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Abstract. The p rob lems of the dynamics of high-energy 
charged part icles in straight and bent crystals are discussed. 
Var ious m e t h o d s for describing part icle scattering in 
crystals are considered, including the Born ap p ro x i ma­
t ion, classical e lectrodynamics, and the e ikonal a p p r o x ­
imat ion. These p rob lems belong to the theory of nonl inear 
systems in which b o t h regular and chaot ic mot ion is 
possible. Var ious types of channell ing mo t ion and above -
barr ier mo t ion of part icles in a crystal a long one of the 
crystal lographic axes are discussed. Special a t ten t ion is 
given to the studies of mo t ion of part icles in a bent crystal, 
which m a y be used to bend high-energy part icle beams . 

1. Introduction 
The p rob lem of the interact ion of fast charged part icles 
with crystals is of considerable interest from a number of 
viewpoints . A b o v e all, the passage of high-energy part icles 
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t h rough a crystal is accompanied by coherence and 
interference effects, which are due to the interact ion of a 
part icle with different a t o m s in the lattice. These effects 
include the diffraction of x rays in crystals [1], the Bragg 
scattering [2], the coherent scattering, the rad ia t ion emitted 
by relativistic electrons, the format ion of e l e c t r o n - p o s i t r o n 
pai rs [ 3 - 6 ] , and the r a inbow scattering [7, 8]. These effects 
are the reasons why the probabi l i ty of the interact ion of a 
part icle with lattice a toms m a y be considerably higher t h a n 
the probabi l i t ies of ana logous processes involving single 
a toms . M u c h has been publ ished on this subject (details 
can be found in reviews and m o n o g r a p h s [9 -16] ) . 

A crystal is a un ique system with very s t rong internal 
electric fields. The average values of the internal crystal 
fields m a y be several orders of magn i tude higher t h a n 
macroscopic external fields. W h e n part icles move in such 
internal fields, they m a y experience channell ing, which is a 
r emarkab le p h e n o m e n o n in which a part icle moves a long 
open channels formed by a toms located in crystal lographic 
planes or a r ranged a long crystal lographic a x e s . | The 
mot ion in a s t rong inhomogeneous crystal-lattice field is 
s trongly nonl inear and it can be regular or chaot ic . It would 
seem tha t any mot ion of a part icle in a crystal should 
always be regular because of the periodic crystal s t ructure. 

f Attention to this effect was first drawn by Stark in 1912 [17]. The 
existence of open channels was established much later by Robinson 
and Oen [18] who simulated numerically the motion of a charged 
particle in a crystal. The foundation of the theory of channelling was 
provided by Lindhard [19]. Channelling is discussed in a number of 
reviews and monographs [20-27] . 
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However , in view of the high intensity and nonl inear i ty of 
the fields in crystals, mo t ion of a part icle m a y be regular or 
chaot ic [ 2 8 - 3 0 ] , b o t h in the presence and absence of 
channel l ing [14, 31]. 

Quan tum-e lec t rodynamic effects which appear dur ing 
the mot ion of a charged part icle in a s t rong crystal field 
have a n u m b e r of interesting proper t ies . The probabi l i t ies 
of such processes as b remss t rah lung and pair format ion 
increase strongly at high part icle energies (see, for example, 
Refs [14, 25, 3 2 - 3 6 ] ) . In describing these effects it is 
necessary to t ake account of the recoil which accompanies 
the emission of rad ia t ion and also of mult iple processes. A 
very specific p h e n o m e n o n is the growth of an e lec t romag­
netic shower in a crystal [37, 38]. 

There is also the p rob lem of the interact ion of h igh-
energy part icles with a bent crystal. In the presence of a 
s t rong internal crystal field the bend ing of a crystal bends 
the part icle pa th , so tha t it is possible to bend a beam of 
moving part icles in a crystal. The a t tent ion to this effect was 
first d rawn by Tsyganov [39] and it can be used to bend 
b e a m s of high-energy charged particles, extract part icles 
from cyclic accelerators , and split a beam into several 
componen t s (for reviews see Refs [40-43] ) . It is impor t an t 
to no te tha t crystals can perform these tasks within much 
smaller spatial regions t han can macroscopic external fields. 
This is due to the high intensity of in ternal crystal fields. 

The interact ions of high-energy charged part icles with 
crystal fields have been investigated by a variety of 
theoret ical me thods , such as the Born pe r tu rba t ion 
theory, the semiclassical approx imat ion , and classical 
e lectrodynamics . The p rob lem then arises of the a p p r o x ­
imat ions which can be used for the in ternal crystal field. 
The approx ima t ion of a con t inuous row or string is used in 
the theory of channell ing: in this approx ima t ion the lattice 
poten t ia l is averaged a long the coord ina te (crystal lographic 
axis) paral lel to such mot ion . 

The pu rpose of this review is to consider in detail the 
dynamics of charged part icles in the con t inuum potent ia l of 
rows of a t o m s in a crystal and to determine the condi t ions 
under which such mot ion can be regular and those which 
m a k e the mot ion chaotic . W e shall discuss the characterist ic 
features of the dynamics of such part icles not only in 
straight, bu t also in bent crystals. 

2. Scattering of fast charged particles by rows 
of atoms in a crystal 
2.1 Scattering in the Born approximation 
If a high-energy charged part icle is moving in a crystal at 
a small angle relative to one of the crystal lographic axes 
(z axis), a correlat ion appears between the subsequent 
collisions of the part icle with the lattice a toms . In the 
presence of such correla t ions the scattering cross section of 
a part icle in a crystal m a y be very different from the 
scat tering cross section in an a m o r p h o u s med ium. 
Corre la t ions appear even when a part icle collides with 
a t o m s forming a single row oriented a long the z axis. W e 
shall therefore consider first the scattering by a single r o w 
of a t o m s in a crystal when a part icle beam crosses the r o w 
at a small angle relative to its axis (Fig. 1). 

The scattering by a r ow of a t o m s m a y be coherent 
because of the per iodic s t ructure of the r o w and the related 
possibili ty of the interference between the scat tering 
ampl i tudes when a part icle collides with different a toms . 

Figure 1. Interaction of a fast charged particle with a row of atoms in 
a crystal. 

W e shall show tha t the effectiveness of such scattering is 
described by the pa ramete r [14] 

Tic 
(2.1) 

where Nc oc R/ij/a is the number of a t o m s in a r o w with 
which a part icle interacts effectively when it crosses the 
row; Z\e\ is the nuclear charge of a single a tom; R is the 
screening radius of the a tomic potent ia l ; a is the lattice 
cons tant (we shall use a system of uni t s in which the 
q u a n t u m constant H and the velocity of light c are t aken to 
be uni ty) . 

The pa ramete r £ ^ can be small or large compared with 
uni ty. Depend ing on the value of this pa ramete r , one has to 
use different m e t h o d s in the descript ion of scattering. If 
£ ^ <̂  1, the Born approx imat ion is applicable; if £ ^ > 1, 
we can use the approx ima t ion of classical mechanics . 
Final ly, the e ikonal approx ima t ion is valid in the inter­
media te cases. W e shall consider all these three 
approx ima t ions and we shall begin with the Born approach . 

In the first Born approx ima t ion the scat tering cross 
section is governed by the square of the m o d u l u s of a mat r ix 
element of the energy of the interact ion between a part icle 
and an external field, which is p r o p o r t i o n a l to the Four ie r 
componen t of the interact ion energy Uq. Since we are 
interested in high energies and small scattering angles, we 
can ignore the spinor s t ructure of the mat r ix element. The 
differential scat tering cross section is then given by [14, 44] 

d (7 = i l ^ | 2 d o (2.2) 

where do is an element of the solid angle in the direction of 
the scattering; s is the energy of the part icle; q=p — p' is 
the m o m e n t u m transferred to the external field; p and p' 
are the m o m e n t a of the part icle before and after the 
scattering. 

In the scattering by a r o w of a toms the energy of the 
interact ion of a part icle with the r o w U(r) is the sum of all 
the energies of the in teract ions with the individual a t o m s 
u(r-rn): 

U{r) = Y^u{r-rn) 
(2.3) 

where rn is the coord ina te of the posi t ion of an a tom in a 
row. Here , rn — r{)

n + un, rQ

n is the coord ina te of an 
equil ibrium posi t ion of an a tom in the r o w [it is assumed 
tha t the a t o m s are dis tr ibuted a long the z axis and are 
separated by equal distances d from one ano ther (see 
Fig . 1)], and un is the the rmal displacement of each a tom. 
The square of the m o d u l u s of the Four ie r componen t of 
the potent ia l described by expression (2.3) is 

\Uq\2 = JT ^V[xq.{rn-rm)}\uq\2 . (2.4) 
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If we average the above expression over the the rmal 
v ibra t ions of a toms (by a p rocedure described, for example, 
in Refs [9, 12]) and if we bear in mind tha t at high values of 
N, we have 

2 
271 N 

n=l 

we find tha t 

••N • 

<l̂ !2) = N{2iE5 - gz) e x p ( - f V ) 

+ [l-exp(-q : " 2 ) ] } l " J : (2.5) 

where u2 is the mean square of the the rmal displacement of 
an a tom in a row; 8(# z ) is the delta function; gz = 2nnz/d is 
a componen t of the reciprocal lattice vector (nz = 0, ± 1 , 
± 2 , . . . ) . The scattering cross section described by expres­
sion (2.2) can then be represented in the form 

do- = d<7 c o h + d<7n , (2.6) 

where dcr c o h and dcrn are the coherent and noncoheren t 
scattering cross sections: 

d<r c o h =N — ^ S f e - g j e x p i - f ^ d e i i q ) , (2-7) 

d<xn = iV[l — exp(—q 2 u 2 )] A.O\{q) (2.: 

Here , do\(q) is the scattering cross section of a part icle in 
the field of a single a tom in the row. W h e n the potent ia l of 
a single a tom is the screened C o u l o m b poten t ia l 

u(r) = (Ze\e\r ! ) e x p ^ - ^ 

the cross section dox is 

dax 

4 Z V £

2 

(q2+R~2)2 

do . 

(2.9) 

(2.10) 

The quant i ty dcrn is independent of the or ienta t ion of 
the row relative to the m o m e n t u m of the incident part icle 
and it represents noncoheren^sca t t e r ing , which differs only 
by the factor [l — exp(—q2u2)] from the cor responding 
cross section for an a m o r p h o u s med ium. The coherent 
scattering cross section dcr c o h depends strongly on the 
or ienta t ion of the a tomic r o w relative to the m o m e n t u m 
of the incident part icle. W e shall n o w consider in greater 
detail this te rm. 

It follows from the laws of conservat ion of energy and 
m o m e n t u m dur ing scattering, e = e' and p=p'+ q, tha t 

= q2, where q\\ is the componen t of q paral lel to p. F o r 
small angles of incidence of a part icle on the row {xjj <̂  1), 
this relat ionship becomes 

2p(qz + \j/qx) w q2 + qx + q2 , (2.11) 

where the x axis is directed a long the project ion of the 
m o m e n t u m p of the incident part icle onto the ( x , y) p lane 
o r thogona l to the r o w axis z. F o r m u l a (2.11) gives in fact 
the relat ionship between the componen t s of the vector q. 
F o r small scat tering angles, we have 

2 

2p 
(2.11a) 

If we bear in mind tha t in the case of small scattering 
angles the cross section is do w dqx dqy p~2, we find tha t 

qy 2n 
dffcoh =AfE5(W 2p d 

•s2\uq\zexv(-qzu2) . 
2ndp2 

(2.12) 

The main cont r ibu t ion to this cross section comes from the 
term with n = 0. In fact, when n = 0, then qx ttq2/2p\jj, 
whereas for n_ = 1, we have qx w 2n/d^/ > q2/2pij/. Since uq 

and exp(—q 2 u 2 ) decrease rapidly with increase in q, the 
cont r ibut ion of the te rms with n ^ 0 to the scattering cross 
section is small. Consequent ly , after in tegrat ion with 
respect to qx, we find tha t 

. 2 2 

dcr. c o h = N 2 ^ # ^ |^| 2exp(-^r2w2), qx 2p\\f 
. (2.13) 

The above cross section increases rapidly on reduct ion 
in This is due to the coherent mechanism of the 
scattering of a part icle on NcocR/xl/d a t o m s in a row. 
W e can demons t ra t e this by no t ing tha t the cross section 
described by formula (2.13) can be represented as follows: 

dc r c o h oc NNC dax oc MCNC dax (2.14) 

where dax is the scat tering cross section for one a tom, 
integrated over qx, at Mc oc N/Nc. 

W e can see tha t the cross section dcr c o h is p ropo r t i ona l 
to N2, i.e. it is p r o p o r t i o n a l to the square of the number of 
a t o m s in the r o w with which the part icle interacts effectively 
as it crosses the row [14]. This is due to the coherent n a t u r e 
of the scattering of particles by a row. It is wor th no t ing 
tha t formula (2.14) does not contain the to ta l n u m b e r N of 
a t o m s in the row bu t only the square of NC9 i.e. the coherent 
scattering does no t involve all the N a t o m s in the row, bu t 
only some of the a t o m s Nc, which is defined by the angle of 
incidence of a part icle on the row: Nc ocR/ij/d. In other 
words , the coherent scattering process does not apply to all 
the r o w a toms , bu t only to some of them, Nc (Nc <^ N). The 
number Nc increases on reduct ion in the angle xjj. However , 
the angle \j/ cannot be regarded as zero, because then the 
Born approx imat ion becomes meaningless (this is discussed 
below). 

F o r m u l a (2.14) includes also the number M c , which is 
p r o p o r t i o n a l to the rat io of the to ta l number N of a t o m s in 
the row to Nc. The occurrence of this factor can be 
interpreted as follows. If the whole a tomic r o w is divided 
into Mc b locks and each of these b locks conta ins Nc a toms , 
then separate b locks do no t interfere with one ano ther 
dur ing scattering, i.e. they do no t result in coherent 
scattering, and, consequent ly, the scattering cross section 
should be p r o p o r t i o n a l to the number Mc of such blocks 
(and no t to the square of this number!) . 

W e shall n o w consider the condi t ions of validity of the 
adop ted Born approx imat ion . The Born approx ima t ion can 
be used to describe the scattering by a single a tom if 
Ze2/Hc<^ 1 [44]. Here , Z is the charge of the scattering 
centre (in uni ts of \e\). If the scat tering is coherent and it 
involves a complex system of, for example, Nc a t o m s in 
a row, the charge of the scattering centre is NCZ. 
Therefore, the coherent scat tering can be described by 
the Born approx ima t ion if NcZe2/Hc <̂  1. The quant i ty 
^(aO _ NcZe2/%c is the pa ramete r ment ioned above. 
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Final ly we shall discuss the circumstances in which the 
main cont r ibut ion to the cross section of the small-angle 
scattering by a r o w of a t o m s comes from the Four ie r 
componen t s of the po ten t ia l energy characterised by gz = 0. 
This means tha t the inhomogenei ty of the poten t ia l a long 
the r o w axis is u n i m p o r t a n t and tha t the scat tering is 
governed pr imari ly by the con t inuum potent ia l of the row, 
i.e. the r o w potent ia l averaged over the coord ina te z: 

UR(x>y)=7n\ d z ^ M ( r - r „ ) . (2.15) 
J - o o n = i 

If we subst i tute this po ten t ia l in expression (2.2), we ob ta in 
the coherent scattering cross section described by for­
mula (2.13). 

The concept of the con t inuum potent ia l was first 
in t roduced by L indha rd in the description of the channe l ­
ling of fast part icles in a crystal [19]. A channell ing part icle 
moves in one of the channels formed by rows of a toms in a 
crystal or by crystal lographic p lanes of a toms , and is 
deflected periodically by small angles relative to the 
channel axis. Such part icle mot ion in a crystal is possible 
if the angle xjj between the m o m e n t u m of a part icle and the 
channel axis does not exceed a certain specific angle 
x//c = ^4Ze2/sd, k n o w n as the critical angle for axial 
channell ing. 

The concept of the con t inuum potent ia l can be used also 
in studies of the scattering of part icles by a r ow of a toms 
when the angle xjj is small so tha t the condi t ion of validity of 
the Born approx ima t ion RZe2/\J/dHc <̂  1 is satisfied. This 
condi t ion differs from the channell ing condi t ion i / f < i / f c . 

It is wor th no t ing tha t the channell ing angle appears in a 
na tu r a l m a n n e r in higher orders of pe r tu rba t ion theory 
when studies are m a d e of the scattering of fast charged 
part icles by a r o w of a toms in a crystal. In par t icular , this 
angle occurs in the expression for the scattering cross 
section obta ined in the second Born approx imat ion , which 
should m a k e only a small cont r ibu t ion compared with the 
scattering cross section derived in the first Born a p p r o x ­
imat ion. 

In fact, if the second Born approx ima t ion is used, the 
scattering cross section of a fast part icle incident on a r ow 
of a toms in a crystal is [45]: 

d(T = N \+ l±n(Rq) (2.16) 
Mq2+R-2) I M *A y \ 

where the dimensionless coefficient rj depends on the 
t ransferred m o m e n t u m qy: rj ~ 1, if Rqy ~ 1, and 
r\ 2\n(Rqy) if Rqy 1. Expression (2.16) is derived on 
the assumpt ion tha t the poten t ia l of a single a tom in a r o w 
is the screened C o u l o m b potent ia l . 

W e can see tha t the relative cont r ibu t ion of the second 
Born approx ima t ion depends on the rat io ( i / f c / i / f ) 2 . This 
cont r ibut ion is small if \//2 ij/2 The latter condi t ion should 
be added to the condi t ion ^ <̂  1 considered above. The 
inequali ty ij/2 ^> is satisfied automat ica l ly at high values 
of the part icle energy, so tha t at high energies the validity of 
the Born approx imat ion is governed by the condi t ion 

<̂  1, which is independent of the part icle energy. 
The last inequali ty means physically tha t the ampl i tude 
of the scattered wave is small compared with the ampl i tude 
of the incident wave. A l though the second Born a p p r o x ­
imat ion leads to small effects at high energies, it can 

nevertheless play an impor t an t role if we are interested 
in the dependence of the scattering cross section on the sign 
of the part icle charge. This dependence is no t predicted by 
the first Born approx imat ion , and in the second a p p r o x ­
imat ion the part icles with opposi te signs of the charge are 
scattered differently. 

2.2 Scattering in classical mechanics 
It is demons t ra ted above tha t the scattering of fast charged 
part icles by a r o w of a t o m s in a crystal can be described on 
the basis of the Born approx ima t ion if the pa ramete r 
fiN) = NcZe2/He is small compared with uni ty. If this 
pa ramete r is of the order of or greater t han uni ty, we 
cannot use q u a n t u m mechanica l pe r tu rba t ion theory. The 
scattering p rob lem should then be solved r igorously in 
te rms of q u a n t u m mechanics . If the pa ramete r £ ^ is large 
compared with uni ty, the s i tuat ion cor responds formally to 
the limit H —> 0 (the large value of the pa ramete r £ ^ is due 
to the smallness of the angle xjj between the m o m e n t u m of a 
part icle and the axis of a row). This limit means going over 
from q u a n t u m to classical mechanics , so it is na tu r a l to 
consider the scattering for £ ^ > 1 on the basis of the 
classical theory of scattering. If the pa ramete r £ ^ is 
compared with uni ty, i.e. if we are dealing with the 
in termedia te case, the e ikonal theory of scat tering of fast 
part icles can be used (see Section 2.3). 

In classical e lectrodynamics the mot ion of a relativistic 
charged part icle in an external field U(r) is described by 
equat ion [46] 

- ^ = - V t / ( r ) , (2.17) 

where p(t) is the part icle m o m e n t u m defined by 
p = mv(l — v 2 / c 2 ) - 1 / 2 , and v = p/s. 

In the scattering of a part icle by a r ow of a t o m s the 
poten t ia l U(r) is unde r s tood to be the sum of the poten t ia l 
energies of the interact ion of a part icle with individual 
a t o m s in the row, described by expression (2.3). W e are 
interested in the scat tering when the energy 8 of a part icle is 
sufficiently high and the angle \p between the m o m e n t u m p 
and the r o w axis is sufficiently small. U n d e r these condi t ions 
the change in the impact pa ramete r between consecutive 
collisions of the part icle with the r o w a t o m s is small 
compared with the impact pa ramete r b itself. F o r this 
reason the part icle mot ion in the field of a r o w of a toms 
occurs as if in an effective con t inuum poten t ia l described by 
expression (2.15) and represent ing a r ow of a t o m s averaged 
over the coord ina te z paral lel to the row axis. Therefore, the 
effective poten t ia l UR(x,y) is a function of just two 
coordinates , x and y, which are b o t h perpendicular to 
the r o w axis. In the simplest case we can regard UR(x, y) as 
having cylindrical symmetry a long the z axis. W e are then 
dealing with the p rob lem of the mo t ion of a part icle in a field 
with cylindrical symmetry (Fig. 2). Obviously, in a field of 
this kind the componen t pz of the part icle m o m e n t u m is 
conserved a long the r o w axis: pz = const. The mot ion in a 
t ransverse p lane is then described, in accordance with 
E q n (2.17), by the following equat ion: 

P=--^-UR(x9y) , (2.18) 
8|| dp 

where p = (x, y), p is the distance between the part icle and 
the row axis; 8\\ = (pi + m 2 ) ^ 2 ; 8y w 8. 
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Figure 2. Scattering of a fast particle in the field of the continuum 
potential of a single row of atoms. 

Since the function UR(p) has cylindrical symmetry, 
E q n (2.18) has two integrals of mo t ion which are the 
energy of t ransverse mo t ion 

1 . 2 
s± = 2 s p + U r (p) (2.19) 

and the angular m o m e n t u m 

M = sp2<p(t) , (2.20) 

where cp(t) is the az imutha l scattering angle in a t ransverse 
p lane (Fig. 2). At large distances from a row of a toms , 
where UR = 0, the integral of the energy of t ransverse 
mo t ion is e_|_ = \ si//2. 

These integrals of mo t ion can be used to find the 
az imutha l angle cp(b) of the scattering of a part icle by a 
r o w as a function of the impact pa ramete r of the row [14]: 

cp{b) = n-2b 
Jpo 

dp 
n2 

UR(p) 

fi_L 

- 1 / 2 

(2.21) 

where p 0 is the distance of closest app roach of the part icle 
to the axis of the a tomic row. Expression (2.21) is derived 
using the relat ionship M = px/jb between the angular 
m o m e n t u m M and the impact pa ramete r of the row. 
The quan t i ty pi// occurr ing in this relat ionship is the 
project ion of the m o m e n t u m of the incident part icle on to 
the (x, y) p lane . 

The to ta l angle of the scat tering of a part icle by a r o w is 

9(b) = 2\j/ sin cp(b) (2.22) 

In the classical theory of scattering the function cp(b) is 
called the function of part icle deflection in an external 
field. 

The differential cross section of the scat tering of a 
part icle by a r o w of a t o m s is 

dcr = Lxj/db , (2.23) 

where Li// is the project ion of the r o w length on to a p lane 
o r thogona l to the m o m e n t u m of the incident part icle and b 
is the impact pa rame te r of the row represent ing the shortest 
dis tance between the part icle and the row axis in the 
absence of scattering (Fig. 2). 

Accord ing to expression (2.21), the quan t i ty db can be 
expressed in te rms of the az imutha l scattering angle and, 
therefore, we have 

dcp 

da = Lil/^2 d<p(b)/db\n 

(2.24) 

This expression is obta ined bear ing in mind tha t the 
function b(cp), which is the inverse of the deflection 
function cp = cp(b)9 is generally a mul t ivalued dependence 
on the scattering angle [14, 47, 48]. The summat ion over n 
in expression (2.24) cor responds to the summat ion over 
single-valued b ranches of the deflection function cp(b). 

These expressions demons t ra t e tha t the scat tering of a 
fast charged part icle in the field of the con t inuum potent ia l 
of a r o w of a t o m s in a crystal is possible only a long an 
az imutha l angle cp in a p lane o r thogona l to the r o w axis. 

The quan t i ty Ur/e± occurr ing in expression (2.21) is of 
the order of magn i tude of the rat io of the square of the 
critical axial channel l ing angle to the square of the angle of 
incidence of the part icle on the row: UR/&± w (\/jc/\/j)2. 
Accord ing to expression (2.21), small values of this p a r a ­
meter cor respond to small values of the az imutha l 
scattering angle: 

fu\ 1 d dxUR[(x2 + b2)1'2] (2.25) 

The p a t h of a part icle in the field of a r o w of a t o m s is 
near ly rectilinear. This cor responds to the mo t ion under 
condi t ions far from those which apply in the case of axial 
channell ing. 

If xjj > \j/c9 it follows from expression (2.25) tha t the 
quant i ty \<p(b)\ is independent of the sign of the part icle 
charge and tha t it increases rapidly on reduct ion in ip. If in 
the deflection function described by expression (2.21) we 
include the next te rm of the expansion in te rms of the 
pa ramete r UR/s±9 we obta in the dependence of \cp(b)\ on the 
sign of the part icle charge. Therefore, a reduct ion in \p 
rapidly enhances the dependence of the deflection function 
on the sign of the part icle charge. 

Expression (2.21) is valid no t only when xjj > \j/c9 bu t 
also when \p<\pc. In the latter case we cannot expand in 
te rms of the pa ramete r UR/sj_ and numer ica l in tegrat ion of 
relat ionship (2.21) is needed in order to determine the 
deflection function and the scat tering cross section. The 
deflection functions and the scattering cross sections are 
given in Ref. [14] for some con t inuum potent ia ls of a r o w of 
a toms . Therefore, we shall no t consider these results in 
detail . W e shall simply ment ion tha t if \JJ<\JJC9 the deflection 
functions and the scattering cross sections of part icles 
scattered by a r ow of a t o m s differ very greatly for opposi te 
charges of the part icles and tha t typical forms of the 
functions UR(p) are such tha t in a field of this k ind the 
part icle deflection function is a double-valued function of 
the impact pa ramete r . In other words , the r a i n b o w 
scattering of part icles is then possible [49, 50]. 

2.3 Scattering in the eikonal approximation 
Let us consider the scat tering of high-energy charged 
part icles on a r o w of a toms in a crystal in the in termedia te 
case when the relevant pa ramete r is £ ^ ~ 1. Let us discuss 
the t rans i t ion from the Born to the classical mechanics 
approx imat ion . In the case of high energies of interest to us 
such a t rans i t ion can be investigated on the basis of the 
quan tum-mechan ica l semiclassical approx imat ion , a n a l o -
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gous to the geometr ic optics approx ima t ion which is valid 
if the wavelength is short and the changes of the 
wavelength in a distance equal to the wavelength are 
small. W e shall be interested in small-angle scattering 
(0 <̂  and if \j/ 5> \j/c, we can then expand the scattering 
ampl i tude in te rms of reciprocal powers of the part icle 
energy. Such mot ion cor responds to a pa th close to 
rectilinear. W e thus find tha t the e ikonal approx imat ion 
is app ropr i a t e and in this approx ima t ion the scattering 
ampl i tude is [14, 48] 

a { q ) = I d 2 p e x p G q ' p ){ e x p I x i p ) ] ~'} ( 2 2 6 ) 

and the scattering cross section is 

d ( T = \a(q)\2do , (2.27) 

where do is an element of the solid angle in the scattering 
direction, p is the rad ius vector in a p lane o r thogona l to 
the m o m e n t u m p of the incident part icle, and 

1 f°° 
x(p) = — \ &lU(r). (2.28) 

v J—oo 

In tegra t ion of Eqn (2.28) with respect to / is carried out 
a long a p a t h t raversed by the part icle in a field U(r); 
v = p/s. 

F o r m u l a (2.26) is valid if the mo t ion of a part icle in an 
external field is near ly rectilinear. W e then find tha t 
formulas (2.26) and (2.27) allow us to go over, in the 
limit, to the range of validity of b o t h the Born app rox ima­
t ion (\x\ <^ H), and of the classical scat tering theory 
(\x\ ^ These formulas can therefore be regarded as 
in termedia te between those for the scattering cross sections 
in the Born approx ima t ion and the classical scat tering 
theory. 

W e can see tha t in the Born approx imat ion and in the 
t rea tment based on classical mechanics the scattering of a 
fast charged part icle in the field of a r o w of a t o m s in a 
crystal is governed mainly, for low angles of incidence \j/ on 
a row, by the con t inuum potent ia l of the r o w described by 
expression (2.15). W e can use the same expression for the 
poten t ia l in the in termedia te case under discussion here and 
calculate the quan t i ty % which occurs in formula (2.26): 

1 f°° 

X = x(y) = - ^ ; J dxUR(x,y) 
(2.29) 

In tegra t ion with respect to / in E q n (2.28) is n o w replaced 
with integrat ion with respect to x: dl = dx/xjj. Bear ing in 
mind tha t %(y) is a function of the coord ina te y a lone, we 
find tha t 

a(q) = -ipS(qx) dy Qxp\-qyy ) { e x p l-i(y) - 1 J . (2.30) 

Subst i tut ion of the scattering ampl i tude given by 
formula (2.3) into expression (2.27) describing the scat ter­
ing cross section and el imination of the delta function b(qx) 
gives 

Lily I f°° 
^ r j ( e x p x(y) l 

(2.31) 

The above expression is ob ta ined bear ing in mind tha t 

5 2 f e ) = ( ^ / 2 r c / 0 % , ) -

The function %jTi occurr ing in expression (2.31) is of the 
order of RZ e2/i// dTic « C ( i V ) . W e have encountered this 
quant i ty in discussing the range of validity of the Born 
approx ima t ion and of the classical scattering theory. In the 
former case this quant i ty is small compared with unity, bu t 
in the latter case it is larger t han unity. W e can n o w see tha t 
it occurs in fact in the scattering ampl i tude obta ined in the 
eikonal approx ima t ion and it can then be small or large 
compared with uni ty. It therefore follows tha t for­
mula (2.31) is suitable for the descript ion of the 
scattering b o t h in the Born approx ima t ion and in the 
classical theory. 

If \y\ <̂  ft, formula (2.31) reduces to formula (2.13) for 
the scattering cross section in the Born approx imat ion . 

If \y\ > ft, then the integral with respect to y, which 
occurs in formula (2.31), can be calculated by the s ta t ionary 
phase me thod . The s ta t ionary phase po in ts (there m a y be 
several of them) are given by the relat ionship [36] 

dy x(y) • (2.32) 

W e then have 

dy exp ^ ) { e x p -ni{y) 

2mh . 

dzx/dyl 

where Fn = qyyn + x(yn) and the summat ion is carried out 
over different s ta t ionary phase po in ts yn. The scattering 
cross section is then described by the following formula: 

dcr = Li//dqy 

- 1 / 2 

e x p . - F , (2.33) 

If the interference between the te rms cor responding to 
different s ta t ionary phase po in t s is ignored in the above 
formula, the result is given by expression (2.24), which is 
obta ined in the classical scattering theory. [In this case we 
should take account of formula (2.32) and of the fact tha t 
for small scat tering angles we have 9 w i/zcp and qy w pi//<p.] 

It should be stressed tha t the pa ramete r ^ \ which 
occurs in formula (2.31), increases rapidly on reduct ion in \j/ 
and for £ ^ > 1 the scattering of a part icle on a r o w of 
a t o m s becomes classical. This pa ramete r is £ ^ ~ 1 when 
ij/ ~ RZ e2/dHc. At high energies the latter angle is con­
siderably higher t han the critical angle for axial channel l ing 
\j/c = (4Ze2/sd)1/2, i.e. the scattering becomes classical well 
before the onset of channell ing. 

2.4 M o t i o n of a charged particle in a field created by an 
ensemble of atomic rows in a crystal 
W e have considered the mot ion of a charged part icle in the 
field of a r o w of a toms and we have shown tha t this mo t ion 
is governed pr imari ly by the con t inuum potent ia l of the 
chain, described by expression (2.15), which represents the 
poten t ia l averaged over the coord ina te z a long the r o w 
axis. W e shall n o w consider the mot ion of a part icle in the 
field of an ensemble of rows of a t o m s in a crystal, described 
by the poten t ia l 

U(x,y) = ^UR(p-pn) , (2.34) 
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where UR(p) is the poten t ia l energy of the interact ion of a 
part icle with the con t inuum potent ia l of a single r o w of 
a t o m s and pn is the rad ius vector of the r o w in a p lane 
o r thogona l to the z axis. 

As in the case of mo t ion in the field of the con t inuum 
potent ia l of a single r o w of a toms , the componen t of the 
part icle m o m e n t u m , paral lel to the crystal lographic z axis 
near which mot ion takes place, is conserved in the field 
given by expression (2.34). The mot ion in a p lane t ransverse 
to the z axis is then described by 

' = -\hu^- (2-35) 

In general , the con t inuum potent ia ls of the rows of 
a t o m s in a crystal overlap so tha t the mo t ion occurs in a 
very complex per iodic field of a r ow of a toms . Nevertheless , 

- 2 - 1 0 1 2 x/A 

Figure 3. Equipotential surfaces of the continuum potential energy 
U(x, y) representing the interaction of a positive particle with rows of 
atoms in a silicon crystal in a plane orthogonal to the (111) axis, 
calculated at room temperature of the crystal. The numbers alongside 
the curves represent the potential energy in electron volts. The dashed 
curves correspond to zero curvature of the potential-energy surface 
described by expression (3.11). 

- 1 0 1 2 3 4 5 x/A 

Figure 4. Same as in Fig. 3, but for the (110) crystallographic axis. 

the main features of the mo t ion in such a field can be 
analysed with the help of the integral of the energy of 
t ransverse mo t ion 

s±=^sp2 + U(x,y) . (2.36) 

Figs 3 and 4 show typical equipotent ia l surfaces of the 
con t inuous poten t ia l energy U(x, y) for the positively 
charged part icles mov ing in a silicon crystal near the 
(111) and (110) crystal lographic axes. The equipotent ia ls 
for negatively charged part icles have the negative sign. 

These equipotent ia ls show tha t the function U(x, y) for 
positively charged part icles has max ima at the po in t s 
cor responding to the pos i t ions of a tomic rows in a 
t ransverse p lane and tha t the poten t ia l wells in the regions 
between the rows are shallow. The mot ion in such a field, 
considered as a function of the t ransverse mo t ion energy e ± , 
m a y be b o t h finite and infinite relative to the a tomic rows. 
The mot ion is finite if e_|_ < £ / H , where UR is the poten t ia l 
energy at a saddle poin t . The part icles then move in 
channels (they become 'channel led ' ) a long helical pa th s 
with their axes paral lel to the channel axis. 

If e_|_ > £ / H , the mo t ion becomes infinite relative to the 
a tomic rows. The part icle then has a sufficient energy e_|_ to 
pass above the existing poten t ia l barr iers and, therefore, 
such part icles can be called ' above-barr ier ' . 

If > s± > Uu, where \j/c is the critical angle for 
axial channell ing, it follows from expression (2.36) tha t a 
positively charged part icle cannot app roach very closely the 
nuclei of the lattice a toms . Therefore, the processes related 
to small impact pa rame te r s (nuclear react ions, large-angle 
scattering, etc.) are suppressed in the case of such a part icle. 
The term 'channelled par t ic le ' was first in t roduced in 
Ref. [19] in order to identify a group of particles which 
cannot app roach the a tomic nuclei very closely. W e shall 
use the term 'channelled par t ic le ' for the part icles in finite 
mo t ion and the term 'above-barr ier par t ic le ' for the 
part icles in above-barr ier mot ion . 

If s^^Uu there are small spatial regions between the 
rows where a part icle tha t enters one channel can switch to 
ano ther channel . In this mo t ion between the a tomic rows a 
posit ive part icle m a y spend a long t ime in one of the 
channels (until it reaches a region of this k ind near a saddle 
po in t ) . Therefore, such mot ion can be called 'quasif inite ' . 
The probabi l i ty of such mot ion decreases rapidly with 
increase in e ± , because this increase is accompanied by a 
rapid expansion of the spatial region near a saddle po in t 
where a part icle can go over to a ne ighbour ing channel . 

The finite mo t ion of a negative part icle is possible if 
| e ± | < l /2£i/^, i.e. if the part icle is incident on a r ow of 
a t o m s at an angle \JJ<\JJC. W e can then have s i tuat ions in 
which a part icle moves in a channel formed by one of the 
a tomic rows or by several such rows. 

The finite mo t ion of part icles in a crystal occurs no t 
only for i A < i ^ c , bu t also for \j/ ^> \j/c. In fact, there are open 
p lanar channels formed by a tomic rows and a part icle inside 
such a channel oscillates between the rows. This is k n o w n as 
p lanar channell ing. Such mot ion occurs only for small 
values of the angle 9 between the componen t of the 
part icle m o m e n t u m o r thogona l to the r o w axis z and the 
p lanar channel axis; moreover , the condi t ion x// ^> x//c has to 
be satisfied. 

It therefore follows tha t the na tu re of mo t ion in the field 
of a tomic rows in a crystal depends strongly on the energy 
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of t ransverse mot ion , the sign of the part icle charge, the 
or ienta t ion of the part icle m o m e n t u m in a p lane o r thogona l 
to the r o w axis, and the na tu re of the dis t r ibut ions of the 
rows of a t o m s in this p lane . The mot ion can be finite or 
infinite relative to a r o w of a toms . 

W e can solve E q n (2.35) if we k n o w not only the 
integral of the energy of t ransverse mot ion , bu t also one 
m o r e integral of mot ion . F o r the scattering by a single row 
of a toms this integral of mot ion is the angular m o m e n t u m . 
However , in the case under discussion, the second integral 
of mo t ion exists only in a few cases, and these cases include 
b o t h finite and infinite mo t ion of a part icle in a p lane 
t ransverse to the z axis [ 2 8 - 3 1 ] . If the second integral 
exists, the variables in E q n (2.35) can be separated and the 
mot ion is quasiper iodic . However , if the second integral 
does no t exist, there are no periodically repeated sections of 
the p a t h and the mot ion is s trongly aperiodic. It is usua l to 
speak of such mot ion as chaot ic . 

It follows tha t the p rob lem of mo t ion of a charged 
part icle in a two-dimens iona l per iodic field of a tomic rows 
is a typical p rob lem in the theory of nonl inear systems 
which deals with the regular and chaot ic na tu re of mo t ion 
and with the stability of mot ion . W e shall n o w discuss these 
topics in detail. 

3. Chaos in dynamic systems 
3.1 M o t i o n in the H e n o n - H e i l e s potential 
The mot ion of a part icle in a relatively complex field can be 
no t only regular, bu t also stochastic [51, 52]. This is related 
to the instabili ty of the mo t ion of a part icle in such a field. 
The instabili ty means tha t a small change in the initial 
condi t ions leads to an exponent ia l divergence of the initially 
closely spaced pa ths . If we follow the mot ion of a part icle 
for a sufficiently long t ime, it will then appear to be chaot ic 
( r andom) . This s i tuat ion occurs even in the case when the 
part icle is in finite mo t ion in a field tha t depends on two 
coordinates . Let us consider, for example, the mo t ion in 
wha t is k n o w n as the H e n o n - H e i l e s po ten t ia l [53] 

uH-H = \{x2+y2)+x2y-\f • (3.1) 

F o r simplicity, all the variables are assumed to be 
dimensionless. 

W e obta in the poten t ia l energy described by expres­
sion (3.1) if three identical like charges are located at the 
vertices of an equilateral t r iangle and we consider the 
mo t ion in a p lane formed by these charges near the centre 
of the tr iangle. Then, expanding the potent ia ls created by 
the separate charges a long the coord ina tes x and y relative 
to the centre of the tr iangle and re ta ining the te rms up to 
the third order , we obta in the poten t ia l described by 
expression (3.1). 

Fig. 5 shows the equipotent ia l surfaces of the poten t ia l 
energy described by the above expression near its m in imum 
value. 

The mot ion of a part icle in a field described by 
expression (3.1) conserves the part icle energy 

E = \(p2

x+P2

y) + Ull_ll(x,y) (3.2) 

(the energy E and the componen t s of the m o m e n t u m px 

and py are assumed to be dimensionless). The part icle is 
then in the finite mot ion if E < ^ [51]. 

- 0 . 5 

Figure 5. Equipotential surfaces of the H e n o n - H e i l e s potential 
described by expression (3.1). 

The p a t h of a part icle in the field described by 
expression (3.1) can no t only have the energy integral, 
bu t also the second integral of mot ion . This is no t possible 
in general , bu t only under certain condi t ions . 

The second integral of mo t ion exists at low energies 
when the cubic te rms in the expansion of the poten t ia l can 
be ignored. Then , not only the energy, bu t also the angular 
m o m e n t u m of mo t ion M = p2cp are conserved; here, p and 
cp are the polar coord ina tes of the part icle pa th . The 
variables in the equat ion of mo t ion can be separated 
and the part icle p a t h is described by 

, f d P 
t = ± \ — h const , 

J yJ2[E-U{p)]-M^ 
f 2 , x ( 3 ' 3 ) 

cp = M \ dtp (t) + const , 

where U(p) = \(x2 +y2). 
The second integral of mo t ion can exist also if the cubic 

te rms of the expansion are included in the poten t ia l energy. 
If this integral of mot ion exists, then the mot ion is regular . 
If the second integral does no t exist, the mo t ion is 
chaot ic [51, 52]. The na tu re of mo t ion can be determined 
by the Poincare section me thod (see, for example, 
Refs [14, 51]), which can be described as follows. 

Let us consider the p a t h of a part icle in the phase space 
(x, px, y, py). It follows from the law of conservat ion of 
energy (3.2) tha t the pa th lies on a three-dimensional surface 
in this space. This surface is defined by E(x, px, y, py). Let us 
consider the po in t s of intersection of the p a t h with a plane, 
for example, the (v , py) p lane . In other words , let us assume 
tha t x = const in the relat ionship E(x, px, y, py) = const . 
Such poin ts m a y lie on a curve or they m a y be dis tr ibuted at 
r a n d o m in a certain pa r t of the p lane (y , py). If the po in t s lie 
on a curve, there is a second integral of mot ion ; otherwise 
there is no such integral. It follows tha t the existence of the 
second integral of mo t ion is related to the posi t ions of po in t s 
a long a certain curve. There is no criterion for finding the 
po in t s on a certain curve and the existence of the curve can 
be determined only approximate ly by numer ica l integrat ion 
of the equat ion of mot ion . Therefore, there is no general 
criterion of the existence of the second integral of mot ion . 
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The occurrence of chaot ic mo t ion allows us to use the 
m e t h o d s of statistical physics in the descript ion of the 
physical processes associated with such mot ion . Since we 
have seen tha t chaot ic mo t ion can appear even for two 
degrees of freedom, it follows tha t the m e t h o d s of statistical 
physics can be used not only when there is a very large 
number of degrees of freedom, bu t also when there are 

relatively few of them. In the case under discussion, there 
are two degrees of freedom. 

Fig. 6 gives the results of calculat ions of the Po incare 
sections and of the cor responding p a t h s of the part icles 
moving in the H e n o n - H e i l e s potent ia l . The sections are 
p lo t ted for var ious energies. At low energies E, when the 
mot ion occurs near the b o t t o m of the poten t ia l well 

/IAAYI \ X 

ft • 4 _ r 

*Py 

_ 1 

I • %* r **"•.%• v* 
\ » 

y 
V \* • * * X . : . 

v . 

Figure 6. Poincare sections and the corresponding paths of particles moving in the H e n o n - H e i l e s potential, described by expression (3.1), 
calculated for E — 1/20 (a) and E — 1/6 (b). Curves 7, 2, and 3 correspond to different initial conditions governing the path. 
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described by expression (3.1), the mot ion is regular for 
practical ly all the initial condi t ions . This is due to the fact 
tha t at low energies E a part icle does no t reach a region with 
a s t rong nonl inear i ty and , therefore, we are in fact dealing 
with the p rob lem of mot ion in a centrally symmetr ic field. 

It should be no ted tha t there are several regions where 
the mo t ion is stable in the sense tha t a small change in the 
initial condi t ions alters little the na tu re of the phase 
curves [51, 52]. Such regions are separated by certain lines 
and crossing of these lines modifies greatly the na tu re of 
mot ion : one stable regime changes to ano ther . 

A n increase in the part icle energy expands the regions in 
which the mot ion is unstable , so tha t these regions fill an 
ever-increasing pa r t of the phase space in the Poincare 
sections, separat ing ' i s lands ' in a section where the mot ion 
is stable. This means tha t , depending on the initial 
condi t ions , the na tu re of mot ion m a y differ greatly, i.e. 
it can be either regular and stable or irregular and chaotic . 

W h e n the energy reaches E w ^ the mot ion will be 
chaot ic for practical ly all the initial condi t ions . 

It therefore follows tha t the mot ion of a part icle in a 
two-dimens iona l field described by expression (3.1) can be 
b o t h regular and chaotic . 

3.2 Stability of motion 
In the simplest example of the mo t ion of a part icle in the 
H e n o n - H e i l e s po ten t ia l we have seen tha t at low values of 
the energy the mot ion is stable. As the energy increases and 
a part icle reaches a region where the forces are strongly 
nonl inear , the na tu re of the mot ion then depends on the 
initial condi t ions and can be regular or chaotic . At energies 
close to the top of the potent ia l well the mot ion is uns tab le 
for practical ly all the initial condi t ions . 

The growth of chaot ic mo t ion is due to local instabili ty 
of mo t ion in the sense tha t a small change in the intial 
condi t ions results in an exponential ly rapid divergence of 
pa ths . Therefore, we shall consider in greater detail the 
stability of mo t ion of a part icle in an external field [31, 54]. 
Wi th this in mind we shall discuss the ra te of divergence of 
two initially close phase pa ths . Their mo t ion is uns tab le if 
the pa ths diverge exponential ly with t ime: 

d(t) = d(0) exp(ylf), R e X > 0 , (3.4) 

where d(0) is the distance between two pa th s in the phase 
space at t = 0. 

It is na tu ra l to relate the value of the pa ramete r R e X at 
the onset of an instabili ty to the b o u n d a r y of t ransi t ion to 
chaot ic mot ion . However , this condi t ion of mot ion instabi l ­
ity is only the necessary condi t ion of t ransi t ion to chaot ic 
regime, bu t it is no t sufficient because if R e X > 0, a change 
from one stable mo t ion to ano ther can also take place. The 
necessary condi t ion is very impor t an t and it is used widely 
in an analysis of the na tu re of mot ion in var ious systems. 

W e shall n o w discuss in greater detail this necessary 
criterion of stability [54]. W e shall consider two initially close 
p a t h s in the phase s p a c e — r x ( t ) , p x ( t ) and r2(t)9p2(t) — for 
two-dimens iona l mo t ion ; here, r 1 2 and px 2 a re two-d imen­
sional vectors represent ing the coordina tes and the m o m e n t a 
of the part icles. Let us in t roduce the variables 

€ =rx - r 2 , ij = P l -p2 

W e then have <j = tj (for simplicity, we shall assume — as 
in the preceding section — tha t the variables r and p are 
dimensionless). 

Then , l inearisat ion of the equat ion of mot ion 

* = - V t / ( r 1 ) + V t / ( r 2 ) , (3.5) 

where r 2 = rx — § on the assumpt ion tha t § is small, gives 
the following equa t ions for § and tj: 

S = i / , i = - S $ , (3-6) 

where S is a mat r ix deduced from the second derivatives of 
the poten t ia l a long the p a t h 

d2U 
S i j 8r,-8r7-

E q n s (3.6) can be wri t ten in the mat r ix form: 

= r r = o I 
-s 6 

(3.7) 

where 0 and / are the zero and identi ty (unit) matr ices of 
the second rank . Appl ica t ion of un i t a ry t rans format ion T 
can reduce the mat r ix t to the d iagonal form: 

(frf-1).^^ • (3.8) 
If at least one of the eigenvalues of the mat r ix t has a 
positive-definite real pa r t , the p a t h s diverge exponential ly 
and the mot ion is uns table . 

Over short t ime intervals, the mat r ix s occurr ing in 
expression (3.7) can be regarded as independent of t ime 
(however, s depends on the coord ina te r{). The eigenvalues 
of the mat r ix t define a local, i.e. tha t cor responding to 
given values of the coordinates , stability of mot ion . 

The condi t ion for de terminat ion of the eigenvalues of 
the mat r ix is 

det (r - X) = 0 . 

Hence , we find the eigenvalues h 

l W A = ±[-b±(b2-4c)l'2]1/2 

where 

(3.9) 

(3.10) 

32U d2U d2Ud2U 
dx2 dy2 ' ° dx2 dy2 

d2ux2 

dx dy 

If b > 0, then for c > 0 all the eigenvalues Xt are 
imaginary quant i t ies and, consequently, the mot ion should 
be stable. If c < 0, one of the roo t s Xt is real and positive. 
The mot ion is then uns tab le since it results in exponential ly 
rapid divergence of the pa ths . 

The sign of the quan t i ty c is identical with the sign of the 
Gauss ian curva ture K(x, y) of the surface U(x, y): 

K(x9 y) 1 + 
dUY fdUY 
dx~) + 

(3.11) 

The curva ture is a local concept so tha t the above stability 
criterion is local. Therefore, stable mo t ion cor responds to a 
si tuat ion in which it occurs in a region with a posit ive 
curva ture K(x, y) of the surface. However , if the part icle 
p a t h reaches a region with a negative curva ture of the same 
surface, the mot ion is uns table . 

In the case of the H e n o n - H e i l e s po ten t ia l the line 
cor responding to zero curva ture of the £ / H _ H ( x , y) surface is 
a circle (Fig. 5). This line separates regions with a posit ive 
curvature , which are inside the circle, and those with a 
negative curvature , which are outs ide the circle. At low 
energies a part icle travels near the min imum value of the 
poten t ia l energy, where the curva ture is posit ive. In this case 
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the mot ion is stable and is of regular quasiper iodic na tu re . 
A n increase in the energy means tha t the part icle p a t h m a y 
pass t h rough a region with a negative value of the curva ture 
of the function £ / H _ H ( x , y). In these regions the stability of 
mo t ion is lost, i.e. the initially closed p a t h s begin to diverge 
at a ra te which is an exponent ia l function of t ime. The 
longer the t ime tha t a part icle spends in a region with a 
negative curva ture of the poten t ia l energy, the stronger is 
the divergence of the pa ths . Therefore, the criterion of a 
negative curva ture of the poten t ia l energy can be used to 
find the energy of a part icle at which the t ransi t ion from 
regular to chaot ic mo t ion could take place. 

3.3 Instability of motion in multiple scattering by three 
centres 
In the preceding sections we have considered the finite 
mo t ion of a part icle in a two-dimens iona l po ten t ia l well 
and we have shown tha t it can be b o t h regular and chaotic . 
In chaot ic mo t ion a small change in the initial condi t ions 
leads to an exponential ly rapid divergence of pa ths , which 
cor responds to an instabili ty of mot ion . This instabili ty is 
essentially related to the two-dimens iona l na tu re of the 
poten t ia l in which such mot ion takes place. W e shall show 
tha t an instabili ty does no t necessarily appear dur ing 
mot ion in a po ten t ia l well, bu t tha t it can occur also in the 
course of scattering. At least three centres must par t ic ipate 
in such scattering. The simplest scat tering arises as a result 
of elastic reflection. Therefore, in order to i l lustrate the 
above s ta tement , we shall consider the simplest p rob lem of 
the scattering of a part icle by elastic reflection from three 
disks lying in the same p lane [55]. F o r simplicity, we shall 
assume tha t the disks are identical and tha t their centres 
form an equilateral t r iangle. W e shall also assume tha t the 
part icle moves in one p lane and, therefore, it can 
experience (in principle) any number of collisions with 
the disks, bu t it can also escape from the tr iangle. 

In a collision with a single disk a part icle is reflected 
from it at an angle which is equal to the angle of incidence 
[i.e. the angle between the m o m e n t u m of the part icle and the 
n o r m a l to the disk tangent at the poin t of incidence (Fig. 7)]. 
The scattering angle is related to the impact pa rame te r b by 

cp(b) = 71 — 2 arcsin — , (3.12) 
R 

where R is the disk radius . 
If there is a second disk, the part icle reflected from the 

first disk m a y bypass the second disk or be reflected by it. In 
principle, a s i tuat ion m a y arise in which the part icle is 
reflected an infinite number of t imes from the first and 
second disks, i.e. the part icle oscillates between them. Such 
oscil latory mo t ion is however uns tab le because a small 
change in the initial condi t ions causes the part icle to leave 
the area after several oscillations between the disks. 

The si tuat ion is m o r e complex when there are three 
disks. W e can then expect mult iple reflections from three 
disks in which the part icle remains all the t ime in the space 
between them. The number of such part icle pa th s is, in 
contras t to the case of two disks, infinitely large and all such 
p a t h s are uns table . A n example of a pa th of this kind is 
shown in Fig. 8. 

The t ime tha t a part icle spends in the space between 
three disks depends strongly on the initial condi t ions 
governing the part icle pa th . W e shall de termine this t ime 
for the case when the part icle is incident on the disks 

Figure 7. Motion of a particle in the field of three disks located on a 
plane. 

Figure 8. Multiple scattering of a particle by disks. 

perpendicular to the line tha t jo ins the centres of disks 1 
and 3 (Fig. 8). The delay t ime is defined as a function of the 
quant i ty y0. The delay t ime T ( V 0 ) is unde r s tood to be the 
t ime spent by the part icle in the space defined by the circle 
which touches all three disks. The part icle p a t h is then a 
complex function of t ime and of the initial condi t ions . 
Therefore, a numer ica l me thod has to be used to find the 
delay t ime T ( V 0 ) . 

Fig. 9 gives the calculated dependences of T ( V 0 ) on the 
impact pa ramete r y0. The ord ina te gives the quant i ty 
F = log[r(yo)/T] and the abscissa represents y0. Here , 
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Figure 9. Dependence of the time spent by a particle in the space 
between disks on the impact parameter yQ. 

T = R/v ( the disk rad ius R and the velocity v are assumed 
to be dimensionless, so tha t R = 1 and v = 1) and y0 is 
measured from the midpoin t between the two disks. The 
g raphs show tha t there is a range of values of v 0 where the 
function T ( V 0 ) changes very rapidly with y0. At some values 
of y0 the delay t ime T ( y 0 ) can be very long. In other words , 
for such values of y0 the part icle can spend a long t ime in 
the region between the disks. 

The quest ion n o w is the finer s t ructure of the functional 
dependence of the delay t ime on the impact pa ramete r in 
the regions where T ( V 0 ) changes rapidly. Calcula t ions were 
therefore carried out in which the step of y0 was reduced. 
Stretching of the graph a long the y0 axis revealed tha t the 
pa t t e rn obta ined on an enlarged scale did no t differ from 
the initial one (this can be judged by going over from 
Fig. 9a to Fig. 9b). This p rope r ty of the function T ( V 0 ) , i.e. 
the cons tancy of the pa t te rn , is retained also after the next 
change in the scale of y0 (Fig. 9c). This behaviour of the 
function T ( V 0 ) is called fractal [56]. The fractality means 
here tha t a change in the scale of v 0 p roduces practical ly the 
same pa t t e rn of the scat tering of a part icle by three disks. 

The p rob lem of such scattering by three disks is 
discussed in detail in Refs [55, 57]. Some mathemat ica l 
p rob lems are also considered there and they include the 
stability of mot ion , ent ropy, the Hausdor f f dimension, etc. 
This p rob lem is also of considerable interest because it can 
be t reated quan tum-mechan ica l ly (see, for example, 
Refs [57-59] ) . 

A similar p rob lem for some other potent ia ls tha t vary 
smooth ly in space is considered in Refs [ 6 0 - 6 2 ] . 

Three disks can be regarded as an initial element from 
which a p lanar per iodic s t ructure can be built u p . Such a 
per iodic s t ructure is ana logous to the s t ructure of a tomic 
rows in a crystal. The scat tering of a part icle by a per iodic 
s t ructure consist ing of three disks is in m a n y respects 
similar to the scattering on the per iodic field of a tomic 
rows in a crystal. Therefore, a two-dimens iona l per iodic 
s t ructure of three disks is a good mode l for the investigation 
of the na tu re of mo t ion of a charged part icle in a crystal. 

4. Regular and chaotic motion of fast charged 
particles in crystals 
4.1 Channelling of positive particles 
W e have considered the mot ion of fast charged part icles in 
a crystal at a small angle xjj to one of the crystal lographic 
axes and we have shown tha t at high energies such mot ion 
is governed pr imari ly by the con t inuum potent ia l of a tomic 
rows in a crystal described by expression (2.34). If \jj<\jjc, 
the mo t ion of a part icle in such a field can be finite or 
infinite relative to the a tomic rows. The poten t ia l in which 
such mot ion occurs is a complex nonl inear function of two 
coordinates . Therefore, the description of mo t ion of a 
part icle in a crystal reduces in fact to the p rob lem of 
mo t ion in a two-dimens iona l per iodic nonl inear field. The 
mot ion of a part icle in such a field (Section 3) m a y be b o t h 
regular or chaot ic . A similar s i tuat ion occurs also when a 
charged part icle is moving in a crystal. W e shall consider 
the possibili ty of realisat ion of a par t icular type of mo t ion 
of a part icle in a crystal in the case of channell ing and 
above-barr ier mechanisms. W e shall begin with the mot ion 
of a posit ive high-energy part icle in a crystal. 

The con t inuum potent ia l in which a part icle moves 
inside a crystal depends strongly on the crystal lographic 
axis a long which such mot ion is directed (Section 2.4). If a 
part icle travels in a silicon crystal a long the (111) axis, the 
equipotent ia l surfaces of the con t inuum potent ia l of a tomic 
rows are of the kind shown in Fig. 3. This potent ia l forms a 
well at large distances from the rows and the shape of the 
well resembles the H e n o n - H e i l e s potent ia l . In fact, at large 
distances from the r o w the poten t ia l can be expanded as a 
Taylor series relative to the central poin t of the well. 
Summat ion of the potent ia ls of the adjacent chains of 
a toms , which in fact determine the poten t ia l well, and 
re tent ion of the cubic te rms in the expansion leads us to the 
p rob lem of mot ion in the H e n o n - H e i l e s potent ia l . The 
energy of a part icle is governed by the energy of t ransverse 
mo t ion £ j _ . W e have seen earlier tha t the mo t ion of a 
part icle in the H e n o n - H e i l e s po ten t ia l can be b o t h regular 
and chaotic , depending on its energy and on the initial 
condi t ions . 

Therefore, channell ing of a posit ive high-energy part icle 
in a po ten t ia l well in a silicon crystal a long the (111) axis 
can be either regular or chaot ic . On increase in the 
t ransverse-mot ion energy, as £ j _ approaches the energy at 
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Figure 10. Same as in Fig. 3, but for the (100) crystallographic axis. 

a saddle point , the range of the initial condi t ions leading to 
chaot ic mo t ion widens rapidly. 

Let us n o w consider the mot ion of a part icle in a silicon 
crystal a long the (100) axis. As in the preceding case, the 
potent ia ls of adjacent a tomic chains form a poten t ia l well 
(Fig. 10), bu t its shape is different from tha t of the poten t ia l 
well for the mo t ion a long the (111) axis. Expans ion of the 
potent ia ls of the adjacent a tomic rows relative to the central 

po in t of the well, in t e rms of a small displacement from this 
point , and re tent ion of the first nonl inear te rm in the 
expansion leads us to the p rob lem of mot ion in a p o t e n t i a l ! 
described in Ref. [31]: 

U(x,y)=4Uu(x2 +f - x 4 - y 4 + \4x2f) , (4.1) 

where x = 4x/a; y = 4y/a; a is the lattice cons tant ; £/H is 
the poten t ia l energy at a saddle point . In view of the 
symmetry of the poten t ia l applicable to this case, the te rms 
conta in ing the cubic te rms of the expansion are missing 
and the first nonl inear te rm conta ins the fourth powers of 
the coordinates . 

The na tu re of mo t ion of a part icle is determined by the 
curva ture of the potent ia l -energy surface. In the field under 
discussion the presence of the fourth powers of the 
coordina tes means tha t the curva ture of the po ten t ia l -
energy surface can be b o t h posit ive and negative in a 
po ten t ia l well. Expans ion (4.1) readily yields the following 
equat ion for a line on which the curva ture of the po ten t ia l -
energy surface is zero: 

1 + 8 (f 2 + y2) - 84 (f 4 +y4) — 552x2y2 = 0 . (4.2) 

Lines of this type are represented by dashed curves in Fig. 
10. 

Depend ing on the value of £ j _ , the mo t ion of a part icle in 
the field described by expansion (4.1) can t ake place either 
entirely within the region with the posit ive curva ture of the 

fRegular and chaotic motion of a positively charged particle along the 
(100) axis in a silicon crystal has been investigated also elsewhere [30] 
without recourse to expansion (4.1). 

Figure 11. Poincare sections and corresponding paths of particles in finite motion in a field described by expression (4.1), calculated for 
e ± = 1 eV (a), e ± = 2 eV (b), and e ± = 3 eV (c). 
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poten t ia l energy surface or par t ly in a region with a posit ive 
curva ture and par t ly in tha t with a negative curvature . In 
other words , the mot ion of a part icle in such a field can be 
regular and /o r chaot ic . 

Fig. 11 shows typical p a t h s of a part icle in a field 
described by expansion (4.1) and the cor responding Po in ­
care sections for different values of the t ransverse energy. 
W e can see tha t at low values of this energy e_|_, when the 
part icle pa th lies entirely in a region with a posit ive 
curva ture of the potent ia l -energy surface, the mot ion is 
regular . A n increase in the value of £ j _ , when the part icle 
p a t h begins to enter a region with a negative value of the 
curva ture of the poten t ia l energy U(x, y), b o t h regular and 
chaot ic mot ion of the part icle in the investigated well 
become possible. A n increase in £ j _ , when the t ransverse 
energy approaches the energy at a saddle point , increases 
the range of the initial condi t ions tha t m a k e the mot ion 
chaotic . 

A similar s i tuat ion occurs also in the case of finite 
mo t ion of a part icle in a po ten t ia l well a long the (110) axis. 
The poten t ia l well has a m o r e complex s t ructure t han for 
the mo t ion of a part icle a long the (111) or (100) axes, and 
we shall no t discuss this case in detail. 

4.2 Axia l channelling of negative particles 
W e shall n o w consider axial channell ing of negative 
part icles in crystals. The poten t ia l energy of a part icle 
then has the opposi te sign to the poten t ia l energy of a 
posit ive part icle and finite mo t ion occurs in poten t ia l wells 
close to a tomic rows. These poten t ia l wells differ from the 
wells for positively charged part icles by a greater depth and 
by different shapes (see Figs 3, 4, and 10, in which the 
equipotent ia l surfaces should be taken with the opposi te 
sign). 

In the case of mo t ion a long the (111) and (100) axes in a 
silicon crystal the poten t ia l energies in the region of the 
wells can be approx imated qui te accurately by a function 
which has the cylindrical symmetry (this follows directly 
from Figs 3 and 10), and we then face the p rob lem of finite 
mo t ion of a part icle in a field U(p) which depends only on 
the m o d u l u s of the distance between the part icle and the 
chain axis. It is obvious tha t in a field of this kind b o t h the 
t ransverse mo t ion energy £ j _ and the angular m o m e n t u m M 
are conserved. In te rms of cylindrical coordina tes ( p , cp), 
these integrals are given by the following formulas: 

1 o M2
 o 

8JL = - e p 2 + + U(p), M = sp2cp , (4.3) 

where cp is the az imutha l angle in the (x, y) p lane . 
The set of re la t ionships (4.3) readily yields the depend­

ences p(t) and cp(t). In the case of finite mot ion , the 
dependence p(t) is a per iodic function and its per iod is 

(4.4) 

where p m i n and p m a x are the min imum and m a x i m u m 
distances from a part icle to the axis of a row, found from 
the equat ion 

M2 

In general, the part icle precesses and then dur ing a t ime T 
the rad ius vector ro ta tes by the angle 

a - i H i g . (4.5) 
It is wor th no t ing tha t the lines cor responding to zero 

curva ture of the potent ia l -energy surfaces for negatively 
charged particles, p lot ted in Figs 3, 4, and 10, are located 
close to the poten t ia l well min ima. This means tha t , in a 
wide range of t ransverse energies £ j _ , the pa th of an axially 
channelled part icle is in a region with a negative curva ture 
of the potent ia l -energy surface and it would seem tha t its 
mo t ion should always be chaot ic . However , we have seen 
al ready tha t this is no t t rue . The potent ia l of each r o w of 
a t o m s at short distances from its axis has the cylindrical 
symmetry, so tha t the mo t ion of a part icle in the field of this 
po ten t ia l should be regular and quasiper iodic . The apparen t 
conflict between the criterion of the Gauss ian curva ture for 
chaot ic mo t ion of a part icle in an external field and regular 
mo t ion in a cylindrically symmetr ic field is due to the 
following. The Gauss ian curva ture criterion for de te rmina­
t ion of the na tu re of the mo t ion of a part icle in an external 
field is derived on the assumpt ion tha t the ma t r ix 
stj = 8 2 U/drfirj depends weakly on t ime intervals 

~ X[l dur ing which the initially close p a t h s become 
divergent. In other words , the poten t ia l energy U(x, y) 
should vary slowly with the coordinates . This condi t ion is 
no t satisfied near a tomic rows and, consequently, in such 
regions we cannot apply the Gauss ian curva ture criterion to 
determine the na tu re of the mo t ion of a part icle in the field 
of an a tomic row. 

Therefore, in general, the finite mo t ion of a part icle in 
the field of a po ten t ia l U(p) is regular and quasiper iodic . 
This si tuat ion occurs when a part icle t raverses a silicon 
crystal a long the (111) or (100) axis and the con t inuum 
potent ia l in the region of a potent ia l well m a y be approx i ­
mated by a cylindrically symmetr ic function. Such a s i tuat ion 
cannot occur when the mot ion occurs a long other crystal lo­
graphic axes. F o r example, when a negative part icle crosses a 
silicon crystal a long the (110) axis, the poten t ia l well is 
formed by two a tomic rows located close to one another . The 
poten t ia l energy does not then have cylindrical symmetry: the 
function U(x, y) has deep min ima at coordina tes governing 
the posi t ions of these rows and a saddle po in t on the line 
jo in ing these rows (Fig. 12). A negative part icle channell ing 
in such a field m a y be affected by one or two a tomic rows, 
depending on £ j _ . 

Figure 12. Potential well for a channelled negative particle, moving in 
a silicon crystal along the (110) axis. 
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Figure 13. Poincare sections and corresponding paths of particles moving in a potential well shown in Fig. 12, calculated for e± — 1.1 Us (a) and 
e ± = 0AUs (b). 

The case when the energy of t ransverse mo t ion is close 
to the poten t ia l energy at a saddle poin t is of special 
interest. This is because the part icle p a t h can then pass 
t h rough a region with a negative curva ture of the po ten t ia l -
energy surface near a saddle poin t . Consequent ly , we m a y 
expect the mo t ion of such a part icle to be uns tab le against 
small changes in the initial condi t ions . W e shall therefore 
consider in detail the mo t ion of a negative part icle when 
Sj_ ~ Us, where Us « —25 eV is the poten t ia l energy at a 
saddle point , and the part icle m a y reach the region of such a 
po in t [28, 63]. 

The Poincare sections cor responding to the values 
e_L = l . l £ / s and e± = 0AUs are p lot ted in Fig. 13. If 
£_i_ = 1.1 £/s, a part icle can move only in one of the two 
pa r t s (halves) of the poten t ia l well formed by two a tomic 
rows (Fig. 12). Depend ing on the initial condi t ions , this 
part icle can move in a regular or chaot ic m a n n e r in one of 
the halves of the shared poten t ia l well. The pa th s cor re ­
sponding to regular and chaot ic mo t ion are shown in 
Fig. 13a for £ j _ = IAUS. 

If £ j _ = 0.4 £/s, the part icle moving in this po ten t ia l well 
can switch from one a tomic r o w to another . The part icle 
then moves chaotically in the poten t ia l well under a lmost all 
the initial condi t ions . One of such pa th s is shown in 
Fig. 13b. 

W e thus can see tha t , as in the case of a posit ive part icle, 
the mo t ion of a negative part icle in the field of the 
con t inuum poten t ia l of a tomic rows in a crystal can be 
b o t h regular and chaotic . However , the shapes and depths 
of the potent ia l wells are very different for positively and 
negatively charged part icles. 

4.3 Dynamic chaos in above-barrier motion of particles in 
a crystal 
W e have considered so far the finite mo t ion of a fast 
charged part icle in a field of the con t inuum potent ia l of 

a tomic rows in a crystal and we have shown tha t such 
mot ion can be regular or chaot ic . W e shall n o w discuss the 
case when a part icle is in infinite (above-barr ier) mo t ion 
relative to the a tomic rows. This s i tuat ion occurs if the 
energy of t ransverse mo t ion exceeds the poten t ia l energy at 
saddle po in ts (Section 2.4). 

In the above-barr ier mo t ion a part icle collides succes­
sively with different a tomic rows which are paral lel to the z 
axis near which the part icle is travelling. There m a y be a 
correlat ion or n o n e between successive collisions. The 
existence of correla t ions cor responds to regular mo t ion 
of a part icle in the field of a tomic rows. However , its 
absence cor responds to irregular, i.e. chaotic , mo t ion in the 
per iodic field of a tomic rows. If we consider a posit ive 
part icle, we face a p rob lem similar to tha t of a part icle in a 
per iodic field of disks discussed in Section 3.3. The analogy 
is par t icular ly close if the mo t ion occurs a long the (111) 
crystal lographic axis in silicon which has a per iodic 
s t ructure resembling tha t formed by periodically dis t r ib­
uted disk t r iads (Section 3.3). 

I m p o r t a n t changes in the part icle p a t h occur at 
distances of its closest app roach to the rows of a t o m s 
where the gradients of the po ten t ia l are max imal and the 
poten t ia l can be regarded as cylindrically symmetric . 
Therefore, in the descript ion of the mo t ion of an above -
barr ier part icle in the field of the con t inuum potent ia l of 
a tomic rows we can assume, in the first approx imat ion , tha t 
the potent ia ls of the adjacent rows are cylindrically 
symmetr ic in a region p ^ d/2, where a is the distance 
between the rows, and the po ten t ia l elsewhere between the 
rows is zero. W e then have a p rob lem similar to tha t 
discussed in Section 3.3, of the scat tering in a per iodic field 
of disks and the reflection from disks which cor responds to 
the scattering of a part icle by a tomic rows. It is wor th 
no t ing tha t a long t ime spent by a posit ive part icle in the 
region between disk t r iads in fact cor responds to the 
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p h e n o m e n o n of axial channel l ing of positively charged 
part icles in a crystal. 

However , a l though the p rob lems are similar, there are 
still some differences. The scat tering by disks appears to be 
' ha rd ' , i.e. at all energies the angle of incidence is equal to 
the angle of reflection, and the part icle cannot enter the 
region b o u n d e d by the disks. Consequent ly , the mo t ion of a 
part icle in such a system is extremely uns table : close pa th s 
rapidly diverge under all initial condi t ions . Regular per iodic 
mo t ion of a part icle in a field of disks is possible only for 
some selected p a t h s (Section 3.3). 

However , when the mot ion takes place in the per iodic 
field of a tomic rows in a crystal, a part icle can enter a 
region where the poten t ia l of a r ow differs from zero. This 
has the effect tha t , apar t from the ranges of the initial 
condi t ions in which the mot ion is chaotic , there are also 
ranges of such condi t ions when the mot ion is regular and 
stable (for example, the mo t ion a long crystal lographic 
planes) . 

As in the finite mo t ion in a po ten t ia l well, the na tu re of 
the mo t ion of a part icle in the periodic field of a tomic rows 
in a crystal can be determined by the Poincare section 
me thod . In view of the periodici ty of a crystal, we can 
reduce the p rob lem of the mot ion of a part icle in the field of 
m a n y a tomic rows to the mo t ion in one cell [63]. One 
should t ake account of the reflection of a part icle from the 
cell edges. This means tha t the p rob lem is similar to tha t of 
the mo t ion of particles in bil l iards, when the billiard table is 
in an external field (see Refs [31, 64, 65]). 

The p rocedure of const ruct ing the Poincare sections is 
the simplest when the mot ion occurs in a silicon crystal 
a long the (100) axis and the a tomic chains form a per iodic 
s t ructure with a square cell in a t ransverse p lane 
(Fig. 10) [31, 63]. Such sections are shown in Fig. 14a 
for posit ive particles with £ j _ = 2Ze2/d. A uni t cell in the 
(x, y) p lane is then a square with its centre on the axis of 
one of the a tomic rows and the sides of the square are 
paral lel to the (Oi l ) and (Oi l ) crystal lographic planes . It is 
assumed tha t a part icle crossing the cell edges is reflected 
elastically. The Poincare sections p lo t ted for this case 
cor respond to the po in t s of intersection of the phase 
p a t h of a part icle and one of the sides of the cell. 

Similar sections can easily be constructed also for the 
reflection of a part icle from disks dis tr ibuted periodically in 

the (x, y) p lane and characterised by a square uni t cell 
(Fig. 14b). W e can see tha t in the scat tering by a tomic rows, 
we can expect not only irregular, bu t also regular part icle 
mot ion . The latter cor responds to the mo t ion a long 
crystal lographic p lanes formed by a tomic rows. H o w ­
ever, in the reflection from disks the mo t ion is chaot ic 
for practical ly all the initial condi t ions . There are only a few 
isolated po in t s in the phase space at which the pa th s are 
regular . 

As £ j _ increases, so does the size of the regions in the 
phase space of a Po incare section when the mot ion of a 
part icle is regular . N e w regions also appear and they 
cor respond to regular mo t ion of a part icle a long other 
crystal lographic p lanes characterised by less close pack ing 
of the a tomic rows than tha t exhibited by the (Oi l ) p lane . 
W h e n disks reflect particles, then at all energies the mo t ion 
of posit ive part icles is chaotic . 

Let us n o w consider above-barr ier mot ion of negative 
charged part icles in the field of a tomic rows in a crystal. In 
contras t to posit ive part icles, these negative part icles are 
a t t rac ted to the a tomic rows and, therefore, at all t ransverse 
energy values they can app roach closely a tomic rows where 
the gradients of the poten t ia l are high. This results in s t rong 
s tochast isat ion of their mo t ion in the per iodic field of 
a tomic rows, compared with positively charged particles. 
This is i l lustrated by the Poincare section (Fig. 14c) for 
negatively charged part icles travell ing in a silicon crystal 
near the (100) axis. (The me thod of const ruct ing this section 
is the same as for posit ive particles.) This section shows tha t 
for £ j _ = 2Ze2/d the mot ion of negative part icles in the 
per iodic field of a tomic rows in a crystal is chaot ic for 
a lmost all the initial condi t ions . This si tuat ion is re tained up 
to very high values of £ j _ ( £ j _ ~ \0Ze2/d). 

W e can see tha t the chaot ic mo t ion of negative part icles 
in the per iodic field of a tomic rows in a crystal is closer to 
the na tu re of part icle mo t ion in the per iodic field of disks on 
a p lane (Section 3.3). However , part icles are reflected by 
such disks, whereas negative part icles are a t t rac ted by the 
a t o m s in a row. 

It follows tha t b o t h posit ive and negative part icles m a y 
be in chaot ic mo t ion in the per iodic field of a tomic rows. 
The mot ion of negative part icles is m o r e chaotic: the 
chaot ic regime is realised for a wider range of the initial 
condi t ions t han in the case of posit ive part icles. 

- 0 , 8 - 0 , 4 0 0,8 - 0 , 4 0 0,4 y, A 

Figure 14. Poincare sections for positive (a) and negative (c) particles in above-barrier motion in a silicon crystal near the (100) axis; 
(b) corresponding sections for particles reflected by disks forming a square cell in a plane. 



Dynamics of high-energy charged particles in straight and bent crystals 1135 

4.4 Nature of motion of particles in multiple scattering 
by atomic rows in a crystal and the possibility of 
describing it 
In the preceding sections we have demons t ra ted tha t , in 
order to determine the na tu re of mo t ion of a part icle, it is 
necessary to k n o w its p a t h in the per iodic field of a tomic 
rows. Therefore, we m a y have given an impression tha t if 
the p a t h itself is k n o w n , then de terminat ion of the n a t u r e 
of the mot ion of a part icle is of no special interest. 
However , this is no t t rue , because knowledge of the n a t u r e 
of mo t ion and de terminat ion of the regions in the phase 
space cor responding to different types of mot ion makes it 
possible to simplify greatly the descript ion of the physical 
processes associated with the na tu re of mo t ion (for 
example, mult iple scattering of part icles by a tomic rows 
and the emission of b remss t rah lung rad ia t ion) . 

In fact, if it is k n o w n tha t a part icle is in regular mo t ion 
a long one of the crystal lographic planes , for example the 
(v , x) p lane, then for small angles xjj between the part icle 
m o m e n t u m and the axis of the a tomic rows forming the 
plane, its p a t h can be found in the first approx ima t ion by 
assuming tha t the p lane is con t inuous , i.e. by using the lattice 
poten t ia l averaged over the coordina tes in this p lane [19]: 

dyU(p) (4.6) 

where Ly is the linear size of the p lane a long the y axis and 
U(p) is the con t inuum poten t ia l of the a tomic rows 
forming the p lane . 

In the field described by expression (4.6) the part icle 
m o m e n t u m componen t s pz and py, paral lel to the (v , z) 
plane, are conserved. This means tha t the si tuat ion can be 
reduced to the one-dimensional p rob lem of the mot ion of a 
part icle in the per iodic field Up(x) of crystalline planes . The 
p a t h of a part icle a long the x axis, o r t hogona l to a crystal 
p lane, is then described by equa t ions [14, 1 9 - 2 1 ] 

I A 
8 dx 

Up(x) , (4.7) 

the solution of which can be expressed in te rms of the 
integral of the energy of t ransverse mot ion with respect to 
the crystal lographic planes: 

1 2 

(4.8) 

Depend ing on the value of s±p, a part icle in the field Up(x) 
can be in finite mo t ion (planar channell ing) or in infinite 
mo t ion relative to the crystal lographic planes . The latter 
s i tuat ion is possible for posit ive and negative particles. If 
we k n o w the part icle p a t h in the field Up(x), we can find — 
for example — the characterist ics of the rad ia t ion emitted 
by the part icle in this field, the probabi l i t ies of its collisions 
with nuclei, and other characterist ics of the interact ion of 
the part icle with the lattice a toms . 

However , the validity of the con t inuum potent ia l 
approx ima t ion of crystalline planes , described by expres­
sion (4.6), is governed by the condi t ions ensuring regular 
mo t ion of a part icle in the per iodic field of a tomic rows. In 
some cases (for example, when \j/ 5> \j/c) such condi t ions can 
be derived by analyt ic est imates from the requi rement of the 
existence of correla t ions between successive collisions of a 
part icle with a tomic rows [31, 66]. However , in general (in 
par t icular , if \jj<\jjc \ a numer ica l analysis of the p rob lem 
by the Poincare section me thod is required. Such an 

analysis shows tha t the approx ima t ion of a con t inuous 
p lane can be used for posit ive part icles in order to describe 
the mot ion of these particles a long certain crystal lographic 
planes even when i A < i ^ c , bu t in a limited region of the 
phase space (Fig. 14a). Such a descript ion is no t possible 
(Fig. 14c) for negative part icles when \jj<\jjc. 

However , if a part icle moves chaotically in the per iodic 
field of a tomic rows, then its collisions with different rows 
can be regarded as r a n d o m . W e are speaking here of 
mult iple scattering of a part icle by a tomic rows. If it is 
k n o w n tha t this scat tering process is r a n d o m , it is easy to 
wri te down the equat ion for the angular dis t r ibut ion 
function of the scattered part icles. Since the scattering 
involving collisions with different a tomic rows occurs 
a long an az imutha l angle cp in a p lane o r thogona l to the 
axis of the rows, we can derive the following equat ion for 
the dis t r ibut ion function of the part icles in te rms of the 
angle cp at a depth z from the crystal su r face | : 

dz A<P, z) • ndxjj [ db\f(cp + <p(b)9 z) -f(cp, z)] , (4.9) 
J—oo L J 

where cp(b) is the function represent ing the deflection of a 
part icle in the field of a single a tomic r o w in a crystal, given 
by expression (2.21) and governed by the impact pa ramete r 
of a r o w b, and n is a tomic density in the crystal. 

It is assumed in E q n (4.9) tha t an e lementary event, 
governing the interact ion of a part icle in the lattice, is the 
collision of a part icle with a single r o w of a t o m s in a crystal. 

The function f(cp, z) is normal ised by the condi t ion 
f27U 

&<pf(<p9z) = l • (4.10) 

The solution of E q n (4.9) satisfying the condi t ion 
f(cp, 0) = 5(cp), where b(cp) is the delta function, is 
described by [26] 

x exp db 1 — COS (4 .11) 

W e can readily use the solution described by expres­
sion (4.11) to find the average square of the angle of 
mult iple scattering of a part icle by a tomic rows in a crystal: 

f2n 
e2 = dcpf(cp, z)4ij/2 s in 2 1 . (4.12) 

This quant i ty can be rewri t ten in the form 

e2 Ixj/211 — exp —Indx/jz | 2 1 
d/?sin - cp(b) 13) 

Some limiting cases of formulas (4.11) and (4.13) are 
discussed in Refs [ 6 6 - 6 9 ] . He re we shall d r aw a t tent ion 
solely to the condi t ions of validity of these formulas . 

F o r m u l a s (4.11) and (4.13) are valid if the collisions of a 
part icle with rows of a t o m s in a crystal can be regarded as 
r a n d o m . This is t rue if the whole phase space in a Po incare 
section cor responds to chaot ic mot ion . If a Poincare section 
includes extended regions cor responding to regular mot ion , 

fEqn (4.9) was used in Refs [67, 68] to describe the scattering of 
positive particles in a crystal when \j/<\j/c. It is shown in Ref. [69] 
that at high energies this equation can be used to describe the 
scattering of positive and negative particles in a crystal when \j/>\j/c. 
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the dis t r ibut ion function of the part icles in te rms of the 
angles f(cp, z) m a y deviate from the dis t r ibut ion described 
by formula (4.11). The m e t h o d s for numer ica l s imulat ion of 
part icle mo t ion are par t icular ly impor t an t in de terminat ion 
of/(<p, z). 

By way of example, let us compare the average squares 
of the angle of mult iple scattering of a part icle by a tomic 
rows in a crystal, 92, obta ined by par t ia l s imulat ion of 
part icle mo t ion in the per iodic field of a tomic rows and on 
the basis of formula (4.11), valid if the collisions of a 
part icle with different rows can be regarded as r a n d o m 
( r andom r o w approx imat ion) . This compar i son is m a d e in 
Fig. 15 for the scattering of posit ive and negative part icles 
in a crystal [31]. The ord ina te in this figure represents 
/ = ( 9 2 / # a m ) , where 92

m = s2L/s2Lrad is the average 
square of the angle of mult iple scat tering of part icles in 
an a m o r p h o u s medium, e 2 = 4%m2/e2, m is the mass of an 
electron, L r a d is the rad ia t ion length [12, 14], and the 
abscissa gives the value of ip/ipc. 

The continuous_curves in Fig . 15 represent the results of 
a calculat ion of 92 from formula (4.13) for part icles of 
8 = 30 G e V energy, travell ing in a silicon crystal 
L = 50 um thick close to the (100) axis. 

The simulat ion was based on the formula 

2 s i n 2 ^ 
2 

(4.14) 

Figure 15. Orientational dependences of the average square of the angle 
of multiple scattering of positive (a) and negative (b) particles by rows 
of atoms in a silicon crystal, when these particles are travelling close to 
the (100) axis. 

where N is the number of part icles whose mot ion is being 
simulated (N = 200) and cpt is the az imutha l scat tering 
angle of the iih part icle after its escape from a crystal. This 
angle is found by a numer ica l solution of E q n (2.35) and 
the index / refers to different initial condi t ions (different 
values of the impact pa ramete r in the first collision of a 
part icle with a r ow of a toms) . 

The open circles and_triangles in Fig. 15 represent the 
results of s imulat ion of 92 for different or ien ta t ions of the x 
and y crystal lographic axes relative to the project ion p± of 
the m o m e n t u m of the incident part icle on to an (x, y) p lane 
o r thogona l to the z crystal lographic axis near which the 
mot ion takes place. The black squares are the results of 
s imulat ion when the adjacent a tomic rows are shifted in the 
(x, y) p lane in a r a n d o m manne r relative to one another . 

The results obta ined show tha t 92 > 92

m is obeyed in a 
wide range of the angle ift and if the collisions of a part icle 
with different a tomic rows are r a n d o m , the results of 
s imulat ion agree with analyt ic calculat ions of the quan t i ty 
/ . However , if the mo t ion occurs in the per iodic field of 
a tomic rows in a crystal, the results of s imulat ion agree with 
analytic calculat ions of the function / , carried out on the 
basis of formula (4.13), only in the angular range \p<\pc. 
F o r negative part icles the agreement is observed in a wider 
range of the angles xjj t han for positively charged part icles. 
This is related to the stronger s tochast isat ion of the mo t ion 
of negative part icles in the per iodic field of a tomic rows, 
compared with posit ive particles. 

A considerable difference between the s imulat ion results 
(open circles and triangles) and analytically calculated 
values of / in the range xjj > \j/c is due to the influence, 
on the scattering, of a regular mo t ion of a part icle in the 
per iodic field of a tomic rows. 

W e shall conclude this section by no t ing tha t the 
repor ted results are obta ined ignoring noncoheren t part icle 
scattering by inhomogenei t ies of the crystal potent ia l , 
associated with the the rmal scatter of the posi t ions of 
a t o m s in the lattice and also with the scat tering by the 
electron subsystem of the lattice. W h e n these three effects 
are t aken into account , the regions in the phase space 
associated with the regular mo t ion become smaller. There is 
a cor responding increase in the regions of the phase space 
where the mult iple scattering can be described by the mode l 
of r a n d o m rows [see E q n (4.9)]. Inclusion of the n o n ­
coherent scat tering effects also shows tha t part icles m a y 
be scattered not only a long the az imutha l angle cp, bu t also 
a long the polar angle. 

Inclusion of the noncoheren t effects in the scattering 
complicates the mo t ion of a part icle in a crystal, so tha t 
compute r s imulat ion m e t h o d s become par t icular ly useful in 
solving this p rob lem. 

5. Passage of high-energy charged particles 
through a bent crystal 
5.1 Bending of the paths of positive particles during 
planar channelling in a bent crystal 
It is shown in the preceding section tha t if a fast charged 
part icle moves in a regular manne r a long one of the 
crystal lographic planes , its mo t ion is governed pr imari ly by 
a one-dimensional con t inuum potent ia l Up(x) of crystal lo­
graphic planes, described by expression (4.6); here, x is the 
coord ina te of a part icle o r t hogona l to the crystal lographic 
planes . The part icle in the field of the con t inuum potent ia l 
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of crystal lographic p lanes can be either in finite mo t ion 
(channell ing) or in infinite (above-barr ier) mo t ion relative 
to the planes . 

Let us assume tha t the planes are bent , bu t remain 
paral lel to one ano ther (Fig. 16). Then, bend ing of the 
channel should also result in bend ing of the part icle pa th . 
This can be used for extract ion of high-energy charged-
part icle b e a m s from cyclic accelerators if a bent crystal is 
a t tached in a suitable manne r to an accelerator. This effect 
was po in ted out in Ref. [39]. 

- \ -

Figure 16. Bending of a positively charged particle in planar 
channelling in the field of bent crystallographic planes. 

Since the average crystal fields exceed greatly the 
external magnet ic fields tha t are employed in beam 
bending, it follows tha t the d imensions of a bent crystal 
used in beam extract ion will be considerably smaller t han 
the dimensions of the devices employed in beam extract ion 
by means of external fields (see, for example, Refs [40-43] ) . 
This opens up also other oppor tun i t ies for the cont ro l of 
b e a m s and of their pa ramete r s . They include the possibility 
of splitting a beam into several componen t s [70], r emoval of 
the beam halo [71], beam focusing [43], etc. It would be 
therefore of major interest to s tudy the passage of h igh-
energy charged-part ic le b e a m s th rough bent crystals. This 
will n o w be discussed in detail. 

Let us begin with the derivat ion of the equa t ions of 
mo t ion for a bent p a t h of a part icle moving in a field 
formed by bent crystal lographic planes . F o r simplicity, we 
shall assume tha t the rad ius of curva ture 1Z of bent 
crystal lographic planes is the same at all po in ts on a 
bent p lane and it is sufficiently large, so tha t the mo t ion 
takes place in spatial regions whose dimensions are small 
compared with 1Z. The mot ion occurs in a cylindrically 
symmetr ic field Uv(r), where r is the distance from the 
centre of curvature , which can be wri t ten in the form 

r = 11 +x . (5.1) 

Here , x is a small deflection of a part icle from the 
crystal lographic planes in the direction of the n o r m a l to the 
surface: |x| <^1Z. 

The equa t ions of mo t ion for x(t) can be derived 
conveniently with the aid of the relativistic H a m i l t o n -
i a n - J a c o b i equa t ions for the act ion S(r, t) of a part icle 
moving in the field Uv(r) [46]: 

1 2 

8; 
S + UJr) (VS)2+m2 (5.2) 

Since the potent ia l energy is a cylindrically symmetr ic 
function of r, the action S should be sought in the form 

S(r, t) = -Et +Mcp+f(r) (5.3) 

where E is the part icle energy, M is its angular m o m e n t u m , 
cp is the angle of bend ing of the part icle pa th , and f(r) is 
some function of r. It follows from expression (5.3) tha t 
f(r) can be described by the following equat ion: 

d / \ 2 M2

 2 [E-Up(r)Y 

which yields 

/ ( r ) = J d r | [ £ - t / p ( r ) ] 2 - ^ - m 2 | 
1/2 

(5.4) 

The relat ionship dS/dE = const gives the following 
equat ion for the part icle pa th r(t): 

d r \ 2 _\E_ 
dt) 

•Uv{r)]2-M2/r 

[E-Up(r)]2 

(5.5) 

The quant i ty E in the above equat ion represents the 
to ta l energy of a part icle in a crystal. It is related to the 
energy s of the part icle incident on a crystal by 
8 = E + Up(TQ), where r 0 is the value of the coord ina te r 
at which the part icle enters the crystal. Since for a fast 
part icle, we have Uv, it follows tha t Eqn (5.5) can be 
simplified to 

drY 
dt) 

i | 2 E / p ( r ) + E/p (r 0 y 

2Up(r) + Up(r0) 
s 

W e no te n o w tha t M = pb, where p is the part icle 
m o m e n t u m and b is the impact pa ramete r (b = r 0 ) , and 
tha t r = 1Z + x and b = 1Z + x 0 , where x 0 is the poin t at 
which the part icle enters the crystal (Fig. 17), |x| <^1Z and 
| x 0 | <̂  1Z. Then , in the first approx ima t ion in te rms of the 
pa rame te r s x/lZ and 
equat ion for x{t): 

Uv/s, we obta in the following 

d x \ 2 

dt) 
X—XQ U(X)-\-U(XQ) 

~H 8 
(5.6) 

Here , u(x) = uv(1Z + x). 
In principle, E q n (5.6) describes the part icle p a t h x(t) as 

a function of t ime t. It can be interpreted in a clear manne r 
if we differentiate the above equat ion with respect to t ime: 

1 8 Ueff(x) , (5.7) 
d2x 

" d ? 

where 

8 dx 

^eff ( x ) — u ( x ) ~ x 

1Z 
(5.: 

Therefore, the quant i ty UQ^{x) can be regarded as the 
effective poten t ia l energy of a part icle mov ing in a bent 
crystal. 

E q n (5.7) is identical with the cor responding result 
obta ined in Ref. [72] by ano ther me thod . 

The quant i ty u(x) in expression (5.8) is the poten t ia l 
energy of the interact ion of a part icle with the con t inuum 
potent ia l of crystal lographic p lanes and —XE/1Z represents 
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f/eff 

Figure 17. Effective potential energy, described by expression (5.8), of 
the interaction of a particle with the continuum potential of bent 
crystallographic planes, calculated for different bending radii: 
(i)n^oo; (2)n>nc; (3)n<nc. 

the centrifugal energy. Fig. 17 shows g raphs of the function 
Ueff(x) for positively charged part icles moving in a bent 
crystal. These p a t h s are p lo t ted for different values of the 
rad ius of curvature . 

In the limit 1Z —> oo, a part icle moves in a per iodic field 
of the crystal lographic p lanes of a straight crystal. The 
mot ion in such a field can be bo th finite or infinite relative 
to the crystal lographic p lanes (this is shown in Section 4.4). 
The finite mo t ion is realised if the energy of t ransverse 
mo t ion s_Lp = 2-s62 is small compared with the m a x i m u m 
potent ia l energy Uv^max, where 6 is the angle between the 
m o m e n t u m of a part icle incident on a crystal and a 
crystal lographic plane. If E ± P > Uv^max, such a part icle 
follows an infinite p a t h relative to the planes . 

However , if the mot ion occurs in a bent crystal and the 
bend ing rad ius is sufficiently large, then £ / e f f ( x ) conta ins a 
negative correct ion to the poten t ia l energy, and this 
correct ion increases linearly with x. The result is a 
modif icat ion of the poten t ia l well formed by the con t inuum 
potent ia l of the crystal lographic planes . One of the edges of 
the new potent ia l well is depressed relative to the min imum 
value of the function £ / e f f ( x ) in the region of the well 
(curve 2 in Fig. 17). A part icle in such a field can, as in the 
case of a straight crystal (JZ —> oo), be in finite mo t ion 
relative to the crystal lographic planes . Such mot ion is 
possible if the poten t ia l energy s±p is less t han the poten t ia l 
barr ier in a given p rob lem. A part icle then moves pe r iod­
ically in a channel formed by the poten t ia l of the adjacent 
p lanes and it follows the bend ing of the crystal p lanes . If the 
noncoheren t scat tering effects are ignored, such mot ion 
occurs over the whole length of the crystal and this bends 
the part icle p a t h by an angle 6 = L/1Z, where L is the 
crystal thickness. It is clear tha t at high values of L this 
angle can be considerably greater t han the critical angle for 
p lanar channell ing 0 p = (2Uv^max/s)1^2. In other words , a 
beam m a y be bent by an angle exceeding considerably the 
critical p lanar channell ing angle. 

The depth of the poten t ia l well formed by £ / e f f ( x ) 
decreases with reduct ion in 1Z and at some value of 1Z 

the well d isappears completely (curve 3 in Fig. 17). The 
rad ius 1Z = 1ZC at which the poten t ia l well £ / e f f ( x ) d i sap­
pears is well k n o w n as the critical bend ing radius . If 
1Z < 1ZC, finite mot ion is impossible in the field £ / e f f ( x ) 
and, consequently, bend ing of a b e a m by a bent crystal is 
also impossible. 

If the in terplanar po ten t ia l is assumed to be tha t 
described by a h a r m o n i c oscillator [21] u(x) = Up(4x2/d2), 
where |x| ̂  \ dv and dv is the distance between the planes 
located at x = =b^J p , it then follows (which can easily be 
checked) tha t 

F o r example, in the case of p r o t o n s of s = 100 G e V energy, 
moving in a bent silicon crystal a long (110) crystal lographic 
planes , we have Up « 22 eV, dv w 2 A, and, consequently, 
1ZC w 25 cm. W e then have 6p = 1 0 " 5 rad . Then, if 1Z > 1ZC, 
the part icles in a beam can be bent by an angle 
9 = LjlZ > 0 p . It should be stressed once again tha t the 
average fields acting on a part icle in a crystal are several 
orders of magn i tude higher t han the static macroscopic 
external fields, which can be created by physical equ ip­
ment . Therefore, the dimensions of a bent crystal can be 
small compared with the dimensions of the devices used to 
bend the beams by magnet ic fields. F o r example, bend ing 
of heavy posit ive part icles of energy s = 800 G e V th rough 
an angle 6 ~ 10~ rad requires a bent silicon crystal whose 
thickness is L = 10 cm and the bend ing rad ius is 
1Z = 100 m, whereas in magne t s creat ing a field 
B = 1 k G , such bend ing can be achieved in a system 
which is 60 m long. 

Bending of b e a m s of heavy negative part icles is also 
possible in a bent crystal because such a crystal should have 
a poten t ia l well. However , in contras t to posit ive particles, 
there are impor t an t noncoheren t scat tering effects in the 
case of negative part icles and these effects are associated 
with the fact tha t a part icle of this k ind can app roach qui te 
closely the nuclei of the a toms forming the crystal lographic 
planes . Therefore, the efficiency of bend ing a beam of 
negative part icles is considerably less t han for a beam of 
posit ive part icles. So far, bend ing of a beam of negative 
part icles in bent crystals has no t been observed exper imen­
tally, whereas bend ing of posit ive part icles has no t only 
been confirmed in m a n y experiments [41, 42, 7 3 - 8 6 ] , bu t 
has found pract ical use in tackl ing a n u m b e r of tasks such 
as extract ion of a beam from an accelerator, measurement 
of the magnet ic m o m e n t of the E + hyperon [87, 88], etc. 
(for reviews, see Refs [40, 43]). 

5.2 M o t i o n of fast particles in the field of atomic rows in 
a bent crystal 
W e have considered above the mot ion of a posit ive part icle 
under p lanar channell ing condi t ions in a bent crystal and 
we have shown tha t if the bend ing of the crystal is small, it 
is possible to bend the p a t h s of the part icles which are in 
finite mot ion . A similar s i tuat ion arises in the case of axial 
channell ing, bu t it is much m o r e complicated than in the 
p lanar case. This is due to the fact tha t in the p lanar case 
the p rob lem is one-dimensional , bu t it is two-dimens ional 
for axial channell ing. Moreover , the role of the above -
barr ier mo t ion of part icles complicates further the p rob lem 
of axial channell ing. In p lanar channell ing such above-
barr ier part icles are no t deflected in a bent crystal, whereas 
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in axial channell ing they are deflected (as shown below) in 
the same way as the part icles in finite mo t ion in the field of 
a tomic rows. It is then found tha t the major i ty of the beam 
part icles deflected in a bent crystal are in infinite mot ion . 

In this section we shall consider above-barr ier mo t ion of 
a fast charged part icle (irrespective of its charge) in the field 
of a tomic rows in a bent crystal. W e shall assume tha t the 
poten t ia l of a tomic rows is con t inuous and depends only on 
the distance between the part icle and the nearest row. (In 
the next section we shall discuss a m o r e realistic p rob lem in 
which infinite mo t ion should be accompanied by finite 
mo t ion in the field of a tomic rows and, moreover , we shall 
t ake account of the noncoheren t scat tering effects.) 

W e shall begin by demons t ra t ing tha t when part icles are 
in above-barr ier mo t ion in the field of a tomic rows, they m a y 
be deflected no t only in a bent crystal, bu t also in a straight 
one. 

In fact, a fast charged part icle incident on a crystal at a 
small angle xjj to one of its crystal lographic axes (z axis) 
collides successively with different rows of a toms oriented 
paral lel to this axis. The scat tering by collision with each 
a tomic row occurs mainly a long the az imutha l angle cp in a 
p lane o r thogona l to the z axis. Mul t ip le scat tering by 
different a tomic rows results in a redis t r ibut ion of the 
part icles in te rms of the angles cp. If the angle xjj between the 
part icle m o m e n t u m and the crystal lographic z axis is 
sufficiently small {\j/<\j/c), a uni form dis t r ibut ion of the 
part icles in respect of the angles cp is established very rapidly 
(as demons t ra ted by the results of numer ica l s imulat ion of 
the passage of fast charged part icles t h rough a crystal when 
xjj ^ xjjc [86]). As a result, the centre of the scattered beam is 
directed a long the crystal lographic z axis, i.e. if mult iple 
scattering by a tomic rows takes place, the beam axis is bent 
t h rough an angle equal to xjj. Such beam bending is possible 
for b o t h posit ive and negative part icles [86]. 

A redis t r ibut ion of the part icles in a bent crystal occurs 
b o t h in respect of the az imutha l angle cp relative to the 
runn ing direction of the crystal lographic axis and in respect 
of the polar angle \p relative to this axis. Some special 
features of such scattering are wor th not ing. 

W e shall consider the simplest case when dur ing the 
interact ion of a part icle with a single r o w of a t o m s the 
change in the angle \p between the part icle m o m e n t u m and 
the r o w axis is small. This condi t ion is satisfied if the 
bend ing radius of a crystal is large. Then the scattering by 
each row of a toms can be regarded in the xjj = const 
approx imat ion . The angular coord ina tes of a part icle 
then change on going over from one r o w of a toms to 
ano ther and the changes can be described by the following 
recurrent relat ionships: 

Oy,i+i = (0yii - 0t) cos cpt - eXji sin cpt + Bt , 

where 0 x i and 0 y i are the angular coordina tes of the 
part icle in a p lane o r thogona l to the initial direction of the 
crystal lographic axis, before the ith collision with a r o w of 
a toms ; cpt is the az imutha l scat tering angle of the part icle in 
the ith collision [according to expression (2.21), cpt is 
governed by the polar angle \j/t and by the impact 
pa ramete r of a r o w bt]; 0t = Lt/lZ is the runn ing direction 
of the crystal lographic axis; Lt is the p a t h travelled by the 
part icle in the crystal before the iih collision; 1Z is the 
bend ing radius of the crystal (it is assumed tha t the bend ing 

Figure 18. Changes in the angular coordinates of a particle during 
successive collisions with rows of atoms in a bent crystal. 

is a long the y axis). Such recurrent re la t ionships are 
i l lustrated in Fig. 18. 

If in the set of re la t ionships (5.10) we go over to 
variables 6yi = 6yi — 6h 6xi = 6 x h the result is in the 
form of recurrent re la t ionships for the quant i t ies 0yi and 
0'xb which determine the angular coordina tes of a part icle 
relative to the runn ing direction of the crystal lographic 
axis [89, 90]: 

0x,i+l = 0x,i C 0 S <P* + S i n <Pi > 

0y,i+i = 0y,i cosq>i - 6xJ sin cpt , (5.11) 

^• = ( C + C ) 1 / 2 -

The above set of re la t ionships gives also one for ^ which 
links the value of the angle \jjt between the part icle 
m o m e n t u m and the crystal lographic axis in the case of 
the ith collision to the angular coordina tes of the particles 
0'xi and 0yi. The quan t i ty lt in one of the above 
re la t ionships is the p a t h travelled by the part icle between 
the ith and (z + l ) t h collisions with rows of a toms : 
h — Lf+i — Lt. 

The set of re la t ionships (5.11) can be used in a s tudy of 
the dynamics of a part icle in a bent crystal and in numer ica l 
s imulat ion of the passage of a part icle t h rough a crystal. 
The mot ion of fast part icles in a per iodic field of a tomic 
rows in a crystal can be regular or chaotic . Therefore, in 
general , the pa t t e rn of the passage of part icles t h rough a 
crystal is fairly complex and requires numer ica l s imulat ion 
in which the real geometry of the dis t r ibut ion of a tomic 
rows in a crystal is t aken into account . Before we consider 
the numer ica l s imulat ion results, let us examine some 
analytic re la t ionships which follow from the main recur­
rent formulas (5.11) tha t describe the scattering of part icles 
by a tomic rows in a bent crystal [94]. 

Let us assume tha t each collision with an a tomic row 
establishes a uni form dis t r ibut ion of part icles over the 
angles q>i9 i.e. tha t the function represent ing the dis t r ibu­
t ion of particles over angles cpt is independent of cpt. 
Averaging of the set of re la t ionships (5.10) over such a 
dis t r ibut ion yields self-evident re la t ionships 

e~^ = o, e~^ = %, (5. i2) 
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where the ba r denotes averaging over cpt. These re la t ion­
ships show tha t when the condi t ions for a uni form 
dis t r ibut ion of part icles over the angles cpt are satisfied, 
the beam centre is displaced a long a bent crystal lographic 
axis. The numer ica l s imulat ion results obta ined in a mode l 
of b inary collisions demons t ra t e [86] tha t this app rox ima­
t ion is quali tat ively correct if the angle xjj between the 
part icle m o m e n t u m and the crystal lographic axis is small 
compared with the critical axial channell ing angle \j/c. 

W e shall n o w find the average values of the angles of 
scattering of particles by a tomic rows 9 x

2

+ i and 9y2

+i9 

relative to the runn ing direction of the crystal lographic axis 
when the dis t r ibut ion of the part icles over the angles cpt is 
uni form. Squar ing the first relat ionship in the set (5.11) and 
averaging it over cpb we find tha t 

r\i2 r\i2 1 ( nf2 nf2 \ (5.13) 

If we assume tha t in going over from one cell to the other 
the quant i t ies 9x

2

i+x change only slightly, we can write 
down the following equat ion for 9x

2

t: 

di 
(5.14a) 

Similar p rocedures apply to the second relat ionship in 
the set (5.11) and yield the following equat ion for 9y2{. 

\2 
d ^72 

• ( 5 ' 1 4 b ) 

Adding and subtract ing E q n s (5.14a) and (5.14b), we 
find tha t 

d 72 A x 2 

K) ' 

Vx

2

t + 9y2

t. W e shall n o w replace with the 
a part icle between 

where xjj2 

average distance / travelled by 
consecutive collisions with a tomic rows. This distance is 
given by [19] 

1 
/ 

= nd db\\ — cos cp (b)] , (5.15) 

so tha t if we no te tha t di ~ dz/L we obta in the following 
equa t ions for 9x

2(z) and 9y2(z): 

dz 

(5 .16) 

If the order of magn i tude of this distance is given by 
/ w a /R \ffQ, where a is the distance between the rows of 
a t o m s and R is the screening radius of the a tomic potent ia l , 
we find tha t 

Y K2 
(5.17a) 

(5.17b) 

It follows from the above re la t ionships tha t if I <^1Z\pc, 
then 9y2

t w 9x

2

t and for L ^> I the average square of the 
part icle bend ing angle relative to the final direction of the 

bent crystal lographic axis, given by relat ionship (5.17a), is 
much less t han the square of the angle of the crystal bend ing 
of the beam 92 = (L/1Z)2. In other words , in this case the 
beam bending is a long the bend ing of the crystal lographic 
axis when f luctuations of the scattering angles of the beam 
part icles are small compared with the angle of bend ing of 
the beam by the bent crystal: 

92>il/2 (5.1* 

It should be stressed tha t the beam bending applies in this 
case to the part icles which are in infinite mo t ion relative to 
the a tomic rows. Both posit ive and negative part icles m a y 
be bent . This bend ing requires tha t the condi t ion of 
uni form dis t r ibut ion of the particles over the angles cp be 
satisfied, which — as poin ted out above — is possible if 
\j/ ^ \j/c. Since at the exit from the crystal we have 

the condi t ion \j/ ^ \j/c can be wri t ten in 
the form 

IL_ 

V2 
(5.19) 

This condi t ion determines the relat ionship between L , 1Z 
and 8 when the bend ing of a part icle beam is possible in the 
course of their mult iple scat tering by a tomic rows in a bent 
crystal. 

Rela t ionships (5 .12) - (5 .19) are derived wi thout specify­
ing the law governing the dis t r ibut ion of a tomic rows in a 
p lane o r thogona l to the crystal lographic z axis. Therefore, 
re la t ionships (5.12) — (5.19) can be applied to the mot ion of 
a part icle in a per iodic field of the a tomic rows and also 
when the posi t ions of rows in a p lane t ransverse to the z axis 
can be regarded as r a n d o m . The only necessary condi t ion is 
a uni form dis t r ibut ion of particles between the angles cp in 
collisions with a tomic rows. Such a dis t r ibut ion is qua l ­
itatively correct if xjj <^ xjjc. Since \p ^ \j/c9 the bulk of the 
beam part icles is in chaot ic mo t ion in the per iodic field of 
such a tomic rows and the actual law governing the 
dis t r ibut ion of the rows in a t ransverse p lane is u n i m p o r ­
tan t from the poin t of view of the scattering. 

The condi t ion given by formula (5.19) is identical with 
tha t obta ined in Ref. [42] for the dechannel l ing length of 
fast part icles in a bent crystal. However , the solut ion of the 
system of equa t ions (5.17) has been obta ined employing the 
relat ionship l^a2/R\pc. Accord ing to E q n (5.15), the 
quant i ty / is generally a function of xjj2. Therefore, 
E q n (5.17a) is a nonl inear differential equat ion for \J/2(z). 
The case when / w a2/R\J/c applies to the poten t ia l of a r ow 
of a toms described by U(p) = U0(R/p)2. However , for other 
functions U(p), this solut ion is different. F o r example, if the 
poten t ia l is U(p) = U0%R/2p9 which is frequently used in 
the theory of channell ing, we then have I = l^xjj 
l0 = 4/tz2(I/ndRil/c) [19] and the equat ion for ^/2{z) becomes 

d z Y n2 

2U/2 

•Ac 

where xjj in the expression for is replaced with {xjj2)1^2. 
The solution is then 

n2 

It is easily demons t ra ted tha t in the case under discussion 
as well as when / w a jR \j/c9 there are such values of 8, L , 
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and 1Z for which the relat ionships 02 ^> ij/2 and ij/2 ^ are 
obeyed, i.e. a beam of part icles undergo ing mult iple 
scattering by a tomic rows m a y be bent in a bent crystal. 

W e shall n o w consider some characterist ics of the 
mo t ion of fast charged part icles in a bent crystal due to 
the periodici ty of the dis t r ibut ion of a tomic rows. Wi th this 
in mind we shall show tha t when particles are in regular 
mo t ion a long the crystal lographic plane, the recurrent 
re la t ionships (5.10) are t ransformed into the cor responding 
results obta ined in the theory of mo t ion of part icles in the 
field of the con t inuum potent ia l of bent crystal lographic 
p lanes obta ined in the preceding section. As before, we shall 
assume tha t a tomic rows form a square cell in the (x, y) 
plane and the sides of this cell are directed a long the x and y 
axes. 

W e no te first of all tha t for x// ^> x//c the characteris t ic 
values of the az imutha l angles of the scattering of a part icle 
by a r o w of a toms , described by expression (2.25), are small 
compared with uni ty: cpt e f f ~ ( i / f c / i / ^ ) 2 . Then , if the initial 
angles Qx$ and 9y^ are such tha t Qx$ = x// 5> x//c and 0y^<^/c, 
there is a correlat ion in the successive collisions of a part icle 
with a tomic rows dis tr ibuted periodically in p lanes paral lel 
to the (x, z) crystal lographic plane. Expans ion of the 
recurrent re la t ionships (5.10) in te rms of small values 
cpt <̂  1 gives, in the first approx imat ion , 

Jx,i+1 

0y,i+l ^ - 4 
(5.20) 

where lt = a/ij/, xjj > \JJC, and a is the distance between the 
rows of a toms in the (x, z) p lane. 

It therefore follows tha t in the case under discussion the 
componen t of the part icle velocity a long the x axis is 
conserved and the mot ion in a t ransverse direction is 
described by 

9, y,i+l •0v (5.21) 
a 

The values of cpt and xjj > are given by for­
mula (2.25). The integral with respect of x , which occurs 
in this formula, can be related to the con t inuum potent ia l 
Up(bi) in a crystal lographic p lane by 

1 POO 
- dxuR(x

2+b2y2 = up{bt). 
a J-OO 
Since quant i t ies 6yi vary slowly with / and are p r o p o r ­

t ional to the part icle velocity componen t v^- a long the y 
axis, the following equat ion is obta ined for vy t: 

a di 

1 _8_ l 
K 

The variable bt is replaced here with yt = bt. Finally, 
subject to the relat ionship {a/^f)di= dTh we ob ta in 

d2y 1 8 , , , , 1 (5.22) 

which in fact is identical with the cor responding E q n (5.7) 
for a part icle moving in the con t inuum potent ia l of bent 
crystal lographic planes . The difference between these 
equa t ions is only this: in E q n (5.7) the bend ing is in the 
direction of smaller values of x , while in E q n (5.22) it is in 
the direction of higher values of y. This results in the 

opposi te sign in front of the centrifugal te rm (which is 
p ropo r t i ona l to l /7£). 

It therefore follows tha t if a part icle is in regular mo t ion 
a long a crystal lographic p lane , the recurrent re la t ion­
ships (5.10) go over to the cor responding Eqn (5.7) in 
the theory of mo t ion of part icles in a per iodic field of 
bent crystal lographic planes . 

5.3 Simulation of the passage of high-energy charged 
particles through a bent crystal 
The recurrent re la t ionships (5.11), which link the angular 
coordina tes of a part icle as it goes over from one r o w of 
a t o m s to ano ther , are analysed above on the assumpt ion 
tha t there is a uni form dis t r ibut ion of the part icles over the 
az imutha l angle cp in a p lane o r thogona l to tha t 
crystal lographic axis near which a part icle is moving. 
However , this assumpt ion of a uni form dis t r ibut ion of 
part icles over the angles cp should be regarded only as 
quali tat ive. If no assumpt ion is m a d e of a uni form 
dis t r ibut ion of part icles in te rms of the angles cp, the 
recurrent re la t ionships (5.11) have to be investigated by 
numer ica l s imulat ion. W e shall give some results of such a 
numer ica l s imulat ion and the results of a s tudy of the 
influence of noncoheren t effects on the passage of fast 
part icles t h rough a bent crystal. These effects are associated 
mainly with mult iple scattering of the t ransmi t ted part icles 
by the the rma l v ibra t ions of a t o m s in the lattice. 

In numer ica l calculat ions one needs no t only the 
recurrent re la t ionships (5.10), bu t also those l inking the 
impact pa rame te r s bi+x and bt for successive collisions of a 
part icle with rows of a toms . W e can readily see (Fig. 19) 
tha t these quant i t ies are related by 

k>i+i = k>i + 
7x,i+l Jy,i+l 

+ 1 •Am V ' 
(5.23) 

and c y are the coord ina tes of the centres of an where c x 

adjacent r o w of a t o m s (relative to a r o w of a toms with the 
index / ) which a part icle reaches after crossing the ith cell. 
With in the limits of a uni t cell, the con t inuum potent ia l of 
a r o w of a toms is assumed to be radial ly symmetric . 

Figure 19. Impact parameters bt and bi+\ for successive collisions of a 
particle with rows of atoms = 0x,i-\-\l^i+\) 
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Since the pa rame te r s bt are related in a definite way to 
the angles q>t [see relat ionship (2.19)], it follows tha t 
formula (5.23) makes it in fact possible to establish a 
relat ionship between the angles cpt and (pi+\. The recurrent 
re la t ionships (5.11) can then help in solving the p rob lem of 
the mo t ion of a part icle in the per iodic field of a tomic rows 
in a bent crystal. Strictly speaking, formulas of the (5.23) 
type apply to a straight crystal. However , since the bend ing 
is slow, they can be applied also to a bent crystal. 

In the p rob lem under discussion, an elementary event of 
the interact ion of a part icle with a crystal is its scat tering by 
a r o w of a toms and no t by a single a tom as in the b inary 
collision mode l (see, for example, Ref. [86]). Therefore, the 
me thod employed can be used to s tudy the passage of 
part icles t h rough a fairly thick crystal. 

W e shall n o w give some results of the numer ica l 
calculat ions. Fig. 20 shows the angular dis t r ibut ions of 
posit ive and negative part icles whose energy is 
8 = 300 G e V and which cross a silicon crystal bent to a 
rad ius 1Z = 10 4 cm. The results are p lot ted for several 
crystal thicknesses. The simulat ion was carried out for 
part icles enter ing this crystal at a small angle (i/f <0 .1 i / f c ) 
relative to the (111) crystal lographic axis. This was done for 
var ious values of the impact pa rame te r b. The poin ts in 
Fig. 20 represent the results of s t imulat ion for 100 particles. 
A crystal was assumed to be bent a long the y axis. 
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Figure 20. Angular distributions of negative (a, b) and positive (c, d) 
particles of e = 300 GeV energy passing through a silicon crystal bent 
to a radius 1Z — 104 cm near the (111) axis; the coordinates of the 
beam incident on the crystal are (9X, 9Y) — (0, 0). 

The results obta ined demons t ra t e tha t , if the crystal 
bend ing rad ius is large, a beam can follow a crystal lo­
graphic axis in a bent crystal and such b e a m bend ing is 
possible for bo th posit ive and negative particles. The 
average squares of the part icle bend ing angles, measured 
relative to the runn ing direction of the crystal lographic axis, 
are in this case small compared with the square of the angle 
of beam bending . Therefore, in accordance with re la t ion­
ships (5.10), the whole beam is displaced in the direction of 
a crystal lographic axis in a bent crystal if 1Z is large and L is 
small. It should be stressed once again tha t bend ing applies 
to part icles in infinite mo t ion relative to a tomic rows and 

tha t it is due to characterist ic features of the mult iple 
scattering of part icles by these rows. 

The results of such s imulat ion also demons t ra t e tha t the 
angular d is t r ibut ions of posit ive and negative part icles are 
different. This is due to the difference of the mot ion of 
above-part icles which have opposi te signs. F o r example, if 
\jj<\jjc, a fraction of posit ive particles m a y be in regular 
mo t ion a long crystal lographic planes (see Fig. 14). These 
part icles are represented in Fig . 20 by a dis t r ibut ion of some 
of the beam part icles a long the lines. If \jj<\l/c, regular 
mo t ion is not realised for negative part icles and, therefore, 
there is no ' t r app ing ' of such part icles in crystal lographic 
planes (Fig. 14c). However , the bulk of the posit ive 
part icles moves chaotically in the field of a tomic rows in 
a crystal if \JJ<\JJC. The mechanism of bend ing of this 
fraction of the beam part icles is exactly the same as tha t 
which applies to negative part icles. 

It is wor th no t ing tha t if the passage from one cell to 
ano ther results in a r a n d o m scatter of the target pa rame te r s 
(when the adjacent rows are shifted relative to one another 
in a r a n d o m manner ) , collisions of a part icle with different 
rows of a t o m s can be regarded as r a n d o m . This mode l 
cor responds to wha t is k n o w n as the approx ima t ion of 
r a n d o m collisions with a tomic rows. The first calculat ions 
of the passage of high-energy part icles t h rough a crystal 
carried out on the basis of this mode l [89] have shown tha t 
posit ive and negative part icles m a y be bent by a bent crystal 
when the bend ing rad ius is large. This result was confirmed 
when the real geometry of the dis t r ibut ion of a tomic chains 
in a crystal was simulated [90]. Moreover , the s imulat ion 
showed tha t it is impor t an t to t ake account of the 
real geometry of the dis t r ibut ion of a tomic rows in a 
crystal when dealing with the mo t ion of posit ive part icles 
because the t r app ing of these part icles in p lanar channels is 
possible. 

The results discussed above are derived ignoring axial 
channell ing (finite mo t ion ) of part icles in the field of a tomic 
rows and also ignoring noncoheren t scat tering of these 
part icles in a crystal. W e shall n o w consider the influence of 
these processes on the passage of high-energy part icles 
t h rough a bent crystal. 

This p rob lem was solved by an improved numer ica l 
mode l of the passage of part icles t h rough a crystal. This 
mode l takes account of the real geometry of the pos i t ions of 
a tomic rows in a crystal and it can be used to consider in a 
unified manne r the main dynamic and kinetic effects [91]. In 
this mode l the interact ion of a part icle with a crystal is 
investigated by dividing the part icle pa th into a set of 
rectilinear sections within which the changes in the part icle 
velocity associated with noncoheren t scattering effects and 
with the con t inuum potent ia l of a tomic rows in a crystal are 
t aken into account . The p r o g r a m of numer ica l calculat ions 
based on this mode l can be used to s imulate the passage of 
high-energy ( e > l GeV) part icles t h rough a crystal of 
thickness up to several tens of centimetres. 

Fig. 21 gives some of the results of such s imulat ion of 
b e a m s of posit ive and negative part icles with energies 
8 = 300 G e V and s = 10 4 G e V moving in a silicon crystal 
bent to a rad ius 1Z = 10 4 cm and 1Z = 3 x 10 5 cm along the 
(111) axis. The s imulat ion was carried out for a set of 100 
part icles. The ord ina te and the abscissa of Fig. 21 give the 
angular coordina tes of the part icles at the exit from the 
crystal. The simulat ion was m a d e for the part icles entering 
the crystal a long the (111) crystal lographic axis. The 



Dynamics of high-energy charged particles in straight and bent crystals 1143 

0 x / m r a d 

0.0 

0.0 

i . / . « I ; . V ^ I 
1 " • 
i * i • ip.* i 
i * V . i i ' 
i I I I 

I L = 5 C M . I I B 

- 1 I I I 

i • i- \ * \ 

•i ^ r * i 
i i j i 
i i</g i 

i i i i 
1 . L = 1 . C M

L 1 c , 
1 1 1 1 

1 . - . I I I 

_ _ , i ^ T f - r 
1 4 t* 1 

1 / / I I I 

1 • I I I 

1 I I I 

i I I I 
1 L = 5 cm | | | d 
1 ' .V I I I 
1 - I I I 

- i ^ M - - -
i r: 1 i i 
i . • • • " I I I 

i I I I 

i I I I 

0.0 0.1 0.0 0.03 0j,/mrad 

Figure 21. Angular distributions of negative (a, b) and positive (c, d) 
particles of energy s — 300 GeV (a, c) and s — 104 GeV (b, d) passing 
through a silicon crystal bent to a radius 11 — 104 cm (a, c), and 
71 = 3 x 105 cm near the (111) axis. 

d is t r ibut ion of the incident part icles a long x 0 and y0 on the 
entry face of the crystal was assumed to be uni form. 

It follows from these results tha t inclusion of the 
noncoheren t effects in the scattering and axial channell ing 
does not affect greatly the passage of part icles t h rough a 
bent crystal if the average values of the square of the angle 
of mult iple noncoheren t part icle scattering in a crystal are 
small compared with the average square of f luctuat ions of 
the scat tering angles, described by expression (5.16), due to 
the crystal bending . These results also demons t ra t e tha t 
when a beam is incident a long a crystal lographic axis of a 
bent crystal, large fractions of negative and posit ive 
part icles in the beam m a y be deflected following the 
bend ing of the axis and the bend ing angle m a y exceed 
considerably the critical angle for axial channell ing (for 
example, 0y ~ S\j/C in the case i l lustrated in Fig. 21b). 

Fig. 22 shows the dependence, on the crystal thickness, 
of the fraction of negative part icles in a beam moving a long 
a bent crystal lographic axis under axial channell ing con­
dit ions (finite mo t ion in a field of one of the a tomic rows) , 
and of the part icles bent into the angular interval A 0 < i / f c 

relative to the runn ing direction of the crystal lographic axis. 
A compar i son of these two curves shows tha t the dominan t 
mechanism of bend ing of negative part icles by bent a tomic 
rows in a crystal is not axial channell ing, bu t mult iple 
az imutha l scattering of above-barr ier part icles by a tomic 
rows in the crystal. 

The exit angular d is t r ibut ions of posit ive and negative 
part icles of energy s = 300 G e V are given in Ref. [70] for a 
beam of part icles incident on a bent silicon crystal at the 
angle i/f i n = 0x0 = \j/c, 0y0 = 0 relative to the (111) axis. The 
s imulat ion results given in Ref. [70] show tha t the si tuat ion 
is as follows: some posit ive part icles in the beam follow the 
bent crystal lographic axis, bu t there are also several beam 
fractions which are t r apped into p lanar channels and are 
bent following the shape of the relevant planes . Conse ­
quently, the incident b e a m splits into several b e a m s a long 
different angles. Such splitting does no t occur in the case of 
negative part icles. 

It follows tha t the periodici ty of the dis t r ibut ion of 
a tomic rows in a crystal influences the passage of posit ive 

! / , % 

0 3 6 9 L , a u 
Figure 22. Dependence, on the crystal thickness L, of the fraction of 
negative particles moving along bent rows of atoms in a silicon crystal 
under axial channelling conditions ( 7 ) and of particles deflected to the 
angular interval Ai// < i//c relative to the running direction of the 
axis ( 2 ) ; e = 104 GeV, K = 3 x 105 cm (Fig. 21b). 

part icles t h rough a bent crystal, bu t does not affect 
significantly the passage of negative part icles when the 
angle of incidence xjj = \jt-m is equal to several critical axial 
channell ing angles \j/c. 

The results obta ined suggest new oppor tun i t ies for the 
cont ro l of the pa rame te r s of high-energy part icle b e a m s in 
accelerators , such as beam extract ion from accelerators , 
splitting of a beam into several componen t s , etc. W e shall 
conclude tha t there have been as yet no exper imental 
invest igations of bend ing of beams of high-energy charged 
part icles moving a long a crystal lographic axis in a bent 
crystal. 

6. Conclusions 
This review deals with the dynamics of high-energy charged 
part icles in straight and bent crystals. It is shown tha t if 
mo t ion occurs at small angles to one of the crystal lographic 
axes, it is then governed mainly by the con t inuum potent ia l 
of a tomic rows in a crystal oriented a long this axis. The 
con t inuum potent ia l appears in a na tu ra l manne r in mo t ion 
investigated employing the Born approx ima t ion within the 
f ramework of q u a n t u m electrodynamics or classical 
e lectrodynamics. The con t inuum potent ia l of rows of 
a t o m s in a crystal represents a complex per iodic nonl inear 
function of two coordinates . Therefore, the task of 
investigating the mot ion of a part icle in such a field 
belongs to the theory of nonl inear systems in which b o t h 
regular and chaot ic mo t ion is possible. A n impor t an t 
aspect is the stability of such mot ion . All these p rob lems 
are encountered bo th in the finite mo t ion of part icles 
(channell ing) and in the infinite (above-barr ier) mot ion , 
relative to a tomic rows in a crystal. The p rob lem of above -
barr ier mo t ion of a part icle in the per iodic field of a tomic 
rows in a crystal can be linked to the 'bi l l iards ' mo t ion of a 
part icle in an external field or to the elastic scattering of a 
part icle by three disks located in one p lane . 

The na tu re of the mo t ion of part icles in a crystal and the 
condi t ions under which var ious types of mot ion take place 
are very impor t an t aspects in the selection of app rox ima te 
analytic m e t h o d s for the descript ion of the interact ion of 
part icles with the lattice, par t icular ly with a bent crystal. 
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These approx ima t ions include the con t inuum potent ia l of 
crystal lographic planes and tha t of r a n d o m collisions of a 
part icle with a tomic rows. 

Analyt ic est imates and the results of numer ica l s imula­
t ion of the passage of high-energy part icles t h rough a bent 
crystal given in this review demons t ra t e tha t under certain 
condi t ions a large fraction of beam part icles m a y follow the 
bend ing of the crystal lographic axis a long which a beam is 
incident on the crystal. This mechanism of b e a m bending 
applies to b o t h posit ive and negative part icles and it is in 
the main due to the characterist ics of mult iple scattering of 
part icles by a tomic rows in a bent crystal. Detai led 
exper imental invest igations of the capabilit ies of this 
beam bend ing mechanism are still lacking. 

Unfor tuna te ly , for lack of space, we have been unab le to 
deal with m a n y other manifes ta t ions of the different types 
of mo t ion in the physical processes tha t a ccompany the 
passage of high-energy part icles t h rough a bent crystal, 
which include emission of coherent rad ia t ion under the 
condi t ions of real part icle dynamics in a crystal [92], the 
influence of mult iple scat tering on the process of coherent 
emission of rad ia t ion from thin and thick crystals [66], 
resonant dechannel l ing [93], etc. Moreover , this review does 
no t deal with general theoret ical p rob lems tha t be long to 
the theory of dynamic chaos , such as chaos in q u a n t u m 
systems, measure of chaos , and ent ropy. These concepts 
undoub ted ly apply to the characterist ics of part icle beams 
moving in a crystal. 
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