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Abstract. Physical phenomena arising in the photoionisa-
tion of an atom in a laser radiation field are considered.
Theoretical studies conducted by means of various methods
are reviewed, predicting the existence of the atomic
stabilisation effect—the reduction in photoionisation
probability with increasing field strength in a fixed
radiation field. Various experiments designed to observe
the effect are discussed.

1. Introduction

The atomic stabilisation effect denotes the reduction of the
atomic photoionisation rate compared with the value given
by the Fermi golden rule. The effect is predicted for certain
values of laser frequencies and intensities and seems at first
to contradict the familiar physical principles of radiation —
matter interaction. We should mention those principles
here briefly.

For a quantum system in a weak external field of
frequency w > E,/hi, where E, is the electron binding
energy, from the fundamental quantum-mechanical princi-
ples the photoionisation rate is

2
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(Fermi’s golden rule). Here V,, is the matrix element for the
transition from a bound state n to a final state f in the
continuum spectrum; gy is the density of continuum states.
In the case of interest here, with atomic transitions driven by
an intense laser radiation field, in the long-wavelength
approximation the matrix transition element of the electric
dipole is

an = (!anF N

where F is the amplitude of the radiation field (which we
specify to be polarised linearly along the Z axis). Then,
from Eqn (1)

Iy=wy~F>~1, ®)

where [ is the radiation intensity and I',, the ionisation width
of the initial state n. From Eqn (2) the ionisation lifetime ¢,
is

T ®

Until recently, relations (1)—(3) have invariably been
found to hold in atomic photoionisation studies and there is
no reason to question their validity in a weak external field.

In the mid-1970s, however, a number of theoretical
studies were published which predicted different photo-
ionisation processes for field intensities and frequencies
above certain critical values. In particular, an ionisation
probability w,, inversely proportional to intensity / was
predicted. These studies will neither be quoted nor referred
to here since, as it is quite clear now, a number of serious
objections can be raised on fundamental grounds (see the
monograph by the authors, Ref. [1], for the present-day
criticism).

In the late 1980s many theorists and a number of
experimentalists become preoccupied with the atomic
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stabilisa-tion effect. Many well-founded predictions, both
classical (for Rydberg states) and (mainly) quantum
mechanical, were made all of which carried the same
message qualitatively that, starting from certain values
of major field and electron parameters (frequency and
amplitude; principal quantum number n or the binding
energy E,), some deviations from the Fermi golden rule are
expected to develop which must reduce the photoionisation
probability and thus produce the ‘atomic stabilisation’
effect. These theoretical predictions have already been
discussed in Refs [1—-2] (see also Refs [3—5]) and will be
discussed more comprehensively below, with regard for
studies as of the autumn of 1995.

Most recently, experiments have been performed which
agree to some extent with theoretical predictions. These are
also reviewed here. As yet, however, no single experiment
has provided a complete and detailed description of the
stabilisation effect.

Before the end of this section, a brief discussion of a
number of major trend-determining theoretical models
seems to be in order. This will enable simple qualitative
conclusions concerning the origin of stabilisation to be
made.

We start with classical mechanics. Consider a Rydberg
state of principal quantum number n > 1 in which the
electron rotates in a highly eccentric Kepler orbit around
the atomic core. Let the orbit lie in the XY plane (Fig. 1).
As is known, the electron is most likely to absorb a photon
in those time intervals where its coupling to the third body,
the atomic core, is maximum, that is, when the electron is
close to the core. The Coulomb force e’/r* is then
comparable with the force eF exerted by the field. The
estimate for the relevant distance r is then

N
r=ryn~ (7,) C))

(throughout this paper, the convention e=h=m, =1 is
used).

Figure 1. Motion of a Rydberg electron in a highly eccentric state in a
high-frequency field linearly polarised along the Z axis.

Now let us place the atom in an external electromagnetic
field with vector F normal to the XY plane. We consider the
field to be linearly polarised and to have a frequency
w>E,= 1/2n2 (photoionisation is allowed). Suppose the
amplitude of oscillation of the electron in the field,
a:F/(u2, is sufficiently large (a > ry) but at the same

time is much less than the Kepler radius r, ~n’. These
conditions are compatible for n> 1 since the condition
a> ry yields F> a)Z(F)_]/Q, ie.,

3 1
Fy o'~ Py (5)
whereas from the condition a <€ r, we have
1
F<w’n® ~ el 6)

Under these conditions, the electron follows a complicated
trajectory such that its projection on the XY plane
corresponds to the original Kepler orbit, while along the
Z axis oscillations occur. Then, for certain phase relations
between the orbital and electric-field-oriented motions, it is
seen from Fig. 1 that when close to the core (at distance ()
in the XY plane, the electron may be far away from it in the
Z direction (at distances of order a > ry). Clearly, the
probability of photoionisation will in this case be lower
than when the electron oscillations are not taken into
account [and the probability is determined by Eqn (1)].
As an alternative model, consider an atom in a linearly
polarised field, a situation which leads to strong polarisa-
tion of the atom. This means that in an external field which
is strong enough (a > r,, as opposed to the preceding
example) the initial wave function of the electron trans-
forms into a qualitatively different spatial distribution, one
which has a minimum rather than a maximum near the
atomic core, and two distant maxima symmetrical about the
core along the field polarisation direction (Fig. 2) (so-called
distribution dichotomy). This means that the photoionisa-
tion probability must be reduced since the electron spends
less time near the core compared with the case when the
initial wave-function distribution is assumed unaltered. The
critical strength is given by the condition a ~ r,, or

Fro'n’. @)

Such stabilisation has come to be known as adiabatic since
the new polarised state of the atom evolves adiabatically
from its initial unperturbed state. Transitions to other
discrete states are of no significance in this process. The
concept of an oscillating electron is valid if the radiation
frequency @ is large compared with the electron orbital
frequency o, = l/n3 (n is the principal quantum number of
the state): Fig. 1 shows that one Kepler period must
accommodate many oscillations.
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Figure 2. Electron cloud distribution along the direction of a linearly
polarised field: (a) F=0; (b) F» w’n’, a = F/o’.
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Let us consider one more model, a series of Rydberg
(n> 1) states in a high-frequency external field (0 > E,,
where E, is the energy of the nth state). Clearly, under such
circumstances photoionisation from the Rydberg states will
occur. For a sufficiently strong field, the ionisation width I',,
of the initial Rydberg states will reach the order of
w, = AE, ,11, which is the spacing between these states.
The quasicontinuum produced in this way enables three-,
five-, and more-photon Raman-type transitions to occur via
the continuous spectrum as the atom successively absorbs
and emits external-field photons (Fig. 3). For certain
assumptions on the matrix elements involved, the inter-
ference between different transitions turns out to be
destructive (each successive three-, five-, and more-photon
matrix element is obtained from its predecessor by multi-
plying by iI',, where i is the imaginary unity). This effect
reduces the probability of photoionisation from the set of
Rydberg states, i.c., leads to the stabilisation of the atom.
This is ‘interference stabilisation’.
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Figure 3. Diagram of Raman transitions between Rydberg atomic
states, in third-order perturbation theory.

It is models as simple as those above which provide a
basis for rigorous stabilisation predictions. In conclusion, it
should be noted that the atomic stabilisation effect is often
associated with the superintense strength of the applied
field. This does not capture the essence of the problem,
however, because the value of the radiation frequency is
also important. A more adequate view is that for a given
initial state to be stabilised certain critical values of the
frequency and strength of the external electromagnetic field
must be exceeded.

In what follows, various theoretical approaches predict-
ing the stabilisation effect will be first considered, and then
a number of relevant experiments will be analysed.

2. Keldysh - Faisal — Reiss approximation

Within the Keldysh—Faisal—Reiss (KFR) approximation
[6—8], the amplitude A, for the transition from an initial
field-free atomic state n to a final continuum state f (with a
Volkov wave function 'I’f(v), the core field being neglected)
is given by the S matrix element

A= —i j:<qgfw>|v(r, N ) dr ®)

Here Y’n(o) is the field-unperturbed wave function of the
initial bound state of the atom, and V(r,¢) is the interaction
potential between an atomic electron and the electromag-
netic field:

p-A AP
P @)

V(r,t) = R

Here, further, p is the electron momentum operator, and A
is the field vector potential (specifying the field turn-on and
turn-off regimes). The analysis of superintense field
ionisation is usually limited to one-electron approximation.
Keldysh [6] limits his treatment to small fields compar-
able to atomic ones (the atomic field strength is taken to be
F, =5.14 x 10° v cm_') and to frequencies ® small
compared with the atomic binding energy E,. The ionisa-
tion of the atom is then determined by the so-called
adiabaticity parameter
w(E,)"
=———, (10)
where E, is the unperturbed binding energy of the initial
atomic state, and F and w are the amplitude and frequency
of the external field. The field —atom interaction is taken in
the ‘length gauge’ dipole form:

V(r,t) =r-Fcos(wt) . an

If y > 1, the perturbation theory for the field strength is
valid, and ionisation is a multiphoton process according to
Keldysh. For the other extreme, y <€ 1, ionisation proceeds
by tunneling through an effective potential barrier slowly
pulsing in time, and the ionisation rate is, to within an
exponentially small error, identical to the corresponding
result for a static electric field:

(12)

2(2E,)*?
3F

mwmw~m}

For a particle ionised with a short-range potential, the
quantity (2E,,)3/2 can be called an atomic field strength in
accordance with Eqn (12) . However, when it is an atom or
a positive ion which is ionised, the preexponential which we
omitted in Eqn (12) is important. For highly excited states,
this is increasingly so, with the result that the atomic
strength approaches the order of (2E,,)2. This approxima-
tion is being widely used in describing multiphoton
processes in subatomic external fields (see, e.g., Ref. [1]).

However, the general expression (8) applies not only for
fields small compared with atomic ones, but also for atomic
and superatomic fields. The only requirement for Eqn (8) to
hold is that the atomic potential in the final continuum state
be negligible. This condition is justified either for a short-
range potential, or for high-energy photoelectrons, or for a
superintense field, when the atomic potential is relatively
unimportant.

Another important point is that expression (8) is
nonrelativistic, which sets an upper bound on the strength
of the field applied. Relativistic effects become important
when the electron velocity in the field, v, = F/w, is of the
order of the speed of light, ¢ = 137 a.u. For the range of
frequency of light this means that relativity shows up at
radiation intensities above 10" W ¢cm™, and for the CO,
laser even above 10'¢ W cmfz; these values are already well
within the reach of very powerful lasers.

The nonrelativistic nature of electron motion provides
the justification for the dipole approximation, in which the
vector potential A in Eqn (9) (as well as the radiation
electric field) depends only on the time ¢ and not on the
combination r—k-r/w (k is the wave vector of the
electromagnetic wave). This, of course, does not rule out
the dependence of A on coordinates related to the laser
focusing problem.
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From Eqns (8) and (9), for the simple case of ground-
state hydrogen ionised by the abrupt turn-on of a circularly
polarised electromagnetic field, we obtain the following
expression for the ionisation rate dw/d® to the solid angle
element dQ [8]:

dw 4
dQ n2w)>/?

i (N —z—1/2w)"

x I3 (2'PK) . (13)
N=N, (N _Z)2
Here N is the number of the photons absorbed,
1
No=<¢—+4z 14
0 {2w+ } (14)

is the minimal number of absorbed photons, {...} is the
integer part of a number,
I
— 15
s (15)

is the dimensionless field strength parameter, and
1\ 12
K:2(N—z——) sin@,
2w

where 0 is the angle between the direction of the ejected
photoelectron and that of the circularly polarised radiation.
Expression (13) does not require the photon frequency w to
be small compared with the ionisation potential of
hydrogen.

Note that expression (14) takes account of the AC-Stark
shift in the field of the circularly polarised wave. The shift
determines the edge of the continuum and is equal to
F /20

From Eqn (15) it is seen that the lower the field
frequency w the lower the value of field strength F required
to achieve high values of the dimensionless intensity
parameter z.

Mathematically, the boundedness of the probability
dw/dQ in Eqn (13) is due to the boundedness of the
Bessel functions. In Fig. 4 replotted from Ref. [9], the

(16)
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Figure 4. lonisation rate of ground-state hydrogen against radiation
intensity for @ = 1/128 a.u. and w =2 a.u. (circular polarisation) [9].

ionisation rate integrated over the electron escape angles is
shown plotted against the laser intensity / = cF2/41t for two
frequencies, w =1/128 a.u. and ® =2 a.u., respectively,
which are small and large compared with the hydrogen
ionisation potential. From Fig. 4 stabilisation over a wide
range of field frequencies is evident. Also, the lower the
frequency the smaller the value of the critical field, this
latter marking the crossover from the increasing to the
decreasing ionisation probability. The explanation is that
the ionisation rate given by Eqn (13) is determined by the
dimensionless parameter z [Eqn (15)] which increases as @
decreases. In particular, at @w =1/128 a.u., the critical
intensity is of the order of 10° w cm_2, i.e., small
compared with the atomic intensity.

In the low-frequency (w < 1) weak-field case (see
below), Eqn (13) is shown to agree with the original
Keldysh theory, the nature of ionisation (i. e., tunneling-
or multiphoton-type) depending on the adiabaticity para-
meter given by Eqn (10). Weak fields in Eqn (13)
correspond to the Bessel functions having arguments close
to their indices, when for w <1 we have N> 1, and
depending on ys1 the Debye asymptotic expansion for
the Bessel functions may lead to either an (tunneling)
exponential or a (multiphoton) power-law dependence.

As already noted, this approximation has a significant
disadvantage of neglecting the atomic potential in the final
continuum Volkov state. Ref. [10] remedies this for ground-
state hydrogen ionisation with circular polarisation pro-
vided F/a)2 > 1 [see Eqn (7) for n ~ 1], when the amplitude
of classical electron oscillations in the electromagnetic wave
field is much larger than the Bohr radius. Note that this is a
rather mild condition for a low-frequency field.

The dependence of the ionisation rate on the intensity /
is shown in Fig. 5 for w=0.043 a.u. (wavelength
A=1.06 pm). It is seen that including the Coulomb
potential in the final state increases the ionisation rate
by several orders of magnitude at subatomic fields but is of
no significance in the stabilisation region (in this case, for
1>107" au).
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Figure 5. ITonisation rate of ground-state hydrogen against radiation
intensity for w = 0.043 a.u. (circular polarisation) [10]. The dashed line
gives the final-state wave function and the solid line gives the same
function with the Coulomb potential included in the final continuum
state.




Atomic stabilisation in a laser field

1251

The results depend essentially on the way the Volkov
wave functions are treated. For example, instead of the S
matrix approach of Eqn (8), it has been suggested [11] that
the Volkov packet be constructed as a linear combination of
wave functions of the form

Y1) = j 7% (p) W3 (r, 1) dp . an
Here ¥, ¥ (p) is the Fourier component of the unperturbed
atomic wave function (the case considered was again
ground-state hydrogen). For + =0 Eqn (17) yields

¥(r,0) = ¥, (18)

showing that the electron was in the (hydrogen) ground
state initially.

The absolute probability for the atom to remain in its
initial state by the time ¢ is determined by the overlap of the
wave functions (17) and (18), i.e.,

W (t) = (P00 ()| . (19)
In Fig. 6 the quantity W(z) calculated for @ = 1.5 a.u. and
F =5 a.u. is shown as a function of time (the time being
measured in field cycles [12]). Again circular polarisation is
considered. The atom is seen to ionise fully within a
fraction of a cycle and hence no stabilisation occurs.

10°

107 1 1 ]
0 0.04 0.08 0.12

Time/field cycles

Figure 6. The absolute probability for a hydrogen atom to remain in
the ground state by a given time in a circularly polarised field with a
frequency @ = 1.5 a.u. and amplitude F =5 a.u. [12].

The conclusion we are led to is that in considering the
problem of stabilisation it is essential to know which
quantity is being evaluated and precisely how the Volkov
approximation for the final state is being used. In
particular, Eqn (17) implies that, if the electron has
acquired the momentum p, its subsequent evolution in
time is that of a free electron in an external electromagnetic
field. The same follows from the S matrix expression (8).
However, different mathematical realisations of this phys-

ical model have produced opposite results for the case of a
superintense field because of the uncertainty as to when this
approximation is valid.

This conclusion is also supported by an S matrix
analysis with the electron—core potential U(r) replacing
Eqn (9). For the transition amplitude we then have, instead
of Eqn (8),

o \4

App= —ij (EOE ey dr . (20)

—00 '
For a superatomic field (F > F,) this yields a simple
dependence [13]
F,
~ A~ 21
woe Al ~ 0 2n
where from Eqn (8) we find [14]

(Fa>2
w~ | — ] .
F

As noted, in Keldysh’s original work [6] instead of
Eqn (9) the nonrelativistic-dipole ‘length-gauge’ perturba-
tion [Eqn (11)] was used. Then in the case of a super-intense
field, the ionisation rate increases monotonically with F
with no stabilisation being exhibited [14]. It should be
emphasised, however, that it is expression (9) which
follows from the general relativistic S matrix expression
in the nonrelativistic limit [9]. While first-order perturbation
predictions are identical, differences appear from the second
order on. In this sense, expression (9) should be preferred to
expression (11), although for two- and three-level systems
interacting with an electromagnetic field the reverse situa-
tion occurs [15].

All in all, the conclusion to be drawn from the above is
that the KFR S matrix approximation supports rather than
opposes stabilisation in a superintense field. The results
above show, however, that the picture is as yet not
completely clear and further calculations are required, as
is an analysis of whether the atomic core potential may be
neglected in the final continuum state.

The remark which follows relates to the dependence of
stabilisation on the polarisation of the radiation. For the
ground-state hydrogen atom it has been shown [16] that in a
circularly polarised field the ionisation rate first mono-
tonically increases with the field strength and then
monotonically decreases when the field becomes super-
intense. With linear polarisation, however, the field depend-
ence of the ionisation rate is nonmonotonic and displays a
large number of local maxima and minima. Moreover, at
the same field strength circular polarisation stabilises the
ground-state hydrogen atom much more effectively than
linear polarisation. An explanation is that, in the latter case,
much of a field cycle corresponds to relatively low (in
particular, atomic) strengths: at these times the ionisation
probability is much greater than at times when the field
strength reaches its peak value. A similar sharp nonmono-
tonicity in the case of linear polarisation is predicted for the
three-dimensional zero-range potential [17].

Within the KFR framework, not only the ionisation
probability but also the energy and angular distribution of
the ejected electrons can be calculated. The energy spectrum
is found from the basic formula (8) by fixing the energy of
the final continuum state f and studying how the ionisation
rate depends on this energy at a specified field strength.
Eqn (13) corresponds to analysing individual terms in the

(22)
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sum over N absorbed photons. The dependence of the
ionisation rate on the angle 6 is determined by the
parameter given by Eqn (16).

With the experimental check in mind, it should be
remembered that the ionisation probability tends to
saturate during a pulse. For the case of radiation with a
realistic Gaussian intensity distribution in space and time,
this effect was taken care of in Ref. [18]. The results were
compared with the experimental spectra of Ref. [19] for
helium atoms subjected to 815 nm circular and 820 nm
linear laser radiation. The peak intensity was
1=1275x 10" W cm ™2 (circular  polarisation) and
[=3.15%x10" W em™ (linear polarisation)—both corre-
sponding to the above-barrier decay. The electron
oscillation amplitude, for example, for circular polarisa-
tion, was found to be a:F/(u2 =43 a.u., much greater
than the size of the helium atom, so that the field can be
considered as superintense [see condition (7)].

In Fig. 7, as an example, the experimental spectra of
Ref. [19] and those calculated based on Ref. [10] are shown
for the case of circular polarisation; the agreement is seen to
be good. In the calculations, the Hartree—Fock approx-
imation was used for the ground state of helium.
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Figure 7. Electron energy spectra for the case of circular polarisation.
Solid line—experimental data of Ref. [19]; dashed line— theoretical
calculation [18]. Ionisation of the helium atom by a A = 815 nm laser

pulse with peak intensity I = 1.275 X 10 W em™2,

It is seen that the peak of the distribution occurs when
the energy of the electron is equal to its oscillatory energy
F?/20* =60 eV in a circularly polarised field —this is
consistent with theoretical predictions. The same is true
for subatomic fields (see Ref. [1], Section 4.3.2).

Similar linear polarisation results are shown in Fig. 8.
Here the average oscillatory energy of the electron is
F2/4(u2: 150 eV. Theory and experiment agree well,
with the peak of the distribution occurring at zero
energy. The theoretical dependence is obtained in Ref.
[18] on the basis of the § matrix approach of Ref. [§].
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Figure 8. Electron energy spectra from helium in a linearly polarised
field with wavelength A1=820 nm and peak intensity
I1=3.15x%10"" W cm™. Solid line— experimental data of Ref. [19];
dashed line— theoretical calculation [18].

As for the short-range three-dimensional potential, it
has been shown [9] that, in the S matrix approximation
[Eqn (8)] the ionisation probability for a single bound state
supported by the zero-range potential decreases monoton-
ically with the field —that is, no stabilisation occurs.

The same result is obtained by exact calculation for a
particle ionised from a zero-range potential perturbed by a
superintense circularly polarised field [20]. The treatment
involves the solution of the exact integral equation obtained
from the stationary Schrodinger equation in the reference
frame rotating with frequency w relative to the laboratory
frame [21] (see the next section for more details).

However, numerical calculations for short-range poten-
tials do predict stabilisation in certain intensity ranges (see
Section 3).

In summary, if one uses the § matrix approximation or
invokes related schemes which also, in one way or another,
take account of the Volkov wave functions for the final
continuum state of the electron, it is found that the
superintense field ionisation problem is very sensitive to
the detailed nature of the particular method employed.
While most calculations do favour the stabilisation effect,
the validity of the S matrix approximation for atoms is in
some doubt [12].

3. Numerical work

The numerical solution of the Schrodinger equation makes
it possible to obtain ionisation probability in superintense
fields. Such solutions are free from shortcomings which the
S matrix method (outlined in the preceding section) and
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other approximate methods (see the following section)
possess. However, numerical solutions can be carried out
only for particular fixed values of the relevant parameters
(radiation field strength F and frequency w, the binding
energy E, of the unperturbed atomic state, etc.), and in
particular they cannot be extended to the F — oo case.

Thus, we consider here various numerical solutions of
the time-dependent Schrodinger equation

i aa—f' - [— (g) UG + V(i t)] W1

Here U(r) is the electron —core potential, and V(r,¢) is the
electron —field interaction, given by Eqn (9) or Eqn (11).
The initial condition of the Cauchy problem is of the form

¥(r,—o0) = ¥, (r) ,

(23)

where ¥ (r) is the unperturbed initial-state wave
function. This formulation is in line with the experimental
situation, in which laser radiation with a specified pulse
envelope acts on an isolated atom, the ionisation
probability per pulse of which is calculated. The problem
is difficult computationally, however, since even for the
one-clectron case the wave functions depend on four
independent variables r,¢.

In a computationally simpler formulation, the eigenva-
lue solution to Eqn (23) is found by expanding ¥(r,¢) on
some complete basis of the unperturbed states and then
diagonalising the high-rank matrix which results (the rank
being equal to the number of states taken). The diago-
nalisation process enables the complex energies of the
perturbed states to be found. The real part of the energies
determines the Stark shift of the levels, and the imaginary
gives the ionisation rate of the state. The classification of
the perturbed states envisages an adiabatic turn-off of the
field, the states in question being transformed into the
corresponding unperturbed states in this process. The
following example illustrates this approach.

One of the first problems to be addressed was the
ionisation of ground-state hydrogen by a superintense field.
The problem is solved numerically in Ref. [22] as an
eigenvalue problem. The solution to Eqn (23) is presented
in the form

Y(r,t) = exp(—iEt)f(r,t) , (24)

where the function f(r,t) is periodic in time, with the same
period as the external electromagnetic field. Equation (24)
is a consequence of the Floquet theorem for temporal
periodic perturbations (see, e.g., Ref. [15] for more details).
This implies that the field strength amplitude is constant.

Next the periodic function f(r, ) is Fourier transformed
with respect to time, and the resulting coefficients, which
are functions of the coordinate r, are expanded on the basis
of Sturmian functions for the Coulomb problem. The
advantage of the Sturmian over the unperturbed Coulomb
basis set is that, in the former, all functions belong to a
discrete spectrum and are therefore computationally con-
venient from the point of view of convergence of the series
as the number of its terms is increased.

Further, the radial coordinate r must be replaced by
r — rexp (ia), where o is a certain angle between 0 and /2
(see Ref. [23]), in order to avoid Sturmian-related diver-
gences (an alternative approach has been proposed for the
above-threshold ionisation problem in hydrogen [24]). This
procedure is called the ‘complex rotation of the coordinate.’
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Figure 9. lonisation rate of ground-state hydrogen as a function of
intensity for the case of linear polarisation with w = 0.65 a.u. [22].

By truncating the basis beyond a certain number N and
verifying that results remain unchanged as the basis size is
increased, we can equate the determinant of the N x N
matrix to zero (i.e., diagonalise the Hamiltonian) and thus
find the complex value of the Floquet energy in expression
(24). It is the imaginary part which determines the
ionisation rate.

The numerical analysis of Ref. [22] was performed for a
field frequency of 0.65 a.u., which exceeds the hydrogen
ionisation potential. The intensity (/) dependence of the
ionisation rate w for linear polarisation is shown in Fig. 9.
The peak probability occurs at I =1.1 X 10" W em™.
After the peak, w decreases monotonically with /7, which in
effect is the stabilisation of ground-state hydrogen in the
superintense field. Since the electron takes time
t,=2mn’ =2m a.u. to orbit around the proton at n=1,
at the maximum point wt,, = 1.2, which shows that the atom
ionises within about a single revolution of the electron.

Thus, the results of Ref. [22] confirm the effect of the
ground-state stabilisation of hydrogen in a high-frequency
superintense field. Some doubt may arise if one considers
that the stronger the field, the larger the basis required to
diagonalise the Hamiltonian numerically; this point was not
verified in the numerical procedure because of the dramatic
increase in the computation time required.

A problem of greater computational complexity, the
ionisation of three-dimensional ground-state hydrogen by a
superintense pulse, is addressed in Ref. [25]. The approach
used is to solve the Cauchy problem and to evaluate the
total ionisation probability W during the laser pulse. The
field frequency is taken to be w =1 a.u., twice the atomic
ionisation potential, and the pulse length varied from 1 to
12 field cycles. Although above 10" W em™2, W decreased
somewhat with increasing intensity, it remained greater
than unity. It is this decrease which is termed the
stabilisation effect.

Thus, the effect does not depend on the particular
numerical method used. Numerical solutions indicate the
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existence of the stabilisation effect. Analysis of the total
probability W (¢) shows that it is proportional to time 7 only
for fields smaller than atomic ones and for not very large
values of ¢, when no saturation occurs. For atomic and
superatomic fields, the linear W(r) regime is virtually
absent, the concept of ionisation rate is meaningless, and
the variation of W(¢) with time ¢ is oscillatory.

The three-dimensional Coulomb potential was not the
only one used in the numerical work on quantum systems in
superintense fields. In Refs [26 —27] the two-electron one-
dimensional ion H™ with a core potential of the form
(1 +x%)™"/ (which goes over to the Coulomb potential at
large distances) was considered. The Cauchy problem for
the one-dimensional time-dependent Schrodinger equation
was solved and the total ionisation probability for the time ¢
calculated. It is concluded that the electron—electron
interaction does not reduce the tendency of the ion to
stabilise as the laser field increases.

In Ref. [20], which we referred to earlier, the ionisation
rate w was calculated for a three-dimensional zero-range
potential perturbed by a superintense circularly polarised
field. In the reference frame rotating with the electric field
vector of the wave, the Schrodinger equation is stationary
and reduces to a simple integral equation for the complex
energy [21]. The imaginary part of this energy determines
the ionisation rate and, for F» F, = (2E;)3/2, takes the
simple form

w=0.303 F?/3 . (25)

The unperturbed energy of the (single) bound state was
taken to be Ey = —1/2, and m = Ji = 1. Thus, stabilisation
is absent in this case. A similar conclusion has been reached
for linear polarisation [28], although no analytical expres-
sions of the type given by Eqn (25) exist in this case.

In Ref. [29] a one-dimensional square-well potential of
finite radius and depth carrying a single bound state is
solved. The external field is taken to be linearly polarised.
The Schrodinger equation (23) is solved by direct numerical
integration, and the total ionisation probability is calcu-
lated. It is shown that in superintense fields the probability
decreases with the field, that is, the stabilisation of the
bound state takes place. The energy of the state is equal to
the oscillatory energy F2/4(u2, which in this case greatly
exceeds the unperturbed binding energy of the particle in
the potential well. Thus, there is a difference between the
zero-range and short-range results for finite-width finite-
depth potentials.

The general conclusion from the numerical work is that
the stabilisation of a quantum system increases as the
atomic potential becomes less singular. We shall see later
that classical mechanics confirms this conclusion.

4. The Kramers — Henneberger approximation

Despite the existence of other effective approximations, the
method of Kramers and Henneberger [30] is currently
being used to analyse the dynamics of quantum systems in
superintense monochromatic fields.

The method involves changing to a noninertial frame of
reference in which the electron in an electromagnetic wave
field is at rest. Taking a linearly polarised field as an
example (although it is the circular field to which the
method was actually applied), this implies changing to the
so-called Kramers frame co-oscillating with the electron.

The electron coordinate in this frame, r/, and that in the
laboratory frame, r, are then obviously related by

, F
r'=r—|—|coswr.
w

Here again F and w are the amplitude strength and
frequency of the (linearly polarised) field. The transition to
this system from the Schrodinger equation (23) is achieved
by means of the time-dependent unitary transformation

Yiu (F,1) = exp [i Jt_oo V(r,t) dt] Y(rt) .

(26)

@7)

In the dipole approximation, the electron —field interaction
V(r,t) may be written either in the form of Eqn (9) or—
more conveniently in the present context—in the form of
Eqn (11).

Substituting Eqn (27) into Eqn (23) gives the following
equation for the wave function ¥y (r,1) in the oscillating
Kramers frame:

. aq’KH(rl7t) A’ F
" 2tV r'+EC°S(wI) Pn(r's1) .

2
(28)
where U is the atomic potential and A’ the Laplace
operator with respect to r’. By means of a Fourier

transform of the periodic potential U over time we find
the expression

F [e ¢}
U[r' +-— cos (a)t)] = Z U,(r'Yexp (iNwt),  (29)
w N=—o00
where the Fourier component is defined by
Uy(r') = 1 2nU r'+ F cos (wt)
N om ), ?
x exp (—iNot) d(wt) . (30)

The proper Kramers—Henneberger (KH) approxima-
tion is obtained, in its simplest from, by neglecting in
Eqn (29) all the modes except the mode N =0. The
problem then reduces to the solution of the stationary
Schrodinger equation for the KH potential [30]:
0¥y [ a4’

o —7‘1' Uo("’)] Pin(r',1) .

i

@31

The remaining N # 0 harmonics may be neglected in the
high-frequency limit [Eqn (31)] provided

o> Egy , (32)

where Eyxy is the ground-state energy in the KH potential
1> F
Uy (r') :%Jo U[r' +— cos (wt)] d(wt) .

As will be seen later, the quantity Exy always tends to zero
(but remains negative) as the (superintense) field strength is
increased. Consequently, at a given field strength the value
of F may be rather small according to Eqn (32)—much
lower, in particular, than the binding energy of the
unperturbed ground state. This actually implies that for
any, even small, @ value one can always find a superintense
field value F, beyond which the inequality (32) will hold
and the KH approximation will be valid.

At superintense values of intensities the KH potential
[Eqn (33)], in contrast to the atomic U(r), always has a

(33)
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characteristic two-well form (for a linearly polarised field).
The distance from each well to the centre of the potential is
equal to the amplitude a = F/w® of the oscillatory motion
of the free electron in the electromagnetic wave field.
Moreover, the number of states in the KH potential
increases with increasing intensity. The new bound states
come from the continuum, move some distance into the
discrete spectrum, and then approach the edge of the
continuum as the intensity increases [32]. Also the energies
of all the states that already exist in the atomic potential
U(r) tend to zero as the intensity increases. Note that all the
energies are calculated in the oscillating Kramers frame. If
we change to the laboratory frame, to each energy F2/4co2
should be added the oscillatory energy of the electron (for a
linearly polarised field).

As an example, Fig. 10 shows how the hydrogen
ground-state energy in the KH potential [Eqn (33)]
depends on the amplitude a = F/co2 of the back-and-forth
motion of the electron in a linearly polarised field [32].

E(ls)/a. u.
0

—0.1 +

—-0.2

—0.3

0.5 ] ] ] ]
0 20 40 60 80 100

(a =F/o?)/a. u.

Figure 10. Ground-state energy of hydrogen against the electron
oscillatory amplitude in a linearly polarised field [32].

A similar picture is obtained for circular polarisation. In
particular, for a superintense field, i.e., under the condition
a= F/(u2 > 1, Ref. [33] presents an analytical expression
for ground-state hydrogen in the KH potential given by
Eqn (33):

Ina+2.65

2na (34

Egxy =—

As for the KH ionisation of a superintense field, both
the rate and the total probability over a given time interval
have been calculated. The low-N nonzero Fourier compo-
nents given by Eqn (30) were included in the calculations.
In Fig. 11, the ionisation rate of ground-state hydrogen for
a linearly polarised field is plotted against the field intensity
for @ =4 and ®w = 0.25 a.u. [32]. Stabilisation is seen at
both values, even though at w = 0.25 a.u. the photon energy
is lower than half the ionisation potential. Note, however,
that for the stabilisation effect to occur, the less severe
condition (32), satisfied for the parameter ranges indicated
in Fig. 11, is sufficient. At lower intensities condition (32)
does not hold, and therefore at w = 0.25 a.u. the curve in
Fig. 11 is truncated to the left of intensity / =1 a.u., i.e.,
the maximum of the curve is not shown.

w/ fs!
10!

10°

107 | | I] I2 | .
10~ 10° 10 10 103 10

lntcnsity/a.u.
Figure 11. lonisation rate of ground-state hydrogen against the
intensity of a linearly polarised field with w =0.25 a.u. and w =4
a.u. The calculations are taken from Ref. [32].

We see that the atomic field, defined here as that
corresponding to the maximum ionisation probability,
increases with frequency. A similar picture emerges from
the Keldysh —Faisal—Reiss approximation (see Section 2).

As for the total ionisation probability over the pulse,
KH calculations for a one-dimensional Coulomb potential
smoothed close to the origin of the coordinates have been
performed [34]. The pulse envelope was taken in the form
sin’(¢/t,), where 1, is the length of the pulse. The effect of
stabilisation here manifests itself in that the ionisation
probability over the pulse decreases with increasing field
strength F. For example, when w = 14.13 eV the total
ionisation probability is unity for F =1 a.u. and 0.5 for
F =5 a.u. It should be noted, however, that the value 0.5 is
reached in the first field cycle, so that it is unclear whether it
is adequate to average the KH potential over a cycle—
which is precisely what is done in our approximation
because Eqn (30) gives us expression (33).

The stabilisation effect within the KH approximations
was also obtained in other calculations [29, 35-37].

As the intensity increases, so does the number of
harmonics [Eqn (30)] to be retained in the Schrodinger
equation (29) in the Kramers approach [29]. If these are
very many, however, the method has no advantage over the
direct numerical solution of the Schrodinger equation
(whether in the Kramers frame or the laboratory frame).
Consequently, alternative approaches to the solution of the
Schrodinger equation in the Kramers frame have been
developed. One of these is to expand the solution of
Eqn (28) in terms of the Floquet states (see Section 3) in
the Kramers frame [38—39]. It is found that, for a field
frequency lower than the ionisation potential, the ionisation
rate for the hydrogen ground state has only a local
maximum (a ‘window of stability’) and that at very high
intensities it rises again. In Fig. 12, the dependence of the
ionisation rate w on intensity / for A = 117 nm radiation is
illustrated.

Note here that there is a certain relationship between the
present and the previous solution methods: Eqn (31)
corresponds to the zeroth Floquet component in the wave
function. However, in the Floquet method, as applied to the
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Figure 12. Ionisation rate of ground-state hydrogen against the
intensity for the wavelength 4 =117 nm. The calculations are taken
from Ref. [38].

present problem, it turns out that all the components are
interrelated through a (formally infinite) system of coupled
linear differential equations with respect to the radial
coordinate 7’

Restricting numerical calculations to a sufficiently large
but finite number of Floquet states and setting the
determinant of the system to zero, we obtain an equation
for complex Floquet quasi-energies. Their real part deter-
mines the Stark shift of the level, and the imaginary part the
ionisation rate. This also shows the disadvantage of using
the Floquet method for solving the Schrodinger equation:
although it yields the ionisation rate, the method does not
allow us to calculate the total ionisation probability over
the pulse, nor the energy and angular distributions of the
photoelectrons ejected.

Thus, depending on the specific KH technique used,
different results, namely, atomic stabilisation or a ‘stabi-
lisation window’ will emerge. The questions that arise in the
low-frequency case are particularly numerous. First, one
cannot be fully confident of Eqn (32) as a criterion for the
KH approximation. In Ref. [40], for example, this criterion
was checked against the exactly solvable case of a one-
dimensional harmonic oscillator in a linearly polarised field
(in the dipole approximation). The exact solution for the
quasienergy in this case is

E —|—1 y + F
n—= N a Y R
20 4(? — o3)

where n represents the oscillatory level (quantum number),

wy is the oscillator frequency, and @ and F are the the field

frequency and strength amplitude, respectively.
Alternatively, in the KH approximation

E =+ ! wy + F2 1+ (,0%
=|n+= — .
" 2) 70 4? ?

Comparing Eqns (35) and (36), we find that the KH
applicability criterion is ® > w,, which disagrees with
Eqn (32). A possible reason for this is the absence of a

(3%)

(36)

continuous spectrum in the harmonic oscillator problem.
However, as criterion (32) is a postulate rather than a proven
result, the conclusion that the picture is not yet completely
understood is the only one to be content with here.

Furthermore, the stabilisation effect may also be very
sensitive to whether it is a one-, two-, or three-dimensional
atom to which the KH approximation is applied. It has
been shown, for example, that in one dimension the effect is
much stronger than in two dimensions [41].

So far we have considered the application of the KH
approximation to the ground states of quantum systems.
We turn next to Rydberg atomic states. In Ref. [42] the
ionisation of circular hydrogen Rydberg orbits (n > 1, and
m =1=n—1) by a superintense field of linear polarisation
was studied. The state considered wasn =7,/ =m = 6. The
energy of the photon of the external electromagnetic field
was taken to be fiw = 1.17 eV, i.e., much greater than the
ionisation potential of the state under study, E, = 1/2n2.
Thus condition (32) for the applicability of the KH
approximation is fulfilled over the entire range of field
strengths. Under these conditions, the ionisation of the KH
state [i.e., of the state given by the solution of Eqn (31)
which goes over to the required Rydberg state as the field is
turned off adiabatically] is of the one-photon type, i.c., in
Eqn (30) the N =1 term is the one which dominates the
ionisation probability.

The intensity dependence of the ionisation probability
for a given Rydberg state is fully analogous to the curve in
Fig. 11 for the high-frequency (w =4 a.u.) ionisation of
ground-state hydrogen. For the case w =1.17 eV men-
tioned above, the peak probability occurs at
I.=7x% 10> W cm™2, which may be called a critical value
in this example. To this intensity there corresponds
E.=0.044 a.u. Note that the estimate given by Eqn (7)
in the Introduction, based on equating the electron
oscillation amplitude to the Bohr radius of a given Kepler
orbit, yields E, = 0.092 a.u. [f we consider that this estimate
is valid to within a numerical factor of order unity, the two
values of E agree quite well. Also, from calculations of Ref.
[42], the position of the peak intensity, i.e., the value of I,
increases with the principal quantum number n of the
Rydberg state, the field frequency w being fixed. This
also agrees with the estimate given by Eqn (7).

Thus the critical strength estimate [Eqn (7)] in the KH
approximation is adequate in that it reflects the onset of
dichotomy at F > F, (see the Introduction), precisely the
point at which atomic stretching along the field polarisation
axis starts to occur.

As a matter of fact, it is only at such fields, i.e., if

F
a=-—>n, (37)

w
that the KH approximation itself is valid. With the same
n="7, 1=m =6 hydrogen state as an example, Ref. [43]
shows that there is no point in continuing the KH solution
to F < F, because the one-photon KH ionisation prob-
ability differs significantly from the correct Fermi golden
rule value given by Eqn (1).

Application of the Floquet scheme for the Kramers
frame to hydrogen Rydberg states in Ref. [44] increased
doubts as to whether Eqn (32) is a correct criterion for KH
applicability criterion. It was shown, in particular, that
stabilisation occurs only at frequencies in excess of the
unperturbed Rydberg energy, i.e., at > E,. This is entirely
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consistent with the conclusions of Ref. [42] cited earlier. At
w ~ E, no stabilisation is found, however, which disagrees
with the hydrogen ground state results discussed above (in
this last case, KH stabilisation occurred also at w < E;; see
the case w =0.25 in Fig. 11).

In summary, in the high-frequency limit the KH
approximation appears to be very much justified for
> E,, where E, is the unperturbed initial level of the
atom. The low ionisation probability values are due to the
fact that the N-photon perturbation [Eqn (30)] decreases
sharply both with increasing @ [because of the strongly
oscillating integrand in Eqn (30)] and with increasing N.
The validity of this approximation is also confirmed by
comparing it with the direct numerical solution of the
Schrodinger equation for a model potential [29] assuming
the dichotomy condition, Eqn (37). We saw above,
however, that many questions concerning the applicability
of the KH approximation still remain.

Nevertheless, the KH approximation is confirmed by
direct numerical solution of the time-dependent Schro-
dinger equation [45]; it can be concluded that in a
superintense field oscillations of an electron wavepacket
weakly coupled to the atomic core occur. More detailed
information on the application of the KH approximation
can be found in Ref. [2].

5. Interference stabilisation

A totally different mechanism for the stabilisation of
Rydberg states was proposed in the series of studies [46—
49] (see also Ref. [50]). A Rydberg electron absorbs a
photon of frequency w > E, and moves first into the
continuous spectrum. After this it escapes to infinity
(ionisation) or goes back to a Rydberg state via the
induced emission of an external-field photon. This state
need not be the initial one because the absorption and
emission are virtual processes and thus do not require that
the law of conservation of energy be obeyed. At the next
stage, the electron can again absorb a photon, and this
process can repeat itself many times (see Fig. 3).

To obtain the total ionisation amplitude, amplitudes for
all orders of the perturbation theory must be added
together. We will see later that the interference of these
partial amplitudes is destructive, so that the total amplitude
is (in absolute value) less than any individual component.
The ionisation rate decreases with the field in superintense
fields—i. e., Rydberg states are stabilised.

We now proceed to the quantitative description of this
process, following the presentation given in a book by the
present authors [1] (see also an alternative presentation in
Ref. [51]). In the first order of the perturbation theory, the
matrix element of the bound—free transition is

VnE = ZnEF s

(38)

where z,; is the dipole matrix element (assuming linear
polarisation along the Z axis) and F is the field amplitude.

In the next order we have a three-photon matrix element
corresponding to the n — E' — n’ — E transition (explicit
expressions for multiphoton matrix elements are given in
Ref. [15]):

G) _ £’ Vag' Ve Vg
Ve ZJ d (E' —Ey — w)(E' —E +i6)

n'

(39)

(6 — 40). The integral over intermediate states of energy

E’' has the principal-value and pole contributions.
Neglecting the former for numerical reasons [52] (the so-
called pole approximation [53]), from Eqn (39) we find

VG = —if(E) Vo (40)
where
- _ |Vn’E|2
FE) =) (41

n!

The next, five-photon matrix element is similar in form
to Eqn (40), but with —if (E) being replaced by | —if (E)|*.
Thus, the series from matrix elements to all orders in the
perturbation theory is an infinite geometric progression. Its
sum is obviously

_ VnE
Hence, for the Rydberg state with principal quantum

number n, on averaging over the remaining quantum
numbers, we find the ionisation probability to be

1% (42)

~ WhE
Here w,; is the one-photon ionisation rate of the state
according to the Fermi golden rule (recall the photon
energy is assumed to be larger than the binding energy of
the Rydberg state).

[t is thus clear that the destructive nature of the
interference is due to the use of the pole approximation
for matrix elements. If, however, one considers only the
principal-value integral in Eqn (39) and similar multipho-
ton matrix elements, then either destructive or constructive
interference is possible (the latter case implying enhanced
ionisation).

The critical field E., for a given Rydberg state is
determined by the condition (see the Introduction)

(44)

WnEtnzla

where t, = 2mn’ is the time of revolution of the Rydberg
electron around the atomic core. Since the estimated one-
photon ionisation cross section for the nth Rydberg state is
(Kramers formula, see Ref. [54])

n

Op~—, (45)
the probability of such ionisation is estimated to be
2 2
cF;  nF;
= ~— 46
WnE Op ‘TTw (,O ( )

Substituting Eqn (46) into (44) yields the dependence of the
critical strength F, on n for the one-photon ionisation
frequency @ ~ 1/2n*:

Forv—. 47
n
If FLF, then f<1 from Eqn (43), and
F\2
Whg R Wyp ~ (Fc) . (48)

If, on the contrary, F > F_, then unity may be neglected
compared with f? in Eqn (43), and since f~ F? from
Eqn (41), from Eqn (43) we obtain

(49)
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Thus, in a superintense field the stabilisation of Rydberg
states is of an interference type.

The above argument ignores free — free electronic transi-
tions in the continuum, which involve the absorption and
emission of external-field photons. Their inclusion gives a
somewhat modified expression for the ionisation rate. In
particular, for F> F_, instead of Eqn (49) we have [55]

1 F,

W R —s — .
" 2nnd F

(50)
The factor t, = 21tn’ has been introduced because at F = F,
we must have w,gt, =1 from Eqn (44).

Moreover, the present approach sets an upper limit on
the field strength F. In order to be able, in accordance with
Fig. 3, to speak of Rydberg orbits to which the electron
returns periodically on emitting a photon, the orbits must
not be distorted too much —not to the point of dumbbell
‘dichotomy’ (see above). As we saw in the beginning of this
section, this requires that the electron oscillation amplitude
a :F/(u2 be small compared with the size of the Kepler
orbit, which is nz, so that at w ~ l/n2 we have

F < L2 . (51)

n
Inequality (51) does not imply that the field may still be
superintense in the sense of Eqn (47), because
1/n* < F<1/n* for n> 1.

So far we have discussed (within the interference
stabilisation context) only the imaginary part of the energy
of the ionised state—i. e., the ionisation rate. We turn next
to the change in the real part of the energy of a Rydberg
state in a superintense field, i.e., we will consider the Stark
shift of the level. A model adopted in Ref. [49] involves two
adjacent Rydberg levels, n and n+ 1, coupled via the
external field through one-photon transitions to the
continuum and back (see Fig. 3). It is shown that in a
superintense field a narrow quasi-energy state (i. e., that of
the system ‘atom + field’) appears, which lies exactly
halfway between the unperturbed Rydberg states whose
widths decrease with increasing field strength. A similar
picture is obtained for a large number of equidistant
Rydberg levels [55]: in a superintense field, narrow
quasienergy levels lie exactly midway between the unper-
turbed Rydberg levels.

As regards the critical field in this model, the following
remarks can be made concerning the estimate (47) above.
This estimate was obtained by assuming that the Rydberg
atom ionises within approximately one Kepler orbit.
However, if one considers a Rydberg state with a given
n and a low orbital quantum number /, and if one does not
average over [—as is valid for complex atoms with large
quantum defects—then the matrix elements of classical
bound —free transitions [56] should be employed. Then,
within the present interference stabilisation model, the
critical strength is determined from the condition f=1,
where f is given by Eqn (41). This yields [50]

F,= w5/3 ~ 3B , (52)

which is close to but somewhat different from Eqn (47).
This correction does not rule out the possibility of a (super-
intense) field range for which the above analysis is correct
[see Eqn (51)].

The quasiclassical matrix elements of Ref. [56], which
allow us to go over from Eqn (47) to Eqn (52), are justified

only for low values of initial orbital quantum numbers for
which (@f’)/3 < 1. This restriction has practical significance
in that in the visible range it often leads to the rather
restrictive inequality / $2. Numerical calculations show that,
as [ increases, bound —free matrix elements decrease rapidly.
This results in large critical strengths F, for large [ values.

Very similar results are obtained in a formulation [57] in
which Volkov wave functions are constructed for an
electron in a Kepler orbit with the quasiclassical approx-
imation to account for the Coulomb core potential. This
formulation employs the result [58] that quasiclassical
bound—bound and bound —free matrix elements between
low orbital quantum number states are dominated by the
region in which the distance of the electron from the atomic
core is of order r, ~ n4/3, which is small compared with n2,
the scale of the quasiclassical electron motion. The
ionisation probability calculated from this wave function
also displays stabilisation as a function of the external-field
strength (see Ref. [59] for details).

In the above analysis one of the Rydberg states was
assumed to represent the initial condition of the problem. In
reality, however, the initial state is produced from the
atomic ground state by an electromagnetic field. Since the
field is a laser pulse with a certain spatiotemporal
distribution, not a single Rydberg state, but in fact a
Rydberg wavepacket may be excited. The shape of the
laser pulse has been shown [48] to be crucial in determining
the dispersion of the wavepacket. For a long pulse
t > 2nn®, where n is the principal quantum number of
the Rydberg state, the ground-state multiphoton ionisation
is predicted [60] to be strongly suppressed via resonances
with Rydberg states with subsequent one-photon ionisation.
The reason for this is the stability of the Rydberg
wavepacket against further ionisation.

An analytical solution exists for the ionisation of the
quasicontinuum of Rydberg states excited from the ground
state resonantly by a trial field [61-62]. The solution
confirms that an atomic system becomes stable for
ionisation when the ionisation width is much greater
than the spacing between the Rydberg states.

To summarise the above discussion of interference
stabilisation studies, note that all of them rely on the
pole approximation for the bound-—free and free—free
multiphoton matrix elements [see the argument leading
from Eqn (39) to Eqn (40)]. The numerical arguments
underlying this approximation are by no means valid for
all matrix elements, and its justification would therefore be
a strong argument in favour of the present model. There are
two further points that need careful analysis: (1) the Stark
splitting of n Rydberg states into components with different
values of / and the magnetic quantum number m; and
(2) the possibility of interference stabilisation being caused
by coupling of the Stark multiplet components via the
continuum because of the Raman scattering of the external
field. This is quite a challenging problem because matrix
elements between states with widely different magnetic
quantum numbers may be very small, or it may not be
possible to excite some of these states at all because of
selection rules for a given radiation polarisation. Therefore,
even though the energy intervals between the initial states
with different n are filled with a large number of substates
with different orbital and magnetic quantum numbers, the
substates may remain unbroadened, i.e., no quasiconti-
nuum may occur. Thus criterion (52), which is often used to
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assess the possibility of interference stabilisation, is not in
fact realistic (Rydberg states are Stark-split!) but rather
corresponds to a simple no-splitting model. Increasing the
radiation frequency also prevents the formation of a
quasicontinuum by decreasing the matrix elements for
many of the transitions involved.

Interference stabilisation itself is a very general principle
which emerges as a consequence of the quantum inter-
ference phenomenon. If, on the contrary, there is one lower
state and two close upper states, then the monochromatic
resonant electromagnetic field will generate a dipole
moment for either of the transitions. The phase relation
between the two dipoles depends on resonance detuning. If
the dipoles are equal in amplitude and opposite in phase,
the total dipole moment is zero.

6. Stabilisation of classical systems

So far we have discussed the behaviour of quantum-
mechanical systems in a superintense electromagnetic field.
In this section, the work on the dynamics of classical
systems in such fields will be reviewed. In a sense, the
Rydberg states discussed in the preceding section may
exemplify classical systems, although in some cases the
quasiclassical and classical pictures disagree for large times
because of the spreading of quantum-mechanical wave-
packets.

Needless to say, classical stabilisation is much easier
mathematically because what we solve here is Newton’s
equation in a time-dependent external field instead of the
Schrodinger equation in the quantum case. For the
Coulomb problem, the Newton equation takes the simple
form of (we set e =m, =1 from this point on):

d’r

dr?

Here a linearly polarised field is assumed for the sake of
definiteness. Also, some initial conditions— for example, at

r
:fr—3+Fcos(a)t+qJ). (53)

10 a.u.

Figure 13. Example of a quasistable trajectory for the excited n =3
hydrogen state perturbed by a field with a frequency w = 0.15 a.u. and
amplitude F = 0.4 a.u. (linear Z polarisation). Calculations are taken
from Ref. [63].

the time t = 0 corresponding to the initial finite electron
orbit—are specified.

The numerical solution of Eqn (53) in Refs [63 —65]
demonstrates the existence of stable electron trajectories in a
superintense field (Fig. 13). The electron oscillates around
the atomic core with the frequency w and amplitude
a = F/w” along the normal to the plane of the orbit, and
at the same time performs a distorted Kepler motion in the
plane of a highly eccentric orbit. The motion of the electron
remains finite (which means stabilisation), although the
oscillatory energy 172/4(1)2 is large compared with the
unperturbed binding energy E, = 1/2n* of the electron.

[onisation from such trajectories occurs only when the
electron approaches the nucleus to within a small distance
ro such that the Coulomb energy 1/r; and the interaction of
the electron with the field (Fry) are of the same order [see
Eqn (4)]:

ro~F712 (54)

Since F > l/n4 for a superintense field with a frequency
which is not very high, we have rq < n?, i.e., the electron
must approach the nucleus to within a small distance
compared with the size of the Kepler orbit, ~n*. This
happens rarely because generally, owing to large oscilla-
tions at the time the electron passes close to the nucleus,
the effect of three dimensionality is that the electron finds
itself far from the nucleus along the normal to the orbit
plane. It is this occurrence which is at the origin of the
stabilisation of a classical system.

Calculations show [63] that stabilisation depends sig-
nificantly on the phase ¢ in Eqn (53) which corresponds to
the field being turned on at time f=0. Numerical
calculations predict stable trajectories only for ¢ = 0.
The initial electron velocity is in this case zero according
to Eqn (53). If ¢ # 0, the nonzero initial velocity causes a
fast escape of the electron to infinity — which is ionisation.
A smooth turn-on of the superintense field is another way
to prevent the electron from moving away from the nucleus
initially, but in this case the turn-on process passes through
atomic field values, at which the ionisation probability is
high. So in actual fact stabilisation can be achieved only by
optimising the problem parameters in some way.

In Ref. [66] the frequency dependence of the ionisation
probability was investigated for the classical hydrogen atom
at fields up to F =15 a.u. It is found that the stabilisation
effect occurs only at high frequencies w > 40 a.u. Below
these frequencies, the main ionisation channel at super-
intense fields involves escape directions perpendicular to the
field polarisation vector.

The Coulomb potential used in Eqn (53) has a singu-
larity at the origin. If the singularity is smoothed out, the
atomic potential becomes more transparent for the electron
and hence the ionisation probability —the strength of the
superintense field being the same—decreases. This is
because of the fact that the interaction of the electron
with the nucleus near this latter field becomes weaker, and it
is this interaction, as we saw above [see Eqn (54)], which
causes the electron to escape to infinity in a superintense
field.

Numerical calculations [67] support the above argument
for a one-dimensional smoothed Coulomb potential of the
form

V(x) = —(x¢ +x2)71%. (55)
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Figure 14. Probability of ionisation in a one-dimensional Coulomb
potential [Eqn (55)] as a function of the electron oscillation amplitude
in an eclectromagnetic wave field, a=F/w2; taken from the
calculations of Ref. [67]. Field frequency is w=0.8 a.u.; the
smoothing parameter x, in the potential [Eqn (55)] is 1 in the case
(a) and 0.1 in (b).

In Fig. 14 the total ionisation probability for the atomic
potential [Eqn (55)] with = 0.8 a.u. is shown as a function
of the electron oscillation amplitude a = F/a)2 for (a)
xo =1, and (b) xq = 0.1. The pulse length is 50 field cycles.
[t is seen that in the first case the stabilisation effect is larger
than in the latter —especially if one notes the difference in
abscissas between (a) and (b). Thus, the more singular the
atomic potential, the smaller the super-intense stabilisation,
all other parameters of the problem being the same.

We next examine how the stabilisation of a real 3D
hydrogen atom depends on the orbital quantum number [—
i.e., on the Kepler orbit eccentricity—of the initial state.
From our preceding discussion, one would expect that, all
other things being equal, circular orbits are harder to ionise
because finding the electron near the origin (nucleus) is a
rare event, and the coordinate values of Eqn (§4) are
difficult to obtain. This argument was supported by
numerical calculations [68]. In particular, for a CO, laser
and for n =50, [ =30 Rydberg states, even at the field
strength F =3 x 10*/n* =2.5%x 107 V cm™" ionisation is
completely absent for 5000 field cycles. These results,
however, are only for m = 0 (the projection of the orbital
moment on the direction of polarisation is zero). In this case,

there is actually no stabilisation of the type discussed above:
the ionisation probability is zero up to a certain critical field
strength F, and equals unity above. Interestingly, the critical
value is tens of thousands of times the atomic field.

If m # 0, then a collision of the electron with the nucleus
is easier to avoid than for m = 0 because in this latter case
the electron oscillations in the electromagnetic wave field
occur in the plane of the unperturbed Kepler orbit (assuming
linear polarisation). It is therefore not surprising that in the
m # 0 case the ionisation probability decreases with the
strength of the linearly polarised field [69]— which indicates
stabilisation. This of course happens at much stronger fields
than those needed for diffusion-assisted atomic ionisation
[70]. The scale of the field strength for the classical diffusion
of the electron via the Kepler orbits is set by

1
D="_"2, aij3"
501 (wn®)'?
It is seen that because of the large numerical factor in the
denominator, the result is much below the critical strength
estimates given above.
Classical calculations for other potentials confirm the

conclusions made above. Reference [71], for example,
employed the potential

Ulxy,x,) = =2(x} +1)71/?
203+ 1)+ [(rr —x2)* + 1]71/2 » (57)

(56)

corresponding to the classical one-dimensional helium
atom with a smoothed Coulomb interaction. The calcula-
tions were made in the KH approximation (see Section 4),
applicable not only to the Schrodinger equation as in the
previous discussion, but to Newton’s equation as well.
Even for a superintense field, the ‘dichotomy’ phenomenon
takes place. In a superintense field of high frequency w, two-
electron stabilisation with the electrons on the opposite sides
of the nucleus is observed [71]. A similar conclusion is
reached in three dimensions. The effect of stabilisation
occurs at intensities above 10" W em™ at w = 4.5 a.u. It is
also shown that under the stabilisation conditions the
electrons find themselves at classical turning points
a= :I:F/(u2, and that even in three dimensions their
motion is in fact one-dimensional—in the direction of
the external-field polarisation vector. All in all, the above
survey leads to the conclusion that the effect of stabilisa-
tion takes place not only in quantum but also in classical
mechanics. Also, both approaches are similar in the way
the ionisation probability depends on the unperturbed orbit
parameters (electron energy and momentum) and the
momentum projection depends on the polarisation direc-
tion. Clearly, in classical mechanics we are dealing with an
electron escaping beyond the laser radiation pulse and
cannot speak of ionisation probability as we can in
quantum mechanics. Also, classical calculations demon-
strate more clearly that it is necessary to smooth out the
Coulomb potential at the origin in order to avoid
mathematical difficulties due to infinite quantities.

7. Experiment

Before we proceed to the experimental data, a few
preliminary remarks are in order.

First, modern laser technology does not allow ground-
state stabilisation experiments. In fact, from the basic
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theoretical arguments presented above, such stabilisation
requires ultraviolet radiation (w > E,) with a critical
intensity in excess of the atomic value (I, > I,). Also, to
be able to pass through the ‘death valley’ at the pulse front
at I ~ I, the front time ¢; must be of the order of the atomic
time (tp ~ 1071 s). Only at #; < t, will a significant part of
atoms remain not ionised during the pulse rise time of order
t, for I ~ I,, and retain their initial state until the pulse peak
is reached, whereas at I, > I, the stabilisation effect should
be expected. To satisfy all the three requirements simulta-
neously is not yet possible. While the progress in laser
technology should be expected to fulfil the first two
requirements in the near future, the third appears to be
unachievable, even with the newly developed method which
enables the distribution of temporal radiation to be
controlled by selection of an appropriate spectral radiation
profile.

Therefore all present-day experiments make use of
excited atomic states. For these, all the three conditions
mentioned above apply although numerically they are much
less strict. The photoionisation channel condition w > E,
may be fulfilled not only for the visible frequencies but —
for highly excited (Rydberg) atoms—even in the infrared.
In the latter case, the critical intensity is much lower than
the atomic value, I, €1,. The sharp dependence of the
atomic time on n (1, = n’t,) allows one to pass the ‘death
valley’ effectively at large n by using ultrashort pulses with
rise times of the order of picoseconds or femtoseconds.

Another point to note is that, at the time of writing (the
autumn of 1995) this paper, no reported experiment has
provided unequivocal evidence for, and a sufficiently
complete picture of, the stabilisation effect. The different
experimental results to be discussed below agree only partly
with theoretical predictions, leaving quite a few questions
unanswered.

Third, under experimental ground-state stabilisation
conditions some other effects may occur, which also
suppress photoionisation but have nothing to do with
stabilisation. These should be taken into account and
distinguished clearly in investigating the stabilisation
effect. In some cases, it is these effects which determine
the optimal design of a stabilisation experiment. However,
these ‘ionisation suppression’ effects are of obvious interest
by themselves from the point of view of the physics of
intensive coherent radiation interacting with an atom.

Finally, it should be kept in mind that, whatever the
experimental arrangement, one can measure the total photo-
ionisation yield only after the target has been exposed to a
laser pulse with a fixed, inhomogeneous spatiotemporal
distribution. Under such conditions, photoionisation rate
data can be obtained only by measuring and taking into
account the spatiotemporal radiation distribution. The
influence of the inhomogeneity of this latter can be reduced
by various methods, but the inhomogeneity always remains.
Apart from the necessity to account for the radiation
distribution, various effects due to finite pulse length and
inhomogeneous distribution may occur. A case in point is the
pulse length comparable with the Kepler period of the
Rydberg electron. This situation occurs for picosecond
and femtosecond pulses for n > 1 Rydberg states (the effect
of pulse length will be discussed later). Another example is
related to the necessity of passing the ‘death valley’ at the rise
ofthe pulse. This situation is encountered when photoionisa-
tionisobserved at an atomic-scale pulse-peak field strength: it

is necessary that during the rise time of the pulse, within the
time interval when F ~ F, —i.e., in the ‘death valley’—only
a small fraction of the atoms be ionised. Obviously, to pass
effectively the ‘death valley’ is possible only if the rise time is
of the order of the Kepler period or less—which actually
implies Rydberg atomic states.

We now proceed to a discussion of the experimental
data by taking specific experimental arrangements as the
basis for the analysis. We must first discuss some effects
which suppress photoionisation but have no relation to the
stabilisation effect.

7.1 Photoionisation suppression effects

There are a number of effects that suppress photoionisation
but do not involve stabilisation. These effects are contingent
on a quite specialised experimental arrangement and are of
obvious interest by themselves. So far as the study of
stabilisation is concerned, they indicate the initial condi-
tions that hamper optimal stabilisation experiments.

One photoionisation suppression effect is illustrated
nicely by the simple example of a classical electron rotating
in a Kepler orbit around the nucleus. [f the orbit is a highly
eccentric ellipse, the absorption of a photon and the
detachment of the electron may occur only at moments
when the electron is close to the nucleus in its orbital
motion. If the length ¢, of the photoionising pulse is less
than the Kepler period, the process of photoionisation will
be suppressed because the electron may not come close to
the nucleus during the time the radiation acts on the atom.

In practice, such suppression may occur only in the
photoionisation of excited states, for which the Kepler
period f,, = nStal may exceed the pulse length #,. It is seen
that even at n=10 we have f,, = 1078 s, which is
comparable with the length of an ultrashort pulse.

Such an effect was observed in a study [72] of photo-
ionisation from highly excited states of barium. The 27d state
was excited out of the ground state by a standard two-step
method with radiation from two dye lasers. The Kepler orbit
time for the 27d stateist,,7 = 2 ps. From this excited state, the
atom wasphotoionised by radiation with pulse length 7, which
varied from 2.7 to 0.3 ps. The result is shown in Fig. 15. Three

Ne
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Figure 15. Photoelectron yield N, from the 27d barium state versus
laser pulse length 7, in the experiment described in Ref. [72].
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regions showing different pulse-length dependences of
photoionisation yield are distinguished. At ¢, > ¢,,7 the yield
is pulse-length independent, at #; < t,5; it decreases with
decreasing pulse length, and at extremely short pulses an
approximate proportionality is observed. The results are
interpreted classically, in terms of the probability for finding
the electron close to the atomic core during the laser pulse.

Thus, this experiment demonstrates the suppression of
photoionisation at pulse lengths less than the Kepler
revolution of the electron around the atomic core.

In another suppression effect, the initially excited state is
the n > 1, [ ~ 1 state. It is obtained by the standard cascade
(step) excitation method with the linearly polarised radia-
tion from several dye lasers. As a strong, external high-
frequency (w > E,) ionising field is turned on, the initial
n > 1,1~ 1 state splits into n — 1 components with [ varying
from 0 to n—1 (see, e.g.,, Ref. [15]). The splitting is
quadratic in the field and described by a perturbative
formula of Ref. [73] (see also Ref. [74]) which shows it
to be dependent on all the quantum numbers of the initial
state as well as on the frequency and strength of the field. In
the laser radiation field, the manifold of the split states
forms a wavepacket. The dynamics of this latter involves its
oscillations around the atomic core, the period of which is
determined by the splitting 7., =2n/A, and by the
spreading during a time period dependent on laser mono-
chromaticity. If the pulse length of the ionising laser is less
than the packet oscillation period, then the photoelectron
yield will be suppressed because during the laser pulse no
low-I states may exist near the atomic core. As is known, the
ionisation probability from high-/ states is suppressed
compared with low-/ states because of the large momentum
the free electron must have in the former case. The results of
a model experiment [75] with Rydberg levels split in a static
electric field agree well with the models discussed above.

Photoionisation suppression due to the splitting of
excited atomic levels in a static electric field was observed
in an experiment on barium [76]. The states studied were
n=25 and n =35 the static field was about
U, =250V cm_', and the strong laser field had the
frequency w > Ezs, E,s (Fig. 16).

| 3

Figure 16. Schematic diagram of the experiment described in Ref. [76]:
(1) focused laser radiation; (2) atomic beam, with the axis perpen-
dicular to the sheet; (3), ion detector; U; and U,, constant voltages
indicated in the text.

The Ba™™ jons generated from the one-photon ionisation
of excited barium atoms by the laser radiation were
accelerated by a static electric field of about 250 V cm™'
and recorded at a microchannel detector. Some of the
excited atoms remained in the region where the radiation
interacted with ground-state atoms; after the pulse, these
atoms drifted into the region with a field of about
U, =4000 Vecm™' and there were ionised by this field.
These ions came to the detector at a different time than the
Bat ions, owing to one-photon ionisation. The number of
these ions gives information about the residual population
of the excited barium atoms after the passage of the pulse.

The net result of the experiment is that the number of
ions from n =25 is an order of magnitude less than that
from n =35, which shows that the residual population of
the latter state dominates and that photoionisation is
suppressed.

The interpretation given in Ref. [76] is as follows. The
magnitude of / splitting is estimated to be A, ~ n* since
U, =250 V cm~!is close to the estimate n~> for the field at
which the (extreme) multiplet components from the nth level
are found to cross those from the adjacent levels. Conse-
quently, the estimate for the wavepacket oscillation period,
tose ~ 1/A, ~n*, is 60 ps for n = 25 and 230 ps for n = 35.
Since the pulse length was 70 ps, it follows that in the latter
case t; <ty and hence photoionisation suppression should
occur — which indeed did happen in the experiment.

In order for experiments to be free from splitting of
Rydberg states, the preliminary excitation must occur into
so-called circular states, ones in which, given the value of n,
the orbital quantum number assumes its maximum value
{ =n— 1. Clearly, the magnetic quantum number will then
be the same, m = [. Of the many techniques available for
excitation into such states [77—79], multiphoton excitation
by circularly polarised radiation [77] is the simplest. In its
application, however, the values of n (and hence /) must be
relatively small since, with the multiphoton processes
involved, effective excitation necessitates large radiation
intensities, with all the consequences that may ensue.

7.2 Atomic stabilisation in multiphoton resonant
ground-state ionisation

In principle, the high-field stabilisation of an excited atom
is not limited to the experimental situation in which weak
auxiliary laser radiation is used to excite the atom. The
strong field alone may be sufficient if it gives rise to
multiphoton resonant ionisation from the ground state of
the atom. Since even the stabilisation of excited atoms
implies high intensities, the design of such experiments
avoids the choice of a radiation frequency for multiphoton
excitation. A strong external field always causes a large
AC-Stark shift [80], which detunes no-field resonances and
produces a host of dynamic resonances on the rising and
falling edges of the pulse. Such dynamic resonances have
repeatedly been seen in multiphoton ground-state ionisa-
tion experiments as resonant peaks in the energy spectrum
of the resulting electrons (see, e.g., Refs [80—81]), each
individual peak being identifiable with specific excited
states of the atom. However, until recently it has never
been thought that, in addition to multiphoton resonant
ionisation, the dynamic multiphoton resonances may also
produce multiphoton excitation, when the atom can, with
some probability, remain in its excited state after the pulse.
This certainly has not seemed realistic for inert gases under
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visible and infrared radiation, when high-order multi-
photon processes (K = 10) are involved; such processes
were observed only in very high fields of the order of
(1072 = 107")F,, but even to excite the lowest states
requires about the same number of photons. Only recently
has an experiment [82] unexpectedly shown that residually
populated excited states may occur in strong-field ground-
state multiphoton ionisation.

In that experiment, two laser radiation fields were
employed. In one (strong) field, the seven-photon ionisa-
tion of the xenon atom was realised (w=2 eV,
[=10" W cm™2, t; =100 fs). The second —trial (and
weak)—field was turned on with some delay after the
strong field pulse. The trial field parameters were taken as
follows: w=2¢V, I = 10" w cmfz, t; =15 ns. The elec-
trons produced by the strong field alone, and those by the
two fields together, were detected. The electrons due to the
weak (trial) field were separated as a difference effect.
Simultaneously, the energies of the produced electrons were
measured, in order to provide an independent method to
separate the trial-field electrons. A large number of these
excited ionisation electrons were found. The electron energy
spectrum displayed narrow peaks distinctly identifiable as
being due to the excited 4f, 5f, and 6f states. After a strong
field pulse, 11 % of the atoms remained in the excited 4f
state; 25%, in 5f; and 56%, in 6f.

Now the question arises as to the physical reason for the
excited-state residual population in the ground-state multi-
photon ionisation of xenon. Experimental data and simple
estimates show that stabilisation does not play a role in this
case. In fact, with the above parameters, typical of powerful
laser radiation, the free-electron oscillation amplitude is
readily estimated to be a~r,, so that the necessary
condition for adiabatic stabilisation, a > r,5 =~ 102ra (see
Section 3 above), is not met. As regards interference
stabilisation, the condition F > F,, where F, =’ is
also not realised. Moreover, the narrow resonance peaks
in the electron spectrum (Fig. 17) show directly that no
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Figure 17. Electron energy spectrum for photoionisation of excited

xenon atoms by trial radiation, experimental data are taken from
Ref. [82].

quasicontinuum arises from the excited n =5 states. It is
thus clear that interference stability is also absent.

Presumably, the residual population is due to the
ultrashort pulse length (¢, =100 fs) of the laser used.
Estimates show that the ionisation lifetime of excited
xenon states in the intense ionising laser field is of the
order t; = 107" s, which is equal to the pulse length of the
laser. Clearly, the total ionisation from an excited state
implies ¢; > t;, and at t; ~ t; a large part of the excited atoms
must survive. This is another example of a stabilisation-
unrelated photoionisation suppression effect.

However, in later work [83] residual population in
multiphoton ground-state krypton ionisation was observed
under conditions where, on the one hand, it cannot be
associated with the short pulse length and, on the other, it
may be due to the interference stabilisation effect. More-
over, direct experimental evidence for stabilisation is found.

The strong ionising laser field in Ref. [83] had a
frequency w = 1.5 eV, pulse length ¢, =100 fs, and peak
intensity [ =15X 0% W em™ (field  strength
F=2x10" V cm™! ~ 0,5F,). The ions produced in the
laser focus region were accelerated to the detector by a
100 V em™' static electric field pulse. After the pulse, a
pulsed electric field of a few thousand volts per centimetre
was applied across the ion formation region, sufficient to
ionise excited atoms in n > 14 states. By varying the
strength of the field, conditions for ionising excited atoms
in states from n =50 up to n = 14 were realised. The ions
produced by the pulse and those produced by the static field
strike the detector at different times. The static field ions
signalled the existence of residual population after the laser
radiation pulse.

The experimental data of Ref. [83] show that after the
pulse about 1 % of the atoms remain in n > 14 excited
states.

We turn next to the interpretation of this experiment.

The first thing that has to be said is that, given the
experimental conditions used, the residual population
cannot be attributed to the short pulse length. In fact,
for the peak field strength mentioned above, any estimate
yields t; < t; for the ionisation lifetime of excited atoms with
principal quantum numbers from 14 to 50.

A second point is that the residual population of excited
states may be due to the stabilisation effect. The adiabatic
stabilisation mechanism is of no relevance here. Estimates
show that, even at the peak of the laser pulse, the free-
electron oscillation amplitude a = F/w” is only about the
size of the excited-state orbit r,, = nzr.d at n > 14. Thus, the
condition for the occurrence of adiabatic stabilisation is not
fulfilled (it requires a > r,,;). On the other hand, the laser
field is much stronger than the critical value for interference
stabilisation to occur, F, = 0.005F,. However, the principal
argument in favour of interference stabilisation is the
dependence of the number of excited states on the
radiation field strength (Fig. 18). These results show that
a fourfold change in intensity leaves this number virtually
unchanged. This dependence is typical of the stabilisation
effect. The observed increase in the number of excited
atoms as the radiation spectrum is broadened (i.e., the pulse
length decreases) is presumably because of the suppression
of ionisation under conditions where #; < t,,, where t,, is
the time of the Kepler orbit time of the excited electron (for
n=14, t, ~ 10712 s). This effect has been discussed earlier
in this review (see Section 2).
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Figure 18. Ratio of excited Kr* atoms to Kr* jons as a function of
laser pulse energy. Experimental data are taken from Ref. [83].

Thus, the experimental results of Ref. [83] are in our
view in general agreement with the theoretical predictions
concerning atomic interference stabilisation (see Section 5),
and it is not clear why the authors of that study failed to
exploit the effect to interpret their results.

7.3 Stabilisation effect in photoionisation from highly
excited states

In Section 5, the model of the interference stabilisation of
highly excited states assumed the absorption and subse-
quent emission of photons by an atomic electron in a
strong external field. This multiphoton process is Raman
type and may occur in the case when, owing to the
ionisation broadening of the atomic levels, the initial
discrete spectrum becomes a quasicontinuum. The inter-
ference of reradiation processes then turns out to be
destructive, leading to a suppression of photoionisation
from these states—i.e., to the so-called interference
stabilisation of the atom. Since Rydberg states initially
with a principal quantum number n split into components
with different orbital quantum numbers / in a high-
frequency (fiw > E,) field (see, e.g., Ref. [15]), the splitting
can also lead to photoionisation suppression under certain
conditions.

As of the time of writing, three experiments on inter-
ference stabilisation have been reported.

The experiment in Ref. [84] deals with the photoionisa-
tion from the highly excited barium state 6s26d induced by
radiation of frequency w =2 eV, pulse length ¢, = 100 fs,
and peak intensity /=4 x 10> W cm™. One result
(Fig. 19) is that, in the presence of a strong field,
photoionisation not only from the initial state 26d, but
also from a number of adjacent states up to 31d is observed.
This is attributed to the initial 26d population being Raman
redistributed over the adjacent Rydberg states. It is also
argued that Raman transitions occur through the contin-
uous, rather than the bound-state, spectrum (Fig. 20). This
follows from the experimental fact that the number of
repopulated states does not depend on the laser frequency,
the range of which (about 300 cmfl) is an order of
magnitude more than the separation between the excited
states. Clearly, a change in frequency changes the detuning
from quasiresonances in the bound-state spectrum and

26
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Figure 19. Electron spectrum for the photoionisation of the 26d barium
state by an intense laser field. The experimental data are taken from
Ref. [84].

Figure 20. Scheme of two possible channels for two-photon Raman
transitions: via the continuum ( ) and via the spectrum of bound
states (- - - - ) [84].

should therefore influence the excited-state repopulation
probabilities.

Basically, these results are a direct demonstration of
highly excited states being coupled via Raman transitions
through the continuum. A detailed theoretical discussion of
this process is given in Ref. [62] (see Section 5).

The experiment in Ref. [76] has already been considered
above to illustrate the photoionisation suppression due to
the [ splitting of highly excited states. We will discuss it here
from the point of view of stabilisation. As already
mentioned, the main result of this experiment is that
photoionisation from different / components of the highly
excited n = 25 and n = 35 barium states reveals these states
to be populated residually after the laser pulse, the second
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state being about an order of magnitude greater than the
first. The interpretation was presented earlier and has
nothing to do with the stabilisation effect. However, for
o = 3.5 eV used in that experiment, the critical field for the
existence of a quasicontinuum in the region of highly
excited states with a given n is

F,=0’?=3x1072F, =15x10°Vs™",

corresponding to the radiation intensity /=2 x 10" W
ecm 2. From Ref. [76], the peak intensity in the experiment
was about 10" W cm 2. Thus, the interference stabilisation
condition was satisfied. Actually, however, each n state was
split into components with different values of / in a static
field. Accordingly, the critical strength for the existence of
a quasicontinuum could be less in this case. This supports
the conclusion about the necessary conditions for inter-
ference stabilisation. We also note that the value
10" W ecm™ is open to criticism, as one resulting from
estimates rather than from exact measurements.

Now an obvious question here is whether the results of
this experiment are consistent with the concept of stabilisa-
tion?

One result, already mentioned in Section 7.1, is that the
number of atoms which remain in the excited state after the
passage of the pulse is an order of magnitude larger for the
n =235 than for the n =25 initial state. As the basic
condition F > F_ is fulfilled in both cases, this discrepancy
finds no explanation within the interference stability frame-
work.

Another result is the discrete frequency dependences of
the yield of Ba* and Ba** ions (Fig. 21). Here Ba*" denotes
a barium ion from an excited atomic state. Both depend-
ences display a sparse structure, for ionisation from a fixed
n various [ manifold, and a finer one, for ionisation from
individual fixed n fixed [ states. This picture suggests the
absence of a photoionisation continuum both for states
with different / and for those with fixed n and [ values. But
the idea of the discrete spectrum being replaced by a
continuum is fundamental to the theory of interference
stabilisation.

Batyield
Ba**yicld Frequency
AE, [T~ ~"~"~""~"""~""~"""~"""~>"""~"""“"""~>"""~""“>""™>""™"™"™77

Figure 21. Yield of Ba® ions (produced from the ground state) and of
Ba*" ions (produced from an excited state) against the radiation
frequency [76]. Bottom: splitting of highly excited states with a fixed
principal quantum number »n into various orbital quantum number (/)
components (calculation).

0 5 10 15 20

Luminosity /J em™

Figure 22. Photoeclectron yield from the 27d barium state versus fluence
for two pulse lengths. Experimental data are taken from Ref. [72].

Thus, the results of this experiment are inconsistent with
the basic theory of interference stabilisation.

The fulfillment of the condition F > F, does not actually
contradict these results: the authors of the experiment give
10" W cm™2 as an estimate for radiation intensity, whereas
the true value might be much less. This assumption is in
accordance with experimental fact and confirms the
photoionisation suppression effect due to the [ splitting
of Rydberg states.

Finally, only a part of the experiment in Ref. [72] has
been discussed above (Section 7.1). Also presented in the
work are the illumination dependences of the photoionisa-
tion yield for the highly excited state 27d for two pulse
lengths, 0.6 ps < t,, and 2.7 > ¢,,, where t,, is the period of
revolution of the electron for the n = 27 state. Based on the
dependences shown in Fig. 22, the authors drew the
following conclusions about the photoionisation process:
—for extremely low fluences, the photoionisation yield is
independent of the pulse length and increases linearly with
luminosity;

—as the luminosity is increased, the growth of the yield
slows down relative to the linear dependence;

—the slowing down is related to the intensity rather than
fluence: it appears earlier and proceeds faster for short
pulses compared with longer ones;

—for the maximum fluence employed, the short-pulse
photoionisation yield is roughly half the corresponding
value for a long pulse long pulse.

It should be noted that the data of Fig. 15 are obtained
at the fluence H =7 J cm™> (marked by an arrow in
Fig. 22), which corresponds to the point at which the
intensity-related slowing down of the photoionisation yield
starts to be seen. This suggests that the pulse-length
dependence of the yield as presented in Ref. 15 is
determined not only by the condition ¢, < ¢,,, as argued
in Section 7.1, but also by the intensity.

However, there may be an alternative explanation to
account for the sum total of the data of Ref. [72], one based
on the assumption of the interference stabilisation of the
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27d barium state. As already mentioned (see Section 95),
theory predicts interference stabilisation for laser fields
F>F, = . From the data of Ref. [72], the experimental
results in Figs 15 and 22 are readily found to be obtained in
the intensity range from [, =3 X 10 W cm™ (at
;=27 ps) to Ipax =3 x 10° W em™ (at 1, =0.25 ps).
In the former case, the field strength is F =~ F, = o*”? and,
in the latter, F = 3F,. Clearly, the slower growth of the yield
with increasing luminosity and its pulse-length dependence
are consistent with the basic views on the intensity depend-
ence of the interference stabilisation effect.

It should be kept in mind, however, that one cannot
ignore the [ splitting of the initial 27d state in the radiation
field. On the one hand, the splitting may change the value of
the critical stabilisation field and, on the other, it must
suppress the photoionisation yield from the entire manifold
of states with different /.

Note that the alternative explanation we offer for the
experimental results of Ref. [72] requires that photoionisa-
tion suppression at f; <t,, should also be taken into
account.

The above example shows that because of its very nature
(mixing of many bound states via the continuum), inter-
ference stabilisation presents a challenge for anyone trying
to obtain conclusive experimental results.

In summary, there is at present no unequivocal
experimental confirmation of the existence of interference
stabilisation, but some experiments are to some extent
consistent with this hypothesis.

7.4 Stabilisation in photoionisation from an isolated
excited state

In the case of an isolated excited state which does not mix
with other states when under a strong external field,
adiabatic stabilisation may occur. As mentioned above, this
takes a relatively higher radiation intensity than, for
example, in the case of interference stabilisation. The
critical field F, = ’n? is determined by the condition that
the free-electron oscillation amplitude start to exceed the
size of the Kepler orbit, a = F/co2 =’

This value is about n’ times the critical field for the
interference stabilisation as given by Eqn (52), F, = .
The adiabatic stabilisation condition for an excited atom
might at first sight seem unrealistic because at a signifi-
cantly lower field a quasicontinuum of ionisation-
broadened levels will appear. This conclusion, however,
is true only for excited states of very large n value (Rydberg
spectrum having a regular structure with a level separation
of AE = 1173), for I~ 1 [ensuring the validity of the
quasiclassical matrix element leading to Eqn (52)], and
under the assumption that the initial state does not split
(see the discussion at the end of Section 5). However, this
conclusion will be incorrect if the following two conditions
are fulfilled. First, if the states used are those with small n,
in the spectral region where AE > n>. Second, if the initial
state has the maximum possible /: for large / the bound -
free matrix element is much lower than the quasiclassical
estimate used in deriving Eqn (52). The fulfillment of these
two conditions may reduce significantly the field strength at
which a continuum of adjacent levels appears. The experi-
ment described in Refs [85—86] demonstrates this point.

The aim of the experiment was to observe the adiabatic
stabilisation of photoionisation from an isolated excited
atomic state.

In order to have the initial excited state isolated, and to
avoid [ splitting and continuum-assisted state mixing, the
state to be excited was taken to be a circular m =1 =n—
1 =4 one, and the photoionisation radiation with a spectral
width of less than the level separation was used.

The relatively large value of / secured a relatively small
photoionisation probability and thus reduced the role of the
‘death valley’ in the ionising pulse rise, so that the majority
of the atoms remained in their excited states until the
instant the pulse peak had been reached.

The excited circular state was produced by multiphoton
excitation of the atom from its ground state with circularly
polarised radiation [77]. By absorbing five photons of the
radiation, a neon atom was excited from the ground state
2p® (m = —1) to 5¢, m =1 =n — 1 = 4, with binding energy
Es, = 0.55 ¢V and Kepler period of #5, = 0.6 ps.

There was a delay of 20 ps introduced between the
excitation and ionisation pulses, during which circular
atomic states were in a static magnetic field of 1 T. By
the use of the Larmor precession occurring in the field (a
quarter cycle for 20 ps), the axis of rotational symmetry of
the circular states was forced into the polarisation plane of
the photoionising radiation. Calculations show—and
experiment confirms—that this orientation is optimal
for stabilisation.

Photoionisation from the neon S5g circular state was
achieved by radiation of frequency w =2 eV > Es,, and
pulse length ¢, = 0.1 ps and #, = 1.0 ps. The exciting and
ionising radiations were focused such that the diameter of
the focused circle in the former case was much smaller than
in the latter. This reduced the inhomogeneity of the spatial
distribution of the ionising radiation in the region of ion
formation. The photoelectrons were detected and their
energies measured. From the photoelectron spectrum given
in Ref. [86] it is clearly seen that both the state under study
and a number of adjacent states remain discrete, their width
being several times less than their spacing. By varying the
spectral width of the ionising radiation, the length of the
pulse was varied. Pulse lengths of 0.1 and 1.0 ps were used.
With a fixed pulse energy this enabled order-of-magnitude
intensity changes to be obtained.

The results of the experiment are presented in Fig. 23. It
will be seen that the fluence (and intensity) dependences of
the photoelectron yield differ qualitatively for the short and
long radiation pulses (i. e., for a high and low radiation
intensity, respectively). For a long pulse (#;, = 1.0 ps) and
peak intensity / = 1.2 x 10'> W cm™2, the photoionisation
yield increases approximately linearly with the fluence
(intensity). For a short pulse (#;,=0.1 ps) and peak
intensity / = 1.2 x 10" W cm_z, it is virtually independent
of luminosity (intensity). This is the main piece of evidence
for the stabilisation of excited atomic states in this
experiment. Another is the radiation intensity value at
which the photoionisation yield becomes intensity inde-
pendent. Experiment gives [, =2 X 108 W cm™2, and
calculation 7, = 5x 10"° W em™. The agreement between
these two results may be considered to be very good (note
that a = F/co2 = rs, in this case). The experimental data of
Ref. [86] confirm that the initial state remains isolated;
neither splitting nor continuum-assisted mixing occurs. This
is seen, for example, from the photoelectron energy spec-
trum, with a distinct narrow peak for 5S¢ photoionisation.

However, the absolute magnitudes of the photoelectron
yield for short and long pulses suggest that the radiation
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Figure 23. Photoelectron yield from the Sg neon state versus fluence for
two pulse lengths. Experimental data are taken from Ref. [86].

intensity is not the only contributing factor in this
experiment. Changing from fluence to intensity, it is found
that the left end of the short-pulse dependence virtually
matches the right end of the long-pulse dependence. But the
yield amplitudes differ significantly at this point, the short-
pulse amplitude being about half the long-pulse value. This
discrepancy can be attributed to the suppression of
photoionisation at short (f; <ts,) pulse lengths, as dis-
cussed in Section 7.1. In fact, for the 5S¢ Kepler period,
ts, = 0.6 ps, the long period obeys the inequality #; > s,
whereas for the short pulse we have #; > t5,. It is not clear
why the authors of Ref. [86] failed to exploit the above-
mentioned effect when illustrating good agreement between
experimental results and unpublished calculations based on
Ref. [43].

As a whole, however, we may summarise by saying that
the results of this experiment agree both qualitatively and
quantitatively with the theoretical predictions about the
conditions for the adiabatic stabilisation of excited atoms.

The global analysis of the experiments on the stabilisa-
tion of excited atoms supports the conclusion we have
suggested in the introduction to this section —that there are
a whole series of experiments consistent with the notion of
stabilisation. Of these, however, only one—the neon
experiment of Ref. [86]—admits of an unambiguous
interpretation. Unfortunately, no other reported experi-
ment is as detailed and comprehensive as this one,
which leaves no question unanswered.

Although it is relatively simple and a bit straightfor-
ward, there is no reason to question the interpretation given
in Ref. [86] of experiments on isolated excited states. It is
therefore along these lines that detailed studies on the
photoionisation stability of excited atoms under intense
laser radiation can be expected.

8. Conclusions

As is traditional, we conclude with a brief outline of the
general conclusions and by indicating problems which,
although relevant, have been left out of this review.

The most well-founded of our conclusions rests on
theory: calculations within different approximations share
the property of predicting atomic stabilisation in a super-
intense laser radiation field. In a given approach, a certain
particular qualitative difference between the quantum ‘atom
+ field’ system and the initial atomic structure gives rise to
the effect. Reasons for the effect vary. In particular, critical
field parameters— for example, the critical field strength —
may be numerically different. Theory does not predict a
single universal reason for the existence of stabilisation. The
reason which is common to all situations is that the atomic
structure undergoes qualitative changes as an external laser
field with the critical values of its basic parameters is turned
on.

Experimental results are still very scarce, especially
when compared with the theoretical ones. As of now,
the neon experiment of Ref. [86] is the only one to indicate
strongly the existence of the effect of adiabatic stabilisation.
Further progress in the area is dependent mainly on
experimental advances.

As regards the theory, there is only one question which
seems to require closer investigation: the competition
between photoionisation and induced radiation scattering
at the critical field frequency and strength values. Studies
along these lines are underway (see Refs [87—92]), but a
general picture is still lacking. It is evident, however, that
certain scattering features, whether it be Rayleigh- or
Raman-type, linear or nonlinear scattering, may have a
significant effect on the photoionisation probability and
distort the stabilisation picture.

In the case of negative ions, the first thing to note is that
there is currently great interest in the problem of photo-
detachment stabilisation. The central role of the shape of
the interaction potential in the stabilisation effect is seen
from calculations [67] for various parameters of the long-
range potential. Predictions for short-range potentials are
contradictory. In a zero-range potential, no stabilisation
has been found [17, 20] while it has been found in a finite-
range square well [29]. Clearly, further theoretical work will
be needed to make reliable predictions, with the specific
negative ion structure taken into account. We should also
note that a negative ion is a very promising target
experimentally, both because of the relatively low affinity
of the attached electron and because bound electronic states
are few.

Finally, associated with the existence or absence of
stabilisation is the question of the limiting value of the
AC-Stark level shift. This is, in other words, the question of
the possibility of a so-called Stark atom [1, 93—95], when
the quantum ‘atom + field’ system is in a state such that the
electron binding energy is much larger than the ionisation
potential of the initial atom. The problem of limiting
energies of the Stark atom is one of the fundamental
questions which still remain to be answered with regard
to the atom—field interaction.

As for the questions which, although of relevance to the
theme, have been left out of this review, the stabilisation of
molecules is the most important one. As usual, however, the
range of possibilities is much wider in molecules than in
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atoms. The reasons for this are familiar: the more complex
spectrum of bound states and the possibility of molecular
dissociation. By and large, stabilisation in molecules is a
separate and intriguing problem.

In conclusion, atomic stabilisation is, in our opinion, the
most interesting effect among those involved in the inter-
action of intense laser radiation with atoms.
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