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METHODOLOGICAL NOTES 

Paradoxes of superfluid rotation 

D A Kirzhnits, S N Yudin 
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Abstract. The p h e n o m e n o n of superfluidity (as well as the 
related p h e n o m e n o n of superconduct ivi ty) is of q u a n t u m 
na tu re and as such looks pa radox ica l from the s tandpoin t 
of b o t h classical physics and c o m m o n sense. Suffice it to 
say tha t these p h e n o m e n a imply the ability to flow wi thout 
exhibit ing viscosity or resistance (for this reason, for 
example, the circulation of a superconduct ing current 
within a closed circuit in the absence of external sources 
would last wi thout d a m p i n g for a per iod much in excess of 
the age of the universe). At the same t ime, a number of 
unusua l and qui te unexpected features appear to be 
intrinsic to specific events of superfluid physics. Some of 
them will be considered in the present study. 

1. Preliminary data 
The following discussion will be confined to slow ro ta t ion 
of a superfluid with an angular velocity be low the critical 
level for the format ion of the first vor tex filament [1, 2]. 
R o t a t i o n is considered to be steady and to occur at a fixed 
m o m e n t u m of the system. The order pa ramete r of the 
superfluid is assumed to be scalar. This s tudy is specifically 
concerned with the case of a nonrelat ivist ic superfluid 
med ium whose pressure is small compared with the rest ing 
energy density. 

Hereinafter , we unde r s t and by 'superfluid ' electrically 
neu t ra l media: liquid 4 H e and neu t ron fluid. The latter is 
k n o w n to form the core of neu t ron stars, pulsars (see, for 
instance, Ref. [3]). However , results of the present s tudy 
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cannot be directly applied to pulsars because their real 
angular velocity is m a n y orders of magn i tude higher t han 
Qc and the core conta ins a b r o a d ne twork of vor tex 
filaments [4]. Nevertheless , we are going to use selected 
facts of pulsar physics by way of a s tar t ing poin t in the 
formulat ion of pa radoxes discussed below which actually 
have m o r e general implicat ion. 

This in t roduc to ry section examines certain universal ly-
k n o w n s ta tements concerning the ro ta t ion of fluids 
( including super fluids) in a vessel. The velocities of po in t s 
of a solid container which ro ta tes at an angular velocity Q is 
defined by the e lementary formula 

v = Qxr. (1) 

The same law of ' sol id-body r o t a t i o n ' describes the regime 
of fluid ro ta t ion which ensures the m i n i m u m value of 
E — Q'M, i.e. energy E at a given m o m e n t u m M. In this 
s i tuat ion, the cont inui ty condi t ion for the velocity vector 
(for a viscous fluid) or of its n o r m a l componen t with 
respect to the vessel surface (for a superfluid) is fulfilled at 
the f l u i d - w a l l interface. 

This law (1) is really satisfied for the ro ta t ion of a 
viscous fluid. However , it cor responds to the non-po ten t ia l 
flow cm\v = 2Q and cannot be fulfilled for a superfluid 
because the superfluid velocity mus t obey the condi t ion 

cur lv , = 0 (2) 

(see Append ix I). In the case of an axially symmetr ic vessel, 
considered in this section, the n o r m a l componen t of its 
velocity is equal to zero, and the superfluid is not b r o u g h t 
into ro ta t ion together with the vessel: 

= 0 , (3) 

which directly cor responds to the absence of frictional 
forces in the superfluid. 

However , this is t rue only of the case of a sufficiently 
slow ro ta t ion Q < Qc. The th ing is tha t , as was ment ioned 
before, it is the sol id-body ro ta t ion (1) ra ther t han the 
rest ing state (2) of the fluid tha t cor responds to the energy 
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m in imum, and even par t ia l involvement of the fluid at a 
sufficiently large Q would result in energy saving. Such a 
mo t ion of the fluid does occur at Q ^ Qc when the thin 
n o r m a l ' core ' of a vor tex filament forms on the axis of 
ro ta t ion , and the superfluid enters into the state of po ten t ia l 
' i r ro ta t ionaP ro ta t ion in the non-s imply connected doma in 
thus formed. The number of vor tex filaments increases with 
rising angular velocity whereas the averaged velocity of the 
induced complex flow approaches Eqn (1) [1, 2]. 

This pic ture is in line with the general ana logy of 
ro ta t iona l and magnet ic p h e n o m e n a of which an earlier 
example was given by the L a r m o r theorem [5] implying the 
possibili ty to subst i tute the effect of a weak magnet ic field 
with induct ion B by t ransi t ion to the coord ina te system 
which ro ta tes with angular velocity Q = eB/2mc. Acco rd ­
ingly, Q^B, M H (similar to m o m e n t u m M , the 
magnet ic field H or the field of external sources is fixed) 
allows for the compar i son of superfluid ro ta t ion pa t t e rns 
and the behaviour of a type 2 superconductor in the 
magnet ic field [1]: as H (M) grows, the complete expulsion 
of field B (angular velocity Q), i.e. the Meissner effect or the 
absence of superfluid ro ta t ion , is replaced by the appea r ­
ance of one and then m a n y vor tex filaments unt i l field B 
(velocity ro to r ) completely penet ra tes the system. 

2. Non-axially symmetrical rotation 
If the axis of ro ta t ion does no t coincide with the axis of 
superfluid axial symmetry, the componen t of its velocity 
n o r m a l with respect to the vessel surface is no t zero, and 
the superfluid cannot remain at rest. However , the 
superfluid is carried a long by friction against the vessel 
wall and mus t execute a potent ia l mo t ion [see E q n (2)]. 
This requires tha t the superfluid ro ta te relative to the vessel 
in the direction opposi te to tha t of the vessel's ro ta t ion in 
order tha t the velocity ro to r s of these two mot ions m a y 
compensa te each o t h e r | . 
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Figure 1. 

W e shall consider three p rob lems (see Fig. 1): (a) central 
ro ta t ion of a nonequi l ibr ium ellipsoid (or elliptic cylinder), 
(b) eccentric ro ta t ion of a sphere (or circular cylinder) with 
the axis of ro ta t ion inside the body , and (c) a similar sphere 
or cylinder with the axis of ro ta t ion outs ide the body . 

fCertain authors postulate flow patterns in which a part of superfluid 
that is not immediately caused to rotate together with the vessel 
(shown as the shaded area in Fig. 1) remains at rest. This picture is 
wrong (see below). 

These p rob lems arise in the descript ion of a nonspher ica l 
a tomic nucleus, a cylinder with hel ium at the N o r t h Pole 
slightly shifted relative to the E a r t h ' s axis and involved in 
its daily revolut ions , and a pulsar of a b ina ry system 
par t ic ipa t ing in the orbi ta l mo t ion abou t the sys tem's 
centre of mass , respectively. In considering these p r o b ­
lems, let us assume the b o u n d a r y between the superfluid 
and the vessel wall to be a surface of second order: 

a\x 2 + a2y 2 + b\x + b2y = c , 

where (quadra t ic) dependence on z is moved to the r ight-
h a n d side. Focus ing on the s treamline pa t t e rns in the 
established flow, it is possible to confine oneself strictly to 
the examinat ion of the m o m e n t of t ime when axes x and y 
coincide with the axes of symmetry (main axes) of the 
system (see Ref. [6], p a r a g r a p h 10, where the solution of 
the first p rob lem is p roposed) . Axis x is t aken to be the axis 
of ro ta t ion . 

Since the flow tu rns out to be p lanar (it occurs in planes 
paral lel to p lane xy) and the fluid is assumed to be 
incompressible (V'VS = 0), it seems convenient to use the 
complex poten t ia l m e t h o d [6]. This me thod detects the 
analytic function w = cp + ixjj of var iable £ = x + iy, where 
cp is the velocity poten t ia l (p ropor t iona l to the condensa te 
phase , see Append ix I), and xjj is the function of the flow 
which defines streamlines by the equat ion \j/ = const . The 
condi t ion at the super f lu id -vesse l interface requires tha t it 
should coincide with one of the streamlines in the reference 
system in which the vessel is at rest ( t ransi t ion to it m a y be 
accomplished by subt rac t ing quan t i ty Q x r from the 
velocity). All these condi t ions are satisfied by the expression 

C + (p2 + i & i ) C + const 
a\ + a2 

, (4) 

whose analytici ty rules out the possibili ty of a par t ia l ly 
rest ing superfluid (see the previous footnote) . 

The streamline pa t t e rns in the reference system of a 
rest ing vessel are presented in Fig. 2. They appear to 
cor respond to the relative mot ion of the superfluid which is 
k n o w n to restore poten t ia l flow (see above) . A similar 
pic ture in a l abora to ry system is shown in Fig. 3. The result 
is really surprising in the case of eccentric ro ta t ion (Figs 3b, 
3c): potent ia l i ty is achieved by the superfluid flowing as a 
whole with constant velocity which does not depend on the 
distance from the axis of ro ta t ion : 

Qb2 Qbx , 
(4a) 

Figure 2. 
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Figure 3. 

To conclude this section, it is wor thwhi le to emphasise 
certain facts per ta in ing to the eccentric ro ta t ion of a circular 
cylinder. It is possible to demons t ra t e tha t the critical 
angular velocity for the format ion of the first vor tex 
filament [which appears in the centre of the cylinder 
because only this poin t of the superfluid remains at rest 
dur ing ro ta t ion in the reference system of the rest ing vessel 
(see above)] will no t change as compared with Qc for the 
symmetr ical ro ta t ion (see Refs [1, 2]). On the assumpt ion 
tha t the angular velocity of the eccentric ro ta t ion of a 
circular cylinder is Q > Qc and there exists a vor tex massif, 
the superposi t ion of the averaged velocity caused by the 
vor tex massif and the velocity (4a) leads to the sol id-body 
ro ta t ion of the superfluid abou t the eccentric axis. 

This inference could be of value for pulsar physics. It is 
well k n o w n tha t the per iod of a pulsar monotonica l ly grows 
on scales ranging from hundreds to one t h o u s a n d years bu t 
is from t ime to t ime subject to sudden d rops followed by 
relaxat ion within a few m o n t h s to one year [3]. Such a huge 
relaxat ion t ime suggests abnormal ly weak dynamic links 
between the shell of the pulsar (whose ro ta t ion determines 
the per iod) and its core (containing the bulk of the mass) . 
This anomaly gives evidence of superfluidity of the neu t ron 
mat te r in the core which results from the Cooper pa i r ing of 
nucleons by nuclear forces. 

It should be emphasised tha t this explanat ion requires 
sufficiently low efficiency of mechanisms other t h a n 
viscosity for dynamic links between the core and the 
shell. One of them resembles the mechanism discussed in 
a previous p a r a g r a p h which underl ies the relat ionship 
between the outer and superconduct ing currents and takes 
into account magne to id (veloci ty-dependent) forces of the 
general theory of relativity caused by shell ro ta t ion . Such 
gravimagnet ic forces are defined by componen t s g 0 a 

(a = 1, 2, 3) of the metr ic tensor and lead to the L e n s e -
Thi r r ing effects [5, 8]. 

In the assessment of the efficacy of this mechanism as 
applied to a real pulsar , a well-developed ne twork of vor tex 
filaments needs to be taken into considerat ion (see the 
beginning of the paper ) . The remain ing pa r t of this s tudy 
will be confined to a simpler p rob lem which is beyond the 
scope of pulsar physics, tha t is whether the superfluid is 
caused to ro ta te by gravimagnet ic forces (as a super­
conduct ing fluid is under the action of a magnet ic field) 
or remains at rest (as an uncharged superfluid like 4 H e ) . 
Paradoxical ly , bo th op t ions appear to occur concurrent ly . 

3. Frictionless rotation of superfluid 
Transference of ro ta t ion from a vessel to the enclosed 
superfluid occurs no t only as a result of the direct contact 
between them but also under the influence of a long-range 
field caused by the ro ta t ion of the vessel (or a pa r t of it). 
W e shall consider this and related p rob lems in appl icat ion 
to the simplest axially symmetr ic case (see Ref. [7]). 

Let us start from the well-studied p rob lem of super­
conduc tor behaviour in the external magnet ic field B 
induced by the ro ta t iona l mo t ion of electrons in the 
e lectromagnet winding with velocity v e . This field gives 
rise to a counterf low of superconductor electrons (they 
form a charged superfluid) which serves as a screen for the 
source of the external field and repels this field from the 
superconductor vo lume (the Meissner effect). The effect of 
the magnet ic field is quant i ta t ively described by the ' long ' 
gradient of the order pa ramete r V — ieA in the expression 
for superconduct ing current which leads to the L o n d o n 
relat ion curlvy = —eB/m or, in the gauge V*A = 0, to 

Here A is the vector potent ia l , e and m are the charge and 
the mass of the electron, respectively. Therefore, it can be 
seen tha t in contras t to the uncharged superfluid case [see 
E q n (3)], the effect of the field tha t ' lengthens ' the order 
pa ramete r gradient causes the superfluid to ro ta te . It is in 
this way tha t the direct dynamic relat ionship between 
electrons of the Vessel ' (i.e. e lectromagnet winding) and the 
superfluid is established. 

4. Gravimagnetic rotation of superfluid 
The p rob lem in quest ion tu rns out to be conflicting as soon 
as it is approached . A r g u m e n t s ensuing from s t ructura l 
considera t ions with regard to the order pa rame te r gradient 
(see Section 3) seem to be in favour of the absence of 
superfluid ro ta t ion : ' lengthening ' in the general theory of 
relativity consists in the t ransi t ion from the o rd inary 
derivative to the covar iant one; in appl icat ion to the scalar 
order pa ramete r the latter coincides with the o rd inary 
derivative (see formula A.2) . Hence , the superfluid should 
be regarded as mot ionless , as is the case with helium, and 
relat ion (3) holds t rue . 

On the other hand , there is close similarity between the 
equa t ions of general relativity (for a weak field) and of 
e lectrodynamics, which is appa ren t on subst i tut ion (for 
t ransversal field components ) : 

eA O mg ( g a = goa) , (6) 

e

2 _> -4m2 G , (7) 

where G is the gravi ta t ional cons tant . If applied to Eqn . 
(5), this subst i tut ion leads to the Dewit t relat ion [9] 

v, = - * , (8) 

whereas its appl icat ion to the equat ion V 2 A = 4%epv/m (p 
being density) yields the hydromagne t i c ana logue of the 
L o n d o n equat ion of superconduct ivi ty theory: 

(V 2 + x ? ) * = >£vn (%2 = 167iGp), (9) 
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where s and n are indices of the superfluid and n o r m a l 
componen t s of mat te r , respectively. 

F o r m u l a s (8) and (9) poin t to similarity between the 
gravimagnet ic and superfluid cases. In either case a 
respective field forces the superfluid to ro ta te , and this 
ro ta t ion gives rise to a secondary field, etc. However , these 
cases are significantly different in tha t there is the 'wrong ' 
sign in front of the second term in the bracke ts in E q n (9) 
which is caused by the 'minus ' sign in expression (7) (in 
gravi ta t ion, in contras t to electrodynamics, the like charges, 
i.e. masses, are mutua l ly at t ract ive ra ther t han repulsive). 
Therefore, in the gravimagnet ic case, the superfluid is 
b rough t into ro ta t ion instead of being involved in the 
countercurrent , and the secondary field amplifies the 
p r imary one ra ther t han weakens it (ideal p a r a m a g n e t ­
ism, see Ref. [10], chapter 9). In the dynamic condi t ions 
cor responding to Eqn . (9), the tachyonic excitation spec­
t rum co2 = k2 — >c2 would arise which could result in 
'gather ing self-rotat ion ' by the system (a ro ta t iona l a n a ­
logue of the Jeans instabili ty). 

To resolve the contradic t ion between E q n s (3) and (8), it 
is necessary to take into considerat ion the difference 
between covar iant and cont ravar ian t componen t s of 
velocity, one of which can vanish if the other is finite, 
namely in the case of g 0 a ^ 0. Moreover , one needs to get 
rid of the excess accuracy in E q n (9) (the second term in the 
bracke ts has an extra order in G). All this can be achieved 
by the t rans i t ion to the consistent (in te rms of general 
relativity) descript ion of a spherical b o d y (the Schwarzs-
child p rob lem) b r o u g h t into the state of slow ro ta t ion , in 
the linear approx ima t ion over Q. In the spherical coor ­
dinates xa = (r, 0, cp) with the axis paral lel to the axis of 
ro ta t ion , only componen t s of vectors with spatial index 3 
differ from zero, and physical quant i t ies are independent of 
the coord ina te x3 as a result of axial symmetry. 

Specifically, the n o r m a l velocity cor responding to solid-
b o d y ro ta t ion (1) x3 = xl + Qt is no t zero: 

Wi th regard to the superfluid velocity, the equali ty (3) 
conta ins the covar iant componen t of the 4-velocity vector [5] 

Ui = (h1/2, 0, 0, v 3 ) , v? = ( / T 1 / 2 , 0, 0, v 3 ) , 

and m a y be wri t ten in the form 

v j 3 = 0 . (3a) 

This results from the fact tha t the phase gradient of the 
order pa ramete r (see Append ix I) is p r o p o r t i o n a l to 
quant i ty ut whereas equali ty (3a) immediate ly follows 
from the axial symmetry of the system. This equality, 
wri t ten as g3iul = 0, defines the con t ravar ian t componen t 
of the 4-velocity by the relat ion which generalises Eqn (8): 

v] = -g'h-ll2 U 3 =g03/g33) . (8a) 

Therefore, the velocity contained in E q n (8) is in fact the 
cont ravar ian t componen t of the 4-velocity. 

5. Gravimagnetic rotation of superfluid 
(physical aspects) 
After hav ing formally settled the above contradic t ion by 
the s ta tement tha t superfluid behaves like a superconductor 
in te rms of the cont ravar ian t componen t of its velocity and 

like superfluid 4 H e in te rms of the covar iant componen t , 
we m a y tu rn to examining nontr iv ia l physical aspects of 
this s ta tement . 

The vanishing of the covar iant componen t of velocity 
[see E q n (3a)] cannot bu t lead to the d isappearance of at 
least a par t of the dynamic manifesta t ion of superfluid 
ro ta t ion . This specifically refers to the generat ion of a 
gravimetr ic field by ro ta t ing mat te r , the source of the 
generat ion being ro ta t ion of the n o r m a l bu t not the 
superfluid componen t of the mat te r . This is immediately 
apparen t from the Einstein equat ion (where p is pressure): 

1 x2 

R03 ~ 2 So3R = -J uov3 ~ &nGpg03 , 

in which the source cor responding to the superfluid is zero. 
By deriving an equat ion ana logous to E q n (9) from the 
Einstein equat ion for Rl, it is possible to show (see 
Append ix I) tha t there is cor respondence between the 
source (%2/2) u0v3

s on the r ight -hand side and the geometr ic 
te rm of the highest order in G on the left-hand side, the 
latter accurately compensa t ing the former source as a 
consequence of Eqn (8a). Accordingly, there is no 
cont r ibu t ion of superfluid ro ta t ion to asymptot ics of the 
gravimagnet ic field g3 at large distances from the b o d y 
which defines the system's m o m e n t u m (see Ref. [5]): 

g3^-2GM/r3 ( r - > o o ) . 

Thus , the superfluid ro ta t ion does no t cont r ibu te to the 
m o m e n t u m of the system. 

However , such ro ta t ion , i.e. nonzero velocity [see 
E q n (8a)], is apparen t in the next order in Q as the 
appearance of a meniscus on the free surface of the 
superfluid, if any. This immediate ly follows from the 
Bernoul l i equat ion of the poten t ia l flow which can be 
derived from h y d ro d y n ami c equa t ions of general relativity 
and has the s tandard form in the limit of small velocities, 
nonrelat ivist ic mat te r , and weak field: 

v 2 

p + p — + X = c o n s t > h = 1 + 2x + • • • , 

where v 2 = gxp vav^ (one should distinguish between V y 3 and 
# 3 a v ? because these quant i t ies are actually the covar iant 
componen t s of the 4-vector and the 3-vector respectively). 

This becomes especially clear after a new reference 
system is in t roduced (respective quant i t ies are denoted 
by a pr ime) which ro ta tes with respect to the initial one 
(the Gali lean system at infinity) with the angular velocity co 
abou t the same axis. Since x3 = x3 + cot ( the remain ing 
coordina tes in the two systems coincide), the following 
t rans format ion law holds for tensor gik: 

h' = h- 2cog3g33 + co2g33 , 

g3f = g3-CO, g £ 3 = g 3 3 , (10) 

and componen t s of the 4-velocity (see Section 4): 

UQ = U 0 - COV3 , v 3 = v3 ; 

0 / 0 3 / 3 , _ 0 / i i x 
U = U , V = V + COM . (11) 

It appears from Eqn (10) tha t the choice of co = g3 leads to 
g3' = 0 which means cancellat ion between the Coriol is 
acceleration [term -co in E q n s (10)] and the acceleration 
caused by the L e n s e - T h i r r i n g forces (term g in the same 
equat ions) . In this sense, the scheme thus chosen m a y be 
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regarded as inertial. This explains why so m a n y au tho r s 
speak abou t involvement of the inertial system in the 
ro ta t ion of a massive b o d y in the general theory of 
relativity. 

It is essential tha t in such a system v 3 / = 0, as follows 
from the last equali ty in E q n s (11) and (8). Simultaneously, 
the componen t v 3 = g 3 3 v 3 / also disappears , in accordance 
with equali ty g ' = 0. Because of this, the ro ta t ion of a 
massive b o d y sets in mot ion the superfluid which is at rest 
in the inertial system. This accounts for the absence of any 
physical manifes ta t ion of the superfluid ro ta t ion . Accord ing 
to the second equali ty in E q n s (11), this is t rue of all 
reference systems including the initial o n e | . 

W h y do not such considera t ions forbid the appea rance 
of a meniscus? Just for the same reason for which the 
L a r m o r theorem holds only in the first order in the angular 
velocity. The fact is tha t the p rope r ty of inertiality of a 
ro ta t ing reference system holds only in the same order: 
acceleration quadra t i c in co [including the centrifugal 
acceleration, i.e. the last te rm in the first equali ty of 
E q n s (10)] is not compensa ted by the cor responding 
gravimagnet ic t e rms and remains nonzero in the new 
reference system. Meanwhi le , the meniscus is the effect 
of the second order in co, unl ike all other effects being 
examined. 
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Appendices 
I. Hydrodynamics of superfluid in general relativity 
W e shall proceed from the general relativity K l e i n -
G o r d o n equat ion for the scalar wave function of 
condensa te \j/ (see, for instance, Ref. [12]): 

fThe absence of momentum in a body which is at rest in a rotating 
inertial system is universally known (see, for instance, Ref. [11]). 

1 
; 9 , - ( > / = « « * 9 ^ ) + W 2 ) ^ = 0 , (A . l ) 

where Dt denotes the covar iant derivative and g is the 
de te rminant of the metr ic tensor . Subst i tut ion of xjj = ve101 

into E q n (A . l ) leads to the hyd rodynamic formulat ion of 
q u a n t u m mechanics (Mode lung representa t ion) . The 
imaginary pa r t of the resul tant expression gives the 
cont inui ty equat ion 

DJ1 = 0 , ji = - (8; W - <A 9 f <A) = A - a : 

and its real pa r t yields the relat ion 

diadia = k2 = F(v2) + 
DlD;V 

(A.2) 

(A.3) 

The current vector j t = nut gives expressions for the 
concent ra t ion ut ii = 1 and the 4-velocity n with due regard 
for condi t ion ut and Eqn (A.3): 

n = kv2, u t = ^ . (A.4) 
k 

It can be seen from E q n s (A.4) tha t in the general case 
velocity has no potent ia l ; instead it exists for quant i ty 
w/nui where k = (tF + DtDlv/v)1^2 is identified as the heat 
function per part icle (w/ri) (see Ref. [6]). It is only in the 
nonrelat ivist ic limit when k —> m tha t one m a y have 
poten t ia l flow in the c o m m o n sense of the term and 
relat ions (2), (3). 

Differentiat ion of (A.3) using E q n s (A.4) yields the 
Euler equat ion [6] 

(uk Dk) ut = [8; - (uk dk) ut] In - . (A.5) 

In the case in quest ion 8 0 = 0 and wa = 0, and the general 
relativistic Bernoul l i equat ion can be obta ined from 
E q n (A.5). To this effect, the following general re lat ions 
should be used: 

. . 2 
00 

goo 

0a . 

# 0 0 

fP = gap +y2g^g0fii 
- 1 gOv 
h 

# 0 0 

U 0 • 

u 

0; 

u -ygap 

where y = (1 — v ) / z , vz = —gapvavp. The Bernoull i equa -v 2 ) 1 / 2 v 2 -
t ion has the form 

V̂ oo w 

goo 

• const 
n 

(A.6) 

and tu rns into the s t andard Bernoul l i equat ion in the case 
of weak fields, low velocity of mot ion , and nonrelat ivist ic 
state equat ion (see Section 5). 

II. Equation for gravimagnetic field 
Statistical Einstein equa t ions linear in the angular velocity 
of ro ta t ion of a spherically symmetr ic b o d y have the form 
(see Ref. [5], p a r a g r a p h 95): 
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Dpf<* + 36^ In y/hf* = - ^ = v« , (A.7) 

where 

goo 
Equa t ion (A.7) is reduced to 

£ ( 8 2 + ^ 8 r j -^(x2

n + x2)rdr-x2

n 
g3=x2

nQ, (A.8) 

where 

P = -gn = l - ^ [ d r ^ + x ? ) 

It is clear tha t the term describing generat ion of field g of 
the ro ta t ing superfluid is actually absent . 

E q n (A.8) can be solved in the case of a superfluid core 
of a b o d y (with mass Ms and rad ius R) and a thin n o r m a l 
shell (with mass Mn) if nsn are constant . Then , quan t i ty g3 

in the core is also constant . After denot ing A = rg/R, 
rg = 2 G M , 9 = (1 - ( j ) / ( l - ( j /4), (j = [1 - 4 / (1 - 4)]1 / 2 , 
the expression for the m o m e n t u m is found: 

and for the effective angular velocity of the condensate : 

^ = i = g3 = e . ( A . I O ) 

At 4 <̂  4, 
2 2 Q Qef 2 4 

M =-M„R 
3 n 1 - V D 3 1 - 4 ' 

where the denomina to r has a purely geometr ic sense, being 
related to quan t i ty ft in Eqn (A.8) which is contained in the 
Laplac ian in curved space. 


