acceleration [term —w in Eqns (10)] and the acceleration
caused by the Lense—Thirring forces (term g° in the same
equations). In this sense, the scheme thus chosen may be
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regarded as inertial. This explains why so many authors
speak about involvement of the inertial system in the
rotation of a massive body in the general theory of
relativity.

It is essential that in such a system v =0, as follows
from the last equality in Eqns (11) and (8). Simultaneously,
the component v; = g33 v also disappears, in accordance
with equality g = 0. Because of this, the rotation of a
massive body sets in motion the superfluid which is at rest
in the inertial system. This accounts for the absence of any
physical manifestation of the superfluid rotation. According
to the second equality in Eqns (11), this is true of all
reference systems including the initial onet.

Why do not such considerations forbid the appearance
of a meniscus? Just for the same reason for which the
Larmor theorem holds only in the first order in the angular
velocity. The fact is that the property of inertiality of a
rotating reference system holds only in the same order:
acceleration quadratic in o [including the centrifugal
acceleration, i.e. the last term in the first equality of
Eqns (10)] is not compensated by the corresponding
gravimagnetic terms and remains nonzero in the new
reference system. Meanwhile, the meniscus is the effect
of the second order in w, unlike all other effects being
examined.
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Appendices

I. Hydrodynamics of superfluid in general relativity

We shall proceed from the general relativity Klein—
Gordon equation for the scalar wave function of
condensate Y (see, for instance, Ref. [12]):

FThe absence of momentum in a body which is at rest in a rotating
inertial system is universally known (see, for instance, Ref. [11]).

i 2
DDy + F(W[) ¥
1 ' 2
=——=20,(v=gs" o) +F(Y[ )y =0,
o )
where D; denotes the covariant derivative and g is the
determinant of the metric tensor. Substitution of ¥ = ve'*
into Eqn (A.1) leads to the hydrodynamic formulation of
quantum mechanics (Modelung representation). The
imaginary part of the resultant expression gives the
continuity equation

(A.1)

¥ . b -
D;j'=0, ji= 3 @Yy — Yo, ¢) =v'0u, (A2)
and its real part yields the relation
. D'D.
Q0 d'a = k* :F(VZ)+T’V. (A.3)

The current vector j; = nu; gives expressions for the
concentration u; ' = 1 and the 4-velocity n with due regard
for condition u; and Eqn (A.3):

0; o
- k 2 9 ;= l_ .
n v u; k

(A4
It can be seen from Eqns (A.4) that in the general case
velocity has no potential; instead it exists for quantity
w/nu; where k = (tF + D; D'v/v)'/? is identified as the heat
function per particle (w/n) (see Ref. [6]). It is only in the
nonrelativistic limit when k — m that one may have
potential flow in the common sense of the term and
relations (2), (3).

Differentiation of (A.3) using Eqns (A.4) yields the
Euler equation [6]

(' D) u; = [@i — (*9y) u,] In % . (A.5)
In the case in question 0, =0 and u, = 0, and the general
relativistic Bernoulli equation can be obtained from
Eqn (A.5). To this effect, the following general relations
should be used:

2
00 _ 7V 0 > 1 80

= , 8=y 8ap =26 s
800 800

>

—1 2 1 —1 8ov .
gaﬁ = 8up TV 8ap 8ou 8pv =

800
800 5 Uy = 0 5

0 =—

i

MO _ Y , W = —yg

V800

—1 8op

“ V800 ’

where y = (1 —v2)'/2, Vo= —8up v, The Bernoulli equa-
tion has the form
V8o W _ const (A.6)

y n
and turns into the standard Bernoulli equation in the case

of weak fields, low velocity of motion, and nonrelativistic
state equation (see Section 5).

I1. Equation for gravimagnetic field

Statistical Einstein equations linear in the angular velocity
of rotation of a spherically symmetric body have the form
(see Ref. [5], paragraph 95):
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2

Dy + 305 Vif = —;Wv“, (A.7)
where
. - - ~ 8
faﬂ:aagﬂ_aﬂga» g.x:—ﬂ.
8oo

Equation (A.7) is reduced to

[/3 (a% +4; a,) —% (62 +36) 10, — xﬁ] & =4Q, (A8
where

p=—cil =15 [ arrGi+a).

It is clear that the term describing generation of field g of
the rotating superfluid is actually absent.

Eqn (A.8) can be solved in the case of a superfluid core
of a body (with mass M and radius R) and a thin normal
shell (with mass M ,) if n, , are constant. Then, quantity g3
in the core is also constant. After denoting A= rg/R,
rg=2GM, 0=1-0)/(1—0/4), o =[1—2,/(1—4)]'/%,

the expression for the momentum is found:

ORQ
M = , A9
G (A.9)
and for the effective angular velocity of the condensate:
Q v
Hef:E:f:@, (A.10)
At 4, <€ 4,
2 , Qf 2 A,
M=-MR ———, —== ,
30 1= A Q 31—

where the denominator has a purely geometric sense, being
related to quantity B in Eqn (A.8) which is contained in the
Laplacian in curved space.



