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Abstract. The problems of the dynamics of high-energy
charged particles in straight and bent crystals are discussed.
Various methods for describing particle scattering in
crystals are considered, including the Born approxima-
tion, classical electrodynamics, and the eikonal approx-
imation. These problems belong to the theory of nonlinear
systems in which both regular and chaotic motion is
possible. Various types of channelling motion and above-
barrier motion of particles in a crystal along one of the
crystallographic axes are discussed. Special attention is
given to the studies of motion of particles in a bent crystal,
which may be used to bend high-energy particle beams.

1. Introduction

The problem of the interaction of fast charged particles
with crystals is of considerable interest from a number of
viewpoints. Above all, the passage of high-energy particles
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through a crystal is accompanied by coherence and
interference effects, which are due to the interaction of a
particle with different atoms in the lattice. These effects
include the diffraction of x rays in crystals [1], the Bragg
scattering [2], the coherent scattering, the radiation emitted
by relativistic electrons, the formation of electron —positron
pairs [3—6], and the rainbow scattering [7, 8]. These effects
are the reasons why the probability of the interaction of a
particle with lattice atoms may be considerably higher than
the probabilities of analogous processes involving single
atoms. Much has been published on this subject (details
can be found in reviews and monographs [9—16]).

A crystal is a unique system with very strong internal
electric fields. The average values of the internal crystal
fields may be several orders of magnitude higher than
macroscopic external fields. When particles move in such
internal fields, they may experience channelling, which is a
remarkable phenomenon in which a particle moves along
open channels formed by atoms located in crystallographic
planes or arranged along crystallographic axes.t The
motion in a strong inhomogeneous crystal-lattice field is
strongly nonlinear and it can be regular or chaotic. It would
seem that any motion of a particle in a crystal should
always be regular because of the periodic crystal structure.

TAttention to this effect was first drawn by Stark in 1912 [17]. The
existence of open channels was established much later by Robinson
and Oen [18] who simulated numerically the motion of a charged
particle in a crystal. The foundation of the theory of channelling was
provided by Lindhard [19]. Channelling is discussed in a number of
reviews and monographs [20-27].
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However, in view of the high intensity and nonlinearity of
the fields in crystals, motion of a particle may be regular or
chaotic [28—30], both in the presence and absence of
channelling [14, 31].

Quantum-electrodynamic effects which appear during
the motion of a charged particle in a strong crystal field
have a number of interesting properties. The probabilities
of such processes as bremsstrahlung and pair formation
increase strongly at high particle energies (see, for example,
Refs [14, 25, 32-36]). In describing these effects it is
necessary to take account of the recoil which accompanies
the emission of radiation and also of multiple processes. A
very specific phenomenon is the growth of an electromag-
netic shower in a crystal [37, 38].

There is also the problem of the interaction of high-
energy particles with a bent crystal. In the presence of a
strong internal crystal field the bending of a crystal bends
the particle path, so that it is possible to bend a beam of
moving particles in a crystal. The attention to this effect was
first drawn by Tsyganov [39] and it can be used to bend
beams of high-energy charged particles, extract particles
from cyclic accelerators, and split a beam into several
components (for reviews see Refs [40—43]). It is important
to note that crystals can perform these tasks within much
smaller spatial regions than can macroscopic external fields.
This is due to the high intensity of internal crystal fields.

The interactions of high-energy charged particles with
crystal fields have been investigated by a variety of
theoretical methods, such as the Born perturbation
theory, the semiclassical approximation, and classical
electrodynamics. The problem then arises of the approx-
imations which can be used for the internal crystal field.
The approximation of a continuous row or string is used in
the theory of channelling: in this approximation the lattice
potential is averaged along the coordinate (crystallographic
axis) parallel to such motion.

The purpose of this review is to consider in detail the
dynamics of charged particles in the continuum potential of
rows of atoms in a crystal and to determine the conditions
under which such motion can be regular and those which
make the motion chaotic. We shall discuss the characteristic
features of the dynamics of such particles not only in
straight, but also in bent crystals.

2. Scattering of fast charged particles by rows
of atoms in a crystal

2.1 Scattering in the Born approximation

If a high-energy charged particle is moving in a crystal at
a small angle relative to one of the crystallographic axes
(z axis), a correlation appears between the subsequent
collisions of the particle with the lattice atoms. In the
presence of such correlations the scattering cross section of
a particle in a crystal may be very different from the
scattering cross section in an amorphous medium.
Correlations appear even when a particle collides with
atoms forming a single row oriented along the z axis. We
shall therefore consider first the scattering by a single row
of atoms in a crystal when a particle beam crosses the row
at a small angle relative to its axis (Fig. 1).

The scattering by a row of atoms may be coherent
because of the periodic structure of the row and the related
possibility of the interference between the scattering
amplitudes when a particle collides with different atoms.
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Figure 1. Interaction of a fast charged particle with a row of atoms in
a crystal.

We shall show that the effectiveness of such scattering is
described by the parameter [14]
Ze?

c(N):Nc_a

- @2.1)

where N, o« R /ya is the number of atoms in a row with
which a particle interacts effectively when it crosses the
row; Z|e| is the nuclear charge of a single atom; R is the
screening radius of the atomic potential; @ is the lattice
constant (we shall use a system of units in which the
quantum constant /i and the velocity of light ¢ are taken to
be unity).

The parameter C(N) can be small or large compared with
unity. Depending on the value of this parameter, one has to
use different methods in the description of scattering. If
{™) <1, the Born approximation is applicable; if WM'> 1,
we can use the approximation of classical mechanics.
Finally, the eikonal approximation is valid in the inter-
mediate cases. We shall consider all these three
approximations and we shall begin with the Born approach.

In the first Born approximation the scattering cross
section is governed by the square of the modulus of a matrix
element of the energy of the interaction between a particle
and an external field, which is proportional to the Fourier
component of the interaction energy U,. Since we are
interested in high energies and small scattering angles, we
can ignore the spinor structure of the matrix element. The
differential scattering cross section is then given by [14, 44]

32 2

do = o |U,|" do, (2.2)
where do is an element of the solid angle in the direction of
the scattering; ¢ is the energy of the particle; g =p —p' is
the momentum transferred to the external field; p and p’
are the momenta of the particle before and after the
scattering.

In the scattering by a row of atoms the energy of the
interaction of a particle with the row U(r) is the sum of all
the energies of the interactions with the individual atoms
ulr—r,):

N

Ur) =Y u(r—r,) .

n=1

2.3)

where r, is the coordinate of the position of an atom in a
row. Here, r, :rg +u,, rg is the coordinate of an
equilibrium position of an atom in the row [it is assumed
that the atoms are distributed along the z axis and are
separated by equal distances d from one another (see
Fig. 1)], and u, is the thermal displacement of each atom.
The square of the modulus of the Fourier component of
the potential described by expression (2.3) is
N
|Uq|2 = Z exp [iq'(rn _rm)] |Mq|2 :

n,m=1

2.4)



Dynamics of high-energy charged particles in straight and bent crystals

1121

If we average the above expression over the thermal
vibrations of atoms (by a procedure described, for example,
in Refs [9, 12]) and if we bear in mind that at high values of
N, we have

2
2n
_Njgs(q:_g:)

we find that

(TR E LIPS ERIEr)

+[1 - exp(—q2u2)]} |uq|2 2.5)
where u? is the mean square of the thermal displacement of
an atom in a row; 8(g.) is the delta function; g, = 2nn_/d is
a component of the reciprocal lattice vector (n, =0, +£I,
42, ...). The scattering cross section described by expres-
sion (2.2) can then be represented in the form

do = do, + do, , (2.6)

where do, and do, are the coherent and noncoherent
scattering cross sections:

2n
N 725(% —g.)exp(—¢"1?) doy (q) ,

dogn = 2.7

do, =N[1 —exp(—¢"1?)] do (q) -

Here, dao;(g) is the scattering cross section of a particle in
the field of a single atom in the row. When the potential of
a single atom is the screened Coulomb potential

(2.8)

u(r) = (Zele|r™") exp (—%) : (2.9)
the cross section do; is
472546
doy :—2 do . (2.10)
(¢#+R7?)

The quantity do, is independent of the orientation of
the row relative to the momentum of the incident particle
and it represents noncoherent scattering, which differs only
by the factor [l —exp(—q2u2)] from the corresponding
cross section for an amorphous medium. The coherent
scattering cross section do.; depends strongly on the
orientation of the atomic row relative to the momentum
of the incident particle. We shall now consider in greater
detail this term.

It follows from the laws of conservation of energy and
momentum during scattering, e =¢’ and p =p’ +g¢, that
2pq = q2, where g is the component of g parallel to p. For
small angles of incidence of a particle on the row (Y < 1),
this relationship becomes

2, 2, 2

2p(q; +¥q:) = - +dx + 45 211
where the x axis is directed along the projection of the
momentum p of the incident particle onto the (x, y) plane
orthogonal to the row axis z. Formula (2.11) gives in fact
the relationship between the components of the vector q.
For small scattering angles, we have

@.11a)

If we bear in mind that in the case of small scattering
angles the cross section is do =~ dg, dg, p_2, we find that

2
qy 2m
dogon = NZS(W% % d '1>

dg, dg,

2.12
ndpy (2.12)

|uq| exp(—q*u ) .

The main contribution to this cross section comes from the
term with n =0. In fact, when n =20, then ¢, Nq}/2p1//
whereas for n= 1, we have ¢, =~ 2n/dy > qy/Zplp Since u,
and exp(—q u) decrease rapidly with increase in ¢, the
contribution of the terms with n # 0 to the scattering cross
section is small. Consequently, after integration with
respect to ¢,, we ﬁnd that

dg,
2ndy p? 2 W

The above cross section increases rapidly on reduction
in . This is due to the coherent mechanism of the
scattering of a particle on N, x R/yYd atoms in a row.
We can demonstrate this by noting that the cross section
described by formula (2.13) can be represented as follows:

do. x NN, doy x M N2 da, , (2.14)

dacoh = |uq| CX‘p( (1 u ) qx = (2.13)

where do; is the scattering cross section for one atom,
integrated over ¢, at M, o< N/N..

We can see that the cross section do,, is proportional
to Ng, i.e. it is proportional to the square of the number of
atoms in the row with which the particle interacts effectively
as it crosses the row [14]. This is due to the coherent nature
of the scattering of particles by a row. It is worth noting
that formula (2.14) does not contain the total number N of
atomsin the row but only the square of N, i.e. the coherent
scattering does not involve all the N atoms in the row, but
only some of the atoms N, which is defined by the angle of
incidence of a particle on the row: N, o< R/¥d. In other
words, the coherent scattering process does not apply to all
the row atoms, but only to some of them, N, (N, < N). The
number N, increases on reduction in the angle . However,
the angle ¥ cannot be regarded as zero, because then the
Born approximation becomes meaningless (this is discussed
below).

Formula (2.14) includes also the number M., which is
proportional to the ratio of the total number N of atoms in
the row to N.. The occurrence of this factor can be
interpreted as follows. If the whole atomic row is divided
into M blocks and each of these blocks contains N, atoms,
then separate blocks do not interfere with one another
during scattering, i.e. they do not result in coherent
scattering, and, consequently, the scattering cross section
should be proportional to the number M. of such blocks
(and not to the square of this number!).

We shall now consider the conditions of validity of the
adopted Born approximation. The Born approximation can
be used to describe the scattering by a single atom if
Zez/hc <1 [44]. Here, Z is the charge of the scattering
centre (in units of |e|). If the scattering is coherent and it
involves a complex system of, for example, N, atoms in
a row, the charge of the scattering centre is N Z.
Therefore, the coherent scattering can be described by
the Born approx1mat10n if NZe /hc < 1. The quantity
(W) =N Ze ?/fic is the parameter mentioned above.
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Finally we shall discuss the circumstances in which the
main contribution to the cross section of the small-angle
scattering by a row of atoms comes from the Fourier
components of the potential energy characterised by g, = 0.
This means that the inhomogeneity of the potential along
the row axis is unimportant and that the scattering is
governed primarily by the continuum potential of the row,
i.e. the row potential averaged over the coordinate z:

1 [® N
Ug(x, y) :WJ Az " u(r—r,). (2.15)

—o0 n=1

If we substitute this potential in expression (2.2), we obtain
the coherent scattering cross section described by for-
mula (2.13).

The concept of the continuum potential was first
introduced by Lindhard in the description of the channel-
ling of fast particles in a crystal [19]. A channelling particle
moves in one of the channels formed by rows of atoms in a
crystal or by crystallographic planes of atoms, and is
deflected periodically by small angles relative to the
channel axis. Such particle motion in a crystal is possible
if the angle  between the momentum of a particle and the
channel axis does not exceed a certain specific angle
V. = \/4Ze*/ed, known as the critical angle for axial
channelling.

The concept of the continuum potential can be used also
in studies of the scattering of particles by a row of atoms
when the angle ¥ is small so that the condition of validity of
the Born approximation RZe2/¢dhc < 1 is satisfied. This
condition differs from the channelling condition ¥ <.

It is worth noting that the channelling angle appears in a
natural manner in higher orders of perturbation theory
when studies are made of the scattering of fast charged
particles by a row of atoms in a crystal. In particular, this
angle occurs in the expression for the scattering cross
section obtained in the second Born approximation, which
should make only a small contribution compared with the
scattering cross section derived in the first Born approx-
imation.

In fact, if the second Born approximation is used, the
scattering cross section of a fast particle incident on a row
of atoms in a crystal is [45]:

14 ¥

el y?
where the dimensionless coefficient # depends on the
transferred momentum ¢,: n~1, if Rg,~1, and
n ~2In(Rq,) if Rq, > 1. Expression (2.16) is derived on
the assumption that the potential of a single atom in a row
is the screened Coulomb potential.

We can see that the relative contribution of the second
Born approximation depends on the ratio (./¥)>. This
contribution is small if Y* > l!/2. The latter condition should
be added to the condition ZNC) < 1 considered above. The
inequality y* > 2 is satisfied automatically at high values
of the particle energy, so that at high energies the validity of
the Born approximation is governed by the condition
C(N) < 1, which is independent of the particle energy.
The last inequality means physically that the amplitude
of the scattered wave is small compared with the amplitude
of the incident wave. Although the second Born approx-
imation leads to small effects at high energies, it can

8nz2e* dg,
¢ %9 [ (2.16)

s [ )]

nevertheless play an important role if we are interested
in the dependence of the scattering cross section on the sign
of the particle charge. This dependence is not predicted by
the first Born approximation, and in the second approx-
imation the particles with opposite signs of the charge are
scattered differently.

2.2 Scattering in classical mechanics
It is demonstrated above that the scattering of fast charged
particles by a row of atoms in a crystal can be described on
the basis of the Born approximation if the parameter
(W) = N Ze?/hc is small compared with unity. If this
parameter is of the order of or greater than unity, we
cannot use quantum mechanical perturbation theory. The
scattering problem should then be solved rigorously in
terms of quantum mechanics. If the parameter C(N) is large
compared with unity, the situation corresponds formally to
the limit # — 0 (the large value of the parameter ™) is due
to the smallness of the angle Y between the momentum of a
particle and the axis of a row). This limit means going over
from quantum to classical mechanics, so it is natural to
consider the scattering for C(N) > 1 on the basis of the
classical theory of scattering. If the parameter (™ s
compared with unity, i.e. if we are dealing with the
intermediate case, the eikonal theory of scattering of fast
particles can be used (see Section 2.3).

In classical electrodynamics the motion of a relativistic
charged particle in an external field U(r) is described by
equation [46]

dp

£ = Vu(r),

o 2.17)

where p(r) is the particle momentum defined by
p=mv(l —v*/) "% and v=p/e.

In the scattering of a particle by a row of atoms the
potential U(r) is understood to be the sum of the potential
energies of the interaction of a particle with individual
atoms in the row, described by expression (2.3). We are
interested in the scattering when the energy ¢ of a particle is
sufficiently high and the angle ¥ between the momentum p
and the row axis is sufficiently small. Under these conditions
the change in the impact parameter between consecutive
collisions of the particle with the row atoms is small
compared with the impact parameter b itself. For this
reason the particle motion in the field of a row of atoms
occurs as if in an effective continuum potential described by
expression (2.15) and representing a row of atoms averaged
over the coordinate z parallel to the row axis. Therefore, the
effective potential Ug(x,y) is a function of just two
coordinates, x and y, which are both perpendicular to
the row axis. In the simplest case we can regard Uk (x, y) as
having cylindrical symmetry along the z axis. We are then
dealing with the problem of the motion of'a particle in a field
with cylindrical symmetry (Fig. 2). Obviously, in a field of
this kind the component p, of the particle momentum is
conserved along the row axis: p, = const. The motion in a
transverse plane is then described, in accordance with
Eqn (2.17), by the following equation:

10

ﬁ: _UR(xsy)a

= 2.18
o Op (2.18)

where p = (x, y), p is the distance between the particle and
the row axis; g = (pf +m2)]/2; g ~ €.
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Figure 2. Scattering of a fast particle in the field of the continuum
potential of a single row of atoms.

Since the function Ug(p) has cylindrical symmetry,
Eqn (2.18) has two integrals of motion which are the
energy of transverse motion

1 .
er=52"+Ur(p) (2.19)
and the angular momentum
M =ep*o(t) , (2.20)

where ¢(7) is the azimuthal scattering angle in a transverse
plane (Fig. 2). At large distances from a row of atoms,
where U, =0, the integral of the energy of transverse
motion is & :%axﬁz.

These integrals of motion can be used to find the
azimuthal angle ¢(b) of the scattering of a particle by a

row as a function of the impact parameter of the row [14]:

00 29-1/2
(p(b):n—ZbJ d_f[]_UR_(m_'%] ,

Po

(2.21)
&1

where p, is the distance of closest approach of the particle
to the axis of the atomic row. Expression (2.21) is derived
using the relationship M = pyb between the angular
momentum M and the impact parameter of the row.
The quantity py occurring in this relationship is the
projection of the momentum of the incident particle onto
the (x, y) plane.

The total angle of the scattering of a particle by a row is

0(b) = 2y sin B (p(b)] . (2.22)

In the classical theory of scattering the function ¢(b) is
called the function of particle deflection in an external
field.

The differential cross section of the scattering of a
particle by a row of atoms is

do =Ly db, (2.23)

where Ly is the projection of the row length onto a plane
orthogonal to the momentum of the incident particle and b
is the impact parameter of the row representing the shortest
distance between the particle and the row axis in the
absence of scattering (Fig. 2).

According to expression (2.21), the quantity db can be
expressed in terms of the azimuthal scattering angle and,
therefore, we have

do

A=Y D Tt
This expression is obtained bearing in mind that the
function b(@), which is the inverse of the deflection
function @ = @(b), is generally a multivalued dependence
on the scattering angle [14, 47, 48]. The summation over n
in expression (2.24) corresponds to the summation over
single-valued branches of the deflection function ¢(b).

These expressions demonstrate that the scattering of a
fast charged particle in the field of the continuum potential
of a row of atoms in a crystal is possible only along an
azimuthal angle ¢ in a plane orthogonal to the row axis.

The quantity Uy /e, occurring in expression (2.21) is of
the order of magnitude of the ratio of the square of the
critical axial channelling angle to the square of the angle of
incidence of the particle on the row: Ug/e, =~ (. /¥).
According to expression (2.21), small values of this para-

(2.24)

meter correspond to small values of the azimuthal
scattering angle:
(b)z—Li Y 4 [+ 6% (2.25)
¢ 2, db)_, UK ' ‘

The path of a particle in the field of a row of atoms is
nearly rectilinear. This corresponds to the motion under
conditions far from those which apply in the case of axial
channelling.

If y >y, it follows from expression (2.25) that the
quantity |@(b)| is independent of the sign of the particle
charge and that it increases rapidly on reduction in . If in
the deflection function described by expression (2.21) we
include the next term of the expansion in terms of the
parameter Uy /¢, , we obtain the dependence of |p(D)| on the
sign of the particle charge. Therefore, a reduction in
rapidly enhances the dependence of the deflection function
on the sign of the particle charge.

Expression (2.21) is valid not only when ¢ >y, but
also when ¥ <y_. In the latter case we cannot expand in
terms of the parameter Uy /e, and numerical integration of
relationship (2.21) is needed in order to determine the
deflection function and the scattering cross section. The
deflection functions and the scattering cross sections are
given in Ref. [14] for some continuum potentials of a row of
atoms. Therefore, we shall not consider these results in
detail. We shall simply mention that if Y Sy, the deflection
functions and the scattering cross sections of particles
scattered by a row of atoms differ very greatly for opposite
charges of the particles and that typical forms of the
functions Ug(p) are such that in a field of this kind the
particle deflection function is a double-valued function of
the impact parameter. In other words, the rainbow
scattering of particles is then possible [49, 50].

2.3 Scattering in the eikonal approximation

Let us consider the scattering of high-energy charged
particles on a row of atoms in a crystal in the intermediate
case when the relevant parameter is C(N) ~ 1. Let us discuss
the transition from the Born to the classical mechanics
approximation. In the case of high energies of interest to us
such a transition can be investigated on the basis of the
quantum-mechanical semiclassical approximation, analo-
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gous to the geometric optics approximation which is valid
if the wavelength is short and the changes of the
wavelength in a distance equal to the wavelength are
small. We shall be interested in small-angle scattering
(0 <) and if Y >, we can then expand the scattering
amplitude in terms of reciprocal powers of the particle
energy. Such motion corresponds to a path close to
rectilinear. We thus find that the eikonal approximation
is appropriate and in this approximation the scattering
amplitude is [14, 48]

a(q) = 21 - J d*pexp (;i q-p) {eXp [% x(p)] - 1} (2.26)

and the scattering cross section is

do = |a(g)|* do , (2.27)

where do is an element of the solid angle in the scattering
direction, p is the radius vector in a plane orthogonal to
the momentum p of the incident particle, and

x(p) =—%J

Integration of Eqn (2.28) with respect to [ is carried out
along a path traversed by the particle in a field U(r);
v=p/e.

Formula (2.26) is valid if the motion of a particle in an
external field is nearly rectilinear. We then find that
formulas (2.26) and (2.27) allow us to go over, in the
limit, to the range of validity of both the Born approxima-
tion (|x| <%), and of the classical scattering theory
(lx| > %). These formulas can therefore be regarded as
intermediate between those for the scattering cross sections
in the Born approximation and the classical scattering
theory.

We can see that in the Born approximation and in the
treatment based on classical mechanics the scattering of a
fast charged particle in the field of a row of atoms in a
crystal is governed mainly, for low angles of incidence { on
a row, by the continuum potential of the row described by
expression (2.15). We can use the same expression for the
potential in the intermediate case under discussion here and
calculate the quantity y which occurs in formula (2.26):

h dlu(r) .

—00

(2.28)

00
1= =—3: | @ UGy 229)
Wl o
Integration with respect to [ in Eqn (2.28) is now replaced
with integration with respect to x: d/ = dx/i. Bearing in
mind that y(y) is a function of the coordinate y alone, we
find that

—00

ala) = =ind(a:) |_avexn (5 0 ){own 1200|1230

Substitution of the scattering amplitude given by
formula (2.3) into expression (2.27) describing the scatter-
ing cross section and elimination of the delta function 8(g,)

gives
[ o) ol )

The above expression is obtained bearing in mind that
8(q.) = (Ly/27h) 8(g)-

2

Ly

do =507

dg,

2.31)

The functlon 1/h occurrmg in expression (2.31) is of the
order of RZé*/ydric ~ (™ We have encountered this
quantity in discussing the range of validity of the Born
approximation and of the classical scattering theory. In the
former case this quantity is small compared with unity, but
in the latter case it is larger than unity. We can now see that
it occurs in fact in the scattering amplitude obtained in the
eikonal approximation and it can then be small or large
compared with wunity. It therefore follows that for-
mula (2.31) is suitable for the description of the
scattering both in the Born approximation and in the
classical theory.

If |x| € %, formula (2.31) reduces to formula (2.13) for
the scattering cross section in the Born approximation.

If |x| > %, then the integral with respect to y, which
occurs in formula (2.31), can be calculated by the stationary
phase method. The stationary phase points (there may be
several of them) are given by the relationship [36]

(2.32)

qy = __y x(y) -

We then have

dy exn(l c1>y> {exn [% x(y)] - 1}

Z 2inh <iF>
yfayz )

n

where F, = ¢,y, + x(v,) and the summation is carried out
over different stationary phase points y,. The scattering
cross section is then described by the following formula:

2
d2y —1/2 ;
(&) =Gn)

If the interference between the terms corresponding to
different stationary phase points is ignored in the above
formula, the result is given by expression (2.24), which is
obtained in the classical scattering theory. [In this case we
should take account of formula (2.32) and of the fact that
for small scattering angles we have 0 ~ ¢ and ((v =~ pYe.]

It should be stressed that the parameter CN), which
occurs in formula (2.31), increases rapidly on reduction in
and for C(N) > 1 the scattering of a particle on a row of
atoms becomes classical. This parameter is C(N) ~ 1 when
Y ~ RZ &*/dhc. At high energies the latter angle is con-
siderably higher than the critical angle for axial channelling

= (4Z¢Jed)'?, i.c. the scattering becomes classical well
before the onset of channelling.

do = Ly dg, (2.33)

2.4 Motion of a charged particle in a field created by an
ensemble of atomic rows in a crystal

We have considered the motion of a charged particle in the
field of a row of atoms and we have shown that this motion
is governed primarily by the continuum potential of the
chain, described by expression (2.15), which represents the
potential averaged over the coordinate z along the row
axis. We shall now consider the motion of a particle in the
field of an ensemble of rows of atoms in a crystal, described
by the potential

= Ur(p—p.).

U(x,y) (2.34)
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where Ui (p) is the potential energy of the interaction of a
particle with the continuum potential of a single row of
atoms and p, is the radius vector of the row in a plane
orthogonal to the z axis.

As in the case of motion in the field of the continuum
potential of a single row of atoms, the component of the
particle momentum, parallel to the crystallographic z axis
near which motion takes place, is conserved in the field
given by expression (2.34). The motion in a plane transverse
to the z axis is then described by

10

ﬁ :———U(x,y) .

2% (2.35)

In general, the continuum potentials of the rows of
atoms in a crystal overlap so that the motion occurs in a
very complex periodic field of a row of atoms. Nevertheless,

Figure 3. Equipotential surfaces of the continuum potential energy
U(x, y) representing the interaction of a positive particle with rows of
atoms in a silicon crystal in a plane orthogonal to the (111) axis,
calculated at room temperature of the crystal. The numbers alongside
the curves represent the potential energy in electron volts. The dashed
curves correspond to zero curvature of the potential-energy surface
described by expression (3.11).
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Figure 4. Same as in Fig. 3, but for the (110) crystallographic axis.

the main features of the motion in such a field can be
analysed with the help of the integral of the energy of
transverse motion

g = % ep” +U(x, y) . (2.36)

Figs 3 and 4 show typical equipotential surfaces of the
continuous potential energy U(x,y) for the positively
charged particles moving in a silicon crystal near the
(I11) and (110) crystallographic axes. The equipotentials
for negatively charged particles have the negative sign.

These equipotentials show that the function U(x, y) for
positively charged particles has maxima at the points
corresponding to the positions of atomic rows in a
transverse plane and that the potential wells in the regions
between the rows are shallow. The motion in such a field,
considered as a function of the transverse motion energy ¢,
may be both finite and infinite relative to the atomic rows.
The motion is finite if ¢, < Uy, where Uy is the potential
energy at a saddle point. The particles then move in
channels (they become ‘channelled’) along helical paths
with their axes parallel to the channel axis.

If ¢, > Uy, the motion becomes infinite relative to the
atomic rows. The particle then has a sufficient energy ¢, to
pass above the existing potential barriers and, therefore,
such particles can be called ‘above-barrier’.

If %sxpﬁ >¢g, > Uy, where . is the critical angle for
axial channelling, it follows from expression (2.36) that a
positively charged particle cannot approach very closely the
nuclei of the lattice atoms. Therefore, the processes related
to small impact parameters (nuclear reactions, large-angle
scattering, etc.) are suppressed in the case of such a particle.
The term ‘channelled particle’ was first introduced in
Ref. [19] in order to identify a group of particles which
cannot approach the atomic nuclei very closely. We shall
use the term ‘channelled particle’ for the particles in finite
motion and the term ‘above-barrier particle’ for the
particles in above-barrier motion.

If ¢, 2 Uy there are small spatial regions between the
rows where a particle that enters one channel can switch to
another channel. In this motion between the atomic rows a
positive particle may spend a long time in one of the
channels (until it reaches a region of this kind near a saddle
point). Therefore, such motion can be called ‘quasifinite’.
The probability of such motion decreases rapidly with
increase in &, because this increase is accompanied by a
rapid expansion of the spatial region near a saddle point
where a particle can go over to a neighbouring channel.

The finite motion of a negative particle is possible if
le, | S1/2ey?, i.e. if the particle is incident on a row of
atoms at an angle Y Sy,. We can then have situations in
which a particle moves in a channel formed by one of the
atomic rows or by several such rows.

The finite motion of particles in a crystal occurs not
only for Y Sy, but also for ¥ > . In fact, there are open
planar channels formed by atomic rows and a particle inside
such a channel oscillates between the rows. This is known as
planar channelling. Such motion occurs only for small
values of the angle 6 between the component of the
particle momentum orthogonal to the row axis z and the
planar channel axis; moreover, the condition ¥ > ¥ has to
be satisfied.

It therefore follows that the nature of motion in the field
of atomic rows in a crystal depends strongly on the energy
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of transverse motion, the sign of the particle charge, the
orientation of the particle momentum in a plane orthogonal
to the row axis, and the nature of the distributions of the
rows of atoms in this plane. The motion can be finite or
infinite relative to a row of atoms.

We can solve Eqn (2.35) if we know not only the
integral of the energy of transverse motion, but also one
more integral of motion. For the scattering by a single row
of atoms this integral of motion is the angular momentum.
However, in the case under discussion, the second integral
of motion exists only in a few cases, and these cases include
both finite and infinite motion of a particle in a plane
transverse to the z axis [28—31]. If the second integral
exists, the variables in Eqn (2.35) can be separated and the
motion is quasiperiodic. However, if the second integral
does not exist, there are no periodically repeated sections of
the path and the motion is strongly aperiodic. It is usual to
speak of such motion as chaotic.

It follows that the problem of motion of a charged
particle in a two-dimensional periodic field of atomic rows
is a typical problem in the theory of nonlinear systems
which deals with the regular and chaotic nature of motion
and with the stability of motion. We shall now discuss these
topics in detail.

3. Chaos in dynamic systems

3.1 Motion in the Henon - Heiles potential

The motion of a particle in a relatively complex field can be
not only regular, but also stochastic [51, 52]. This is related
to the instability of the motion of a particle in such a field.
The instability means that a small change in the initial
conditions leads to an exponential divergence of the initially
closely spaced paths. If we follow the motion of a particle
for a sufficiently long time, it will then appear to be chaotic
(random). This situation occurs even in the case when the
particle is in finite motion in a field that depends on two
coordinates. Let us consider, for example, the motion in
what is known as the Henon—Heiles potential [53]

1 1
UH4—l:§(x2+y2)+x2y——y3- (3.1

3

For simplicity, all the variables are assumed to be
dimensionless.

We obtain the potential energy described by expres-
sion (3.1) if three identical like charges are located at the
vertices of an equilateral triangle and we consider the
motion in a plane formed by these charges near the centre
of the triangle. Then, expanding the potentials created by
the separate charges along the coordinates x and y relative
to the centre of the triangle and retaining the terms up to
the third order, we obtain the potential described by
expression (3.1).

Fig. 5 shows the equipotential surfaces of the potential
energy described by the above expression near its minimum
value.

The motion of a particle in a field described by
expression (3.1) conserves the particle energy

E = (0} +p0) + U (6,)) (32)
(the energy E and the components of the momentum p,
and p, are assumed to be dimensionless). The particle is
then in the finite motion if E <% [51]

E=1/6

1/8
1/12

1/24

/ 0.85

-0.5

Figure 5. Equipotential surfaces of the Henon—Heiles

described by expression (3.1).

potential

The path of a particle in the field described by
expression (3.1) can not only have the energy integral,
but also the second integral of motion. This is not possible
in general, but only under certain conditions.

The second integral of motion exists at low energies
when the cubic terms in the expansion of the potential can
be ignored. Then, not only the energy, but also the angular
momentum of motion M = p*@ are conserved; here, p and
¢@ are the polar coordinates of the particle path. The
variables in the equation of motion can be separated
and the particle path is described by

_ dp
t—:tj \/Z[E— U(p)] — M2p2

4+ const ,

. (3.3)
(p:MJ dt p~=(¢) + const ,

where U(p) =1 (x> +y%).

The second integral of motion can exist also if the cubic
terms of the expansion are included in the potential energy.
If this integral of motion exists, then the motion is regular.
If the second integral does not exist, the motion is
chaotic [51, 52]. The nature of motion can be determined
by the Poincare section method (see, for example,
Refs [14, 51]), which can be described as follows.

Let us consider the path of a particle in the phase space
(x, py, ¥, py). It follows from the law of conservation of
energy (3.2) that the path lies on a three-dimensional surface
in this space. This surface is defined by E(x, p,, v, py). Let us
consider the points of intersection of the path with a plane,
for example, the (y, p,) plane. In other words, let us assume
that x = const in the relationship E(x, p,, y, py) = const.
Such points may lie on a curve or they may be distributed at
random in a certain part of the plane (y, p,). If the points lie
on a curve, there is a second integral of motion; otherwise
there is no such integral. It follows that the existence of the
second integral of motion is related to the positions of points
along a certain curve. There is no criterion for finding the
points on a certain curve and the existence of the curve can
be determined only approximately by numerical integration
of the equation of motion. Therefore, there is no general
criterion of the existence of the second integral of motion.
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The occurrence of chaotic motion allows us to use the
methods of statistical physics in the description of the
physical processes associated with such motion. Since we
have seen that chaotic motion can appear even for two
degrees of freedom, it follows that the methods of statistical
physics can be used not only when there is a very large
number of degrees of freedom, but also when there are

relatively few of them. In the case under discussion, there
are two degrees of freedom.

Fig. 6 gives the results of calculations of the Poincare
sections and of the corresponding paths of the particles
moving in the Henon—Heiles potential. The sections are
plotted for various energies. At low energies E, when the
motion occurs near the bottom of the potential well

A Dy

Py

Py

® e

VR N
S = aen,
e, .

Figure 6. Poincare sections and the corresponding paths of particles moving in the Henon—Heiles potential, described by expression (3.1),
calculated for E =1/20 (a) and E = 1/6 (b). Curves I, 2, and 3 correspond to different initial conditions governing the path.
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described by expression (3.1), the motion is regular for
practically all the initial conditions. This is due to the fact
that at low energies E a particle does not reach a region with
a strong nonlinearity and, therefore, we are in fact dealing
with the problem of motion in a centrally symmetric field.

It should be noted that there are several regions where
the motion is stable in the sense that a small change in the
initial conditions alters little the nature of the phase
curves [51, 52]. Such regions are separated by certain lines
and crossing of these lines modifies greatly the nature of
motion: one stable regime changes to another.

An increase in the particle energy expands the regions in
which the motion is unstable, so that these regions fill an
ever-increasing part of the phase space in the Poincare
sections, separating ‘islands’ in a section where the motion
is stable. This means that, depending on the initial
conditions, the nature of motion may differ greatly, i.e.
it can be either regular and stable or irregular and chaotic.

When the energy reaches E ~¢, the motion will be
chaotic for practically all the initial conditions.

It therefore follows that the motion of a particle in a
two-dimensional field described by expression (3.1) can be
both regular and chaotic.

3.2 Stability of motion

In the simplest example of the motion of a particle in the
Henon —Heiles potential we have seen that at low values of
the energy the motion is stable. As the energy increases and
a particle reaches a region where the forces are strongly
nonlinear, the nature of the motion then depends on the
initial conditions and can be regular or chaotic. At energies
close to the top of the potential well the motion is unstable
for practically all the initial conditions.

The growth of chaotic motion is due to local instability
of motion in the sense that a small change in the intial
conditions results in an exponentially rapid divergence of
paths. Therefore, we shall consider in greater detail the
stability of motion of a particle in an external field [31, 54].
With this in mind we shall discuss the rate of divergence of
two initially close phase paths. Their motion is unstable if
the paths diverge exponentially with time:

d(t) =d(0)exp(dt), Rei>0, (3.4)

where d(0) is the distance between two paths in the phase
space at t = 0.

It is natural to relate the value of the parameter Re A at
the onset of an instability to the boundary of transition to
chaotic motion. However, this condition of motion instabil-
ity is only the necessary condition of transition to chaotic
regime, but it is not sufficient because if Re A > 0, a change
from one stable motion to another can also take place. The
necessary condition is very important and it is used widely
in an analysis of the nature of motion in various systems.

We shall now discuss in greater detail this necessary
criterion of stability [54]. We shall consider two initially close
paths in the phase space—r;(¢), p,(¢) and r,(t), p,(t) —for
two-dimensional motion; here, ry, and p, , are two-dimen-
sional vectors representing the coordinates and the momenta
of the particles. Let us introduce the variables

E=r—r,, n=p —p,.

We then have é =g (for simplicity, we shall assume—as
in the preceding section —that the variables r and p are
dimensionless).

Then, linearisation of the equation of motion
7 =-=VU(r)) +VU(r,) ,

where r, =r; — & on the assumption that £ is small, gives
the following equations for & and #:

3.5)

E=n, §=-S¢, (3.6)
where S is a matrix deduced from the second derivatives of
the potential along the path

U
Y or0r;

r=r(t) .
Eqns (3.6) can be written in the matrix form:

©-6) (%)

where O and I are the zero and identity (unit) matrices of
the second rank. Application of unitary transformation 7
can reduce the matrix I' to the diagonal form:

(ff‘fil)ij = 1,6,/ .

3.7)

(3.8)

If at least one of the eigenvalues of the matrix I has a
positive-definite real part, the paths diverge exponentially
and the motion is unstable.

Over short time intervals, the matrix § occurring in
expression (3.7) can be regarded as independent of time
(however, § depends on the coordinate ). The eigenvalues
of the matrix I" define a local, i.e. that corresponding to
given values of the coordinates, stability of motion.

The condition for determination of the eigenvalues of
the matrix is

det(I'—A)=0. (3.9)
Hence, we find the eigenvalues A:
Miasa =+[-b+ (B —4c)], (3.10)
where
U Py _dudy oy
ox?  oy?’ ox? 0y? Ox dy

If b>0, then for ¢ >0 all the eigenvalues 4; are
imaginary quantities and, consequently, the motion should
be stable. If ¢ < 0, one of the roots 4; is real and positive.
The motion is then unstable since it results in exponentially
rapid divergence of the paths.

The sign of the quantity c is identical with the sign of the
Gaussian curvature K(x, y) of the surface U(x, y):

PR P A AN
=)+ (&)]
The curvature is a local concept so that the above stability
criterion is local. Therefore, stable motion corresponds to a
situation in which it occurs in a region with a positive
curvature K(x, y) of the surface. However, if the particle
path reaches a region with a negative curvature of the same
surface, the motion is unstable.

In the case of the Henon—Heiles potential the line
corresponding to zero curvature of the Uy_y (x, y) surface is
a circle (Fig. 5). This line separates regions with a positive
curvature, which are inside the circle, and those with a
negative curvature, which are outside the circle. At low
energies a particle travels near the minimum value of the
potential energy, where the curvature is positive. In this case

(3.11)
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the motion is stable and is of regular quasiperiodic nature.
An increase in the energy means that the particle path may
pass through a region with a negative value of the curvature
of the function Uy_y (x, y). In these regions the stability of
motion is lost, i.e. the initially closed paths begin to diverge
at a rate which is an exponential function of time. The
longer the time that a particle spends in a region with a
negative curvature of the potential energy, the stronger is
the divergence of the paths. Therefore, the criterion of a
negative curvature of the potential energy can be used to
find the energy of a particle at which the transition from
regular to chaotic motion could take place.

3.3 Instability of motion in multiple scattering by three
centres

In the preceding sections we have considered the finite
motion of a particle in a two-dimensional potential well
and we have shown that it can be both regular and chaotic.
In chaotic motion a small change in the initial conditions
leads to an exponentially rapid divergence of paths, which
corresponds to an instability of motion. This instability is
essentially related to the two-dimensional nature of the
potential in which such motion takes place. We shall show
that an instability does not necessarily appear during
motion in a potential well, but that it can occur also in the
course of scattering. At least three centres must participate
in such scattering. The simplest scattering arises as a result
of elastic reflection. Therefore, in order to illustrate the
above statement, we shall consider the simplest problem of
the scattering of a particle by elastic reflection from three
disks lying in the same plane [55]. For simplicity, we shall
assume that the disks are identical and that their centres
form an equilateral triangle. We shall also assume that the
particle moves in one plane and, therefore, it can
experience (in principle) any number of collisions with
the disks, but it can also escape from the triangle.

In a collision with a single disk a particle is reflected
from it at an angle which is equal to the angle of incidence
[i.e. the angle between the momentum of the particle and the
normal to the disk tangent at the point of incidence (Fig. 7)].
The scattering angle is related to the impact parameter b by

o(b) = m — 2arcsin E) : (3.12)
where R is the disk radius.

If there is a second disk, the particle reflected from the
first disk may bypass the second disk or be reflected by it. In
principle, a situation may arise in which the particle is
reflected an infinite number of times from the first and
second disks, i.e. the particle oscillates between them. Such
oscillatory motion is however unstable because a small
change in the initial conditions causes the particle to leave
the area after several oscillations between the disks.

The situation is more complex when there are three
disks. We can then expect multiple reflections from three
disks in which the particle remains all the time in the space
between them. The number of such particle paths is, in
contrast to the case of two disks, infinitely large and all such
paths are unstable. An example of a path of this kind is
shown in Fig. 8.

The time that a particle spends in the space between
three disks depends strongly on the initial conditions
governing the particle path. We shall determine this time
for the case when the particle is incident on the disks

Figure 7. Motion of a particle in the field of three disks located on a
plane.

Yo

Figure 8. Multiple scattering of a particle by disks.

perpendicular to the line that joins the centres of disks /
and 3 (Fig. 8). The delay time is defined as a function of the
quantity yo. The delay time t(y,) is understood to be the
time spent by the particle in the space defined by the circle
which touches all three disks. The particle path is then a
complex function of time and of the initial conditions.
Therefore, a numerical method has to be used to find the
delay time 7(y,).

Fig. 9 gives the calculated dependences of 7(y,) on the
impact parameter y,. The ordinate gives the quantity
F =log[t(y0)/T] and the abscissa represents y,. Here,
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Figure 9. Dependence of the time spent by a particle in the space
between disks on the impact parameter yj.

T =R /v (the disk radius R and the velocity v are assumed
to be dimensionless, so that R =1 and v=1) and y, is
measured from the midpoint between the two disks. The
graphs show that there is a range of values of y, where the
function 7(y,) changes very rapidly with yo. At some values
of y, the delay time t(y,) can be very long. In other words,
for such values of y, the particle can spend a long time in
the region between the disks.

The question now is the finer structure of the functional
dependence of the delay time on the impact parameter in
the regions where t( ) changes rapidly. Calculations were
therefore carried out in which the step of y, was reduced.
Stretching of the graph along the y, axis revealed that the
pattern obtained on an enlarged scale did not differ from
the initial one (this can be judged by going over from
Fig. 9a to Fig. 9b). This property of the function t(y,), i.e.
the constancy of the pattern, is retained also after the next
change in the scale of y, (Fig. 9¢). This behaviour of the
function 7(y,) is called fractal [56]. The fractality means
here that a change in the scale of y, produces practically the
same pattern of the scattering of a particle by three disks.

The problem of such scattering by three disks is
discussed in detail in Refs [55, 57]. Some mathematical
problems are also considered there and they include the
stability of motion, entropy, the Hausdorff dimension, etc.
This problem is also of considerable interest because it can
be treated quantum-mechanically (see, for example,
Refs [57-59]).

A similar problem for some other potentials that vary
smoothly in space is considered in Refs [60—62].

Three disks can be regarded as an initial element from
which a planar periodic structure can be built up. Such a
periodic structure is analogous to the structure of atomic
rows in a crystal. The scattering of a particle by a periodic
structure consisting of three disks is in many respects
similar to the scattering on the periodic field of atomic
rows in a crystal. Therefore, a two-dimensional periodic
structure of three disks is a good model for the investigation
of the nature of motion of a charged particle in a crystal.

4. Regular and chaotic motion of fast charged
particles in crystals

4.1 Channelling of positive particles

We have considered the motion of fast charged particles in
a crystal at a small angle { to one of the crystallographic
axes and we have shown that at high energies such motion
is governed primarily by the continuum potential of atomic
rows in a crystal described by expression (2.34). If Yy Sy,
the motion of a particle in such a field can be finite or
infinite relative to the atomic rows. The potential in which
such motion occurs is a complex nonlinear function of two
coordinates. Therefore, the description of motion of a
particle in a crystal reduces in fact to the problem of
motion in a two-dimensional periodic nonlinear field. The
motion of a particle in such a field (Section 3) may be both
regular or chaotic. A similar situation occurs also when a
charged particle is moving in a crystal. We shall consider
the possibility of realisation of a particular type of motion
of a particle in a crystal in the case of channelling and
above-barrier mechanisms. We shall begin with the motion
of a positive high-energy particle in a crystal.

The continuum potential in which a particle moves
inside a crystal depends strongly on the crystallographic
axis along which such motion is directed (Section 2.4). If a
particle travels in a silicon crystal along the (111) axis, the
equipotential surfaces of the continuum potential of atomic
rows are of the kind shown in Fig. 3. This potential forms a
well at large distances from the rows and the shape of the
well resembles the Henon — Heiles potential. In fact, at large
distances from the row the potential can be expanded as a
Taylor series relative to the central point of the well
Summation of the potentials of the adjacent chains of
atoms, which in fact determine the potential well, and
retention of the cubic terms in the expansion leads us to the
problem of motion in the Henon-—Heiles potential. The
energy of a particle is governed by the energy of transverse
motion &;. We have seen earlier that the motion of a
particle in the Henon —Heiles potential can be both regular
and chaotic, depending on its energy and on the initial
conditions.

Therefore, channelling of a positive high-energy particle
in a potential well in a silicon crystal along the (111) axis
can be ecither regular or chaotic. On increase in the
transverse-motion energy, as &, approaches the energy at
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Figure 10. Same as in Fig. 3, but for the (100) crystallographic axis.

a saddle point, the range of the initial conditions leading to
chaotic motion widens rapidly.

Let us now consider the motion of a particle in a silicon
crystal along the (100) axis. As in the preceding case, the
potentials of adjacent atomic chains form a potential well
(Fig. 10), but its shape is different from that of the potential
well for the motion along the (111) axis. Expansion of the
potentials of the adjacent atomic rows relative to the central

point of the well, in terms of a small displacement from this
point, and retention of the first nonlinear term in the
expansion leads us to the problem of motion in a potentialf
described in Ref. [31]:

Ulx, y) =4Uy (¥ +5° — 5 — 5" + 145%57) , 4.1

where X = 4x/a; y =4y/a; a is the lattice constant; Uy is
the potential energy at a saddle point. In view of the
symmetry of the potential applicable to this case, the terms
containing the cubic terms of the expansion are missing
and the first nonlinear term contains the fourth powers of
the coordinates.

The nature of motion of a particle is determined by the
curvature of the potential-energy surface. In the field under
discussion the presence of the fourth powers of the
coordinates means that the curvature of the potential-
energy surface can be both positive and negative in a
potential well. Expansion (4.1) readily yields the following
equation for a line on which the curvature of the potential-
energy surface is zero:

1+ 8(F +37) — 84(&* +7*) — 5528757 = 0. 4.2)
Lines of this type are represented by dashed curves in Fig.
10.

Depending on the value of ¢, the motion of a particle in
the field described by expansion (4.1) can take place either
entirely within the region with the positive curvature of the

fRegular and chaotic motion of a positively charged particle along the
(100) axis in a silicon crystal has been investigated also elsewhere [30]
without recourse to expansion (4.1).
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Figure 11. Poincare sections and corresponding paths of particles in finite motion in a field described by expression (4.1), calculated for

g, =1¢cV(a), g =2¢V (b), and g, =3 eV (c).
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potential energy surface or partly in a region with a positive
curvature and partly in that with a negative curvature. In
other words, the motion of a particle in such a field can be
regular and/or chaotic.

Fig. 11 shows typical paths of a particle in a field
described by expansion (4.1) and the corresponding Poin-
care sections for different values of the transverse energy.
We can see that at low values of this energy &,, when the
particle path lies entirely in a region with a positive
curvature of the potential-energy surface, the motion is
regular. An increase in the value of ¢,, when the particle
path begins to enter a region with a negative value of the
curvature of the potential energy U(x, y), both regular and
chaotic motion of the particle in the investigated well
become possible. An increase in &, when the transverse
energy approaches the energy at a saddle point, increases
the range of the initial conditions that make the motion
chaotic.

A similar situation occurs also in the case of finite
motion of a particle in a potential well along the (110) axis.
The potential well has a more complex structure than for
the motion of a particle along the (111) or (100) axes, and
we shall not discuss this case in detail.

4.2 Axial channelling of negative particles

We shall now consider axial channelling of negative
particles in crystals. The potential energy of a particle
then has the opposite sign to the potential energy of a
positive particle and finite motion occurs in potential wells
close to atomic rows. These potential wells differ from the
wells for positively charged particles by a greater depth and
by different shapes (see Figs 3, 4, and 10, in which the
equipotential surfaces should be taken with the opposite
sign).

In the case of motion along the (111) and (100) axes in a
silicon crystal the potential energies in the region of the
wells can be approximated quite accurately by a function
which has the cylindrical symmetry (this follows directly
from Figs 3 and 10), and we then face the problem of finite
motion of a particle in a field U( p) which depends only on
the modulus of the distance between the particle and the
chain axis. It is obvious that in a field of this kind both the
transverse motion energy ¢, and the angular momentum M
are conserved. In terms of cylindrical coordinates (p, @),
these integrals are given by the following formulas:

2

b= A U(p), M =g,
2 2¢ep?

4.3)
where ¢ is the azimuthal angle in the (x, y) plane.

The set of relationships (4.3) readily yields the depend-
ences p(t) and (). In the case of finite motion, the
dependence p(t) is a periodic function and its period is

Prnax

Prin

4.4

where p.;, and p,,. are the minimum and maximum
distances from a particle to the axis of a row, found from
the equation

2

M
g, =—+U .
L 23P2+ (P)

In general, the particle precesses and then during a time T
the radius vector rotates by the angle

Puss M d

Ago:ZJ -
Puin EPP

4.5)

It is worth noting that the lines corresponding to zero
curvature of the potential-energy surfaces for negatively
charged particles, plotted in Figs 3, 4, and 10, are located
close to the potential well minima. This means that, in a
wide range of transverse energies ¢, the path of an axially
channelled particle is in a region with a negative curvature
of the potential-energy surface and it would seem that its
motion should always be chaotic. However, we have seen
already that this is not true. The potential of each row of
atoms at short distances from its axis has the cylindrical
symmetry, so that the motion ofa particle in the field of this
potential should be regular and quasiperiodic. The apparent
conflict between the criterion of the Gaussian curvature for
chaotic motion of a particle in an external field and regular
motion in a cylindrically symmetric field is due to the
following. The Gaussian curvature criterion for determina-
tion of the nature of the motion of a particle in an external
field is derived on the assumption that the matrix
s = o U/ordor; depends weakly on time intervals
At ~ A7" during which the initially close paths become
divergent. In other words, the potential energy U(x, y)
should vary slowly with the coordinates. This condition is
not satisfied near atomic rows and, consequently, in such
regions we cannot apply the Gaussian curvature criterion to
determine the nature of the motion of a particle in the field
of an atomic row.

Therefore, in general, the finite motion of a particle in
the field of a potential U(p) is regular and quasiperiodic.
This situation occurs when a particle traverses a silicon
crystal along the (111) or (100) axis and the continuum
potential in the region of a potential well may be approxi-
mated by a cylindrically symmetric function. Such a situation
cannot occur when the motion occurs along other crystallo-
graphic axes. For example, when a negative particle crosses a
silicon crystal along the (110) axis, the potential well is
formed by two atomic rows located close to one another. The
potential energy does not then have cylindrical symmetry: the
function U(x, y) has deep minima at coordinates governing
the positions of these rows and a saddle point on the line
joining these rows (Fig. 12). A negative particle channelling
in such a field may be affected by one or two atomic rows,
depending on ¢, .
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Figure 12. Potential well for a channelled negative particle, moving in
a silicon crystal along the (110) axis.
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Py
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Figure 13. Poincare sections and corresponding paths of particles moving in a potential well shown in Fig. 12, calculated for ¢, = 1.1U; (a) and

€, = 0.4U, (b).

The case when the energy of transverse motion is close
to the potential energy at a saddle point is of special
interest. This is because the particle path can then pass
through a region with a negative curvature of the potential-
energy surface near a saddle point. Consequently, we may
expect the motion of such a particle to be unstable against
small changes in the initial conditions. We shall therefore
consider in detail the motion of a negative particle when
g, ~ U, where U, = —25 eV is the potential energy at a
saddle point, and the particle may reach the region of such a
point [28, 63].

The Poincare sections corresponding to the values
g, = 1.1U, and &, =0.4U, are plotted in Fig. 13. If
¢, = 1.1U,, a particle can move only in one of the two
parts (halves) of the potential well formed by two atomic
rows (Fig. 12). Depending on the initial conditions, this
particle can move in a regular or chaotic manner in one of
the halves of the shared potential well. The paths corre-
sponding to regular and chaotic motion are shown in
Fig. 13a for ¢, = 1.1U,.

If ¢, = 0.4U,, the particle moving in this potential well
can switch from one atomic row to another. The particle
then moves chaotically in the potential well under almost all
the initial conditions. One of such paths is shown in
Fig. 13b.

We thus can see that, as in the case of a positive particle,
the motion of a negative particle in the field of the
continuum potential of atomic rows in a crystal can be
both regular and chaotic. However, the shapes and depths
of the potential wells are very different for positively and
negatively charged particles.

4.3 Dynamic chaos in above-barrier motion of particles in
a crystal

We have considered so far the finite motion of a fast
charged particle in a field of the continuum potential of

atomic rows in a crystal and we have shown that such
motion can be regular or chaotic. We shall now discuss the
case when a particle is in infinite (above-barrier) motion
relative to the atomic rows. This situation occurs if the
energy of transverse motion exceeds the potential energy at
saddle points (Section 2.4).

In the above-barrier motion a particle collides succes-
sively with different atomic rows which are parallel to the z
axis near which the particle is travelling. There may be a
correlation or none between successive collisions. The
existence of correlations corresponds to regular motion
of a particle in the field of atomic rows. However, its
absence corresponds to irregular, i.e. chaotic, motion in the
periodic field of atomic rows. If we consider a positive
particle, we face a problem similar to that of a particle in a
periodic field of disks discussed in Section 3.3. The analogy
is particularly close if the motion occurs along the (111)
crystallographic axis in silicon which has a periodic
structure resembling that formed by periodically distrib-
uted disk triads (Section 3.3).

Important changes in the particle path occur at
distances of its closest approach to the rows of atoms
where the gradients of the potential are maximal and the
potential can be regarded as cylindrically symmetric.
Therefore, in the description of the motion of an above-
barrier particle in the field of the continuum potential of
atomic rows we can assume, in the first approximation, that
the potentials of the adjacent rows are cylindrically
symmetric in a region p < da/2, where a is the distance
between the rows, and the potential elsewhere between the
rows is zero. We then have a problem similar to that
discussed in Section 3.3, of the scattering in a periodic field
of disks and the reflection from disks which corresponds to
the scattering of a particle by atomic rows. It is worth
noting that a long time spent by a positive particle in the
region between disk triads in fact corresponds to the
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phenomenon of axial channelling of positively charged
particles in a crystal.

However, although the problems are similar, there are
still some differences. The scattering by disks appears to be
‘hard’, i.e. at all energies the angle of incidence is equal to
the angle of reflection, and the particle cannot enter the
region bounded by the disks. Consequently, the motion of a
particle in such a system is extremely unstable: close paths
rapidly diverge under all initial conditions. Regular periodic
motion of a particle in a field of disks is possible only for
some selected paths (Section 3.3).

However, when the motion takes place in the periodic
field of atomic rows in a crystal, a particle can enter a
region where the potential of a row differs from zero. This
has the effect that, apart from the ranges of the initial
conditions in which the motion is chaotic, there are also
ranges of such conditions when the motion is regular and
stable (for example, the motion along crystallographic
planes).

As in the finite motion in a potential well, the nature of
the motion of a particle in the periodic field of atomic rows
in a crystal can be determined by the Poincare section
method. In view of the periodicity of a crystal, we can
reduce the problem of the motion of a particle in the field of
many atomic rows to the motion in one cell [63]. One
should take account of the reflection of a particle from the
cell edges. This means that the problem is similar to that of
the motion of particles in billiards, when the billiard table is
in an external field (see Refs [31, 64, 65]).

The procedure of constructing the Poincare sections is
the simplest when the motion occurs in a silicon crystal
along the (100) axis and the atomic chains form a periodic
structure with a square cell in a transverse plane
(Fig. 10) [31, 63]. Such sections are shown in Fig. 14a
for positive particles with &, = ZZez/d. A unit cell in the
(x, ¥) plane is then a square with its centre on the axis of
one of the atomic rows and the sides of the square are
parallel to the (011) and (011) crystallographic planes. It is
assumed that a particle crossing the cell edges is reflected
elastically. The Poincare sections plotted for this case
correspond to the points of intersection of the phase
path of a particle and one of the sides of the cell.

Similar sections can easily be constructed also for the
reflection of a particle from disks distributed periodically in

the (x, y) plane and characterised by a square unit cell
(Fig. 14b). We can see that in the scattering by atomic rows,
we can expect not only irregular, but also regular particle
motion. The latter corresponds to the motion along
crystallographic planes formed by atomic rows. How-
ever, in the reflection from disks the motion is chaotic
for practically all the initial conditions. There are only a few
isolated points in the phase space at which the paths are
regular.

As g, increases, so does the size of the regions in the
phase space of a Poincare section when the motion of a
particle is regular. New regions also appear and they
correspond to regular motion of a particle along other
crystallographic planes characterised by less close packing
of the atomic rows than that exhibited by the (011) plane.
When disks reflect particles, then at all energies the motion
of positive particles is chaotic.

Let us now consider above-barrier motion of negative
charged particles in the field of atomic rows in a crystal. In
contrast to positive particles, these negative particles are
attracted to the atomic rows and, thercfore, at all transverse
energy values they can approach closely atomic rows where
the gradients of the potential are high. This results in strong
stochastisation of their motion in the periodic field of
atomic rows, compared with positively charged particles.
This is illustrated by the Poincare section (Fig. 14c) for
negatively charged particles travelling in a silicon crystal
near the (100) axis. (The method of constructing this section
is the same as for positive particles.) This section shows that
for &, =2Ze*/d the motion of negative particles in the
periodic field of atomic rows in a crystal is chaotic for
almost all the initial conditions. This situation is retained up
to very high values of &, (e, ~ 10Ze?/d).

We can see that the chaotic motion of negative particles
in the periodic field of atomic rows in a crystal is closer to
the nature of particle motion in the periodic field of disks on
a plane (Section 3.3). However, particles are reflected by
such disks, whereas negative particles are attracted by the
atoms in a row.

It follows that both positive and negative particles may
be in chaotic motion in the periodic field of atomic rows.
The motion of negative particles is more chaotic: the
chaotic regime is realised for a wider range of the initial
conditions than in the case of positive particles.
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Figure 14. Poincare sections for positive (a) and negative (¢) particles in above-barrier motion in a silicon crystal near the (100) axis;
(b) corresponding sections for particles reflected by disks forming a square cell in a plane.
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4.4 Nature of motion of particles in multiple scattering
by atomic rows in a crystal and the possibility of
describing it

In the preceding sections we have demonstrated that, in
order to determine the nature of motion of a particle, it is
necessary to know its path in the periodic field of atomic
rows. Therefore, we may have given an impression that if
the path itself is known, then determination of the nature
of the motion of a particle is of no special interest.
However, this is not true, because knowledge of the nature
of motion and determination of the regions in the phase
space corresponding to different types of motion makes it
possible to simplify greatly the description of the physical
processes associated with the nature of motion (for
example, multiple scattering of particles by atomic rows
and the emission of bremsstrahlung radiation).

In fact, if it is known that a particle is in regular motion
along one of the crystallographic planes, for example the
(v, x) plane, then for small angles ¥ between the particle
momentum and the axis of the atomic rows forming the
plane, its path can be found in the first approximation by
assuming that the plane is continuous, i.e. by using the lattice
potential averaged over the coordinates in this plane [19]:

U, (x) :LLJ

—00

00

dyU(p) (4.6)
where L, is the linear size of the plane along the y axis and
U(p) is the continuum potential of the atomic rows
forming the plane.

In the field described by expression (4.6) the particle
momentum components p, and p,, parallel to the (y, z)
plane, are conserved. This means that the situation can be
reduced to the one-dimensional problem of the motion of a
particle in the periodic field U,(x) of crystalline planes. The
path of a particle along the x axis, orthogonal to a crystal
plane, is then described by equations [14, 19-21]

10
X=———U , 4.7
¥= 2 Uy() .7
the solution of which can be expressed in terms of the
integral of the energy of transverse motion with respect to
the crystallographic planes:

1 .,
g, =8+ Uy(x) .

: (4.8)

Depending on the value of &, ,, a particle in the field U,(x)
can be in finite motion (planar channelling) or in infinite
motion relative to the crystallographic planes. The latter
situation is possible for positive and negative particles. If
we know the particle path in the field U,(x), we can find —
for example—the characteristics of the radiation emitted
by the particle in this field, the probabilities of its collisions
with nuclei, and other characteristics of the interaction of
the particle with the lattice atoms.

However, the validity of the continuum potential
approximation of crystalline planes, described by expres-
sion (4.6), is governed by the conditions ensuring regular
motion of a particle in the periodic field of atomic rows. In
some cases (for example, when ¥ > . ) such conditions can
be derived by analytic estimates from the requirement of the
existence of correlations between successive collisions of a
particle with atomic rows [31, 66]. However, in general (in
particular, if ¥ <y, ), a numerical analysis of the problem
by the Poincare section method is required. Such an

analysis shows that the approximation of a continuous
plane can be used for positive particles in order to describe
the motion of these particles along certain crystallographic
planes even when ¥ Sy, but in a limited region of the
phase space (Fig. 14a). Such a description is not possible
(Fig. 14c) for negative particles when ¥ <.

However, if a particle moves chaotically in the periodic
field of atomic rows, then its collisions with different rows
can be regarded as random. We are speaking here of
multiple scattering of a particle by atomic rows. If it is
known that this scattering process is random, it is easy to
write down the equation for the angular distribution
function of the scattered particles. Since the scattering
involving collisions with different atomic rows occurs
along an azimuthal angle ¢ in a plane orthogonal to the
axis of the rows, we can derive the following equation for
the distribution function of the particles in terms of the
angle ¢ at a depth z from the crystal surfacet:

d © : :

219 2) = ndwj _db [f (¢ +o(b), 2) —f (o, z)] ., (49
where @(D) is the function representing the deflection of a
particle in the field of a single atomic row in a crystal, given
by expression (2.21) and governed by the impact parameter
of a row b, and n is atomic density in the crystal.

It is assumed in Eqn (4.9) that an elementary event,
governing the interaction of a particle in the lattice, is the
collision of a particle with a single row of atoms in a crystal.

The function f(¢, z) is normalised by the condition

27
J dof(p,z)=1.

0

(4.10)

The solution of Eqn (4.9) satisfying the condition

flo, 0) =8(p), where 8(p) is the delta function, is

described by [26]

00

flo,z2) = % Z cos(ko)

k=—00

X exp { —ndyrz J

—00

db [1 — cos[k(p(b)]] } . (4.11)

We can readily use the solution described by expres-
sion (4.11) to find the average square of the angle of
multiple scattering of a particle by atomic rows in a crystal:

"o o . 2. 2@
0= dof(e, )4y sin 5
0

(4.12)

This quantity can be rewritten in the form

0 = 21//2{1 — exp [—anWZ J

dbsin” - go(b)] } .(4.13)
o 2
Some limiting cases of formulas (4.11) and (4.13) are
discussed in Refs [66—-69]. Here we shall draw attention
solely to the conditions of validity of these formulas.
Formulas (4.11) and (4.13) are valid if the collisions of a
particle with rows of atoms in a crystal can be regarded as
random. This is true if the whole phase space in a Poincare
section corresponds to chaotic motion. If a Poincare section
includes extended regions corresponding to regular motion,

TEqn (4.9) was used in Refs [67, 68] to describe the scattering of
positive particles in a crystal when Y <y, It is shown in Ref. [69]
that at high energies this equation can be used to describe the
scattering of positive and negative particles in a crystal when Y2 y..
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the distribution function of the particles in terms of the
angles f(@, z) may deviate from the distribution described
by formula (4.11). The methods for numerical simulation of
particle motion are particularly important in determination
of flg. 2).

By way of example, let us compare the average squares
of the angle of multiple scattering of a particle by atomic
rows in a crystal, 6%, obtained by partial simulation of
particle motion in the periodic field of atomic rows and on
the basis of formula (4.11), valid if the collisions of a
particle with different rows can be regarded as random
(random row approximation). This comparison is made in
Fig. 15 for the scattering of positive and negative particles
in a_crystal }31]. The ordinate in this figure represents
f= ((‘)2/031“)I 2, where 62, = eiL /e’ L,q is the average
square of the angle of multiple scattering of particles in
an amorphous medium, sf = 411:m2/e2, m is the mass of an
electron, L4 is the radiation length [12, 14], and the
abscissa gives the value of y¥//y..

The continuous curves in Fig. 15 represent the results of
a calculation of 6 from formula (4.13) for particles of

¢ =230 GeV energy, travelling in a silicon crystal
L =50 pum thick close to the (100) axis.

The simulation was based on the formula

?:%i 44° sin? % (4.14)
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Figure 15. Orientational dependences of the average square of the angle
of multiple scattering of positive (a) and negative (b) particles by rows
of atoms in a silicon crystal, when these particles are travelling close to
the (100) axis.

where N is the number of particles whose motion is being
simulated (N =200) and ¢; is the azimuthal scattering
angle of the ith particle after its escape from a crystal. This
angle is found by a numerical solution of Eqn (2.35) and
the index i refers to different initial conditions (different
values of the impact parameter in the first collision of a
particle with a row of atoms).

The open circles and triangles in Fig. 15 represent the
results of simulation of 6 for different orientations of the x
and y crystallographic axes relative to the projection p, of
the momentum of the incident particle onto an (x, y) plane
orthogonal to the z crystallographic axis near which the
motion takes place. The black squares are the results of
simulation when the adjacent atomic rows are shifted in the
(x, y) plane in a random manner relative to one another.

The results obtained show that 67 > 62, is obeyed in a
wide range of the angle Y and if the collisions of a particle
with different atomic rows are random, the results of
simulation agree with analytic calculations of the quantity

f. However, if the motion occurs in the periodic field of

atomic rows in a crystal, the results of simulation agree with
analytic calculations of the function f, carried out on the
basis of formula (4.13), only in the angular range ¥ Sy,.
For negative particles the agreement is observed in a wider
range of the angles ¥ than for positively charged particles.
This is related to the stronger stochastisation of the motion
of negative particles in the periodic field of atomic rows,
compared with positive particles.

A considerable difference between the simulation results
(open circles and triangles) and analytically calculated
values of f in the range ¥ > ¢ is due to the influence,
on the scattering, of a regular motion of a particle in the
periodic field of atomic rows.

We shall conclude this section by noting that the
reported results are obtained ignoring noncoherent particle
scattering by inhomogeneities of the crystal potential,
associated with the thermal scatter of the positions of
atoms in the lattice and also with the scattering by the
electron subsystem of the lattice. When these three effects
are taken into account, the regions in the phase space
associated with the regular motion become smaller. There is
a corresponding increase in the regions of the phase space
where the multiple scattering can be described by the model
of random rows [see Eqn (4.9)]. Inclusion of the non-
coherent scattering effects also shows that particles may
be scattered not only along the azimuthal angle ¢, but also
along the polar angle.

Inclusion of the noncoherent effects in the scattering
complicates the motion of a particle in a crystal, so that
computer simulation methods become particularly useful in
solving this problem.

5. Passage of high-energy charged particles
through a bent crystal

5.1 Bending of the paths of positive particles during
planar channelling in a bent crystal

It is shown in the preceding section that if a fast charged
particle moves in a regular manner along one of the
crystallographic planes, its motion is governed primarily by
a one-dimensional continuum potential U,(x) of crystallo-
graphic planes, described by expression (4.6); here, x is the
coordinate of a particle orthogonal to the crystallographic
planes. The particle in the field of the continuum potential
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of crystallographic planes can be either in finite motion
(channelling) or in infinite (above-barrier) motion relative
to the planes.

Let us assume that the planes are bent, but remain
parallel to one another (Fig. 16). Then, bending of the
channel should also result in bending of the particle path.
This can be used for extraction of high-energy charged-
particle beams from cyclic accelerators if a bent crystal is
attached in a suitable manner to an accelerator. This effect
was pointed out in Ref. [39].
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Figure 16. Bending of a

positively charged particle in
channelling in the field of bent crystallographic planes.

planar

Since the average crystal fields exceed greatly the
external magnetic fields that are employed in beam
bending, it follows that the dimensions of a bent crystal
used in beam extraction will be considerably smaller than
the dimensions of the devices employed in beam extraction
by means of external fields (see, for example, Refs [40—43]).
This opens up also other opportunities for the control of
beams and of their parameters. They include the possibility
of splitting a beam into several components [70], removal of
the beam halo [71], beam focusing [43], etc. It would be
therefore of major interest to study the passage of high-
energy charged-particle beams through bent crystals. This
will now be discussed in detail.

Let us begin with the derivation of the equations of
motion for a bent path of a particle moving in a field
formed by bent crystallographic planes. For simplicity, we
shall assume that the radius of curvature R of bent
crystallographic planes is the same at all points on a
bent plane and it is sufficiently large, so that the motion
takes place in spatial regions whose dimensions are small
compared with R. The motion occurs in a cylindrically
symmetric field U,(r), where r is the distance from the
centre of curvature, which can be written in the form

.1

Here, x is a small deflection of a particle from the
crystallographic planes in the direction of the normal to the
surface: |x| < R.

The equations of motion for x(f) can be derived
conveniently with the aid of the relativistic Hamilton-
ian—Jacobi equations for the action S(r, f) of a particle
moving in the field U, (r) [46]:

r=R+x.

[E s+ up(r>]2 = (VS)’ +m?. (52)

Ot

Since the potential energy is a cylindrically symmetric
function of r, the action S should be sought in the form

Sr,t)=—Et+Mo+f(r), (5.3)

where E is the particle energy, M is its angular momentum,
¢ is the angle of bending of the particle path, and f(r) is
some function of r. It follows from expression (5.3) that

f(r) can be described by the following equation:

dry M2
(F> +7+m2 - [E_Up(”)]2 ’

which yields

(5.4)

The relationship 0S/OE = const gives the following
equation for the particle path r(z):

(ﬂ)z _ [E— Up(r)]2 —Mz/r2 —m?
dr [E-U, (0] '

The quantity E in the above equation represents the
total energy of a particle in a crystal. It is related to the
energy ¢ of the particle incident on a crystal by
& =E + U,(ry), where ry is the value of the coordinate r
at which the particle enters the crystal. Since for a fast
particle, we have ¢ > U, it follows that Eqn (5.5) can be
simplified to

dry'
dt) ~

(5.5)

(,,2 M2> [] o Up(r)tup(ro)

& &
- Up(r) + Up(”o) .
&

We note now that M =pb, where p is the particle
momentum and b is the impact parameter (b =ry), and
that r =R +x and b =R + xy, where x4 is the point at
which the particle enters the crystal (Fig. 17), |x| <« R and
|xo| € R. Then, in the first approximation in terms of the
parameters x/R and U,/e, we obtain the following
equation for x(#):

dx\ XX, u(x) + ulxg)
(dt) TR € '
Here, u(x) = u,(R + x).

In principle, Eqn (5.6) describes the particle path x(¢) as
a function of time ¢. [t can be interpreted in a clear manner
if we differentiate the above equation with respect to time:

(5.6)

d*x 1 0
P Uer (x) (5.7
where
g
Uegr (x) = u(x) —x R (5.8)

Therefore, the quantity Ugy(x) can be regarded as the
effective potential energy of a particle moving in a bent
crystal.

Eqn (5.7) is identical with the corresponding result
obtained in Ref. [72] by another method.

The quantity u(x) in expression (5.8) is the potential
energy of the interaction of a particle with the continuum
potential of crystallographic planes and —xg/R represents
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Uesr

Figure 17. Effective potential energy, described by expression (5.8), of
the interaction of a particle with the continuum potential of bent
crystallographic planes, calculated for different bending radii:
(I)R—00; (2)R>R; (3) R<R,.

the centrifugal energy. Fig. 17 shows graphs of the function
U.g(x) for positively charged particles moving in a bent
crystal. These paths are plotted for different values of the
radius of curvature.

In the limit R — oo, a particle moves in a periodic field
of the crystallographic planes of a straight crystal. The
motion in such a field can be both finite or infinite relative
to the crystallographic planes (this is shown in Section 4.4).
The finite motion is realised if the energy of transverse
motion ¢, 2%802 is small compared with the maximum
potential energy U m.x» Where 8 is the angle between the
momentum of a particle incident on a crystal and a
crystallographic plane. If &, > U, ., such a particle
follows an infinite path relative to the planes.

However, if the motion occurs in a bent crystal and the
bending radius is sufficiently large, then Ugy(x) contains a
negative correction to the potential energy, and this
correction increases linearly with x. The result is a
modification of the potential well formed by the continuum
potential of the crystallographic planes. One of the edges of
the new potential well is depressed relative to the minimum
value of the function U.y(x) in the region of the well
(curve 2 in Fig. 17). A particle in such a field can, as in the
case of a straight crystal (R — oo), be in finite motion
relative to the crystallographic planes. Such motion is
possible if the potential energy €, , is less than the potential
barrier in a given problem. A particle then moves period-
ically in a channel formed by the potential of the adjacent
planes and it follows the bending of the crystal planes. If the
noncoherent scattering effects are ignored, such motion
occurs over the whole length of the crystal and this bends
the particle path by an angle § = L/R, where L is the
crystal thickness. It is clear that at high values of L this
angle can be considerably greater than the critical angle for
planar channelling 6, = (2Up,max/£)'/2. In other words, a
beam may be bent by an angle exceeding considerably the
critical planar channelling angle.

The depth of the potential well formed by Ugy(x)
decreases with reduction in R and at some value of R

the well disappears completely (curve 3 in Fig. 17). The
radius R = R, at which the potential well U.y(x) disap-
pears is well known as the critical bending radius. If
R < R, finite motion is impossible in the field Ug(x)
and, consequently, bending of a beam by a bent crystal is
also impossible.

If the interplanar potential is assumed to be that
described by a harmonic oscillator [21] u(x) = Up(4x2/dﬁ),
where |x| < 1 d, and d, is the distance between the planes
located at x = :I:%dp, it then follows (which can easily be
checked) that

&
Rczdpm

(5.9)

For example, in the case of protons of ¢ = 100 GeV energy,
moving in a bent silicon crystal along (110) crystallographic
planes, we have U, ~ 22 eV, dp ~2 A, and, consequently,
R, =25 cm. We then have 6, = 107> rad. Then, if R > R,
the particles in a beam can be bent by an angle
6 =L/R > 0,. It should be stressed once again that the
average fields acting on a particle in a crystal are several
orders of magnitude higher than the static macroscopic
external fields, which can be created by physical equip-
ment. Therefore, the dimensions of a bent crystal can be
small compared with the dimensions of the devices used to
bend the beams by magnetic fields. For example, bending
of heavy positive particles of energy ¢ = 800 GeV through
an angle 8 ~ 107 rad requires a bent silicon crystal whose
thickness is L =10 cm and the bending radius is
R =100 m, whereas in magnets creating a field
B =1kG, such bending can be achieved in a system
which is 60 m long.

Bending of beams of heavy negative particles is also
possible in a bent crystal because such a crystal should have
a potential well. However, in contrast to positive particles,
there are important noncoherent scattering effects in the
case of negative particles and these effects are associated
with the fact that a particle of this kind can approach quite
closely the nuclei of the atoms forming the crystallographic
planes. Therefore, the efficiency of bending a beam of
negative particles is considerably less than for a beam of
positive particles. So far, bending of a beam of negative
particles in bent crystals has not been observed experimen-
tally, whereas bending of positive particles has not only
been confirmed in many experiments [41, 42, 73 -86], but
has found practical use in tackling a number of tasks such
as extraction of a beam from an accelerator, measurement
of the magnetic moment of the =t hyperon [87, 88], etc.
(for reviews, see Refs [40, 43]).

5.2 Motion of fast particles in the field of atomic rows in
a bent crystal

We have considered above the motion of a positive particle
under planar channelling conditions in a bent crystal and
we have shown that if the bending of the crystal is small, it
is possible to bend the paths of the particles which are in
finite motion. A similar situation arises in the case of axial
channelling, but it is much more complicated than in the
planar case. This is due to the fact that in the planar case
the problem is one-dimensional, but it is two-dimensional
for axial channelling. Moreover, the role of the above-
barrier motion of particles complicates further the problem
of axial channelling. In planar channelling such above-
barrier particles are not deflected in a bent crystal, whereas
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in axial channelling they are deflected (as shown below) in
the same way as the particles in finite motion in the field of
atomic rows. It is then found that the majority of the beam
particles deflected in a bent crystal are in infinite motion.

In this section we shall consider above-barrier motion of
a fast charged particle (irrespective of its charge) in the field
of atomic rows in a bent crystal. We shall assume that the
potential of atomic rows is continuous and depends only on
the distance between the particle and the nearest row. (In
the next section we shall discuss a more realistic problem in
which infinite motion should be accompanied by finite
motion in the field of atomic rows and, moreover, we shall
take account of the noncoherent scattering effects.)

We shall begin by demonstrating that when particles are
in above-barrier motion in the field of atomic rows, they may
be deflected not only in a bent crystal, but also in a straight
one.

In fact, a fast charged particle incident on a crystal at a
small angle { to one of its crystallographic axes (z axis)
collides successively with different rows of atoms oriented
parallel to this axis. The scattering by collision with each
atomic row occurs mainly along the azimuthal angle ¢ in a
plane orthogonal to the z axis. Multiple scattering by
different atomic rows results in a redistribution of the
particles in terms of the angles ¢. If the angle Y between the
particle momentum and the crystallographic z axis is
sufficiently small (Y <y,), a uniform distribution of the
particles in respect of the angles ¢ is established very rapidly
(as demonstrated by the results of numerical simulation of
the passage of fast charged particles through a crystal when
¥ ~ Y [86]). As a result, the centre of the scattered beam is
directed along the crystallographic z axis, i.e. if multiple
scattering by atomic rows takes place, the beam axis is bent
through an angle equal to {. Such beam bending is possible
for both positive and negative particles [86].

A redistribution of the particles in a bent crystal occurs
both in respect of the azimuthal angle ¢ relative to the
running direction of the crystallographic axis and in respect
of the polar angle Y relative to this axis. Some special
features of such scattering are worth noting.

We shall consider the simplest case when during the
interaction of a particle with a single row of atoms the
change in the angle ¥ between the particle momentum and
the row axis is small. This condition is satisfied if the
bending radius of a crystal is large. Then the scattering by
each row of atoms can be regarded in the ¥ = const
approximation. The angular coordinates of a particle
then change on going over from one row of atoms to
another and the changes can be described by the following
recurrent relationships:

0,41 =0, ; cosp, + (0, ; — 6;) sin @, , (5.10)

0,11 =(0,,;—0)cosp,— 0, ;sinp;,+0;,

where 0, ; and 0, ; are the angular coordinates of the
particle in a plane orthogonal to the initial direction of the
crystallographic axis, before the ith collision with a row of
atoms; ¢, is the azimuthal scattering angle of the particle in
the ith collision [according to expression (2.21), ¢; is
governed by the polar angle ¥; and by the impact
parameter of a row b;]; §; = L;/R is the running direction
of the crystallographic axis; L; is the path travelled by the
particle in the crystal before the ith collision; R is the
bending radius of the crystal (it is assumed that the bending

0.V,i+]
a0 = AL
R

gv, i+1

gv,i

Figure 18. Changes in the angular coordinates of a particle during
successive collisions with rows of atoms in a bent crystal.

is along the y axis). Such recurrent relationships are
illustrated in Fig. 18.

If in the set of relationships (5.10) we go over to
variables 0, =0,;,— 0, 0;; =0, the result is in the
form of recurrent relationships for the quantities 9)'-,;‘ and
0;1,», which determine the angular coordinates of a particle
relative to the running direction of the crystallographic
axis [89, 90]:

! ! 13 .
xX,i+l = gx,i cos ; + 0}',[ sin @; ,

I
i ! ! . i
y,iv1 =0y cosp; — 0, ; sing; — —

_ 12 123172 R
‘pi - (ex,i + Gy,i) .

The above set of relationships gives also one for ; which
links the value of the angle ¥, between the particle
momentum and the crystallographic axis in the case of
the ith collision to the angular coordinates of the particles
6,; and 6;;, The quantity [, in one of the above
relationships is the path travelled by the particle between
the ith and (i+ 1)th collisions with rows of atoms:
li=Liy —L;.

The set of relationships (5.11) can be used in a study of
the dynamics of a particle in a bent crystal and in numerical
simulation of the passage of a particle through a crystal.
The motion of fast particles in a periodic field of atomic
rows in a crystal can be regular or chaotic. Therefore, in
general, the pattern of the passage of particles through a
crystal is fairly complex and requires numerical simulation
in which the real geometry of the distribution of atomic
rows in a crystal is taken into account. Before we consider
the numerical simulation results, let us examine some
analytic relationships which follow from the main recur-
rent formulas (5.11) that describe the scattering of particles
by atomic rows in a bent crystal [94].

Let us assume that each collision with an atomic row
establishes a uniform distribution of particles over the
angles ¢;, i.e. that the function representing the distribu-
tion of particles over angles ¢; is independent of ;.
Averaging of the set of relationships (5.10) over such a
distribution yields self-evident relationships
L.

=, 5.12
R (5.12)

(5.11)

O is1 =0, 0,41 =
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where the bar denotes averaging over ¢;. These relation-
ships show that when the conditions for a uniform
distribution of particles over the angles ¢, are satisfied,
the beam centre is displaced along a bent crystallographic
axis. The numerical simulation results obtained in a model
of binary collisions demonstrate [86] that this approxima-
tion is qualitatively correct if the angle  between the
particle momentum and the crystallographic axis is small
compared with the critical axial channelling angle V..

We shall now find the average values_of the angles of
scattering of particles by atomic rows 0;?i+] and 9}',3“,
relative to the running direction of the crystallographic axis
when the distribution of the particles over the angles ¢; is
uniform. Squaring the first relationship in the set (5.11) and
averaging it over ¢;, we find that

PR JR— 1 J— JR—
07 — 0% =5 (02 -67%) . (5.13)

If we assume that in going over from one cell to the other
the quantities 0;,2[+] change only_slightly, we can write
down the following equation for 0;,2,':

E X, 0
Similar procedures apply to the second relationship in
the set (5.11) and yield the following equation for 9;.?,-:

d 757 153 T) LY

@ =3 (0*“" o) +\®) -

Adding and subtracting Eqns (5.14a) and (5.14b), we
find that

o \2
S =(x) -
& @) =@+ (7).

where 7 :0;,2,44-0}',,2,4. We shall now replace [; with the
average distance [ travelled by a particle between
consecutive collisions with atomic rows. This distance is
given by [19]

] (o.9)
T=n J_w db[1 —cos o (b)]

(5.14a)

(5.14b)

o

(5.15)

so that if we note that dix dz/l, we obtain the following
equations for 6,%(z) and 6,*(z):

R G ERCER O

(5.16)

If the order of magnitude of this distance is given by
I~ d*/R ., where a is the distance between the rows of
atoms and R is the screening radius of the atomic potential,
we find that

— L
2 o
Ve

T+ (L)
y X R/

It follows from the above relationships that if l € R,
then 6/~ 6.% and for L > I the average square of the
particle bending angle relative to the final direction of the

(5.17a)

(5.17b)

bent crystallographic axis, given by relationship (5.17a), is
much less than the square of the angle of the crystal bending
of the beam 6% = (L/R)’. In other words, in this case the
beam bending is along the bending of the crystallographic
axis when fluctuations of the scattering angles of the beam
particles are small compared with the angle of bending of
the beam by the bent crystal:
0% > y?*.
It should be stressed that the beam bending applies in this
case to the particles which are in infinite motion relative to
the atomic rows. Both positive and negative particles may
be bent. This bending requires that the condition of
uniform distribution of the particles over the angles ¢ be
satisfied, which—as pointed out above—is possible if
¥ <y, Since at the exit from the crystal we have
v’ :9;24-9}',2, the condition ¥ <, can be written in
the form

IL
ﬁst//i-

(5.18)

(5.19)

This condition determines the relationship between L, R
and ¢ when the bending of a particle beam is possible in the
course of their multiple scattering by atomic rows in a bent
crystal.

Relationships (5.12)—(5.19) are derived without specify-
ing the law governing the distribution of atomic rows in a
plane orthogonal to the crystallographic z axis. Therefore,
relationships (5.12)—(5.19) can be applied to the motion of
a particle in a periodic field of the atomic rows and also
when the positions of rows in a plane transverse to the z axis
can be regarded as random. The only necessary condition is
a uniform distribution of particles between the angles ¢ in
collisions with atomic rows. Such a distribution is qual-
itatively correct if ¥ <. Since ¥ <y, the bulk of the
beam particles is in chaotic motion in the periodic field of
such atomic rows and the actual law governing the
distribution of the rows in a transverse plane is unimpor-
tant from the point of view of the scattering.

The condition given by formula (5.19) is identical with
that obtained in Ref. [42] for the dechannelling length of
fast particles in a bent crystal. However, the solution of the
system of equations (5.17) has been obtained employing the
relationship [~ az/RlpC. According to Eqn (5.15), the
quantity [ is generally a function of ?. Therefore,
Eqn (5.17a) is a nonlinear differential equation for y?(z).
The case when [ ~ a2/R¢c applies to the potential of a row
ofatoms described by U(p) = Uo(R/p)*. However, for other
functions U( p), this solution is different. For example, if the
potential is U(p) = UynR /2p, which is frequently used in
the theory of channelling, we then have =W /y,,
Iy = 4/ (1 /ndR,) [19] and the equation for y*(z) becomes

I (W)
R ¥,

d
dz

7=

where Y in the expression for /() is replaced with (F)]/Z.
The solution is then

7ol (lo_L>2
w\w)
It is easily demonstrated that in the case under discussion
as well as when [~ a’/R ¥, there are such values of ¢, L,



Dynamics of high-energy charged particles in straight and bent crystals

1141

and R for which the relationships 6* > ¥ and y* < y? are
obeyed, ie. a beam of particles undergoing multiple
scattering by atomic rows may be bent in a bent crystal.

We shall now consider some characteristics of the
motion of fast charged particles in a bent crystal due to
the periodicity of the distribution of atomic rows. With this
in mind we shall show that when particles are in regular
motion along the crystallographic plane, the recurrent
relationships (5.10) are transformed into the corresponding
results obtained in the theory of motion of particles in the
field of the continuum potential of bent crystallographic
planes obtained in the preceding section. As before, we shall
assume that atomic rows form a square cell in the (x, y)
plane and the sides of this cell are directed along the x and y
axes.

We note first of all that for ¥ > . the characteristic
values of the azimuthal angles of the scattering of a particle
by a row of atoms, described by expression (2.25), are small
compared with unity: ¢; . ~ (Y./¥,)*. Then, if the initial
angles 0, o and 0, o are such that 6, o =¥ > Y and 0, (<Y,
there is a correlation in the successive collisions of a particle
with atomic rows distributed periodically in planes parallel
to the (x,z) crystallographic plane. Expansion of the
recurrent relationships (5.10) in terms of small values
@; <1 gives, in the first approximation,

0, . ~0,., =y,

x,i+1 X, i l// 1 (520)

Oy~ 0, —Vo,— R’

where [; = a/y, Yy > ., and a is the distance between the
rows of atoms in the (x, z) plane.

It therefore follows that in the case under discussion the
component of the particle velocity along the x axis is
conserved and the motion in a transverse direction is
described by

-~ a

O,,i01— 0, = Yo, — 1//_'R, . (5.21)

The values of ¢, and Y >y are given by for-
mula (2.25). The integral with respect of x, which occurs
in this formula, can be related to the continuum potential
U,(b;) in a crystallographic plane by

L[ 2, 2\1/2
;J’ioo dx UR (x +b,‘) = p(bi) .

Since quantities 6, ; vary slowly with i and are propor-
tional to the particle velocity component v, ; along the y
axis, the following equation is obtained for v, ;:

v d

10 1
——v14 — —_—
a di '

=—— U,(yi) —=.
e ayl P(yl) R
The variable b; is replaced here with y;, =b;. Finally,
subject to the relationship (a/y¥)di = dr;, we obtain
d%y () 1

2" 5oy U,(y) R (5.22)
which in fact is identical with the corresponding Eqn (5.7)
for a particle moving in the continuum potential of bent
crystallographic planes. The difference between these
equations is only this: in Eqn (5.7) the bending is in the
direction of smaller values of x, while in Eqn (5.22) it is in
the direction of higher values of y. This results in the

opposite sign in front of the centrifugal term (which is
proportional to 1/R).

It therefore follows that if a particle is in regular motion
along a crystallographic plane, the recurrent relation-
ships (5.10) go over to the corresponding Eqn (5.7) in
the theory of motion of particles in a periodic field of
bent crystallographic planes.

5.3 Simulation of the passage of high-energy charged
particles through a bent crystal

The recurrent relationships (5.11), which link the angular
coordinates of a particle as it goes over from one row of
atoms to another, are analysed above on the assumption
that there is a uniform distribution of the particles over the
azimuthal angle ¢ in a plane orthogonal to that
crystallographic axis near which a particle is moving.
However, this assumption of a uniform distribution of
particles over the angles ¢ should be regarded only as
qualitative. If no assumption is made of a uniform
distribution of particles in terms of the angles ¢, the
recurrent relationships (5.11) have to be investigated by
numerical simulation. We shall give some results of such a
numerical simulation and the results of a study of the
influence of noncoherent effects on the passage of fast
particles through a bent crystal. These effects are associated
mainly with multiple scattering of the transmitted particles
by the thermal vibrations of atoms in the lattice.

In numerical calculations one needs not only the
recurrent relationships (5.10), but also those linking the
impact parameters b, and b; for successive collisions of a
particle with rows of atoms. We can readily see (Fig. 19)
that these quantities are related by

CX) >

where ¢, and ¢, are the coordinates of the centres of an
adjacent row of atoms (relative to a row of atoms with the
index i) which a particle reaches after crossing the ith cell.
Within the limits of a unit cell, the continuum potential of
a row of atoms is assumed to be radially symmetric.

0, ; 0, .
bipy = b+ (—*‘ ¢, — 2 (5.23)

¢i+l l/Ii+l

Figure 19. Impact parameters b; and b, for successive collisions of a
particle with rows of atoms (&1 = Oy i41/¥i41)
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Since the parameters b; are related in a definite way to
the angles ¢; [see relationship (2.19)], it follows that
formula (5.23) makes it in fact possible to establish a
relationship between the angles ¢; and ¢, . The recurrent
relationships (5.11) can then help in solving the problem of
the motion of a particle in the periodic field of atomic rows
in a bent crystal. Strictly speaking, formulas of the (5.23)
type apply to a straight crystal. However, since the bending
is slow, they can be applied also to a bent crystal.

In the problem under discussion, an elementary event of
the interaction of a particle with a crystal is its scattering by
a row of atoms and not by a single atom as in the binary
collision model (see, for example, Ref. [86]). Therefore, the
method employed can be used to study the passage of
particles through a fairly thick crystal.

We shall now give some results of the numerical
calculations. Fig. 20 shows the angular distributions of
positive and negative particles whose energy is
¢ =300 GeV and which cross a silicon crystal bent to a
radius R = 10* cm. The results are plotted for several
crystal thicknesses. The simulation was carried out for
particles entering this crystal at a small angle (Y $0.1¢,)
relative to the (111) crystallographic axis. This was done for
various values of the impact parameter b. The points in
Fig. 20 represent the results of stimulation for 100 particles.
A crystal was assumed to be bent along the y axis.
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Figure 20. Angular distributions of negative (a, b) and positive (c, d)
particles of ¢ =300 GeV energy passing through a silicon crystal bent
to a radius R = 10" cm near the (111) axis; the coordinates of the
beam incident on the crystal are (0,, 6,) = (0, 0).

The results obtained demonstrate that, if the crystal
bending radius is large, a beam can follow a crystallo-
graphic axis in a bent crystal and such beam bending is
possible for both positive and negative particles. The
average squares of the particle bending angles, measured
relative to the running direction of the crystallographic axis,
are in this case small compared with the square of the angle
of beam bending. Therefore, in accordance with relation-
ships (5.10), the whole beam is displaced in the direction of
a crystallographic axis in a bent crystal if R is large and L is
small. It should be stressed once again that bending applies
to particles in infinite motion relative to atomic rows and

that it is due to characteristic features of the multiple
scattering of particles by these rows.

The results of such simulation also demonstrate that the
angular distributions of positive and negative particles are
different. This is due to the difference of the motion of
above-particles which have opposite signs. For example, if
V¥ <y,, a fraction of positive particles may be in regular
motion along crystallographic planes (see Fig. 14). These
particles are represented in Fig. 20 by a distribution of some
of the beam particles along the lines. If ¥ <y, regular
motion is not realised for negative particles and, therefore,
there is no ‘trapping’ of such particles in crystallographic
planes (Fig. 14c). However, the bulk of the positive
particles moves chaotically in the field of atomic rows in
a crystal if Y <yY,. The mechanism of bending of this
fraction of the beam particles is exactly the same as that
which applies to negative particles.

It is worth noting that if the passage from one cell to
another results in a random scatter of the target parameters
(when the adjacent rows are shifted relative to one another
in a random manner), collisions of a particle with different
rows of atoms can be regarded as random. This model
corresponds to what is known as the approximation of
random collisions with atomic rows. The first calculations
of the passage of high-energy particles through a crystal
carried out on the basis of this model [89] have shown that
positive and negative particles may be bent by a bent crystal
when the bending radius is large. This result was confirmed
when the real geometry of the distribution of atomic chains
in a crystal was simulated [90]. Moreover, the simulation
showed that it is important to take account of the
real geometry of the distribution of atomic rows in a
crystal when dealing with the motion of positive particles
because the trapping of these particles in planar channels is
possible.

The results discussed above are derived ignoring axial
channelling (finite motion) of particles in the field of atomic
rows and also ignoring noncoherent scattering of these
particles in a crystal. We shall now consider the influence of
these processes on the passage of high-energy particles
through a bent crystal.

This problem was solved by an improved numerical
model of the passage of particles through a crystal. This
model takes account of the real geometry of the positions of
atomic rows in a crystal and it can be used to consider in a
unified manner the main dynamic and kinetic effects [91]. In
this model the interaction of a particle with a crystal is
investigated by dividing the particle path into a set of
rectilinear sections within which the changes in the particle
velocity associated with noncoherent scattering effects and
with the continuum potential of atomic rows in a crystal are
taken into account. The program of numerical calculations
based on this model can be used to simulate the passage of
high-energy (¢x1 GeV) particles through a crystal of
thickness up to several tens of centimetres.

Fig. 21 gives some of the results of such simulation of
beams of positive and negative particles with energies
£ =300 GeV and & = 10* GeV moving in a silicon crystal
bent to a radius R = 10* cm and R =3 x 10° cm along the
(I11) axis. The simulation was carried out for a set of 100
particles. The ordinate and the abscissa of Fig. 21 give the
angular coordinates of the particles at the exit from the
crystal. The simulation was made for the particles entering
the crystal along the (I111) crystallographic axis. The
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Figure 21. Angular distributions of negative (a, b) and positive (c, d)
particles of energy ¢ =300 GeV (a, ¢) and ¢ = 10* GeV (b, d) passing
through a silicon crystal bent to a radius R = 10* cm (a, ¢), and
R =3 x 10° cm near the (111) axis.

distribution of the incident particles along x, and y, on the
entry face of the crystal was assumed to be uniform.

It follows from these results that inclusion of the
noncoherent effects in the scattering and axial channelling
does not affect greatly the passage of particles through a
bent crystal if the average values of the square of the angle
of multiple noncoherent particle scattering in a crystal are
small compared with the average square of fluctuations of
the scattering angles, described by expression (5.16), due to
the crystal bending. These results also demonstrate that
when a beam is incident along a crystallographic axis of a
bent crystal, large fractions of negative and positive
particles in the beam may be deflected following the
bending of the axis and the bending angle may exceed
considerably the critical angle for axial channelling (for
example, 6, ~ 8y in the case illustrated in Fig. 21b).

Fig. 22 shows the dependence, on the crystal thickness,
of the fraction of negative particles in a beam moving along
a bent crystallographic axis under axial channelling con-
ditions (finite motion in a field of one of the atomic rows),
and of the particles bent into the angular interval AG Sy,
relative to the running direction of the crystallographic axis.
A comparison of these two curves shows that the dominant
mechanism of bending of negative particles by bent atomic
rows in a crystal is not axial channelling, but multiple
azimuthal scattering of above-barrier particles by atomic
rows in the crystal.

The exit angular distributions of positive and negative
particles of energy ¢ = 300 GeV are given in Ref. [70] for a
beam of particles incident on a bent silicon crystal at the
angle Y, =0, 0 =¥, 0, o = O relative to the (111) axis. The
simulation results given in Ref. [70] show that the situation
is as follows: some positive particles in the beam follow the
bent crystallographic axis, but there are also several beam
fractions which are trapped into planar channels and are
bent following the shape of the relevant planes. Conse-
quently, the incident beam splits into several beams along
different angles. Such splitting does not occur in the case of
negative particles.

It follows that the periodicity of the distribution of
atomic rows in a crystal influences the passage of positive

negative particles moving along bent rows of atoms in a silicon crystal
under axial channelling conditions (/) and of particles deflected to the
angular interval Ay <y, relative to the running direction of the
axis (2); e= 10* GeV, R =3 x 10° cm (Fig. 21b).

particles through a bent crystal, but does not affect
significantly the passage of negative particles when the
angle of incidence ¥ =y, is equal to several critical axial
channelling angles V..

The results obtained suggest new opportunities for the
control of the parameters of high-energy particle beams in
accelerators, such as beam extraction from accelerators,
splitting of a beam into several components, etc. We shall
conclude that there have been as yet no experimental
investigations of bending of beams of high-energy charged
particles moving along a crystallographic axis in a bent
crystal.

6. Conclusions

This review deals with the dynamics of high-energy charged
particles in straight and bent crystals. It is shown that if
motion occurs at small angles to one of the crystallographic
axes, it is then governed mainly by the continuum potential
of atomic rows in a crystal oriented along this axis. The
continuum potential appears in a natural manner in motion
investigated employing the Born approximation within the
framework of quantum electrodynamics or classical
electrodynamics. The continuum potential of rows of
atoms in a crystal represents a complex periodic nonlinear
function of two coordinates. Therefore, the task of
investigating the motion of a particle in such a field
belongs to the theory of nonlinear systems in which both
regular and chaotic motion is possible. An important
aspect is the stability of such motion. All these problems
are encountered both in the finite motion of particles
(channelling) and in the infinite (above-barrier) motion,
relative to atomic rows in a crystal. The problem of above-
barrier motion of a particle in the periodic field of atomic
rows in a crystal can be linked to the ‘billiards’ motion of a
particle in an external field or to the elastic scattering of a
particle by three disks located in one plane.

The nature of the motion of particles in a crystal and the
conditions under which various types of motion take place
are very important aspects in the selection of approximate
analytic methods for the description of the interaction of
particles with the lattice, particularly with a bent crystal.
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These approximations include the continuum potential of
crystallographic planes and that of random collisions of a
particle with atomic rows.

Analytic estimates and the results of numerical simula-
tion of the passage of high-energy particles through a bent
crystal given in this review demonstrate that under certain
conditions a large fraction of beam particles may follow the
bending of the crystallographic axis along which a beam is
incident on the crystal. This mechanism of beam bending
applies to both positive and negative particles and it is in
the main due to the characteristics of multiple scattering of
particles by atomic rows in a bent crystal. Detailed
experimental investigations of the capabilities of this
beam bending mechanism are still lacking.

Unfortunately, for lack of space, we have been unable to
deal with many other manifestations of the different types
of motion in the physical processes that accompany the
passage of high-energy particles through a bent crystal,
which include emission of coherent radiation under the
conditions of real particle dynamics in a crystal [92], the
influence of multiple scattering on the process of coherent
emission of radiation from thin and thick crystals [66],
resonant dechannelling [93], etc. Moreover, this review does
not deal with general theoretical problems that belong to
the theory of dynamic chaos, such as chaos in quantum
systems, measure of chaos, and entropy. These concepts
undoubtedly apply to the characteristics of particle beams
moving in a crystal.
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