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Abstract. A review of modern concepts of photon noise
(PN), which is observed even in the case of an ideal laser, is
presented. Methods of transformation, squeezing, and
nondemolition observation of PN, are described. The
optical nondemolition methods seem to be very important
for the interpretation of PN. The experiments with PN
suppression by negative electron feedback are analysed in
detail within two alternative approaches, which could be
called the a priori and a posteriori concepts. According to
the first approach, PN exists in the laser beam from the
beginning, while according to the second it appears only in
the detectors. The theory based on the a priori concept
predicts the squeezing of the in-loop field—in contrast to
the a posteriori one. Several possible crucial experiments
using the nondemolition methods are discussed.

1. Introduction

An ideal laser must emit a ‘pure sinusoid’ E sin{wqt) with
constant amplitude and frequency. However, when the
laser light is detected, one observes the photocurrent i(f) to
fluctuate: in addition to the constant component /g, it

D N Klyshko Physics Department, M V Lomonosov Moscow State
University, Vorob’evy gory, 119899 Moscow

Tel. (7-095) 939-11-04

E-mail: dnd@klyshko.phys.msu.su

A V Masalov P N Lebedev Physical Institute, Russian Academy of
Sciences, Leninskii prosp. 53, 117924 Moscow

Tel. (7-095) 132-67-60

E-mail: masalov@goma.fian.msk.su

Received 24 April 1995, revised 5 July 1995
Uspekhi Fizicheskikh Nauk 165 (11) 1249—1278 (1995)
Translated by K A Postnov; edited by J R Briggs

1229
1230
1230

contains some noise with a spectral density proportional to
I, and a wide frequency band AQ limited only by the
inertia of detector and electronics. This noise is named
photon noise, or quantum, vacuum, shot noise.

The history of PN studies goes back to the well-known
works of Einstein, in which he revived Newton’s corpus-
cular theory of light at a new level. However, despite the
long period of time that has elapsed since the discovery of
PN, up to now its interpretation has met certain difficulties.
These difficulties are partially connected with the general
problem of describing the measurement process in quantum
mechanics (see, for example, Ref. [1]). Recently, the problem
of the PN interpretation has acquired a quite unexpected
sharpness and even a certain practical significance in
connection with the experiments of Yamamoto et al. (see
below). In this connection, it appears worth discussing the
state of the problem in the light of experience gained in
quantum optics in recent years.

Getting rid of the PN, which limits the informational
capacity of optical connection systems and the accuracy of
optical measurements, remains an unsolved problem in
contemporary quantum optics. Here large hopes are being
placed on the squeezed light [2—8], in which PN decreases at
some frequencies (Fig. 1).

Technically, the simplest and clearest method for
decreasing (squeezing) the observed PN is the use of a
negative electronic feedback (FB) stabilising the light
intensity and photocurrent [9—21]. Then the alternating
component of the detector’s current after amplification
modulates the intensity of the incident laser light in the
opposite phase (Fig. 2). Such a scheme successively ‘sup-
presses’ the real modulation (determined or noise-induced)
of the incident light, as well as the detector’s shot noise and
intrinsic noise of the amplifier.

The first experiments of this type were carried out by
Yamamoto et al. in 1986 [9] and by Fofanov in 1988 [10, 11].
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Figure 1. Photocurrent noise intensity (per unit frequency band), F, as
a function of frequency, €, in the case of (a) ideal laser coherent light
(Poissonian mnoise), (b) additional noise modulation of the laser
producing super-Poissonian (‘excess’) noise, and (c) amplitude-
squeezed laser light (sub-Poissonian noise). The maximum frequency
modulation is assumed to be less than the limiting frequency of the
electronics.
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Figure 2. The scheme of the detector’s PN squeezing by a negative
feedback (FB). /] —modulator, 2—beam splitter, 3 and 3’ — detectors,
4—amplifier, 5—spectrum analyser. The noise of the external
detector 3 increases when the FB is switched-on.

The maximum suppression of the photocurrent shot noise
by this means has recently been observed by Masalov et al.
[12] (by 18 times in spectral density at frequencies near
Q/2m ~ 20 MHz). One uses two ways for controlling the
light intensity —through the excitation current of the laser
[9—11, 13] and with the help of an electro-optical modulator
[12].

However, a principal question arises as to whether the
quantum fluctuations of the light incident on the laser will
be suppressed here as well. There exist two opposite
opinions on this subject. According to the ‘optimistic’
point of view, the noise of both the current and the light
are being squeezed [6, 9, 12, 15—17], whereas according to
the ‘pessimistic’ one, only the current noise is being
squeezed [19—21]. Pessimists believe that the light remains
unsqueezed (classical) and even gains some extra fluctu-
ations due to the modulation. These fluctuations are
anticorrelated with the detector’s shot noise, which causes
the observed suppression of the latter. (In some works, only
current noise is considered and this dilemma is not
discussed at all.)

One can put forward two apparently convincing
arguments in favour of the pessimistic point of view, on
the basis of the well-known properties of optical modula-
tors and beam splitters. Note in advance that they both
failed in the framework of the theory presented in this
paper, which mainly uses the approach of Shapiro et al.
[15].

The first argument is based upon the fact that a classical
source of the field (a linear light modulator in the FB loop

would provide an example) always adds only a coherent,
classical component to the initial field. Hence by introduc-
ing the FB, the original classical light must remain classical,
unsqueezed.

Further, it was discovered experimentally that the
‘external’ light beam extracted from the FB loop by a
beam splitter not only reveals no squeezing, but even has
excessive fluctuations. This fact would appear also to prove
the correctness of the pessimists, as the beam splitter is
thought always to keep the type of the light statistics —its
squeezing or unsqueezing—unchanged, so that the ‘in-
loop”’ light incident on the beam splitter should also be
super-Poissonian, unsqueezed.

It is essential that even if the ‘in-loop’ light is actually
squeezed, the problem of its extraction for further applica-
tions remains. For this one should wuse, instead of
conventional beam splitters, rather complicated methods
of optical ‘nondemolition’ measurements of intensity (QND
methods) [1, 22—-29]. The practical realisation of such
methods of measurements [27—29], as well as observation
of the squeezing of PN in laser light (see Refs [2—8]), has
great meaning in the history of PN studies. Optical QND
methods make it possible to solve experimentally the
question about the in-loop field squeezing in the presence
of FB, so it ceases to be an academic problem.

Notice here that the schemes with FB can find another
application as well. Thus, on the basis of these schemes, a
new method for the ‘electronic’ amplification and gen-
eration of light without the use of population inversion [30]
has recently been suggested and studied experimentally. In
this method, the amplification of the original laser light
modulation in the output beam is essentially due to the FB.

The theory of optical systems with FB has been
developed in Refs [6, 9, 12—-21]. The models used can be
divided in two main groups which we refer to as a priori and
a posteriori. The first group predicts the squeezing of the in-
loop field under some conditions; the second one denies this
possibility or ignores it.

In a priori models [6, 9, 12, 13, 15—17], the PN is present
in the light field from the beginning; it formally arises
because of the use of nonnormally-ordered quantum field
correlation functions (or because of introducing Poissonian
sources of noise into the classical kinetic field equations
[17])).

In a posteriori models [19—-21], the PN arises only in the
photodetector (according to Refs [19, 21], as a result of the
quantum measurement process), so that owing to the FB the
field can acquire only excessive classical fluctuations.

In the present work we shall try to show that in order to
describe experiments with FB and with a nondemolition
measuring instrument, the a priori concept must be used.
We stress that the proposed classification makes sense for
describing only the specified group of experiments. But for
the majority of optical effects, both approaches yield the
same predictions.

Some papers have used a semiclassical description in
which the field is not quantised and only its intensity is
considered [14, 15, 17]. The photoelectron statistics have
been computed in Refs [14, 15, 21] by the theory of
stochastic ‘point’ processes with delayed self-action. This
approach is based essentially on the a posteriori concept of
PN and cannot in principle predict the in-loop field
squeezing due to FB and describe the case when the
original light has some preliminary squeezing.
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In Ref. [19], based on quantum measurement theory and
a model of a laser with power controlled by the amplified
photocurrent, the conclusion is drawn that the field emitted
by the laser with FB is classical.

In Ref. [20], classical character of the in-loop field is
justified on the basis of very general arguments about the
correspondence between classical and quantum electro-
dynamics when describing the interaction between
macroscopic objects.

Ref. [21] stresses the connection of the problem of
photodetection with FB with the theory of continuous
quantum measurements. The paper disputes the applicabil-
ity in this case of the conventional theory of photodetection
[31], which expresses the observed photocurrent statistics
through correlation functions of the incident light, since
““...Glauber’s approach is valid only for the fields whose
sources are not correlated with the detector’s atomic
states”. Note, however, that the characteristic atomic
timescales for photoionisation processes are certainly
many orders of magnitude less than the real time delay
in the FB loop, so that the correlations of the incident light
with the detector’s atomic states are hardly of importance in
the case considered. In fact, it is just Glauber’s correlations
that have been used in Ref. [21] to determine the initial
absolute probabilities for the point process, from which
conditional probabilities were derived afterwards.

A concrete calculation in Ref. [21] is made under the
assumption that the in-loop field is in a coherent state. Such
an approach excludes immediately the possibility of
considering squeezed states for the initial (before the
modulator) or in-loop (between the modulator and the
detector) field and makes the subsequent theory essentially
classical.

However, some models [6, 9, 12, 15—17], which are
based upon the a priori concept for PN, lead to the squeezed
in-loop field. The degree of suppression of the in-loop field
PN predicted in Ref. [21] and Ref. [17] is the same.

In Ref. [12], the degree of the in-loop field squeezing is
calculated and its unusual properties are emphasised (see
Section 3.5).

In Ref. [15], Heisenberg operators of the in-loop field
depend on the previous photocurrent values, which leads to
a self-consistent change of these operators and accordingly
of their commutators. This paper also uses the semiclassical
model as well; it is found that in the case of coherent initial
light, the two models yield the same predictions for the
current fluctuations observed with the use of two conven-
tional detectors—an in-loop detector and an external
detector.

In Ref. [17], the laser and the FB loop are described by
kinetic equations with Langevin forces. Here an a priori
‘corpuscular’ concept is actually used: the light is repre-
sented by a photon flux with originally Poissonian
fluctuations which are suppressed by the FB under some
conditions. The in-loop light passing through the beam
splitter may consist of a sub-Poissonian photon flux, and
the fraction of the beam reflected by the beam splitter is
always super-Poissonian. The reason for such strange
behaviour of the beam splitter is not discussed.

Let us enumerate some unexpected, paradoxical features
of the quantum a priori theory of the optical systems with
FB. Unfortunately, they have almost never been discussed
in the literature, which stimulated to a large extent the
writing of the present review.

1. The relative value of the detector’s current fluctu-
ations F; at some frequencies can be made arbitrarily small,
whereas according to the conventional theory of the
squeezed light photodetection, F; reaches a minimum value
1 —n, where # is the detector’s quantum efficiency. This
limit was significantly surpassed in the experiments [12].

2. Further, F; turns out to be less than the calculated
relative PN of the incident light Fyy [12]—again contrary to
the generally accepted concept. Moreover, when the in-loop
light passes through the beam splitter or an absorber, its
relative noise decrease and the light can even turn from
classical to nonclassical (this effect may be called ‘dis-
sipative squeezing’).

3. The amplified, clearly classical signal w(¢) controlling
the modulator is taken to be proportional to the Heisenberg
field operator [15]. It thus ‘realises’ the quantum stochastic
process that appears due to quantum fluctuations of the
field.

4. Operators of the in-loop field propagating from the
modulator to the detector do not satisfy the standard
commutation relations: [a,a*] is not now 1. As a result,
there is a break down of the uncertainty relation for the
variance of two field quadratures ¢, p describing respec-
tively the amplitude and phase noise modulation: one of
them is squeezed without the corresponding stretching of
the other [15] [a = (¢ +ip)/V/2 is the photon annihilation
operator]. Light with such unusual properties may be called
‘supersqueezed’; another name —anticorrelated light — was
suggested in Ref. [12].

The above points mean that the optical experiments
with FB and their analysis appears to be of a certain
methodical interest not only for quantum optics, but also in
a broader sense, for example, for deeper understanding of
the essence of quantum fluctuations in general, for the
quantum theory of measurements, etc.

The purpose of the present work is to provide a general
concept of PN and of the methods for its calculation,
transformation, and squeezing. We use a conceptually
simple and natural description that permits parallel con-
sideration of both essentially quantum and pure classical
features of the phenomena under discussion.

Different types of squeezed light and methods for its
preparation are described in detail in the review literature
[2—8], so that the present review focuses on the description
of only one type —amplitude-squeezed laser light (under the
conditions considered it coincides with quadrature-squeezed
light) and on its preparation by a parametric down-
conversion (Section 2).

A lot of attention will be given to PN suppression in the
scheme with FB (Section 3). This is connected with the fact
that here a purely methodical question about the essence of
PN relates directly to an important practical problem — the
strong possibility of light squeezing by FB. As we have
already pointed out, there are two opposite opinions on this
subject in the literature. In the present work an attempt is
made to justify the possibility of the in-loop field squeezing
on the grounds ofthe existence of nondemolition methods for
PN registration. For comparison, an alternative ‘a posteriori’
quantum model which does not produce the field squeezing
is also considered. The ultimate choice between the different
approaches can obviously be made only after the corre-
sponding crucial experiments have been performed.

Much attention will have to be paid to the semiclassical
calculations and their comparison with more consecutive
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quantum computations. As the semiclassical approach is
clearly inadequate to describe the observed effects in
modern quantum optics, we shall not dwell on it here.
Instead, a ‘classical analogue’ will be considered —a fully
classical visual model that follows from the quantum model
at the limiting values of some parameters.

The presentation begins with an elementary discussion
of the existing interpretations of PN, its general properties,
and new methods for its experimental detection. Several
‘crucial’ experiments demonstrating the necessity of the a
priori description of PN in some cases are also suggested
(Section 2.1). In Section 2.2 the photodetection theory is
briefly presented with the accent on the methodical
moments. In Section 2.3 the notions of weakly modulated
coherent light and quadrature signals ¢ and p describing,
respectively, the amplitude (AM) and phase (PM) modula-
tion of the coherent light are introduced. Section 2.4
provides description for the transformation of the PN
and modulated coherent fields by beam splitters and
homodyne detectors. Section 2.5 is devoted to parametric
down-conversions and an important concept in modern
quantum optics—quadrature-squeezed light and its close
classical analogue, classical squeezed light. Here a simple
example illustrates the idea of quantum nondemolition
measurements.

In Section 3.1, the dynamics of the optical system with
FB as in Fig. 2 (in spectral representation) is computed in
the linear approximation. As in other linear problems of
quantum optics, it is essentially the same in the quantum
and the classical description. In Section 3.2 the classical
Green function for the system and the associated com-
mutation relations which appear during the transition to
quantum theory are considered. Fluctuations at different
points of the system are calculated in Section 3.3. The
possibility of watching the in-loop field by nondemolition
methods is justified in Section 3.4. In Section 3.5 the
formalism used and the paradoxes listed above are
discussed. An alternative theory considered in Section
3.6 comes from the a posteriori concept of the PN and
hence does not give squeezing of the in-loop field. Finally,
in Section 3.7 a simple corpuscular model of the system with
FB that permits one to understand some of its features is
analysed. The uncertainty relations and Cauchy—Schwartz
inequalities for the field spectral densities are derived in the
Appendix.

2. General description of PN

2.1 Properties and different interpretations of PN
Several interpretations are known for the observed shot
noise of a photodetector illuminated by an ideal laser beam.
1. In the framework of the semiclassical theory, the
electromagnetic field is considered as classical and the
matter is assumed to obey quantum laws. The photo-
electrons are then believed to emerge randomly in the
detector with a probability proportional to the field
intensity. An ideal laser field has a constant intensity
proportional to EZ, so that all moments of time are
equivalent (after averaging over the optical period
2n/wy ~ 107" s has been performed). As a result, the
instants of the photoelectron appearances makes up a
Poisson random process, which leads to the observed
photocurrent fluctuations. Of the same character are the
fluctuations of the current that passes through a vacuum

diode in the saturation regime and which are described by
the Schottky formula. (We remind the reader that the
conventional sources of current, for example the inductive
electromotive force, produce no Poisson fluctuations.)
Therefore the semiclassical model can be called a poster-
iori, as here the PN appears only as a result of the detection
process.

The PN is often associated with the fact of the electric
charge discreteness. Notice that a strictly periodic regular
sequence of pulses contains no noise, its spectrum consists
of the harmonics of the pulse timing frequency N,.
Therefore, in order to explain the PN, in addition to the
charge discreteness one should also assume a random
character of free electrons birth moments under the action
of light of constant intensity.

It is important that the light can, in principle, be
detected by a pure analogue device, for example a micro-
calorimeter. Then according to the postulates of quantum
theory (see below), the calorimeter’s energy must increase
only by a discrete multiple of fw,, with the moment of the
subsequent energy transfer being random every time. The
analogue photodetectors must thus also reveal the PN,
which contradicts the assumption about its association with
the charge discreteness.

2. According to another widespread concept, lasers as
well as all other light emitters radiate a random sequence of
energy packets—photons—and an ideal detector simply
converts them into the observed pulses of current with the
original chaotic character of the photon time distribution.
In this visual ‘a priori’ picture, the PN is originally present
in the radiation field due to its corpuscular structure, so that
discrete and analogue detectors get equal rights. Here,
however, well-known difficulties emerge connected with
the explanation of wave phenomena depending on the
phase of the field —interference and, diffraction.

3. In the framework of quantum theory, the electro-
magnetic field is a quantum object, whereas the
photodetector together with electronic amplifiers is con-
sidered as a classical device. The mostly widespread —
Copenhagen— interpretation usually assumes that PN is the
appearance of the quantum fluctuations arising during the
observation of the field energy by macroscopic detectors.
What has taken place before the observation is usually not
well known: even in the best case one may only find the
state-vector for the field [y).

One of the most important achievements in quantum
optics is the conclusion that the field of an ideal laser is
described to a good approximation by a coherent state
|¥) = |Ey). Then according to the quantum formalism, the
measured field energy, and correspondingly the number of
photons (i.e. energy divided by 7iw,), has no definite values,
but fluctuate in accordance with the Poisson distribution. In
the case of other field states, the character of the energy
fluctuations may be non-Poissonian.

The observed quantum fluctuations of the energy
(number of photons) can be absent only in the case that
|¢) is an eigenvector of the energy operator. The practical
preparation of such states with a given photon number
represents one of unsolved problems in quantum optics.
The light in this state can be visualised by a regular flux of
equally distant particles (an effect of the ideal photon
antibunching).

Which of the three basic pictures described above is the
‘most correct’? What ‘actually’ is PN ? In the framework of
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the Copenhagen interpretation of the quantum formalism,
this question makes no sense as quantum theory predicts
only the statistics of counts in macroscopic devices—
photodetectors in the given case—and the statistics cannot
be used for recovering all properties of the incident light.
Thus in the framework of the modern quantum theory of
light, the statement that ‘light consists of photons’ can be
neither confirmed nor discarded (the photon notion in
modern quantum optics is discussed in Ref. [32] in more
detail). As a result, different interpretations (unlike different
concepts) should be evaluated not from the point of view of
their ‘correctness’ but only by consideration of their
convenience for the qualitative description of some class
of experiments.

For example, although according to postulates of
quantum theory of measurement PN appears only during
the process of detection, it is convenient, nevertheless, to
assume that PN has an a priori character, i.e. that the
quantum fluctuations are present in the free radiation field
before the detector. These are referred to as ‘quantum’,
‘zero-point’, or ‘vacuum’ fluctuations of the field which are
added to a laser or some other ‘real’ field. In what follows
we shall try to show that such an interpretation describes
more adequately the PN in the presence of a feedback, i.e.
in that case it acquires the status of a concept.

The a priori PN formally appears when one uses
nonordered products of field operators for describing the
statistics of the observed macroscopic effects (see Sections
2.2 and 2.3). Then the noncommutativity of these operators
is significant: aa™ —a*a =[a,a™] = 1. Here a and o' are
the operators of photon annihilation and creation in one
mode of the field—a plane monochromatic wave with a
certain polarisation. Operators like ata or a*ataa, in which
the annihilation operators act first on state-vectors |§) to
the right of them, so that vacuum averages of such
operators vanish, are called ordered.

Let us consider how PN appears directly in experiments.

Let the intensity of the incident stationary light on the
detector be sufficiently small, then at the detector’s output
one will observe separate pulses of current (Fig. 3). We shall
measure the number of such pulses appeared in a fixed time
interval 7 much longer than the coherence time of the light
(this condition makes the consecutive observations statis-
tically independent). In the repeated tests, the number of
photons observed in such a way ny will fluctuate. Modern
photon counters have a high efficiency (7~ 1) and allow
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Figure 3. Discrete and analogue detection. The superposition I, of
pulses with the form f,-(t)=cxp[—(t—t,-)2/1:2], where 7=0.01 s.
Moments of time #; are randomly distributed in the shown time
interval, the duration of which is taken to be 1 s. In the upper plot
Ip =10 s7", i.e. Ip; = 0.1; in the lower, I, = 1000 s, i.e. Io, = 10.

measurement of the statistics of the random number ny
reliably enough to find the distribution p(ny) and moments
of the distribution (n%). According to quantum theory,
these statistics fully determine the field state.

As was already noted, the field of an ideal laser is
well represented by a coherent state, |¢) = |Ey). In such a
state the number of pulses ny obeys the Poisson distribution
and correspondingly has a variance equal to the mean
number of pulses (ny): (An)=(n?) — (n;)* = (ny). The
‘Poissonian’ character of the photocurrent in the case of
laser light and, in particular, the formula (An7) = (ny), is
confirmed with a high degree of accuracy in the experi-
ments.

Notice that in theoretical formulas the angle brackets
mean the operation of quantum averaging over the field
state |[Y): (...) = (Y|...|¢¥); these quantum averages are
assumed to be coincident with the results of stationary
experiments averaged over time.

Nonlaser beams usually display additional, super-Pois-
sonian fluctuations of the number n;, allowing one to speak
of photon bunching. In particular, in the case of thermal
single-mode light, Einstein’s formula (An}) = (ny) 4 (ny)?
is valid and the Brown-Twiss effect connected with it
occurs. In the case of thermal sources, the excess noise (n,~)2
can be visually explained by the interference of wave
packets—photons emitted by individual atoms of the
source. Since the phases of the waves in these packets
are randomly changed, the amplitude of the resultant field
strongly fluctuates.

One of the most important achievements in quantum
optics is the introduction of the concept of light with
photon anti-bunching, which yields during detection a
variance (An7) less than (n;), and the development of
the principles of its generation. Such light cannot be
described by semi-classical theory, in the framework of
which there is obviously no field that produces during the
detection noise less than the wave of constant amplitude E,
(the in-loop field in a system with negative FB is an
exception discussed below).

If the intensity is sufficiently high, individual pulses of
photocurrent overlap (see Fig. 3). Then it is convenient to
go over from the discrete observable value ny to a
continuous analogue random value i(t) =ny/T, ie. to
the photocurrent (divided by the electron charge e; for
simplicity we put e = 1). For stationary sources the value
(iy = {ny)/T =1, does not depend on time; it has the
meaning of light intensity in units of photons s™' (mean
photon flux) multiplied by the detector’s quantum efficiency
n. The condition of strong pulse overlap obviously has the
form Iyt > 1, where 7~ 2n/AQ is the pulse duration and
AQ is the frequency band of the detector and electronics.
Then the statistics of photocurrent fluctuations will
approach Gaussian form. An important characteristic of
the current fluctuations is their spectral density (i*(Q)) at
different frequencies.

Thus, depending on the type of detector used — discrete
or analogue—there are two main types of PN observa-
tional appearance: fluctuations (An}) of the discrete
number of photocounts ny over a sampling time 7, and
fluctuations of the current i(f) at some frequency @ with
spectral density (i*(Q)). Correspondingly, two types of
nonclassical light are distinguished: with photon antibunch-
ing and with sub-Poissonian (subshot) noise. Below we shall
discuss only the latter case.
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Let us present some qualitative relations. In the case of
an ideal laser beam, the spectral density of the photocurrent
is constant within the bandwidth of the detector and
electronics AQ; as will be shown in the next section, it is
determined by the well-known Schottky formula:

Here Q# 0 and the integration over both negative and
positive circular frequencies is assumed. If one goes over to
positively determined conventional frequencies f= Q/21>0,
a factor of 2/2m is included ((i*(f)) =1I,/m). This level of
fluctuations is called the standard quantum limit (SQL).
We shall relate the term PN just to that Poissonian part of
the noise.

Let us estimate the value of PN. The current fluctu-
ations variance is (Ai?) = I,AQ/m, where AQ is the effective
electronics bandwidth. The standard deviation (‘uncer-
tainty’ of the current) is equal to the square root of the
variance, Ai :(IOAQ/n)]/z. The relative value of the PN is
characterised by the relation

5 Ai_ (a0\”
_10_ TCIO '

Let the power of the laser with wavelength 0.5 um be
1 mW. With # = 1 the mean fluxes of electrons and photons
will be the same: Io = Ny = 2.5 X 10'% s~ (in conventional
units, the current is eNy~ 0.4 mA). Hence at
AQ/21=10° Hz we get d = 107>, i.e. the uncertainty in
intensity and photocurrent is about +0.1%.

Notice that the condition of the strong overlapping of
the photocurrent pulses 7, > 1/t = AQ/2xn, which allows
the transition to the analogue description, automatically
ensures that the relative fluctuations are small as well,
8> < 1. Let Q < AQ be the frequency at which the spectral
density of the photocurrent is measured, then 7,7> 1

@2.1.1)
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Figure 4. A visual representation of the PN of a coherent field with an
amplitude E, as a stochastic amplitude modulation with a standard
deviation AE =./AQ/4n. In contrast to the ‘real’ stochastic
modulation (excess noise), the ‘vacuum’ modulation spectrum is
unlimited, so the recording equipment bandwidth AQ should be taken
into account in advance. The field is normalised so that |E0|2 is equal
to the mean power of the light beam divided by hw,, i.c. to the mean
photon flux. The upper figure shows the dependence of the field
strength on time and the corresponding polar diagram (to the right).
The ‘envelope’ of the field is shown in the lower figure. In the case of
squeezed light, an excess noise modulation is added which is
anticorrelated with the vacuum modulation, therefore AE decreases.

implies also [4Tq > 1, where Tg =2mn/Q is the period of
oscillations with frequency €. Therefore, the analogue
description of the photocurrent in terms of spectral density
suggests a lot of pulses of the current to occur over the
oscillation period Tg.

The current fluctuations Ai = ((Aiz))m, in accordance
with the a priori concept, can be visualised as a result of
slow fluctuations of the beam power fiwyN and correspond-
ingly, of the field amplitude AE (Fig. 4). We draw attention
to the difference of the picture shown in Fig. 4 from the
naive picture of a random sequence of photon-beams.

We stress that the obvious a priori representation of the
PN in Fig. 4 as a noise AM-modulation of the coherent
field is not universal. For example, it is of little use for
describing experiments with discrete detection when 6 > 1
and the photocurrent statistics n; is measured over a fixed
sample interval 7. As we already noted, the numbers n; are
distributed according to a Poissonian law which is hard to
represent by the stochastic amplitude modulation of a
monochromatic field. This is an example, characteristic
for quantum models, of the dependence of visual a priori
concepts on type of the measurement device used. Such a
dependence follows from the Copenhagen treatment of
quantum mechanics. Other examples of the inadequacy
of Fig. 4 are given in the discussion to Fig. 5.

Let us find AE from the Schottky formula for power
fluctuations AN = (NoAQ/m)"?. Let E(f) = (Ey + AE)x
cos(wyt); then, because of the equal contribution of the
magnetic field, the beam power divided by fiw, takes  the
form N = cA(E§ + 2E,AE)/8nhiw,, where A is the beam
cross-section. After renormalising the field strength
E — E(8nhw,/cA)'?, we get N =E+2E,AE. Now E
has the dimension s~'/? and the field amplitude uncertainty
has the form

12
ap =2 _ (A—Q> .

=3~ 2.1.3)

The relative fluctuations of the field amplitude (the
modulation depth) is half the relative power amplitude
fluctuations &

1/2
A—E:é: (A—Q> . (2.1.4)
E, 2 4rl,

Thus, the depth of the vacuum modulation depends on the
bandwidth of the measurement equipment and on the light
intensity, i.e. it must increase as part of the light flux is
absorbed.

As is clear from the polar diagram in Fig. 4, in addition
to the amplitude fluctuations, vacuum phase fluctuations
are also present (in Fig. 4, fluctuations of the period length
AT = A¢/w, should correspond to them, which is hard to
represent on the chosen scales)

1/2
:é_f:(m) _9 2.1.5)

A
d) 4nN 0

2

For the parameters chosen above, we have A¢p = £5 x 1074
rad.

Hence, the product of uncertainties of the photon flux
and the phase is equal to the effective bandwidth of the
electronics expressed in Hertz:

ANAG =29

— 2.1.6)
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The ratio of N to the bandwidth in Hertz is just the number
of photons in one longitudinal mode n (so far only one
transverse mode has been assumed, i.e. a beam narrower
than the coherence radius). As the result, Eqn (2.1.6) takes
the usual form AnA¢ = 1.

In the case of the amplitude-squeezed light, the ‘circle of
uncertainty’ in Fig. 4 is transformed into an ellipse and AN
decreases with respect to the standard quantum limit
(NOAQ/n)]/2 as A¢ increases correspondingly.

Usually, a relative quantity is measured —the Fano
factor for the spectral density of the photocurrent F(Q) =
(i*(Q))/Io, which must be unity for an ideal laser, F(Q) = 1
(at Q < AQ). Noncoherent (or noise-modulated coherent)
sources of light produce, apart from PN, excess noise as
well, with F(Q) > 1 (see Fig. 1) and the photocurrent (and
light) is called super-Poissonian. Sub-Poissonian, or
squeezed, light yields F(2) <1 in some frequency band
during the detection; it is then called nonclassical.

Consider now several possible experimental schemes
illustrating the properties of PN and possibilities for its
suppression by FB (Fig. 5).

The scheme in Fig. 5a reveals the independence of the
relation (i*(Q)) =1, on the light intensity which can be
decreased by absorption. This means that (in the absence
of FB) the depth of the hypothetical ‘vacuum’ noise
modulation AE/Ey = 1/+/I; [see Eqn (2.1.4) and Fig. 4],

A D SA
b
E =
> =
|0 BS >=\'>
D K
) D=1
|0>_, >:> =
P D K ]
7y -
|0>—) 4,Di} P
P D .
M P
oy L

Figure 5. Schematic diagram of experiments for investigating PN
suppression. |E) is a coherent state of the incident field (at the first
input of the system), |0) is a vacuum state (at the second input), A is
the absorber, D are detectors, SA is the spectrum analyser, BS is the
beam splitter, K is the correlometer, P is the nondemolition parametric
transformer, M is the modulator.

unlike the usual modulation, increases as a result of the
absorption.

In Fig. 5b the initial light beam is split into two parts by
a partially transparent mirror and intensity correlations in
the two output beams are observed by means of two
detectors. This device is called a Brown-—Twiss correl-
ometer. Such correlometers detect only excess, classical
modulations, so the coherent state produces no correla-
tion—again in contradiction to the obvious ‘a priori’
picture in Fig. 4. In photon language, the absence of the
Brown —Twiss effect in the case of laser light is clearly
explained by the chaotic distribution of the original
Poissonian photon flux at the beam splitter. The two
output beams then show independent Poissonian fluctu-
ations.

However, if one uses, instead of the partially transparent
mirror, a parametric ‘nondemolition beam splitter’ (Fig. 5¢)
described below in Section 2.5, then the correlation will
be observed even in the case of laser light. This statement
follows from the experiments described in Refs [27, 29] and
is confirmed by calculations [see Eqn (2.5.14)]. It is of great
importance for the PN theory and evidence that the
currents in both detectors from Fig. 5¢ preserve informa-
tion about the PN in the original light beam — contrary to
the a posteriori concept! One may say that the ‘non-
demolition beam splitter’ enables one to control
individual occurrences of PN, to prepare its (enhanced)
light and electronic replicas.

[t is natural now to assume that if one feeds an amplified
signal from one of the detectors not into the correlator, but
into the modulator mounted before the second detector
(Fig. 5d), one can suppress the PN of the latter, i.e. prepare
the squeezed light.

But on the other hand, it can be shown that the
modulator controlled by a classical macroscopic signal,
cannot transform classical (unsqueezed) light into non-
classical light. The paradox is solved by assuming that
the controlling signal of the modulator cannot be con-
sidered as classical in this case (Section 3.5). The
experimental confirmation of such effects would clearly
be important.

A natural modification of the scheme (Fig. 5d) is the
interchanging of the position of the modulator and the
‘nondemolition beam splitter’ (Fig. Se). This scheme will be
examined in detail in Section 3.4. Notice that the scheme in
Fig. Se differs from that in Fig. 2 only in replacing a
conventional beam splitter by a ‘nondemolition’ one.

2.2 Light intensity and photocurrent fluctuations

For a quantitative description of fluctuations in time, one
needs to take into account a set of longitudinal modes
(frequency components). A light beam with one transverse
mode is described in some cross-section by a positive-

frequency function of the following form:

A(t) = (2m)” '/ Jw do exp(—iwt)a(w) . .2.1)

0
Here a(w) is the photon annihilation operator in a
longitudinal mode with frequency w. The total field has
the form E(1)=A(t) +AT(t). We are interested in a
quasimonochromatic optical field with a central frequency
wy of order 10'* Hz and a bandwidth AQ limited by the
response of the electronics to values not exceeding 10° Hz,
and thus in Eqn (2.2.1) we omitted the integrand factor



1210

D N Klyshko, A V Masalov

Jo. With the normalisation chosen, the operator
N(t1) =AT(t)A(¢) is the operator of energy flux (power
or intensity) divided by hiw, (i.e. the flux measured in units
of photon sfl). The field in an arbitrary cross-section of the
beam is found from Eqn (2.2.1) simply by considering the
delay: t =t — .

To describe the field dynamics, we shall use the
Heisenberg representation, so that our formulas conserve
the form when going over to the classical description (here
the symbol for Hermitian conjugation ‘4’ should be read as
that of complex conjugation “¢’). Quantum specifics appear
only in the noncommutativity of the operators A, A" and,
at the last stages of calculations, in the averaging procedure.
In the quantum version, the latter is being made over the
initial state of the field |¥) at the optical system input. In
classical optics, the function A(¢) is called the analytical
signal and the averaging is performed with the help of some
distribution function describing the incident field statistics.

In order to determine the main features of the photo-
detection theory, we neglect the difference of the detector’s
quantum efficiency # from 1 and its response (AQ = 0).
We shall assume that the detector’s surface is less than the
field coherency area. Let us fix some time interval [0, 7) and
assume initially that a certain number of pulses n = n; arose
in this interval at some instants ¢;,, 0<t; <T, i=1,...,n
(we consider n and {t;} as independent random values).
Under this condition, the photocurrent observed at some
instant ¢ is represented by the sum of n pulses:

() =300 —1)

As wusually in physics, expressions with generalised
functions like 6(r) make sense only when integrated with
some weight function—in the given case, with the
electronics transmission function k(z).

Formula (2.2.2) determines the observed quantity (c-
number) through the set {f;}. The quantum model for the
detector’s atom photoionisation can be used to express the
statistics for this set through a set of normally-ordered
correlation functions of the free field [31]:

<A+IA(t>E<Nt>EGI 1, 223)
(ATOATENAMAQ) = CNON():) = Galt 1),

and so on. Here A(¢) are Heisenberg operators of the field
at the detector’s surface (¢-numbers) which are connected
with the field operators at the input of the optical system
by classical (phenomenological) Green functions [33]; the
colon denotes the operation of the normal ordering. The
averaging is taken over some initial state of the field
defined by the properties of the light source. Thus, some
products of the operators turn out to be observable. As a
result, a link ¢ — ¢ between ¢- and c¢numbers is
established —a necessary element in any quantum model
describing experiment. Then one can use the well-developed
theory of random point systems.

Formally similar relations between a stochastic field and
the photocurrent are postulated in the semiclassical theory
of photodetection as well.

An important point here is the assumption used in
Eqn (2.2.2) of the discrete character of the information
transfer ¢ — ¢ which causes the shot (Poissonian) noise of
the photocurrent in the case of a coherent state of the field.
This is visualised by a fully random photon distribution in

(2.2.2)

time. There are no photons in the semiclassical theory, and
this is the ‘discretisation’, justified by the charge discrete-
ness that yields the shot noise, and the field intensity
fluctuations can only increase current fluctuations and
produce an ‘excess’ noise (in the absence of FB). At the
same time, in quantum theory field states are possible in
which the excess noise provides a negative contribution and
compensates Poissonian fluctuations. Visually, this corre-
sponds to a temporally regular photon distribution
(antibunching of photons).

Notice that our description may be applied to other
types of photodetectors as well; for example, to those based
on the thermal action of light. Then Eqn (2.2.2) determines
(in units of fiwy) the power and energy transmitted. Hence it
is clear that in quantum theory, charge discreteness has no
significant bearing on the appearance of shot noise; the
noise formally arises as a result of postulating the
discreteness of the relation ¢ — c.

From Eqn (2.2.2) we find the current correlation
function

i, ()i, (1) = ZZé(t—t 8(t—t;+1)

= 6(7) Zé(t—t +Z(5 r—1)

i#]

The diagonal part of the double sum separated in the latter
equality and depending on the current pulse autoconvolu-
tion yields the ‘white’ noise caused by the process
discreteness. The nondiagonal part describes changes
connected with a possible regularity in the instants {z;}
(‘bunching’ or ‘anti-bunching’ of points ¢,).

The horizontal line in Eqn (2.2.4) means classical
averaging over the time distribution {#;}

= anstm ).

o(t—t;+1). (2.24)

- (2.2.5)
o) = ijmm”»uwy

Here wy(t1,...,1;) are the distribution densities determining
the probabilities for the £ points to be inside small intervals
near the moments of time ¢,...,#;,. Here the appearance of
other points in the interval considered is not excluded, i.e.
the condition k=mn is not required. Obviously,
wi(ty,...,t,) =0 at k>n. In a more general case,
conditional distributions wy(f1,...,f;|n) at k=n are
introduced (see Ref. [21]).

According to Ref. [31], w, are proportional to the
normally ordered correlation functions G, defined in
Eqn (2.2.3) (the field is considered to be stationary):

W](t):g—:’ 402(t_t)

G Y e
Here C; are normalisation coefficients. Assuming in
Eqn (2.2.5) that f=1 at T > ton, T > 1/G (here 1, is
the timescale on which G,(t) differs from G,(o0) = G}
significantly), we find

wo(t, t') = (2.2.6)

T
C]:J dfG]:TG|:<n),
0

T T
= [ aar G- oy =6 2
0

0
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Thus, when i # j,

ot —1,)0(t —t; +1)

e JT JT dt;dty Gt — 18t — 1)5(t — 1+ 7) = 224D
0 Jo ' (n)
(2.2.8)
so that Eqn (2.2.4) takes the form
——F—— _0(1)Gin  Gy(t)n(n—1)
i ()i, (t + 1) = ) e . (2.2.9)

Now we average Eqn (2.2.9) over n with T — oc.
Assuming (n?) =~ (n)* > (n), we get

0t +7) = G,0(c) + Ga(7)

= (N)o(z) + CN(t)N(t +1):) . (2.2.10)
Thus, the classical correlation function for the current and
quantum normally ordered intensity correlation function
for the field differ from each other only by the term G,;4(t)
describing the ‘white’ shot noise.

Making use of the permutation relation [A (¢),AT(¢')] =
=6(t —t') [which follows from Eqn (2.2.1)], one can
represent Eqn (2.2.10) in the form

i(0)i(t+1) = Gy(r) = (AT(MA (AT (1 +1)A (1 + 1))
= (N()N(t+1)) . (2.2.11)

In the case of an ideal laser beam described by a
coherent state | |[Eg) there are no excess fluctuations
(G, = (N)> =77), so that the PN is found from

@it +1) -7 = (N)(x) = (M[A(@),A*(t +7)].
(2.2.11a)

Here the relation between the PN and noncommutativity of
the field operators is explicitly seen.

Thus, in the case of an ideal detector the classical
current correlation function (measured when averaging
over time) repeats, according to Eqn (2.2.11), the quantum
intensity correlation function of the field G5. The computa-
tions made above enabled us to reveal connections between
the noncommutativity of the field operators, the discrete
character of the information transfer ¢ — ¢, and the
observed shot (photon) noise.

We emphasise an important difference in the physical
meaning of two terms in Eqn (2.2.10) describing the PN and
excess noise: while G;0(t) has zero correlation time, the
characteristic scale 7.5, of the change G,(tr) (time of
correlation or of the second-order coherence) is finite
and depends on the properties of the light source. In the
case of sources of squeezed light, the contribution of the
second term to the spectral density can be negative so that
the PN is compensated, but only in a limited frequency
interval of order 1/7,. Here one can assume that the shot
and excess stochastic signals are anticorrelated (have
opposite signs). This obvious picture of the PN squeezing
‘mechanism’ applies when a negative FB is used (Section 3).

Quantum efficiencies different from unity of the detector
without FB are taken into account simply by the substitu-

tion A — A,/ff into the normally ordered expressions [33]:
i(D)i(t +1) =1G,8(x) + Gy (1) = 1y6(7) +7°Ga(7),
(2.2.12)

(here Iy = i). Fourier transformation of this expression
with account taken of the transmission function of the
electronics k(Q) yields the spectral density of the current
fluctuations at frequency €:

7@ = k@ J dr exp (iQ0) (i(1)i(t + 1))

2
= k(@] [lo +7°G2(Q)] - (2.2.13)
Here G,(Q) is the spectrum of light intensity fluctuations.
From here at k = 1 we get the relation between the Fano
factors for the current and light:

Fi(Q)—1=n[Fy(Q) —1] . (22.14)

On the basis of Eqns (2.2.13) and Eqn (2.2.14), the
measured photocurrent fluctuations are usually used for
obtaining information about intensity fluctuations of the
light and its super- or sub-Poissonian character.

The FB violates the relations obtained. In ‘semiclassical’
theory this is explained by the dependence of the probability
of the appearance of a successive point 7, on the preceding
events {t;}, t; < t, — 1, where t is the delay in the FB loop
[14, 15, 21]. An account of FB in quantum theory will be
given in Section 3.

In the following sections classical (experimental) and
quantum averaging will be denoted by the unique symbol

(..

2.3 Coherent light with weak modulation

Let one mode with a frequency w, be in a coherent state
with a large amplitude E: |{/), = |E),, and other modes be
in arbitrary states. Then the positive-frequency part of the
field can be represented as

E(t) = E exp(—iwgt) +A(t) . @23.1)

Now, the operator A(r) and its Fourier image A(w)
describe all other modes which are assumed to be weakly
excited in comparison with the central mode (symbolically,
A(t) K E). Here it is convenient to consider the ‘weak’ field
A(t) as modulating and the component Eexp(—iwyt) as a
carrier (of course, such a point of view makes sense only at
AQ <€ wy). The fixed complex amplitude E can be
considered as a c-number.

In order to distinguish the signals of the amplitude
(AM) and phase (PM) modulation, we introduce ‘slow’
(radiofrequency) Hermitian operators Q(¢) and P(¢) (they
are called the first and second field quadrature):

01, 9) _ A1) exp(iont — i) +\/A§+(t) exp(—iwot + i) ’
_A(r) exp(iwgr — i) — A (1) exp(—iwot + i)
ivV2
= Q(t,cb +g) L (32)

P(t,6) =

Here ¢ is an arbitrary phase in general, but when
describing the coherent field modulation with an ampli-
tude E, one should assume ¢ = arg(E), then Q(t,¢) and
P(t,¢) are proportional to the AM and PN signals,
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Figure 6. A monochromatic field with amplitude E and a weak field
A(r) can be represented as a modulated field. The projections Q(¢)
and P(¢) describe the AM and PM, respectively (¢ is the
monochromatic field phase).

respectively (see Fig. 6). Inverse transformations have the
form

_ [0(t) + iP(t)] exp(—iwgt + i¢h)

A(t) Ve >
At = [20) = iP(t)];;p(iwot —i9) 033)

Thus, in classical theory Q(¢) and P(t) are the real and
imaginary parts of a ‘slow’ complex amplitude
A(t) exp(iwgt) (which is ‘almost’ stationary in a coordinate
frame rotating with the frequency wg); in quantum theory,
the attributes real and imaginary should be replaced by
Hermitian and anti-Hermitian, respectively. The total field
has the form

E(1) +ET(t) = [[E| + V2 0(t) +iV2 P()] exp (it + i)
+[IE| + V2 0(t) —iV2 P(1)] exp(imgt —i¢p) . (2.3.3a)
[t is also convenient to determine projections of the
signal Q(t, ¢) (which is a vector on the complex plane) on

some basic axes (see Fig.6): 0(¢,0) = Q(¢), P(t,0) = P(¢).
Then

0(t,¢) = Q(t)cos ¢ + P(t)sin p ,

(2.3.4)
P(t,) = —Q(t)sin ¢ + P(r) cos ¢ .

Nonzero commutators of the field operators are written
as

[A@),AT()] =6(r—1"), [Q@),P(t")] =i6(—1'),
[0(1,9),0(t", "] =isin(d' — $)o(—1") . (235

Now we go over to the spectral representation. We
denote

(@) = a(wy + Q) = (2m) 2 j drexp [i(wy + Q]A (1) .

" . (2.3.6)
4(@,¢) = (2m) ™ j dr exp(iQ)Q(1, ).

(here |Q| < wy and the case Q =0 is excluded), then
Q(Qa ¢) = L/+(—Q, ¢)
_ a(@) exp(=ig) + a” (=2) exp(i¢)
a V2
— 4(@)cosp +p(@)sin g,

PARCLE S R E )
o(@) = 1) +p(2, ) exp(i¢)

\/5 5
at(Q) = 7 . 23.7)

Expression (2.3.5) then yields
[1(@,9), 4(@",6")] =isin(¢' — §) 3@ +2") .
[4(2), 4(2")] = [p(@), p(")] =0,
(@), p@"] =is@+" .
[1(@), p*(@)] =is@-2").
[a(Q), a*(Q')] =6(Q-0Q").

(2.3.8)

Below the frequency argument will often be omitted:
q=4q(Q), p=p(Q), a=a(Q), ¢" = q(—Q), p" = p(-Q).

In classical theory one can assume some or all
components of the field to be zero. For example, for a
harmonic AM with some frequency €;, only one quad-
rature ¢(Q, @) is nonzero. However, in quantum theory
such an assumption is prohibited, as it violates the
commutation relations (2.3.8). To avoid this, each trans-
formation of the operator ¢ — y¢ must be followed by a
consistent transformation p — p/v (the condition of unitary
transformation). In other words, the PN always yields some
AM and PM minimum noise, with a constant product of
the modulation coefficients: one can decrease (increase) the
amplitude PN only at the expense of the corresponding
increase (decrease) of the phase PN (an exception to this
rule will be considered in Section 3.2). [f the mean field is in
the vacuum state, then AM and PM are equal to each other,
but in the case of quadrature-squeezed state they are not.

In addition to the unavoidable quantum noise modula-
tion, ‘coherent’ modulation by a specific signal can, of
course, occur; for example, for the harmonic AM
(q(Q1,)) #0. Beating of two coherent components, a
combination of AM and PM, is also possible.

Let us find the beam intensity operator E*(¢t)E(t). By
omitting the constant part |E|2 and neglecting the weak
contribution A (£)A(r), we get the alternating part of the
intensity in the form

N(t) = E*A(t) exp(iwgt) + EA (1) exp (—iwyt)

=V2|E|Q(t,$) . (23.9)
where ¢ = arg(E). Thus, the operator Q(t, ¢) multiplied by
V2|E| is the operator of the envelope or AM-signal (this is
valid only in the linear-in-Q/E approximation). Therefore,
the alternating part of photocurrent in an analogue
photodetector must be determined by the operator Q(z, ¢).

A similar signal describing the phase modulation has the
form

N'(t) = x/E|E|Q(r, ¢+g) =V2|E|P(t,0) . (2.3.92)

In the spectral representation we have
N(Q) =E*a(Q) + Ea™(-Q) = V2 |E|¢(Q, ) .
’ (2.3.9b)
N'(Q) = —i[E*a(Q) — Ea™(-Q)] = V2 |E|p(Q,¢) .
Formulas (2.3.9) describe the signal at the output of an
ideal (n = 1) homodyne photodetector with a coherent field
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amplitude E. Thus, we represented the superposition of a
strong field in a coherent state and a weak arbitrary field
(including ‘vacuum’ noise) as a modulated field (see Fig. 4).

Consider now the weak field fluctuations. A stationary
field is described by spectral density n(€) which is deter-
mined by the relation (¢ (Q)a(Q")) = n(Q)6(2 — Q"). Thus,
n(Q) is a dimensionless coefficient of the d-function. In
addition, in the case of quadrature-squeezed light, the
anomalous correlator m(Q) = m(—Q), determined from
(a(Q)a(Q")) = m(Q)6(Q+ Q"), is also nonzero. The field
is then periodically nonstationary: its properties change with
period (2m/wy)/2. Let us introduce the following notation
for the quadrature spectral densities:

a(Q)q(2 ))
Q) T(Q)q(Q) <
(p(Qp(Q))
oQ+Qn °
* Q P(Q )>

0)gt(0)y = DP@)

Q)q(2"))
Q) ¢t (Q) QpH(Q) —L

<P( ( > <‘1( ( > 5(Q+9)

It is shown in the Appendix that the following
uncertainty relation for the quadrature spectral densities

applies (where we put (¢) = (p) = 0):
(F@YP@) = [(a@pt @) = £

The field states in which the equality holds are called the
states with minimum uncertainty.

With the help of Eqn (2.3.7) we find the second
moments of the quadratures

2((12(9)) =n(Q) +n(—Q) +1+2Re [m(Q)] ,

2(p*(Q)) = n(R) +n(—2) + 1 —2Re [m(Q)] ,

(@) (@)) = 21m [m(@)] +i[n(@) — n(~2) +1]

2{p*(Q)q(Q)) =21Im [m(Q)] +i[n(Q) —n(—Q) — 1] .
(23.11)

It follows from here that (¢*(Q)) and (p*(Q)) are even real
functions Q. Inverse transformations have the form

n(Q) + 1= (a(Q)a"(Q))

= L @) + (@) +21m (a(2)* (@))]

(P(Q)) = (pF(@p(Q)) =

(a(Q)p*(Q) =

(2.3.10)

n(—Q) = (a(—Q) " a(—9Q))

= L@ @) + (@) ~ 21m (4(@)p* (@) -
m(Q) = (a(Q)a(~Q))

= (@) ~ (7(@)) + 2iRe (4(2) p(2)]

(2.3.11a)
The parameter m describes the quadrature squeezing: for
example, if m = m* > 0 the depth of the noise AM exceeds
the PM and if m < 0, the PM is greater than the AM (see
Fig. 7g and 7h). In the case of the vacuum weak field,
n=m=0, (¢") = (p°) = —i(gp™) = —i(pg") = 1/2.
The terms % (‘zero-point fluctuations’) in Eqn (2.3.11)
emerged because of the noncommutativity of the field
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Figure 7. Different types of squeezed light: (a) vacuum, (b) squeezed
vacuum, (c) energy-squeezed, (d) amplitude-squeezed, (¢) classically
squeezed, (f) ‘supersqueezed’, (g) and (h) quadrature-squeezed vacuum.

operators. In classical theory as well as in quantum theory
when the averaging of normally ordered operators of type
ataor :q2 = q2 — 1/2 is performed, these terms are absent.
It is these operators that describe the observed PN, i.e
quantum fluctuations during energy flux measurements that
arise in detectors even for the vacuum weak field when
n=m=0. Formally, the PN can be defined through
differences between the symmetrised and normally ordered
products of the operators A and A™.

(@] =1

The full noise without PN is called excess noise. It is
proportional to 2:¢*(Q): = n(Q) + n(—Q) + 2Re[m(Q)]. In
the case of squeezed light this quantity may be negative.

From Eqn (2.3.9) it follows that in the considered
approximation of linearity in A /E the intensity fluctuation
N (4th moment of the total field) is proportional to the
quadrature fluctuations ¢ (2d moment of the weak field),
which simplifies the calculations substantially:

(N*(@)) = 20E[(¢’(2, 9)) -

ff—:qzrzé[a(ﬂ), (2.3.12)

(2.3.13)
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A convenient measure of the relative fluctuations is the
Fano factor

F(@,¢) = %

=1+4n(Q) +n(—Q) + 2Re[m(Q) exp(i29)] .(2.3.14)

The Fourier-image of the function F is the AM-signal
correlation function:

(o(o(t") = ﬁjdgexp [—iQ(r — " [{4’(Q)) .(2.3.15)
For F =1, the Poissonian spectral density is obtained:
(N*(Q)) = |E|*; for F<1 it is sub-Poissonian and for
F > 1 it is the super-Poissonian (see Fig. 1). The excess
noise is described by the function F(Q) — 1.

During the absorption, splitting, or detection of the light
beam F — 1 is multiplied by the transmission coefficient T
or 7. In other words, the absorption (energy dissipation) has
an effect only on the excess noise, whereas the PN remains
unchanged. As a result, during the absorption or amplifica-
tion the ‘non-Poissonian’ character of the fluctuations
described by the quantity |F — 1| must, it would appear,
decrease. An exception to this rule will be discussed in
Section 3.3.

Let 2¢+arg(m)=n and n(Q)=n(—Q), then
Eqn (2.3.14) takes the form

F(Q) =1+2[n(Q) —m(Q)] . (2.3.16)
Therefore, during the ‘vacuum’ modulation when

n=m=0, we have F=1, and a weak stationary field
with intensity n(Q) =n(—Q)=n and m =0 yields the
super-Poissonian noise F=1+42n. To get the sub-
Poissonian noise, m >n is needed. In classical theory
this condition is impossible to satisfy, as it contradicts the
Cauchy—Schwartz inequality (see the Appendix). There is
no such a limitation, however, in quantum theory. It will be
shown in Section 2.5 that, by means of a parametric down-
conversion, the light beam can be made sub-Poissonian.

Notice that the classical limitation F > 1 relates only to
the field’s Fano factor, which is expressed through the field
amplitude correlators according to Eqn (2.3.16). No such
limitation exists for the Fano factor of the current, so that
the smoothing of the current fluctuations by an RC-chain
below the Poissonian level F=1 is not, of course, a
quantum effect.

2.4 Transformation of PN by beam splitters

Let us consider a transformation (mixing) of two light
beams that differ in direction (or polarisation) by a
partially transparent mirror or a polarising prism. In the
absence of dissipation and dispersion, the transformation is
described by real transmission and reflection coefficients
u=+T, v=+R, with T+R = 1. The output fields have

the form
E{(t) = uE(t) + vEs(t), Ej(t) = —vE,(t) + uE,(t) .

(2.4.1)
The transformed components are indicated by primes. This

transformation conserves the energy flux: Nj+Nj=
N + N, (here N = ET(¢t)E(t) is the total intensity). Similar

linear relations hold for the coherent field amplitudes E,
and quadratures Q,(¢,¢):

Q{(t,¢) = uQI(t7¢) +VQ2(ta¢) ’

QZl(ta ¢) = _VQI (ta ¢) + uQ2(t7¢) .
(2.4.2)

E| =uE, +vE,,
E} = —vE, 4+ uE,,

According to Eqn (2.3.9), the output signals are equal to
N{() = V2|E{|Q1 (1, 1) »

(24.3)
N3 (t) = V2|E3|05(t, ¢3) .
In the case of homodyne detection, the light enters, for
example, input 1 (E; = 0) and the coherent field E, input 2
(Fig. 8). Let E, = EJ, then

Ni{=V2E,(RQ, +VTR Q)) ,

N3 =V2E,(TQ, — VIR Q)) , (2.4.4)
i.e. due to the negative sign in Eqn (2.4.1), the signal Q;
modulates the output coherent fields in the ‘opposite phase’,
while the heterodyne noise O, does so in ‘phase’. This yields

Ni(6) +N3(1) = V2E,0,(1) = N1 (1)
TN {(t) — RN 3(t) = V2TR E,Q,(t) . (242

Thus, the sum of the output signals does not depend on the
input signal @; and their weighted difference—on the
noise O, modulating the coherent (homodyne) field. The
latter fact enables one to decrease the effect of parasitic
modulation of the laser field £, in homodyne receivers [34,
35], which is very important, in particular, in quadrature-
squeezed light studies.

Now let coherent components with the same frequency
be present in the both input channels, with the phase-
modulated field, (P;(¢)) # 0 in channel 1 while the field in
the channel 2 has only the coherent component E, that
plays the role of a homodyne field. Clearly, by selecting the
field phase E,, one can transform the PM into AM, i.e. the
device can serve as a phase detector with the output
photocurrent (N7{) proportional to (P;(¢)). For another
homodyne phase, we get an amplitude detector measuring
(01(1)). In the case of squeezed light, by measuring the
amplitude and phase of the homodyne field E,, one can
move and rotate the uncertainty ellipse for the output field
(see Fig. 8).

E,

V2E|

E,

Figure 8. The transformation of the phase modulation of field E; into
the amplitude modulation of the output field E{ by a beam splitter and
a homodyne ficld E, with the appropriate phase and amplitude.
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Thus, one can measure by choice one of the quad-
ratures, but it is impossible to measure both quadratures
simultaneously by one detector. In quantum theory this
conclusion, which is associated with the noncommutativity
of the quadrature operators, plays a central role. In Section
2.5 we shall consider a realistic way of getting information
about a quadrature Q; of some mode without perturbing
this quadrature (‘nondemolition’, or QND-measurements).

Let us further consider transformation of the quadrature
variance by a beam splitter. According to Eqn (2.4.2), for
arbitrary frequency @ and angle ¢

{(@1)*)y = T{q1) + R(53) + 2uvRe(q1q3)
{(@2)) = R{qt) + T{g3) — 2uvReq1437) .
(a1(a2)™) = T{q193) — R{qaqi) + w({a3) — (a1)) -

Here ¢ = ¢(2,9), 4" = a(—2,¢), (¢*) = (44") = (47 q)- By
summing the first two equalities, we find that the sum of
the quadrature variances is conserved (independently of a
possible correlation between ¢; and ¢»):

(@) + ((@2)*) = {a1) + (42) -
We also find the variance for the sum and difference of the
output signals at 7 =R =

(@3) =2(q1), (42) =2(q3) . (24.6b)

Therefore if, for example, the vacuum is at input 2, the
fluctuations of the signal difference will be Poissonian
independently of the field statistics at the other input (this
fact is used for the apparature calibration).

Similar relations are valid for the normally ordered
operators :q2:E q2 — 1 that describe only the excess noise.
Let, for instance, {:¢>:) =0, then

2

(:(a1)%) =T(:qi:) + 2uvRe (q143) ,
2

(:(a2):) = R(:q1:) — 2uvRe {q143)
2 2

(@) ) + (@) ) = (i) -
These relations show that the partitioning of the excess
noise from channel 1 into two output channels depends
significantly on the presence of an initial correlation {g,47 ),
in particular on its sign. This fact explains, as mentioned in
the introduction the ‘anomalous’ effect of the output beam
splitter in the FB loop (in the framework of a priori models).

At {q1q7) the beam splitter, according to Eqn (2.4.6),
performs the transformation

F|=TF,+RF,, FJ=RF, +TF,.

(2.4.6)

(2.4.62)

4+ =q1 £ ¢,

(2.4.6¢)

(2.4.6d)

At input 2 let there be the coherent component plus
vacuum, i.e. F, =1, then

Fl—1=T(F —-1), (2.4.7)

or <:(q|')2:> =T{:qi:). Thus, the beam splitter decreases
the absolute value of the excess noise, i.e. diminishes the
‘non-Poissonian’ character of the statistics.

This conclusion can be generalised [33]: the losses act on
the normally ordered operators trivially, in the same way as
on the field components in classical models. This concerns
the field transformation by a detector too: T is substituted
by the detector’s quantum efficiency # [see Eqn (2.2.14)].
Let PN in the light incident on the detector be fully
suppressed, F = 0; then, according to Eqn (2.2.14),

Fnllin =1- n. (248)

Thus, the ultimate observed suppression of the PN is
restricted, it would appear, by the detector’s efficiency.
However, this limit was significantly surpassed in the
experiments of Ref. [12] (see Fig. 14). The point is that
in Eqns (2.4.7), (2.4.8) no correlation is assumed between
the input fields in channels 1 and 2: {q;¢7) = 0. However,
the FB just establishes such a correlation.

Let us consider now a balance homodyne detection [34,
35]. Let the intensities of two beams be measured by two
identical detectors with an efficiency #, with the registered
sum and difference of the current components being
ip =i; £i,. Constant components of the currents are
assumed to be the same. In analogy with Eqn (2.4.7), we
go over from currents to light fluxes: Fy = (i1)/2l, =
n((N1)/2Iy — 1)+ 1, where Ny = N{+N}. Here normal-
isation by the total detectors currents 2/ is used, since if the
beams are independent, the noises are added together:
(i2(Q)) = 21y. In the case of T =R =1, we find with the
help of Eqn (2.4.5) that

Fo—1=9(2g)—1), F_—1=n2{(g)—1).249)
Thus the noise of the current difference does not depend on
the homodyne field noise ¢,.

2.5 Squeezing and nondemolition measurements of PN
Let a light beam be passed through a wide-band parametric
transformer (PT) of the travelling wave type with one
transverse mode—a transparent nonlinear crystal excited
by a double-frequency pump 2w,. The pump’s field then
must be coherent with a ‘carrier’ field E, i.e. both beams
must be generated by the same drive laser.

According to simple models, either quantum or classical
(see Ref. [36]), the field at the PT output has the following
form

a'=ga—fat, a't (2.5.1)
Here a = a(Q), at =a* (—Q), g=cosh I, f=sinh [, I'is
the amplification degree proportional to the pump
amplitude, the pump phase is taken to be equal m/2,
and the PT bandwidth is assumed to be much broader than
the frequency span under consideration AQ. The trans-
formed components are indicated by primes. Thus, the
transformer mixes the spectral components with frequen-
cies wg £ Q.
It follows from Eqn (2.5.1) that

= gu+ —fa .

q’:exp(—F)q, p':exp([’)p’

, ) (2.5.1a)
q'(¢) = exp(=TI') cos(pq) + exp(I') sin(dq) .
Therefore, the PT is a phase-sensitive device: it amplifies p-
and weakens ¢g-quadratures (at the pump phase chosen
here). This relates both to ‘real’ signals (determined or
noisy) and to the PN as well. The latter surprising fact was
demonstrated in a number of experiments (see Refs [2—8]).
When a coherent component with phase ¢ = 0 is present
at the PT input, it is transformed as a g-quadrature, i.e. is
weakened too (however, it can be recovered afterwards with
the help of a beam splitter and an additional homodyne
field). Thus, the PT amplifies PM and weakens AM of the
input field, including quantum modulation.
Notice that at an arbitrary pump phase, one should
assume f = exp(i¢,) in Eqn (2.5.1), where ¢, is the pump
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phase plus ©/2, so that we get instead of Eqn (2.5.1a)

q'(¢) = [cosh T + sinh I cos(¢py — 2¢)]q(¢)
+[cosh I' + sinh I'sin(¢y — 2¢)] p(¢) . (2.5.1b)

At the PT input let a stationary noise be present with
intensity n(Q) = n(—Q) = n; then according to Eqns (2.5.1),
(2.5.1a) we have at the output,

((¢") = G+n> exp(=2I), ((p')’) = G+n> exp(2I),
(4" () = G+n> [exp(—2I) cos” ¢ + exp(2I') sin” §]

1 1
n' = <§+n> cosh(2r) 3>
1/2

m':—(%—i-n) sinh(2F)=—[(%+n'>2—<%+n>2] ,

1 1
n'+m' = (§+ n) exp(—2TI) —5- (2.5.2)

Notice that according to Eqn (2.5.1a), the cross correlators
like (g*p) are not changed during the transformation, i.e.
their vacuum values +i/2 are conserved.

The function ([¢'(¢)]*) in polar coordinates forms
uncertainty ellipses with axes proportional to exp(2I)
and exp(—2I') (see Fig. 7). These numbers represent the
coefficients of stretching and squeezing for quadrature
variance. The product of the uncertainties is
(@)WY = 14n e a lower limit in
Eqn (2.3.10) is reached at n = 0.

From Eqn (2.5.2), we find the Fano factor after the
transformation

F'=Fexp(—2I) =2((¢')*) = (1 +2n) exp(=2I) . (2.5.3)

Thus, with a sufficiently strong pumping, both the PN and
the input excess noise 2n are suppressed (the latter effect is
obviously purely classical). We recall that, according to the
approximate relation (2.3.9), the contribution of a¥a to the
PN is not taken into account here, which can notably
increase F' at a large amplification I" or a small amplitude
E (a method exists for compensating this contribution too
[37, 38]). The suppression or amplification of the PN
during the parametric transformation occurs, of course,
only within a limited frequency range determined by the PT
bandwidth.

In the case of vacuum at the input (n = E = 0), the PT
radiates only its own spontaneous noise, and the output
field state then is called squeezed vacuum. For the squeezed
vacuum

n' =sinh®’I', m'= —cosh'sinh ",

!

m
— = —cothI".
n

(2.54)
These relations violate the Cauchy—Schwartz inequality
{lm'|/n"}as <1 (see the Appendix) that applies in classical
theory, in which connection the own PT emission is called
nonclassical. Notice that the smaller the value of I', the
stronger the deviation from the classical limit is.

In the opposite limiting case, at n > %, one can neglect
quantum fluctuations and our model then describes the
classical parametric transformation of the usual stationary
noise (with identical fluctuations of both quadratures:

(¢*) = (p*) =n) into a periodically nonstationary one
with different quadrature variances [39]. One can say
that the PT transforms the input Gaussian chaotic light
into a classical squeezed light [40—44]. Fig. 7 explains
different types of squeezed light and the accepted termi-
nology.

In real experiments, the PT usually emits a squeezed
vacuum and in order to get quadrature-squeezed light, a
coherent (homodyne) component from the initial laser
should be added to it. A beam splitter can be used for
this purpose. According to Eqn (2.4.6) and Eqn (2.5.2), at
the beam splitter output F{’ = T [exp(—2I') — 1] + 1, so that
at I'> 1, the Fano factor F| tends to 1 —7 =R —the
beam splitter reflection coefficient that can be made
sufficiently small at the expense of decreasing the light
intensity at the output.

In practice, in order to observe the effects of squeezing,
a balance homodyning is used (see Section 2.4). Making use
of Eqn (2.5.3) and Eqn (2.4.9), we find the Fano factor for
the difference of the currents:

F_=nlexp(—2I)— 1] +1. (2.5.3a)

From this at I' > 1 we get F_ =1 —# [cf. Eqn (2.4.8)].

Consider then the transformation of two light beams by
a wide bandwidth PT of the travelling wave type with two
transverse modes that differ by polarisation or direction.
Now, instead of Eqn (2.5.1), the following transformation
occurs:

ay" = gai +exp(—idy) fa; .
(2.5.5)

al = ga, +exp(id,) faf ,

Here a; = 4 (Q), af =af (—Q), g =coshT, f=sinh I, ¢,
is the pump phase plus m/2. From this, we find the
following connections between the modes quadratures:

41 = g1 + 42 c0s g + foa sin ¢
42 = 84> + 1) €08 Py + fp, sin ¢y

, . . (2.5.6)
Pl = gp1 +fqy sin ¢y — fp, cos ¢y
Py = gpy +fq1 sin ¢y — fp, cos ¢,
[here ¢; = ¢1(Q) etc.] In particular, at ¢, =0,
! . ! .
q1 =841 +fq2, p1=8p1—Jp2,
A 2.5.7)
G =84 +tfq1, pr=8p»—Jfp1 .

For practical purposes, the following property coming
from Eqn (2.5.7) is of interest: ¢} — ¢3 = exp(—=T)(q1 — ¢»).
At I' » 1, the difference between two output signals tends to
zero, i.e. it is squeezed’. Let the field incident on the
transformer be in a vacuum state, then

((al = 3)") = exp(=2T')(4i + @3) = exp(-2T) , (2:5.8)

ie.  F_=-exp(=2I) [compare  Eqn (2.5.3) and
Eqn (2.5.3a)]. Thus, at n =1, I' > 1, the same amplitudes
and appropriate phases of the coherent components, the
difference between currents in two homodyne detectors at
the two-mode PT output contains no PN [38]. The
fluctuations of the difference of the weak field intensities
ata, —afa,, which do not depend on the coherent
components, are then compensated as well, independently
of I' [37, 38]. Visually, the latter effect is explained by the
simultaneous photon creation in the signal and idle beam.
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Figure 9. A nondemolition parametric ‘beam splitter’. B; and B, are
beam splitters, PC is a parametric amplifier transformer. The lower
part of the figure contains polar diagrams illustrating the consecutive
transformations of the coherent and noise components at f=1,
g=14T, =T,=0.85.

An interesting possibility is provided by a combination
of three consecutive transformations (2.4.1), (2.5.5), and
again (2.4.1) shown in Fig. 9 [29]. By multiplying the
matrices of these transformations at ¢, =0, we obtain
(u=cosf, v=sin0)

a1 (Q) = g[cos(20)a; (Q) + sin(20)ay(Q)] + a3 (—Q) ,
ay(Q) = g[—sin(20)a; (Q) + cos(20)ay ()] + fui (—Q) .
(2.5.9)
Now let f = sinh I = — tan(20), then sin(26) = —tanh T,
gcos(20) =1, gsin(20)=—f, T=(1+1/g)/2, R =

=(1—-1/g)/2. As a result, we find the following links
between the output and input quadratures:

g =q1, pi=p—2fps,

(2.5.10)

G=aq+2q, pr=p;.

Coherent components are transformed as g-quadratures:
(2.5.10a)

For example, let f:%, then g =1.12, ' =048, T =0.95,
and

E{=E,, E;=E,+2fE, =2, .

a=q. pi=p—D2,
G=am+a. pr=p, @2.5.11)
E{=E,=E, .

We recall that the same linear relations apply in classical
theory as well. In quantum theory, they are interpreted as
proof for the possibility of the quantum nondemolition
measurement of one quadrature in the transverse mode
(beam) of the field [26]. Let the ‘signal’ ¢; be measured in
mode 1, then mode 2 is used for probing or measuring. The
beam splitter permits interaction between the signal and
measuring instrument. By watching g5, one can get
information about the original signal ¢g; from the term
2fg, in Eqn (2.5.10). It is essential that ¢; is not perturbed
(g1 = q1) here, whereas the second quadrature p; receives
some addition (the term —2fp,), which is interpreted as a
back-action of the measuring device (the second beam in the
given case) on the observed quantum object (the first beam).
By taking back-action into account, we can ensure that the
uncertainty relation (2.3.10) is satisfied during the inter-

action. Here this invariance is a consequence of the
unitarity of the transformation matrices for mode ampli-
tudes used.

Similarly, with the use of a phase detector (see Section
2.4) in output channel 1 one can measure the phase
modulation of the field at input 2 ‘without demolition’.

The device considered mixes two light beams, but in
contrast to a conventional beam splitter it copies (‘clones’)
the input amplitudes ¢; and p,. It can be considered as a
phase-sensitive ‘nondemolition beam splitter’. Notice that
the device by itself does not squeeze but, instead, stretches
the falling noise (see Fig. 9); for example, in the case of
coherent input fields, one gets F; =1, F, =1 +4_}"2 at the
output according to Eqn (2.5.11). Transformation (2.5.10)
will be used further in Section 3.4 to prove the ‘observ-
ability’ of the in-loop field in the FB chain.

Let us consider once more the experiments discussed in
Section 2.1 which use unusual properties of the parametric
‘nondemolition beam splitter’ (see Fig. 5).

In Fig. 5c, the correlation between the quantum noise in
two detectors is measured at two outputs of the device
considered, whose one input (subscript 1 in the given
formulas and the upper input in Fig. 5c) is excited by a
laser beam. According to Eqn (2.5.10), the relative signals

of the detectors [i.e. normalised on (210,,)'/2, n=1,2] have
the form
g = wqi +vigio = g1 + viqio » 25.12)

@) = g1 + vagao = s (g2 + 2fq1) + vagao -

Here uﬁ =1, vfl =1 —mn,. The operators g, are introduced
so as to ensure the unitarity of the transformation at
n, # 1. Thus, detector 2 (‘probing’; the lower part of
Fig. 5¢) has an excess noise with a relative amplitude 2fu,q,
correlated with the vacuum AM input signal ¢;. As a
result, the observed noises of the two detectors are
correlated with each other:

(@) =) + (1= m)iah) = 5.
((@)*) = ma((a1) + 47> (@) + (1 — ny){ado)
= %(1 +4f%n)

(a1'a7) = 2fuinqi) = v f - (2.5.13)

We recall that the homodyne detection is considered
here in the approximation Ai < [,, which provides linear-
isation of the detection process and allows one (under some
restrictions on the value f) not to take into account the
intrinsic noise of the PT. As a result, the observed spectral
densities of the noise and their correlation depend linearly
on the power of the incident laser beam.

The correlation coefficient of the output signals nor-
malised to their variances (g2) has the form

(2.5.14)

K P _ | mmf?
V@  V1/A+ms

For example, at f=n, =1, :% we have K = 0.41, and at

.)"2112 > % the correlation coefficient is equal to /#,. Note

that here the correlation was computed for the optimal
phase of the coherent fields E{, E; and by neglecting the
weak field contribution which is independent of them.
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The scheme from Fig. Sc can be treated as a modified
Brown —Twiss correlometer in which a conventional beam
splitter is substituted by a ‘nondemolition’ one. As a result,
even the light in a coherent state produces the correlation
effect (which is absent in the case of a conventional beam
splitter [see Section (2.4.6) at {(g;¢7) = 0]. This effect was
observed in Refs [27, 29].

The experiment considered enables us to make two
important conclusions.

1. It provides evidence in favour of a visual a priori
description of the PN in the given case: in fact, in
accordance with the a posteriori point of view, if the noise
were to appear in the detectors during measurement, it
would be statistically independent. Obviously, the correla-
tion can be introduced only by the signal of ‘vacuum
modulation’ ¢, of the original field E. Notice that the
detectors may be separated by a large distance to exclude
their possible interaction.

Notice also that if one uses a simple PT (without
additional beam splitters), there will also be correlation
between currents, but it will depend on signals ¢, and ¢, at
both inputs, which makes the conclusion on the a priori
character of the coherent field PN ¢; less convincing.

2. The macroscopic current, i(¢), of both the conven-
tional and the nondemolition homodyne detector ‘realises’
(makes observable) the modulating stochastic signal Q(¢) of
the field E(r) incident on the detector—even if it has
‘vacuum’ origin. This point, already mentioned in the
introduction, underlies the quantum theory of FB in paper
[15], as well as in Sections 3.1—3.5 of the present review.

Similarly, when making the choice of the corresponding
phase of the homodyne field (Section 2.4), one can realise
the vacuum phase modulation signal P(¢).

One might argue that the PT performs act of measure-
ment during its interaction with the original beam, thus
introducing the general noise of measurement into both
output beams, which leads to correlation between the
currents. However, the quantum measurement concept
implies the transition from ¢-numbers to c-numbers, while
here the parametric interaction is described by operator
relations, and the input signals of the detectors are entirely
c-numbers.

One can describe the action of the PT and beam splitters
by using not the Heisenberg representation accepted here
but that of Schrddinger (see Ref. [32] for comparison of
these two mathematical methods). Then the state vector at
the optical system input |y) = |E;),|0), is transformed into
some output vector |’} which relates to both output beams
and defines the joint statistics of both detectors. Individual
state vectors cannot be ascribed to the output beams: taken
separately, they are in mixed and not pure states. Under
such a description, the PN does not arise in detectors
independently but as a result of some property of the state
['). In essence, this is an a priori description as well, when
information about the PN is transferred by the state vector
(and not by Heisenberg operators ¢, p).

Let us consider one more possible experiment, shown in
Fig. 5d. Here the signal of the nondemolition detector
carrying, as we have been convinced, information about
the PN of the original beam (term 2u,fg,), after having
been amplified controls the modulator mounted across the
beam path between the PT and a conventional detector
(such schemes are designated by the term feedforward).
Considering the correlation discovered above, it seems

obvious that, by selecting the parameters of the scheme,
one can achieve PN suppression at the modulator’s output,
i.e. to obtain amplitude squeezing. The calculation con-
firming that assumption will be given in Section 3.4 for a
more efficient modification of this scheme (Fig. 5¢) where
the modulator is placed before the PT, i.e. with the use of a
negative feedback.

3. PN and electronic feedback

3.1 System dynamics

The scheme of the experiment [12] and notations accepted
below are presented in Fig. 10. There are four input fields
E (1), k =1,2,3,4, three in-loop fields E'(¢), E"(¢), E;(t),
and two output fields E,(¢), Eo(¢). Strong coherent signals
are assumed to be fed only to inputs 1 and 3, ie.
E,=E,=0. The additional field E; enables one to
measure, independently of E;, the phase of the coherent
total field E” on the detector, which plays the role of a
homodyne field. The fields E;(r) and E4(¢) are fictitious,
they are introduced to describe the detection process.

E,.A E,
u n
!
El ~ El /u E// E
= Y, = // = '
A2 E; Ay
w=kq; qi

Figure 10. The experimental scheme for studying optical systems with
feedback.

It is convenient to model the modulator by a beam splitter
with a variable amplitude transmission U(t) = u[l — ew(r)]
and reflection V(r) = [I — U2(#)]'/? [15]. Here w(t) is a real
modulator signal (that has no DC component by assump-
tion), and u =+/T and v=+/R are real transmission and
reflection coefficients at w =0 (no losses are assumed, so
that T 4+ VR = 1). The parameter ¢ plays the role of a switch
for describing amplitude (¢ = 1) or phase (¢ =i) modula-
tion. If the modulation coefficient (|w| < 1) is small, we
have V(1) = v[l + g’ew(1)], where x = u/v.

If w(z) is a classical function of time (determined or
stochastic), the modulator performs unitary transformation
of the incident fields. Here, unlike in a usual beam splitter,
modes of different frequencies interact, so that the spectral
composition of the input beams is redistributed. At the
same time, there is no mixing here between positive- and
negative-frequency components, hence no squeezing occurs
(without feedback).

However, in the model considered below, once the FB
chain is looped, the function w(f) becomes an operator,
unitarity of transformation breaks down and the fields
undergoes squeezing by amplitude or phase in the case of
amplitude (¢ = 1) or phase (¢ = i) modulator, respectively.
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In the approximation of linearity on w and A the
modulator performs the following transformation:

E'(t) = UE(t) + VE,(t) m u[l — ew(t)| E, (t) + vA, (1) ,
E,(1) = =V*E|(t) + U*E,(t)
~ —v[1+ e w(t)| E (1) + uAs (1) .

Recall that in each beam E(r) is a positive-frequency field
consisting of a coherent monochromatic part E exp(—iwqt)
with a large amplitude E and of a weak field A(¢). By
neglecting terms of order wA, we obtain

A'(t) = uA (1) +vA,(t) — E' exp(—iwgt)ew(t) ,
E' =uE, ,
A1) = A1)+ () + 2B, exp(—iaont)e (i)

G.1.1)

E, = —VvE; . (3.1.1a)
In the spectral representation,
a(Q)=a'(Q)—E'ew(Q), a =ua +va,,
(@) =a'(@) - E'on(@) RECTI

a,(Q) = a.(Q) — yE'e'w(Q), a, = —va, +ua, .

Operators with the symbol ‘~’ are defined through the input
amplitudes a;, a, with open FB loop (¢’ =a’', a, = a,).
When calculating the PN, they play the role of given
Langevin forces.

The next transformation of the modulated in-loop field
is performed by a beam splitter leading the beam outwards

. ! !
with parameters u", v',

A"ZM'A'+VIA3, E/,:M/E/+V,E3,

(3.1.2)
Ag=—v'A"+u'A;, Ey=—v'E' +u'E;.
Here u”? +v? =T'+R’=1. This transformation is uni-
tary.
It is convenient to describe the detector’s action by a
transformation with u"> =1—v" = n (the second output
channel is thus ignored):

A;=u"A" +v"A,, E;=u"E". (3.1.3)

The fictitious field A, ensuring the unitarity of the
transformation is in a vacuum state. The detector’s
current is equal, by definition, to the fictitious field
intensity E;(f), so that the DC- and alternating compo-
nents of the current are equal, in accordance with
Eqn (2.3.9), to

2

Iy=|E[ =qE"] ,

3.14

i(r) = V2IE|Qi(r,¢) = (210)'"*0i(t, ;) - eI
Here we neglect the contribution of the weak ‘modulating’
field to the direct current; ¢, =@” is the phase of the
homodyne field on the detector E”.

The link between the quantum formalism and experi-
ment is made by postulating that the operator i(f)
corresponds to the observed photocurrent. Then the
observed current fluctuations are calculated from a quan-
tum correlation function, which in the case of a vacuum
weak field, according to Eqn (2.2.12), has the form
(i()i(t")) = 21(Q(1)Q(t")) = I48(t —¢t') (with no account
taken of the detector’s response). Notice that here a
correlation function different from the normally ordered
one is used (otherwise quantum noise does not arise). As is

usually accepted in the quantum optical description of
stationary experiments, we identify the averages over the
quantum ensemble calculated in theory with the averages
over time observed by experiment.

On the other hand, the PN (also called the shot noise) in
the framework of the semiclassical theory of photodetection
is frequently connected with charge discreteness. Our
formalism also describes pure analogue detection made,
for example, by a microcalorimeter or thermocouple. This
approach demonstrates independence of the observed PN on
the fact of discreteness of the photoelectron charge (see
Section 2.2). Formally, the PN appears here as a result of
the field operators’ noncommutativity and the use of
nonordered operators for determination of the quadrature
variance.

We shall describe the action of the electronic scheme in
the spectral representation by the relation

w(Q) = k(Q) exp(iQ7)i(Q)

= V2k(Q)|Ei] exp (iQ7)q:(2, ¢,) - (3.15)
Here the parameter T makes allowance for the total delay
in the closed FB loop both in the optical tract and in the
connecting cables as well, and the amplification coefficient
k(€) describes the dispersion properties of the ‘electronics’:
detector, amplifier, and modulator. The electronic scheme
is assumed not to let the direct current pass, so that the FB
has no effect on the coherent parts of the fields.

Relation (3.1.5) hides the most important concept of the
model (in its quantum version): it implies that the amplified
macroscopic electron signal w(z) controlling the modulator
is, like Q;(#), an operator [15]. (The arguments in favour of
such an approach have already been given in Section 2.5).
Then transformation (3.1.1) ceases to be unitary.

Transformations (3.1.1)—(3.1.3) in spectral representa-
tions take the following form:

! ~/ ! ~/
a =a —E'ew, a =ua+va,,

a,=a, —yE's'w, a4, = —va, +ua,
a"=a"—u'E'ew, a"=u'a'+v'ay, (3.1.6)
ag=dy+Vv'E'ew, do=-v'a +u'a;,
a;=a;—u'u"E'sw, a=u"a"+v"a, .

Here, for example, @’ =a’(Q) is the field with excluded
central mode w, at the modulator’s output generated by
given external fields a; and a, with open FB [when
w=w(Q) =0], and a’ = a’(Q) is the same field with closed
FB, i.e. it is a self-consistent field.

Now by using Eqn (2.3.7) we pass to quadratures. Then
the following combinations arise:

E'[ew(Q) £ &'wt (—Q)]
V2
= (e &")k(QE'|Ei| exp(iQ7)q;(2, ¢))

(e £e)agq;(Q,9,) . 3.1.7)

| =

Here the definition o = 2k(Q)E'|E;|exp(iQr) is introduced
and the property w(Q) =w"(—Q), following from the
Hermitian character of w(¢), is used. The coherent fields
amplitudes E,, E’, E, are considered to be real at E; =0,
a=2u'u"k(Q)E" x exp(iQ1).
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By use of the amplitude modulator, one has that
e+¢e =2 e—¢& =0, so that the modulator has no effect
on P-quadratures; and in the case of the phase modulator,
e+¢& =0, e—¢&* =2 and the modulator does not affect Q-
quadratures. In the latter case one needs to use an
additional coherent field E; at input 3 which converts
PM into AM; the homodyne field phase at the detector
¢, should be equal to /2 (see Section 2.3). In both cases the
modulator changes only one quadrature. Thus, the AM and
PM cases differ from each other only by the replacing of Q-
and P-quadratures, and therefore we will consider only the
AM case (¢ = 1) below. Then p’ =p' = up, + vp,, etc.

From Eqns (3.1.6) and (3.1.7) we find

' =q"—aq(d). G =uq +vqr,
qr = Gr — 1949;($;) »
q"=q"—u'agi(d), 7"
g0 = Go +v'aqi(¢,) »
g =q; —u'u"ag(¢,),
Let us compare the intensities of two waves at the

modulator’s output. According to Eqn (2.3.9) and
Eqn (3.1.8),

N'(Q) =V2E'q' = V2uE,[ug, +vq, — 0g,(9,)] .
N,(Q) = V2E,q, = —V2VE, [—W{] +uq; — X“‘ii(¢i)] .
(3.1.9)

Taking into account y = u/v, we find N + N, = V2Eq =
N;. Thus, the modulator does not affect the sum of the
output intensities (similar to the AM signal ¢, from
channel 2), it only redistributes the fluxes.

To obtain self-consistent solutions, one needs to replace
qi(¢;) in Eqn (3.1.8) by one of the following equivalent
expressions:

qi(¢;) = qicos ¢, + p;sin ¢;

= (u"q" +v"qs) cos d; + p;sin §;

=("u'q" +u"v'g; +v"q4) cos ¢, + p;sin ¢, . (3.1.10)
Thus, from Eqn (3.1.8) and Eqn (3.1.10) we find

4r=—vq tuq, ,
=u'qg' +v'q, (3.1.8)
Go=—v'qg"+u'qs ,

~ "-~n

Gi=u"qg"+v"q, .

q;=q; —u'u"a(g;cos p; + p;sin ;) .

Let us determine the feedback coefficient B (i.e. the
transmission coefficient for the entire opto-electronic
circuit) and the amplitude coefficient of the squeezing
(or stretching) y:

B=u"u'ucosd; =2u"u’ cos; k(Q)E'|E;| exp(iQr) ,
| (3.1.11)
1+B

b

Here B=u"u'a = (nsT')"*a, where s =ncosd, is the
effective quantum efficiency of the detector with the
homodyne field phase taken into account, and 7' = u"
is the beam splitter transmission. At E3 = 0 we have ¢, =0
and

B = 2k(Q)I, exp(iQt) = 2k ()T 'T|E, |* exp(iQ7) . (3.1.11a)

In this notation,

qi = (@ — u'u"ap;sind;) = y(G — Ppitan §;) . (3.1.12)

From here we find the self-consistent solutions for the
signal at the detector’s output depending on the input
signals g, pr, k =1,...,4 and the coherent field phase ¢,
on the detector

q:(¢;) =vai(¢;)
where
Gi(¢;) = gicos ¢; + p;sin ¢;
— (ulluluq] + u”u'vq2 +M”V’L/3 + V”L/4)COS¢I.

(3.1.13)

+(@"u'up; +u"u'vp, +u"v'py +v"py)sin @, .

(3.1.13a)

Thus, any external action {¢, p;}, such as a determi-
nistic signal, classical or quantum noise, is multiplied by the
parameter p(Q) = 1/[1 4+ B()]. Therefore, p(Q) plays the
role of a spectral Green function for the photocurrent. At
[y(Q)| € 1 the scheme is a photocurrent stabiliser that
accordingly does not perceive external signals. As a
result, its noiseless cannot be used.

Notice that the coefficient B o .4 =#ncos¢; is max-
imum at ¢; =0, in particular in the absence of the
additional homodyne field (E; = 0). Meanwhile, this field
is necessary when using a phase modulator, because in that
case cos ¢; in the B definition is replaced by sin ¢,.

Analogously, from Eqns (3.1.8) and (3.1.10) we obtain

q"=9{q" —o[("v'qs +v"qs) cos §; + pisin ¢] } ,
q" =y[q" —u'a(v"qscos ¢, +p;sin ;)] ,
qo = o +v'ay(gicos ¢; + p;sin ¢;) ,

qr = Gr — x0(gicos §; + p;sin @;) .

(3.1.14)

The output AM signals depend on the phases of the
coherent components:

q0(bo) = o cos ¢y + psin ¢,
+v/ay cos By (G; cos ¢ + p;sin @)
q"(¢r) = —4qr,

(we have taken into account that the phase of the coherent
wave ‘reflected’ by the modulator is w).

Now we turn our attention to the difference in responses
to external perturbations {q, p} at different points of the
system. In formula (3.1.13) the entire external perturbation
is multiplied by the factor y. At |y| < 1 this leads to a strong
suppression of the external modulation and in particular to
a strong squeezing of the PN in the observed photocurrent.
In the first two formulas of Eqns (3.1.14) describing in-loop
fields, an additional perturbation, multiplied by the factor
oy with absolute value not exceeding 1, acts. This yields an
additional noise and, therefore, less squeezing than that of
the current (this is one of the paradoxes mentioned in the
Introduction). Finally, on the r.h.s. of the last two formulas
of Eqns (3.1.14) describing output signals, a part of the
external forces is not affected by the FB at all, which leads
to the absence of the squeezing. Moreover, the last terms in
these formulas yield excess AM noise at the output (which,
in fact, can be avoided by transforming it into FM).

Let, for example, only {(g;) be nonzero (i.e. there is a
harmonic modulation at the first input), then we have at the
outputs,

(3.1.15)

(g0) = —w'viq)) . (g)=—w[l + (1 —2)Bl{¢1) .(3.1.16)
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i.e. when |y| €1, the original modulation is suppressed.
This effect can be used to ‘clear’ laser beams of unwanted
modulation.

On the other hand, modulation (g3) from channel 3
influences the output signal ¢, in two ways: directly and
through the FB loop. Only the latter contribution can be
strongly suppressed by the FB. It is this circumstance
defined by the system’s dynamical properties that underlies
the fact that one has no possibility to extract the squeezed
light out from the FB loop using a conventional beam
splitter. Meantime, in the ‘nondemolition beam splitter’ ¢;
acts only via the FB loop (Section 3.4).

Notice that when |y| > 1, the system under considera-
tion can be used to amplify a weak input field, to increase
the modulation depth, and to generate new components of
the weak field [30]. The system may operate in the self-
excitation regime when a ‘self-modulation’ of the original
coherent field occurs. The generation frequencies €, are
determined by the poles of the spectral Green function for
the system, ie. by the equation B(Q,)=—1. These
frequencies are approximately defined by maxima of the
function |p(Q)|, which is plotted in Fig. 11. One may avoid
the self-excitation by introducing an additional damping at
these frequencies [12].

We have solved the dynamical part of the problem —we
expressed internal and output AM and FM signals in terms
of the input signals. This stage is classical in essence.

3.2 Green function and commutators

Let us consider now the system’s response to a short (with
respect to 1/AQ) perturbation. Let at instant =0 the
amplitude of a coherent field E; incident on input 1
increase sharply and then drop back. Here one may assume
(0:1(t)) x 6(r), so that (3;(2)) x {q;(R2)) = const and the
photocurrent pulse arises according to Eqn (3.1.13):

(0:/(1) x 2m)"~! J dQexp(—iQNy(@) = G(1) . (32.1)

Here the real function G(¢), the Fourier-image of the
function p(Q) = y*(—Q), is interpreted as the photocurrent
variable component. This is the response of the current to a
short d-like perturbation of the input coherent field. Since
the model under consideration is linear, the same function
G(r) is used in classical and quantum versions.

By representing y in the form 1 — B/(1 + ), we select
the original signal G, = () from the response function

G(e) = 8(r) _%J derp—E—F;Qt)ﬁ

According to the causality principle, the second term here
must vanish at ¢t < 7.

Let f,(Q) describe electronics’ dispersion with no
account for optical delay 7. By substituting

(3.2.2)

o0

p=[1+Bo() exp(i€20)] " = [-Bo(@)]" exp(inQ1) ,

n=0
we find the series expansion of the Green function in
powers of f

G(r) = i_o:G,,(t —n1),

3.2.3
G,(t) = zl—nj dQexp(—iQf) [—B,(Q)]" . (3:23)

Here Gy(r) = d(r) describes the initial perturbation,
G,(t —t) is delayed by the 7 response of the amplifier
(this is the Green function of the electronics), and the
subsequent terms of the series G,(t —nt) describe the
repetitive passing of the signal through the circuit.

If one neglects the electronics’ dispersion, the Green
function is a periodic sequence of d-functions:

G(t) = i(—ﬁo)"é(t - (3.2.4)
n=0

A characteristic feature here is the changing of signs (at
Bo > 0) of the system’s response pulses: the first pulse
(observed with a delay 1) is negative due to the modulator’s
transmission decrease, but later on this pulse causes the
modulator’s transmission increase and, correspondingly, a
positive second pulse of the current.

Let the electronics act as a one-pole low-frequency filter

ﬁo(Q) = B—-O

g (3.2.5)

(here 7, = 1/AQ is an effective time constant determined by
the bandwidth AQ of the detector, amplifier, or modula-
tor), then partial pulses in Eqn (3.2.2) at n =1,2,... have
the form

G, (1) = (_f;’)nj dQ

exp(—iQr) _ (=Bo)"(1/7)"'0(1)
(1 -1iQ7,)"  (n— D', exp(t/z,)’
(3.2.6)

where 6(r) is a step function.

Fig. 11 shows the plot of the function G(¢) — d(¢)
according to Eqn (3.2.3) and Eqn (3.2.6), and of the
function |p(Q)|* in the case of T =101, and f, = 0.6.

N

/11 + B(@)*

Figure 11. Temporal Green function G(r) (upper figure) and frequency
characteristics 1/|1 + B(€)]* (lower figure) of the opto-electronic circuit
with a feedback loop [according to Eqn (3.2.5) and Eqn (3.2.6)] at
t=10t, and f,=0.6. The distance between the extrema is
approximately 2w/t by frequency and © by time, where 7 is the total
delay in the circuit (with no account for electronics dispersion).
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Of similar shape (but with opposite sign) are the output
signals

(Q0(1))y = —wv'{Q:(1)).

(in the latter expression T =R :% is assumed).

With Q < r;] and 7, <€ 1, one can use the approxima-
tion (3.2.4); then y(Q) ~ 1/[1 + B, exp(iQ2t)]. This function
is reminiscent of the transmission coefficient for a laser
Fabry—Perot resonator, or rather for a ring resonator of
the total length ¢/t with proper frequencies Q, = 2mn/t and
excitation condition f, = —1.

Let us now find the field commutators in the presence of
FB. From Eqn (2.3.8) and Eqn (3.1.14) we obtain

[¢'(Q), p'(-2)] = n(Q) ,

(0.(0)) = —v(Qi()). (32.7)

(3.2.8)
[(/l(Qa 4)1),4,(_9, ¢2)] = iy(Q) sin(¢p, — @) .

Similar expressions hold for operators ¢”, p”. Thus, having
a strong negative FB, the in-loop field operators commute
with each other, i.e. they acquire classical character. This is
in agreement with the fact of the current PN decrease
observed in the experiments.

From Eqn (3.2.8) it follows that

[a'(Q),a""(Q")] =6(Q - Q")Rey(Q) , (3.2.9)
so that
[A"(5),A" ()]
= explioo(t’ — 1)] j deexp [;i(’ — Rey(Q)
=08(t—1t") —exp[iwg(t' —1)]
dQexp[iQ(t' —1)] B(Q)
xj o e T+ RO (3.2.10)

The second term in the latter expression is nonzero only at
|t —¢'| > 1. Making use of the definition (3.2.1) for the
Green function G(t), we get the relation

[A"(0), A" ()]

:%[G(t —t")+ Gt —1)] explimg(t' —1)] . (3.2.11)

With the help of Eqn (3.1.14), it is easy to verify that
the commutation relations are conserved for the output
signals:

[20(2), po(—Q)] = [4:(2), p(-Q)] =1 (32.12)

Finally, we take into account the FB action in the
original transformation of the field by the modulator
(3.1.1). Let u'=u"=1, u=v=1/y/2 for simplicity;
then Eqn (3.1.8) and Eqn (3.1.14) take the form

r_Nat+4) it
\/E ’ \/E ’
R VAl T S U (3213
4 ,\/E ’ r \/5 .

From here, using Eqn (2.3.7) we find the action of the
modulator on the operators {a,a’}:

a'(Q) =27 {[y(Q) + 1] [ (R) + a5 (?)]
+h@ - 1][of D +af (-} 5514
() =272 { (@) - 3] a1 (@) + [»(Q) + 1]ax(Q)
+[(@) — 1] [af (-Q) + aF (-2)]} .

This again leads to commutators (3.2.9) and (3.2.12). This
linear transformation (which is unitary only if y = 1) differs
significantly from conventional quantum-mechanical trans-
formations. Notice the mixing of the positive and negative
frequency components typical of squeezing .

3.3 PN in a system with negative feedback

Dynamical relations (3.1.13)—(3.1.15) allow the determina-
tion of the statistics of the internal and output signals
through that of the input signals {q;, pi} (k=1,...,4).
The input correlators may be found from Eqn (2.3.11); for
example, in the case of vacuum we have at all inputs,

<6/k (Q)le(—g» = <Pk (Q)Pk(—9)> = —i<6/k (Q)Pk(—9)>

= (e (@ (-)) =5 . 33D

Now at all four inputs let there be the same independent
fields with a spectral density n(Q) =n(—Q) and a real
squeezing parameter m(Q); then, according to
Eqn (2.3.11), ‘zero fluctuations’ % are replaced by
n+m +%. [In fact, the fictitious field intensity a, cannot
be nonzero, so that the example given makes sense only in
the approximation (y =1).] Therefore, the experiments
considered can in principle be repeated in the classical
regime by feeding intense (so that [n+m|> J) noise
radiation to all inputs. Since the system is linear, nothing
should be qualitatively changed. Thus the effect of the noise
suppression by FB has a close, fundamentally classical
analogue. This conclusion, based on the identity of classical
and quantum Green functions, may be extrapolated on all
linear optical systems [32, 44], for example on parametric
transformers (see Section 2.5).

In what follows we shall also need the case when fields
at all but the first input are in the vacuum state, and an
excess noise (positive or negative) is present at input 1, i.e.
gy == (q}) - 3 # 0. Normally ordered Langevin corre-
lators at different points of the system are defined,
according to Eqn (2.4.6a) and Eqn (3.1.8), by the formulas

(@) =n(:q":) =nT'(:¢"%) =0T 'T(:qi:) ,

33.1a
(@) =R{qi:),  (q@:)=TR'(:qi:) . ( )
To begin with, we find fluctuations at different points of
the scheme in case (3.3.1), i.e. for a vacuum at all inputs
(Fig. 12). All the transformations used above are ortho-
gonal, so that Langevin correlators of the form
<67i(9)67i(—9)>a <pi(Q)pi(_Q)>’ <67i(Q)Pi(—Q)> take vacuum
values (3.3.1). Then correlators like ((},»(Q)pi(—Q» =i/2
provide no contribution as they are compensated by the
average  (pi(@)Gi(—2)) = (G(@)pi(~2)" = —i/2; having
the opposite signs. Cross correlators like (G(2)7,(—Q))
make no contribution as well.
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Figure 12. Quantum fluctuations of amplitude and phase at different
points of the system. The amplitude fluctuations of the in-loop fields
between the modulator and detector are suppressed (without the 1 ! ! ! L L L
corresponding increase in phase fluctuations), but to a smaller degree 0 2 4 6 8 10 12

than the current fluctuations. The output fields contain some excessive
modulator-induced amplitude fluctuations.

As a result, from Eqn (3.1.13) we easily derive the Fano

factor for the current:
2 272 2

Fi(¢) = 2(a; ($:)) = 21[(@ (6))) = oI - (332)
The spectral density of the current fluctuations is then
equal to <i2(9)>=210<q,2(9,¢i)>:10|y|2. Thus, at fre-
quencies where [y(Q)| < 1, the shot noise should also be
less than the noise determined by the Schottky formula,
which was observed, for example, in the experiments [12]
(Fig. 13). The functional relation F(Iy) = (1+cly)™%,
where ¢ is a proportionality constant, was also confirmed
experimentally in Ref. [12] (Fig. 14).

J)
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)
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Spectral density of the noise/ dB

0 20 40 60 80 100
v/MHz

Figure 13. Dependences of the spectral density of the photocurrent
fluctuations on frequency observed in Ref. [12] for internal (a) and
external (c¢) detectors. Dependences (b) and (d) correspond to the shot
level of noise. The periodicity in the feedback sign change (22 MHz)
corresponds to a time delay in the feedback loop of T =45 ns.

Light powcr/mW

Figure 14. The relation between Fl._'/2 and the power of light on the
detector [12]. Here F; is the relative spectral density of the inner
detector’s photocurrent noise at frequency 18 MHz. The dashed line is
the limiting level following from Eqn (2.4.8) at n = 0.68.

Notice the periodic dependence of the PN squeezing on
the homodyne field phase due to factor cos¢,; in the
coefficient f [see Eqn (3.1.11)], in full analogy with the
case of the ‘conventional’ squeezed light [see Eqn (2.3.14);
the field E; was absent in the experiments [9—13], so that
¢; =0].

The correlation function of the photocurrent is defined
by the Fourier image of the function F(2,¢,)

(0.1, 801", $,)) = %J dQexp[—iQ( — YW@ .
(33.3)

For the output field according to Eqn (3.1.14) and
Eqn (3.3.1)

5 ! B 2
Fop=0)=1+p'ay]" =1+ 4,
0(¢ ) |V 7)| nct‘fT’ 1+p
R'cos’¢ | B 2
F =F,(0)cos’p +sin*p=1+—"|-L | |
0(¢) 0( ) ¢ ¢ ”cffT, 1+ﬁ
(3.3.4)

Thus, the noise is super-Poissonian at the optical output
(see Fig. 13), i.e. the excess noise of the modulator provides
a positive contribution to the total variance of the output
field, in contrast to the in-loop field [see Eqn (3.3.6)]. At
the same time, the PN of the output field remains at the
vacuum level. Thus, the output field like the squeezed light
has different amplitude and phase modulation, which can
be studied by a homodyne detector. By selecting phase and
amplitude of the homodyne field so that ¢ =m/2 (i.e. by
transforming the excess AM and PM), one can get rid of
the excess amplitude noise at the output.

This is also valid for the second output field E,
‘reflected’” from the modulator

M i ’ .(3.3.5)

F.(¢) =1 2
(@) =1+ |xoy cos @ + nT'R |T+F

Now we find the PN of the in-loop fields. Making use of
Eqn (3.1.14) and Eqn (3.3.1) we get
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_ 1+ |BP(1 = 1T ") /1T’

F (¢ = 0) |l +ﬁ|2 ’
ooy 1t |13|2(l — Negr) [Merr
F'(¢=0)= T , (3.3.6)

which coincides essentially with the results obtained in
Refs [12, 17]. It follows from here that F'—F” >0,
F” —F, >0, i.e. the relative fluctuations of the field on the
detector E” are also suppressed but less than those of the
current [12], and the relative noise of the in-loop field E’
decreases during its passage through the beam splitter or,
in general, an absorber —contrary to the rule (2.4.7). As
was already said, this is a result of the correlation, which is
not taken into account in Eqn (2.4.7), of the quantum and
excess noise incident on the beam splitter due to FB. In the
case of an absorber or detector, the correlation is meant
between the incident field and phenomenological Langevin
sources introduced into the theory to recover the
transformation unitarity when dissipation is present.

Let B* =8, ng=n for simplicity, then F” <1 at
B<2n/(1—2y). Analogously, F' < 1 at B<24T"/(1—24T").
Thus at #T’ < 0.5 a paradoxical situation is possible: the
field before the beam splitter (or any absorber in general) is
not squeezed, ‘classical’, but acquires a nonclassical char-
acter as the result of the absorption. Note, however, that it
is more consistent to define the nonclassical character of the
in-loop field in accordance with Eqn (3.2.9) from the
condition F—Re(y) < 0.

According to Eqn (3.3.6), at a given detector efficiency #
there is an optimal FB coefficient B, = n/(1 —#) produc-
ing a minimum field noise F,;, = 1 —# [12]. Thus a rather
unexpected coincidence takes place: the minimum value of
the Fano factor for the in-loop field incident on the detector
coincides with the minimum value of the Fano factor for the
current in the absence of FB and for the full PN suppression
in the light falling onto the detector [see Eqn (2.4.8)].

The formulas obtained above agree with general rules of
noise transformation by a beam splitter (2.4.6). Thus from
Eqn (3.3.4) and Eqn (3.3.6) at ¢, =0 we derive the
conservation law for the sum of variances (2.4.6a):
Fo+F"=F'4+F; (here F;=1). Further, expression
(2.4.6c) after the replacement Q,, Q1, 0», 0s=4q', q”,
¢3» qo takes the form R'(:¢":) — (:q3:) = 2u’v'Relq'q3).
With the help of Eqns (3.1.4), (3.1.7), and (3.1.14), we make
sure that the left-hand and right-hand sides of this equality
are indeed the same.

Notice that the photocurrent and signal at the beam
splitter input are correlated with each other, which can also
be studied experimentally. According to Eqn (3.1.14), at
¢, =0 we get

/(7 Syay ] 2 _ By
(@oai’) = 7" (G0 +v'0d@)Gi) =5 v'ah" =3 77 -

Let T"=R’=1/v2 and E; =0. From Eqn (2.4.5) it
follows that the difference between the signal envelopes at
two outputs of the beam splitter is proportional to the AM
signal at input 3: N ”(¢) — No(¢) = E'Q5(t). Hence, if there is
vacuum at input 3, this difference, which can be observed by
subtracting the currents of two detectors, will possess
Poissonian fluctuations [see Eqn (2.4.6b)], which can be
used to calibrate the measuring device [13]. At the same
time, the signals N” and N, taken separately have sub- and
super-Poissonian fluctuations, respectively.

(3.3.7)

Now let us find the spectral density of the side
components of the coherent field resulting from the
modulation. For the output field at ¢, =0 we find from
Eqn (3.1.14) and Eqn (2.3.11a) that

Fo(@ -1 R’ :

4 4T

B(Q)
1+ 5(Q)

no(Q) =m(Q) = (3.3.8)

The in-loop field spectrum and parameter m =
(a(Q)a(—9Q)) can be determined for simplicity from the
condition T/ =y =1. Then ¢’ =¢” = ¢, = g = y§, so that

@ =3 @, =3

.1 (3.3.9)
(9(Qp(=Q)) = (P(Qa(-2))" =5 () .
Using Eqn (2.3.11a), we get from here
W IONE
(@) =n-2) = | 1O
:l(l—i-Zilmﬁ(Q)_l) (3.3.10)
A\ 1+ p@f '
Let = f* # —1. Then according to Eqn (3.3.10)
m 2
;:_(14_3) ) (3.3.10a)

From here at > —1 we have |m|/n>1, whereas in
classical theory this inequality should have the opposite
sign: |m|/n < 1 (see the Appendix). Thus, the in-loop field
in the presence of an arbitrarily weak FB both positive or
negative should be considered nonclassical. Notice that
here, as in the case of usual squeezed light [see Eqn (2.5.4)],
the nonclassical parameter |m|/n tends to infinity as the
degree of squeezing decreases.

Let us express F = 2(q”) through m and n by means of
Eqn (2.3.11). Unity in Eqn (2.3.11) arose from the com-
mutator [a,a’] = 1. Replacing it by Re(y) in accordance
with Eqn (3.2.9) yields

F=2(¢)=2n+2Re(m+7y) . (3.3.11)
By substituting Eqn (3.3.10) into this equation, we obtain
again Eqn (3.3.2): F=|y|>. From Eqn (3.3.11) and the
classical Cauchy—Schwartz inequality n > |m| it follows
that F>Re(y). From here, one more condition of
nonclassical character for the in-loop field can be
derived: F < Re(y) (instead of the usual F < 1).

Finally, let us consider the case when strongly squeezed
light is fed into input 1, so that F; =2(¢}) =0 and
(ql:) = —1% (such an initial condition makes no sense in
semiclassical theory where F; > 1). Now according to
(3.3.1a) (@7) = (1 —nT'T)/2 and (7)) = (1 —TR")/2. Let
E; =0, then from Eqn (3.1.13), instead of F; = [y*, we
obtain

Fo =20 (@) = @[’ (1 —a1'T) . (33.12)
Thus the current fluctuations reveal both the initial
squeezing attenuated by losses [factor 1 —#T'T (see
Eqn (2.4.7)] and the squeezing due to FB. Analogously,
for the output field fluctuations from Eqn (3.1.14), instead
of Eqn (3.3.4), we get [cf. Eqn (3.1.4)]
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2R'| B
Fo=2{(3) +—— |-
0 <(10>+’1T/ 1+ﬁ >
R'(0—yT'T)| B [

(@)=1-TR"+ (3.3.13)

nT’ |1+p

The term 1 — TR ' describes the initial squeezing attenuated
by losses and independent of FB, and the last term is the
FB-produced excess noise.

3.4 Observation of the in-loop field PN

According to Eqns (3.3.4) and (3.3.5) the scheme with FB
considered in the previous section does not permit one to
extract the squeezed in-loop light for practical use.
Furthermore, for current fluctuations actually observed
in that scheme, some models predict the same result as in
quantum theory, but the in-loop field in the FB circuit is
not squeezed, (classical) (see Section 3.6 and Refs [19-21]).
A question arises as to whether one can in principle
discover experimentally the in-loop field squeezing effect or
whether it is a fundamentally unobservable ‘thing in itself’
and the disagreements are academic in nature.

Thus, there are two interconnected problems: the
possibility of experimental study of the in-loop field ‘to
be squeezed’ and the possibility of its extraction without the
squeezing being lost. Both these problems can be solved
with the help of nondemolition quantum measurements
[22-29].

We start with a qualitative description of a possible
method for observations of the in-loop field fluctuations
which uses the optical Kerr effect (see Refs [15, 16, 24]), and
then we dwell in more detail on a scheme with a parametric
‘nondemolition beam splitter’ (Section 2.5) that solves both
these problems.

The in-loop beam splitter in Fig. 10 that extracts the
light ‘out from’ the FB-loop, together with an additional
external detector, performs a ‘perturbing’ or ‘demolition’
measurement of the energy flux. Such measurement, owing
to the vacuum noise contribution Q3 from input channel 3,
recovers the usual PN of the original laser light and
additionally reveals some excess noise introduced by the
modulator [see Eqn (3.3.4)]. To discover experimentally the
assumed in-loop squeezing, it is necessary to use nonlinear
optical devices for information extraction.

In the in-loop beam we put, instead of a conventional
beam splitter, a transparent material with a large cubic
nonlinearity, for example a Kerr cell with nitrobenzol.
Under the action of the light field, the optical Kerr effect
occurs: the material’s refractive index n varies proportion-
ally to the in-loop field intensity N'(t), i.e. the light
amplitude modulation signal is carried over the refractive
index An(t) x N(t) < Q'(t), where Q' is the quadrature
(modulating) in-loop field signal.

The modulation of the refractive index of the material
An(t) can be transformed into PM of an additional probing
light beam (the latter thus introduces some PM back into
the in-loop field which has no effect, however, on the
detector’s current at ¢; = 0). Then PM of the probing beam
is transformed into AM and is detected. The photocurrent
fluctuation will have an excess component proportional to
the AM noise of the in-loop field (q'2(£2, q5)>

Unfortunately, the practical realisation of efficient Kerr
nondemolition detectors meets difficulties because of the
weak cubic nonlinearity of the material.

Let us therefore consider a method of QN D-transforma-
tion owing to a quadratic nonlinearity [26—29]. Let us
replace the beam splitter in Fig. 10 by a PT with two beam
splitters as described at the end of Section 2.5. After the
notation in Eqn (2.5.10) has been rearranged in accordance
with Fig. 10, instead of Eqn (3.1.2) we get

qw0=4q", po=p =25,
(3.4.1)

9" =q;+2fq", p" =ps,

(here f =sinh I is a parametric coupling coefficient). Thus,
now Q-quadrature of the output field duplicates (go = ¢’)
QO-quadrature of the in-loop field at the modulator’s output
(without signal g3 from input vacuum channel 3 being
added!), and the ‘nondemolition measurement’ signal
(9" = g5 +2fq") is used to get the error signal depending
on ¢’ and ¢;. One can neglect the contribution of the
intrinsic PT-noise proportional to f> for a sufficiently
coherent component. We emphasise that the PT by itself
produces no squeezing at all: according to Eqn (3.4.1),
Fo=1and F" =1 +4f2 for open FB.

With the substitution u’ — 2f, v/ — 1, the expression for
¢" in Eqn (3.4.1) coincides with the expression ¢” =
u'q’ +v'q; used earlier for a conventional beam splitter
[see Eqn (3.1.2)]. Therefore, in Eqn (3.1.11) and
Eqn (3.1.14), it is sufficient to make the substitutions (we
assume E; = ¢ = ¢; = 0)

B = 2(uu'u"E,)*k () exp(iQ7)
— B =202fuu"E,)*k(Q) exp(iQ7)

~ B
(1/:'Y[({/—u,u,,(uﬂvlfh+V”(14)
I __ _ ~/ .B " "
—q —QO_V[(I _W(u gz +v (14)] . 34.2)

From here [cf. Eqns (3.3.4) and (3.3.6)] we derive the Fano
factor at the external output of the PT which coincides with
that for the in-loop field

o LHIBP/AfP 1+ |AuE k(Q)
1+ B n+p7

Formula (3.3.6) for F” remains unchanged.

Let B = B*, then at § = 4177 the squeezing is maximum:
Fo=1/(1+4f%*). At I'>1 we get Fy=-exp(=2I)/n,
which differs only by a factor 1/5 from the result of
squeezing with the use of a conventional PT with one
transverse mode [see Eqn (2.5.3)].

Notice that according to Eqns (3.4.1) and (3.4.3), the
uncertainty relation (2.3.10) for the output field is satisfied:

2\ 2 1+4f°
D) > Ty

If one introduces an additional light absorption #; in
front of the in-loop detector by keeping coefficients f and f
constant, then # in the numerator of Eqn (3.4.3) is replaced
by #n,. As a result, F, increases. The relative difference
(Fy — F;)/F;, proportional to 1/n, according to Eqn (3.4.3),
characterises the effect of ‘dissipative squeezing’—the
relative field fluctuations decrease during absorption [see
the discussion after formula (3.3.6)]. Thus, this effect can be
experimentally studied by comparing the noise of two
detectors—the in-loop and nondemolition external detec-
tors (or of two nondemolition external detectors).

FOZF

(3.4.3)

(3.4.4)
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3.5 Discussion

The formal computations made in Sections 3.1-3.4, in
spite of the simplicity of the linear algebraic relations
between spectral components of the fields and current used,
yield some difficulties for interpretation, as already
mentioned in the Introduction.

The paradox of the violation of the rule ‘absorption
decreases the non-Poissonian character’, can be formally
resolved without special difficulty. This rule assumes no
correlation of the original field and quantum noise added
during the absorption, whereas the FB just establishes such
a correlation. More unusual is the fact of such a quantum
correlation established through the macroscopic signal
controlling the modulator. We repeat in a simplified
schematic way the logic of the FB-effect calculation.

Let 7' =y =1 (i.e. the beam splitter is absent and the
detector’s efficiency is unity), the delay 7 be zero, and the
additional homodyne field E; be equal to zero as well (then
¢, = 0), so that all three in-loop fields coincide (E' = E" =
E;=E; Q'=0"=0,=0). We also neglect the electro-
nics’ dispersion [k(Q) = k]. Then the main relations (3.1.8)
take the form

Q:é_wa

Here Q and P are the self-consistent values of the operators
of the in-loop field between the modulator and detector (with
no account of a strong coherent component E), Q, P are the
same field operators with the open FB-loop, i.e. in the
absence of the modulation signal (—W). (Minus sign gives
negative FB.) According to Eqn (3.5.1), the in-loop field is
made by a superposition of two principally different
components—by the external field Q, P producing PN
and an additional field (—W) emitted by a classical source (in
fact, the modulator generates no additional fields and only
redistibutes incident fluxes, but the in-loop field ‘does not
know’ that).

As is known, a classical source of field conserves the
coherent character of the original field state [31]. In the
Heisenberg representation, its effect is reduced to adding to
the field operators a nonoperator part (—W in the given
case) that coincides with the classical field of the given
source [31]. As a result, the transformation (3.5.1) is unitary
and the commutator remains unchanged:

[0,Pl=[0-W,P]=[0,P]=i.
A classical signal W (), noisy or determined, modulates
the amplitude E of the original coherent field. In the case of

stochastic modulation, from Eqn (3.5.1) we find the field
variance in the form:

(02)=((@-W)")=(0*)+W>.
Here the bar means classical averaging (over an ensemble of
identical experimental devices or, by assuming ergodicity,
over time) and ( QW ) = 0. As one might expect, during the
superposition of independent random values their variances
are summed (independently of the sign of W).

But in the model considered, the stochasticity of the
modulating signal W is connected with quantum fluctu-
ations of the detector’s current, i.e. one should consider the
operator W to correspond to the classical observable Q

) (3.5.4a)

(here B is the transmission coefficient for the entire loop).
Introducing such a relation between ¢- and g-numbers, i.e.

P=P. (3.5.1)

(3.5.2)

(3.5.3)

making some operator an observable quantity, appears to
be an unavoidable stage in any quantum model. It
determines the external boundary of the quantum object
and constructs the bridge between quantum formalism and
experiment. The choice of appropriate operator is usually
made by informal, intuitive considerations. The next step,
according to accepted postulates of quantum theory, is
equating the observed time means to the quantum means:

W=p0Q), W2=p(0"),.... (3.5.4b)

After substituting the latter equation into Eqn (3.5.3), we
find
1

(0%) = (0" +p(0%) =—5 (07,
p b (3.5.5)
A2

iR

Therefore, regardless of the sign of B, the FB must increase
current field fluctuations.

The experiments, however, demonstrate a decrease in
current fluctuations (at some frequencies); they suggest the
functional relation (Q2) = (Q2)/(1 + B)* (see Fig. 14). The
obvious error of our conclusion is in using in Eqn (3.5.3)
the assumption that there is no correlation between the
classical controlling signal and the external operator field.
To take this into account, we substitute Eqn (3.5.4a) into
Eqn (3.5.1) without averaging:

~ 0
0=0-$0=717

When > 1, we have Q =0, i.e. according to Eqn (3.5.1)
W ~ Q —the modulating signal (—=W) is fully anticorre-
lated with the original quantum noise. With the help of
Eqn (3.5.4a) we excluded the classical signal so that here
there is no classical randomness. Then, performing
quantum averaging, we get a result consistent with
experiment and dependent on the FB sign:

W=

(3.5.6)

o 0% _
= T

, e (3.5.7)
T

Experiments [12] are in agreement with the result
obtained from linear coupling (3.5.4a) between the macro-
scopic signal W and the field operator Q, i.e. with the fact
that the real macroscopic voltage on the modulator is taken
to be proportional (without quantum averaging) to the
Heisenberg quantum mechanical operator. The relation
W = BQ between unaveraged c¢- and g-numbers describes
the procedure of quantum measurement conserving quan-
tum stochasticity [see also the discussion after formula
(2.5.14)]

In the model considered above # =1, so that the
envelope signal of the field falling onto the detector —
operator Q" —coincided with the classical signal of the
detector Q;. Here the difference between quantum and
classical signals is masked. The ‘electronic’ amplification
Q; — kQ; or branching (cloning) of the electrical signal at
the detector’s output is not accompanied by the appearance
of an additional quantum noise (in contrast to the light
beams), which demonstrates its classical character. On the
other hand, during branching of the electron flux in
vacuum, branching noise is known to arise (in the absence
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of space charge). It appears that from here one may draw
the conclusion that the signal Q; can be cloned or amplified
without being ‘damaged’ only after electrons have pene-
trated from vacuum into the metal, or, in more general
terms, after collective degrees of freedom of the macro-
scopic objects have been excited. The latter condition
appears to determine the moment of status changing
when the g-number becomes a c-number (dequantises).
But on the other hand in the model considered, the current
‘realises’ quantum measurement [15], thus reproducing the
quantum stochasticity.

Thus, after the FB has been looped, the modulating
signal W (¢) in the initial relation (3.5.1) plays the role of a
Heisenberg operator. The relation (3.5.4a), as we have
already noted above, modifies the standard commutation
relations for in-loop fields E'(¢) and E"(¢) [at |t —¢t'| > =,
see Eqn (3.2.10)]. Formally this results from the in-loop
field not being free [15], i.e. there is an external, operator
source of the field. The role of the source in Eqn (3.5.1) is
played by the term W(z). In the case when a classical signal
is fed into the modulator, this term does not change the
commutation relations, but by Eqn (3.5.4a) this invariance
is lost. This is a general rule for interacting quantum
systems: the interaction changes the dynamics of the
subsystem, which is equivalent to Green functions modifica-
tion and commutators connected with them [see
Eqn (3.2.11)]. A peculiarity of the given case is that the
system interacts (with a delay 7) with itself, with its own past.

The unusual features of the in-loop field seem to justify
the introduction of a special term for it, for example,
‘supersqueezed light’. This name reflects the main feature of
the in-loop field —violation of the uncertainty relation for
quadratures (2.3.10) at some frequencies. Another possible
term — ‘anticorrelated light’ [12]—reflects the squeezing
mechanism: the modulation of coherent amplitude by a
stochastic signal varying in counter-phase with quantum
noise arising in the detector.

Frequently in quantum optics, the nonunitarity of
phenomenological transformations is reconstructed by
adding appropriate Langevin sources into dynamical
equations (for example, the detection process (3.3.3)
description at # # 1). This is impossible when describing
the modulator, as the modulator can change only one field
quadrature while both quadratures should be changed (in
the opposite directions) during unitary squeezing so as to
not violate the uncertainty relation (2.3.10).

3.6 A posteriori approach

We shall start from the following postulate: ‘quantum’
fluctuations observed in experiments are the result of the
quantum measurement procedure made by the measuring
equipment. It is natural to accept that the observed shot
noise of the photocurrent during illumination by light in a
coherent state is the result of quantum measurement too.
Hence it makes no sense to speak of a priori existence of
the PN because it is generated only ‘inside’ the photo-
detector. Then it can be adequately taken into account, as
is usually done, by a procedure of ‘discretisation’ the
transition from continuous g-numbers (field operators) to a
set of discrete random classical events {r;} (see Section 2.2).
As follows from Eqn (2.2.12), this procedure is equivalent
to (in the absence of FB) a substitution of the normally
ordered correlation function of the field intensity G, by a
nonordered one Gj. As a result, one can carry over at will

the current noise back into the light flux by considering
nonordered correlation functions. Then the PN is explained
by noncommutativity of the field operators.

Until recently, it has appeared that these two points of
view on the PN —a priori and a posteriori— give the same
observational consequences and thus the choice between
them is a matter of taste. Here we shall show that this
conclusion is not valid when describing the in-loop field in
the FB-loop.

Notice that the discretisation procedure is the only
source of the observed shot noise of the current in
semiclassical theories as well (which differ from ‘a poster-
iori’ quantum theories only in replacing quantum
correlation functions by classical ones). Thus, the ‘a
posteriori’ quantum description given below can be con-
sidered semiclassical to the same extent. For simplicity, the
original state of the field will be considered as coherent and
the additional homodyne field E; to be absent; as above,
modulation and demodulation are considered in the linear
approximation.

If one is interested in the statistics not of the field
amplitude and its quadratures, but only of its intensity
fluctuations, then one can use the very simple description
given by a stochastic phenomenological equation for the
current with Langevin force g;. According to Eqn (3.1.8),
the relative noise amplitude at the detector’s output has the
form

g=—

i 1 + B )
where ¢; = i(Q)/+/21,, i(Q) is the alternating component of
the current at a frequency Q # 0 at the detector’s output
(which is now a c-number), I, = i(0) its DC-component, f
is the FB coefficient, and (},»2 = %, according to Eqn (2.2.13).
From here, we derive the known expression for the Fano
factor of the current (which is the same in a priori and «
posteriori models)

2(q} 1
F, = {ai) _ - (3.6.2)
I 1+p
According to Eqn (3.1.8), the relative signal at the
modulator’s output with no account taken of the quantum

noise has the form ¢’ = —(B/+/nT')q:, so that

B 2
T+B

4 =G4 — B, (3.6.1)

1

N2\ __
((¢" >_W (3.6.3)

This is the excess noise induced by the modulation.
When detecting the in-loop field by a conventional detector,
PN is added which can be taken into account in advance by
having added (') = 1. As a result, the Fano factor for the
in-loop field between the modulator and the beam splitter
takes the form

1 2

nr’

B
[+p

From here, using the ordinary rule (2.4.7) we get at the
two outputs of the beam splitter with parameters 7', R’,
1 ﬁ 2 ! ﬁ 2
F'=l4-|—, F=1+ —— . (365

nil+p 0 1+ 8 ( )

The latter expression coincides with Eqn (3.3.4) as well
as with the results calculated by other authors (with the
substitution R’ — noR’ that takes into account the external

F'=2[(¢'V+ (@] =1+ . (3.6.4)

nT'
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detector’s efficiency). Thus, calculations by all possible
quantum and semiclassical methods yield the same results
for the parameters F; and F, observed by conventional
detectors. At the same time, expressions for F’ and F” in
Eqn (3.6.4) and Eqn (3.6.5) differ significantly from those
obtained above in Eqn (3.3.6). Now they predict super-
Poissonian fluctuations of the in-loop fields, i.e. the absence
of squeezing. (The in-loop field parameters F' and F” are
usually ignored in semiclassical calculations as unobserv-
able.)

3.7 Corpuscular model

Let vacuum be present at all additional inputs in Fig. 10. If
one is interested only in small fluctuations AN = n of the
light intensity N (by ignoring different AM and PM
modulations at the output, see Fig. 12), then one may use a
simple visual description in terms of light beams with
Poissonian initial intensity fluctuations 7 changed under
the action of the FB. The Poissonian fluctuations are
associated with chaotic particle fluxes, therefore this model
can be called corpuscular.

Let us change the field indexes. Let index 0 relate now to
the original Poissonian flow, 1 to the flux after the
modulator, 2 and 2’ to the fluxes at the beam splitter’s
output, 3 to the electron flux at the detector’s output, 4 to
the amplified electrical signal controlling the modulator.
Let N; and n;(Q) be constant components and small
ﬂuctuatlon additions, respectively, at some frequency at
which one can neglect the FB-loop dispersion. For
Poissonian ‘seed’ parts of the fluctuations, which we
designate by 7;, we have the spectral densities

(if) =N

Let us denote the transmission coefficient of the
modulator (with no signal), beam splitter, detector and
amplifier by Ty, Ty, T», and T3, respectively, and the noise
introduced by these devices by fj; then fy and f; describe the
noise of the ‘flux distribution’ by beam splitting, f, the
detector’s noise (connected with difference 7, from 1), and
f; the amplifier’s noise. The modulator in the linear
approximation produces a noise component —2Nn, to

(3.7.1)

the flux N;, where N; =ToNy. As a result, the fluxes
are transformed as follows (R; =1—T)):

Nipp =TiNjs  nppy = Tin +f; = 2N1nadjo

NS =R\N,, ny=Rn +f . (3.7.2)

Here the input flux Ny and hence its fluctuations 7, as well
as the proper noise of the electronics f3, are considered to
be specified.

The spectral density of the noise sources f; at j =0, 1,2
can be derived from the condition of ‘Poissonianity’
conservation (3.7.1):

<I+]>—T<Il>+<f/>— 2N+<f]> j+l_TN
(3.7.3)
From here,
(ff) =TiR;N; . (3.7.4)

Thus, in the present model, instead of vacuum amplitude
noise at the system’s additional inputs [see Eqns (2.4.6),
(3.1.2), (3.1.3)], phenomenological Langevin forces f;
(j=0,1,2) are used, and the electronic amplifier’s noise
f3 is added for generality.

Considering Eqns (3.7.2) and (3.7.4) we find

n=n —2Nngy, ny=n,—2TNny,
1 1 114 2 2 1V 11y

n3 :ﬁ3 —2T|T2N]n4 . (375)
ny = T3I—1‘3 +f3 —_ 2T]T2T3N|l’l4 .

In the first three equalities n, should be substituted by one
of the following equivalent expressions

ng=f3+Tsnz =f3+ T3/ +T3Tan,

=f3+T3f2+T3T2f1 +T3T,T 0y . (3.7.6)

Let us denote f=2TT,T3N, y=1/(1+ B), then from
Eqns (3.7.5) and (3.7.6) it follows that

s h f f
" _y[”' B(TI T T

s f f3
e y[nz B(T|T3 * T,T5)]"°

5 e _ -
ny =7y|n; *ﬁT— o ng=y(Tsii3 +f3) .

3
n B _
T, T2 T,\T,T,

This is the ‘corpuscular’ equivalent of the dynamical
equations for the system obtained in Section 3.1 [cf.
formulas (3.1.13) and (3.1.14)]. Obviously, considering the
amplifier’s noise f3, only fluctuations n4 at its output are

infinitely suppressed (at f — 00).
Taking into account Eqns (3.7.1) and (3.7.4), from here

o bt
] “2%“’]%(%)?}»
o= e (52 (35 )}
= { <ﬁ“ i

V{TINs + ()}
Fre ()]

Let now f;=0. Let us determine the Fano factors
= ﬁf/Nj. According to Eqn (3.7.8),

(3.7.7)

YBR,

/
ny = 112

("1 72

(3.7.8)
("4

{((n3)*) =N3 +7°B

B(1—1T,T,) 2 B’R,
F =914+~ 172/ F, = 1
=7 [ + T, ) 2= + 7 )"
22
R (3.7.9)
Fro— o2 Fl =1 7" B°R, .
3=7, 2 + .7,

These expressions coincide with those obtained in Section
3.3.

Let us determine, also with the help of Eqn (3.7.7), the
correlation

(n3ng) = —y <ﬁ3yﬁR|

2
3 >:—MN—3R‘. (3.7.10)

n
T, T,
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After having divided this expression by 2§N2’N3) =
2N3(R(/T\T,)'?, we obtain 1By*(R,/T T,)"/?, which
coincides with Eqn (3.3.7) up to a sign.

Thus, for the simplest experimental scheme, the corpus-
cular model yields the same results as the theory considered
in Sections 3.1—3.5 above. However, with this model it is
hard to describe unequal AM and PM modulations of the
output field, the versions with a phase modulator and an
additional homodyne field, and with the QND detection as
well. The explanation of the anomalous action of beam
splitters and absorbers placed into the FB loop in general
remains out of the scope of this model.

Now let us apply the a posteriori approach. Then the
original photon noise fy and noise of photon distribution
fi1, f> are absent. Let the amplifier also be noiseless, then the
detector is the sole source of noise. Substituting
n; =n, =f; =0 1in Eqn (3.7.5), we find

ny = —=2Nny = — B , mp=—"2T\Nny = —'BWS >
T, T,
I’l3:ﬁ3—2T|T2N]I’l4:'yﬁ3 . (37]])
ng=Tsny, ny=Ryn .
Using (ii{) = Ny = T,N, = T,T;N, we obtain
2 2
N N
<,1%> — (ﬁ'))) 1 , (}é) — (ﬁ'))) 2 ,
T, T,
(3.7.12)
By)*N3R
() =7Ns. () = BOR

T,

Now all light fluxes n;, n, and nj contain only excess noise
introduced by the modulator. The same modulation noise
enters formulas (3.6.4) and (3.6.5). The correlation (3.7.10)
also follows from Eqn (3.7.11).

Thus, in the framework of the corpuscular phenomen-
ological model both concepts of the PN also lead to the
same results when describing experiments which use
conventional AM detectors.

4. Conclusions

We have tried to present modern ideas about the nature of
PN observed by means of analogue detectors, and about
methods of its description, transformation, and suppres-
sion. In our discussion a large role is played by two
comparatively new points—the idea of nondemolition
measurement of the light field amplitude (and thus of the
PN intensity) and the idea of the PN suppression by an
electronic FB.

There is a significant difference between the quantum
(Q), semiclassical (C), and pure classical (C*) descriptions
of the PN and its suppression by FB.

In the framework of the C*-description, original fields
already contain a ‘real’ noise component with equal or
unequal quadrature variances which are changed by the
action of FB. This description does not pretend to be true
but only provides useful visual analogues with quantum
models because of linearity of the system considered.

In C-models, one needs to introduce the stochasticity
artificially by using a Langevin source of noise or by
postulating photoelectron creation as a stochastic point
process. In the presence of an FB this is a process with a
delayed self-action which is performed through a classical

field with intensity controlled by the photocurrent. In C-
theories, the possible squeezing of the field —either of
external or internal origin—is ignored, and the idea of
nondemolition measurement is ignored as well.

In the Q-description, there are two variants which give
significantly different predictions for experiments with
electronic FB and nondemolition detection.

In the first, a posteriori variant Qi, the PN is a quantum
noise of measurement arising during the detection. As a
result, the Q;-model predictions coincide with those of C-
theory: the in-loop field is not squeezed under the action of
the modulator, but instead receives excess noise.

In the second, a priori variant of calculation Q», one
considers potential stochasticity to be originally present in
the field and quantum noise to appear ‘automatically’
through the noncommutativity of its operators. Here one
postulates the observed current fluctuations to be deter-
mined by nonordered field operators. The macroscopic
amplified photocurrent i(r) is taken to be proportional
to the field intensity operator (without quantum averaging).
The FB modifies the phenomenological Green function of
the system, thus decreasing (or increasing) the in-loop field
operators’ noncommutativity and squeezing (stretching)
one quadrature variance without reference to the orthogo-
nal quadrature. The Qa-model considered here based upon
Ref. [15] and using Heisenberg representation predicts three
new effects (see Fig. 12): the fact of the variance squeezing
for one of the in-loop field quadratures [15], the lack of the
corresponding stretching for the second quadrature [15]
(‘supersqueezing’) and, finally, the squeezing increase
during the in-loop field dissipation on the way toward
the detector or during the detection [12] (effect of the
‘dissipative squeezing’). It seems that these effects can be
observed with the help of nondemolition detectors. Their
calculation in the Schrodinger representation will probably
meet significant difficulties.

Notice that in the experiments, one can go beyond the
linear regimes of modulation, detection, and amplification
(the amplification linearity was certainly broken down in
Ref. [12] near the auto-oscillations threshold). One can also
use the original light in a noncoherent state. The theoretical
description of such experiments must be an interesting
nonlinear quantum problem.

To conclude, it is worthwhile to emphasise the difference
between the terms interpretation and concept. The inter-
pretation is usually understood as a convenient verbal and
visual (i.e. customary) description of the results of math-
ematical computations in the framework of an already
approved model. On the other hand, concepts serve as a
base for choosing one or other particular model describing
a given experiment or a group of experiments. Further, in
the framework of the model chosen, the mathematical
computations of the measured quantities and comparison
with observational data are being made. In modern
quantum optics a rare situation has emerged when there
are two groups of models for optical systems with FB based
on two alternative concepts. For an ultimate choice between
them to be made, crucial experiments are obviously needed.
However, given the sequence of experimental schemes as in
Fig. 5c, 5d, and 5e, which use a ‘nondemolition’ beam
splitter, the a priori models, despite their paradoxical
features (see the introduction), appear to be preferable.
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Appendix. Uncertainty relation and Cauchy -
Schwartz inequalities for spectral components

Let A and B be arbitrary operators, /) be an arbitrary
vector, and z = x exp(i¢p) be an arbitrary scalar. We also
define C=A +zB and |¢') =C|y). The condition of
nonnegativity of the norm of vector |') has the form:

(W'ly') =(CTC)=((AT +2"BT)(A +zB))
= (ATA) +2x Re[exp(i¢)(ATB)] +x*(B*B)
=c+bx+ax*=0. (A1)

Here the angle brackets denote averaging with the help of
|). The quadratic equation with respect to x must have no
more than one real root, i.e. the condition 4ac > b* must be
satisfied. From here a Cauchy—Schwartz-like inequality
follows:

(A*A)(B*B) > {Re[exp(i¢)(A*B)]}

The right-hand side is maximum at ¢ = —arg{A*B). Then
a maximum lower limit for the left-hand side is obtained in
the form

(ATA)(BTB) = |(A

(A2)

“B)|’ = |(BTA)|*

When ¢ =0 or ¢ =m we get the generally more mild
restrictions

(A3)

(ATANBB) > (Re(A™B))”

(ATA)B*B) > (Im(A*B))” . (A4)
IfA =A% and B =B*, then Im(AB) = —i((AB) — (AB)*) =
—i([A, B]).

Let us substitute A and B by AA =A —(A) and
AB =B —(B); then from the latter inequality in

Eqn (A.4) we obtain the usual uncertainty relation
(A7)(AB%) > (i([a, B]))’

Let us consider two cases.

I. Let us accept A =a(wy+Q)=a(Q) and Bt =
alwy — Q) = a(—Q), where a and b are photon creation
operators in modes with frequency w, + €, then Eqn (A.3),
in the notation of Section 2.3, takes the form

Q)[n(@)+1] = |m(@)[’

It is accepted here for simplicity that n(Q) is an even
function and [a,a*] =1 (i.e. discrete Fourier decomposi-
tion is used).

In classical theory, a similar inequality holds for
classical averages but the ‘unity’ on the left-hand side

(A.5)

(A.6)

that is the commutator [a,a’] =1 is absent, so that
Eqn (A.6) takes the form
Im(9)|>
<1. (A.62)
( n(Q) clas h
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The values of correlators m and n found from quantum
models or by experiments satisfy, of course, Eqn (A.6), but
may not satisfy Eqn (A.6a) when n(Q) < 1 [see Eqn (2.5.4)
and Eqn (3.3.10a)]. The corresponding radiation is called
nonclassical.

2. Let now in Eqn (A3) A = ¢ =¢(Q) = ¢ (—Q) and
B =p =p(Q) =p*(—Q) be quadrature operators; then we
get the following restriction for spectral densities:

@) ) = o)’ = [(rta)| - (A7)
Since operators ¢ and ¢, as well as p and p*, commutate
with each other, the similar inequality in classical theory
has the same form. In a similar way, by setting A = ¢*,
B=p", we get

2 2
(@ a)(p*p) = (ar™)] = [(pa®)|" - (A.7a)

Considering Eqn (2.3.11) we obtain from Eqn (A.7),
(a" ()a(Q))(r" (2)r(Q))
;Z{lm[ QY + [n(@) —n(-Q) +1]° . (A8)

Let m =m™* and n(Q) = n(—Q), then finally we find,

(¢"(@a(Q))(p" (Qp(Q)) > 3—‘ (A9)



