<u>ΥCΠΕΧИ ΦИЗИЧЕСКИХ НАУК</u>

КОНФЕРЕНЦИИ И СИМПОЗИУМЫ

Научная сессия Отделения общей физики и астрономии Российской академии наук

(22 февраля 1995 г.)

22 февраля 1995 г. в Институте физических проблем им. П.Л. Капицы РАН состоялась научная сессия Отделения общей физики и астрономии РАН. На сессии были заслушаны доклады:

1. Смирнов А.И., Хлюстиков И.Н. (Институт физических проблем им. П.Л.Капицы, Москва). Магнитоэлектрические эффекты и эффект Штарка в антиферромагнитном Gd₂CuO₄.

2. Зильберман П.Е., Темирязев А.Г., Тихомирова М.П. (Институт радиоэлектроники РАН). Короткие спиновые волны обменной природы в ферритовых слоях: возбуждение, распространение и перспективы применения.

PACS numbers: 75.80. + q, 71.70. Ej, 75.50.Ee

Магнитоэлектрические эффекты и эффект Штарка в антиферромагнитном Gd₂CuO₄

А.И. Смирнов, И.Н. Хлюстиков

1. Введение

Антиферромагнитный Gd₂CuO₄ обладает необычной магнитной структурой. Спины ионов меди упорядочиваются антиферромагнитным образом при температуре $T_N(Cu) = 280 \,\text{K}$ так, что в базисных плоскостях тетрагональной кристаллической решетки направления магнитных моментов чередуются в шахматном порядке [1]. При температуре $T_N(Cd) = 6,5 \text{ K}$ происходит антиферромагнитное упорядочение ионов гадолиния. При этом спины ионов гадолиния образуют ферромагнитные слои, намагниченные параллельно базисным плоскостям [2], а медная и гадолиниевая подсистемы оказываются обладающими различной магнитной симметрией. Магнитная структура кристалла становится неинвариантной относительно центров инверсии, что допускает существование линейного магнитоэлектрического эффекта. Магнитоэлектрический эффект в Gd₂CuO₄ был обнаружен в [3] по возникновению электрической поляризации под действием магнитного поля (так называемый (ME)_Hэффект). С помощью симметрийного анализа для двухподрешеточной модели гадолиниевой подсистемы, в пренебрежении взаимодействием с медной подсистемой, в [3] получены следующие члены термодинамического потенциала, ответственные за магнитоэлектрический эффект в магнитной структуре Gd₂CuO₄:

$$\frac{1}{\left(4M_{0}\right)^{2}}\tilde{\Phi}_{ME} = \lambda M_{z}(P_{x}L_{x} + P_{y}L_{y}) + \Lambda P_{z}\mathrm{ML}.$$
 (1)

Здесь ось x направлена вдоль направления [100], а ось z — вдоль [001] тетрагональной кристаллической решетки, $2M_0$ — максимальная намагниченность одной из двух гадолиниевых подрешеток, P — электрическая поляризация, М и L — намагниченность и вектор антиферромагнетизма в единицах $4M_0$. В магнитной элементарной ячейке имеется четыре иона гадолиния, в каждую из двух подрешеток данной модели входит по два иона.

В магнитной структуре Gd₂CuO₄ $L_z = 0$ и отличны от нуля два магнитоэлектрических модуля α_{zx} и α_{xz} . Они следующим образом связаны с магнитоэлектрическими постоянными λ и Λ :

$$\alpha_{zx} = 4M_0 \frac{\mathrm{d}M_x}{\mathrm{d}E_z} = \frac{\mathrm{d}P_z}{\mathrm{d}H_x} = 4M_0 L\Lambda \chi_{||} k_{zz}, \qquad (2)$$

$$\alpha_{xz} = 4M_0 \frac{\mathrm{d}M_z}{\mathrm{d}E_x} = \frac{\mathrm{d}P_x}{\mathrm{d}H_z} = 4M_0 L \Lambda \chi_\perp k_{xx}.$$
(3)

Здесь Е и **H** — напряженности электрического и магнитного полей, k_{zz} и k_{xx} — соответствующие диэлектрические восприимчивости, $\chi_{||}$ и χ_{\perp} — магнитные восприимчивости в соответственно параллельном и перпендикулярном **L** направлениях.

В данной работе описаны результаты наблюдения линейного магнитоэлектрического эффекта по наведению магнитного момента электрическим полем $((ME)_E)$ -эффект), линейного антиферромагнитного эффекта Штарка, т.е. сдвига спектра антиферромагнитного резонанса (АФМР) электрическим полем, а также влияния электрического поля на магнитную восприимчивость.

Эти явления качественно объясняются в рамках двухподрешеточной модели антиферромагнитно упорядоченной редкоземельной подсистемы.

2. Методики экспериментов

Изменение намагниченности δM под действием электрического поля Е измерялось с помощью SQUID-магнитометра [4] при температуре 1,2 К. Образец размерами 1× ×1, 5×1 мм был приклеен между плоскими электродами

проводящим клеем. Приемная катушка фиксировала появление δM в направлении, перпендикулярном Е.

Для измерения СВЧ магнитной восприимчивости χ^{ω} и наблюдения АФМР в электрическом поле использовался спектрометр магнитного резонанса с проходным резонатором без модуляции магнитного поля. Рабочая частота спектрометра f = 35,7 ГГц. Внутри резонатора располагалась изолированная медная пластинка, с помощью которой на образце создавалось электрическое поле Е, перпендикулярное внешнему магнитному полю Н. СВЧ магнитное поле h на образце было перпендикулярно обоим полям H и E.

Измерение малого сдвига линии АФМР и малых изменений χ^{ω} при действии электрического поля проводилось с помощью модуляционной методики с переменным электрическим полем частоты F = 1,95 кГц. При влиянии поля Е на χ^{ω} возникает переменная составляющая СВЧ мощности, прошедшей через резонатор, колеблющаяся с этой частотой. Амплитуда δU этой составляющей определялась с помощью фазочувствительного усилителя. Если магнитное поле АФМР зависит от приложенного электрического поля, то величина δU будет зависеть от H, как производная мощности прошедшего через резонатор СВЧ сигнала U по магнитному полю dU/dH.

3. Статические магнитные свойства в электрическом поле

Измерение статических магнитных свойств проводилось после охлаждения образца в нулевых полях *E* и *H*.

Эксперимент показал, что поле E_z вызывает линейное изменение δM_x в нулевом магнитном поле (рис. 1а). На этом рисунке изображено также изменение намагниченности в зависимости от электрического поля во внешнем магнитном поле $H_x = 63$ Э. Подобные измерения были проделаны и при других значениях поля вплоть до 200 Э. Результаты этих экспериментов описываются формулой $\delta M_x(H) = \alpha E_z + H_x(\beta E_z + \gamma E_z^2)$. Таким образом, мы обнаруживаем линейное влияние электрического поля на магнитный момент и линейное и квадратичное влияния на магнитную восприимчивость χ_{xx} .

Электрическое поле E_y также приводит к изменению намагниченности M_x , при этом зависимость $\delta M_x(E_y)$ в нулевом поле обладает существенным гистерезисом (рис. 16). Этот результат обнаруживает магнитоэлектрическую связь компонент M_x и E_y , не описывающуюся (1), а также свидетельствует о наличии спонтанного магнитного момента.

4. Высокочастотные магнитные свойства в электрическом поле

АФМР в Gd₂CuO₄ подробно описан и экспериментально изучен в [2, 5]. Мы изучали влияние электрического поля на его нижнюю ветвь, обладающую щелью 25,2 ГГц при температуре 1,8 К.

Магнитное поле было направлено в плоскости xz под углом 45° к оси x, а электрическое поле — вдоль оси y. Такая ориентация позволяет использовать взаимодействие компонент M_z и E_y , описываемое первым членом (1), и в то же время наблюдать АФМР на рабочей частоте резонатора. При ориентации $\mathbf{H}||z$ поле АФМР на этой частоте становится слишком большим. На рис. 2 представлены зависимости U, dU/dH, а также δU от напряженности магнитного поля. Видно, что зависимость $\delta U(H)$ вблизи линии АФМР пропорциональна производной dU/dH, что свидетельствует о сдвиге поля АФМР электрическим полем.

Для получения однодоменного антиферромагнитного образца мы использовали охлаждение в полях E и H [6]. Направление вектора L вдоль легкой оси (биссектриса координатного угла в плоскости xy) при этом определяется знаком произведения EH во время про-

Рис. 2. Зависимость $\delta U(H)$: \circ — после отжига в полях **E** и **H**; \triangle — после отжига с инвертированным полем **E**; \Box — после отжига в нулевых полях. Сплошная линия — величина $\alpha = 1, 12 \cdot 10^{-4} \text{ d}U/\text{ d}H$; штриховая — зависимость U(H)

хождения температуры Нееля. В образце, не прошедшем такого магнитоэлектрического отжига, линейный магнитоэлектрический эффект оказывается в значительной мере скомпенсированным за счет противоположного знака эффекта в доменах, различающихся знаком L. На рис. 2 приведены данные, полученные для образца, охлажденного в полях $E_y = 3 \text{ кB/см и } H = 54 \text{ к} \Rightarrow \text{от } 7,5 \text{ до } 1,2 \text{ K}$, а также результаты, полученные после нагрева до 7,5 K и охлаждения с тем же значением H, но с инвертированным полем E. Изображена также зависимость $\delta U(H)$, полученная после охлаждения в нулевых полях.

По амплитуде δU мы определили величину сдвига поля АФМР δH , который составил 0,1 Э. Из рис. 3 видно, что одно и то же электрическое поле увеличивает

Рис. 3. Зависимости $\delta U(H)$ для E = 3 кВ см⁻¹ в эксперименте с инвертированием магнитного поля (а) и U(H) (б); стрелками отмечены поля АФМР

абсолютную величину магнитного поля АФМР в области положительных магнитных полей и уменьшает ее для инвертированного магнитного поля. Такое действие электрического поля в нашем эксперименте можно интерпретировать как возникновение эффективного магнитного поля, направленного в плоскости *xz*. Знак эффективного поля меняется при изменении знака E или знака L.

На рис. 2, 3 видно, что в области полей $|H| < 20 \, \text{к}$ Э наблюдается существенное изменение CBЧ сигнала U при изменении H. Это связано с изменением магнитной восприимчивости χ_{xx} в процессе спиновой переориентации в области $0 < H_x < 9 \, \text{к}$ Э [5]. При изменении восприимчивости происходит расстройка резонатора и изменение прошедшего сигнала. В этих полях появляется также заметная величина δU (см. рис. 2), свидетельствующая о влиянии электрического поля на восприимчивость χ^{ω} , измеряемую по отношению к слабому полю h.

Зависимости вещественной и мнимой частей изменения восприимчивости под действием электрического поля, $\delta \chi'$ и $\delta \chi''$ от магнитного поля приведены на рис. 4.

Эксперимент показывает, что в полях ниже 20 кЭ отклик на электрическое поле δU содержит существенную часть, которая меняет знак при переполюсовке магнитного поля. Тем самым обнаруживается нечетная по **EH** добавка к магнитной восприимчивости.

Рис. 4. Зависимости от магнитного поля величин: δU (a); $\delta \chi'$ (б), $\delta \chi''$ (с) и расчетная зависимость $\delta \chi(H)$ согласно (5) (d)

При $H = H_x$, $E = E_y$ и $H = H_x$, $E = E_z$ линейного сдвига АФМР электрическим полем мы не обнаруживаем, но влияние электрического поля на восприимчивость наблюдается.

5. Расчет

Описание магнитного резонанса и магнитной восприимчивости в электрическом поле проведем на основе термодинамического потенциала двухподрешеточного антиферромагнетика с одноосной анизотропией и тетрагональной анизотропией в плоскости [2] с добавлением магнитоэлектрических членов из формулы (1), а также стандартных членов, описывающих взаимодействие поляризуемой среды с электрическим полем. Такое описание является упрощенным, так как игнорирует наличие медной магнитной подсистемы и заменяет четыре гадолиниевых подрешетки двумя. Однако в рамках этой модели можно проследить за возникновением нескольких магнитоэлектрических явлений.

Поведение магнитной структуры при низких температурах для E = 0 и его описание на основе изложенной модели изучено в [2]. В основном состоянии вектор антиферромагнетизма в нулевом магнитном поле располагается вдоль направления [010]. При H||x, по мере увеличения магнитного поля от нуля до величины Н_с происходит поворот вектора L к направлению [010], а при дальнейшем увеличении поля вектор L не меняет своей ориентации, оставаясь перпендикулярным магнитному полю. Здесь $H_c = (4H_tH_e)^{1/2}$; H_t — поле тетрагональной анизотропии; H_e — обменное поле. В поле $H = H_c$ происходит фазовый переход второго рода. Вследствие сильного различия величин $\chi_{||}$ и χ_{\perp} , а также из-за неравномерности поворота намагниченности при изменении магнитного поля восприимчивость оказывается зависящей от магнитного поля в области от нуля до H_c , а в точке $H = H_c$ восприимчивость χ_{xx} испытывает скачок, уменьшаясь в два раза. При $H > H_c$ восприимчивость не изменяется, оставаясь равной χ_{\perp} .

Уравнения движения Ландау–Лифшица, полученные на основе описанного потенциала, приводят к следующему выражению для сдвига резонансного значения магнитного поля AФMP на частоте ω при $H_z = H_x = H/\sqrt{2}$; $H_x > H_c$; $H_y = 0$:

$$\delta H = \sigma \left[\frac{1}{\sqrt{2}} + 2 \frac{H_t \left(\left(\omega/\gamma \right)^2 - H^2 \right)}{H \left(2 \left(\omega/\gamma \right)^2 + 4H_e H_t - 2H_A H_e \right)} \right].$$
(4)

Здесь γ — магнитомеханическое отношение; $\sigma = 4M_0\lambda P_y L_y$. Величина σ — это взятая с обратным знаком величина эффективного магнитного поля

$$H_{\rm eff} = -\frac{1}{4M_0} \frac{\mathrm{d} \Phi_{ME}}{\mathrm{d} \mathrm{M}} \,,$$

возникающего вдоль направления z при действии электрического поля E_{y} ; H_{A} — поле одноосной анизотропии.

Второе слагаемое в этой формуле составляет 0,14 первого. Таким образом, электрическое поле изменяет *z*-проекцию магнитного поля АФМР практически на величину эффективного поля σ .

Аналогичный расчет показывает, что линейный сдвиг АФМР электрическим полем отсутствует также для $\mathbf{E}||z$, $\mathbf{H}||x$. Это обстоятельство можно пояснить тем, что эффективное поле в этом случае перпендикулярно внешнему магнитному полю и изменение суммарного магнитного поля оказывается квадратичным по \mathbf{E} .

Минимизируя потенциал при характерных для низких температур условиях $\mathbf{L} \perp \mathbf{M}$, $L^2 + M^2 = 1$, получаем для изменения магнитной восприимчивости за счет действия электрического поля при $H_x = H_z$, $H_x < H_c$:

$$\delta \chi_{xx} = -\chi_{\perp} \frac{4M_0 \lambda P_y}{H_c} \frac{H}{H_c} \frac{1}{\left(1 + (H/\sqrt{2}H_c)^2\right)^{3/2}}.$$
 (5)

Физический смысл этого результата состоит в том, что при наличии ненулевого магнитного поля вдоль оси *z*, электрическое поле приводит к изменению ориентации вектора L относительно магнитного поля, вызывая изменение магнитной восприимчивости.

6. Обсуждение

Величина наблюдаемого сдвига АФМР электрическим полем находится в соответствии со значением магнитоэлектрического модуля α_{xz} [3] и восприимчивости χ_{\perp} [2] согласно формуле (4).

Используем полученные характеристики магнитоэлектрического эффекта в Gd₂CuO₄ для оценки влияния электрического поля на восприимчивость согласно расчетам, приведенным выше.

При $E = E_y$, $H_x = H_z$, сдвиг АФМР дает для величины $4M_0\lambda P_y$ значение 0,15 Э в поле $E_y = 3$ кВ/см. Тогда с помощью формулы (5) получим зависимость $\delta\chi_{xx}(H)$, приведенную на рис. 4, линия d. В нашем эксперименте измеряется динамическая восприимчивость на частоте порядка частоты АФМР, которая может существенно отличаться от статической восприимчивости. В этом опыте вместе с восприимчивостью χ_{xx}^{ω} на результат с тем же весом оказывает влияние χ_{zz}^{ω} . При выводе формулы (5) имелось в виду изменение статической восприимчивости датической восприимчивости χ_{xx} . Учитывая эти обстоятельства, совпадение порядка величины и характера зависимости от магнитного поля для наблюдаемых величин $\delta\chi'$, $\delta\chi''$ и расчетной величины $\delta\chi_{xx}(H)$ представляется удовлетворительным.

Таким образом, изменения магнитной восприимчивости, нечетные по *EH* (см. рис. 2, 3), можно объяснить на основе упрощенной модели эффекта: при $H \neq 0$ электрическое поле приводит к изменению ориентации вектора L и к изменению восприимчивости.

Линейный сдвиг АФМР при $H_z = H_x$ и его отсутствие при **H**|| *x* также хорошо согласуется с выполненным расчетом сдвига АФМР в электрическом поле.

Однако наведение магнитного момента δM_x электрическим полем Е_v, наличие слабого ферромагнитного момента и зависящей от электрического поля магнитной восприимчивости в нулевом магнитном поле не могут быть объяснены в рамках описанной модели. Более того, слабый ферромагнетизм, обусловленный билинейными по L и M членами, запрещен для тетрагональных кристаллов. Но слабый ферромагнитный момент здесь наблюдался [7] при температурах ниже $T_N(Cu)$ и выше $T_N(Gd)$. Для его объяснения предполагалось, что существуют слабые искажения тетрагональной решетки [8]. Мы наблюдаем спонтанный момент не менее $\sim 10^{-9} M_0$ при температуре ниже $T_N(\text{Gd})$ (рис. 16). Магнитоэлектрическое взаимодействие, соответствующее члену потенциала $\propto E_x M_y$, наблюдаемое в наших экспериментах (рис. 2б), также невозможно в рамках исходной кристаллографической группы І4тт. Повидимому, спонтанный магнитный момент через магнитоэлектрическое взаимодействие порождает также и спонтанную электрическую поляризацию. В этом случае Gd₂CuO₄ представляет собой, аналогично никель-иодному борациту [9], слабоферромагнитный магнитоэлектрический ферроэлектрик.

Наблюдаемые в нулевом магнитном поле при $\mathbf{E}||y$ и $\mathbf{E}||z$ линейные по \mathbf{E} составляющие магнитной восприимчивости можно приписать наличию в разложении термодинамического потенциала членов вида $pE_iM_j^2L_k^2$. Для описания квадратичной по электрическому полю составляющей магнитной восприимчивости (см. рис. 1) следует ввести также члены виды $qE_i^2M_j^2L_k^2$. Однако можно объяснить наблюдаемые эффекты аналогично изложенному в разделе 5, привлекая члены более низкого порядка

вида $L_y M_x \pm L_x M_y$, $E_y M_x L_y$, $E_y M_y L_z$, обусловленные искажениями исходной структуры.

В заключение приведем члены термодинамического потенциала Φ в переменных *E* и *H*, которые он должен содержать для описания наблюдавшихся нами магнито-электрических эффектов:

$$\Phi_{ME} = k_i H_i + \alpha_{ik} E_i H_k + \gamma_{ik} E_i H_k^2 + \beta_{ikl} E_i H_k H_l^2 + \tau_{ik} E_i^2 H_k^2.$$
(6)

В наших экспериментах обнаружены ненулевые коэффициенты α_{zx} , α_{xy} , α_{xz} , γ_{zx} , γ_{xz} , β_{xzx} , β_{zxy} , τ_{zx} , τ_{xy} , τ_{xz} , k_x .

Работа поддержена Международным научным фондом и Российским фондом фундаментальных исследований.

Список литературы

- 1. Chattopadyay T, Brown P J, Roessli B et al. *Phys. Rev. B* 46 5731 (1992)
- 2. Chattopadyay T, Brown P J, Stepanov A A et al. *Phys. Rev. B* 44 9486 (1991)
- Wiegelmann H, Stepanov A A, Vitebsky I M et al. Phys. Rev. B 49 10039 (1994)
- 4. Хлюстиков И Н ПТЭ **2** 167 (1993)
- 5. Звягин А И, Яблонский Д А, Пащенко В А и др. ФНТ 18 1 (1992)
- 6. Астров Д Н *ЖЭТФ* **38** 984 (1960)
- 7. Tompson J, Cheong S-W, Brown S E et al. *Phys. Rev. B* **39** 6660 (1989)
- Stepanov A A, Wyder P, Chattopadyay T et al. *Phys. Rev. B* 48 12979 (1993)
- 9. Ascher E, Rieder H, Schmid H, Stoessel H J. Appl. Phys. 37 1404 (1966)

PACS numbers: 75.30.Ds, 75.30.Et, 75.50.Gg

Короткие спиновые волны обменной природы в ферритовых слоях: возбуждение, распространение и перспективы применений

П.Е. Зильберман, А.Г. Темирязев, М.П. Тихомирова

1. Введение

Существуют два механизма переноса энергии в спиновой волне: за счет 1) магнитодипольного взаимодействия спинов и 2) обменного взаимодействия. В так называемых магнитостатических волнах (МСВ) доминирует первый из указанных механизмов. Волны, в которых превалирует второй механизм, будем называть обменными спиновыми волнами (ОСВ).

ОСВ были открыты в знаменитой работе Блоха [1]. Они могут иметь весьма короткие длины волн $\lambda < 1$ мкм и поэтому занимают основную часть фазового пространства элементарных возбуждений феррита. На сегодняшний день ОСВ исследованы в экспериментальном плане очень слабо, гораздо слабее, чем длинноволновые (с $\lambda > 20$ мкм) МСВ. Достаточно сказать, что до сих пор отсутствовали эффективные методы возбуждения ОСВ с заданной частотой и направлением распространения. Мы хотели бы сообщить здесь об основных идеях и результатах наших исследований последнего времени, направленных на освоение бегущих ОСВ, как нового экспериментального метода и средства для обработки сигналов.

2. Проблема электромагнитного возбуждения ОСВ

Проблема состоит в том, чтобы обеспечить синхронное возбуждение при большом различии между длиной возбуждающей электромагнитной волны ($\lambda_{\rm EM}$) и длиной возбуждаемой MCB (λ). Например, типичны такие порядки величин: $\lambda_{\rm EM} \sim 1-10$ см и $\lambda \sim 0, 1-1$ мкм. Требуемый синхронизм можно обеспечить с помощью преобразователей (антенн). В качестве преобразователя может служить, в принципе, любым образом созданная электродинамическая неоднородность вблизи поверхности или внутри объема феррита. Важно, чтобы в спектре пространственных гармоник электромагнитного поля вокруг такой неоднородности существовала гармоника с волновым вектором **q**. Тогда, если в спектре феррита на частоте электромагнитной волны имеется ОСВ с волновым вектором **q**, то такая ОСВ и будет возбуждена.

На рис. 1 схематически показано, как осуществляется возбуждение спиновых волн с помощью металлической полоски с СВЧ током, приближенной к поверхности ферритового слоя. Магнитное поле **h** СВЧ тока **j** меняется на расстояниях порядка ширины полоски w. Поэтому такое поле способно возбуждать спиновые волны с $q \leq \pi/w$. При типичных значениях $w \sim 20 \div 50$ мкм это дает $\lambda = 2\pi/q \geq 40 \div 100$ мкм. Дальнейшее существенное укорочение длины волны за счет уменьшения w вызывает большие трудности, поскольку столь узкие полоски не удается согласовать с имеющимися источниками СВЧ тока.

Рис. 1. Структура для возбуждения ОСВ: 1 — металлическая полоска шириной w; 2 — ферритовая пленка толщиной d; 3 — подложка; 4 металлическое основание (заземлено); H_0 — статическое внешнее магнитное поле; h — СВЧ магнитное поле тока **j** (показан стрелкой), замкнутая линия со стрелками — силовая линия h; волнистые линии — возбужденная и отраженная ОСВ

Между тем имеется простая возможность возбуждения коротких ОСВ, связанная с наличием граничной поверхности пленки. Такая поверхность создает неоднородность по направлению нормали к ней. Стало быть, возбуждаемые ОСВ должны бежать по нормали. Поясним существо дела на примере поверхности с полностью закрепленными спинами. Итак, пусть при x = d (см. рис. 1) угол прецессии намагниченности в поле **h** равен нулю (спины закреплены). Тогда вблизи поверхности на