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Abstract. A review is given of the theory of magnetic
breakdown with consistent account for the spin degrees of
freedom of conduction electrons. An analysis is made of
the spectrum of conduction electrons in regions with
anomalous approach of the orbits belonging to the
different bands. The principal dynamic characteristic of
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magnetic breakdown in the form of a fourth-rank s matrix
is derived. It is shown that the spin —orbit coupling leads to
a probability of spin-flip magnetic breakdown. The main
assumptions of the theory of coherent magnetic breakdown
are summarised and analysed in the case of simple
examples. The spectrum of conduction electrons under
magnetic breakdown conditions is discussed. Applications
of the theory to the galvanomagnetic effects, to the de
Haas—van Alphen effect, and to the conduction-electron
spin resonance are considered.

1. Introduction

Cohen and Falicov [l1] put forward the following
hypothesis: in a sufficiently strong magnetic field, conduc-
tion electrons may tunnel between orbits passing along
different parts of the Fermi surface if these orbits are
separated by a small energy gap. This hypothesis has been
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confirmed strikingly in a period of over thirty years of
progress in metal physics. This hypothesis and the term
‘magnetic breakdown’ (MB)} were proposed by Cohen and
Falicov [1]in 1961 to explain an unexpected result reported
by Priestley [2]. Priestley carried out experiments on the de
Haas—van Alphen (dHvA) effect in magnesium and
discovered a ‘giant’ orbit of area exceeding the cross
section of the hexagonal Brillouin zone.

The history of MB actually begins with the work of
Dhillon and Shoenberg in 1955 [3], who studied the dHVA
effect in zinc. However, not until 1964 did Pippard [4] show
that the mysterious fall of the amplitude of the oscillations
associated with ‘needles’ with increase in a magnetic field,
discovered by Dhillon and Shoenberg [3], is a consequence
of MB.

Numberous experimental and theoretical investigations
which followed the paper of Cohen and Falicov [1] not only
have confirmed the correctness of the initial hypothesis, but
have also revealed a number of interesting phenomena
associated with MB. The majority of these results have been
reviewed in detail by Stark and Falicov [5] and by Kaganov
and Slutskin [6]. A thorough review of the experimental
methods and the results of investiga-tions of MB can be
found in the paper of Alekseevskii, Nizhankovskii [7], and
in Shoenberg’s monograph [8].

We are therefore dealing with a thoroughly investigated
effect. Nevertheless, it has been found that a consistent
account for the spin—orbit coupling (SOC) in the theory of
MB demands a review of some of the ideas relating to this
breakdown. It has usually been assumed [I1—8] that under
MB conditions there are two possible types of behaviour of
conduction electrons reaching regions of anomalous orbit
approach: electrons can remain in their own band or can
jump to an adjacent band. It has been assumed that the
conduction electron spin is conserved. It has been found,
however, that [9] in the case of metals (or other systems
containing conduction electrons) for which the role of the
SOC is important in the formation of the band spectrum,
conduction electrons may tunnel to an adjacent band with
spin flip under MB conditions. We shall show that the
appearance of this additional tunnelling channel compli-
cates greatly the pattern of motion of conduction electrons
under MB conditions and in some cases may alter
significantly the macroscopic properties of a system.

In the semiclassical approximation, when the spin
degrees of freedom in a static magnetic field are taken
into account at absolute zero, the electron orbits are formed
by a section of the Fermi surface cut by a plane
perpendicular to the magnetic field H(0, 0, H):

&ne(P) = & = const, p, =p,, = const, )

where ¢ is the Fermi energy: & =¢,,(p) is an arbitrary
dispersion law of conduction electrons in the absence of a
magnetic field but subject to the SOC [10]; p is the
quasimomentum; p_ is the projection of the quasimomen-
tum along the direction of the magnetic field H; m is the
band number; ¢ =7/ is the spin index. In the absence of
an MB and for sufficiently pure metals at low temperatures
the quantities m, p,, and ¢ are ‘good’ quantum numbers.

T Sometimes also called ‘magnetic breakthrough’, especially in the older
literature. Translator’s note.

The electron orbit topology determines many properties
of metals in a magnetic field (both transport and thermo-
dynamic properties; see, for example, Refs [11-13]
Magnetic breakdown changes drastically the topology of
conduction electron orbits described by expression (1) and
the nature of their motion. This is related to the possibility
of conduction electron tunnelling from band to band, as the
orbits described by expressions (1) approach one another.
Blount [14] demonstrated the probability of such tunnelling

is
w = exp (— %) R 2)

i.e. the probability is governed by the ratio of the magnetic
field to Hy = Ho(gp, p.), which is known as the MB field.
Each orbit is characterised by its own breakdown field. The
order of magnitude of this field is Hy =~ A2/£F, where the
interband energy gap is 4 = vy Op (vy, is the velocity of
conduction electrons near the maximum approach of the
orbits and 8p is the minimum separation between the orbits
in the p space).

In addition to these changes in the nature of motion of
conduction electrons, the macroscopic properties of a
system are influenced also by quantum interference of
conduction electrons participating in MB in sufficiently
pure metals. All the phenomena due to interband quantum
transitions of conduction electrons between the orbits in
different bands in the magnetic field and their interference
are known as ‘coherent magnetic breakdown’ [6]. MB alters
the response of a metal to external agencies (electric and
magnetic fields, sound) and this is manifested in almost all
the electronic properties when the applied magnetic field is
sufficiently strong.

MB has been observed in over twenty metals, inter-
metallic compounds, and some alloys [15]. The evidence for
MB is based on the dHVA and Shubnikov—de Haas effects,
the Hall and other galvanomagnetic effects, conduction-
electron spin resonance [16, 17], and some other phenomena
and properties of metals [S—8]. For example, MB leads to
giant oscillations of the magnetoresistance and to unusual
oscillations of the magnetic susceptibility and the acoustic
absorption coefficient of metals. Characteristic nonlinear
effects in the attenuation of waves [18], in the static
conductivity [19-21], and in the propagation of sounds
[22] are also due to MB.

The number of chemical compounds exhibiting MB is
increasing continuously. In the years since the last review, it
has been found that in addition to normal metals (such as
Mg, Al Zn, etc.) [23], MB has been observed in ferro-
magnets [24-26], in two-dimensional heterostructures
[27-29], and in rare-earth hexaborides [30]. When NbSes
is subjected to strong magnetic fields (up to 520 kG), MB
manifests itself by giant oscillations of the resistance in the
ultraquantum limit [31].

Intensive studies of the Fermi surface of organic
conductors, representing a new class of superconductors
with fairly high superconducting transition temperature (of
the order of 10 K) [32], have provided a stimulus for a large
number of reports of observations of MB in these
conductors [33—-43]. Practical applications of MB are
also being proposed: beryllium has been used in measuring
a magnetic field and its gradients [44]. The widespread
occurrence of MB and the variety of the associated effects
have stimulated further theoretical and experimental inves-
tigations of the topic.



Magnetic breakdown with spin flip

41

The smallness of the regions of the anomalous approach
of two bands (MB regions) makes it possible to consider
them as characteristic points of quantum scattering of
conduction electrons that move along semiclassical orbits
in a magnetic field. Frequently these small regions are called
MB nodes: they link the semiclassical parts of the orbits
described by expressions (1) associated with different bands
into a single planar network. Such a planar system of orbits
in p space is called an MB configuration [6, 45] and the
corresponding system of orbits in the real r space is called
an M B network [5, 46]. It should be pointed out that there is
no special MB region in the r space.

The main dynamic characteristic of MB is a unitary MB
scattering matrix or s matrix [6, 9, 45]. This matrix relates
semiclassical wave functions of conduction -electrons
of parts of orbits which merge at an MB node and are
associated with two bands. Knowledge of the s-matrix
elements makes it possible to derive readily the probability
of MB and of a jump in the wave-function phase as a result
of this breakdown. For example, the sum of the squares of
the moduli of the off-diagonal (in respect of the band
number) s-matrix elements determines the total probability,
given by formula (2), of the transition of a conduction
electron to another band [9].

A mathematical formalism based on the s matrix and fit
for the task in question has made it possible to develop a
consistent MB theory and to describe a number of effects.
Among the most interesting are giant quantum oscillations
due to coherent MB [6, 18] and small-orbit interference
transparency [6]. The possibility of quantum localisation of
conduction electrons under MB conditions has been
predicted [47] (see also Ref. [48], where the effect is
considered from a different standpoint).

However, in all these theoretical investigations of
various aspects of MB the spin degrees of freedom of
conduction electrons have been effectively ignored. MB
theories developed on the basis of the s-matrix formalism by
Slutskin [6, 49] and the concept of coupled-orbit networks,
proposed by Pippard [4, 46, 50] and developed later by
Chambers [51-53], and by Falicov and Stark [5, 48,
54 —58], postulate that conduction electrons with opposite
spins move completley independently. MB scattering has
been regarded as a two-channel process and it has been
suggested that there are two independent patterns of the
motion of conduction electrons: spin up and spin down.

On the other hand, it is known (see, for example, Refs [10,
59]) that the SOC makes a considerable contribution to the
band spectrum specifically in those parts of the quasimo-
mentum space where the energy gap between the various
bands is small. Consequently, the SOC should play a
significant role in a quantum analysis of the motion of
conduction electrons in the small regions responsible for MB.

A simple model of a metal with its Fermi surface
intersecting the Brillouin zone only in one direction
has been used [60] to show that the SOC does indeed
lead to a nonzero probability of conduction-electron spin
flip under MB conditions.

Somewhat later, a complete s matrix including the SOC
has been developed for a metal with an arbitrary dispersion
law [9]. It has been found not only that the spin doubles the
rank of the s matrix, but the matrix has nonzero off-
diagonal (in terms of the spin index and band number)
elements. This leads to a new (third!) MB tunnelling
channel with conduction-electron spin flip.

The SOC does not alter formula (2). However, w is now
the total probability of conduction electron tunnelling to an
adjacent band, equal to the sum of the probabilities of
magnetic breakdown with (w*) and without (w°) spin flip:

S a2W 0 w
W=, w ="
1+a 14+

©)

The SOC parameter o = a(gp, p.) is determined by the ratio
of the off-diagonal (in respect of the spin index and band
number) matrix elements of the conduction-electron
velocity operator near the closest approach of the orbits
[9]. In the absence of the SOC there is no conduction
electron spin flip: « = 0. Inclusion of the SOC also leads to
renormalisation of the characteristic breakdown field H.

It follows that a consistent M B theory should take into
account the spin degrees of freedom of conduction
electrons. The orbits of conduction electrons with opposite
spins merge because of the SOC under MB conditions.

However, if the theory of MB with spin flip is
considered formally, it is found that it differs in the
following ways from the ‘zero-spin’ case [6]: the s matrix
is converted from 2 X 2 to 4 X 4 and the number of sections
in the MB configuration doubles. That is all! However, this
is sufficient to complicate greatly the description of the
effect.

Fortunately, the MB theory developed by Slutskin
[18—20, 45, 47, 49] and discussed in Kaganov and
Slutskin’s review [6] places no restrictions on the rank
and form of the s matrix. This enabled Slutskin and his
colleagues to use the s-matrix approach to describe a
completely different effect, which is multichannel specular
reflection of conduction electrons from surfaces and the
phenomena associated with this effect [61 —63].

In our case this property of the MB theory makes it
possible to generalise its fundamental concepts given in
Kaganov and Slutskin’s review [6]. This review deals with
coherent MB and is full of new concepts and complex
formulas. It is therefore difficult to digest it at first reading,
particularly in the case of people not specialising in this
branch of physics. We would therefore like to, first,
demonstrate the consequences of taking into account the
spin degrees of freedom of conduction electrons under MB
conditions and, second, to use the theory of spin-flip MB to
illustrate the ideas underlying Slutskin’s approach but at a
more accessible level. The need for this is particularly great
because it has been found that the SOC affects all the
properties of MB systems [9, 17, 60, 64—71]. For example,
there is a major change in the energy spectrum of
conduction electrons participating in breakdown and this
alters greatly the classification of the conduction-electron
states. Under MB conditions the small-orbit interference
transparency effectively disappears and there are changes in
the galvanomagnetic properties and in the dHvA effect. The
reliability of theoretical calculations, which are continued
until numerical results have been obtained, is supported by
experimental data.

We shall consider in greater detail these and some other
topics in the theory of MB with a possible spin flip of
conduction electrons.



42

Yu N Proshin, N Kh Useinov

2. Fundamentals of magnetic breakdown theory
including the spin degrees of freedom

2.1 Motion of conduction electrons with an arbitrary
dispersion law along semiclassical orbits in a magnetic
field

The treatment of conduction electrons as weakly interacting
quasiparticles [72] with an arbitrary dispersion law [11]

€= tng(P). @

has played a special role in the physics of metals. The
energy of quasiparticles varies periodically with p and the
period is the same as that of the reciprocal lattice. Many
conclusions can be drawn without specifying the actual
dependence of energy on quasimomentum.

Moreover, we must stress another important circum-
stance which facilitates greatly the solution of many
problems. Conduction electrons are ultimately quantum
objects. The band nature of the energy spectrum and the
concepts of the ‘spin’, ‘quasiparticle’, ‘quasimomentum’,
‘degeneracy’, ‘Fermi surface’, etc. are the results of
application of the laws of quantum mechanics to conduc-
tion electrons. However, the motion of a quasiparticle with
a quasimomentum p, a spin state g, a band number m, and
an energy given by the dispersion law (4) in external fields is
in most cases semiclassical [11]. This is due to the fact that
external fields are relatively weak compared with the
internal atomic fields and they vary significantly over
distances which are large compared with the atomic
spacings.

In other words, typical dimensions of electron orbits are
large compared with the de Broglie wavelength 7/p,, where
Do is the characteristic Fermi momentum. In the case of
conduction electrons moving in a magnetic field this
condition is equivalent to the inequality

K:hwc

< ©®)
where . is the characteristic cyclotron frequency of
conduction electrons in a magnetic field and g, is the
characteristic energy of these electrons, which is of the
order of the Fermi energy é.

Inequality (5) is satisfied by fields H < 10°—10° G,
which makes it possible to express the one-electron
Hamiltonian H in a magnetic field in terms of the
dispersion law of conduction electrons, in accordance
with the familiar correspon-dence principle [11]

~

e -~
f‘:ma'(p) - Hma = -

tno(P). P=p+-4A. ©)
Here P is the generalised momentum operator; A = A (F)
is the vector potential of the magnetic field; p is the
kinematic momentum operator.

In the zeroth-order approximation (with respect to k),
conduction electrons can be regarded as classical particles
whose motion obeys the equations

dp e dr O

E:Z[V"WXH], E:vma:#- 7
The spin index o is retained in these equations only for
completeness, because in the adopted approximation the
system of equations (7) describes the motion of a zero-spin
particle. If the first of these equations is multiplied scalarly
once by v,e and then by H, it is found that in a static

homogeneous magnetic field H = H(0, 0, H ) the motion of
conduction electrons in the p space follows orbits which are
on a constant-energy surface, by analogy with expressions
()

&ne(P) = E =const, p.=p., = const, 8)

where the energy E and the projection of the quasimo-
mentum p, along the magnetic field are conserved.

There is a close relationship between the orbits in the
quasimomentum and ordinary (r) spaces. It follows from
the system of equations (7) that the xy projection of an orbit
in the r space essentially repeats the p orbit and differs from
the latter only by its orientation and scale: the former is
obtained from the latter by the substitution

e e
Px:—zHy, P}YZZHx. )

The orbit described by expressions (8) represents geo-
metrically the contour of a section of a constant-energy
surface E =const cut by a plane perpendicular to the
magnetic field. The orbit of expression (8) is usually
complex because of the periodicity and anisotropy of the
dispersion law (4). If the Fermi surface is closed, then all its
sections are closed contours (see Fig. la given later). The
sections of an open Fermi surface may be closed or open,
i.e. they may extend over the whole of the reciprocal lattice.
(The influence of the Fermi surface topology on the
macroscopic properties of metals in magnetic fields is
discussed in the very detailed review of Kaganov and
Lifshitz [12].)

We shall now consider the next approximation in terms
of k¥ and % and include the spin degrees of freedom of
conduction electrons. If the vector potential of a homoge-
neous magnetic field, directed along the z axis, is selected in
the form A = A(Hy, 0, 0), then in that region of the p space
where the semiclassical approximation is valid, the motion
of conduction electrons is described by the Hamiltonian [73]

H 6 (B) = &g (B) + 8 (P) H3H 6., (10)
where p is given by expression (6):

N oA oA 2 e a B s

(p.wpyap:)_)(Px +2Hya Py7P:>a (]1)

gn(p) is the p-dependent scalar g factor of conduction
electrons [10]; &, is the Pauli spin matrix; pg is the Bohr
magneton.

The second term in the Hamiltonian (10) represents only
the interaction of the magnetic moment of conduction
electrons with the field if the SOC is ignored. A complete
picture is obtained by noting that, in general, this inter-
action can be written in the tensor form [10, 59, 74], which
naturally leads to the appearance of the g tensorf. The
Hamiltonian (10) does in fact introduce the scalar g factor
(or effective spin) of conduction electrons.

The linearity of the approximation in terms of 7 makes
it possible to adopt the following sequence of operations
[73]: an orbit is quantised first ignoring the spin and then
the spin splitting is superimposed. It therefore follows from

T With the exception of several papers in which the phenomenological g
tensor is introduced for the purpose of theoretical interpretation of the
experimental data on conduction-electron spin resonance in Ag, Cu [75,
76], and A1[77],in most of the theoretical analyses ofthe g factor of metals
it is regarded as a scalar quantity.
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the Hamiltonian (10) that the Zeeman splitting of the ‘spin’
levels appears in H # 0 (Fig. 1b):

EmT(p:) — &) (p") =8m (p:) ”BH <Lég. (]2)

The inclusion of the SOC makes the g factor of
conduction electrons different from the value g, = 2.0023
for free electrons. For clarity, we can assume that
conduction electrons belonging to one band (i.e., with
the same number m but with different spin indices o)
generally move along slightly different orbits described
by expression (8) (Fig. 1c).

Inclusion of the spin of conduction electrons gives rise,
in a magnetic field, to a Fermi surface of conduction
electrons with the spins parallel and antiparallel to the
field. Such splitting of the Fermi surface is particularly
important in the case of ferromagnetic metals [8, 24]. The
splitting is small for normal metals.

In this approximation the quasiclassical wave function
of conduction electrons has the following form in the p
representation [9, 73, 78]:

qlma'(Py) = cLa]/z eXp [(pI7IU(E7 P;):I Xo 5!’,‘(,}’\81’:1’:(,80:00’: ) (]3)
Vil
where the Kronecker deltas indicate that P,, P, =p_, and
o, are conserved. It should also be pointed out that the
selected gauge leads to Py, = p,. The following notation is
used in formula (13): ¢, is an arbitrary constant factor;
Ving = 08,,4/0P, is the x component of the velocity along an
orbit described by expression (8); x, is the ‘spin’ function of

the type y, = lx? + /,tx(f, where

() -()

If the spin degrees of freedom are taken into account,
the phase ¢,,,(E, p.) of the wave function (13) is [9, 73]:

(14)

1 1
(me'(E’pZ) :_Sm(E’pZ):l:ﬁgm .uBHtm' (]5)

n
The first term in formula (15) is the zero-spin contribution
to the phase, where

¢

Py
Su(E, p,) =—J P (py)dpy

i (16)

is the increment in the transverse effect in the absence of the
spin splitting; pE.’”)(py,E, p.) is the solution of Eqn (8). The
second term in formula (15) is the spin contribution to the
phase; t,, = t,,(E, p.) is the zero-spin duration of motion of
a conduction electron along an orbit in the mth band;
gn =8n(E, p.) is the g factor of conduction electrons
averaged over the orbit described by expression (8) [9, 73,
79—-82]. The plus and minus signs in expression (15)
correspond to ¢ =T,]. In the derivation of expression (15)
use is made of the quasiclassical equations of motion (7).

Along a closed orbit of expression (8) the motion of a
conduction electron is naturally periodic and its revolution
(cyclotron) frequency is

H 2
mm = - = i : (]7)
CMyy, (Ea p:) T, (E7 p:)
Here, T,,(E, p.) is the period and
1 8S,(E, p.)
- z 18
m”l 2n aE ( )

is the effective cyclotron mass of a conduction electron in
the mth band, which depends on E and p,. Here, S,,(E,p.)
is the zero-spin area under the curve. Formulas (17) and
(18) are written down ignoring the spin index o, which is
important only in the case of ferromagnetic metals [24].
The finite motion of conduction electrons leads to the
appearance of discrete energy levels corresponding to each
fixed value of the longitudinal quasimomentum p.. These
levels are governed by the general semiclassical Lifshitz—
Onsager quantisation rules [11]. The quantisation condition
for this case is obtained from the requirement that the
phase, described by expression (15), of the wave function
(13) changes by 2mn in the case of a passage along any
closed orbit given by expression (8). If the spin of
conduction electrons and the SOC are taken into
account, this condition can be written in the following
form [11, 73] on the basis of formulas (17) and (18):

2menhH

c

Slﬂ(EQPZ) :l:ngﬂlmlﬂ uBH = (n+')))’ (]9)

where n is an integer (n > 1), and 7 is a correction (of the
order of unity) to the number n which is introduced in
order to refine semiclassical quantisation conditions. This
correction can be determined by considering the motion of
conduction electrons near the ‘stopping points’ [11, 83, 84].

It therefore follows that semiclassical quantisation in the
case of closed orbits leads to the appearance of discrete
energy levels E,,(n, p.). An energy band, for example the
mth band, splits into a number of Landau subbands and
each of these represents a band of energy levels which differ
in respect of the values of the continuous variable p..
Inclusion of the spin of conduction electrons splits each of
these levels into two. Ifin a plane perpendicular to the field
the motion of a conduction electron is infinite, the spectrum
changes and it consists then of continuous finite-width
bands [11, 83].

The description of motion of conduction electrons along
orbits described by expression (8), which includes the spin
splitting of expression (12), can be provided conveniently if
conduction electrons are represented by semiclassical wave
packets. Such a representation is particularly useful in
studies of transport phenomena [I11, 13]. The quantum
uncertainty of a wave packet in respect of its quasimo-
mentum Ap is small compared with the characteristic
momentum po (it is of the order of pr or of the order
of the reciprocal lattice constant ») and the corresponding
uncertainty of the coordinate Ap is much greater than its
de Broglie wavelength, but much less than the characteristic
electron orbit radius cpy/eH.

It follows from the above that the state of a conduction
electron (packet) can be described by two vectors: P and R,
which are the centres of its localisation in the p and r spaces,
as well as by the band number m and the spin index ¢. Then
the motion of a quasiparticle along an orbit, described by
expression (8) and governed by the system of equations (7),
results in an acquisition of a semiclassical phase of
expression (15).

2.2 Condition for the appearance of magnetic breakdown
In some cases it is not possible to use a semiclassical
description of the motion of conduction electrons in the p
space given by the system of equations (7). The description
loses its meaning near the points of approach of the orbits,
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Figure 1. Schematic representation of the band pattern resulting in
MB: (a) Fermi surface consisting of two sheets [the arrows give the
direction of motion of conduction clectrons along orbits described by
expression (8) in a magnetic field; the spin splitting is not shown]; (b)
nominal band spectrum in a magnetic field; (c) periodic system of
semiclassical orbits, described by expression (8), in the p, =0 plane.
The continuous curves in Figs 1b and lc correspond to the states of
conduction electrons with spin up and the dashed curves correspond to
those with spin down. The regions of closest approach of the orbits
belonging to different bands are shown (see Figs 2a and 2b).

described by expression (8) with different numbers m i.e.
where the following inequality is obeyed:

A(p) = Amm'(p) = |8m0'(p) - 8m’o’(p)| < &5 (20)

where 4,,,,(p) is the width of the interband gap. In the
case of some values of m and m’ the gap A(p) may vanish
along certain lines of points of degeneracy in the p space.
As pointed out in Ref. [11], such degeneracy lines should be
exhibited by approximately half of all the metals.

For the majority of polyvalent metals the smallness of
thepseudopotentialmeansthattheanomalousbandapproach
occurs near the Bragg reflection faces [50]. In these planes
the band gap 4(p) reaches its minimum, which is typically
(0.01—-0.1)ér. Such small values of 4(p) have been deduced
experimentally specifically from MB observations. Forma-
tion of small gaps is also possible because of the SOC, which
lifts the degeneracy of the dispersion law (4) [10]. The
existence of a small gap affects macroscopic properties if
the gap is close to the Fermi surface. This is a fairly common
occurrence and it has been observed, for example, for such
metals as Mg, Zn, Cd, etc. In discussing the motion of
conduction electrons in these parts of the p space it is
necessary to adopt a quantum description, which is given
in Sections 2.3-2.5.

To gain a better understanding let us turn to Fig. la
where the extended zone scheme is used to show a model
Fermi surface, consisting of a large electron ‘packet’ at the
centre of the Brillouin zone and a hole ‘cigar’ at its
boundary. Orbits with extremal areas (p, = 0) are shown
for both sheets and the arrows identify the direction of
motion of a conduction electron in a magnetic field.

In the regions of anomalous approach of the orbits we
can expect quantum interband transitions of conduction
electrons, including those involving spin flip. For simplicity,
the spin splitting is not shown in Fig. la. The Fermi
surfaces corresponding to conduction electrons with differ-
ent spins nest in one another and in this case the outer hole
and electron sheets correspond to opposite spin orienta-
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Figure 2. (a) Region of closest approach of the bands, identified in
Fig. 1b (pwm is the point of maximum approach; the dashed curves give
the zero-spin spectrum of conduction electrons). (b) Region of
maximum approach of the orbits, identified in Fig. lc (3p, is the
dimension of the MB region; the circles show schematically the process
of MB scattering of conduction clectrons). (c) Schematic
representation of an MB node (demonstrating the scattering of a wave
packet which enters an MB node in the first Brillouin zone with spin
up). The amplitudes of the packet are represented nominally by the
thickness of the lines (c) and by the dimensions of the circles (b). The
arrows identify the direction of motion of conduction electrons and the
orientation of their spin.

tions. This is illustrated clearly in Fig. 1b, which shows the
band spectrum corresponding to a given Fermi surface. The
dependence of the conduction-electron energy on the
quasimomentum projection is given for different spin
orientations (the continuous curves correspond to spin
up and the dashed curves to spin down). In this case
the spin splitting is greatly exaggerated for clarity. Fig. 1c
shows the electron orbits obtained when the Fermi surface
is cut by the p, =0 plane. In the absence of magnetic
breakdown, these orbits are closed (as shown in Fig. 1c).

The regions of anomalous approach, identified in Figs
1b and lc, are shown on an enlarged scale in Figs 2a and 2b:
Pwm is the point of maximum breakdown where A(p) has its
minimum, and 3py is the characteristic size of the M B region.

Fig. 2b demonstrates also the MB scattering process.
The arrows identify the direction of motion of electron wave
packets along the orbits. The sizes of the circles represent the
relative amplitudes of the wave packets (conduction elec-
trons). A spin-up packet (represented by the large circle)
reaching an MB region splits into three smaller wave
packets: two in the second band and one in the first.
The spin degrees of freedom will be discussed in greater
detail below in the derivation of the s matrix. In particular, it
follows from the form of the s matrix that a conduction
electron which remains in its own band after MB cannot
experience a change in the initial spin orientation.

As pointed out in Section 1, the smallness of the MB
region makes it possible to replace it with an MB node,
which is shown schematically in Fig. 2c. MB scattering of a
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Figure 3. (a) The most important (in subsequent analysis) parts of the
Fermi surface of a divalent metal with the hcp crystal structure (Be,
Mg, Zn, Cd). The Brillouin zone and the hole monster lying in the
second zone are at the top; below on the left is the electron cigar (Mg)
or needle (Zn) in the third zone, centred on the edge of the Brillouin
zone relative to the point K; below on the right is the electron lens
centred relative to the point I. (b) Two-dimensional MB
configuration, which appears in metals with the hcp crystal structure

when H||c¢ in the p, =0 plane. The MB nodes are identified by circles.
Some orbits (®, 4, 0, y) are discussed in Section 5. The centre of the
figure shows schematically the evolution of a semiclassical packet
which starts with a unit amplitude and spin up. After two successive
MB scattering events it splits into seven packets. The arrows identify
the final spin orientations. The thickness of the lines corresponds
nominally to the packet amplitudes.

conduction electron in the first spin-up band is identified by
lines whose thickness represents the relative amplitudes of
the wave packets of the electrons. When the M B regions in
Fig. 1c are replaced with the MB nodes in Fig. 2¢c, the result
is an M B configuration which is open for w = 1 along the p,
axis. Other possible MB configurations are shown in Figs
3b and 4.

We shall now discuss qualitatively the magnetic field
which can induce interband transitions of conduction
electrons. Naturally, it should be possible to express the
MB field Hy in terms of the parameters of the band
spectrum in the region of anomalous orbit approach
(Fig. 2). The field Ho should depend primarily on the
interband gap 4.

The condition for the appearance of MB was first
formulated by Cohen and Falicov [1]. According to this
condition, in order to observe MB the measure /i, of the
quantisation of the motion of electron wave packets in a
magnetic field should be greater than or approximately
equal to the interband gap 4. Cohen and Falicov estimated
that fields of at least 10°kG would be needed to observe
MB for the smallest known interband gap 4 =~ 10_28]:.
However, in many cases it is possible to observe MB in
much weaker fields, which raises doubts about the
Cohen —Falicov criterion.

Blount [14] considered the behaviour of electrons in the
limits of strong and weak magnetic fields. He found that the
probability of transitions depended exponentially on the
ratio Hy/H and he obtained the correct expression (2) for
the field Hy. Harrison [85] demonstrated that this expres-
sion is valid also in moderate fields. A different approach to
MB was used by Pippard [46]. He drew attention to the fact
that after partial reflection of an electron from an MB node,
the subsequent reflections may result in interference of the
reflected and transmitted waves.

Pippard was thus the first to consider the coherent
effects associated with M B. He investigated the structure of
the energy levels that appear as a result of such processes in
the case of some MB networks: he discussed a one-
dimensional network of the kind shown in Fig. 4d (in

Figure 4. Simple MB configurations taking account of the spin
splitting: (a) double figure-of-cight, showing nominally the MB
scattering of conduction clectrons in Section 1 (spin up); (b) closed
MB configuration with inequivalent sites [ and II; (c) and (d) open MB
configurations with the period b,. The inequivalent sections have
Arabic numbers: the odd numbers correspond to the motion of spin up
conduction electrons and the even numbers to spin down electrons.
Inequivalent MB nodes are identified by Roman numerals. The arrows
identify the direction of motion of conduction electrons.

Pippard’s case it consisted of regular circles) and a two-
dimensional network (Fig. 3b) [4]. The quantum-mechan-
ical problem of finding the MB probability in the specific
case of almost-free electrons was solved by Reitz [86].
Inclusion of the SOC in the Reitz model gives rise to
the probability of conduction-electron spin flip under MB
conditions [60].
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A consistent solution of the Schrodinger equation was
first obtained, ignoring the SOC, by Slutskin [45] who
considered MB as a transition of conduction electrons
between closely spaced energy terms under the influence
of an adiabatic perturbation.} Slutskin used only the
smallness of the semiclassical parameter k¥ and the small-
ness of the ratio A(p)/ey. This procedure involved finding
the dispersion law for an M B region and the coefficients in
the expansion of the Bloch factors in terms of wave
eigenfunctions. Matching of the solutions obtained to
the semiclassical wave functions (13) yields the principal
characteristic of MB, which is the unitary second-rank s
matrix describing two-channel scattering of conduction
electrons on MB nodes. It relates the coefficients of the
wave functions of conduction electrons from expression (13)
on different sides of MB regions. The complete s matrix,
which takes account of the SOC, is calculated in Ref. [9] (see
below).

For simplicity, we shall consider qualitatively the
situation when the spin degrees of freedom are ignored.
The MB field of formula (2) can be estimated by making use
of a readily understood interpretation of MB given in
Ref. [8§7]. MB represents quantum tunnelling of conduction
electrons accompanied by a change in a discrete quantum
number, which is the number m of the energy band. The
dispersion law g,q(p) represents essentially the discrete
levels of terms of the quantum system that are continuous
functions of the vector parameter p (Figs 1b and 2a). The
magnetic field creates a transient perturbation, inducing a
time dependence of the parameter p and a consequent
variation of the separation between the terms 4,,,,/(p). This
leads to transitions of electrons from one level to another
(interband transitions). A characteristic magnitude of this
perturbation 8F is equal to the change in the interband gap
in a time A4t ~ id,,,:. If 8E < 4,,,, the probability of a
transition between the bands m and m' is negligible.
However, if 8E ~ 4,,,', the transitions become possible:
MB takes place.

We shall now estimate the perturbation 3E. By defini-
tion, it can be described by

SE ~ At d(SE) — hi |aAmm’ .@ ,

dt Ay | Op  dr
where the derivatives obey the classical equations of
motion (7). Since far from the points of closest approach
of the bands the quantity |04,,,,/0p| is of the order of the
characteristic electron velocity vy, it follows that for
A(p) ~ &g ~ mv§/2 and from the semiclassical condition
(5) that

OF ~ hwc < |Amm’|'

1)

Therefore, the smallness of the parameter k makes it
possible to ignore interband transitions in those parts of the
p space where the band gap is not small. At the closest
approach of the bands, when 4, =4(p,) <&, the
estimate |04,,,//9p| ~ vy is not affected, since the Fermi
surface has an anomalous curvature. Then the perturbation
is 8F ~ hw.&y/ Ay > hw., and the criterion OF = A,
becomes

2

ho, =2 —

o (22)

T This is an analogue of predissociation of molecules [84].

Since the ratio 4/gy can frequently be less than 0.01, the
criterion (22) imposes much less stringent constraints on the
magnetic field and ensures that the breakdown field

cA?
2
ehv

Hy =~ (23)

can readily be achieved in experiments. For example,
A~ 1072 eV corresponds to Hy~ 10—100 kG. A rigorous
analysis (without allowance for the SOC) gives [5, 14, 45]

2
T cd

Hy=—-———,
0 4eﬁv‘v§,2

24

where V|, is the interband matrix element of the operator
represenfing a component of the conduction-electron
velocity perpendicular to the field H (the subscripts 1
and 2 are the numbers of the bands which are coupled by
MB). All the quantities in formula (24) are determined at
the MB point.

It follows that expression (23) gives the correct order of
magnitude of H . [t also makes it possible to find the width 8p
of the M B region in the p space where interband transitions
take place (Fig. 2b) and which is very small (of the order of
A/vy). The time needed for an electron to cross this region
8t ~1i/A = (k)" " isalso small. Hence, we can regard the
MB region in the p, = const plane as a zero-dimensional
point (Fig. 2¢). An electron following a semiclassical path
described by expression (8) associated with a given band hasa
nonzero probability (2) oftransition to a semiclassical orbit in
another band. The probability that a conduction electron
remains in its own band is equal to 1 — w. We shall show later
that taking the SOC into account adds one more M B channel:
it represents an interband transition of a conduction electron
to an adjacent band, accompanied by spin flip; its probability
is w®, given by expression (3).

2.3 Effects of the spin degrees of freedom of conduction
electrons in magnetic breakdown regions

A consistent inclusion of the spin degrees of freedom of
conduction electrons in the band theory of metals is usually
carried out in two stages. The energy spectrum and the
wave functions of conduction electrons are found in the
absence of a magnetic field, but taking the SOC into
account; next, when these functions are known, the spin
splitting of the levels induced by a magnetic field is
calculated.

We shall not consider the relevant fairly complex theory
(for details, the reader is directed to Jafet’s review [10] and to
the books of Bir and Pikus [59] and of Gantmakher and
Levinson [88], where the literature of the topic is given). We
shall provide here only a relatively simple treatment which
helpsto understand the importance ofinclusion ofthe SOC in
studies of the properties of metals under the M B conditions
and we shall estimate the characteristic energy of the
interaction in the MB regions.

We shall consider a conduction electron in H = 0 in the
presence of the SOC. The one-particle Schrodinger equation
can be written as follows [11, 59]:

I-}(P) “mpa(r) = Ema(P) Umpe (r) >

. , (25)
H(p) = exp (—%)ﬁexp %
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Here, H=Hy+ H,, is the complete Hamiltonian of a
conduction clectron, where
o)

Hy = é’—m FV(). (26a)
whereas
oo =— 16 x VV()-p (26b)

(2me)?
is the Hamiltonian of the spin—orbit interaction which has
the same translation properties as the periodic field of a
crystal V(r).

The quasimomentum p occurs in the system (25) as a
parameter. In the presence of the SOC the Bloch factor
Upe(r) of the stationary wave function

iper
Wopo(r) = oxp Loty (1) @
becomes a spinor [10, 88]:
j'mpa' (r)
Unpo () = : (28)
pel?) <um,,,,(r>

We shall assume that |4,,5(r)| > |fpe(r)| [10]. Then, the
eigenvalue of the Pauli matrix (o.); ; is finite:

<qlmpT |6.: | q’mpT) > 0.

In the case of normal metals in the absence of a
magnetic field and when the SOC is ignored, each energy
level found from the Schrodinger equation is doubly spin-
degenerate. In the presence of the SOC, this degeneracy is
retained for centrosymmetric metals:

f‘:mT(p) = f‘:ml(p) = gm(p) . (29)

The symmetry of the Schrodinger equation under
time reversal and space inversion means that the wave
functions of conduction electrons ¥,,1(r) and ¥, (r) are
coupled by the conjugation operation C:

Vyp, = E£CY¥,

ots Popt = FCW,p, C=i6,TK.  (30)

Here, T and K are, respectively, the space inversion and
complex conjugation operators. A unit cell is selected in
such a way that the centre of inversion of a centrosym-
metric metal coincides with the point » = 0. The plus and
minus signs depend on the parity of the wave function of a
conduction electron at the centre of the mth band [10]: the
upper (plus) sign corresponds to an even function and the
lower (minus) sign to an odd function. It should be pointed
out that physically significant results should be indepen-
dent of the selection of the signs in the definitions given by
expression (30).

In accordance with the terminology of Ref. [10], a
conduction electron state described by formula (29) is
called ‘nondegenerate’, because random degeneracy or
crossing of the energy levels is still possible at some point
of the p space. This degeneracy or crossing of levels is
associated with the crystal symmetry and the situation is
then called ‘degenerate’.

In this case the SOC can lift the degeneracy and alter
drastically the electron energy spectrum. In general, the
degree of influence of the SOC on the band spectrum and on
the wave functions of conduction electrons depends on the
ratio of the characteristic interaction energy &,_, to the width
of the forbidden band in the absence of a magnetic field

Agzm’(p) = |ES10'(p) - sglld(p)| ) (31)

where 5,(p) is the eigenenergy of the Hamiltonian (26a).
For example, if &, < 4%, ~&g, the SOC has little
influence on the spectrum in this part of the p space
and we can assume that the width of the interband gap (20)
is of the order of the width of the forbidden band:
Ay (p) ~ A2, (p). Therefore, in calculations of the energy
band structure subject to the SOC it is usual to employ
perturbation theory (see, for example, Refs [59, &I,
89—-91]). This applies also to MB metals (Zn, Mg, Be,
Al, etc.) when the characteristic SOC energy ¢, is usually
much less than the Fermi energy é.

In the first order of perturbation theory in H,, the wave
function ¥,,, is given by

0 <m6|ﬁs—o|mloj 0
qlmpa = q’mpo’ + E 0 /N 0 /. q]m’pa’ .

(32
m'#m, o 82,(,(1)) - 821’0’ (p)

Here, 'I/,(Z,pa = 'I/S,p x> is the eigenfunction of the ground-
state Hamiltonian. Since in the case of real metals the SOC
is determined by the processes which occur inside the ions
[50, 90], in estimates we can replace a matrix element of
1-?5,0 based on the Bloch functions with the matrix element
of the atomic Hamiltonian of the SOC based on atomic
wave functions. In other words, the Bloch functions can be
represented in the form of orthogonalised plane waves or
augmented plane waves [81, 90, 92]. Then the energy &,_, is
replaced with the SOC energy for the relevant level in an
atom of a metal in the relevant crystal.

Therefore, if &_, < A(p), it follows from formula (32)
that in this approximation

Hpr

88—0

)“IJT 4(p)
The relative value of the SOC correction to the energy of
the ground-state Hamiltonian is of the order of (vy/c) f(Z),
where f(Z) is a rising function of the atomic number Z.
Since the velocity is vy ~ 10°ms™", it follows that this
energy is usually of the order of 1072—1073 eV [10, 13].
This is obviously a small effect, but it may be significant if
we are dealing with the SOC lifting of the level degeneracy
in a given part of the p space.

If g, = A(p), we can find 4,; and p,; provided we solve
the appropriate secular equation, the form of which
depends on the band structure of the metal [59, 81, 90,
91]. Then u,; can become of the order of A, and for
A°(p) = 0 the SOC may lift degeneracy, i.e. we may find
that A(p) # 0.

It follows from these estimates that in the parts of the p
space where inequality (20) is obeyed and ¢&,_, ~ 4(p), the
SOC influences significantly the wave functions and the
structure of the conduction-electron band spectrum. Turn-
ing back to the MB problem, we can say that a region of the
p space, ‘susceptible’ to MB, is also ‘susceptible’ to the
influence of the SOC. The degree of influence of the SOC on
the spectrum of conduction electrons can be judged
indirectly on the basis of the g factor of these electrons.

An estimate Ag(p)/go = (¢(P) —0)/g0 gives the same
result as that obtained from expression (33) [10, 81, §9].

(33)

2.4 Spectrum of conduction electrons for H = 0 in
magnetic breakdown regions

We shall now consider in greater detail the conduction
electron spectrum subject to the SOC when H = 0 inside a
region is ‘susceptible’ to MB [9]. This is essential to the
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derivation of the effective Hamiltonian which describes
interband transitions in a magnetic field. It is also
necessary to find the regions of the p space where the
interband gap is minimal.

Let us assume that two bands approach each other
closely in the vicinity of some point p’ when H = 0 and that
A(p') < &. Since for a given p’ we find that u,,,(r) gives
rise to a complete set of orthonormalised functions, we can
expand u,,,(r) in terms of these functions at any other

point p:

umpo’(r) = Z Rmo’,m’a’(plpl) um’p’a’(r)7

m',a 34

, 2
Rma’,m’a’(plp) = <“m’p’a”|umpa'> .

’

In a small region near the point )/
(|I8p| < po, 8p=p —p') we can ignore the influence of
the other bands:

1 m,m'=1, 2,

)
Rma’,m’a’(plpl) ~ 0(@)7 m, m, 7é ], 2.
Po

(3%)

We are assuming here specifically that two anomalously
approaching bands have the numbers m =1, 2.

The smallness of dp together with Eqns (25) and (26) can
be used to write down the following expansion for ﬁ(p):

. . . Spl?
A(p) = A(p) +9(') 8p + o(' p’;' ) , (36)
0
where
—exp (=2 pexp BT
V(p)—eXp< ﬁ>ve><p ﬁ,
R S ) (37)
vzﬁ[er]ZE—i-ﬁ[Hs,oxr]

is the operator representing the velocity of conduction
electrons when H = 0. Substitution of expressions (34) and
(37) into the Schrodinger equation (25) and application of
the conditions (35) leads to the following system of four
equations for R, .o (p|P):

Z{ [8171’,0’(pl) - E] 6177’,171"80",0" + Ym'e" m'e’ (p/) Sp}

m',a
X Rmo’,m’a’(p|p’) =0 (38)
Here, (m, m', m" =1, 2)
E= Ema(p)a Vg, m's’ (P) = (umpa |‘?(P)| um’po”)'

Symmetry in respect of the wave-function conjugation ¢
described by expression (30) imposes the following restric-
tions on the matrix elements ¥(p):

Yut,mt = Yml,mly Vmt,m| = VYm|,mt = 0.

The matrix ¥(p) now becomes

vialp) 0 c(p) dp)
0  vup) Fdp) =cp)
c(p) Fdp) Voo (p) 0
dpp) Fclp) 0 vis(p)

ﬁ:

(39

where the matrix elements are described by (m =1, 2)

vm,m(p) = vma,ma(p)’ C(p) = vIT,ZT(p)’ d(p) = vIT,2l(p)'

(40)

The upper signs in the matrix (39) correspond to the same
parity of the conduction-electron wave functions and the
lower ones correspond to different parities.

In accordance with the comments made immediately
after expression (29), the results obtained below are
independent of the selection of the signs in the matrix
(39). Therefore, we shall omit the lower signs. Invariance of
H under the space inversion operation T makes it possible
to select the phase factors of the wave functions so that
Ime(p) = Imd(p) = 0 at all points of the p space [45, 68].

It follows that inclusion of the SOC gives rise, in the
matrix (39), to elements of the conduction-electron velocity
operator which are off-diagonal in respect of the spin and
band number. The existence of such matrix elements, i.e.
elements characterised by d(p) #0, leads in turn to the
appearance of the probability of spin-flip MB. Therefore, it
would be desirable to estimate the value of such a matrix
element.

If &, < 4(p), we can use formulas (32) and (33) to
obtain an estimate of d(p) from the main term of the
velocity operator p/m in expression (37):

)

A(p)’

ld(p)| ~ (41)

where v, is the characteristic velocity of conduction
electrons. If &, > A (p), the estimate given by the
above expression is naturally invalid and the modulus of
the element d(p) can become of the order of vy. In the
absence of the SOC the matrix (39) splits into two
independent matrices of second rank{ and the system of
equations (38) is transformed into two independent systems
of two equations for each orientation of the spin of
conduction electrons. In this limit, we obtain the results
reported in Refs [6, 45].

If the determinant of the system of equations (38) is
equated to zero, the result is the spectrum of conduction
electrons near the point p’ (we recall that p = p’' +8p):

1 1
8]T72T(p) = Ell,2l(p) = EZE"’(”,) +§va,m(pl)'8p

m m

(42)

i\/% [4(p") +b(p')-8p) + [e(p")-8p] + [d(p")-3p]",

where b =v; —v,,, 4(p') =& /(p') —&(p'). Obviously,
for H = 0 the spectrum remains doubly degenerate in spin.

The smallness of A(p’) in the spectrum (42) means that
the dispersion law ¢,,(p) (and the corresponding Bloch
factors) in the vicinity of p’ are ‘peaked’ functions of the
argument: a characteristic interval of their variation is less
than (4/gy)p, (for details see Refs [9, 45]). In an analysis of
the behaviour of conduction electrons in MB regions when
H # 0 we shall need functions which vary smoothly with at
least one component of p. In this case the effective
Hamiltonian for an MB region can be found with the
aid of modified Kohn— Luttinger functions [45]. Such
functions are ¢g,,(p) [and the corresponding factors are
Upe ()], where p belongs to the part of the p space near p’
where A(p) = &,(p) — &,(p) has its minimum.

T This becomes clear if, for d(p) = 0, we interchange the first and third
rows, as well as the first and third columns, in the initial matrix. This
gives rise to a block-diagonal matrix and each nonzero block then
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It has been shown in Ref. [9] that the topology of the
region of ‘minimal A4’ depends strongly on the mutual
orientation of the vectors b, ¢, and d, which occur in the
spectrum (42) and represent the matrix elements of the
operator of the conduction electron velocity. The minimum
of A(p) corresponds to the minimum of the radicand in the
spectrum (42), which is governed by a system of linear
algebraic equations

b(p')-8p +4c(p')-8p +4d(p')-5p = —A(p') b(p)

with the unknowns 8p,, dp, and dp,.

Since the various projections of the matrix elements of
the vector operator of the conduction electron velocity (39)
can be calculated quite independently, it follows that
generally there are no restrictions on the relative orienta-
tions of the vectors b, ¢, and d, defined by expressions (40)
and (42). In general, these vectors should be linearly
independent. There is a unique solution of the system
(43): it is a point of degeneracy in the p space (we shall
call it pr), defined by intersection of three planes:

b(p')-8p=—A(p'), c(p')-dp=0, d(p')-dp=0.

At the point of degeneracy the value of A(py) vanishes.
This type of spectrum will be discussed later and at this
stage we note that such a spectrum cannot appear in the
absence of the SOC.

We shall consider in greater detail the cases when the
determinant of the system (43) vanishes, i.e. when the
vectors b, ¢, and d are linearly interdependent. The simplest
and easiest to understand, from the point of view of physics,
is the case when the vectors b, ¢, and d are collinear. It
follows from the spectrum (42) that in this case we have
& > 4A(p) >0, everywhere near the point p’ and the
minimum of A4(p) occurs in the plane of the closest
approach of the bands [9], which we shall call the M
plane [45]:

43)

(44)

_ AP [B(P")[*
@) +4le(p) +41d(p)*

Since the pseudopotential of many metals is small, such a
spectrum is frequently encountered. The M plane coincides
with the boundary of the Brillouin zone [11, 50, 90, 92].

In Ref. [50] the smallness of the pseudopotential (but in
this case compared with the SOC) is used as the argument
for a strong influence of the SOC on the electron spectrum in
the MB regions of Zn, Mg, and other hexagonal metals. The
spectrum derived above can appear as a result of other
mechanisms, such as doubling of one of the periods of the
metal lattice as a result of a small displacement of its atoms
[93]

Fig. Sa shows the approximate form of the constant-
energy surface g,,(p) = E near the M plane. In this region
the dispersion law (42) is modified to

b(p')-8p =

1 I ,
8]0,20’(”) = Ezgm(pM) +§va,m(pM)8pn

TGP + sl +a). @)

Here, 8p, = n(p — py). @=|d"(py)/<"(p)l. the point
pwm lies in the M plane, and nr is a unit vector along the
normal to the M plane, which makes an angle ©/2 — 8 with
the magnetic field H.

Figure 5. Schematic representation of the constant-cnergy surfaces in
the region of anomalous approach of two bands: (a) spectrum of the
M-plane type; the field H is inclined at an angle 6 to the M plane; (b)
spectrum of the po-line type, where the point 0 is the po(E) point of
degeneracy; (c) spectrum of the p4-line type, where the point 0 is the
pa(E) point with the minimum interband gap. The arrows identify the
directions of motion of conduction eclectrons along orbits described by
expression (8). The spin splitting is not shown for the sake of clarity.

It should be noted that the functions &,q(py) and .,
(m =1, 2) now vary smoothly with py and the interval of
their variation in the M plane is of the order of po.
Moreover, the smallest distance between the orbits
Sla(p) =E, p,=py and 32a(p) =E, p, =p, occurs at
the point of their intersection with the M plane, where
Sp(E, p,) ~ 4/vy is a smooth function of its arguments. We
can see that the influence of the SOC reduces to the
appearance of a renor-malisation factor 1+ o’ in the
radicand [compare formula (45) with the corresponding
formula in Ref. [45]].

One more type of spectrum is predicted by the theory of
MB [6, 45] in the case when the vectors b, ¢, and d are
coplanar in such a way that ¢ ||d, and b is not parallel to the
other two. It readily follows from expressions (42) and (43)
that in this case 4(p) vanishes on the line of intersection of
two planes:

b(p')-0p =—A(p'), ¢(p)-8p=0,

when this line passes near the point p’.

If the constant-energy surface g,,(p) = E is intersected
by such an ‘obligatory’ degeneracy line [11] (called the po
line in Ref. [45]), then parts of this line near the point of
intersection form an elliptic cone (Fig. 5b). It should be
noted that the inclusion of the SOC leads in this case to the
appearance of the same renormalisation factor 1 +o? [see
expression (45)] and does not lift the degeneracy. The sheets
of the cone corresponding to different bands are separated
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by a conical point po where &;(p,) = &(py) = E. This case is
discussed in detail in Refs [6, 45, 68].

A qualitatively new type of spectrum appears if we
assume that the vectors b, ¢, and d are in the same plane,
but none of them are parallel. In this case it is important
that d(p) # 0. We then have A(p) # 0 everywhere near the
point p’ and the minimum of 4(p) occurs on the line of
anomalous approach of the planes (which we can call the p4
line). If b is expressed in terms of ¢ and d, it is found that
simple transformations of the system of equations (43) yield
equations for two planes and the p4 line is the intersection
of these planes. The first plane is described by the equation

AP e xd] b x d]|[e x d]|*
e x d}[b x d]|”+1[c x d-[b x c]|* + 16][c x d]*’

cop=—

where all the quantities are taken at the point p’. The
equation for the second plane differs from the above by the
transposition ¢ «» d and by the opposite sign in front of the
fraction.

The constant-energy surface near the p, line is described
by the equation for a two-sheet hyperboloid and the point
itself with the minimum interband gap p4 = p4(E) is located
between two sheets of this figure (Fig. 5¢). A spectrum of
this type can appear because of lifting of the degeneracy by
the SOC along any line of symmetry.

We shall consider the spectrum (43) of the type
encountered at the point pr. The point pr lies on the
constant-energy surface g,,(p) = E only when the energy
has the critical value E = E, . In this case the point becomes
conical and the spectrum is identical with that considered for
the py line. However, in general, the spectrum is of the ‘neck-
breaking’ type [11, 12]and the situation depends strongly on
the energy E (for conduction electrons participating in MB
this energy is E = gg). Ifthe neck is broken, then for E # E;
the spectrum near the point pr can be approximated by the
equation for a two-sheet hyperboloid, but in contrast to the
p, line, a further increase in |[E — E ;| increases strongly the
interband gap 4(pr). If the neck ‘thickens’, the spectrum is
described by the equation for a one-sheet hyperboloid which
is contained entirely within a single Brillouin zone.

We have thus here the case of the electron topological
Lifshitz transition [11, 12] with a conical point, which
makes this case interesting for the study of the magnetic
properties of conduction electrons as a function of the
external pressure or of the alloy composition.t The
influence of the conical point on MB under the conditions
of the Lifshitz transition has been considered by Nedorezov
[80]. In this review we shall assume that the energy E is
fixed. In promising M B applications the spectrum of the p -
point type, given by expression (43), reduces to a spectrum
either of the py-line or the p,-line type.

If we consider formally the semiclassical motion of
conduction electrons in a magnetic field, we find that
for all types of spectrum the orbits described by expression
(8) with o =const represent, in the regions of closest
approach, different branches of the same hyperbola (Figs
Sa—5c). In fact, the semiclassical equations (7) with the
Hamiltonian (6) and wave functions (13) are inapplicable
here. However, it has been shown [9, 45] that the smallness

FThe position of the Fermi level can be altered by variation of these
parameters.

of the parameters k and 4/¢, makes it possible to generalise
the correspondence principle (11) to the case of MB.

The most interesting, from the point of view of MB, and
frequently encountered is the spectrum of the M-plane type.
It readily follows from Fig. 5a that for this type of spectrum
and a favourable direction of the magnetic field there is a
fairly ‘thick’ layer of orbits along which conduction
electrons can reach the MB region, since the minimum
separation &p = A/v, between the orbits associated with
different bands depends very weakly on p,. For all these
conduction electrons the M B probability is significant. For
example, magnesium is subjected to a magnetic field parallel
to the hexagonal axis, the relative thickness of such a layer
SpEAB/b: can reach 0.14 [5] and this thickness is practically
independent of the magnetic field.

In the case of the spectra corresponding to Figs 5b and
5c, the spacing 8p(E, p.) increases rapidly as the plane
p. =p, moves away from the symmetry axis. Conse-
quently, the MB probability w(p,) decreases rapidly (in a
given field). In other words, ‘thin’ MB layers are formed
and their thickness depends on the magnetic field.

In exceptional cases even thin MB layers can give rise to
giant oscillations of, for example, the static conductivity [6].
However, in general, the MB effects can be observed in
practice if an MB layer is sufficiently thick (when the
number of conduction electrons participating in MB is
sufficiently large) or if M B layers are located near extremal
sections of the Fermi surface. Therefore, we shall concen-
trate our attention on the spectrum of the M-plane type,
especially as the structure of the s matrix is independent of
the type of spectrum [9, 68].

The influence of the SOC on the spectrum of conduction
electrons in a magnetic field (H # 0) reduces qualitatively to
the following. Far from the MB regions the semiclassical
approximation works well and the spin degeneracy is lifted,
as shown in Section 2.1. Pure spin states are then formed
and their effective g factor is g(p) =~ go because in this case
we have 4(p) < g. The spin degeneracy is also lifted in the
MB region. If A(p) ~ ¢,_,, mixed spin states belonging to
different bands form in this small part of the p space. The
semiclassical orbits of expression (8) with different spin
directions and approaching closely one another are shown
schematically in Fig. 2b.

2.5 The s matrix in the case of the spin—orbit coupling
and an arbitrary dispersion law
When the spin degrees of freedom of conduction electrons
are taken into account in a consistent manner in the theory
of MB, it becomes necessary to calculate the principal
dynamic characteristic of MB, which is the complete
fourth-rank s matrix for an arbitrary dispersion law. Such a
calculation is reported in Ref. [9] following generalisation of
the rules for derivation of the effective Hamiltonian to the
MB regions. We shall not go into details of calculation of
the s matrix (details are given in Refs [9, 45, 94]), but instead
we shall describe briefly how this matrix can be derived and
we shall give the final expression in which the spin degrees
of freedom are taken into account. All the expressions given
below for the case when there is no SOC reduce to the
familiar results presented in an earlier review [6].

The s matrix can be derived by finding, for H# 0, the
effective Hamiltonian which determines the dynamics of
conduction electrons in a nonsemiclassical region of charac-
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teristic size dp < p, (Fig. 2b), where interband transitions of
conduction electrons are important. Without loss of
generality, we can avoid the change in the gauge of the
vector potential in Section 2.1 by assuming that the M plane
is intersected by the p, = p.0 plane along the straight line
Py = pmy = 0 and the magnetic field H forms an angle 6
with the M plane (Fig. 5a).

The s matrix can be written explicitly as a function of H
and of the main parameters of the problem if the
Schrodinger equation is investigated in a small region
close to the point py, =0. After p, < p, redesignation
of the axes, we can use here Fig. 2b. The appropriate
Schrodinger equation for an MB region is obtained from
the system of equations (38) if p is replaced with P—(e/c)A,
p’ with pu, the matrix elements vdp with the matrix elements
V).Spy and Rma’,mal with ﬁmla’l(P)» where :Bma'(P) are the
coefficients in the expansion of a stationary wave function
of conduction electrons in terms of the modified
Kohn—Luttinger functions [95], in which the spin degrees
of freedom are taken into account [9]:

KL 1
q’ml’a = Um; P, +eHy/c, PMV,p:;U(r) exXp (ﬁ P'r> .

Here the dependence on p, occurs only in the exponential
function and the dependence on P, becomes smooth, since
the Py axis is parallel to the M plane.

The regions of validity of our quantum solutions and
semiclassical functions (13) overlap. If we ignore a small
quantum region, we obtain the s matrix relating the
coefficients ¢,,, from the wave function (13) on opposite
sides of an M B region. If the probability is w ~ 1, the size of
the MB regions is of the order of (4/¢y)py, so that they can
be replaced with MB nodes. A schematic representation of
such an MB node is shown in Fig. 2c.

Each semiclassical section of an orbit (8) can be
represented by a set iyo, where i, is the zero-spin number
of that section [6], which depends on the band number m,
and o represents the orientation of the spin of conduction
electrons in that section. In the presence of the SOC, the
principal dynamic characteristic of MB (which is the s
matrix) relates the amplitudes ¢;, of eight semiclassical
wave functions ¥, , at an MB node before and after the MB
scattering [apart from the notation, these amplitudes are
identical with those in the wave function (13)]:

t. = S i PN
Ciyo E slua,toa" (’IOU

it
lOU

(46)

The primes denote the numbers of the semiclassical orbit
sections which emerge from an MB node (Fig. 2c¢).

The matrix elements Siga, iy’ CAN be expressed in terms of
the dispersion law [9] at the point of maximum breakdown
pwv and can be written in the form

Texp(Fia) 0 +p/B +ap/p
i 0 texp(Fid)  Fap/B +p/B
Fo/B top/B  texp(+id) 0 ’
Fap/B Fr/B 0 Texp(&id)
(47)
where
p=exr><—;1—13>, P+ =1,
(48)

& ()

_ 211/2
Sy PO

o =

The matrix elements of the velocity ¢” and ¢, which are
off-diagonal in respect of the band number, are defined by
expression (40). It follows from formula (41) that if the
influence of the SOC is strong, the parameter a in the
second expression (48) is of the order of unity, but if the
SOC is weak, then 0 < a < 1.

The phase shift A of the wave function (13) caused by
MB is

H H Hy H
A=E+—0+argr(n—0>——oln—0 (49)

4  mH H) =H =wH’
Here, I'(x) is the gamma function [96]. After breakdown,
H, is renormalised by the SOC:

cA? H 8

T
Ho 3 ehﬁ|v‘v‘fy2 cos 6 B

, (50)

where the index n denotes the velocity component normal
to the M plane and H{(p,) is the characteristic breakdown
field in the absence of the SOC ( o« =0, f=1). This
characteristic field depends smoothly on E and p., and also
on 0, and it is practically identical with the field given by
formula (24) if we bear in mind that v =" cos®6.

For the other types of the spectra corresponding to Fig.
5 there is no change in the structure of the s matrix. Only
the expression for H is different [6, 45, 68]. Belokolos [94]
was the first to obtain the 4 X 4 s matrix: this was done by a
group-theory approach to MB in a specific metal (thallium).
However, the physical meaning of the matrix elements of
the transitions is not stated in Ref. [94], although the
general structure of the matrix derived there is identical
with the structure of the matrix (47) which applies in the
case of an arbitrary dispersion law [9].

The selection of the signs in the matrix (47) is
determined by the sign of the difference

eme(Py) — &mis(Py)> m=m(iy), m' =m'(iy). (51)

Here, m and m’ are the serial numbers of the bands coupled
by MB (m #m'). The upper signs in the matrix (47)
correspond to the positive value of the difference in
expression (51). It is evident from expression (47) that the
probability of M B with spin flip of conduction electrons is

P

T+

S
= |; il
w | i90, iy

H
exp <—?0>, iy #ip,o#d. (52
The total probability of an interband transition [which
should be compared with expressions (2) and (3)] is

. H
w:w0+w”:p2:l—1:2:exp<——0>.

i (53)

We must stress once again that this s matrix corresponds
to three-channel scattering of conduction electrons. Spin flip
of a conduction electron is forbidden if the electron remains
in its own band. This follows from vanishing of the off-
diagonal (in terms of the spin index) elements of the matrix
(47) that belong to one band. It readily follows from the
matrix (47) that in the absence of the SOC (a = 0) the off-
diagonal elements vanish. The s matrix then splits into two
independent second-rank matrices for each orientation of
the spin of conduction electrons [this can be demonstrated
by a procedure described in a footnote following formula
(3)]. Each such matrix is identical with the s matrix derived
in Ref. [45].
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3. Coherent magnetic breakdown

Mathematical formalism that takes account of the dual
nature of the conduction electron dynamics, i.e. semi-
classical motion along sections of an M B configuration and
quantum scattering by MB nodes, is needed in the
investigation of the properties of metals under MB
conditions. It has been shown [6, 49] that the energy
spectrum and macroscopic properties of a metal can be
expressed in terms of semiclassical wave functions and s
matrices. As pointed out earlier, the mathematical
procedures used in the MB theory can be generalised
quite simply, in the formal sense, to take account of the
spin degrees of freedom and of the SOC. Therefore, a brief
account of the formalism will be given here with stress on
the features that arise from the inclusion of the SOC.

Interference processes are of decisive importance in the
development of the mathematical formalism of the MB
theory [18, 19]. Superposition of semiclassical wave func-
tions (13) with different phases (15), the latter acquired by
conduction electrons in different sections of an MB
configuration, on multiple quantum scattering from MB
nodes gives rise to an interference pattern which results in
the appearance of a specific MB spectrum. When the
influence of weakly inhomogeneous fields can be ignored,
coherent effects appear and a steady M B spectrum is formed.
This is known as the coherent magnetic breakdown [6].

A quantum interference pattern breaks down if an
inhomogeneous perturbation is sufficiently strong to alter
an increment of the action, described by expression (16), by
an amount exceeding the Planck constant % in the time
taken by an electron to travel along a section of an MB
configuration. It follows that small-amplitude inhomoge-
neous fields influence very strongly the interference-type
motion of a wave packet along an MB configuration but
have practically no effect on the classical dynamics of
conduction electrons in such a configuration [6, 57, 58].

The nature of motion of conduction electrons along an
MB configuration depends strongly on the ratio of the
characteristic times of the problems [6]:

T > T, > T, (54a)
Ty > Tea > T, (54b)
T, > T > T, (54¢)
T, > 1), Tga- (544d)

Here, 1, is the relaxation time of the momentum, governed
by the electron —impurity scattering or by short-wavelength
phonons [97]; 7., is the small-angle scattering time;}
T.=2n/w, is the characteristic time of motion of
conduction electrons along a path in a magnetic field
described by expression (17). In calculations that take
account of the spin degrees of freedom we shall assume
always that the spin relaxation time is much longer than
any other characteristic time. This is true of pure metals at
low temperatures [98, 99]. Therefore, spin flip of conduc-
tion electrons in the course of their motion along an MB
configuration is solely due to MB scattering represented by
the probability (52).

T The scattering of conduction electrons in weak inhomogenecous fields
(dueto dislocations, mosaic block boundaries, long-wavelength phonons,
etc.), which is accompanied by small chnges in the quasimomentum g a.

Coherent magnetic breakdown occurs when the inequal-
ities (54a) and (54b) are satisfied. When the inequalities
(54c) are obeyed, small-angle scattering destroys coherent
interference when the electron dynamics becomes stochas-
tic. The stochastisation field does not occur in the final
expressions for the transport properties of a metal. All the
phenomena which occur in this situation are called
stochastic magnetic breakdown.

The inequalities in formula (54c) imply that one more
inequality is also obeyed: 7% ~ T,,(po/@sa)” > Te. This
means that both the impurity and the small-angle scatter-
ing do not prevent conduction electrons from passing many
times along a closed MB configuration until they are
effectively scattered or from propagating for many periods
along an open MB configuration.

When the inequality (54d) is satisfied, MB cannot be
detected against the impurity scattering background result-
ing in interband transfer of conduction electrons.

3.1 Stationary wave function and motion of a wave
packet along a magnetic breakdown configuration
The semiclassical theory of well-defined orbits on a Fermi
surface, presented in Section 2.1, ceases to be valid under
MB conditions. This theory can be used only in the limit of
weak fields when MB does not appear. In the limit of very
strong fields (H > H,), when conduction electrons break
through all the gaps, the influence of the SOC makes it
necessary to take account of the probability of spin flip of
conduction electrons, described by the matrix (47), in each
such break-through (tunnelling) event. However, an inter-
mediate situation, when features specific to both limiting
cases are observed, is more typical. The semiclassical
sections, described by expression (8), with oppositely
oriented electron conduction spins, merge to form one
MB configuration when w®# 0 and the spin degrees of
freedom are included. Each MB node now links eight
semiclassical sections: four incoming and four outgoing
(Fig. 2c¢).

The motion of conduction electrons along an MB
configuration is described by the stationary wave function

No

VY= Z Ciya qli(;a'(P,V) Slhmp\ 517:717:0 ’

i, 0

(5%)

which is a superposition of the wave functions ¥, of
separate sections, as described just before formula (46). The
summation over i, in expression (55) is carried out up to
Ny, which is the total number of inequivalent sections that
occur in an MB configuration when the spin is ignored.
Figs 1lc, 3b, and 4 show schematically some MB
configurations.

The requirement that the wave function (55) be unique
imposes conditions on the amplitudes ¢, ,. These amplitudes
should satisfy the following system of linear equations:

O "
0 .
Civg — E V,'an i[)a’ eXp (Wi:‘a’) cl‘[)dr =0.
i, o
0?

(56)

Here V© is a unitary matrix of rank 2N° which has only

three nonzero elements in each of the iyg’ columns. These

elements are in the rows iyo, whose numbers are identical

with the numbers linked to iy’ by a shared node:
v

S =8
iy0, iyo’ igo, iy’ ?

(7
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where §© is the matrix (47) in which it is assumed that all
A vanish.

The system of equations (56) is derived by matching the
functions (13) in such a way as to take account of the
scattering channels [see formula (46)] and the phases
acquired in a section ijo:

‘))zoa(E P, ) - (pl a(E P, ) + R”to + (Alu + Aiu) s (58)
where
1 ‘
(pioa(E7 P:) = ﬁ Siu (E7 p:) + '))Z‘J(E, p:) + 51‘0 (59)

is the semiclassical phase of the wave function (13)
acquired by a conduction electron in the section izo
between two consecutive M B scattering events. The second
term in expression (58) must be included in discussing open
periodic MB configurations (with the period by; see Figs lc,
4c, and 4d). It should be noted that R = ¢b,P, [ehH; n; =0
if iy is an internal section and n;, =sgn (0P,/0P,) if a
section intersects the boundaries of unit cells [6]. In the case
of closed M B configurations (Figs 4a and 4b), we find that
n;, = 0 in all cases. The phase shift 4; in expression (58) is
defined by formula (49), where i, 1s the number of a
section entering an MB node from which a section i,
emerges; m(ip) = m(iy).
It should be noted that in expression (59) the quantity
S, (E, p;) is the increment in the transverse action of
formula (16) and 5,0 ==+ n/2 is the sum of all the phase
shifts that appear in the igth section crossing the classical
turning points [45, 84]. The spin contribution y; ,(E, p.) to
the phase (59) is

uBHTiU (E7 P: ) :t_ l“ 310

2 m (60)

‘ 1

'))Z‘U(E, p:) = i% gi“
[see also expression (15)]. Here, g; (E, p,) and m; (E, p,)
are, respectively, the g factor and the effective cyclotron
mass of conduction electrons in the iyth section; T (E, p,)
is the time taken by a conduction electron to travel along
the igth section. It should be stressed that these three
quantities are independent of the spin index, i.e. they are
‘zero-spin quantities’. It should be pointed out that
gi, = &i,m;,/2m, sometimes called the spin splitting para-
meter [8, 11], is —like the SOC parameter a, defined in

account of the spin degrees of freedom.

A better understanding of the interference processes
which appear in this situation can be obtained by relating
the dual nature of the motion of conduction electrons to the
evolution in time of a semiclassical wave packet moving
along an MB configuration. A wave packet, localised in a
section iyo at a moment ¢, will be denoted by |t; iyg). This
wave packet moves along the semiclassical section iyo to the
nearest MB node and it acquires the phase described by
expression (59). When the wave packet crosses M B nodes, it
splits into three:

|t; i06> = Z l(,G’,l:‘Ul|t 100->

o

b

(61)

We shall simplify the notation by replacing two iy indices
with one symbol for a semiclassical section i in such a way
that the odd numbers of the sections represent the spin-up
states of conduction electrons and the even numbers
represent the spin-down states, i.e. ¢=7 and o=],

respectively. The new section number i represents uniquely
the number of the band in which the wave packet is located
and the spin orientation: mo = ma(i).

Inclusion of the spin degrees of freedom and the
existence of the third scattering channel (x # 0) double
the number of semiclassical sections of the orbit [described
by expression (8)] forming an MB configuration, compared
with the number of such sections in the ‘zero-spin’ case
[5—8]. The number of inequivalent sections is also doubled.
We can use the results of Refs [6, 49] if we assign different
numbers (i, j,...) from 1 to N to the inequivalent sections. In
the case of a closed MB configuration, N represents the
total number of sections. When the spin degrees of freedom
are included, N is equal to four times the number of MB
nodes, i.e. N = 2N0, where N° is the number of MB-
configuration sections in that version of the MB theory
which ignores the SOC.

We thus find that each |f; i) packet, which appears after
any MB scattering, evolves semiclassically until it is
scattered by the next MB node, and so on. Such scattering
occurs at the following moments:

N
tp =Y LT, =L-T,
i=1

where T; is the time of travel along a section i; /; represents
nonnegative integers, which are equal to the number of
times that a conduction electron passes through a section i.
The time #; is measured from the moment of the first
scattering event. The set N of quantities {A;} in expression
(62), which represent quasiclassical sections of an MB
configuration (i =1,, 2,...,N), will be called the N vector
and denoted by A [6]. Therefore, expression (62) is written
in the form of a scalar product L-T of the vectors.

Multiple scattering of semiclassical packets multiplies
their number, which rises exponentially with time (Fig. 3b).
Each packet, which appears in some section (for example, a
section i) can be assigned to a specific path, along which it
travels in the time L-T between the sections i and j. This
path can in general be closed or open and it is called the A
path. It corresponds to a packet of amplitude a( 7 (L), which
contains a phase factor exp{zy } and the product of the
elements of the s matrices of the MB nodes through which
the A path passes. The integers [,l,...,ly indicate the
number of times that each of the MB-configuration
sections is included in the A path, but some of these
numbers may be zero.

The following feature of the MB theory plays a
fundamental role: any pair of sections (i, j) and a time
L-T can as a rule be matched to many A paths differing in
the sequence of passing along semiclassical sections. Packets
correspondmé to such A paths differ only in respect of their
amplitudes a;’ (L) and, therefore, they interfere forming a
packet with a combmed amplitude

Z WAL

In quantum mechamcs, expression (63) is a Feynman path
integral, which is transformed into a sum over A paths
because of a characteristic combination, under the MB
conditions, of semiclassical motion along sections and of
smallness of the MB regions. In the semiclassical case
(w = 0) there is only one 4 path for each pair of sections (if
they are linked by a classical path).

(62)

A (L) (63)
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The combined amplitude of the interfering packets,
given by expression (63), is the quantum amplitude of
the probability of detection of conduction electrons in a
section j at a moment L-T after the first scattering event in
the first section i. A complete description of the dynamics of
conduction electrons under the MB conditions requires the
knowledge of the whole infinite series of amplitudes
A, ;(L). These amplitudes can be calculated by combinator-
ial analysis [S]. In the simplest situations this presents no
difficulties [8], but in the general case of an arbitrary MB
configuration, such analysis proves very cumbersome.
However, in practice the mathematical formalism of the
MB theory makes it possible to avoid combinatorial
analysis, since the amplitudes A, ;(L) satisfy recurrence
relationships [18], which are derived in Ref. [18] ignoring
the SOC and the conduction electron spin.

We shall illustrate the derivation of the recurrence
relationships, which take account of the spin degrees of
freedom of conduction electrons, by considering the simple
example of a closed figure-of-eight MB configuration with
one MB node and four inequivalent sections (Fig. 4a). In
terms of the new notation we have i = 1,2 for the motion of
conduction electrons in the first band and i =3, 4 for the
second band.

In accordance with the structure of the s matrix (47),
when a wave packet begins its motion in the section i =1
and crosses an M B region, it splits into three packets: one in
its own band with the initial spin orientation (i’ =1) and
two in the other band with opposite spin orientations
(i’ =3, 4). These packets in turn are scattered at times
Ty, T3, and T, = Ts, respectively. Next, the packet |f; i) is
scattered again, creating each time three new states localised
in the sections i=1—4. It is clear that at moments
t1 + L-T the scattering is accompanied by interference
between some packets which are encountered in a section
J. Here, t; is the moment of the first splitting of the initial
packet; L =L(l},h,k,1;). All the interfering packets have
the same structure, but different amplitudes.

The combined amplitude (63) of all the packets which
begin their motion in a section i and interfere at a moment
T,+L-T in a section j (j=1—4) satisfy the following
relationships:

A (L) =texp(iy))A; (L —e))

—%exp(i 73)A;3(L —€3) +t%p exp(i74)A;4(L —ey),
Aja(L) =texp(iy,)Aix(L — €)

—%exp(i V4)Ai,4(L —ey) — %exp(i)@)A i,3(L —e3),
Ai3(L) =texp(iy;)Ai3(L —e3)
+£exp(iY|)Ai,l(L —e) +%CXP(W2)A;‘,2(L —e),

B
Ai,4(l‘) =texp(iy,)A i,4(L —ey)

(64)

. [0 .
+%6XP(W2)A;‘,2(L —e;) _?pexp(lyl)Ai,l(L —e),

where e; is the unit N vector with one nonzero component

whose serial number is the same as the serial number of
the section in which interference takes place, i.e.

e/ = {5],j’ 52,]’ veny 5N,/}

Relationships (64) are obvious from the nature of the s
matrix (47), from Fig. 4a, and from simple combinatorial
considerations. Moreover, the following boundary condi-
tions are assumed in the derivation of relationships (64):

Ai,j(o) :Si,j»
Ai,j(_]7 l27 137 14) :Ai,_/(lh _]7 137 14)
=A; (i, by =1, 1) =A, (L, b, 5, =1) =0,

(65)

where 5,3]» are the Kronecker deltas, each of which can be
represented as a &-like spike, which appears in a section
i=j; 0=4{0,0,0,0} is the null vector.

The boundary conditions (64) can be rewritten as an
ordinary product of matrices:

N=4
AyL) =3 AL —e) VO explivg) . (66)
k

where on the left is the matrix of the amplitudes that
interfere in a section j and on the right is the product of
a matrix A; (L —e;), interfering in a section k, and a
dynamic matrix Vk’j,, which is defined by formula (57).

The above expressions (64)—(66) can be generalised
directly to other types of MB configurations. In particular,
the recurrence relationships (66) are valid in the case of all
nonnegative values of [y, [, ..., [y with the exception of
L =0. Then A, (L) satisfies the boundary conditions

AM(O) = 5,-,/', At,j[L — (lk + ])ek] = 0, (67)
where k assumes values from 1 to N.
Introduction of a unitary matrix of rank N
0 .
Uy, (1) = V2 exp(ing), (68)

expressed in terms of v and yx [see formulas (57) and
(58)], yields the following form of relationship (66) valid for
any MB configuration:

N
A L) =" Aj (L —e) Uy, (69)
k

where for an arbitrary MB configuration the matrix Uy is
constructed in such a way that there are only three nonzero
elements in the jth column. These elements are on rows k,
the serial numbers of which are identical with the serial
numbers of the sections coupled to a section j by a shared
MB node with a nonzero MB transition probability.

The system of recurrence relationships (69), together
with the boundary conditions (67), can be represented in a
compact form with the aid of the generating functions [6, 18]

Fij(n) =) A, (L) exp(iL-y), (70)

L
where the summation symbol is primed to indicate the
absence of the term with L =0 and

Ai(L) = Zazgj)(l‘)
s

is the smooth part of the combined amplitude (63). Here,

c‘sz,) is the product of the elements of the s matrix for the

MB nodes traversed by the A path, derived ignoring the
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phases acquired in the sections and as a result of MB,
because the phases occurring in y are taken into account
separately [see, for example, formula (70)].

The matrix described by formula (70) satisfies the
following linear system of equations:

N
Fo(r) =Y F(n) v exp(ing) + v exp(in). (71
k

A similar system of equations is obtained for the above
example of an MB configuration with one MB node
(Fig. 4a) if the recurrence relationships (64) and (70) are
substituted and the boundary conditions (65) are applied.
In view of the relationship between U and V, the system
of equations (71) can be written in the matrix form:
Fy) =F(y)U(y) + U(v). (72)
Therefore, we can find the amplitude A_,-,.,-(L) by solving
the system of N linear equations (71) and finding the
relevant Fourier component of the resultant solution.

3.2 Dispersion equations and magnetic breakdown
spectrum

It is pointed out in Section 2.1 that the energy levels of
conduction electrons become quantised in a magnetic field
and the quantisation rule is given by expression (19).
It follows from this expression that the spacing between
discrete energy levels E, . (n, p.) is AE,, = hw,,(E, p.) and
that this spacing depends very weakly on the level number
n. In the preceding section we have shown that under the
MB conditions a simple periodic motion of the centre of a
packet within one band is replaced by a complex pattern of
quantum interference of an enormous number of packets.
In this case the electron energy spectrum differs qualita-
tively from the semiclassical spectrum.

Pippard solved the difficult quantum-mechanical prob-
lem of the motion of conduction electrons under the MB
conditions and derived the MB spectrum by introducing the
concept of a network of coupled orbits in real space (see Refs
[4, 46, 50]). This approach yields a fairly clear picture of the
motion of conduction electrons, so that it is possible to
utilise the probabilities of a jump of a conduction electron
from one orbit to another and to consider a set of phases for
the motion of conduction electrons along these orbits,
deriving thus the dispersion equations the solution of
which gives the MB energy spectrum.

The idea underlying this method is illustrated in
sufficient detail in Shoenberg’s book [8] on the basis of
a simple model of a metal in which a network of coupled
circular orbits is obtained along an r-direction perpendic-
ular to the direction of variation of the lattice potential. A
similar network can be obtained from the M B configuration
shown in Fig. 4d, if the relationship between the p and r
paths given by expression (9) is utilised. One should
mention also the work of Chambers [5S1—53], who analysed
MB networks and found the MB spectrum by complex
combinatorial procedures.

The mathematical procedures used in the preceding
section make it possible to formalise and simplify the
deriva-tion of the dispersion equations, at least in the
case of simple one-dimensional periodic MB configurations
[6, 49] or when the spin degrees of freedom are included [9].
This derivation reduces to the finding of the determinant of

the system of equations (56) or of the matrix E — U(y),
where E is a unit matrix. The matrix E — U(y) can also be
derived from the matrix equation (72) and zeros of the
determinant

det|E—U(y)| =0 (73)

yield the singularities of the generating function F; ;(y).

[t is clear from the general principles of quantum
mechanics [84] that the roots of Eqn (73) give possible
values of the energy of conduction electrons under the MB
conditions, i.e. the MB spectrum, whereas the quantities
F; (y) represent a stationary quantum amplitude of a
transition of a conduction electron from a section i to a
section j. The unitary nature of the matrix U(y) and the
known properties of the determinants lead to

. N
det |E — U(y)| = 2e><p{% [va +X0]}D(Y)a (74)
i=1

where yo = (n/2)[~1 + sgn (det |[V|)] and D(y) is a real
function of the phases y;, which is periodic in the phases
with the period 2m.

It follows from Eqn (74) that zeros of the spectral
equation (73) are real and that D({y;}) represents a finite
trigonometric polynomial for N phases v; in which the
coefficients depend only on the MB probabilities and on the
SOC parameter, i.e. on p, 7, and « [see the matrix (47)]. It
therefore follows that the MB spectrum can be deduced
from the solution of the transcendantal equation

D({r}) =0,

known as the dispersion equation.

The semiclassical nature of the motion between MB
nodes implies the existence of large phases (59) of the wave
functions of conduction electrons, which depend on the
energy, on the projection of the momentum along the
applied magnetic field, and on the field itself. The
independence of the phases acquired in different sections
i, and the incommensurability of these phases and their
derivatives (in respect of their energy and momentum) has
the effect that under the MB conditions the energy of
conduction electrons becomes a quasirandom function of E
and p. [6]. If the spin is taken into account, these phases
depend also on the value of the g factor of the conduction
electrons in a section i, and, consequently, in general the g
factor of conduction electrons representing the whole MB
configuration can also become a quasirandom quantity.

We believe that it is impossible to separate (in general)
the spin degrees of freedom from the ‘orbital’ degrees and,
in our opinion, it is one of the most important results of the
MB theory which takes account of the spin flip of
conduction electrons. Moreover, it has been assumed
earlier [4—8] that the motion of conduction electrons
under the MB conditions is semiclassical both in the
absence of MB (w = 0) and in the case of total breakdown
(w=1). In our case this applies only to conduction
electrons moving along their own ‘legitimate’ paths in
the w =0 case. If w=1 (and w* # 0!), the wave functions
of conduction electrons become entangled. We shall show
later that this may create states with an effective spin % and
each of these states represents a mixture of ‘prebreakdown’
states with opposite spins. This leads to an effective g factor
of conduction electrons, which is governed by the ‘spin’
splitting in a magnetic field [see expressions (12) and (19)].

(75)
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In the more complex case of advanced MB
[w(l —w) #0] when spin flip is taken into account
(W* #0), it is necessary to modify the classification of
the states of the MB system. The effect of this is that in
calculation of many physical properties of the system it is
not possible to separate summation of the spin index. This
summation can be carried out only for some special cases
such as the case of composite MB orbits which lie entirely
within one band and on which there is no spin flip of
conduction electrons under the MB conditions. Therefore,
in general, there are conduction electron states which are
given by the solutions of the dispersion equation (75) and
the number of these solutions is doubled, compared with the
zero spin case. We then cannot identify the spin of each of
these states.

It therefore follows that in the case of closed MB
configurations and a fixed value of p., Eqn (75) gives a
discrete set of MB-modified Landau levels:

E=E(n.p,), (76)

and in the case of open MB configurations, a spectrum of
the magnetic band type [4, 6] is possible:

E=E(n,p.,R), 7

where n is the serial number of the solution of the disperse
equation which takes account of the SOC and the
continuously variable parameter R is defined by expres-
sion (58). Under the advanced M B conditions [w (1 —w) ~
1] the energy levels E(n, p.) and E(n, p., R) are distributed
at random: their dependence on p. is a random function. In
this case the serial number n of an MB level differs from
that obtained in the semiclassical approximation [11, 13],
because the number of the magnetic flux quanta, which
pass through the area within the classical conduction-
electron path, has no simple physical meaning.

We shall consider this in greater detail by deriving the
D(y) function for simple MB configurations and we shall
take into account the spin degrees of freedom (Fig. 4).

(a) We shall begin with a closed M B configuration with
one MB node (Fig. 4a), which subject to the spin splitting
can be called the double figure-of-eight. A fourth-order
determinant is obtained from expressions (47), (53), (58),
(68), and (73). Omission of the phase factor [see expression
(74)] and simple transformations yield the dispersion
equation

D({3}) = cos @

4 3
—(1—w)'2 ZcosQi +(1—=w) ZCOSQM
i=1 i=1

+L2(cos(224+azcosf223) =0, (78)
” ; ;

1+
where

1
QZE(%"‘YQ +y3+ 7). Q=2—7, ;=2 —v;. (79

In the absence of the SOC (a=0), the dispersion
equation (78) can be factorised:

D'({y}) = Z(COS# —VI1= wcos%)

x(cos%— A —wcos%) =0. (80)

If y; = 0 is substituted in all y; [see relationship (60)], which
is equivalent to complete neglect of the spin splitting, then
each factor in the dispersion equaiton (80) is identical with
the function D({y;}) for the simple figure-of-eight given in
Ref. [6].

If w=0 (weak fields H < Hy,, no breakdown), the
spectrum becomes semiclassical. The dispersion function
(78) then splits into factors:

Yo Y_z . V_3 . Ya

D,—o({y;}) = 8sinZ- sin == sin = sin =-.

22 272 1)

Equating to zero each of them, we obtain the Lifshitz—
Onsager condition of the type given by formula (19):

i 2mehH 1
Si(E, pe) — (1) mgippm;H = — (n+§)

(82)

which determines the spectrum of conduction electrons
moving along semiclassical paths. Therefore,

Py
Si(E, p:)=J prO(p)) dp} (83)

is the area of a section of the constant-energy surface
obtained ignoring the spin splitting (integration is carried
out along the whole of a section i) and

_(fHTl‘_ 1 aS
"= ome T 2n\oE),

; (84)
is the effective cyclotron mass in the same section i (7 is
the time of travel along the section). The following
equalities then apply:

m_y =my, Ty =Ty, S =S,

8k—1 = 8k = 8m(k)> k=21, (85)
where [ is an integer (in our example, this integer is [ =1,
2). Conduction electrons then move along their initial
orbits and do not undergo interband transitions.

If w=1 (strong fields H > H,, complete breakdown),
the motion of conduction electrons considered taking
account of the spin degrees of freedom is not fully
semiclassical. In this limiting case electrons move without
‘noticing’ the interband gaps, as in the earlier theory [5, 6].
However, each passage of a conduction electron through an
MB node may result in spin flip associated with the SOC.
New paths appear and they are composed of sections of the
old semiclassical orbits. Mixing of the states with the
opposite spins modifies the dispersion function (78) to

Vit t+ty+?
DW:I ({'))l}) = COSM

2
1 Vi—PtV =N (86)
+] e (cos )
P cos T2 s +Y4)
— )

It is clear that quantisation conditions are different for
the two limiting cases because the orbit topologies are very

different. By analogy with condition (82), subject to
relationships  (83)—(86), we can write the Lif-
shitz—Onsager condition for the resultant complete

figure-of-eight as follows:

) B _ dnehH |
SU=D(E, p.) £ mg®= D mt=Dp = 2nehH (n +§) . (87
p
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where $®=" =§, 4+ 5, is the total zero-spin area of this
figure and m®= =, + m5. Condition (87) allows us to
introduce the effective spin of a conduction electron: the
plus (minus) sign then corresponds to an effective spin-up
(spin-down) state.

We thus obtain the following very interesting result. In
spite of the fact that a conduction electron crosses sections
of an M B configuration with opposite spins (represented by
even and odd numbers), under the complete breakdown
conditions a mixture of states degenerates into two (!)
effective ‘quantum’ states which differ in respect of the
orientation of the effective spin. This gives rise to an
effective g factor of the new orbit, which in the case of
complete breakdown is

2 1 n
E m(“’=]) arccos H—a2COS % (glml +A3M3) .
(88)

We recall that, as in the Hamiltonian (26a), m denotes the
mass of a free electron. The effective g factor of a new orbit
can be described in a natural manner in terms of the
characteristics of sections (g;, m;) and in terms of the SOC
parameter o defined by expression (48).

The results obtained can be made clearer by comparison
with similar spectral characteristics [see formula (87)] of
conduction electrons moving along a simple closed orbit
without M B nodes (for example, a circle or an ellipse) with
the g factor equal to g=".

If the SOC does not influence MB (i.e. if a =0) the
states with opposite spins do not merge: each of the figures-
of-eight exists independently of the other. In this situation
expression (88) reduces to the fully expected formula for
Zav, Which is the g factor averaged over the new orbits:

g(w:l) —

L w=1) _ 81y + 83m
8av = A(a:o) - m(W:]) ’ (89)
which for greater clarity can be rewritten as follows
[compare with formula (84)]:

a1l + g7,

S 90
8av T 7T, (90)

It is evident from expressions (89) and (90) that one of
the reasons for the change in the g factor of conduction
electrons under the conditions of complete breakdown is the
difference between the characteristics of the inequivalent
sections in an MB configuration. On the other hand, it
follows from expression (88) that even if all m; and g; are
equal, the effective g factor g,y is not in general equal to g;
because of the possibility of spin flip of conduction
electrons in each passage through an MB node (x # 0).
This conclusion is of fairly general validity and is applicable
to different types of MB configurations.

The intermediate case of advanced breakdown
[w(l —w) ~ 1, H ~ Hy], which requires numerical solution
of the dispersion equations, is discussed in the next section.

(b) We note that a closed MB configuration (Fig. 4a)
transforms topologically into an open MB configuration
(Fig. 4c) by the following procedure. Sections 1, 2, and 3, 4
have to be broken and re-joined differently. In this way we
obtain the unit cell of an open MB configuration. It is
necessary to change then the direction of motion of
conduction electrons along the lower branch. This trans-
formation results in the disappearance not only of the
turning points on the paths with the phases y;, but also of §;

[see formula (58)]. Therefore the results obtained above and
described by expressions (78)—(90) apply also to the MB
configuration shown in Fig. 4c, apart from the fact that the
phases y; must include the terms Rn; in formula (58), which
appear because of the periodicity of the MB configuration:
ny, =+I1, n3 4 = —1. This leads, in particular, to a con-
tinuous spectrum (lifting of degeneracy of Py) when w =10
and to a discrete spectrum when w = 1. When the break-
down probability w = 1 — 7? differs slightly from unity and 7
differs slightly from zero [compare with expression (48)],
narrow bands appear (they are discussed in the next section).

(c) The MB configurations with two MB nodes, shown in
Figs. 4b and 4d, can also be transformed continuously into
one another by a similar topological procedure. An open MB
configuration (Fig. 4d) is obtained from a close config-
uration (Fig. 4b) by turning the latter through 90° in the
clockwise direction, breaking sections 1, 2 and 7, 8, and re-
joining them with equivalent sections which are in the
adjacent cells.

In contrast to cases (a) and (b), we shall now consider in
greater detail the case of an open MB configuration. In
general, MB nodes may be inequivalent, i.e. they may be
characterised by different s matrices (identified by [ and II in
Fig. 4d). However, for the sake of simplicity we shall assume
that the MB nodes in a configuration are equivalent, i.e. that
wr =wy =w, o =oqp = a. This MB configuration consists
of eight different sections. The periodicity of py in the phases
described by expression (58), corresponding to sections 1, 2,
7, and 8 intersecting the boundaries of the cell (Fig. 4d),
means that we have to retain terms Rn;, where n; = 1 for
i=1,2,np=—1fori=7 8 n =0 fori=3-—6.

Application of the rules for the derivation of the
dispersion equation yields an eighth-order determinant
and expansion of this determinant gives the following
expression:

D({y}) =cosQ — (1 —w)'/? cos
i=1,2,7,8
+(1 —w)(cosQ; , +cos Q) ;4 cosQ g

+c08£2) 7 +cos€, g +cos2; g —cos s 5—

— o8y 6 — 0S8 535 —C08L 5 45)

—(1 - w)3/2(cosQ|72,7 +c0sQ) 55 +cosQ 75
+cosy 7 5) + (1 — w)'2(1 - w*)(cos 2 5 5
+c05Q; 57+ cos€ 4 6+ cosy65)
+(1=w)'2(1 —w")(cos 2, 3 5

+¢c08Q; 5 5 +c0SQ) 4 6+ cosQy7)

(1 —w)’cos @575 — (1 —w')’cos 557
—(1—=w"? cos Q) 47— (1 —w)(1 —w’)x
X(cos € 355 +Cc08Qy 465) + wow* (cos Q1567
+c08Q) 457 —c08Q) 365 —cos455) =0, (O)

where w° and w* are taken from expressions (3) and (53),
and expression (91) is simplified by introducing quantities
Q similar to those described by formula (79):

N

1
Q=331 @=0-1,
1

Q=9 v, Q1=
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If the influence of the SOC on MB is ignored (a = 0),
the MB configuration considered here degenerates into two
independent MB configurations for each spin orientation.
The dispersion function (91) splits into two factors
corresponding, under the MB conditions, to spin-up and
spin-down conduction electrons:

D({;}) = -2 (sin nAv Yt -;Vs R
e _w)l/zsin)’l % ;)’5 — V7

e _W)l/zsin%_?’l ;V3 — s

- N V7 V3 Vs
—(1 — e —
( W) sSin 5 >

X(Sinvﬁvﬂ;%ﬂx

e _w)l/zsin)’z—h — Ve — V8

2
1 — w25 Y8 = V2= V4=V
+(1 —w) sin =
—(1—w) 5“‘%) =0. (92)

If the spin splitting is neglected completely [by assuming
that in all y; we have ! = 0, in accordance with relationship
(60)], each factor in the above equation is identical with the
dispersion function for the zero-spin M B configuration [6].
By analogy with case (a), we shall now give the
dispersion equations for the limiting cases.
If w=0, the dispersion function (91) becomes
Vi Y2 V3ts

D,—o({y;}) = —32sin 7 sin 2~ sin =

V7. V8
sin - sin 7.
Electrons move along their orbits without transitions from
one band to another. If the periodicity is taken into
account, the terms Rn; are retained in the phases, v, 75, 77,
and yg. Conduction electrons in the bands to which sections
1, 2, 7, 8 belong move along infinite paths conserving the
spin projection along the magnetic field. This gives rise to a
continuous spectrum. In the band to which sections 3, 4, 5,
and 6 belong the motion of conduction electrons remains
finite and the quantisation rules (19) remain valid.

If w=1, closed orbits are formed and they consist of
eight sections (1-2)—(3-4)—(7-8)—(5-6) with oppositely
oriented spins. The dispersion equation (91) then becomes

. Y4+
X sin ===

93)

Dy ({7:}) = cos Q2 — 5 [cos Q) 357

1
(1+a?)
+a (cos Q) 35,5 + cOs 2 46,5)

4
+o"(cos Q) 4 67— COSQ) 367+ €08 365

—COSQ|’4’5,7+COSQI,4,5,8)] 94

We can easily show that the dependence on the continuous
parameter R disappears from Eqn (94), because in all the
arguments of the cosines the phases corresponding to the
different directions of motion of conduction electrons
occur in the form of pair sums. Consequently, a discrete
spectrum is obtained under complete breakdown condi-
tions (w =1, H > H). As in case (b), narrow bands appear
in small values of T (see next section).

Concluding this section, we note that open MB con-
figurations characterised by 27:1 n; # 0 are possible. This
gives rise to a characteristic spectrum with a nonzero
average velocity of conduction electrons participating in
MB. We shall not consider this case because it has been
discussed sufficiently thoroughly in Ref. [6].

3.3 Phase spectrum of conduction electrons under
coherent magnetic breakdown conditions. Problems in
calculation of the energy spectrum and the g factor of
conduction electrons under conditions of advanced
magnetic breakdown

Before considering the MB spectrum obtained numerically
for a simple MB configuration with one MB node
(discussed in the preceding section), we shall discuss
briefly the general problems.

The procedure for the derivation of the dispersion
functions D [see Eqn (74) or Eqn (75)], the zeros of which
govern the MB spectrum, has been developed only for one-
dimensional MB configurations [6, 9]. Naturally, in this
case the problem can be solved only for periodic MB
configurations which appear along specific directions of
the magnetic field. Even small deviations of the magnetic
field from the relevant crystal axes can alter greatly the
properties of the open M B configurations (see, for example,
Figs 4c and 4d). This occurs because the areas of the closed
loops, which are located in different unit cells in the p space,
become incommensurable with one another. Slutskin and
Gorelik have shown [47] that the resultant weak aperio-
dicity of the M B configurations leads to the possibility of
quantum localisation of conduction electrons under the MB
conditions.

In the case of two-dimensional MB configurations the
problem is even more complex. It is more correct to speak
now of two-dimensional MB networks (see Section 1),
because the paths of conduction electrons in real space
have been considered in the analyses of the spectra of
hexagonal (Pippard [4]) and rectangular (Chambers [53])
networks. Even in the case of these symmetric cases there is
a problem associated with the fact that the characteristic
period of an MB network, formed by circular conduction-
electron orbits, is inversely proportional to the magnetic
field and becomes commensurable with the spatial period of
the crystal lattice only for specific discrete values of the field
H. The phase spectrum (discussed below) can be con-
structed for these values of H and, in general, this
spectrum cannot be transformed into the energy spectrum
[8], which complicates interpretation of the results.

Let us now turn to the problems relating to inclusion of
the spin degrees of freedom of conduction electrons under
the M B conditions. Naturally, compared with the zero-spin
case the task of calculating the MB spectrum becomes more
difficult. This is due to the doubling of the order of the
determinant (73), from which the dispersion function is
derived, and due to the appearance of a spin contribution to
the phase, which is associated with the g factor of
conduction electrons.

The MB spectrum can be determined for an arbitrary
probability w by a numerical calculation of a set of
solutions of the transcendental equations (74) and (75).
These solutions are finite trigonometric polynomials rep-
resenting the phases acquired by conduction electrons in
different parts of an MB configuration. In this way the
phase spectrum is constructed from the set of solutions
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Figure 6. Phase spectrum of the double figure-of-eight type (compare
with Fig. 4a): (@) g1 =g =0,a=0 1is thc zcro-spin casc;
(b) & =+v2/3, &8 =+/3/2, 2 =0, cach zero-spin level splits into two,
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three ponts of random level crossing can be  seen;
(©) & =V2/3, & =+/3/2, a= 0.8, full account of the spin propertics,
random degeneracy lifted by the SOC.

7.(E, p.) obtained for different values of w and p,. Naturally,
the spectra will be different for topologically different (open
and closed) M B configurations. Open configurations have a
spectrum of the magnetic band type, which increases
considerably the volume of calculations.

The next problem is that of finding the energy spectrum
from the phase spectrum. The spin splittings which are then
obtained should give the g factor of conduction electrons
under the MB conditions. Naturally, the g factor is a
function of p,, of the MB probability w, of the SOC
parameter a, and of the serial number of the branch of
the spectrum. In general, without specifying the dispersion
law of conduction electrons in the absence of MB [such as
that given by expression (1)], it is possible to determine the
phase spectrum of conduction electrons under MB condi-
tions [69—71], which will be discussed below.

We shall now illustrate the results of the preceding
section and analyse the MB spectra for MB configurations
shown in Fig. 4 on the assumption of a fixed value of p.. We
shall begin by considering an MB configuration of the
double figure-of-cight type with one MB node (Fig. 4a). The
phase variable is then

¢S 11

X = S:—Sl

9 95
mehH® T2 3 ©3)

Here S| =S, is the zero-spin area of the upper branch
described by expression (83). The above relationship
between the areas of the sections is selected for
convenience of comparison with Refs [8, 46], which is
discussed below. The g factors are incommensurable when
the spin splitting parameters are selected to be

V2 o V3

om 3 BT

s m

gi=g (96)

The values of the variable x corresponding to D(y) =
D(x) =0 give the phase spectrum in accordance with the
classification used in Ref. [§]. Fig. 6 shows the dependences
of'the ‘phase’ x on the total M B probability w, calculated for
different values of a. Here, w = 1 corresponds to complete
breakdown and w =0 to the absence of breakdown.

Fig. 6a is the spectrum of a completely zero-spin
situation when the spin splitting (g} = g3 =0) and the
SOC (a=0) are ignored. This phase spectrum is formed
by any of the factors in the dispersion function (80). Its
physical meaning is readily understood by considering the
periodicity in simple limiting cases.

In the absence of breakdown there are two sets of
equidistant levels (n =0, 1, 2, ...):

W w=0) = % <n +%) 2 (w=0) = 2(n +%> NCE)
The first set corresponds to the motion of conduction
electrons along the lower zero-spin loop and the second set
corresponds to the upper loop (Fig. 4a). It follows from
expression (97) that there are 6 + 1 =7 branches in the
interval 0 < x < 3.

In the case of complete breakdown, an equidistant
spectrum corresponding to the total area of the figure-
of-eight is obtained (n =0, 1, 2, ...):

x®w=1) :% <n+%> .

Naturally, inclusion of the spin splitting doubles the
number of roots of the dispersion equation D(x) =0
and doubles the number of the branches of the spectrum.
This can be seen clearly in Figs 6b and 6c.

When the SOC is ignored and there is no conduction-
electron spin flip during crossing of MB nodes [a = 0; see

(98)
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Figure 7. Phase spectrum of an open MB configuration with a single MB

spin properties.

node (compare with Fig. 4c): (a) zero-spin case; (b) full account of the

the dispersion equation (80)], the spectrum may have points
of ‘accidental’ degeneracy for specific values of w (or H ).
Fig. 6b demonstrates clearly three regions of such degen-
eracy. In the limiting cases the sets of levels are described by
the following expressions

. 6 N3 .
xs’)n(w:0) Zﬁ(”+§> ?ﬁ&%

(99)
1 .
D=0 =2(n+]) 74
3 1 3,
xﬁ")(w=1):7<n+§) Fog (g1 +83). (100)

The upper sign (minus) corresponds to the effective down-
spin. The last term in expression (100) determines the spin
splitting parameter in the case when w = 1 and corresponds
to the average g factor given by formulas (89) and (90).
Finally, the case illustrated in Fig. 6b corresponds to
taking the SOC fully into account (a = 0.8) and is described
by the dispersion equation (78). Even a weak SOC lifts the
‘accidental’ degeneracy ofthe phase spectrum. It follows from
general formulas (81) and (82) that if w = 0, the spectrum is
completely identical with that described by expressions (99)

when a« =0. If w=1, two sets of equidistant levels with
Ax = % are formed (as shown in Fig. 6b, but corresponding to
opposite orientations of the effective spin with even and odd
values of n, respectively). The spin splitting is diffe rent from
that given by expression (100): the splitting is approximately
1.3 times stronger. This confirms the conclusion reached in
discussing general formula (88) that new effective semiclass-
ical states with up and down spins form in this limiting case.

In the general case of advanced MB [w(1 —w) # 0] it is
not possible to select any specific relationship to describe
this behaviour of the spin splitting, which begins to depend
nonmonotonically also on the serial number of the spectral
branch. This is indirect evidence that the total electron g
factor of even this simple MB configuration depends in a
complex manner on the parameters of the problem. As
mentioned earlier, the identification (among the dispersion
equation solutions) of those states which correspond to the
opposite orientations of the effective spin and, conse-
quently, the direct determination of the effective g factor
from the phase spectrum have not yet been carried out for
arbitrary values of w and a.

We shall consider a continuous spectrum which appearsin
the case of a simple open MB configuration (Fig. 4c)
discussed in the preceding section as case (b). The phase
spectrum is shown in Fig. 7. Case (a) corresponds to a
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completely zero-spin situation. In case (b) the spin degrees
of freedom are allowed for fully («=0.8). The phase
relationships and the parameters of the spin splitting are
described by expressions (95) and (96).

In the limit of strong MB (w=1) it is found that
conduction electrons move along closed composite orbits
and a discrete spectrum appears. This spectrum is com-
pletely identical with that given for w = 0 in Figs. 6a and 6c,
respectively. This is to be expected because in these limiting
cases the areas of the closed figures are identical. The zero-
spin spectrum obeys the relationships described by formula
(98). The spectrum becomes completely continuous for
w=0 (Fig. 7a) and for w= 0.4 (Fig. 7b). This is due to
the superposition, in the latter case, of two sets of magnetic
energy bands corresponding to the opposite spin orienta-
tions.

We shall consider the simpler example (Fig. 7a) in
discussing the behaviour of the spectrum near character-
istic instability points w =1 and w = 0. This can be done
conveniently by introducing the quantity T = v/1 —w. If we
assume that the first factor in the dispersion function (80)
vanishes and if we use the definition of the phase variable
(95), we find that for any value of 7 the spectrum is given by
the relationship

cos w: Tcos(y] —¥ +R>
71+

2 2

= —T < COoS ¥3 <. (101)

1

2
We have separated here the continuous parameter
R(P,)[see expression (58)] and ¥; = y; — Rn;. At low values
of 7 there are fairly narrow intervals of the permissible
values of 7§, +%; = (14/3)x, repeated at intervals of 3/7
(see expression [98]).

The argument of the cosine, which occurs in expression
(108) to the left of the equality sign, can be represented in
the form ©t/2 4+ mn + 8, where the first two terms correspond
to the position of the level in a discrete spectrum at 7 =0,
and max |d|, which depends on 7, determines the half-width
of a magnetic band. In the limit 7 — 0, the value of ¢ is also
small and, consequently, we have

max [0 =t=vV1—w.

In the other limiting case (t — 1) we can readily obtain
from expression (101) an estimate for the half-width of the
empty bands of the forbidden states which appear in the
continuous spectrum and are located near
x,=0B/T)n (n=0,1,2,..):

max |8| = arccos T~ 1/2(1 — 1) = v/w.

We shall conclude this section by considering the MB
spectrum of an open MB configuration with two MB nodes
(Fig. 4d), shown in Fig. 8. The special case of the position of
an MB network formed by circular orbits was considered by
Pippard [46] and is discussed in detail in Ref. [8]. We shall
therefore confine ourselves to a computer-calculated illus-
tration and a brief discussion.

In the symmetric zero-spin case, we find that

(102)

- 11 T
Ng=hER="ZFmER, y;=ys=mx 5.
The notation used in Ref [8] is identical with ours apart
from taking account of the turning points described by
expression (59) on lens-shaped diangular orbits (which

Figure 8. Phase spectrum of an open MB configuration with two MB
nodes (compare with Fig. 4d), plotted ignoring the spin degrees of
freedom (this is an analogue of the phase diagram given in Refs [4, 8]).

account for m/2 in the above relationship). Consequently,
our whole spectrum is shifted along the x axis by %,
compared with the result reported in Ref. [8]: our phase
variable x and the quantity 7 are identical with £ and the
variable ¢ in Shoenberg’s treatment.
The spectrum of allowed values is readily obtained from
the determinant (92):
©*sin(§; — y3) —sin(7; +73)

COSR = - .
2T sin p,

(103)

If 7 is exactly zero, a discrete spectrum is obtained and it
corresponds to the motion of conduction electrons along a
composite closed orbit 1-3-7-5:

xn(w:l):%(n—i—%).

By analogy with the derivation of expression (102), the
half-width of the allowed levels, obtained for the case of
small values of T from expression (103), is

(104)

max |8 = 2t |sin p;| = 27| sin (27x)).

This level broadening varies periodically at a frequency
Ax =1, which corresponds to the area of the lens-shaped
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orbit S5 + Ss. Oscillations can be seen clearly in Fig. 8 for
w — 1. Naturally, in a Fourier analysis of an MB spectrum,
in addition to the component with this frequency a stronger
component, described by formula (104) and with the
frequency Ax = 14, as well as harmonics of this component
are obtained [46].

In the opposite limiting case (t — 1 or w — 0) there are
periodic discontinuities of the spectrum at (n=0,1,2,...)

xS,])(w =0)=n —i—l,

: (105)

which correspond to the area of the lens-shaped orbit 3-5.
There are discontinuities in the spectrum also if
x?) = (6/7)n. These discontinuities are weak because in
this limiting case the motion of conduction electrons along
the large orbit 1-3-7-5 has a very low probability:
conduction of electrons must break consecutively through
four MB nodes with the probabilities w — 0!

The phase spectrum shown in Fig. 8 is a superposition
of the spectra corresponding to 40 different values of the
variable R. It is quite clear from this spectrum that the
darker regions with a higher density of levels merge at w = 0
where they become multiply degenerate levels of expression
(105).

3.4 Principal identities in magnetic breakdown theory

In calculation of various macroscopic characteristics of a
metal the MB spectra (76) and (77) must be supplemented
by formulas which give the matrix elements of the physical
quantities in the representation of stationary state vectors
|7} [6]. The symbol 5 represents a complete set of quantum
numbers  representing a  stationary  state  (55):
n = (n, p,,P,). Since conduction electrons spend a very
short time at an MB node, we can use the # representation
to calculate the matrix elements by extrapolation of
expression (55) over the whole of the p space.

The classical physical quantities f, which are smooth
functions of the quasimomentum f=f;(), have corre-
sponding analogues in the MB theory. A typical
example of a quantity f is the electron velocity v;(p) [see
Eqn (7) where ¢,, should be replaced with the MB
spectrum]. Far from MB nodes the operators f are
constructed by the correspondence principle, which
involves the substitution described by formula (11).

If f;(p) is used in the wave function (55) and if
expressions (11) and (13) are taken into account, expansion
of the difference between the phases of the semiclassical
exponential functions in terms of E, — E,s yields the matrix
elements of the operators:

N

(1 Fln) =8p, by 8,y > €l (n) cilm)

i

E,,/)ti}dti. (106)
The integration variable #; is the duration of classical
motion along a section i when the beginning of the section i
corresponds to ¢; = 0. Expression (106) is derived dropping
the cross terms (¥;|¥), which is permissible because of
fast oscillations of the semiclassical exponential functions
contained in the wave functions (13).

A complete description of the dynamics of conduction
electrons under the MB conditions must include the
condition of normalisation of the stationary wave function

T /: i
X JO ./m(i)(th Ena p:) exp{ﬁ (E?l -

(55) to unity. The normalisation of the wave funcions ¥; of
the individual sections should be selected so that (¥;|¥y) is
equal to the time T; taken by a conduction electron to travel
along a section i. We then have

N
dolafTi=1.
i=1

Therefore, ¢;/T; has the meaning of the amplitude of the
probability of detection in a section i of a conduction
electron which is in a stationary state Y.

Expressions (56), (71), and (106), together with the
normalisation condition (107), form a complete set of
relationships needed for the calculation of any transport
and thermodynamic quantities under the MB conditions. It
must be stressed that the amplitudes c; (11) and the energy E,
as well as the matrix elements (' |/|11) vary rapidly and
randomly with p.. This creates a qualitatively new situation
in the kinetics of conduction electrons and modifies
completely the structure of the transport coeffi-
cients, compared with the quasiclassical case such as
that described in Ref. [11]. Moreover, an irregular depend-
ence of the matrix elements on # and #/, described by
expression (106), complicates additionally the task of
calculation of these elements. It is not even possible to
say in advance whether in this case the transport coefficients
are regular functions of the parameters of the problem (H,
w, t etc.) or whether they have the same random structure as
E, and the amplitudes c;(1).

However, these difficulties have been overcome because
of certain regularities in the quasirandom MB spectrum.
These regularities have made it possible to develop a
formalism [18, 45, 49] that has led to analytic expressions
both for the rapidly oscillating (with H) parts of the linear
response of the transport coefficients and for the number
density of states v(E, p,).

This formalism is based on a circumstance which will be
seen to be fundamental later: the random dependence of the
amplitudes ¢;(n) can be expressed directly in terms of the
MB spectrum E,, because it follows from the wave function
(55) that these amplitudes are

Ci(n) = Ei['Y(Em pz)]’

where ¢;(y) is a smooth analytic 2n-periodic function of N
arguments.

We shall now give an analytic expression for the number
density of states v(E,p,) when w(l —w) # 0 in the case of
an arbitrary closed MB configuration:

V(E, p:) = ZS[E - E(n7 p:)] :

(107)

(108)

(109)

We recall that if the SOC is taken into account, the spin
degrees of freedom are hidden in the serial number n of the
solution of the dispersion equation.

The familiar equality

8(x
3[f(x)] =
1 = g
where x; are the roots of the equation f(x) =0, leads to

‘ aD[v(E, p: )]‘ S{[DIY(E, p.)]}.

v(E.p.) = (110)

Replacing the derivative with respect to energy 0D/OFE
with the derivative with respect to phases 0D /0y;, we obtain
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the following expression for the number density of states in
terms of zeros of the dispersion function and its derivatives:

WE.p.) = ;T; a’;—ﬂﬁ[l)(v)], (1)

where T; is the period of revolution on the ith closed orbit
[see the substitution (11)].

The dispersion functions have been found for some
specific MB configurations [6, 9, 46, 69—71], discussed in
Sections 3.2 and 3.3, both ignoring and taking into account
the spin degrees of freedom. However, calculation of the
number density of states (111) meets with mathematical
difficulties even in the case of a simple MB configuration
with one MB node.

The procedure of finding general analytic expressions
for the matrix elements of physical quantities can be made
easier by the use of two identities which are satisfied [see
expressions (108) and (109)] by the number density of states
v(E, p,) and by the quadratic combination of the amplitudes

() ey) Mo

(112)

, (113)
1‘%,1”(7)

where the matrix & (y) represents the following sum of
generating functions and a unit matrix:

Fii(Y) = Fip(y +i0) + Fir (v +10) +8; .

The appearance of i0 sets the rule for going around
singularities which appear on an N-dimensional D surface,
described by expression (75), on which F; ;(y) becomesinfinite.
We shall conclude this section by stressing that, if the spin
degrees of freedom of conduction electrons are taken into
account, then in all the above expressions the index i not
only represents the number of a section but also the spin
orientation in this section. Moreover, the phases y include
the spin contribution described by the relationship (60).

(114)

4. Magnetic breakdown oscillations of the
galvanomagnetic properties of a metal including
the spin degrees of freedom

It is well known [6] that quantum oscillations of the
transport coefficients (Shubnikov—de Haas effect) origi-
nate from the consecutive crossing of discrete quasiclassical
levels by the Fermi energy when the applied magnetic field
is varied. Asymptotic dependences of the transport
coefficients in strong and weak fields are closely related
to the nature of motion of conduction electrons. These
dependences can be calculated in the semiclassical
approximation and the answers can be obtained in the
form of integrals over the Fermi surface [11].

[t follows from Section 3 that MB contributes much
which is new to the nature of the motion of conduction
electrons. The energy spectrum becomes much more
complex. Hence it follows that the structure of the MB
oscillations is much more complex than in the semiclassical
case. Moreover, the difference between the semiclassical
and MB oscillations cannot be reduced to a more complex
structure of the MB levels and of the oscillations of the

number density of states. The MB oscillations appear
because of interference between semiclassical waves scat-
tered by MB nodes in the p space. Moreover, effects
associated with the spin properties of conduction electrons
are observed.

The most striking manifestations of the MB effects can
be seen in the MB oscillations of the transport coefficients
of a number of metals such as Be, Mg, Zn, Al, Sn, etc.,
which have small closed orbits in their M B configurations
(see, for example, the configuration of Zn in Fig. 3b). The
linear dimensions of these orbits are much smaller than the
reciprocal lattice constants [55] and conduction electrons
spend most of their time on large semiclassical sections.
This case is interesting because the appearance of small
orbits is frequently related to the existence of small Fermi
surface sheets the formation of which is usually influenced
strongly by the SOC [10, 100]. As pointed out in Section 3.3,
this frequently leads to large deviations of the g factor of
conduction electrons from its free-clectron value and to
small cyclotron masses. The latter indicates that the Larmor
period T4, describing the motion of conduction electrons
along small orbits, is short compared with the characteristic
time spent on large orbits 7'c. The index ¢ will be used here
and later in this section to denote the quantities which apply
to small orbits.

In the case of small orbits the conditions (54a) and (54b)
for coherent motion of conduction electrons are satisfied
under stringent conditions on the purity of a metal and on
temperature, compared with the orbits whose linear
dimensions are of the order of the reciprocal lattice
vector. One can have here the situation of intermediate MB:

Te> 15> Teq» (115)

when the motion of conduction electrons along large orbits
shifts the wave function phase (stochastic MB), whereas the
motion of these electrons along small orbits is coherent.
The intermediate MB regime naturally satisfies the
condition 1, > T, which is usual in the case of classical
galvanomagnetic effects. The smallness of the orbits makes
it possible to consider them as special ‘quantum switches’
controlling the motion of conduction electrons along an
MB configuration. They are called the effective MB nodes
and the corresponding s matrix is known as effective.

There are metals with MB configurations containing
small diangular and triangular orbits [5, 6, 8] (Figs 9a and
9b). We shall find, for these orbits, the effective s matrices
and probabilities of crossing effective MB modes P, Q and
Pa, Ps, Pc, respectively, deduced taking into account the
spin degrees of freedom.

The existence of coherent motion along small orbits
under the MB conditions gives rise to oscillations of the
transport coefficients and the period of these oscillations
corresponds to the area of a small orbit [S—8, 55]. We shall
now consider how these oscillations are modified if we
include the spin degrees of freedom and the SOC in the
analysis, especially as the theory of Falicov, Pippard, and
Sievert [S5]— which accounts for the existence, profile, and
order of magnitude of these oscillations—does not explain
correctly the experimentally observed structure of double
oscillation peaks of the galvanomagnetic properties of Zn
[101].

Before we compare the spin-flip MB theory [65, 66] with
the published experimental galvanomagnetic characteristics
of a real MB metal, we must apply this theory to a simple
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model of a metal [64] illustrated in Fig. 4d. Without taking
into account the spin degrees of freedom for circular orbits,
this model was used in Stark and Falicov’s review [5] and in
Shoenberg’s book [8] to analyse in detail the galvanomag-
netic properties. This will reveal directly the effects of
inclusion of the spin of conduction electrons.

We shall begin by discussing the general principles
underlying description of the galvanomagnetic properties
of metals under the MB conditions.

4.1 Static conductivity tensor under stochastic magnetic
breakdown conditions

As noted in Section 3, the nature of motion of conduction
electrons under the MB conditions is extremely sensitive to
small-angle scattering. It is essential to develop a consistent
transport theory which should be based on a quantum
transport equation for the nonequilibrium part of the one-
electron density matrix [19]. However, in many cases of
interest in physics the semiclassical approximation is
sufficient. This approximation works not only in the
case of stochastic MB, but also for coherent MB when
condition (54a) is satisfied [6]. We shall confine ourselves to
the derivation of the conductivity tensor & for stochastic
MB [described by condition (54c)] as a function of the
applied magnetic field. We shall base this derivation on the
solution of the linearised Boltzmann transport equation.

A specific ergodic distribution of conduction electrons
between MB configurations is created under the stochastic
MB conditions. The breakdown begins to act as a stochastic
factor which mixes conduction electrons over all semiclass-
ical sections. The time interval between two consecutive MB
scattering events plays the role of the relaxation time. It is
governed by the characteristic cyclotron frequency w, and
by the corresponding MB probability. The components of
the conductivity tensor ¢,z naturally depend on the
topology of the MB configuration. In the limiting case
w(l —w) — 0 parts of an MB configuration transform into
conventional open or closed orbits: the values of g,4 begin
to determine the real time of a free run of conduction
electrons between collisions t* = T, [see conditions (54)].

The situation described above corresponds to the
Boltzmann transport equation with a linearised collision
integral. Its general solution for the stochastic MB case can
be sought in the same way as in the semiclassical case (see,
for example, Refs [11, 13]):

N o

Fnlp) = Fr(0) =55 ¢E - ¥ (p). (116)
wheref,, (p) is the conventional distribution function; fz (p)
is the equilibrium Fermi—Dirac distribution function; E is
the electric field; ¥,(p) is a vector function with the
dimensions of length, which has to be determined. This
function is a semiclassical analogue of the operator
described by Eqn (106).

The natural variables for the Boltzmann transport
equations in the case when static electromagnetic fields
are present are E, p., t; [13]. Then, in the lowest order in
¥, (p), these equations become

oY - s e\ (O
L{¥}=v, 1,=|=— | =—

or; + p{ = p (6E> oE )’

where ¥; are the values of the functions ¥.(p) in the parts

of an MB network in the r space; [ is the linear collision
operator.

(117)

The differential equations (117) in #; require the
boundary conditions. If, for given values of E and p., a
conduction electron orbit is closed, then obviously the
function ¥, should depend periodically on #;. However,
if the orbit is open, then the boundary condition states that
Y. is finite in the limit #; = £o0o. For simplicity, we shall
assume that a magnetic field H has a ‘good’ direction, and
the function ¥, should be periodic with its period equal to
the reciprocal lattice constant [18]. This case differs from
the semiclassical situation because under the stochastic MB
conditions the functions ¥, undergo jumps when crossing
MB nodes. This is of fundamental importance in calcula-
tion of the conductivity tensor.

It follows that the equations (117) and the usual boundary
conditions ¥; should be supplemented by stochastic boun-
dary conditions at MB nodes. The latter conditions are
derived in accordance with the process of the scattering of
a wave packet described in Section 3.1. [fthe procedure used
inthederivation of formula (61) is followed and useismade of
the unitarity of the s matrices and of the notation in Fig. 2c,
the system of boundary conditions can be written in the form

N
Y, = E Wi’,iqlia
i=1

where

(118)

2
0
Wil,i = ‘Vl(,)

i
)

(119)

are the MB probabilities; ¥ = ¥(T,) are the values of
¥ .[p(t;)] at the ends of the sections entering an MB node;
¥, = ¥(0) are the corresponding values at the ends of the
sections leaving such a node. The boundary conditions
(118) show that the flux of particles leaving an MB node
along a given section, for example a section i’ =1, is
formed from particles moving along incoming sections
i=1, 3, 4 with the weights 1 —w, wl, w respectively.

The solution of the equations (117), subject to the
boundary conditions (118), makes it possible to find the
components of the conductivity tensor o,g, which are
expressed in terms of ¥, in accordance with the usual
semiclassical formulas:

_ & eH el
o =Gy e ()

b, T,
x| | ) e an
0 0

(120)

It therefore follows that when the coherence is destroyed by
small-angle scattering, MB begins to play the role of a
stochastic factor and the small-angle scattering character-
istics do not enter the final expressions for g,g.

4.2 Effective s matrices and effective probabilities of
magnetic breakdown for small orbits
The procedures for the calculation of the effective s
matrices of diangular and triangular orbits are very
similar. This procedure is described in Ref. [6] for the
zero-spin case. Therefore, we shall confine ourselves to the
derivation of this s matrix for the case of a diangular orbit
and in dealing with the triangular case we shall use the
expressions for the first column of the matrix [64].

For the sake of clarity we shall go back to explicit
inclusion of the spin index in the serial number of the cross
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Figure 9. Small orbits: (a) diangular orbit; (b) triangular orbit;
(c) reduced MB configuration corresponding to Fig. 4d. Small
diangular orbits perform the role of effective MB nodes. The spin
splittings are not shown for the sake of clarity.

section, which will become iyo. The expressions for the
elements of the effective s matrix can be obtained from the
general system of equations (56) by excluding from it the
amplitudes ¢; 4, which apply to inner parts of small orbits
(Figs 9a and 9b). The matrix elements S 10,1 1ink the initial
parts of sections labelled iyo, which enter ‘an effective MB
node, to the final parts labelled iyo’, which leave an effective
MB node with identical or opposite spin orientations.

We recall that conduction electrons that have crossed a
single MB node and have remained in their own band
conserve the spin direction in accordance with the structure
of the s matrix (47): ;5 1y =0 if the band numbers are
identical; m(iy) = m(iy), and o#¢. If MB nodes are
equivalent and the spin indices are included explicitly,
the matrix element Sfl)f‘;f,lla.l of a diangular orbit (Fig. 9a)
is described by the following series:

Sﬁf’ 1p = Texp(—id)

- (%) 2{‘5 expli(—A + pq;)] + 7 exp[i(—A4 + 2y4)] + }

—a? <£>2{1: expli(—A +74)] + 7 expli(—A4 + 2pa)] + }

B
(121)

The first term in the series (121) represents the process in
which a conduction electron, which begins to move along a
section iy = 1, is reflected by an MB node and remains in its
own band. The second term represents the tunnelling of a
conduction electron without a change in its spin direction.
Each component of the expression in the braces differs from
the preceding component by one revolution of a conduction
electron along a small orbit and two reflections from MB
nodes. The third term in the series (121) is similar to the
second, except for a change in the spin orientation as a

result of MB tunnelling and revolutions along a small orbit

with spin down. If H #0, the series (121) is readily
summed:
2
S‘ft{ 1y = Texp(—id) [1 i

y eXp (l'qu) + “2 €Xp (Iqu) (122)
I—trexp(ivg) 1 -7 exp(ivg)/ ]’

The elements of the effective s matrices S,O‘, ig Can be

described more compactly by introducing the notation

iyl
n o _ eXp (lyioajo )

_ oo =1.2 0L,
105J0 l—tlexp(iyq,,) 0:J0

(123)

where [ is the number of sections of a small orbit (in the
case of a diangular orbit, this number is [ = 2);

—d 495, + 14 (124)

¢Sy

yQﬂ tieH
is the phase acquired by conduction electrons in a small
orbit [Sq is the zero-spin area of a small orbit and yqn is the
spin contribution described by expression (60)]; ylo o is the
partial phase given by expression (58) and acquired (Fig.
9a) during the motion of conduction electrons in sections
of a small orbit.

The subscripts iy and j, in formula (123) apply to the
phase acquired in inner sections of a small orbit along the
direction of motion of conduction electrons as it crosses
consecutively all the nodes between the sections which enter
(ip) and leave (jy) an effective MB node. Naturally, if i, = j,,
the phase yZth is replaced by the complete phase yy,. The
symbol # is used to index the spin state of a small orbit.

The matrix elements S?‘erd for a diangular orbit
therefore have the form [64]

: f
S?ttt = Sth 27
= texp(—id) [1

ff ff
S?l’ = Sgl 2|

2
P 2
112 (F{,l +a F{,l):| >

2
. p 2
= cexp(-i) |1 = 2] 1)

SlTll_S2T2’l_SlllT_52l2’

0
= rexp(—l/l) " (F F{,l) ,
e
SThar = — (FIer“ ri,).
y 1+ T L2
2
STy = Ll + 1), (125)
y 1—|—O(2 1,2 1,2
7
o 27l
Sot i = 1+ —— (T 21+“F2,1)’
ser :—p—(oczFT +ri)
2], 1 +a2 2,1 2,1/
ff  _ geff !
5?1,2'r—5?r,2'1—1+ 5 (M, = T1),
ff  _ geff l
St =Sap,v) = 1+ 2( 21~ 130)-
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We shall now give the first column in the effective s
matrix [64, 66] for a triangular orbit [Fig. 9b, /=3 in the
notation of expressions (123) and (124)]:

SIT = =72 exp(—id) 2I"{]) ,

T

Sﬁf,]/l = texp(—id) —F{]),

)

2
op 1
1+a2(rll
2

o P 1 2]
S?T,Z’T = *W(ru +a Fl,z)s

. . (126)
(&
SIT,2’T :l—i-—az( 12— FI,Z)

2

. 14
ST 3y = —texp(id) g (M5 +oT15).

2
ap
+ o2 (F$,3 - F{,S)'

S(]:I»F,yl = texp(id) .

In the limiting case of the absence of the SOC the matrix
elements (125) and (126) simplify greatly and they describe
two independent types of conduction electron motion: with
spin up and spin down. For each spin direction they are
formally identical with the results reported in Ref. [6], but
the spin term yfw is retained in the phases described by
expression (124).

However, if yq,, assumes a value r (r— 0,1,2,...), we
can see from expression (123) that F, o= Fm - In this case
the parameter a disappears from the matrix elements (125)
and (126), and we once again obtain the results of Ref. [6].
The only difference is that the SOC parameter « still occurs
in expression (50) which gives the renormalised breakdown
field H,.

When we know the elements of the effective s matrix
(125), we can find the effective probabilities that conduction
electrons follow a diangular orbit with different spin
rotations:

2
Wi v = [S50v0 | (127)

which can be utilised directly to calculate the magnetore-
sistance in a simple model of a metal which has a periodic
MB network (Fig. 4d).

We recall that within the limits of a small orbit the
motion of conduction electrons is coherent and over large
parts of the orbits the phase coherence is destroyed
completely by small-angle scattering. This transforms the
motion of conduction electrons into a random walk. In
calculation of the conductivity the spin of conduction
electrons appears only in the expression for the acquired
phase (60), which is different for different spin orientations.
In the case of stochastic motion in large orbits the process
of small-angle scattering causes phase shifts. Therefore, the
spin orientation of conduction electrons moving along large
parts is unimportant in the processes of charge transport
under intermediate M B conditions. In this case the total
probabilities of passing along small orbits or of reflection
from these orbits are important.

In the case of a diangular orbit when the spin degrees of
freedom are taken into account the effective probabilities
will be denoted by P° and Q, respectively (¢ =1 ]). Then,
in the case of a conduction electron approaching an

effective MB node with spin up (Fig. 9a, ipjoc =1171), the
probabilities are

ff ff
Pl =W + WSt o,

B w? ( 1 N o )
I +o? \|1 — 72 exp(iqu)|2 [1—12 exp(iyql)|2 '
(128)
oM =wsi i+ Wit =1-P.
Similarly, in the case of a conduction electron approaching
an effective MB node with spin down (Fig. 9, iyo = 1]), we
find that
eff

= Wil o+ WSly,

_ w’ ( o’ n 1 >

1+ o2 |l—7:zexp(iqu)|2 11— exp(ivg)|’/
I (129)
O = Wil i+ Wiy =1-P!

where w is the total MB probability, described by
expression (2) for equivalent small-orbit nodes.

The matrix elements (126) can be used to find three pairs
of probabilities P§, P§, and P{ (Fig. 9b) for a triangular
orbit:

ff ff
Ph=WST o+ Wity

2 2
w ( 1 N o )
1+ -7 exp(iqu)|2 -7 exp(iyql)|2 ’

PL=wWT sy + WSty =P}, (130)

ff ff
PL =Wl + WSt =1-P) —PL,

fr
= Wil + Wiy

2 2
__w ( o n 1 )
T2 1= 2 exping )P 11 — 2 expling,)I

ff ff 2
PchW?l v+ Wily =Py, (131)

eff

=Wl +WST =1- P —PL.

An important result is that, for arbitrary values of g,
and a # 0, the probabilities (127) for each spin orientation
oscillate in very different ways with the magnetic field. We
can see that the total effective probabilities (128), (129)
and (130), (131) for each spin orientation are periodic
functions of two phases (124), which differ by an amount
2yq = mggmq/m, where g is the electron g factor for a small
orbit and mq is the cyclotron mass.

If the SOC and the spin are ignored, a small diangular
orbit may ‘switch off and on’ the motion of a conduction
electron in an MB configuration. If the SOC is taken into
account, it is difficult to satisfy the condition of complete
transparency which applies to a zero-spin diangular orbit.
In addition to the condition, which resembles the Lifshitz—
Onsager quantitation rule for a small orbit [6]

2nehH < A)
n——»1,

c ]
it is now necessary to make sure that y; is equal to 2mr

(where r is an integer) or g, = 4mqr/m, for which there is
no justification at all.

Sq(E, p.) = (132)
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Expressions (128)—(131) for the probabilities are rela-
tively clear. This is because we have been considering a fairly
simple case of small symmetric orbits and equivalent MB
nodes on these orbits. In other cases the elements of the
effective s matrix and, consequently, the probabilities are
described by fairly cumbersome and asymmetric expressions
for the dependences on the phases [102]. This is true, for
example, of Al [103] when what are called the B orbits are
considered.

4.3 Resistance oscillations in a simple model of a metal
We shall consider the magnetoresistance in a simple model
of a metal with a periodic MB configuration, which has
small closed diangular orbits (Fig. 4d). We shall ignore the
time spent by conduction electrons in small orbits and
replace them by effective M B nodes (points). The result is a
reduced MB configuration which is shown schematically in
Fig. 9c.

In the zero-spin model this example is considered in
greater detail in Shoenberg’s book [8] where the effective
path method proposed by Pippard [4, 46, 104] is used.
Similar expressions can be derived starting from the
transport equations (117) [6]. We shall obtain an expres-
sion for the resistance on the basis of the theory developed
above and we shall show that if the SOC is included, the
resistance oscillations have the structure of double peaks.

We shall begin with a qualitative explanation of the
dependences of the conductivity o on the effective prob-
abilities P and Q ignoring the spin degrees of freedom. Let
us turn to Fig. 9c. Starting from a point A and moving
along an MB configuration characterised by P =0 (Q = 1),
a conduction electron is in infinite motion along the upper
path. A small orbit does not transmit this electron. When
high fields (H > H,) are applied or when P =1 (0 =0), a
conduction electron moves only along a closed circular
path. The total transparency of the small orbit (in the
absence of the spin degrees of freedom!) leads to finite
motion of the electron.

Under advanced breakdown conditions (PQ # 0) we
can expect features typical of these two types of motion.
Expressions obtained from the semiclassical theory [11—13]
of the galvanomagnetic properties of a metal are quite
different in the case of closed and open paths.

We shall assume that in the case of advanced breakdown
a conduction electron moves along an open path. Under the
intermediate MB conditions the role of the effective
electron-scattering time t* is played by the scattering
time for MB nodes. It is the MB scattering that disturbs
infinite motion of conduction electrons in this case. The
frequency of such scattering can be easily estimated. The
frequency is proportional to w.P, where P is the probability
of the escape of a conduction electron from an open orbit to
a closed one. It follows from semiclassical concepts [11, 13]
that the motion along an open path resembles the motion of
a conduction electron in the absence of a magnetic field. If
the open direction coincides with p,, then

2
ne t*

Oy Oy =

(133)

m*

Here g, is the conductivity when H = 0; n is the number of
electrons per unit volume, m* is the effective mass. Since
. = eH /m*c, we can rewrite the conductivity (133) thus:

(134)

Let us now assume that the same conduction electron
moves along a closed orbit. In this case the role of * is
played by the effective time spent on closed orbits, such that
PN .0, where Q is the probability of the escape of a
conduction electron from a closed orbit to an open one. In
the case of closed orbits [11—13] the motion in a plane
perpendicular to the applied magnetic field resembles a
diffusion walk. A conduction electron moves for a long time
along a closed orbit and the longitudinal conductivity
component decreases inversely proportional to the square
of the magnetic field:

= -

(0:7%)
Substitution of the expression for the conductivity (133)
and of 7* in expression (135) gives

(135)

O’XX

nec
Oy N —/ Q .

- (136)

Therefore, o,, is on the one hand proportional to Q [as
in the above expression] and, on the other, it is inversely
proportional to P [as in expression (134)]. Consequently,
the total conductivity should be

(137)

It should be noted that in the case of small values of the
products such that PQ — 0 the collision frequency is again
determined by the real scattering time 7* = 1, [defined by
inequalities (54)].

We shall now derive an expression for the conductivity
tensor which takes account of the spin degrees of freedom
and we shall do this on the basis of the transport equations
(117)—(120). This can be done if we find the dependence of
¥, on the effective probabilities P? and Q°. If the collision
integral in the Boltzmann equation (117) is ignored, the x
component of ¥} is

V(1) = ¥ (0) — - [ph() = AL (0)]

Here ¥;(0) is the value of the distribution function at the
beginning of the ith section and the second term in the
above expression follows from Eqn (7).

If t;, = T;, then expression (138) becomes

(138)

WH(T) = PH(0) + - 4 (139)
where 4; = n;b, represents an increment in the coordinate
py due to the passage of a conduction electron along the ith
section [the definition of n; is given in the text following
expression (59)]. It is important to note that the open
periodic MB configuration shown in Fig. 9c has the
property

N N
ZAi ZbyZn,»ZO.

It follows from the system of equations (117) and from
formula (120) that if [ =0 the component a,, is given by

(140)

2
e eH

(2nn)*

O’XX

) 141)
b Iiaq]f i x (
X ZL dP:J # ¥i(t)de

0
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where the integral with respect to time is
1
LR HOI

The boundary conditions (118) for the reduced MB
configuration (Fig. 9¢) in the case of stochastic motion
of conduction electrons along large sections [condition
(115)] become

¥iio(0) = Q° Wiao(Ta) + P° Wio(Tw),

(142)

X _ po X Ty (143)
b"o’(O) =P A’J(TA’) +0 B”a(TB") .

The spin index is included explicitly above, although earlier
it has been incorporated in i. The condition of periodicity
of the function ¥j(p) in terms of p, leads to

ql,fm' = W,X’m )ch‘a' = qlff’a' = ']/)1;,,0__

It therefore follows that formulas (143) can be rewritten
in the form

.P:‘m'(o) = Qa q’ﬁo’(TA) +Pa A[}G(TB)’
(144)
.PIK)‘U(O) =P’ ﬁo’(TA) + Qa q])[’fo'(TB)

Substitution of formulas (144) and (142) in expression (141)
yields the following expression for a component of the
conductivity tensor:

> eH
Oxx = Zagx = Z (Z;E)3 eT

g [

X , (145)
<[ ap.0m P [#io(m)  ¥io(T)]
0

The symmetry of the MB configuration (Fig. 9¢) and the
property (140) give

Vio+WPs,=0, 44 +d3=0. (146)

Substitution of expression (139) in expression (145),
subject to the equalities (146), gives a7,
& eH

T em) c

g
O’Xx

b, . 2
xj dpz~4Q"P"<'I’;§,,(0)+£AA) . (147)

0

We can determine the quantity ¥5,(0) if in the
boundary conditions (144) we replace ¥,,(T,) and
Y3o(T) with the values of the function (139). The qualities
(146) give

¢ Qa _p°

q’:‘m(o) :e_AA 2po

- (148)

Substitution of the function (148) in expression (147)
subject to property (140) gives the expression

o 07(p)
JO dp: Pa(p:)-

We shall obtain the results specifically for circular orbits
(Fig. 9c). For simplicity, we shall also assume that the
Fermi surface is cylindrical. Then Q and P are independent
of p, and b, =2p,, where p, is the radius of the circle.

_ ecb§
(nh)’H

g
O’Xx

(149)

Since 2V, /(2nh)’ = n, where V, = b.n(p,)" is the volume
occupied by a conduction electron, we finally obtain
s hec2Q°
oy =— .
’ H =wP°

(150)

The remaining components of the conductivity tensor can
be found by the conventional semiclassical approach
[11—13] when the average of the velocities along closed
orbits is zero.

The conductivity tensor then looks as follows:

20° 1
o =" nP? 2| (151)
H |1 0
2

This expression agrees with the qualitative estimate (137)
and it is easy to understand from the physics point of view.
If Q% =0, conduction electrons move along closed orbits
and the conductivity g,, along an MB network is zero. If
Q% =1, and P’ =0, a conduction electron can escape to
infinity, so that ‘superconductivity’ appears. We have
mentioned earlier that in these limiting cases we should
use the real momentum relaxation time t,, which leads to
finite values of the conductivity. In the collision-free case,
conduction electrons cannot move along the y axis
(transversely relative to the open direction), which is
understandable. This is why in the adopted approximation
the component oy, also vanishes.

Therefore, inclusion of the spin degrees of freedom gives
rise to the conductivities O'IX, and aix, which oscillate
together with the effective MB probabilities. Summation
over the spin index in Eqn (145) can yield an expression for
the resistivity tensor pap:o;ﬁ'. The expression for the
component p,, is:

2H

Py =———

P (P =2
nnec( )+ ’

(152)
where use is made of P’ 4+ Q7 = 1. Expressions (151) and
(152) are fully identical with the results obtained by the
effective path method taking the spin into account [66].

The above expression for the resistivity can be presented
graphically. In the limit of strong fields H > H, the
resistivity p,, oscillates (Fig. 10) approaching the value
per- Here, py, = 8Hg/mnec is the saturation value of the
resistivity calculated ignoring the coherent small-orbit
effects, i.e. assum-ing completely stochastic MB. This
result can be obtained formally by averaging expression
(152) over the phase (dotted curve in Fig. 10b).

In the limiting case when the spin degrees of freedom are
ignored, i.e. when y; = 2mr (r is an integer) but for any value
of a, we obtain the zero-spin results from expression (152)
[5, 8]. This result is represented by the continuous curve in
Fig. 10b. We can see that, for specific magnetic fields,
defined by the relationship (132) the resistance of a linear
MB network falls to zero. This corresponds to complete
inter-ference transparency of small diangular orbits [see also
the discussion following relationship (132)].

In general, the behaviour of the transverse resistivity
curve p, /Py, in intermediate fields depends on the small-
orbit g factor g and on the SOC parameter a. In the case of
coherent motion of conduction electrons along a diangular
orbit when possible spin flip (¢ # 0) is taken into account,
the number of the oscillation peaks is doubled. The relative
amplitudes of two peaks from one zero spin parent depends
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pyy /ps‘dt

8- . a

H/H,

Figure 10. MB oscillations of the transverse magnetoresistance p,, /pg,:
plotted for the MB configuration shown in Fig. 4d: (a) totally coherent
motion of conduction electrons along a diangular orbit (¢ = 0.4 and
and y), = 0.47); (b) continuous curve represents the results of Refs [4,
8] for any value of a and y}, = 2mr (r=0, 1, 2, ...); the dashed curve
corresponds to stochastic motion of conduction electrons in a small
orbit. In plotting these curves the area S, of the small orbit is assumed
to be (2mlie/c) x 10H .

on gg. This is shown in Figs 10a and 11a. Fig. 11b illustrates
the fact that if the SOC is ignored, the inclusion of g, in
expressions (151) and (152) alters the oscillation amplitudes,
but does not double the number of peaks.

It therefore follows that the adopted model makes it
possible to account consistently for the appearance of a
complex structure of the MB oscillation peaks by the SOC
and by the spin splitting of the Landau levels. It should be

p_v_v /ps‘dt
8- a
o
0 ks !
8+ b

H/H,

Figure 11. M B oscillations of the transverse magnetoresistance p,, /P
(@) a=1, 9, =0.5m; (b) SOC is ignored (e =0), continuous curve
5, = 0.4m, and the dashed curve to y;, = 0.5n. The values of S, used
in plotting these curves are the same as in Fig. 10.

noted that similar splitting of the peaks was observed by
Stark [101] for Zn (this is discussed in detail later).

It should also be noted that Sowa and Falicov
investigated [57] the influence of small-angle scattering
on the MB oscillations in a metal described by the same
model. A similar doublepeak structure is predicted there
and the stronger the small-angle scattering, the flatter are
the oscillation peaks. Peak doubling reported in Ref. [57]
originates from the assumption of the authors about the
bimodal nature of the distribution of the small-orbit areas,
which leads to the possibility of the existence of conduction
electrons with two different phases in the course of different
passages through a section i. The results reported in this
review allow us to conclude that among possible reasons for
the appearance of a bimodal distribution are the spin
splitting of the Landau levels, [described by relationship
(60)] in a magnetic field and the spin flip of conduction
electrons under the MB conditions because of the SOC.

4.4 Galvanomagnetic properties of zinc: theory and
experiment
We shall now adopt a model which corresponds more
closely to reality. In the case of hcp metals (Be [7], Mg, and
Zn [S5, 55, 101]) a hexagonal two-dimensional MB
configuration appears if the field H is parallel to the
hexagonal axis of a crystal (Fig. 3). The Fermi surfaces of
these metals are well known (Fig. 3a) [90]. In our analysis
the important parts are those associated with MB: a ‘hole’
monster, which lies in the second band and whose
characteristic dimensions are comparable with the dimen-
sions of the Brillouin zone, and six small electron sheets in
the form of cigars or needles, which are in the third band
and are located on the vertical edges of the Brillouin zone.
If H < Hy, the numbers of electrons and holes are equal.
All the orbits are in this case closed and, in the absence of
MB, the resistance rises proportionately to H?, which is
typical of compensated metals [11]. However, MB disturbs
the exact compensation and open as well as closed orbits
appear. If H > H,, all the charge carriers (both those which
move along giant orbits in the course of breakdown and
those which move along an inner belt of the monster) have
an electron spectrum and, therefore, the magnetoresistance
saturates. If a sample is of sufficiently high quality so that
the motion of conduction electrons along a small triangular
orbit is coherent the resistance oscillations appear and they
correspond to the area of a small triangular orbit which
may be the area of a needle in the case of Zn [101] or a cigar
in the case of Mg [5] and Be [7]. These are the orbits which
can be regarded as effective M B nodes [5, 6], which are only
slightly more complex than diangular orbits (Fig. 9b).
The effective MB probabilities (130) and (131) oscillate
if the phase coherence is conserved in the course of motion
of conduction electrons along these small orbits. It is
obvious that the characteristic cyclotron frequency of a
small triangular orbit (ug is much greater than the cyclotron
frequency of a large hexagonal orbit ! [5, 8], ie.
conduction electrons move stochastically over large sec-
tions of an M B network (the phase of their wave function is
lost!) and they move coherently along small orbits.t This
corresponds to the real situation of the intermediate MB
regime described by inequalities (115).

fTHereand in Section 5, the index 0 indicates a small orbit of the triangular
type and the index y refers to a hexagonal orbit.
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Since the dimensions of the needles are much less than
those of the monster, such an MB network can be replaced
by a reduced network in which all small triangular orbits
are replaced by effective MB nodes described by the
effective s matrices ST, In our case, when the spin degrees
of freedom are taken into account, the unitary matrix S is
of sixth rank. The expressions for some of its matrix
elements are given in Section 4.2 [see set of expressions
(126)].

In calculation of the galvanomagnetic properties of Zn
which has a two-dimensional MB network with small
orbits, it is convenient to use the ‘effective path’ method
[104]. This method is applied to hcp metals (Zn and Mg) in
Refs [4, 55] and it is given in a sufficiently detailed form in
Ref. [8]. A more general approach [18], based on consistent
derivation of the transport equation, unfortunately has not
yet been developed for quantitative analysis of two-
dimensional MB networks [6].

Generalisation of the effective path method to the case
of existence of a probability of spin-flip MB in the
intermediate MB regime, which is defined by condition
(115), can be found in Refs [64—66]. Our analysis will be
based on Ref. [66], where the galvanomagnetic properties of
Zn are considered.

The results obtained by the effective path method can be
written down conveniently in terms of a complex variable
x +iy. In this case the conductivity becomes

6 =0y, —idl, . (153)
In contrast to the preceding section, we have to bear in
mind that a layer of MB configurations in terms of p, has a
finite thickness 2p_, and the MB parameters (t and a), as
well as the cross-sectional area of a small orbit S, = Sy, are
functions of p,.

Averaging over the initial spin orientations (a similar
averaging procedure is used in calculations dealing with the
Kondo effect), we obtain

L1 o
G zza:a,

and, omitting the intermediate steps given in Ref. [66], we
find the expression for the total conductivity tensor & is

6==2 prm B(p.)dp, +— (154)
B Hp:m 0 Pe)Cps H2 .
The components of the tensor D are
1 1 43|, < 1
Pe =325 3ILE3L (I + 2+ 2
n " " (155)
b V3 1= |, 2 +7) +£
Y 4 L1 =30, P 43|, 1+ 2+ 2

The summation is carried out over the small-orbit spin
index #:

1
r,> =) .
11| il 1+T6—21:3cosy9,l

(156)

The second term in Eqn (154) describes the contribution
made to the conduction process by all the closed orbits that
do not participate in MB. In this sense the quantity a is a
fitting parameter in the theory [8, 55, 66]. In the absence of

MB, all the electron orbits are in this case closed and if
o, * > 1, they make the usual contribution to o, ~ a/H>
[11-13]. The resultant narrow layer of open (because of
MB) orbits (for zinc, we have p., = 0.04pr [105]) is
represented by the first term in expression (154). It is
this term that dominates the galvanomagnetic properties
under advanced MB conditions (when (H = H,).

In the limiting case when there is no MB, the whole
component of the conductivity tends to zero (o, o H™?), as
expected [11—13], because a metal is completely compen-
sated in fields H € H,. The quantity b, which represents the
imbalance between electrons and holes which appears as a
result of MB, can be estimated from the integral

Pon .
b J 6nec dp..
0 T

(157)

Here, n(p,)dp. determines the number of conduction
electrons per unit volume in an elementary section of
the Fermi surface.

Eqns (154) and (157) are written down on the assump-
tion that n(p,) varies smoothly with p., in contrast to D(p,)
which varies periodically with the phase yg,(p.). This phase
is given by expression (124) except that the notation is
altered: ¢ — 0. If a conduction electron moves stochas-
tically over small-orbit sections (wf < 1:;1' ), the result should
be stochastisation of the phase yg, in Eqn (156). Conse-
quently, the results can be obtained in the limit of stochastic
MB if Eqns (154) and (155) are averaged over this phase
(see Refs [57, 58, 66]).

In general, the conductivity of Eqn (154) depends on the
magnetic field H, on the microscopic parameters of MB
nodes, on the thickness 2p_, of an MB layer, and on the
fitting parameter a. The strongest dependence on p, in the
integrand applies to the area of a triangular orbit [55]

S(p.) =So+p?. (158)

where S, is the extremal section of a needle (p, =0). The
needle narrowing parameter

1 (%S
S
D7 p.=0

has been estimated on the basis of various theoretical
models. In particular, the following estimates of £ are given

in Refs [5 55 ¢ =-1.13x10"% au. and
{H=-177 x 1072 a.u. The components of the resistivity
tensor are related to ¢ by the expressions
0, O.xy
Pax :W%’ Py :m- (159)

We shall now discuss the results obtained and then
compare them with the published experimental data of
Stark [101] and Falicov, Pippard, and Sievert (FPS) [55].
The theoretical dependences were fitted to the experimental
data by the least-squares method in a wide range of values
of Hg (2—6 kG). The optimal values of the parameters were
found by the simplex method [66]. The results of this
procedure are plotted in Figs 12 and 13, and the para-
meters found are compared with the known values in Table
1. The following quantity is used in this table:

. m

80=280 5, (160)
m

The value of b lies within the limits (0.67—-0.695) x

10* kG Q' m™". This value can be used together with
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Figure 12. Oscillations of the off-diagonal component of the
conductivity tensor o,,H: (a) thcoretical results [55]; (b) theoretical
results taking account of the SOC [66]; (c) experimental curves [101]
taken from [55]. The parameters used in calculation of the theoretical
curves are listed in Table 1.

the integral (157) to find the ‘experimental’ estimate of
the half-width of an MB belt on the needles:
PP &~ (1.8 —1.9) x 1072 a.u., which is close to the theo-
retical estimate of the half~width of the belt on the monster,
pheor — 1,95 x 1072 a.u. [55]. This agreement supports the
adopted model.

It should be noted that the integral with respect to p,
encountered in the calculation of ¢H, was calculated in
Ref. [55] by simple summation. The interval 0 < p, < p,,
was split into 20 layers equidistant from one another. It
follows from our calculations [66] that the adoption of this
procedure in the calculation of an integral of the type
described by Eqn (154) leads to errors of the order of
20% —40%.

We carried out numerical integration by adopting one of
the modifications of the Simpson method (the relative error
did not exceed 1% and the number of layers in weak fields
H < H, reached 320).

Naturally, the FPS results [55] can be obtained also
from our formulas if the following changes are made:

(1) it is assumed that a = 0, i.e. that the SOC does not
affect MB;

(2) if the dependence on the spin of conduction electrons
is removed from all formulas, i.e. if the spin index is

1 ] 1 ] ]
0 5 10 15 20 25

H/kG

Figure 13. Oscillations of the field dependence of the
magnetoresistance p,, : (a) theoretical results [S5]; (b) theoretical results
taking account of the SOC [66]; (c) experimental curves [101] taken
from [55]. The parameters used in calculation of the theoretical curves
are listed in Table 1.

Table 1.Parameters of theoretical curves plotted in Figs 12 and 13,
compared with the results reported in Ref. [SS5].

Calculation parameters Ref. [55] Ref. [66]
a/10® kG* Q7' em™! 0.17 0.17
b/10* kG* Q7' em™ 0.67 0.67

Hy (HS)/kG 2.7 (=) 3.0 3.7)
50/107° a.u. 424 4.05
PSP /1072 a.u. 2.0 1.83
¢/107% a.u. —1.77 —1.13

89 = ggmy/2m —1.22 0.41

o — 0.75

dropped and no summation over the spin is carried out;
the conductivity can then be calculated from an expression
which differs only slightly from the integral (154);

(3) if the phase acquired by a conduction electron in a
revolution around a small orbit is altered:

ch
Vo — Vo = oH So(p2) + 70>
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where y, = —3.84 is a parameter introduced in the theory
and independent of the magnetic field; in the FPS theory
[55] this parameter is needed to improve the agreement
with the experimental results and to estimate the value of
the g factor of conduction electrons in a needle.

Since the spin contribution to the phase, given by
expression (124), is determined to within 2nr (r is an
integer), our value of g° can be used, in combination
with mg/my = 0.0075 [8], to estimate the g factor of
conduction electrons in a needle: gg~ 1094 642r. In
view of the theoretical restriction on this value, g4 < 266
[91, 105], we obtain gg~ 109, in agreement with the
estimates given in Ref. [91].

The value of the SOC parameter « = 0.75 confirms that
in the case of Zn the SOC has a strong influence on the
spectrum in MB regions. In this sense this metal can be
regarded as a test ground for checking the theory of spin-
flip MB (see Sections 5 and 6, where we shall consider the
de Haas—van Alphen effect and conduction-electron spin
resonance). It is evident from expression (50) that inclusion
of the SOC increases somewhat the interband gap 4: the
increase is by a factor of (1 +a2)'/4 ~ 1.1, compared with
the estimates based on the breakdown field HY in the
absence of the SOC. The value of the breakdown field H,,
which depends on the SOC parameter a is given in Table 1
and is in agreement with the experimental data [106].

The proposed theory, like the FPS theory [55], agrees
poorly with experiments carried out in low fields (H < Hy).
This is manifested by the appearance of hf oscillations with
a considerable amplitude, which does fall when the field is
reduced but not as fast as in the experiments. However, this
is associated with the limited nature of the adopted model
of intermediate MB and of the effective path method. The
role of small-angle scattering may increase in weak fields. In
fact, even partial stochastisation of the motion of conduc-
tion electrons along small orbits should result in flattening
of the sharp peaks of the MB oscillations [57, 58].
Naturally, in the case of completely stochastic MB, the
oscillations disappear completely, as demonstrated by the
simple model (Fig. 10). The theoretical curves plotted in
Figs 12 and 13 for weak fields (H < 2 kG) are based on the
experimental dependences. These weak-field parts of the
theoretical curves are shown dashed in the figures.

It follows from Figs 12 and 13 that a consistent theory
of MB which takes account of spin flip explains much better
not only the nature of the behaviour of the experimental
curves (appearance of a fine structure in the form of double
peaks), but also ensures a satisfactory quantitative agree-
ment with experiments in the case of such complex
oscillations. Hence, it follows that under the experimental
conditions described in Ref. [101] the intermediate MB
regime is observed.

5. The de Haas - van Alphen effect under spin-
flip magnetic breakdown conditions

5.1 Fundamentals of the theory of the de Haas -

van Alphen effect

Oscillations of the thermodynamic potential and of its
derivatives in a magnetic field, i.e. the de Haas—van
Alphen (dHvVA) effect, provide reliable information on the
energy structure of metals and Fermi surfaces [8, 11-13].
These oscillations appear because discrete quasiequidistant
energy levels cross consecutively the Fermi energy ¢z when

the magnetic field is varied. This is possible only in the
presence of closed electron orbits on the Fermi surface and
in the semiclassical approximation these orbits should
satisfy expressions (1) and (8).

Let us recall the main principles of the theory of the
dHVA effect in its general form. It is well known (see, for
example, Refs 11, 13]) that, in the case of a system which
obeys the Fermi—Dirac statistics and has states with an
energy E, the thermodynamic potential is given by the
expression

—E
Q:—kBTZln (l —|—expuk T >
B

Here and later in this section the quantity p is the chemical
potential equivalent to &r. The summation in expression
(161) is carried out over all possible states. The energy
E =E(n,p,,0) is defined as the solution which satisfies the
implicit equation (19) with the quantum number n.

The oscillatory part of the thermodynamic potential
(161) is calculated in the standard way [11, 13, 74]. As usual,
fast oscillations of the cosines that contain the semiclassical
phases described by formula (15) have the effect of selecting
the values of Sé(E7 p.) which are extremal in terms of p.
when E = g (the index ¢ identifies the extremal sections).

The expression for the oscillatory part € of the
thermodynamic potential per unit volume of a metal is

0=3"0;,
¢

(161)

3/2 5/2 ) 12&1-1/2
~€: e ehH>'"|d°S (162)
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RTRDRS Fé(E7 p:) 1 T
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where
cS¥(E, p.)
= < 163
¢ 2mehi (163)

is the frequency of the dHvA oscillations [8] which can be
expressed in terms of the area S¢ of an extremal section of
the Fermi surface described by formula (158),

Tag/H
R, = Tae/t (164a)
sinh(rTag/H)
is the temperature factor, and
Rp = exp (— %) (164b)

is the Dingle factor [8].
The quantity xp in expression (164b) is known as the
Dingle temperature, which is governed by the average

scattering time of conduction electrons. Expressions
(164a) and (164b) contain the coefficient
a€:%:1.47%x 10° GK . (165)
In formula (162) the quantity
R, = cos (g rge %) = cos(nrg;) (166)

is the spin factor which appears as a result of superposition
of oscillations of conduction electrons with two spin
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orientations [8, 11, 13, 74]. As in the preceding sections, the
quantity

me
167
o (167)

8 =8

represents the spin splitting parameter.

It should be pointed out that in the case of free
conduction electrons (g; = 2, m; = m) the factor described
by expression (166) is simply (—1)". The spin splitting is
exactly equal to the separation between the Landau levels.
This remains approximately true also of bands which are
characterised by m¢/m < 1, because of the strong SOC, since
in this case the relative deviation of the g factor is
Age/go = m/mg (see Section 2.3 and Ref. [10]) and, there-
fore, we have g; ~ 1. How-ever, even a relatively small
deviation of g° from unity can alter quite strongly the
amplitude of the dHvA oscillations.

Expression (162), apart from the Dingle factor (164b),
was first derived by I M Lifshitz and A M Kosevich [107]
and we shall refer to this expression as the LK formula. As
pointed out earlier, in general, the Fermi surface is complex
and has several extremal cross sections [represented by the
sum over ¢ in expression (162)] along a selected direction of
the magnetic field and, consequently, several sets of values
of Fe, mg, and ge. Therefore, the oscillatory quantity
consists of the sum with several contributions and each
of them is described by the LK formula, but with different
values of the parameters.

The LK formula accounts satisfactorily for the exper-
imental results on the dHvA effect. Essentially, it is the
main working formula used in determination of the Fermi
surfaces of various metals [8, 11, 12]. However, the LK
formula ignores the role of MB. ¥

Under the MB conditions the harmonics of the dHVA
effect may include the frequencies Fg, which correspond to
areas that exceed the dimensions of a section of the
Brillouin zone even in the case of metals with a closed
Fermi surface. The MB spectrum of conduction electrons is
known only for specific directions of the magnetic field and
for the symmetric MB configurations (see Sections 3.2 and
3.3). In spite of this, the current ideas on the motion of
conduction electrons in a magnetic feld have proved
sufficient to develop a theory of the oscillatory effects
under the MB conditions [5, 6, 8]. The main feature of the
dHVA effect under the MB conditions is a reduction in the
amplitude ofisolated orbits and an increase in the amplitude
of composite orbits as the breakdown probability increases.

An expression for the oscillatory part of the potential Q
is obtained in Ref. [108] for a simple MB configuration
which has two equivalent MB nodes. It is shown there that
the LK formula has an additional factor which is due to
MB. It should be pointed out that the treatments given by
Kochkin [108], in Shoenberg’s monograph [8] for Mg, and
by Lonzarich and Holtham [103] for Al take into account
the influence of the SOC on the dHvA effect, but they
ignore spin flip of conduction electrons under the MB
conditions. Belokolos [94] deals with MB in TI and
calculates the dHvA effect due to composite orbits.

In general, an oscillatory correction to the thermody-
namic quantity under the MB conditions can be calculated

fTThe LK formula ignores also the magnetic interaction [8], which is
outside the scope of the present review.

by two methods proposed in Refs [6, 56]. They are based on
a calculation of the oscillatory part of the number density of
states ¥ = ¥(E, p.) of a system with given values of E and p..

Falicov and Stachowiak [56] use a theorem relating the
number density of states to the Fourier transformations of
the Green function. This function corresponds to the sum of
semiclassical wave packets which return to a given point of
an MB coupled-orbit network following all possible paths.
Their amplitudes then decrease in accordance with the
number of the MB nodes crossed. The phases are deter-
mined by the areas of the sectors bounded by these paths.
The method proposed in Ref. [56] yields expressions similar
to the LK formula in the case of a one-dimensional MB
network (as shown in Fig. 4d, but for circular orbits and
ignoring the spin splitting) [5, 8], which are also valid in the
case of a more complex real situation of a two-dimensional
MB network observed under the MB conditions in Mg (Fig.
3) [5, 8, 56].

The results given in Ref. [S6] can be stated as follows:
the oscillatory part of the free energy is determined similarly
to the sum in expression (162) over all the closed orbits,
which are possible in an M B network, except that each term
is multiplied by the ‘MB weakening’ factor

Ry = (ip)" ()",

where n; and n, are the numbers of the branching points of
a given orbit at which respectively breakdown and
reflection can be expected. It is assumed that all MB
nodes are equivalent. The appearance of the imaginary
unity i in expression (168) follows from the condition of
conservation of the number of particles in the semiclassical
Pippard model [4, 104]. We have seen that in the
microscopic theory the breakdown gives rise, in the
phase of the wave function of conduction electrons, not
to m/2, which corresponds to i in expression (168), but to a
quantity A which depends in a complex manner on Hy/H
[compare with expression (49)]. In the course of motion
along open orbits the phase acquires a correction Rn; [see
formula (58)]. _

The most consistent derivation of the oscillatory part Q
of the thermodynamic potential without limitations on the
nature and connectivity of MB configurations is given in
Refs [6, 49]. The Slutskin method involves representation of
the oscillatory part of the number density of states %(E, p.)
as a sum of multiple Fourier series (112). The coefficients in
this series are expressed in terms of the products of the s-
matrix elements for a given MB configuration and the
phases are proportional to the areas of closed orbits
composed of semiclassical sections.

However, these theories (see also Refs [S—8]) deal with
the phenomena associated solely with the orbital motion of
conduction electrons under the MB conditions and the spin
properties of conduction electrons are included only in the
formal sense: the SOC is assumed to alter the value of the g
factor of conduction electrons [see expressions (166) and
(167)]. In this connection it would be undoubtedly of
interest to analyse theoretically the influence of the SOC
on the oscillations of the number density of states under the
coherent MB conditions, since spin flip of conduction
electrons associated with MB leads to interference between
semiclassical conduction-electron states with different spin
orientations, which influences the dHvA effect.

(168)
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5.2 Magnetic breakdown oscillations of the number of
states density including the spin degrees of freedom

If we use the definition (112) of the number density of
states Vv(E,p.) under the MB conditions and expand the
exponential function [see formula (70)] occurring in
F; (Y +1i0) [given by expression (114)] as a Fourier series,
we obtain the oscillatory part of the number density of
states

WE.p) = — Z XL:/AiYi(L)'cos(L-'y). (169)

The Fourier coefficients [representing the smooth part
of the probability amplitude, which is discussed after
formula (70)]

A (L) = (F;;(y +i0) exp(—iL-Y))
are real because V() are real and unitary. According to
expression (69), they represent the product of the s-matrix
elements with A = 0 for each specific value of L. It should
be pointed out that, in contrast to formula (4.2.3) given in
Ref. [6], expression (169) cannot be summed explicitly over
the spin of ¢ because of the inclusion of the SOC. We recall
that in our case the spin index is ‘hidden’ in the serial
number i of a section [see discussion following formula
Qo

In the sum over L in expression (169) the only nonzero
amplitudes A, ;(L) are those with such values of L which
generate closed orbits that pass through a section i. All the
closed orbits that begin and end in the section i create all
possible closed j paths. Each jth path passes I times along
the kth section of a closed orbit (k=1, 2, ..., N). For a
given L, these jth paths differ from one another by the
sequence of passing along semiclassical sections of an MB
network. The sequence in which the jth path is traversed
corresponds to a specific sequence of the serial numbers of
the sections [i, ..., i]. The serial numbers of the first and last
terms in the sequence are identical with the first and second
subscripts in A;;(L).

Writing down the given values of L in the form L = rj,
we obtain the following expression for the amplitude
A(L).

Ai,i(L) :./in(’j) ’
where j are the N vectors with the relatively prime integer
components that have no common divisors; r gives the
number of revolutions along the jth path; R,(r) is a
quantity independent of the section number i, but defined
uniquely by the N vector L =1y. It should also be
mentioned that the quantity R,(rj) is equal to the product
of the s-matrix elements which are complex amplitudes of
the probability of a transition between adjacent parts of the
jth path. The number of times that each s-matrix element
occurs in R,(rj) is the same as the number of times that the
jth path crosses a given MB node. Formula (170) states
that the closed j paths [i,...7, ..., i], differing in respect of
cyclic transposition of the terms in the sequence
[, . .i'], correspond to the same amplitude A;;(L).
Smce thcre are sequences [i, ..., i], invariant under the cyclic
transposition (i’ = i), it follows that the quantities R,(rj)
are the same for all such transpositions and that formula
(170) contains the number of such sequences j;.

Therefore, the sum

Z ,‘A_i,i(lh 123 (EXT) lN)

Lylyydy =0

(170)

with N vectors L, which give rise to closed orbits, can be
represented as the sum over j paths. It follows from
formulas (169) and (170) that

— Z T+j Z R, (1) cos(ij7) .

S(E, p.) (171)

where the scalar products of the vectors T+j=T; and
J*¥ =7, give, respectively, the cyclotron period and the
quasiclassical phase acquired by a conduction electron on a
closed orbit when this electron begins its motion with one
spin orientation and after a time T returns to the same
point with the unaltered spin orientation.

Summation in expression (171) is carried out over all
possible values of j, which generate closed j paths.
Following [6], we shall use the term j orbit for all the j
paths corresponding to the N vector j. The vector j in
expression (171) carries information also about the orienta-
tions of the spin of conduction electrons on all possible
closed orbits.

5.3 Oscillatory part of the thermodynamic potential
It is well known that in the absence of MB the quantum
oscillations of the thermodynamic quantities with the
magnetic field can be expressed in terms of the oscillatory
part of the number density of states V(E,p,) with given
values of E and p.. _
The oscillatory part of the thermodynamic potential Q is
calculated from the number density of states (171) in a
manner similar to that used in the standard derivation of
expressions (161) and (162). Therefore, we shall give directly
the final expression for @ per unit volume of a metal
[67, 102]. It should be stressed, in general, that it is not
possible to sum explicitly over the spin projections:

- e V2 enHd?
" \2mch 2n%c

-1/ R,R
> e 2

J¢
CS'é(Ea p:) s T
XCOS[r(jeT‘l"y;‘l‘AJ*zn’y) :l:Z:|

Here Si(E p.)isthezero-spinarea ofaclosed jth orbit; 2myis
the constant phase,T which is independent of MB; Ry is the
temperature factor identical with that given by formula
(164a), except for the following substitutions that represent
new summation over all the j orbits:

(—§:

All the quantities in expressions (172) and (173)
dependent on E and p, are taken to correspond to
E =¢& and p, :pf, where the index & labels the extremal
areas of the j orbits. In the case of closed composite orbits
(for example, orbits that do not fit within the first Brillouin
zone), exactly as in Ref. [6], all the quantities with the index
Jj are composite MB analogues of the corresponding
semiclassical quantities. In particular, yj‘ and A; are given
by the relevant sums of the spin contribution (60) and of the
phase shifts (49) of the wave function of conduction

2¢¢
d%s¢
dp?

(172)

ag — ag, mg — mej, S€—>Sf. (173)

tThe sum of parameters y and A4; give a quantum correction to thc%
usually employed in the Lifshitz—Onsager formula [8, 11].
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electrons which occur along the jth orbit under the MB
conditions.

In the case of the j orbits which are in the same zone and
for which there is no spin flip of conduction electrons for
o # 0 (as is true, for example, of the triangular orbits on the
needles of Zn), it is possible to sum in expression (172) over
the spin projections.t When this is done, the expression for
Q acquires the standard spin factor R(j) = cos(rmg;),
where g; is the spin splitting parameter of the jth orbit
(167) modified by the substitutions (173). In the case of
these orbits, expression (172) is identical, apart from the
notation, with the formula for @ derived in Ref. [6].
Naturally, in the absence of the SOC and spin flip of
conduction electrons under the MB conditions (¢ =0), a
similar result is obtained if the spin states are taken into
account.

We shall conclude this section by noting that expression
(172) ignores the dissipative processes in the electron
system. A reduction in the oscillation amplitude, associated
with the scattering of conduction electrons, is taken into
account by introducing the Dingle factor. It is shown in
Ref. [49] that inclusion of the Dingle factor under the MB
conditions gives rise to an additional factor in expression
(172) and this factor is similar to that given by formula
(164b).

5.4 Amplitudes of the de Haas — van Alphen effect for the
principal orbits in zinc

We have shown in Section 4 that the SOC has a significant
influence on the galvanomagnetic properties of Zn.
Therefore, it would be of interest to apply the theory
developed above in order to calculate the absolute values of
the amplitudes of the dHVA effect contributed by the four
main orbits that appear in the central section (summation
over ¢ will now be ignored) of the hexagonal MB network
of Zn (Fig. 3b). The MB factor R,(rj) with r=1 in
expression (172) can be calculated by a combinatorial
procedure as the sum over j orbits. A simple illustration of
this method, applied to several orbits that appear as a
result of MB in Mg, is given in Shoenberg’s book [8]. For
large values of r such a combinatorial calculation of R (1)
becomes very cumbersome even if the SOC is ignored. It is
then more convenient to employ the integral representation
of Ry (1) [6].

In dealing with the influence of the SOC on the
amplitude of the dHvA effect under the MB conditions
from the fundamental point of view one can use a clearer
combinatorial method when r = 1. This makes it possible to
deduce relatively simply the MB factor R, () and to carry
out the summation over the spin in expression (172).

Expression (172) for the first harmonic (r=1) but
without the Dingle factor gives the magnetic susceptibility
of the jth orbit:}

dM/_ e 3/2 m I/2 kBTF‘j2
dH  \ch m;)  H>?sinh(q,T/H)

. 2nF; ‘
xS RuG)eos (54 + o).
g

(174)

T This is true also of closed loops, which may possibly occur in the j orbit
and which belong to the same band.

fOnly the longitudinal component of the magnetic susceptibility
dM / dH = —(BZQ/BHZ)ﬂ is considered; here, u is the chemical potential
[see formula (161)].

where Fj is the frequency (163) of the dH VA oscillations for
the jth orbit and ¢ is a constant (for a fixed field H ) phase,
the value of which is unimportant.

The mass ratio m;/m in the susceptibility (174) follows
from the factor [9°S,/dpZ| in expression (172) for circular
orbits and those formed from arcs of a circle (see, for
example, the results reported for Mg in Ref. [8], chapter 7),
which is true also of Zn (Fig. 3b).

The susceptibility expression (174) is derived ignoring
the difference in respect of the spin§ in all the composite MB
quantities [apart from the spin contribution to the phase ~y;
and the MB factor R,(rj), which governs the amplitude Q].
Moreover, the index j is treated as a scalar quantity,
i.e. these MB quantities are replaced with their semiclass-
ical analogues.

The scalar symbol j in expression (174) applies to a set of

j orbits of one type, which enclose the same zero-spin area,

but differ from one another in respect of the spin
orientation in at least one of the sections. Partial summa-
tion over j has to be carried out over sets of such orbits and
this effectively represents spin averaging.

Since a semiclassical packet crossing M Bnodes splitsinto
three [see formula (61)], it follows from the structure of the s
matrix (47), where we should substitute 4 =0 [6, 9], that
R, (1j) for a closed jth orbit is given by

i () ()"

where ny; is the number of breakdowns without spin flip;
ny; is the number of reflections; n3; is the number of
breakdowns with spin flip on the jth orbit; the plus and
minus signs for each MB node are defined in accordance
with rule (51). For simplicity, we shall assume that all MB
nodes are equivalent. The main difference between the
above expression and the semiclassical formula (168)
is—apart from the difference between the phases discussed
earlier —the occurrence of breakdowns with spin flip.

The identical MB factors in expression (175) and the
different signs in front ofy; in expression (174) for the phase
yield, after averaging over spin, a factor Ry(j) = cos (ng;)
for any pair of two j orbits which are of the same type. In
the final analysis, the field dependence of the amplitude
dM/dH for the jth orbit is governed by the sum over all
the orbits which are of the same type, subject to the
difference between the spin orientations, and each term
in the sum should be multiplied by its own MB factor (175)
and also by the factor R(j) which appears as a result of spin
averaging. Moreover, some paths are characterised by an
additional weighting factor C;, which is related to the
symmetry and is equal to the number of ways which can
be used to construct a given orbit j [8, 56].

We shall consider a hexagonal MB network of Zn and
we shall take account of the doubling of the number of
sections because of the SOC (Fig. 3b). As in the case of Mg
[8], we shall identify four main types of orbit (Fig. 14): ® is
a giant circular orbit which appears because of MB; 0 is a
triangular orbit associated with needles; 4 is a diangular
orbit combining large sections of the monster with small
sections of the needles; y is a hexagonal orbit associated
with the monster. The cross-sectional area of the monster is
assumed to be negative, i.e. it is assumed that a conduction

(175)

§ This is usually done in the derivation of the formula for Q, because
gugH < .
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electron follows a whole orbit opposite to the directions of
revolution along electron orbits ®, § and 4. Some of the
orbit characteristics are listed in Table 2.

Thecircular orbit ® has twelve M B nodes and it splits into
six pairs of large sections and six pairs of small sections,
identified by the symbols L (large) and S (small), respectively.
[t is clear that the remaining orbits can be composed of L and
S sections. This splitting makes it possible to determine the
spin contributions y; of all possible orbits shown in Fig. 14
and to calculate directly the product of the factors

Cth(j) R())

by the procedure described above.

y [

(176)

w2

Figure 14. Principal orbits in the hexagonal MB network of Zn
calculated taking into account the spin degrees of freedom. The black
areas are the points of reflection of conduction of electrons from MB
nodes and the shaded regions are MB positions. The characteristics of
the orbits of conduction clectrons in the absence of spin flip are given
in Table 2.

Table 2. Characteristics of the orbits shown in Fig. 14.

Orbit  n1; Weighting No.of No.of dH VA frequency
type m factor C; break-  reflections F;/MHz
downs  ny;
n]j+n3j
® 1 * 12 0 831.26 [85]
0 0.0075 [85] 2 0 3 0.0158 [109]
A 0.337 [8] 3" 4 2 47.179 [110]
x 0.0986 [8] 1 0 6 543.31 [110]

*The weighting factor is given for just one orbit (ny = 0).

Calculation of the total amplitudes (176) for the
triangular and hexagonal orbits presents no difficulties
because there is no spin flip on these orbits. For exam-
ple, the phases in expression (174) corresponding to such
orbits with opposite spins are yy & 3yg and y, & 6y,, where
7; = 2nF;/H + ¢ is the phase acquired by a conduction
electron when spin is ignored (j =6, x): y. and yg are the
spin contributions to the phase in the large and small
sections, respectively. When these phases and the data of
Table 2 are used in spin summation, the result is

CoRy(0) Ry(6) = 2(1 — w) cos(37s). a7

CyRy(X) Ry(x) = (1 — w)’ cos(6y,) (178)

for the triangular and hexagonal orbits, respectively.
The total amplitude, consisting of the contributions
described by formula (176), can be determined for the

diangular orbit 4 taking account of the spin orientation in
each of the sections (Fig. 14). In general, there are five orbit
pairs which are of the diangular type. For example, the
motion of a conduction electron without spin flip corre-
sponds to the pair of phases

72 £ 207 + 295)-

The phase with the plus sign corresponds to the motion of
a conduction electron along external spin-up sections
without spin flip, whereas the phase with the minus sign
represents the motion of such an electron along internal
spin-down sections. For this pair expression (176) is of the
form

3(w°)” (1= w) cos2(y. +2y5)].

Inclusion of the remaining orbits of this type leads to the
following total MB amplitude, which appears in expression
(174) and in which the SOC (a # 0) and the spin contribu-
tions of the phase are taken into account:

> CaRy (A R(A) =306 (1 = w){cosl2(r1. +295)]
A

+Ha?[eos(y +2y5) cos(2ys — ) — 1] (179)

ot cos2(2s — )]}

In the case of the circular ® orbit, if spin flip is taken
into account in each 12 MB nodes (Fig. 14), the result is 25
orbit pairs differing in respect of the spin orientation in the
large and small sections. Inclusion of the symmetry of these
orbits in this analysis gives 57 products described by
expression (176) with different weighting factors Cg,
even powers of the numbers n;, and n3,, and combinations
of the phases yg and 7y, .

By way of example, we shall show how to derive some of
these products. For example, in the case of motion of
conduction electrons without spin flip along the circular
orbit ® (Fig. 14), it is found that the phases, described by
expression (174) and corresponding to orbits with opposite
spins, are

Yo £ = Vo £ 6(y +7s) »

where gy is the spin splitting parameter of the circular
orbit. The pair of phases

Yot 6(67s —2y.)

corresponds to one pair of orbits, which differ symmet-
rically in respect of the spin orientations. The sign which
occurs in the phase in front of y; (yg) determines the spin
orientation in a large L (or small S) section. It is clear that
the replacement of the up spin (1) with the down spin ()
transforms one of these orbits into the other. In this case
we have n3; =8 If all possible orbits on which a
conduction electron acquires this phase are included,
spin averaging yields

15(w0)2 (ws)4 cos(2yg — 6y.)-

Another pair of phases yg & 4(ys +y.) corresponds to
two pairs of orbits with different serial numbers of spin-flip
breakdowns. The spin orientations in one small and one
large section are then opposite to the orientations in the
other sections. If all possible orbits are included and the
sequence in which conduction electrons cross all M B nodes
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is taken into account, spin averaging gives the following
expression for these orbit pairs:

—12(w")* w* cosfA(ys + )], 24w’ (w*)” cosfd(ys + 1))

respectively.

The contributions of the remaining orbits are found
similarly. The final expression for the total MB amplitude
of the circular orbit, which appears in expresison (174) after
spin averaging, is

D CoRy(@) Ry(®) = (W")° [cos (67,) + &’ Z(1) + «*Z(2)

+0°Z(3) + od*Z(4) + 2 (5) + a'? cos (6y_)],  (180)

where the following notation is used to simplify the above
expression:

Y+ =Ys+tVs Y-=Vs— >

X2(1) = 12{cos y_[cos(5y,) + cos(3y,) + cos y,]
~feos(47.) +cos(27,) + 1]},

2(2) = cos(4y,)[30 cos(2y_) + 24]
—48 cos y_[2 cos(3y,) + 3 cos y,]
+24 cos(2y,)[2cos(2y_) + 3]
+27 cos(2y_) + 96,

2(3) = 18 cos(3y,)[cos(3y_) + 4 cos y_]

+18 cos(3y_)[cos(3y,) +4cos y,]
—36cos(2y,)[2cos(2y_) +3]

—36 cos(2y_)[2cos(2y,) +3]

+288 cos y, cos y_ +4cos(3y,)cos(3y_) — 184,

22)—-24), X(1)— 2(5)

in the substitution y, —y_, y_ —y,.

In determination of the spin corrections y; and yg it is
natural to assume that the cyclotron mass mg and the g
factor g, of the circular orbit ® are equal to the mass m and
to the g factor g =2 of a free electron, since this orbit
corresponds to a section of the Fermi sphere in the model of
almost-free electrons. The spin splitting parameter for the
circular orbit is then unity, i.e. 6(y. +ys) =7 In our
analysis of the galvanomagnetic properties of Zn (Section
4.4) we derived the spin splitting parameter gj for a needle,
which is 0.41 [see formula (160) and Table 1]. If the spin
contribution 3yg in expression (177) for a triangular orbit is
ngp, we obtain

=58k =g (-2 (181)

Substitutionofexpressions(181)intoformulas(176)—(180)
and substitution of the cyclotron masses and dHVA
frequencies listed in Table 2, as well as of the parameters
Hy=3.0kG and a = 0.75 from Table 1, gives the resultant
oscillation amplitudes de/dH for each orbit. Fig. 15
shows field dependences of the amplitudes |[dM;/dH]|
calculated for the four orbits discussed above. The tem-
perature factor R,, where it is assumed that 7 =1 K, is
included to ensure a closer approach to reality.
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Figure 15. Magnetic-field dependences of the dHvA amplitudes
obtained at 1 K for the principal orbits in Zn in the presence
(continuous curves) and absence (dashed curves) of the spin degrees of
freedom: (a) logarithmic field dependence for all types of orbits; (b)
dependence for a circular orbit; (c) dependence for a triangular orbit.
The graphs are plotted ignoring the Dingle factor. The parameters
used in the calculation of the curves are listed in Tables 1 and 2.

As in the case of the theory of MB without spin flip,
developed for Mg [8, 56], an increase in the field reduces the
oscillations of the y and @ orbits, so that the oscillations of
the composite ® and 4 orbits become dominant as the role
of MB increases. Inclusion of the spin degrees of freedom of
conduction electrons and of the SOC reduces significantly
the amplitudes of the dHVA oscillations for all the orbits
except for the circular one. This is due to the fact that the
orbit ® crosses a large number of MB nodes and at each
MB node we can expect spin flip of conduction electrons.
This increases the number of possible paths each of which is
determined by its own MB amplitude.
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It therefore follows that the probability of finding
conduction electrons of the opposite spins on this orbit
increases. This probability depends in a complex manner
[see expression (180)] on the SOC parameter o and on the g
factors of different sections.

The behaviour of the oscillations associated with the 6
orbit, which passes along a needle in Zn, has been used as
one of the early proofs of the existence of MB [3, 4]. If spin
is included, the maximum amplitude (Fig. 15¢) is more than
halved. The appearance of the factor R, = cos(mgp) in
expression (174) does indeed account satisfactorily for
the experi-mentally observed [105] strong dependence of
the amplitude of the dHVA oscillations on the g factor of
the needles.

We can summarise by saying that, in general, MB
amplitudes depend in a complex manner on the SOC
parameter o and on the g factor.

5.5. Oscillations of the de Haas— van Alphen effect

in the case of magnetic breakdown and spin splitting

of the Landau levels at ‘needles’ in zinc

It would be of interest to substitute the characteristics of an
MB system (in particular, the parameters of the needles),
obtained by comparing the theoretical and experimental
galvanomagnetic properties of Zn (Section 4.4), in the
theoretical expressions for the dHVA effect and to compare
them with the familiar experimental results. We are aware
of just one investigation in which the spin splitting of the
energy levels in a magnetic field under the MB conditions
has been detected in the dHVA oscillations representing the
needles in Zn at T =1.2 K [105].

This comparison of the theory and experiment is more
of illustrative nature, because in this case of a triangular
orbit the SOC does not play such an important role as in the
case of diangular or circular orbits, because there is no
conduction-electron spin flip during motion along these
orbits. Fig. 16a give the experimental dependence of the
second derivative of the magnetisation with respect to the
magnetic field.

Generalisation of the theory of the dHVA effect under
the M B conditions to include the SOC, which is done in the
preceding section, makes it possible to determine
d*M (H, T)/dH? for the triangular @ orbit of Zn (Figs
3b and 14) in a more consistent manner than is done in
Ref. [105]. The field derivative of expression (174) contain-
ing the Dingle factor yields [67]

EMo(H, T) (e (m\'? a4nksTF}
dH*>  \ch mg HO2

Cot™ cos(nrgy)

XZ r3/2 exp(_agrxD/H) (182)
r=1

sinh(agrT /H)

2nF,
xsin[r( 11;6+3A—2ny) —g],

where xp is the Dingle temperature [see formula (164b); 34
is the sum of the phase shifts contributed by three MB
nodes [formulas (49)]; agis defined by expression (165)
subject to substitutions (173); gp = 0.41 (Table 1). The
other parameters which occur in expression (182) have the
values used in plotting the graphs in Figs. 12, 13, and 15
(Hy =3 kG, a=0.75, Fy = 15.8 kG).

The theoretical curve obtained for 7' = 1.2 K, assuming
that the Dingle temperature is xp = 1.5 [105] and that

d’M /dH?

H/kG

Figure 16. Oscillations of d’M/dH? for needles of Zn at T =12 K.
The experimental (a) and theoretical (b) curves are reproduced from
Ref. [105]. The values of the parameters used in the calculation of
curve (c) are given in the text.

y = 0.21, is plotted in Fig. 16¢. It is quite clear from Figs 16a
and 16c¢ that the theoretical and experimental curves behave
in the same way, that the frequency dependences are the
same, and that both curves include strongly split peaks. We
are of the opinion that this is evidence of a qualitative
agreement between the results, supporting further the
estimates obtained in Section 4.

Since there is no spin of conduction electrons during
their motion along a triangular orbit, the curve in Fig. 16¢
does not differ significantly from the theoretical curve in
Fig. 16b, which is taken from Ref. [105]. However, there is
an important difference between the approaches used there
and here: the results of Ref. [67] are derived consistently
from the MB theory which takes into account the spin
degrees of freedom from the microscopic point of view (this
applies in particular to y, and «) [9], whereas in Ref. [105]
the phenomenological parameters, describing the spin
splitting of the peaks, are found by fitting the theoretical
curve to the experimental results. O’Sullivan and Schirber
[105] were forced to use the characteristic breakdown field
Hy =15 kG in order to achieve a better agreement with the
experimental results. However, this value differs from
Hy~3 kG found from other experiments [5, 8]. In our
analysis [67] we used the parameters (dHVA frequency, H,
a, and the g factor of conduction electrons on a needle)
deduced by an independent method in Ref. [66] from the
galvanomagnetic properties of Zn, which were in good
agreement with the published data.

It should also be noted that the phase in the expression
(182) includes the quantity 4 [formula (49)], which depends
in a complex manner on the field H and on the breakdown
field H, renormalised by the SOC. The MB shift of the
phase A follows from the solution of the quantum
Schrodinger equation in the MB regions and this shift
depends strongly on the ratio Hy/H. In our case the value
of 34 ranges from —0.49 for H = 1.67 kG to —1.02 for
H =4 kG when the SOC parameter is ¢ = 0.75. Only the
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constant phase shift 2wy is considered by O’Sullivan and
Schirber [105]; the parameter y should then assume one of
two values (0.32 or 0.82) in order to describe the positions
of the spin-split peaks.

When this difference between the phases is included, we
find that the dips between the peaks, which correspond to
different spin states, are less pronounced (Fig. 16¢) than
those predicted by the old theory (Fig. 16b), which in our
opinion agrees better with the experiments (Fig. 16a).
However, as in Ref. [105], there remains a fairly large
dis-crepancy between the experiment and theory in the
position of the maximum of the oscillation amplitude,
which in the case of the theoretical curve is shifted towards
weaker fields:

HI®r — 075 < HP, ~ 2.2 kG.

Unfortunately, we were unable to compare the ampli-
tude characteristics more rigorously, since the experimental
results were plotted in arbitary units and we did not know
at what intervals of the field H the measurements were
made.

The discrepancies between our theory (describing the
dHVA effect under the MB conditions, taking account of
the SOC) and experiments may also be related to such
phenomena as the magnetic interaction or may be asso-
ciated with the inhomogeneities of a sample ignored in the
theory. The inhomogenecities may lead, as pointed out
earlier, to an increase in the role of low-angle scattering
in the course of motion of conduction electrons along a
small triangular orbit, partial loss of coherence, and
consequent smoothing out of the oscillation peaks.

6. Influence of magnetic breakdown on
conduction-electron spin resonance in pure
metals (Zn and Mg)

In the preceding sections we have considered the
phenomena associated with the orbital motion of conduc-
tion electrons under the MB conditions. We demonstrated
that the spin of conduction electrons and the SOC alter
considerably the main dynamic characteristic of M B, which
is the s matrix, and complicate considerably the spectrum
of conduction electrons under the MB conditions including
a change in the electron g factor.

In this connection it would undoubtedly be of interest to
consider the influence of MB on such purely spin phenom-
ena as conduction electron-spin resonance [98, 99, 111, 112].
This resonance was first studied experimentally by Stesmans
and Witters [16]: they explained the low intensity of the
resonance signal obtained for Zn by the occurrence of MB.
Theoretical estimates of the influence of stochastic MB on
conduction-electron spin resonance in Zn and Mg were
given in Refs [17, 68].

Before discussing this resonance under the MB condi-
tions, it is useful to consider qualitatively the influence of
the Fermi surface anisotropy on the main characteristics of
the resonance.

6.1 Conduction-electron spin resonance in metals

with a complex Fermi surface. ‘Motional narrowing’

The first theory of conduction-electron spin resonance in
metals was put forward by Dyson [98], who took account
of the diffusion of conduction electrons out of a skin layer
on the basis of a model of quasifree electrons, i.e. by

regarding these electrons as a gas of noninteracting
quasiparticles with the dispersion law
2

D
8(p) = zm* ’

where m”* is the effective mass of conduction electrons.
Dyson’s theory is in good agreement with the experimental
results, particularly those obtained for alkali metals (see, for
example, Refs [111, 112]).

However, as is well known, the majority of metals have
anisotropic and very complex Fermi surfaces [11, 12, 90].
These are the metals that have been investigated intensively
in the last 20—25 years by the methods of conduction-
electron spin resonance. The specific dependences of the
signal intensity, and of the width, profile, and position of a
resonance line on the frequency and temperature do not fit
the framework of Dyson’s theory.

The influence of motion of conduction electrons with
an arbitrary dispersion law on the conduction-electron spin
resonance spectrum of metals was first considered by
I M Lifshitz and his colleagues [99, 113 —115]. They devel-
oped a theory of this resonance on the basis of the solution
of the transport equation for the density operators. They
demonstrated that this affects the results only quantitatively
(with the exception of one special caset): the change from
one dispersion law to another alters only slightly a
numerical factor representing the dimensionless compo-
nent of the velocity of conduction electrons on the
Fermi surface along a static magnetic field [113].

The resonance in question is therefore an integral effect.
There are no special Fermi surface sections, belts, or points
with ‘effective’ conduction electrons. The contribution to
the resonant absorption is made by all the conduction
electrons which are near the Fermi surface (Ae < gp: the
definition of Ae is given in the footnote discussing the
diffusion of conduction electrons).

The g factor of conduction electrons and the spin
relaxation time 7, are regarded as parameters in Refs [98,
99, 113 —115]. Therefore, there is only one way oftaking into
account the influence of the Fermi surface anisotropy on
conduction-electron spin resonance; it isrelated to identifying
the g factor and the lifetime of the spin state of each
conduction electron, both of which depend on the position
of the Fermi surface: g(p) and 7,(p). The dependence on the
quasimomentum of conduction electrons appears as the
result of influence of the SOC, which couples the orbital
motion and the spin degrees of freedom of conduction
electrons, manifested directly in conduction-electron spin
resonance (see Section 2.1).

(183)

+1f the applied magnetic field is sufficiently strong (w,t* > 1, where t* is
the mean free time of conduction electrons), the coefficients representing
the diffusion of conduction electrons along and across the field are
different. The transverse diffusion length decreases with the mean free
path until it becomes equal to the cyclotron orbit radius [11—13] (see also
Section 4.3). Only the diffusion perpendicular to the face of a sample is
effective in conduction-electron spin resonance. Therefore, if in the
interval Ae > max{kgT, gugH} (T is the absolute temperature) near &g
there are only open constant-energy surfaces of conduction electrons and
their open directions are perpendicular to the boundary of a sample, a
change in the magnetic field direction does not alter the effective
coefficient of diffusion in such a metal [114] (see also [111]). However,
this combination of conditions is not encountered in any of the metals in
which conduction-electron spin resonance has been observed!
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The difference Ag(p) = g(p) — go (see Section 2.3) and
the lifetime t,(p) (see, for example, Ref. [10]) depend on the
ratio of the SOC energy to the energy parameters of the
band structure of a specific metal, and they vary from one
point on the Fermi surface to another. Following the
majority of the previous treatments, we shall discuss
qualitatively the influence of the anisotropic (dependent
on p) g factor of conduction electrons on the investigated
resonance and we shall regard 7, as constant for all the
conduction electrons on the Fermi surface (see, however,
Refs [116, 117]).

A common feature of all the experiments on spin
resonance is the presence of a static magnetic field H,
which splits the spin levels of each conduction electron by
g(p)ugH, and of a weak alternating field H, which is
perpendicular to H (1-? < H). Then the field H induces
transitions between the spin levels of conduction electrons
when a quantum 7w of the alternating field is equal to the
Zeeman splitting: fiw = g(p)ugH. When this condition is
satisfied by the majority of conduction electrons, i.e. whent

hog = (g(p))upH (184)

the absorption of the microwave power of the field H
increases strongly (this happens in what are known as the
reflection experiments).

Another method for the observation of conduction-
electron spin resonance in metals (transmission experiments
[112]) is based on selective transparency of metal plates,
predicted theoretically a long time ago [99, 113, 115]. This
phenomenon occurs because the spin diffusion length &,
traversed by a conduction electron without spin flip, is
usually much greater than the depth of the skin layer 8. In
fact, since the spin relaxation time 7, is practically always
much longer than the mean free time t* of conduction
electrons, it follows that

5~ (D7) ~ (5) P~ 122 > 6, (185)

where v, is a typical velocity of conduction electrons; / is
the mean free path of these electrons; D Nvér* is the
diffusion coefficient (when the field H is perpendicular to
the boundary).

In the transmission experiments the microwave power of
the field is applied to one side of a sample and the induced
transverse magnetisation is measured on the other side. The
thickness of the sample d should be less than d,. Under
resonance conditions the microwave field creates a non-
equilibrium magnetisation of conduction electrons in the
skin layer. These electrons diffuse across the sample and
transport the magnetisation to the other side of the sample
where the power stored in the spins of conduction electrons
in the skin layer is emitted as radiation (for details see Refs
[112, 118)).

We shall now consider the relationship between the
distribution of g(p) on the Fermi surface and the observed
characteristics of conduction-electron spin resonance. We
shall consider particularly the relationship between this
distribution and the experimental g factor g%P, deduced
from the position of the centre of the resonance line, and
also the relationship with the profile and width of this line.
We shall find the contribution of the g-factor anisotropy

tHere, (...) =(2/v) [ps--dS/v(p) represents averaging over the Fermi
surface [11, 12] and v = IFSdS/v is the number density of states on this
surface.

ignoring the factors which reduce the spin lifetime 7, because
of the scattering of conduction electrons by phonons,
boundaries, other electrons, impurities, dislocations, and
various inhomogeneities (for details see Ref. [88]) and which
lead to the homogeneous width of the resonance line.

The simplest interpretation of the observed line width is
as follows. Conduction electrons with different quasimo-
menta (and g factors) resonate in different fields. Had this
been possible, an experiment would have revealed a spin
resonance line whose inhomogeneous width represents the
real scatter of the electron g factor over the Fermi surface
(continuous curve in Fig. 17), given by

1

Aw, ~ 5 o ugH .

Here, 0, = ([s(p) — (g(P))I*)!"* is the rms deviation of the g
factor varying over the Fermi surface and Aw, is the width
of a spin resonance line contributed by the gth factor
anisotropy.

In fact, such an inhomogeneously broadened line is not
observed because conduction electrons do not stand still on
the Fermi surface. In a magnetic field a conduction electron
moves along the Fermi surface either along orbits described
by expression (8) (w,t* > 1, which is obeyed in strong fields
at low temperatures and by pure metals) or they diffuse
because of various types of scattering (w,t* < 1; the range
in which such scattering predominates will be called
arbitrarily the ‘high-temperature’ range). This topic is
discussed in Refs [88, 97]. In the latter case the influence
of the applied magnetic field on the motion of conduction
electrons over the Fermi surface is essentially negligible [12].

At ‘high temperatures’ a conduction electron visits many
points on the Fermi surface in the time 1, (t, > 7). These
points are characterised by different values of g(p) and,
consequently, by different resonance fields H (spectrom-
eters for the investigation of conduction-electron spin
resonance operate at a fixed frequency w). Consequently,
conduction electrons ‘feel’ a certain average field, the
resonance line becomes narrower, and the contribution
of the g-factor anisotropy to the observed line width is
then [10]

(186)

Absorbed power

Figure 17. Schematic representation of the absorption spectrum in the
case of conduction-electron spin resonance [79]. The continuous curve
corresponds to a hypothetical g distribution and the dashed curve
represents a resonance signal which is motionally narrowed.
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2
Aw ~ (Awg)zrrva—gzwfr, (187)
(¢)
where the resonance frequency w, [see formula (184)]
determines the position of the resonance line.

This effect has been understood and explained first in
the case of nuclear magnetic resonance in liquids and it has
been called ‘motional narrowing’ [119]. Therefore, at ‘high
temperatures’ one narrow spin resonance linet is observed
for metals with the g-factor anisotropy. The width of this
line is Aw and it is centred at the frequency w, determined
by the weighted average over the distribution of the g
factors over the Fermi surface (dashed curve in Fig. 17). It
should be pointed out that g™P = (g), and that Aw in
formula (187) depends on the square of the frequency at
which the experiment is carried out.

Cooling increases the momentum relaxation time t* of
conduction electrons when a metal is sufficiently pure.
Consequently, cooling also increases the contribution
made to the line width by the narrowing mechanism
described by formula (187). This increase continues until
i/t becomes of the order of o,uzH. At this stage one can
expect complete disappearance of motional narrowing of
the line [120]. However, motion of conduction electrons
along cyclotron orbits begins earlier, before the scattering
electrons manage to complete several revolutions around
the Fermi surface (in this case we have fiw, = fi/7*). The g
factor is then first averaged along the cyclotron orbits.

In the case of each orbit represented by its own value of
p. the change in the g factor is [79, 81]

Ag(pz) = (g(p»p::const - <g(p)> ’
, of the g

which reduces significantly the rms scatter g,
factor and we then have ([Ag(p.)]*)"/?. For example, in the
case of Al the averaging by the diffusion of conduction
electrons gives o, = 0.469 and the initial averaging over the
cyclotron orbits gives g, = 0.67 [81]. In the intermediate
case (w,t* ~ 1) the averaging procedure is highly specific
[81, 82] and it is associated with the mixed nature of the
motion of conduction electrons in a magnetic field (this
point is discussed later).

It should also be pointed out that the existence of the
scatter of the g factors of conduction electrons on the Fermi
surface gives rise to a parameter of the transmission
resonance: this parameter has the dimensions of length
and it limits the depth of penetration of the nonequilibrium
magnetisation [118]. The parameter J, represents the
distance to which the spins of conduction electrons diffuse
without loss of coherence:

(Aa)g)2
In this case the propagation of a signal across a metal plate
is limited by the shorter of the two characteristic lengths J
and J,. It should be noted that if 6, — 0, then J, — oo and
the results of Ref. [118] are identical with the conclusions
reached in Refs [99, 113].

It therefore follows that g is obtained from the
distributed g(p) by averaging over the whole Fermi sur-
face. However, the averaging procedure varies
somewhat depending on the nature of the motion of

(188)

(189)

exp

t1n the case of thin samples, of thickness d < d, the profile of the spin
resonance line of conduction electrons is Lorentzian, but for thick
samples the line has the Dyson profile [118].

conduction electrons on the Fermi surface. There is a
change also in the important parameter o,, which repre-
sents the rms scatter of the g factor. In contrast to
conduction-electron spin resonance, the dHvA effect can
be used to find the g factors of the extremal orbits (see
Section 5) and, consequently, ¢ =g(p?) from the
experimental results; here & is the serial number of the
extremal section.

6.2 Models of the Fermi surface with g anisotropy

In calculation of the g factor of conduction electrons in
metals it is natural to use the real Fermi surface and the
real band structure of a metal. However, we shall consider
here the model Fermi surfaces used in the theory of
conduciton-electron spin resonance. The simplest model,
frequently used for calculations based on this theory [11,
98, 111-112], is that of an electron gas described by
expression (183) characterised by g(p) ~ go. In this case
the Fermi surface is a sphere. The model agrees best with
experiments carried out on univalent metals. Calculations
have shown (see Ref. [121]) that in the case of alkali metals
we have |Ag(p)l < 0.1, and the experimental value Ag®™®
varies from 107 (for Li) to 1072 (for Cs, which is the alkali
metal with the strongest SOC) [122].

In the case of polyvalent metals the model Fermi surface
can also be a sphere. (This sphere can be used to plot the
Fermi surface of a metal in the approximation of almost-
free electrons [92)]. The g factor of conduction electrons,
dependent on p, is distributed on the sphere and the sphere
extends over several Brillouin zones. the spherical model
has been applied most frequently to Al. This model of the
Fermi surface with a hypothetical distribution of the g
factor has been found to account for the increase in the
width and for the shift of a resonance line as the frequency
w is increased in the case of Al, Cu, and Ag: these effects are
attributed to the simultaneous influence of the g-factor
anisotropy and of the Fermi-liquid interaction (first
experiments were reported in Ref. [123] and the theory
was given in Ref. [79]). This has made it possible to find the
value of the spin parameter B, of the Fermi-liquid inter-
action from the shift of the resonance line in the case of Al.

The spherical model has been developed further by
including the results of a calculation of the g factors of
conduction electrons in Al reported in [81]. It has been
found that in the second and third Brillouin zones near 24
W pointsf the g factor of conduction electrons g(p) can
reach values of the order of hundreds [in this case the
energy gap A(p) is small near the W points!]. This
circumstance is taken into account as follows [82]. There
are 48 (24 x 2) small regions scattered over the Fermi
surface and they correspond to the vicinities of the real
W points. Each such region is characterised by a large and
constant shift of the g factor |Agy |~ 10°, and the average
over the Fermi surface is (dgw(p)) =0. Outside these
regions we have Ag = 0. This simple model can account by
the ‘motional narrowing’ for the linear frequency depend-
ence of the width of a spin resonance line at moderate
temperatures (w,t* ~ 1).

As a rule, the Fermi surface of polyvalent metals
consists of several disconnected sheets, which are located

f Aluminium is an hcp metal and its Brillouin zone is a cubo-octahedron.
The W points are located at the intersections of this zone with
quadrilateral and hexagonal faces [90].
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in different zones. If we assume that small-angle scattering
of conduction electrons predominates, we find that this
leads to the establishment of an equilibrium on each Fermi
surface sheet separately. This happens if the characteristic
time of the scattering of conduction electrons, which is not
accompanied by the transfer of the electrons from one sheet
to the other, is less than the characteristic intersheet
scattering time. Under these conditions it is useful to
employ a model of a metal postulating the existence of
several conduction electron groups.

Each group can be assigned its own average character-
istics such as the g factor (g;), the spin (7,;) and momentum
(t,;) relaxation times, etc., depending on the complexity of
the model. For example, such a model has been proposed
for Al [77] and the coupling between the conduction
electrons belonging to the different groups is provided
by three mechanisms: intergroup scattering of conduction
electrons at a frequency 1/7;, exchange interaction, and
diffuse reflection of conduction electrons at a boundary. It
should be noted that experiments [16] on conduction-
electron spin resonance in Zn have revealed a possible
coupling between such groups by MB.

The proposed model predicts changes in the observed g
factor as a result of cooling because of reduction of the
coupling between two groups of spins, and also because of
the absence of the Fermi-liquid interaction (discussed
above). In the limit of low temperatures a spin resonance
line can have a structure because of the difference between
the g factors of two conduction-electron groups. (This has
probably been observed in the experiments on Mg [16, 124];
see below.) Moreover, it has been shown that diffuse
(multichannel) reflection from a boundary without spin
flip influences the spectrum even in the case of relatively
thick samples: it transfers spin excitation from a weakly
damped mode (when g,; is small) to a strongly damped
mode (large ay,).

In concluding this section we note that attempts have
been made [75, 76] to utilise the real structure of the Fermi
surface of Ag and Cu in a qualitative explanation of the
angular dependences of the spin resonance spectrum. A
quantitative analysis can be found in Ref. [125]. The real
Fermi surface has also been used in considering conduction-
electron spin resonance in Refs [16, 81, 126, 127].

6.3 Discussion of the model. The Hamiltonian
of the problem
Among all the metals that have an anisotropic and complex
Fermi surface and which exhibit conduction-electron spin
resonance, the properties of Zn and Mg are best suited to
the study of the influence of MB on this resonance. This is
due to the fairly low breakdown fields of these metals. The
experimental estimates for Zn gives values of H, ranging
from 2.7 kG [5]to 3.5 kG [106] (in Section 4 we gave 3.0 kG
for Zn); the corresponding value for Mg is 5.85 kG [5].
Magnetic fields used in studies of this resonance are limited
to the range H < 10 kG, since only a certain range of
frequencies (v < 10'° Hz) is technically attainable in the
existing spectrometers [16, 111].

Both Zn and Mg are divalent metals with the hep lattice.
In the system of double bands typical of these metals, the
Brillouin zone represents a straight hexagonal prism. These
two metals have complex Fermi surfaces consisting of
unconnected sheets. The part of the Fermi surface impor-
tant in our discussion is shown in Fig. 3a.

The application of a sufficiently strong magnetic field
directed along the sixfold axis gives rise to MB which
couples conduction electrons in the monster and cigars. The
role played by MB in conduction-electron spin resonance
can be made clear on the basis of a simple model postulating
predominance of small-angle scattering of conduction
electrons and establishment of an equilibrium within each
Fermi surface sheet: MB is made stochastic by this
scattering. Such strong small-angle scattering may be on
thermal phonons since the temperatures at which the
resonance is observed in these metals are fairly high:
T =40 K for Mg [16]. Therefore, three groups of conduc-
tion electrons with parameters averaged in each group are
present. Each group has its own g factor and these factors
are not in general equal.

In the adopted model in the absence of MB each group
of conduction electrons should give rise to its own
resonance line, provided this is possible, and each group
should have its own line width, inversely proportional to the
group relaxation time of the transverse magnetisation. The
line intensity should depend on the number of conduction
electrons on the relevant sheets: the strongest signal should
come from the conduction electrons on the large monster, a
weak signal is expected from the electrons on a lens, and a
practically undetectable signal should originate from the
cigars. MB should result in exchange of conduction
electrons and, consequently, it should alter the magnetisa-
tion and broaden the resonance lines of two electron
groups: those belonging to the monster and the cigars.
For simplicity, we shall assume that M B acts independently
of all the factors that might broaden and shift the resonance
line and, therefore, it makes an additive contribution to the
total line width. This assumption will make possible to
ignore, in our subsequent calculations, all possible mech-
anisms of broadening of the resonance line, apart from that
under consideration.

We should bear in mind that in the adopted model the
approximation of ‘instantaneous’ establishment of an
intragroup equilibrium is fairly rough and it is most likely
to overestimate somewhat the contribution of MB to the
resonance line width.

Since in our model the conduction-electron lenses
interact with external magnetic fields independently of
the other electron groups, the model Hamiltonian of two
coupled electron groups subjected to an external static field
H||Oz and to an alternating field H (H < H), perpendicular
to the static field, is [17]:

H=Hy(t)+Hyp. Ho(t)=Hygy +Hz(t). (190)
Here
Hin = ) [6a(p) = &G p oy, (191)
P
is the kinetic energy operator;
Hz (1) = Hy (1) + HY (1)
(192)

= —H-(M, +M,) — H(1)- (M, + 1)

is the Zeeman Hamiltonian; H(r) varies at a frequency w;
Moc SmbB

2= En (193)

At Al A
Unpg Ogg’ Anpe’
p,0,0
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is the operator of projection of the magnetic moment of the
nth group of conduction electrons (x = x,y, z identifies the
component);

N o

Hyp= Z (VTS alp dpy +Heoc)

!
Po:90,0,0

(194)

is the tunnelling Hamiltonian of MB.

Here, n =1 and 2 for the monster and cigars (needles),
respectively; &T;w and d,,, are the creation and annihilation
operators for conduction electrons belonging to the nth
group; p and q describe the quasimomentum spaces of the
bands 1-2 and 3-4, respectively; 05, are the Pauli matrix
elements; V{7 is the tunnelling parameter selected so that
the tunnelling probabilities, proportional to |V{5 |2, are
equal to the corresponding MB probabilities w’ and w®
[see expression (52)]; {p,} and {q,} are the MB regions on
the monster and cigars (needles), respectively.

The rates of relaxation of the transverse magnetisation
of the monster conduction electrons have been calculated by
the nonequilibrium density matrix methods [128]. In
accordance with the adopted model, it has been assumed
that their resonance is far from saturation and the
temperatures of the kinetic (Hy,) and Zeeman (Hy)
‘baths’ have been selected to be equal to the thermostat
temperature 7, which corresponds to the ‘instantaneous’
establishment of an equilibrium in each of the conduction
electron groups. A nonequilibrium state then appears as a
result of the absorption of energy from the alternating field
by the conduction electron spins.

6.4 Discussion of the experiments and evaluation

of the theoretical results

Calculations which are standard in the nonequilibrium
density matrix method [128] have been used to show [17]
that the contribution of MB to the line width of
conduction-electron spin resonance is proportional to the
MB probabilities. The probabilities are known to depend
on the law of inclination of the magnetic field [see
expression (50)]. (Experimental data on the dependence
of the breakdown field on the angle 6 between the field H
and the sixfold crystallographic axis ¢ are reported for Mg
in Ref. [91] and for Zn in Ref. [106]. Consequently, the
total experimental resonance line width can be represented
as the following sum of two components: the ‘residual’
width a independent of MB and the MB contribution

1\ HE)9=0°)
— =a+1 -
(T2> @t )exp( H cos 0> ’

where b is a phenomenological parameter.

The theory should be checked by selecting those
experiments on the spin resonance in Mg and Zn which
have been carried out on single crystals or on polycrystalline
samples but with the ¢ axis orientation. In the case of Mg
these are the experiments reported in Refs [16, 124, 129],
whereas for Zn we are aware of only one investigation [16].

Before actual comparison with experiments, we shall
give the estimates reported in Ref. [17]. In our case, when
‘tracking’ the response from the conduction-electron mon-
ster (n = 1), theoretical estimates of the M B contribution to
the resonance line width can be obtained from the simple
and physically clear formula

( 1 >thcor~Npl;/lB % y
TQMB 1 Pz 2n '

(195)

(196)

where p.; is the longitudinal dimension of the monster; p?’“}
is the thickness of the MB layer; . is the cyclotron
frequency of the monster; N = 6 is the number of the MB
regions; w is the total MB probability given by expression
2).

We shall now discuss the experimental results for these
two metals and use expression (196) to estimate the effect of
MB on conduction-electron spin resonance. The
experiments on Mg reveal a wide resonance line with a
strong angular dependence. The line width is maximal at
0 = 0° and it decreases monotonically with increase in the
angle up to 6 =90°. The experimental points taken from
Ref. [129] are reproduced in Fig. 18.

It therefore follows that the resonance signal can be
regarded as the response of the monster conduction
electrons and the 6-dependent contribution to the line
width can be attributed to the influence of MB described
by expression (195). It is evident from Fig. 18 that the
resonance line width attributed to MB varies from
B£1)x 10% s7' to zero. The parameters of the phenom-
enological experimental curve, described by expression (195)
and plotted in Fig. 18,

(6=0)
a=62x10° s_l, bexp(f 0
H

> =2.9x10% 7!

were found by the least-squares method in Ref. [17] on the
assumption that H = 3.3 kG [124, 129].

On the other hand, expression (196) gives the following
theoretical estimate of the contribution

1 theor
(m) (6=0°)=(9-15) x 108 s7",
T2 1

(197)

where the following values are assumed: the static MB field
Hy=5.85 kG [5], the alternating resonance field H = 3.3
kG [124, 129], and the parameters of the monster
o, =(42-6.8)x 10" s7' [5, 8] and p}B/p,, = 0.14 [5].
We can see that the calculated contribution of MB to
the width of the resonance line of conduction electrons on

1
T /10x s
0 -

5 1 1 | |

0 30 60 90 6/°

Figure 18. Dependence of the total width of a conduction-clectron spin
resonance line on the angle of inclination of a magnetic field applied to
pure Mg. The experimental points are taken from Ref. [129]: T =40
K, resonance frequency 9.2 GHz, g =2.00 +0.01. The position of the
phenomenological curve, described by expression (195), was
determined by the least squares method.
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the monster of Mg is in qualitative agreement with the
experimental results. As expected on the basis of the
adopted model, it exceeds the experimental value by an
order of magnitude. An additional confirmation of the
correctness of this theoretical model is the observation of a
weaker and narrower signal of the conduction-electron lens
against the background of the wide spin resonance line of
Mg [16].

The resonance in Zn generates only a weak and narrow
signal of the conduction-electron lens. The spin resonance
line of the monster conduction electrons has not been
observed becaue, as postulated, of its large width. Accord-
ing to Ref. [16], the failure to observe the monster line
should be attributed to the influence of MB.

We shall estimate the contribution of MB to the total
width of the resonance representing the monster conduction
electrons on the basis of expression (196):

1 theor
(m> O=0)~3x10"s7",
")

(198)

where Ho=2.7 kG, p®/p., =0.05 [5], the alternating
resonance field is H = 6.5 kG [16], and oy =9 x 10° s~
[16, 91].

This estimate is considerably larger than the resonance
line width (6 x 107 s™') reported for the lens conduction
electrons in Ref. [16]. Hence, it follows from our model that
MB does indeed broaden the resonance line due to the
monster conduction electrons. However, it is evident from
the above results and from Fig. 18 that there is an order-of-
magnitude agreement between this result and the experi-
mental width of the resonance line of Mg. Consequently,
without other factors, the effect of MB alone cannot
suppress the line in question, especially as at 8 = 90° there
should be no influence of MB at all on the resonance of the
monster. (This possibility is not discussed in Ref. [16],
although the direction of the magnetic field has been varied.)

It should also be pointed out that in the adopted model
a similar contribution (but independent of 6!) to the
resonance line width can be made by the transfer of
conduction electrons from the monster to the cigars
(needles) because of the scattering on phonons [97, 88].
Estimates show that the wave vector of thermal phonons
kow = kgT /Tis (s is the velocity of sound) remains less than
Ak = 3p/nh (which is the minimum separation between the
parts of the Fermi surface of interest to us) right down to
temperatures Ty,

In the case of Zn, this temperature is Tp,;, = 20 K and for
Mg it is Tpp, = 45—50 K. The velocity of sound is assumed
to be sz, =4 X 10* m s~ and Smg = 6 X 10° m s™". In the
case of Zn it is found that Ak =0.04 a.u.”'. Since the
interband gap in Mg is twice as large, it follows that
Akyig = 2Akz,. Consequently, thermal phonons can only
participate in the effective intragroup mixing (in agreement
with the adopted model) and cannot compete with MB at
temperatures 7 < Tpy,.

7. Conclusions

We shall now summarise our results. From the formal
point of view the mathematical formalism of the MB
theory [6] can be generalised quite simply to the case in
which the SOC is taken into account. It is then necessary to
consider the following points:

—the SOC modifies considerably the conduction-electron
spectrum in the regions of anomalous approach of the
bands;

—the main dynamic parameter of MB is the 4 x4
matrix, which determines the three-channel M B scattering
of conduction electrons; spin-flip MB becomes probable;
—the SOC alters fundamentally the classification of the
states of conduction eclectrons under the MB conditions; it
is not in general possible to separate the spin and orbital
degrees of freedom;

—there is a considerable change in the MB spectrum of
conduction electrons; in particular, complete breakdown
(when the total MB probability is unity) does not reduce to
the semiclassical case: the wave functions of conduction
electrons with oppositely oriented spins become inter-
mingled and states with an effective spin are formed.

The theory of spin-flip MB is supported by the
experimental results on the galvanomagnetic properties
and on the dHvA effect in Zn. This is manifested by the
doublet structure of the M B oscillation peaks. The splitting
in terms of the magnetic field can be used to find the
microscopic characteristics of conduction electrons in a
metal, such as the g factor, the effective mass of electrons,
and the SOC parameter in the MB theory.

MB acts as an additional mechanism of spin relaxation
of conduction electrons. In the case of conduction-electron
spin resonance this may give rise to a characteristic angular
dependence of the resonance line width, which is most likely
in the case in Mg.

The relatively simple examples, with calculations con-
tinued until numerical values have been obtained, thus show
that inclusion of the degrees of freedom in the MB theory
does not reduce to simple summation (multiplication by 2 in
the final expressions). It has recently been concluded that
the consequences of the spin flip of conduction electrons
under the M B conditions have been observed for some pure
metals back in the sixties.

We have deliberately limited our discussion to normal
metals. In systems with a known strong SOC (transition
metals, ferromagnetic compounds) it is essential to take into
account the spin degrees of freedom. However, the
theoretical picture of MB in this case is far from complete
and not so clear. It is necessary to take into account the
collective properties of the spin system, which requires a
separate discussion.

In recent years the interest in MB has extended to an
unexpected, from the point of view of the theory of metals,
direction of organic compounds which become supercon-
ducting at temperatures of about 10 K. A study of the
Fermi surfaces of these organic semiconductors is devel-
oping rapidly and MB can provide much useful and
accurate information on the energy spectra of these
materials.

Not everything is clear in the case of simple metals. We
have discussed above the problem of finding the energy
spectrum (and the g factor) of conduction electrons under
the MB conditions. The characteristics of the MB spectrum
play an important role in the description of the effects due
to coherent MB [6]. Consequently, the spin degrees of
freedom should affect also the completely coherent motion
of conduction electrons under the MB conditions. It is
interesting to consider the problem of the spin character-
istics of the system under the conditions of quantum MB
localisation of conduction electrons.
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We hope that the above discussion not only will
stimulate further theoretical studies of spin dynamics of
conduction electrons under the M B conditions, but will also
draw the attention of experimentalists to the unusual and
fine phenomenon of magnetic breakdown.
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