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Abstract. A review is given of the theory of magnet ic 
b r e a k d o w n with consistent account for the spin degrees of 
freedom of conduct ion electrons. A n analysis is m a d e of 
the spectrum of conduct ion electrons in regions with 
a n o m a l o u s app roach of the orbi ts belonging to the 
different bands . The pr incipal dynamic characterist ic of 
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magnet ic b r e a k d o w n in the form of a four th- rank s mat r ix 
is derived. It is shown tha t the s p i n - o r b i t coupl ing leads to 
a probabi l i ty of spin-flip magnet ic b r eak d o wn . The main 
assumpt ions of the theory of coherent magnet ic b r e a k d o w n 
are summarised and analysed in the case of simple 
examples. The spectrum of conduct ion electrons under 
magnet ic b r e a k d o w n condi t ions is discussed. Appl ica t ions 
of the theory to the ga lvanomagnet ic effects, to the de 
H a a s - v a n Alphen effect, and to the conduct ion-elect ron 
spin resonance are considered. 

1. Introduction 
Cohen and Fal icov [1] pu t forward the following 
hypothesis : in a sufficiently s t rong magnet ic field, conduc ­
t ion electrons m a y tunne l between orbi ts passing a long 
different pa r t s of the F e r m i surface if these orbi ts are 
separated by a small energy gap . This hypothes is has been 
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confirmed strikingly in a per iod of over th i r ty years of 
progress in meta l physics. This hypothesis and the term 
'magnet ic b r e a k d o w n ' ( M B ) | were p roposed by Cohen and 
Fal icov [1] in 1961 to explain an unexpected result repor ted 
by Priestley [2]. Priestley carried out exper iments on the de 
H a a s - v a n Alphen (dHvA) effect in magnes ium and 
discovered a 'g iant ' orbit of area exceeding the cross 
section of the hexagona l Brillouin zone. 

The his tory of M B actually begins with the work of 
Dhi l lon and Shoenberg in 1955 [3], who studied the d H v A 
effect in zinc. However , no t unt i l 1964 did P ippa rd [4] show 
tha t the myster ious fall of the ampl i tude of the oscillations 
associated with 'needles ' with increase in a magnet ic field, 
discovered by Dhi l lon and Shoenberg [3], is a consequence 
of M B . 

N u m b e r o u s exper imental and theoret ical investigations 
which followed the paper of Cohen and Fal icov [1] no t only 
have confirmed the correctness of the initial hypothesis , bu t 
have also revealed a number of interesting p h e n o m e n a 
associated with M B . The major i ty of these results have been 
reviewed in detail by Stark and Fal icov [5] and by K a g a n o v 
and Slutskin [6]. A t h o r o u g h review of the exper imental 
m e t h o d s and the results of investiga-t ions of M B can be 
found in the paper of Alekseevskii, N izhankovsk i i [7], and 
in Shoenberg ' s m o n o g r a p h [8]. 

W e are therefore dealing with a tho rough ly investigated 
effect. Nevertheless , it has been found tha t a consistent 
account for the s p i n - o r b i t coupl ing (SOC) in the theory of 
M B d e m a n d s a review of some of the ideas relat ing to this 
b r e a k d o w n . It has usually been assumed [ 1 - 8 ] tha t under 
M B condi t ions there are two possible types of behaviour of 
conduct ion electrons reaching regions of a n o m a l o u s orbit 
app roach : electrons can remain in their own b a n d or can 
j u m p to an adjacent band . It has been assumed tha t the 
conduct ion electron spin is conserved. It has been found, 
however , tha t [9] in the case of metals (or other systems 
conta in ing conduct ion electrons) for which the role of the 
SOC is impor t an t in the format ion of the b a n d spectrum, 
conduct ion electrons m a y tunne l to an adjacent b a n d with 
spin flip under M B condi t ions . W e shall show tha t the 
appearance of this addi t iona l tunnel l ing channel compl i ­
cates greatly the pa t t e rn of mo t ion of conduct ion electrons 
under M B condi t ions and in some cases m a y alter 
significantly the macroscopic proper t ies of a system. 

In the semiclassical approx imat ion , when the spin 
degrees of freedom in a static magnet ic field are t aken 
into account at absolute zero, the electron orbi ts are formed 
by a section of the F e r m i surface cut by a p lane 
perpendicular to the magnet ic field 7/(0, 0, H)\ 

^ma(p) =£F = const, pz = pz0 = const, (1) 

where e F is the F e r m i energy: s = sm(T(p) is an arb i t ra ry 
dispersion law of conduct ion electrons in the absence of a 
magnet ic field bu t subject to the SOC [10]; p is the 
q u a s i m o m e n t u m ; pz is the project ion of the q u a s i m o m e n -
t u m a long the direction of the magnet ic field H; m is the 
b a n d number ; a = j j is the spin index. In the absence of 
an M B and for sufficiently pu re metals at low tempera tu res 
the quant i t ies m, pz, and o are ' good ' q u a n t u m numbers . 

f Sometimes also called 'magnetic breakthrough' , especially in the older 
literature. Translator's note. 

The electron orbit topo logy determines m a n y proper t ies 
of meta ls in a magnet ic field (both t r anspor t and t h e r m o ­
dynamic proper t ies ; see, for example, Refs [ 1 1 - 1 3 ] . 
Magne t i c b r e a k d o w n changes drastically the topo logy of 
conduct ion electron orbi ts described by expression (1) and 
the na tu re of their mot ion . This is related to the possibility 
of conduct ion electron tunnel l ing from b a n d to b a n d , as the 
orbi ts described by expressions (1) app roach one another . 
Blount [14] demons t ra ted the probabi l i ty of such tunnel l ing 

i.e. the probabi l i ty is governed by the rat io of the magnet ic 
field to HQ = HQ(S¥,PZ), which is k n o w n as the M B field. 
Each orbit is characterised by its own b r e a k d o w n field. The 
order of magn i tude of this field is H0 w A2/s¥, where the 
in te rband energy gap is A w vM dp (vM is the velocity of 
conduct ion electrons near the m a x i m u m approach of the 
orbi ts and bp is the m i n i m u m separat ion between the orbi ts 
in the p space). 

In addi t ion to these changes in the na tu re of mo t ion of 
conduct ion electrons, the macroscopic proper t ies of a 
system are influenced also by q u a n t u m interference of 
conduct ion electrons par t ic ipa t ing in M B in sufficiently 
pu re metals . All the p h e n o m e n a due to in te rband q u a n t u m 
t rans i t ions of conduct ion electrons between the orbi ts in 
different b a n d s in the magnet ic field and their interference 
are k n o w n as 'coherent magnet ic b r e a k d o w n ' [6]. M B alters 
the response of a meta l to external agencies (electric and 
magnet ic fields, sound) and this is manifested in a lmost all 
the electronic proper t ies when the applied magnet ic field is 
sufficiently s t rong. 

M B has been observed in over twenty metals , inter-
metall ic c o m p o u n d s , and some alloys [15]. The evidence for 
M B is based on the d H v A and S h u b n i k o v - d e H a a s effects, 
the Ha l l and other ga lvanomagnet ic effects, conduc t ion-
electron spin resonance [16, 17], and some other p h e n o m e n a 
and proper t ies of metals [ 5 - 8 ] . F o r example, M B leads to 
giant oscillations of the magnetores is tance and to unusua l 
oscillations of the magnet ic susceptibility and the acoust ic 
absorp t ion coefficient of metals . Character is t ic nonl inear 
effects in the a t t enua t ion of waves [18], in the static 
conduct ivi ty [ 1 9 - 2 1 ] , and in the p ropaga t i on of sounds 
[22] are also due to M B . 

The n u m b e r of chemical c o m p o u n d s exhibit ing M B is 
increasing cont inuously . In the years since the last review, it 
has been found tha t in addi t ion to n o r m a l metals (such as 
M g , Al, Zn , etc.) [23], M B has been observed in ferro-
magne t s [ 2 4 - 2 6 ] , in two-dimens iona l hetero s t ructures 
[ 2 7 - 2 9 ] , and in rare-ear th hexabor ides [30]. W h e n N b S e 3 

is subjected to s t rong magnet ic fields (up to 520 k G ) , M B 
manifests itself by giant oscillations of the resistance in the 
u l t r a q u a n t u m limit [31]. 

Intensive studies of the F e r m i surface of organic 
conduc tors , represent ing a new class of superconduc tors 
with fairly high superconduct ing t rans i t ion t empera tu re (of 
the order of 10 K ) [32], have provided a st imulus for a large 
number of repor t s of observat ions of M B in these 
conduc to r s [ 3 3 - 4 3 ] . Pract ical appl icat ions of M B are 
also being p roposed : beryll ium has been used in measur ing 
a magnet ic field and its gradients [44]. The widespread 
occurrence of M B and the variety of the associated effects 
have s t imulated further theoret ical and exper imental inves­
t igat ions of the topic . 
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The smallness of the regions of the a n o m a l o u s app roach 
of two b a n d s ( M B regions) makes it possible to consider 
them as characterist ic po in ts of q u a n t u m scattering of 
conduct ion electrons tha t move a long semiclassical orbi ts 
in a magnet ic field. F requen t ly these small regions are called 
M B nodes : they link the semiclassical pa r t s of the orbi ts 
described by expressions (1) associated with different b a n d s 
into a single p lanar ne twork . Such a p lanar system of orbi ts 
in p space is called an M B configurat ion [6, 45] and the 
cor responding system of orbi ts in the real r space is called 
an M B ne twork [5, 46]. It should be poin ted out tha t there is 
no special M B region in the r space. 

The main dynamic characterist ic of M B is a un i ta ry M B 
scattering mat r ix or s ma t r ix [6, 9, 45]. This mat r ix relates 
semiclassical wave functions of conduct ion electrons 
of pa r t s of orbi ts which merge at an M B node and are 
associated with two bands . Knowledge of the ^-matrix 
elements makes it possible to derive readily the probabi l i ty 
of M B and of a j u m p in the wave-function phase as a result 
of this b r eakdown . F o r example, the sum of the squares of 
the modu l i of the off-diagonal (in respect of the b a n d 
n u m b e r ) ^-matrix elements determines the to ta l probabi l i ty , 
given by formula (2), of the t ransi t ion of a conduct ion 
electron to ano ther b a n d [9]. 

A ma themat i ca l formalism based on the s mat r ix and fit 
for the task in quest ion has m a d e it possible to develop a 
consistent M B theory and to describe a number of effects. 
A m o n g the mos t interest ing are giant q u a n t u m oscillations 
due to coherent M B [6, 18] and small-orbit interference 
t r ansparency [6]. The possibili ty of q u a n t u m localisation of 
conduct ion electrons under M B condi t ions has been 
predicted [47] (see also Ref. [48], where the effect is 
considered from a different s tandpoin t ) . 

However , in all these theoret ical invest igations of 
var ious aspects of M B the spin degrees of freedom of 
conduct ion electrons have been effectively ignored. M B 
theories developed on the basis of the ^-matrix formalism by 
Slutskin [6, 49] and the concept of coupled-orbi t ne tworks , 
p roposed by P ippa rd [4, 46, 50] and developed later by 
C h a m b e r s [ 5 1 - 5 3 ] , and by Fal icov and Stark [5, 48, 
5 4 - 5 8 ] , pos tu la te tha t conduct ion electrons with opposi te 
spins move completley independent ly . M B scattering has 
been regarded as a two-channel process and it has been 
suggested tha t there are two independent pa t t e rns of the 
mo t ion of conduct ion electrons: spin up and spin down. 

On the other hand , it is k n o w n (see, for example, Refs [10, 
59]) tha t the SOC makes a considerable cont r ibu t ion to the 
b a n d spectrum specifically in those pa r t s of the q u a s i m o -
m e n t u m space where the energy gap between the var ious 
b a n d s is small. Consequent ly , the SOC should play a 
significant role in a q u a n t u m analysis of the mo t ion of 
conduct ion electrons in the small regions responsible for M B . 

A simple mode l of a meta l with its F e r m i surface 
intersecting the Bril louin zone only in one direction 
has been used [60] to show tha t the SOC does indeed 
lead to a nonzero probabi l i ty of conduct ion-elect ron spin 
flip under M B condi t ions . 

Somewhat later, a complete s ma t r ix including the SOC 
has been developed for a meta l with an a rb i t ra ry dispersion 
law [9]. It ha s been found not only tha t the spin doubles the 
r ank of the s matr ix , bu t the mat r ix has nonzero off-
d iagonal (in te rms of the spin index and b a n d n u m b e r ) 
elements. This leads to a new (third!) M B tunnel l ing 
channel with conduct ion-elect ron spin flip. 

The SOC does no t alter formula (2). However , w is n o w 
the to ta l probabi l i ty of conduct ion electron tunnel l ing to an 
adjacent b a n d , equal to the sum of the probabi l i t ies of 
magnet ic b r e a k d o w n with (w s ) and wi thout (w°) spin flip: 

The SOC pa ramete r a = a ( e F , pz) is determined by the rat io 
of the off-diagonal (in respect of the spin index and b a n d 
n u m b e r ) mat r ix elements of the conduct ion-elect ron 
velocity opera tor near the closest app roach of the orbi ts 
[9]. In the absence of the SOC there is no conduct ion 
electron spin flip: a = 0. Inclusion of the SOC also leads to 
renormal i sa t ion of the characteris t ic b r e a k d o w n field H0. 

It follows tha t a consistent M B theory should take into 
account the spin degrees of freedom of conduct ion 
electrons. The orbi ts of conduct ion electrons with opposi te 
spins merge because of the SOC under M B condi t ions . 

However , if the theory of M B with spin flip is 
considered formally, it is found tha t it differs in the 
following ways from the 'zero-spin ' case [6]: the s mat r ix 
is converted from 2 x 2 to 4 x 4 and the number of sections 
in the M B configurat ion doubles . Tha t is all! However , this 
is sufficient to complicate greatly the descript ion of the 
effect. 

For tuna te ly , the M B theory developed by Slutskin 
[ 1 8 - 2 0 , 45, 47, 49] and discussed in K a g a n o v and 
Slutskin 's review [6] places no restrictions on the rank 
and form of the s matrix. This enabled Slutskin and his 
colleagues to use the ^-matrix app roach to describe a 
completely different effect, which is mul t ichannel specular 
reflection of conduct ion electrons from surfaces and the 
p h e n o m e n a associated with this effect [ 6 1 - 6 3 ] . 

In our case this p rope r ty of the M B theory makes it 
possible to generalise its fundamenta l concepts given in 
K a g a n o v and Slutskin 's review [6]. This review deals with 
coherent M B and is full of new concepts and complex 
formulas . It is therefore difficult to digest it at first reading, 
par t icular ly in the case of people not specialising in this 
b ranch of physics. W e would therefore like to , first, 
demons t ra t e the consequences of t ak ing into account the 
spin degrees of freedom of conduct ion electrons under M B 
condi t ions and, second, to use the theory of spin-flip M B to 
i l lustrate the ideas under ly ing Slutskin 's app roach bu t at a 
m o r e accessible level. The need for this is par t icular ly great 
because it has been found tha t the SOC affects all the 
proper t ies of M B systems [9, 17, 60, 6 4 - 7 1 ] . F o r example, 
there is a major change in the energy spectrum of 
conduct ion electrons par t ic ipa t ing in b r e a k d o w n and this 
alters greatly the classification of the conduct ion-elect ron 
states. U n d e r M B condi t ions the small-orbit interference 
t ransparency effectively d isappears and there are changes in 
the ga lvanomagnet ic proper t ies and in the d H v A effect. The 
reliability of theoret ical calculat ions, which are cont inued 
unt i l numer ica l results have been obta ined, is suppor ted by 
exper imental da ta . 

W e shall consider in greater detail these and some other 
topics in the theory of M B with a possible spin flip of 
conduct ion electrons. 
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2. Fundamentals of magnetic breakdown theory 
including the spin degrees of freedom 

2.1 M o t i o n of conduction electrons with an arbitrary 
dispersion law along semiclassical orbits in a magnetic 
field 
The t rea tment of conduct ion electrons as weakly interact ing 
quasipart icles [72] with an arb i t ra ry dispersion law [11] 

£ = ^na(p) • (4) 

has played a special role in the physics of metals . The 
energy of quasipart icles varies periodically with p and the 
per iod is the same as tha t of the reciprocal lattice. M a n y 
conclusions can be d rawn wi thout specifying the actual 
dependence of energy on q u a s i m o m e n t u m . 

Moreover , we must stress another impor t an t c i rcum­
stance which facilitates greatly the solution of m a n y 
prob lems . Conduc t ion electrons are ul t imately q u a n t u m 
objects. The b a n d na tu re of the energy spectrum and the 
concepts of the 'spin' , 'quasipart ic le ' , ' q u a s i m o m e n t u m ' , 
'degeneracy' , 'Fe rmi surface ' , etc. are the results of 
appl icat ion of the laws of q u a n t u m mechanics to conduc ­
t ion electrons. However , the mot ion of a quasipart ic le with 
a q u a s i m o m e n t u m /?, a spin state cr, a b a n d number m, and 
an energy given by the dispersion law (4) in external fields is 
in most cases semiclassical [11]. This is due to the fact tha t 
external fields are relatively weak compared with the 
internal a tomic fields and they vary significantly over 
distances which are large compared with the a tomic 
spacings. 

In other words , typical d imensions of electron orbi ts are 
large compared with the de Broglie wavelength H/p0, where 
p0 is the characterist ic F e r m i m o m e n t u m . In the case of 
conduct ion electrons moving in a magnet ic field this 
condi t ion is equivalent to the inequali ty 

K = — ^ < 1, (5) 

where coc is the characterist ic cyclotron frequency of 
conduct ion electrons in a magnet ic field and e 0 is the 
characteris t ic energy of these electrons, which is of the 
order of the F e r m i energy e F . 

Inequal i ty (5) is satisfied by fields H <| 1 0 8 - 1 0 9 G, 
which makes it possible to express the one-electron 
Hami l ton i an in a magnet ic field in te rms of the 
dispersion law of conduct ion electrons, in accordance 
with the familiar correspon-dence principle [11] 

fima(p) ^ H m a = ema(p)9 P=p + - A (6) 

H e r e P is the generalised m o m e n t u m opera tor ; A =A(f) 
is the vector po ten t ia l of the magnet ic field; p is the 
kinemat ic m o m e n t u m opera tor . 

In the zeroth-order approx imat ion (with respect to K), 
conduct ion electrons can be regarded as classical part icles 
whose mot ion obeys the equa t ions 

dr dsmn ^ 
dt c ma ^ ^ Vma " 

dp 

The spin index a is retained in these equa t ions only for 
completeness, because in the adop ted approx imat ion the 
system of equa t ions (7) describes the mo t ion of a zero-spin 
part icle. If the first of these equat ions is multiplied scalarly 
once by vma and then by / / , it is found tha t in a static 

h o m o g e n e o u s magnet ic field H = 7/(0, 0, H) the mot ion of 
conduct ion electrons in the p space follows orbi ts which are 
on a constant -energy surface, by analogy with expressions 
(1): 

sma(p) — E — cons t , pz = pz0 = cons t , (8) 

where the energy E and the project ion of the quas imo­
m e n t u m pz0 a long the magnet ic field are conserved. 

There is a close relat ionship between the orbi ts in the 
q u a s i m o m e n t u m and ord inary (r) spaces. It follows from 
the system of equa t ions (7) tha t the xy project ion of an orbit 
in the r space essentially repeats t h e p orbit and differs from 
the latter only by its or ienta t ion and scale: the former is 
obta ined from the latter by the subst i tut ion 

6 6 

Px =--Hy , py = - Hx . 
(9) 

The orbit described by expressions (8) represents geo­
metrically the con tour of a section of a constant -energy 
surface E = const cut by a p lane perpendicular to the 
magnet ic field. The orbit of expression (8) is usually 
complex because of the periodici ty and an i so t ropy of the 
dispersion law (4). If the F e r m i surface is closed, then all its 
sections are closed con tours (see Fig. l a given later). The 
sections of an open F e r m i surface m a y be closed or open, 
i.e. they m a y extend over the whole of the reciprocal lattice. 
(The influence of the F e r m i surface topo logy on the 
macroscopic proper t ies of metals in magnet ic fields is 
discussed in the very detailed review of K a g a n o v and 
Lifshitz [12].) 

W e shall n o w consider the next approx ima t ion in te rms 
of K and h and include the spin degrees of freedom of 
conduct ion electrons. If the vector po ten t ia l of a h o m o g e ­
neous magnet ic field, directed a long the z axis, is selected in 
the form A = A(Hy, 0, 0), then in tha t region of the p space 
where the semiclassical approx ima t ion is valid, the mot ion 
of conduct ion electrons is described by the Hami l ton i an [73] 

where p is given by expression (6): 

(Px,Py,Pz)^ [Px+-Hy, Py,P2 

(10) 

(11) 

gmip) is the p -dependen t scalar g factor of conduc t ion 
electrons [10]; oz is the Paul i spin matr ix ; / i B is the Bohr 
magne ton . 

The second term in the Hami l ton i an (10) represents only 
the interact ion of the magnet ic m o m e n t of conduct ion 
electrons with the field if the SOC is ignored. A complete 
pic ture is obta ined by no t ing tha t , in general, this inter­
action can be wri t ten in the tensor form [10, 59, 74], which 
na tura l ly leads to the appea rance of the g t e n s o r | . The 
Hami l ton i an (10) does in fact in t roduce the scalar g factor 
(or effective spin) of conduct ion electrons. 

The linearity of the approx ima t ion in te rms of Ti makes 
it possible to adop t the following sequence of opera t ions 
[73]: an orbit is quant ised first ignoring the spin and then 
the spin splitting is super imposed. It therefore follows from 

f With the exception of several papers in which the phenomenological g 
tensor is introduced for the purpose of theoretical interpretation of the 
experimental data on conduction-electron spin resonance in Ag, Cu [75, 
76], and Al [77], in most of the theoretical analyses of the g factor of metals 
it is regarded as a scalar quantity. 
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the Hami l ton i an (10) tha t the Zeeman splitting of the ' spin ' 
levels appears in H ^ 0 (Fig. lb ) : 

(12) 

The inclusion of the SOC makes the g factor of 
conduct ion electrons different from the value g0 = 2.0023 
for free electrons. F o r clarity, we can assume tha t 
conduct ion electrons belonging to one b a n d (i.e., with 
the same number m bu t with different spin indices a) 
generally move a long slightly different orbi ts described 
by expression (8) (Fig. lc) . 

Inclusion of the spin of conduct ion electrons gives rise, 
in a magnet ic field, to a F e r m i surface of conduct ion 
electrons with the spins paral lel and ant iparal le l to the 
field. Such splitting of the F e r m i surface is par t icular ly 
impor t an t in the case of ferromagnet ic metals [8, 24]. The 
splitting is small for n o r m a l metals . 

In this approx ima t ion the quasiclassical wave function 
of conduct ion electrons has the following form in the p 
representa t ion [9, 73, 78]: 

YmaiPy) = 7~~\/2 e X P Pz)]x<r ^Px0Px^PzpJaZ0(TZ , (13) 

where the Kronecke r deltas indicate tha t PX9 Pz = pz, and 
az are conserved. It should also be poin ted out tha t the 
selected gauge leads to Py =py. The following no ta t ion is 
used in formula (13): cma is an a rb i t ra ry constant factor; 
vma — ^ £ m ( T / 6 P x is the x componen t of the velocity a long an 
orbit described by expression (8); %a is the ' spin ' function of 
the type xa = ^ + /^J , where 

' 1 \ n /0> 
(14) 

If the spin degrees of freedom are taken into account , 
the phase cpma(E,pz) of the wave function (13) is [9, 73]: 

<PmAE>Pz) = ^Sm(E,pz)±^gminQHtn 
(15) 

The first te rm in formula (15) is the zero-spin cont r ibut ion 
to the phase , where 

Sm(E,Pz) eH 
(16) 

is the increment in the t ransverse effect in the absence of the 
spin splitting; p^n\py,E, pz) is the solut ion of Eqn (8). The 
second term in formula (15) is the spin cont r ibut ion to the 
phase ; tm = tm(E, pz) is the zero-spin dura t ion of mo t ion of 
a conduct ion electron a long an orbit in the mth b a n d ; 
gm=gm(E,pz) is the g factor of conduct ion electrons 
averaged over the orbit described by expression (8) [9, 73, 
7 9 - 8 2 ] . The plus and minus signs in expression (15) 
cor respond to a = j , j . In the derivat ion of expression (15) 
use is m a d e of the quasiclassical equa t ions of mo t ion (7). 

A long a closed orbit of expression (8) the mot ion of a 
conduct ion electron is na tura l ly per iodic and its revolut ion 
(cyclotron) frequency is 

eH 2K 

cmm(E,pz) Tm(E,pz)' 

Here , Tm(E,pz) is the per iod and 

1 dSm(E,pz) 
2K dE 

(17) 

(18) 

is the effective cyclotron mass of a conduct ion electron in 
the mth band , which depends on E and pz. Here , Sm(E,pz) 
is the zero-spin area under the curve. F o r m u l a s (17) and 
(18) are wri t ten down ignoring the spin index cr, which is 
impor t an t only in the case of ferromagnet ic metals [24]. 

The finite mot ion of conduct ion electrons leads to the 
appearance of discrete energy levels cor responding to each 
fixed value of the longi tudinal q u a s i m o m e n t u m pz. These 
levels are governed by the general semiclassical L i f s h i t z -
Onsager quant i sa t ion rules [11]. The quant i sa t ion condi t ion 
for this case is obta ined from the requi rement tha t the 
phase , described by expression (15), of the wave function 
(13) changes by 2KH in the case of a passage a long any 
closed orbit given by expression (8). If the spin of 
conduct ion electrons and the SOC are taken into 
account , this condi t ion can be wri t ten in the following 
form [11, 73] on the basis of formulas (17) and (18): 

_ N . 2KeHH 
Sm{E,Pz) ± ngmmm p,BH = (n + y), (19) 

where n is an integer (n > 1), and y is a correct ion (of the 
order of uni ty) to the number n which is in t roduced in 
order to refine semiclassical quant i sa t ion condi t ions . This 
correct ion can be determined by considering the mot ion of 
conduct ion electrons near the ' s topping po in t s ' [11, 83, 84]. 

It therefore follows tha t semiclassical quant i sa t ion in the 
case of closed orbi ts leads to the appearance of discrete 
energy levels Ema(n,pz). A n energy b a n d , for example the 
mth b a n d , splits into a n u m b e r of L a n d a u subbands and 
each of these represents a b a n d of energy levels which differ 
in respect of the values of the con t inuous variable pz. 
Inclusion of the spin of conduct ion electrons splits each of 
these levels into two. If in a p lane perpendicular to the field 
the mot ion of a conduct ion electron is infinite, the spectrum 
changes and it consists then of con t inuous finite-width 
b a n d s [11, 83]. 

The descript ion of mo t ion of conduct ion electrons a long 
orbi ts described by expression (8), which includes the spin 
splitting of expression (12), can be provided conveniently if 
conduct ion electrons are represented by semiclassical wave 
packets . Such a representa t ion is par t icular ly useful in 
studies of t r anspor t p h e n o m e n a [11, 13]. The q u a n t u m 
uncer ta in ty of a wave packet in respect of its q u a s i m o ­
m e n t u m Ap is small compared with the characterist ic 
m o m e n t u m p0 (it is of the order of p? or of the order 
of the reciprocal lattice cons tant b) and the cor responding 
uncer ta in ty of the coord ina te ViAp is much greater t han its 
de Broglie wavelength, bu t much less t han the characteris t ic 
electron orbit rad ius cp0/eH. 

It follows from the above tha t the state of a conduct ion 
electron (packet) can be described by two vectors: P and /? , 
which are the centres of its localisation in the p and r spaces, 
as well as by the b a n d number m and the spin index cr. Then 
the mot ion of a quasipart ic le a long an orbit , described by 
expression (8) and governed by the system of equa t ions (7), 
results in an acquisi t ion of a semiclassical phase of 
expression (15). 

2.2 Condition for the appearance of magnetic breakdown 
In some cases it is no t possible to use a semiclassical 
descript ion of the mot ion of conduct ion electrons in the p 
space given by the system of equa t ions (7). The descript ion 
loses its mean ing near the po in ts of app roach of the orbits , 
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Figure 1. Schematic representation of the band pattern resulting in 
M B : (a) Fermi surface consisting of two sheets [the arrows give the 
direction of motion of conduction electrons along orbits described by 
expression (8) in a magnetic field; the spin splitting is not shown]; (b) 
nominal band spectrum in a magnetic field; (c) periodic system of 
semiclassical orbits, described by expression (8), in the pz — 0 plane. 
The continuous curves in Figs lb and lc correspond to the states of 
conduction electrons with spin up and the dashed curves correspond to 
those with spin down. The regions of closest approach of the orbits 
belonging to different bands are shown (see Figs 2a and 2b). 

described by expression (8) with different n u m b e r s m i.e. 
where the following inequali ty is obeyed: 

A(P) = ^mm'(p) = K<T(P) ^m'a{p)\ < , (20) 

where Ammi(p) is the width of the in te rband gap . In the 
case of some values of m and m the gap A{p) m a y vanish 
a long certain lines of po in ts of degeneracy in the p space. 
As poin ted out in Ref. [11], such degeneracy lines should be 
exhibited by approximate ly half of all the metals . 

F o r the major i ty of polyvalent metals the smallness of 
t h e p s e u d o p o t e n t i a l m e a n s tha t the a n o m a l o u s b a n d app roach 
occurs near the Bragg reflection faces [50]. In these planes 
the b a n d gap A(p) reaches its m in imum, which is typically 
(0.01 -0 .1 )£ f . Such small values of A(p) have been deduced 
experimental ly specifically from M B observat ions . F o r m a ­
t ion of small gaps is also possible because of the SOC, which 
lifts the degeneracy of the dispersion law (4) [10]. The 
existence of a small gap affects macroscopic proper t ies if 
the gap is close to the F e r m i surface. This is a fairly c o m m o n 
occurrence and it has been observed, for example, for such 
metals as M g , Zn , Cd, etc. In discussing the mot ion of 
conduct ion electrons in these pa r t s of the p space it is 
necessary to adop t a q u a n t u m description, which is given 
in Sections 2 . 3 - 2 . 5 . 

To gain a bet ter unde r s t and ing let us tu rn to Fig. l a 
where the extended zone scheme is used to show a mode l 
F e r m i surface, consist ing of a large electron 'packet ' at the 
centre of the Brillouin zone and a hole 'cigar ' at its 
b o u n d a r y . Orbi ts with extremal areas (pz = 0) are shown 
for b o t h sheets and the a r rows identify the direction of 
mo t ion of a conduct ion electron in a magnet ic field. 

In the regions of a n o m a l o u s app roach of the orbi ts we 
can expect q u a n t u m in te rband t rans i t ions of conduct ion 
electrons, including those involving spin flip. F o r simplicity, 
the spin splitting is no t shown in Fig. l a . The F e r m i 
surfaces cor responding to conduct ion electrons with differ­
ent spins nest in one ano ther and in this case the outer hole 
and electron sheets cor respond to opposi te spin or ienta-

E 

a 

b 

Px 

c 

Figure 2. (a) Region of closest approach of the bands, identified in 
Fig. lb (pM is the point of maximum approach; the dashed curves give 
the zero-spin spectrum of conduction electrons), (b) Region of 
maximum approach of the orbits, identified in Fig. lc (bpy is the 
dimension of the M B region; the circles show schematically the process 
of M B scattering of conduction electrons), (c) Schematic 
representation of an M B node (demonstrating the scattering of a wave 
packet which enters an M B node in the first Brillouin zone with spin 
up). The amplitudes of the packet are represented nominally by the 
thickness of the lines (c) and by the dimensions of the circles (b). The 
arrows identify the direction of motion of conduction electrons and the 
orientation of their spin. 

t ions. This is i l lustrated clearly in Fig. l b , which shows the 
b a n d spectrum cor responding to a given F e r m i surface. The 
dependence of the conduct ion-elect ron energy on the 
q u a s i m o m e n t u m project ion is given for different spin 
or ien ta t ions (the con t inuous curves cor respond to spin 
up and the dashed curves to spin down) . In this case 
the spin splitting is greatly exaggerated for clarity. Fig. l c 
shows the electron orbi ts obta ined when the F e r m i surface 
is cut by the pz = 0 p lane . In the absence of magnet ic 
b r eakdown , these orbi ts are closed (as shown in Fig. lc) . 

The regions of a n o m a l o u s app roach , identified in Figs 
lb and lc , are shown on an enlarged scale in Figs 2a and 2b: 

Pm is the poin t of m a x i m u m b r e a k d o w n where A(p) has its 
m in imum, and 6py is the characterist ic size of the M B region. 

Fig. 2b demons t ra tes also the M B scattering process . 
The a r rows identify the direction of mot ion of electron wave 
packe ts a long the orbi ts . The sizes of the circles represent the 
relative ampl i tudes of the wave packets (conduct ion elec­
t rons) . A spin-up packet (represented by the large circle) 
reaching an M B region splits into three smaller wave 
packets : two in the second b a n d and one in the first. 
The spin degrees of freedom will be discussed in greater 
detail be low in the derivat ion of the s matr ix . In par t icular , it 
follows from the form of the s mat r ix tha t a conduct ion 
electron which remains in its own b a n d after M B cannot 
experience a change in the initial spin or ienta t ion. 

As poin ted out in Section 1, the smallness of the M B 
region makes it possible to replace it with an M B node , 
which is shown schematically in Fig . 2c. M B scattering of a 
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Figure 3. (a) The most important (in subsequent analysis) parts of the 
Fermi surface of a divalent metal with the hep crystal structure (Be, 
Mg, Zn, Cd). The Brillouin zone and the hole monster lying in the 
second zone are at the top; below on the left is the electron cigar (Mg) 
or needle (Zn) in the third zone, centred on the edge of the Brillouin 
zone relative to the point K; below on the right is the electron lens 
centred relative to the point T. (b) Two-dimensional M B 
configuration, which appears in metals with the hep crystal structure 

when H\\c in the pz — 0 plane. The M B nodes are identified by circles. 
Some orbits (©, X, 9, x) are discussed in Section 5. The centre of the 
figure shows schematically the evolution of a semiclassical packet 
which starts with a unit amplitude and spin up. After two successive 
M B scattering events it splits into seven packets. The arrows identify 
the final spin orientations. The thickness of the lines corresponds 
nominally to the packet amplitudes. 

conduct ion electron in the first spin-up b a n d is identified by 
lines whose thickness represents the relative ampl i tudes of 
the wave packets of the electrons. W h e n the M B regions in 
Fig. l c are replaced with the M B nodes in Fig. 2c, the result 
is an M B configurat ion which is open for w = 1 a long the py 

axis. Other possible M B configurat ions are shown in Figs 
3b and 4. 

W e shall n o w discuss quali tat ively the magnet ic field 
which can induce in te rband t rans i t ions of conduct ion 
electrons. Na tu ra l ly , it should be possible to express the 
M B field Ho in t e rms of the pa rame te r s of the b a n d 
spectrum in the region of a n o m a l o u s orbit app roach 
(Fig. 2). The field Ho should depend pr imari ly on the 
in te rband gap A. 

The condi t ion for the appea rance of M B was first 
formulated by Cohen and Fal icov [1]. Accord ing to this 
condi t ion, in order to observe M B the measure Hcoc of the 
quant i sa t ion of the mo t ion of electron wave packe ts in a 
magnet ic field should be greater t han or approximate ly 
equal to the in te rband gap A. Cohen and Fal icov est imated 
tha t fields of at least 10 kG would be needed to observe 
M B for the smallest k n o w n in te rband gap A w 1 0 _ 2 e F . 
However , in m a n y cases it is possible to observe M B in 
much weaker fields, which raises doub t s abou t the 
C o h e n - F a l i c o v criterion. 

Blount [14] considered the behaviour of electrons in the 
limits of s t rong and weak magnet ic fields. H e found tha t the 
probabi l i ty of t rans i t ions depended exponential ly on the 
rat io HQ/H and he obta ined the correct expression (2) for 
the field H0. Ha r r i son [85] demons t ra ted tha t this expres­
sion is valid also in m o d e r a t e fields. A different app roach to 
M B was used by P ippa rd [46]. H e drew a t tent ion to the fact 
tha t after par t ia l reflection of an electron from an M B node , 
the subsequent reflections m a y result in interference of the 
reflected and t ransmi t ted waves. 

P ippa rd was thus the first to consider the coherent 
effects associated with M B . H e investigated the s t ructure of 
the energy levels tha t appear as a result of such processes in 
the case of some M B ne tworks : he discussed a one -
dimensional ne twork of the kind shown in Fig. 4d (in 

Figure 4. Simple M B configurations taking account of the spin 
splitting: (a) double figure-of-eight, showing nominally the M B 
scattering of conduction electrons in Section 1 (spin up); (b) closed 
M B configuration with inequivalent sites I and II; (c) and (d) open M B 
configurations with the period by. The inequivalent sections have 
Arabic numbers: the odd numbers correspond to the motion of spin up 
conduction electrons and the even numbers to spin down electrons. 
Inequivalent M B nodes are identified by Roman numerals. The arrows 
identify the direction of motion of conduction electrons. 

P i p p a rd ' s case it consisted of regular circles) and a t w o -
dimensional ne twork (Fig. 3b) [4]. The q u a n t u m - m e c h a n ­
ical p rob lem of finding the M B probabi l i ty in the specific 
case of almost-free electrons was solved by Rei tz [86]. 
Inclusion of the SOC in the Rei tz mode l gives rise to 
the probabi l i ty of conduct ion-elect ron spin flip under M B 
condi t ions [60]. 
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A consistent solution of the Schrodinger equat ion was 
first obta ined, ignoring the SOC, by Slutskin [45] who 
considered M B as a t rans i t ion of conduct ion electrons 
between closely spaced energy te rms under the influence 
of an adiabat ic p e r t u r b a t i o n . ! Slutskin used only the 
smallness of the semiclassical pa rame te r K and the small­
ness of the rat io A(p)/s0. This p rocedure involved finding 
the dispersion law for an M B region and the coefficients in 
the expansion of the Bloch factors in te rms of wave 
eigenfunctions. M a t c h i n g of the solut ions ob ta ined to 
the semiclassical wave functions (13) yields the pr incipal 
characterist ic of M B , which is the un i ta ry second-rank s 
matr ix describing two-channel scat tering of conduct ion 
electrons on M B nodes . It relates the coefficients of the 
wave functions of conduct ion electrons from expression (13) 
on different sides of M B regions. The complete s matr ix , 
which takes account of the SOC, is calculated in Ref. [9] (see 
below). 

F o r simplicity, we shall consider quali tat ively the 
si tuat ion when the spin degrees of freedom are ignored. 
The M B field of formula (2) can be est imated by m a k i n g use 
of a readily unde r s tood in terpre ta t ion of M B given in 
Ref. [87]. M B represents q u a n t u m tunnel l ing of conduct ion 
electrons accompanied by a change in a discrete q u a n t u m 
number , which is the n u m b e r m of the energy b a n d . The 
dispersion law sma(p) represents essentially the discrete 
levels of te rms of the q u a n t u m system tha t are con t inuous 
functions of the vector pa ramete r p (Figs l b and 2a). The 
magnet ic field creates a t ransient pe r tu rba t ion , inducing a 
t ime dependence of the pa ramete r p and a consequent 
var ia t ion of the separat ion between the te rms Amm>{p). This 
leads to t rans i t ions of electrons from one level to ano ther 
( in terband t ransi t ions) . A characterist ic magn i tude of this 
pe r tu rba t ion $E is equal to the change in the in te rband gap 
in a t ime At ~ TiAmmi. If bE <̂  Ammr, the probabi l i ty of a 
t rans i t ion between the b a n d s m and m' is negligible. 
However , if hE ~ Ammr, the t rans i t ions become possible: 
M B takes place. 

W e shall n o w est imate the pe r tu rba t ion 6E. By defini­
t ion, it can be described by 

§£ « At 
d ( 5 £ ) 

dt dp 
dp 
dt 

(21) 

where the derivatives obey the classical equa t ions of 
mo t ion (7). Since far from the po in t s of closest app roach 
of the b a n d s the quan t i ty \dAmmr/dp\ is of the order of the 
characterist ic electron velocity v 0 , it follows tha t for 
A(p) ~ s0 w mvo/2 and from the semiclassical condi t ion 
(5) tha t 

hE ~h(Dc < \Amm,\. 

Therefore , the smallness of the p a r a m e t e r K m a k e s it 
poss ible to ignore i n t e rband t r ans i t ions in those p a r t s of the 
p space where the b a n d gap is no t small . At the closest 
a p p r o a c h of the b a n d s , when Amm< = A(pM) <̂  e 0 , t he 
es t imate \dAmm//dp\ ~ v0 is no t affected, since the F e r m i 
surface h a s an a n o m a l o u s cu rva tu re . Then the p e r t u r b a t i o n 
is 6E ~ HCOcSQ/'Ammi > HCQC, and the cr i ter ion $E ^ Ammi 
becomes 

A2 
HCQC ^ 

f This is an analogue of predissociation of molecules [84]. 

(22) 

Since the rat io A/s0 can frequently be less t han 0.01, the 
criterion (22) imposes much less stringent const ra in ts on the 
magnet ic field and ensures tha t the b r e a k d o w n field 

t cAl 

ehv\ 
(23) 

can readily be achieved in experiments . F o r example, 
A w 10~ 2 eV cor responds to H0 w 10 — 100 k G . A r igorous 
analysis (without a l lowance for the SOC) gives [5, 14, 45] 

n cA 

4 eHv*Vj2 

(24) 

where v\2 is the in te rband mat r ix element of the opera tor 
represent ing a componen t of the conduct ion-elect ron 
velocity perpendicular to the field H (the subscripts 1 
and 2 are the n u m b e r s of the b a n d s which are coupled by 
M B ) . All the quant i t ies in formula (24) are determined at 
the M B point . 

It follows tha t expression (23) gives the correct order of 
magn i tude of H0 . It also makes it possible to find the width dp 
of the M B region in the p space where in te rband t rans i t ions 
t ake place (Fig. 2b) and which is very small (of the order of 
A/VQ). The t ime needed for an electron to cross this region 
6t w h/A = ( K ) ~ 1 / 2 C Q ~ 1 is also small. Hence , we can regard the 
M B region in the pz = const p lane as a zero-dimensional 
po in t (Fig. 2c). A n electron following a semiclassical p a t h 
described by expression (8) associated with a given b a n d has a 
nonzero probabi l i ty (2) of t rans i t ion to a semiclassical orbit in 
ano ther band . The probabi l i ty tha t a conduct ion electron 
remains in its own b a n d is equal to 1 — w. W e shall show later 
tha t t ak ing the SOC into account adds one m o r e M B channel : 
it represents an in te rband t ransi t ion of a conduct ion electron 
to an adjacent band , accompanied by spin flip; its probabi l i ty 
is w s , given by expression (3). 

2.3 Effects of the spin degrees of freedom of conduction 
electrons in magnetic breakdown regions 
A consistent inclusion of the spin degrees of freedom of 
conduct ion electrons in the b a n d theory of metals is usual ly 
carried out in two stages. The energy spectrum and the 
wave functions of conduct ion electrons are found in the 
absence of a magnet ic field, bu t t ak ing the SOC into 
account ; next, when these functions are known , the spin 
splitting of the levels induced by a magnet ic field is 
calculated. 

W e shall no t consider the relevant fairly complex theory 
(for details, the reader is directed to Jafet 's review [10] and to 
the b o o k s of Bir and Pikus [59] and of G a n t m a k h e r and 
Levinson [88], where the l i terature of the topic is given). W e 
shall p rovide here only a relatively simple t rea tment which 
helps to unde r s t and the impor tance of inclusion of the SOC in 
studies of the proper t ies of metals under the M B condi t ions 
and we shall est imate the characterist ic energy of the 
interact ion in the M B regions. 

W e shall consider a conduct ion electron in H = 0 in the 
presence of the SOC. The one-part icle Schrodinger equat ion 
can be wri t ten as follows [11, 59]: 

H(p) umpa{r) = Ema(p) umpa{r), 
(25) 
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Here , H = H0+Hs_o is the complete Hami l ton i an of a 
conduct ion electron, where 

^2 
(26a) 

whereas 

[a x V V ( r ) ] . p (26b) 
(2mc)2 

is the Hami l ton i an of the s p i n - o r b i t interact ion which has 
the same t rans la t ion proper t ies as the per iodic field of a 
crystal V(r). 

The q u a s i m o m e n t u m p occurs in the system (25) as a 
pa ramete r . In the presence of the SOC the Bloch factor 
umpa(r) of the s ta t ionary wave function 

impair) = exp ^ umpa(r) 

becomes a spinor [10, 88]: 

^mpa (r) 
umpa(r) 

impair) 

(27) 

(28) 

W e shall assume tha t |^ m / , f f (r) | > \pmp<T(r)\ [10]. Then , the 
eigenvalue of the Paul i mat r ix j is finite: 

In the case of n o r m a l metals in the absence of a 
magnet ic field and when the SOC is ignored, each energy 
level found from the Schrodinger equat ion is doubly spin-
degenerate . In the presence of the SOC, this degeneracy is 
re tained for cent rosymmetr ic metals : 

MOO = smi(p) =sm(p). (29) 

The symmetry of the Schrodinger equat ion under 
t ime reversal and space inversion means tha t the wave 
functions of conduct ion electrons Wmp^(r) and Wmp^(r) are 
coupled by the conjugat ion opera t ion C: 

¥mpl = ±C¥mp„ Wmp] = TCWmpi, C = wyTK. (30) 

Here , T and K are, respectively, the space inversion and 
complex conjugat ion opera tors . A uni t cell is selected in 
such a way tha t the centre of inversion of a cen t rosym-
metr ic meta l coincides with the poin t r = 0. The plus and 
minus signs depend on the par i ty of the wave function of a 
conduct ion electron at the centre of the mth b a n d [10]: the 
upper (plus) sign cor responds to an even function and the 
lower (minus) sign to an odd function. It should be po in ted 
out tha t physically significant results should be indepen­
dent of the selection of the signs in the definitions given by 
expression (30). 

In accordance with the te rminology of Ref. [10], a 
conduct ion electron state described by formula (29) is 
called 'nondegenera te ' , because r a n d o m degeneracy or 
crossing of the energy levels is still possible at some poin t 
of the p space. This degeneracy or crossing of levels is 
associated with the crystal symmetry and the si tuat ion is 
then called 'degenerate ' . 

In this case the SOC can lift the degeneracy and alter 
drastically the electron energy spectrum. In general, the 
degree of influence of the SOC on the b a n d spectrum and on 
the wave functions of conduct ion electrons depends on the 
rat io of the characterist ic interact ion energy es_0 to the width 
of the forbidden b a n d in the absence of a magnet ic field 

AIAP) = \IAP)-1'O{P)\: (31) 

where £ma(p) is the eigenenergy of the Hami l ton ian (26a). 
F o r example, if es_0 <̂  AQ

MM, ~ e 0 , the SOC has little 
influence on the spectrum in this pa r t of the p space 
and we can assume tha t the width of the in te rband gap (20) 
is of the order of the width of the forbidden band : 
^mm'(p) ~ ^mm'ip)- Therefore, in calculat ions of the energy 
b a n d s t ructure subject to the SOC it is usua l to employ 
pe r tu rba t ion theory (see, for example, Refs [59, 81, 
8 9 - 9 1 ] ) . This applies also to M B meta ls (Zn, M g , Be, 
Al, etc.) when the characterist ic SOC energy es_0 is usual ly 
much less t han the F e r m i energy e F . 

In the first order of pe r tu rba t ion theory in Hs_0 the wave 
function Wmp(T is given by 

u/0 
1 in pa + E 

m'^m, a 

{ma\Hs_0\m'a') 
m'pa' • (32) 

Here , }Pmp(T = ^mpXa i s the eigenfunction of the g r o u n d -
state Hami l ton ian . Since in the case of real metals the SOC 
is determined by the processes which occur inside the ions 
[50, 90], in est imates we can replace a mat r ix element of 
Hs_0 based on the Bloch functions with the mat r ix element 
of the a tomic Hami l ton i an of the SOC based on a tomic 
wave functions. In other words , the Bloch functions can be 
represented in the form of or thogonal ised p lane waves or 
augmented p lane waves [81, 90, 92]. Then the energy es_0 is 
replaced with the SOC energy for the relevant level in an 
a tom of a meta l in the relevant crystal. 

Therefore, if es_0 <̂  A(p), it follows from formula (32) 
tha t in this approx ima t ion 

4pT 
(33) 

The relative value of the SOC correct ion to the energy of 
the g round-s ta te Hami l t on i an is of the order of ( v 0 / c ) / ( Z ) , 
w h e r e / ( Z ) is a rising function of the a tomic number Z . 
Since the velocity is v 0 ~ 10 6 m s _ 1 , it follows tha t this 
energy is usual ly of the order of 1 0 — 2 — 1 0 — 3 eV [10, 13]. 
This is obviously a small effect, bu t it m a y be significant if 
we are dealing with the SOC lifting of the level degeneracy 
in a given pa r t of the p space. 

If 8 S _ 0 w A(p), we can find Xp^ and ^ provided we solve 
the appropr i a t e secular equat ion , the form of which 
depends on the b a n d s t ructure of the meta l [59, 81, 90, 
91]. Then ^ can become of the order of Xp^ and for 
A°(p) = 0 the SOC m a y lift degeneracy, i.e. we m a y find 
tha t A(p) ^ 0. 

It follows from these est imates tha t in the pa r t s of the p 
space where inequali ty (20) is obeyed and es_0 w A(p), the 
SOC influences significantly the wave functions and the 
s t ructure of the conduct ion-elect ron b a n d spectrum. T u r n ­
ing back to the M B prob lem, we can say tha t a region of the 
p space, ' susceptible ' to M B , is also 'susceptible ' to the 
influence of the SOC. The degree of influence of the SOC on 
the spectrum of conduct ion electrons can be judged 
indirectly on the basis of the g factor of these electrons. 
A n est imate Ag(p)/g0 = (g(p) - g0)/g0 gives the same 
result as tha t obta ined from expression (33) [10, 81, 89]. 

2.4 Spectrum of conduction electrons for H = 0 in 
magnetic breakdown regions 
W e shall n o w consider in greater detail the conduct ion 
electron spectrum subject to the SOC when H = 0 inside a 
region is ' susceptible ' to M B [9]. This is essential to the 
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derivat ion of the effective Hami l t on i an which describes 
in te rband t rans i t ions in a magnet ic field. It is also 
necessary to find the regions of the p space where the 
in te rband gap is minimal . 

Let us assume tha t two b a n d s app roach each other 
closely in the vicinity of some poin t p ' when H = 0 and tha t 
A{p) <^ 8 0 . Since for a given p ' we find tha t ump<a(r) gives 
rise to a complete set of o r thonormal i sed functions, we can 
expand umpa(r) in t e rms of these functions at any other 
po in t p : 

m', a' 

Rm(j,m'(j'(p\p') = {Um'p'AUmpa) • 

(34) 

In a small region near the point p' 
(|8/)| <^p 0 , 8p = p — p'') we can ignore the influence of 
the other bands : 

1, 

Rm^AP\p')-^0(my m > m v i , 2 . 
(35) 

W e are assuming here specifically tha t two anomalous ly 
approach ing b a n d s have the n u m b e r s m = 1, 2. 

The smallness of dp together with E q n s (25) and (26) can 
be used to write down the following expansion for H{p)\ 

(36) H<j,)=H(p')+v{p')hp + o(^P), 
where 

v(p) = exp ( —J v exp — , 

v = - [H x r ] 
n m n 

(37) 

is the opera to r represent ing the velocity of conduct ion 
electrons when H = 0. Subst i tut ion of expressions (34) and 
(37) into the Schrodinger equat ion (25) and appl icat ion of 
the condi t ions (35) leads to the following system of four 
equa t ions for Rm(Tjmw(p\pf)'-

^ {[*»>', AJ) ~ E] 5m',m"S<7>" + ^m"a%m'a'ip') §P) 
m\ a' 

x Rm*,m'Ap\p') = 0.(38) 
Here , (m, m , m = 1, 2) 

E = fimff(p), v m f f j m , a / ( p ) = (umpa \v(p)\umfpa>). 

Symmetry in respect of the wave-function conjugat ion C 
described by expression (30) imposes the following restr ic­
t ions on the mat r ix elements v(p): 

^m\^m\ ^m|,m|? ^m|,m| ^m|,m| 

The mat r ix v(p) n o w becomes 

= 0 . 

vhl(p) 0 c(p) dip) ' 

0 v M ( p ) Td(p) ±c(p) 
c(p) Td(p) v 2 j 2 f r ) 0 
d(p) ±c(p) 0 v2i2(p) 

(39) 

where the mat r ix elements are described by (m = 1, 2) 

vm,m(p) = v m f f j m f f ( p ) , c(p) = v l t j 2 t ( p ) , d(p) = vlt2[(p). 

The upper signs in the mat r ix (39) cor respond to the same 
par i ty of the conduct ion-elect ron wave functions and the 
lower ones cor respond to different pari t ies. 

In accordance with the comment s m a d e immediately 
after expression (29), the results obta ined be low are 
independent of the selection of the signs in the mat r ix 
(39). Therefore, we shall omit the lower signs. Invar iance of 
H under the space inversion opera t ion T makes it possible 
to select the phase factors of the wave functions so tha t 
I m c ( p ) = lmd(p) = 0 at all po in t s of the p space [45, 68]. 

It follows tha t inclusion of the SOC gives rise, in the 
mat r ix (39), to elements of the conduct ion-elect ron velocity 
opera tor which are off-diagonal in respect of the spin and 
b a n d number . The existence of such mat r ix elements, i.e. 
elements characterised by d{p) ^ 0, leads in tu rn to the 
appearance of the probabi l i ty of spin-flip M B . Therefore, it 
would be desirable to est imate the value of such a mat r ix 
element. 

If 8 S _ 0 <^A(p), we can use formulas (32) and (33) to 
obta in an est imate of d{p) from the main term of the 
velocity opera to r p/m in expression (37): 

\<P)\ 
£ s - o v <9 

''MP)' 
(41) 

(40) 

where v 0 is the characterist ic velocity of conduct ion 
electrons. If es_0 ^ AQ

mm,{p), the est imate given by the 
above expression is na tura l ly invalid and the m o d u l u s of 
the element d{p) can become of the order of v 0 . In the 
absence of the SOC the mat r ix (39) splits into two 
independent matr ices of second r a n k | and the system of 
equa t ions (38) is t ransformed into two independent systems 
of two equa t ions for each or ienta t ion of the spin of 
conduct ion electrons. In this limit, we obta in the results 
repor ted in Refs [6, 45]. 

If the de te rminant of the system of equa t ions (38) is 
equated to zero, the result is the spectrum of conduct ion 
electrons near the poin t p ' (we recall tha t p = p +hp)\ 

fiit,2t(p) =sn,2i(p) = \ ^ &

m ( p ) + \^V™AP)'BP 
m m 

fx ( 4 2 ) 

± \ j - A W ) +b(p')Sp}2 + [c(p')M2 + [d(p')-Sp]2, 

where b = v 1 } 1 — v2^ A{p) = E\(p') — s2(pf). Obviously, 
for H = 0 the spectrum remains doubly degenerate in spin. 

The smallness of A(p') in the spectrum (42) means tha t 
the dispersion law sma(p) (and the cor responding Bloch 
factors) in the vicinity of p ' are ' peaked ' functions of the 
a rgument : a characterist ic interval of their var ia t ion is less 
t han (A/SQ)PQ (for details see Refs [9, 45]) . In an analysis of 
the behaviour of conduct ion electrons in M B regions when 
H / O w e shall need functions which vary smooth ly with at 
least one componen t of p . In this case the effective 
Hami l ton i an for an M B region can be found with the 
aid of modified K o h n - Lut t inger functions [45]. Such 
functions are sm(T(p) [and the cor responding factors are 
umpa{r)\ where p belongs to the par t of the p space near p ' 
where A{p) = £\a{p) — &2a{p) n a s its m in imum. 

f This becomes clear if, for d(p) — 0, we interchange the first and third 
rows, as well as the first and third columns, in the initial matrix. This 
gives rise to a block-diagonal matrix and each nonzero block then 
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It has been shown in Ref. [9] tha t the topo logy of the 
region of 'minimal A* depends strongly on the m u t u a l 
or ienta t ion of the vectors b, c, and d, which occur in the 
spectrum (42) and represent the mat r ix elements of the 
opera tor of the conduct ion electron velocity. The m i n i m u m 
of A(p) co r responds to the min imum of the rad icand in the 
spectrum (42), which is governed by a system of linear 
algebraic equa t ions 

b(p')-bp + 4c(p')-bp + 4d(p')-bp = -A(p')b(p') (43) 

with the u n k n o w n s hpx, hpy and hpz. 
Since the var ious project ions of the mat r ix elements of 

the vector opera tor of the conduct ion electron velocity (39) 
can be calculated quite independent ly , it follows tha t 
generally there are no restr ict ions on the relative or ienta­
t ions of the vectors b, c, and d, defined by expressions (40) 
and (42). In general , these vectors should be linearly 
independent . There is a un ique solution of the system 
(43): it is a po in t of degeneracy in the p space (we shall 
call it pt), defined by intersection of three planes: 

b(p)-hp = -A(p'), c ( / / ) - 8 p = 0, d(p')-bp = 0. (44) 

At the poin t of degeneracy the value of A(pT) vanishes. 
This type of spectrum will be discussed later and at this 
stage we no te tha t such a spectrum cannot appear in the 
absence of the SOC. 

W e shall consider in greater detail the cases when the 
de te rminant of the system (43) vanishes, i.e. when the 
vectors b, c, and d are linearly in terdependent . The simplest 
and easiest to under s t and , from the poin t of view of physics, 
is the case when the vectors b, c, and d are collinear. It 
follows from the spectrum (42) tha t in this case we have 
8 0 > A(p) > 0, everywhere near the poin t p' and the 
min imum of A(p) occurs in the p lane of the closest 
app roach of the b a n d s [9], which we shall call the M 
plane [45]: 

MP') \HP')\2 

b(p')-8P: 
\b{p')\2+4\c(p')\2+4\d(p')\2-

Since the pseudopoten t i a l of m a n y metals is small, such a 
spectrum is frequently encountered. The M p lane coincides 
with the b o u n d a r y of the Bril louin zone [11, 50, 90, 92]. 

In Ref. [50] the smallness of the pseudopoten t i a l (but in 
this case compared with the SOC) is used as the a rgument 
for a s t rong influence of the SOC on the electron spectrum in 
the M B regions of Zn , M g , and other hexagona l metals . The 
spectrum derived above can appear as a result of other 
mechanisms , such as doubl ing of one of the per iods of the 
meta l lattice as a result of a small displacement of its a t o m s 
[93]. 

Fig. 5a shows the approx ima te form of the cons tan t -
energy surface sm(T(p) = E near the M plane . In this region 
the dispersion law (42) is modified to 

± \lL

A IMPu)}2 + [ c w ( p M ) 8 p „ f ( l + a 2 ) . (45) 

Here , 8pn = n(p - pM), a = \dn(pM)/cT(pM)\, the po in t 
Pm lies in the M plane, and n is a uni t vector a long the 
n o r m a l to the M plane , which makes an angle 7 i / 2 — 6 with 
the magnet ic field H. 

Figure 5. Schematic representation of the constant-energy surfaces in 
the region of anomalous approach of two bands: (a) spectrum of the 
M-plane type; the field H is inclined at an angle 9 to the M plane; (b) 
spectrum of the p0-\inQ type, where the point 0 is the po(E) point of 
degeneracy; (c) spectrum of the /^- l ine type, where the point 0 is the 
PA(E) point with the minimum interband gap. The arrows identify the 
directions of motion of conduction electrons along orbits described by 
expression (8). The spin splitting is not shown for the sake of clarity. 

It should be noted tha t the functions sm(T(pM) and umpM(T 

(m — 1, 2) n o w vary smooth ly with pM and the interval of 
their var ia t ion in the M plane is of the order of po. 
Moreover , the smallest dis tance between the orbi ts 

fil<r(/0=£> Pz=Pz0 a n d s2a(p)=E,Pz=PzO O C C U r S at 
the po in t of their intersection with the M plane , where 
5/?(£, pz) ~ A/VQ is a smooth function of its a rguments . W e 
can see tha t the influence of the SOC reduces to the 
appearance of a renor-mal isa t ion factor 1 + a 2 in the 
rad icand [compare formula (45) with the cor responding 
formula in Ref. [45]]. 

One m o r e type of spectrum is predicted by the theory of 
M B [6, 45] in the case when the vectors b, c, and d are 
coplanar in such a way tha t c \\d, and b is no t paral lel to the 
other two. It readily follows from expressions (42) and (43) 
tha t in this case A(p) vanishes on the line of intersection of 
two planes: 

b{p')-8p = -A(p'), c(p')-8p = 0, 

when this line passes near the poin t p'. 
If the constant -energy surface ema(p) = E is intersected 

by such an 'obl iga tory ' degeneracy line [11] (called the po 
line in Ref. [45]), then pa r t s of this line near the poin t of 
intersection form an elliptic cone (Fig. 5b). It should be 
no ted tha t the inclusion of the SOC leads in this case to the 
appearance of the same renormal i sa t ion factor 1 + a 2 [see 
expression (45)] and does no t lift the degeneracy. The sheets 
of the cone cor responding to different b a n d s are separated 
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by a conical po in t po where Si(p0) = s2(p0) = E. This case is 
discussed in detail in Refs [6, 45, 68]. 

A quali tat ively new type of spectrum appears if we 
assume tha t the vectors b, c, and d are in the same plane, 
bu t n o n e of them are parallel . In this case it is impor t an t 
tha t d(p) ^ 0. W e then have A{p) ^ 0 everywhere near the 
poin t p' and the m i n i m u m of A{p) occurs on the line of 
a n o m a l o u s app roach of the p lanes (which we can call the PA 
line). If b is expressed in te rms of c and d, it is found tha t 
simple t rans format ions of the system of equa t ions (43) yield 
equa t ions for two planes and the PA line is the intersection 
of these planes . The first p lane is described by the equat ion 

. = A(pf)[cxd][bxd}\[cxd}\2 

\[c xd}[b xd]\2 + \[c xd}[b x c ] | 2 + 16|[c xd]\2' 

where all the quant i t ies are t aken at the poin t p'. The 
equat ion for the second p lane differs from the above by the 
t ranspos i t ion c <-> d and by the opposi te sign in front of the 
fraction. 

The constant -energy surface near the pA line is described 
by the equat ion for a two-sheet hyperbolo id and the poin t 
itself with the m i n i m u m in te rband gap pA = PA(E) is located 
between two sheets of this figure (Fig. 5c). A spectrum of 
this type can appear because of lifting of the degeneracy by 
the SOC a long any line of symmetry. 

W e shall consider the spectrum (43) of the type 
encountered at the poin t PT- The poin t pT lies on the 
constant -energy surface ema(p) = E only when the energy 
has the critical value E = Ecr. In this case the poin t becomes 
conical and the spectrum is identical with tha t considered for 
the p0 line. However , in general, the spectrum is of the 'neck-
b reak ing ' type [11, 12] and the si tuat ion depends strongly on 
the energy E (for conduct ion electrons par t ic ipa t ing in M B 
this energy is E = e F ) . If the neck is b roken , then for E ^ ECT 

the spectrum near the poin t pT can be approx imated by the 
equat ion for a two-sheet hyperboloid , bu t in contras t to the 
pA line, a further increase in \E — Ecx \ increases strongly the 
in te rband gap A(pT). If the neck ' thickens ' , the spectrum is 
described by the equat ion for a one-sheet hyperbolo id which 
is conta ined entirely within a single Brillouin zone. 

W e have thus here the case of the electron topological 
Lifshitz t ransi t ion [11, 12] with a conical point , which 
makes this case interest ing for the s tudy of the magnet ic 
proper t ies of conduct ion electrons as a function of the 
external pressure or of the alloy c o m p o s i t i o n . ! The 
influence of the conical po in t on M B under the condi t ions 
of the Lifshitz t ransi t ion has been considered by N e d o r e z o v 
[80]. In this review we shall assume tha t the energy E is 
fixed. In promis ing M B appl icat ions the spectrum of t he / ?x -
poin t type, given by expression (43), reduces to a spectrum 
either of the p 0 - l i ne or the p^-l ine type. 

If we consider formally the semiclassical mo t ion of 
conduct ion electrons in a magnet ic field, we find tha t 
for all types of spectrum the orbi ts described by expression 
(8) with a = const represent , in the regions of closest 
approach , different b ranches of the same hyperbola (Figs 
5 a - 5 c ) . In fact, the semiclassical equa t ions (7) with the 
Hami l ton i an (6) and wave functions (13) are inappl icable 
here. However , it has been shown [9, 45] tha t the smallness 

f The position of the Fermi level can be altered by variation of these 
parameters. 

of the pa rame te r s K and A/s0 makes it possible to generalise 
the cor respondence principle (11) to the case of M B . 

The most interesting, from the poin t of view of M B , and 
frequently encountered is the spectrum of the M-p lane type. 
It readily follows from Fig. 5a tha t for this type of spectrum 
and a favourable direction of the magnet ic field there is a 
fairly ' th ick ' layer of orbi ts a long which conduct ion 
electrons can reach the M B region, since the min imum 
separat ion 8 p « ^ / v 0 between the orbi ts associated with 
different b a n d s depends very weakly on pz. F o r all these 
conduct ion electrons the M B probabi l i ty is significant. F o r 
example, magnes ium is subjected to a magnet ic field paral lel 
to the hexagona l axis, the relative thickness of such a layer 

can reach 0.14 [5] and this thickness is practically 
independent of the magnet ic field. 

In the case of the spectra cor responding to Figs 5b and 
5c, the spacing hp(E, pz) increases rapidly as the p lane 
pz = pz0 moves away from the symmetry axis. Conse ­
quently, the M B probabi l i ty w(pz) decreases rapidly (in a 
given field). In other words , ' th in ' M B layers are formed 
and their thickness depends on the magnet ic field. 

In exceptional cases even thin M B layers can give rise to 
giant oscillations of, for example, the static conduct ivi ty [6]. 
However , in general, the M B effects can be observed in 
pract ice if an M B layer is sufficiently thick (when the 
number of conduct ion electrons par t ic ipa t ing in M B is 
sufficiently large) or if M B layers are located near extremal 
sections of the F e r m i surface. Therefore, we shall concen­
t ra te our a t tent ion on the spectrum of the M-p lane type, 
especially as the s t ructure of the s mat r ix is independent of 
the type of spectrum [9, 68]. 

The influence of the SOC on the spectrum of conduct ion 
electrons in a magnet ic field (H ^ 0) reduces quali tat ively to 
the following. F a r from the M B regions the semiclassical 
approx ima t ion works well and the spin degeneracy is lifted, 
as shown in Section 2 .1 . Pure spin states are then formed 
and their effective g factor is g{p) w g0 because in this case 
we have A{p) <̂  e 0 . The spin degeneracy is also lifted in the 
M B region. If A{p) ~ e s _ 0 , mixed spin states be longing to 
different b a n d s form in this small pa r t of the p space. The 
semiclassical orbi ts of expression (8) with different spin 
direct ions and approach ing closely one another are shown 
schematically in Fig. 2b. 

2.5 The s matrix in the case of the s p i n - o r b i t coupling 
and an arbitrary dispersion law 
W h e n the spin degrees of freedom of conduct ion electrons 
are t aken into account in a consistent manne r in the theory 
of M B , it becomes necessary to calculate the pr incipal 
dynamic characterist ic of M B , which is the complete 
four th- rank s ma t r ix for an a rb i t ra ry dispersion law. Such a 
calculat ion is repor ted in Ref. [9] following general isat ion of 
the rules for der ivat ion of the effective Hami l ton i an to the 
M B regions. W e shall not go into details of calculat ion of 
the s ma t r ix (details are given in Refs [9, 45, 94]), bu t instead 
we shall describe briefly h o w this mat r ix can be derived and 
we shall give the final expression in which the spin degrees 
of freedom are taken into account . All the expressions given 
be low for the case when there is no SOC reduce to the 
familiar results presented in an earlier review [6]. 

The s ma t r ix can be derived by finding, for 0, the 
effective Hami l ton i an which determines the dynamics of 
conduct ion electrons in a nonsemiclassical region of cha rac -
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teristic size §p <^ p0 (Fig. 2b), where in te rband t rans i t ions of 
conduct ion electrons are impor t an t . Wi thou t loss of 
generality, we can avoid the change in the gauge of the 
vector po ten t ia l in Section 2.1 by assuming tha t the M plane 
is intersected by the pz = pz0 p lane a long the straight line 
Py — PMy — 0 and the magnet ic field H forms an angle 6 
with the M p lane (Fig. 5a). 

The s ma t r ix can be wri t ten explicitly as a function of H 
and of the main pa rame te r s of the p rob lem if the 
Schrodinger equat ion is investigated in a small region 
close to the poin t pMy = 0. After py <-> px redesignat ion 
of the axes, we can use here Fig. 2b. The appropr i a t e 
Schrodinger equat ion for an M B region is obta ined from 
the system of equa t ions (38) ifp is replaced with P-(e/c)A9 

p' w i t h p M , the mat r ix elements vhp with the ma t r ix elements 
\7bpy and Rma^mal with fimW(P)9 where Pma(P) are the 
coefficients in the expansion of a s ta t ionary wave function 
of conduct ion electrons in te rms of the modified 
K o h n - L u t t i n g e r functions [95], in which the spin degrees 
of freedom are t aken into account [9]: 

^mPo — um;Px+eHy/c, PMy,pz;o (r) exp Pr 

Here the dependence on py occurs only in the exponent ia l 
function and the dependence on Px becomes smooth , since 
the P x axis is paral lel to the M plane . 

The regions of validity of our q u a n t u m solut ions and 
semiclassical functions (13) over lap. If we ignore a small 
q u a n t u m region, we obta in the s ma t r ix relat ing the 
coefficients cma from the wave function (13) on opposi te 
sides of an M B region. If the probabi l i ty is w ~ 1, the size of 
the M B regions is of the order of (A/e0)p0, so tha t they can 
be replaced with M B nodes . A schematic representa t ion of 
such an M B n o d e is shown in Fig. 2c. 

Each semiclassical section of an orbit (8) can be 
represented by a set i0<r9 where i0 is the zero-spin number 
of tha t section [6], which depends on the b a n d number m, 
and g represents the or ienta t ion of the spin of conduct ion 
electrons in tha t section. In the presence of the SOC, the 
pr incipal dynamic characterist ic of M B (which is the s 
matr ix) relates the ampl i tudes ci(j(T of eight semiclassical 
wave functions Wi(j(T at an M B n o d e before and after the M B 
scattering [apart from the no ta t ion , these ampl i tudes are 
identical with those in the wave function (13)]: 

(46) 

The pr imes denote the n u m b e r s of the semiclassical orbit 
sections which emerge from an M B n o d e (Fig. 2c). 

The mat r ix elements sio<TjQat can be expressed in te rms of 
the dispersion law [9] at the poin t of m a x i m u m b r e a k d o w n 
pM and can be wri t ten in the form 

t exp (=Fi^0 
0 

Tp/P 

where 

p = exp 
2H 

0 
Texp(=pL4) 

±ap/P 

Tp/P 

P 2 + T 2 

±P/P 

Tocp/P 
Texp(±L4) 

0 

±*pIP 

±p/P 
0 

t exp (±L4) 

a : 
dy(pM) 

cyipM) 

(47) 

(48) 

/ » = ( l + 0 

The mat r ix elements of the velocity d? and cy, which are 
off-diagonal in respect of the b a n d number , are defined by 
expression (40). It follows from formula (41) tha t if the 
influence of the SOC is s t rong, the pa ramete r a in the 
second expression (48) is of the order of unity, bu t if the 
SOC is weak, then 0 < a < 1. 

The phase shift A of the wave function (13) caused by 
M B is 

: - + — + a r g T . 
4 %H 5 \%H 

J * In tzH kH 
(49) 

Here , T(x) is the g a m m a function [96]. After b r eakdown , 
H0 is renormal ised by the SOC: 

cAz 
M0 

4 e / ^ | v * v » 2 c o s 0 | p 
(50) 

where the index n denotes the velocity componen t n o r m a l 
to the M plane and HQ{PZ) is the characterist ic b r e a k d o w n 
field in the absence of the SOC ( a = 0, P = 1). This 
characterist ic field depends smooth ly on E and pZ9 and also 
on 99 and it is practical ly identical with the field given by 
formula (24) if we bear in mind tha t vy = v n c o s # . 

F o r the other types of the spectra cor responding to Fig. 
5 there is no change in the s t ructure of the s matr ix . Only 
the expression for H0 is different [6, 45, 68]. Belokolos [94] 
was the first to obta in the 4 x 4 s matr ix : this was done by a 
g roup- theory app roach to M B in a specific meta l ( thall ium). 
However , the physical mean ing of the mat r ix elements of 
the t rans i t ions is no t stated in Ref. [94], a l though the 
general s t ructure of the mat r ix derived there is identical 
with the s t ructure of the mat r ix (47) which applies in the 
case of an a rb i t ra ry dispersion law [9]. 

The selection of the signs in the mat r ix (47) is 
determined by the sign of the difference 

<W(/>m) -^(Pm)* m = m(i())9 m = m^). (51) 

Here , m and m' are the serial n u m b e r s of the b a n d s coupled 
by M B (m ^ m). The upper signs in the ma t r ix (47) 
cor respond to the posit ive value of the difference in 
expression (51). It is evident from expression (47) tha t the 
probabi l i ty of M B with spin flip of conduct ion electrons is 

*i0(J,i'0(j' 

The to ta l probabi l i ty of an in te rband t rans i t ion [which 
should be compared with expressions (2) and (3)] is 

• w + w = p 1 : exp 
H 

(53) 

W e must stress once again tha t this s mat r ix cor responds 
to three-channel scattering of conduct ion electrons. Spin flip 
of a conduct ion electron is forbidden if the electron remains 
in its own band . This follows from vanishing of the off-
d iagonal (in te rms of the spin index) elements of the mat r ix 
(47) tha t be long to one b a n d . It readily follows from the 
mat r ix (47) tha t in the absence of the SOC (a = 0) the off-
d iagonal elements vanish. The s mat r ix then splits into two 
independent second-rank matr ices for each or ienta t ion of 
the spin of conduct ion electrons [this can be demons t ra ted 
by a p rocedure described in a footnote following formula 
(3)]. Each such mat r ix is identical with the s mat r ix derived 
in Ref. [45]. 

file:///7bpy


52 Yu N Proshin, N Kh Useinov 

3. Coherent magnetic breakdown 

M a t h e m a t i c a l formalism tha t takes account of the dua l 
na tu re of the conduct ion electron dynamics , i.e. semi-
classical mo t ion a long sections of an M B configurat ion and 
q u a n t u m scattering by M B nodes , is needed in the 
investigation of the proper t ies of metals under M B 
condi t ions . It has been shown [6, 49] tha t the energy 
spectrum and macroscopic proper t ies of a meta l can be 
expressed in te rms of semiclassical wave functions and s 
matrices . As poin ted out earlier, the ma themat i ca l 
p rocedures used in the M B theory can be generalised 
qui te simply, in the formal sense, to t ake account of the 
spin degrees of freedom and of the SOC. Therefore, a brief 
account of the formalism will be given here with stress on 
the features tha t arise from the inclusion of the SOC. 

Interference processes are of decisive impor tance in the 
development of the ma themat i ca l formalism of the M B 
theory [18, 19]. Superposi t ion of semiclassical wave func­
t ions (13) with different phases (15), the latter acquired by 
conduct ion electrons in different sections of an M B 
configurat ion, on mult iple q u a n t u m scattering from M B 
nodes gives rise to an interference pa t t e rn which results in 
the appea rance of a specific M B spectrum. W h e n the 
influence of weakly inhomogeneous fields can be ignored, 
coherent effects appear and a steady M B spectrum is formed. 
This is k n o w n as the coherent magnetic breakdown [6]. 

A q u a n t u m interference pa t t e rn b reaks down if an 
inhomogeneous pe r tu rba t ion is sufficiently s t rong to alter 
an increment of the act ion, described by expression (16), by 
an a m o u n t exceeding the Planck constant h in the t ime 
taken by an electron to travel a long a section of an M B 
configurat ion. It follows tha t smal l -ampl i tude i nhomoge ­
neous fields influence very strongly the interference-type 
mot ion of a wave packet a long an M B configurat ion bu t 
have practical ly no effect on the classical dynamics of 
conduct ion electrons in such a configurat ion [6, 57, 58]. 

The na tu re of mot ion of conduct ion electrons a long an 
M B configurat ion depends strongly on the rat io of the 
characterist ic t imes of the p rob lems [6]: 

? s . a > y > t c , 

h > *s.a > Tc , 

Tc ^ tpi ^s.a • 

(54a) 

(54b) 

(54c) 

(54d) 

Here , xp is the re laxat ion t ime of the m o m e n t u m , governed 
by the e l e c t r o n - i m p u r i t y scat tering or by short-wavelength 
p h o n o n s [97]; T s a is the small-angle scattering t i m e ; | 
Tc = 2TZ/COC is the characterist ic t ime of mo t ion of 
conduct ion electrons a long a pa th in a magnet ic field 
described by expression (17). In calculat ions tha t t ake 
account of the spin degrees of freedom we shall assume 
always tha t the spin re laxat ion t ime is much longer t han 
any other characterist ic t ime. This is t rue of pu re metals at 
low tempera tu res [98, 99]. Therefore, spin flip of conduc ­
t ion electrons in the course of their mo t ion a long an M B 
configurat ion is solely due to M B scattering represented by 
the probabi l i ty (52). 

f The scattering of conduction electrons in weak inhomogeneous fields 
(due to dislocations, mosaic block boundaries, long-wavelength phonons, 
etc.), which is accompanied by small chnges in the quasimomentum qSA. 

Coheren t magnet ic b r e a k d o w n occurs when the inequal ­
ities (54a) and (54b) are satisfied. W h e n the inequalit ies 
(54c) are obeyed, small-angle scat tering destroys coherent 
interference when the electron dynamics becomes s tochas­
tic. The s tochast isat ion field does no t occur in the final 
expressions for the t r anspor t proper t ies of a metal . All the 
p h e n o m e n a which occur in this s i tuat ion are called 
stochastic magnetic breakdown. 

The inequalit ies in formula (54c) imply tha t one m o r e 
inequali ty is also obeyed: T^a ~ T s . a ( p 0 / g s . a ) 2 > Tc. This 
means tha t b o t h the impur i ty and the small-angle scat ter­
ing do no t prevent conduct ion electrons from pass ing m a n y 
t imes a long a closed M B configurat ion unt i l they are 
effectively scattered or from p ropaga t i ng for m a n y per iods 
a long an open M B configurat ion. 

W h e n the inequali ty (54d) is satisfied, M B cannot be 
detected against the impur i ty scat tering b a c k g r o u n d result­
ing in in te rband transfer of conduct ion electrons. 

3.1 Stationary wave function and motion of a wave 
packet along a magnetic breakdown configuration 
The semiclassical theory of well-defined orbi ts on a F e r m i 
surface, presented in Section 2 .1 , ceases to be valid under 
M B condi t ions . This theory can be used only in the limit of 
weak fields when M B does not appear . In the limit of very 
s t rong fields (H ^> H0), when conduct ion electrons b reak 
th rough all the gaps, the influence of the SOC makes it 
necessary to t ake account of the probabi l i ty of spin flip of 
conduct ion electrons, described by the mat r ix (47), in each 
such b reak - th rough (tunnelling) event. However , an inter­
media te s i tuat ion, when features specific to b o t h l imiting 
cases are observed, is m o r e typical. The semiclassical 
sections, described by expression (8), with opposi tely 
oriented electron conduct ion spins, merge to form one 
M B configurat ion when w s ^ 0 and the spin degrees of 
freedom are included. Each M B n o d e n o w links eight 
semiclassical sections: four incoming and four ou tgoing 
(Fig. 2c). 

The mot ion of conduct ion electrons a long an M B 
configurat ion is described by the s ta t ionary wave function 

•ioa ẑ'oa {Py ) ^px0,px 
(55) 

l0,(T 
which is a superposi t ion of the wave functions Wio(T of 
separate sections, as described just before formula (46). The 
summat ion over i0

 m expression (55) is carried out up to 
N0, which is the to ta l n u m b e r of inequivalent sections tha t 
occur in an M B configurat ion when the spin is ignored. 
Figs lc , 3b, and 4 show schematically some M B 
configurat ions. 

The requi rement tha t the wave function (55) be un ique 
imposes condi t ions on the ampl i tudes ci(j(T. These ampl i tudes 
should satisfy the following system of linear equat ions : 

i'Q,(T' 
(56) 

H e r e is a un i ta ry mat r ix of r ank 2N° which has only 
three nonzero elements in each of the i0a/ co lumns. These 
elements are in the rows z0cr, whose n u m b e r s are identical 
with the n u m b e r s linked to if

0(Tf by a shared node : 

,(o) (57) 
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where ' is the mat r ix (47) in which it is assumed tha t all 
A vanish. 

The system of equa t ions (56) is derived by ma tch ing the 
functions (13) in such a way as to t ake account of the 
scattering channels [see formula (46)] and the phases 
acquired in a section i0<R: 

Pz) = (pioa(E, Pz) + Rnk +1 (AIo + AJ, (58) 

where 

9 k M PZ)=l SIO(E, P z ) + y\a{E, P z ) + <5,o (59) 

is the semiclassical phase of the wave function (13) 
acquired by a conduct ion electron in the section z0cr 
between two consecutive M B scattering events. The second 
term in expression (58) must be included in discussing open 
per iodic M B configurat ions (with the per iod by; see Figs lc , 
4c, and 4d). It should be no ted tha t R = cbyPx/eHH; nio = 0 
if i0 is an in ternal section and nio = sgn (dPy/dPx) if a 
section intersects the boundar i e s of uni t cells [6]. In the case 
of closed M B configurat ions (Figs 4a and 4b), we find tha t 
nio = 0 in all cases. The phase shift Aio in expression (58) is 
defined by formula (49), where i0 i s the number of a 
section enter ing an M B n o d e from which a section i0 

emerges; m( / 0 ) = m(io). 
It should be noted tha t in expression (59) the quant i ty 

Sio(E, pz) is the increment in the t ransverse act ion of 
formula (16) and 3io = ± n/2 is the sum of all the phase 
shifts tha t appear in the z0th section crossing the classical 
tu rn ing po in t s [45, 84]. The spin cont r ibut ion y] a(E, pz) to 
the phase (59) is 

f,AE, P z ) = ±1 g^BHTk(E, pz) = ± | ^ gk (60) 

[see also expression (15)]. Here , gio(E,pz) and mio(E, pz) 
are, respectively, the g factor and the effective cyclotron 
mass of conduct ion electrons in the z0th section; T^{E, pz) 
is the t ime taken by a conduct ion electron to t ravel a long 
the z'0th section. It should be stressed tha t these three 
quant i t ies are independent of the spin index, i.e. they are 
'zero-spin quant i t ies ' . It should be poin ted out tha t 
g\ — gi0

mi0/2m, somet imes called the spin splitting p a r a ­
meter [8, 11], i s — l i k e the SOC paramete r a, defined in 
formula (48) — a pa ramete r of the M B theory tha t takes 
account of the spin degrees of freedom. 

A bet ter unde r s t and ing of the interference processes 
which appear in this s i tuat ion can be obta ined by relat ing 
the dua l na tu re of the mo t ion of conduct ion electrons to the 
evolut ion in t ime of a semiclassical wave packet moving 
a long an M B configurat ion. A wave packet , localised in a 
section i0<R at a m o m e n t t, will be denoted by \t; i0<R). This 
wave packet moves a long the semiclassical section i0<R to the 
nearest M B n o d e and it acquires the phase described by 
expression (59). W h e n the wave packet crosses M B nodes , it 
splits into three: 

W e shall simplify the no ta t ion by replacing two z0cr indices 
with one symbol for a semiclassical section / in such a way 
tha t the odd n u m b e r s of the sections represent the spin-up 
states of conduct ion electrons and the even n u m b e r s 
represent the spin-down states, i.e. cr = j and cr = j , 

respectively. The new section number / represents uniquely 
the number of the b a n d in which the wave packet is located 
and the spin or ienta t ion: ma = ma(i). 

Inclusion of the spin degrees of freedom and the 
existence of the thi rd scattering channel (a ^ 0) double 
the n u m b e r of semiclassical sections of the orbit [described 
by expression (8)] forming an M B configurat ion, compared 
with the number of such sections in the 'zero-spin ' case 
[ 5 - 8 ] . The number of inequivalent sections is also doubled. 
W e can use the results of Refs [6, 49] if we assign different 
n u m b e r s (/, j , . . . ) from 1 to N to the inequivalent sections. In 
the case of a closed M B configurat ion, N represents the 
to ta l n u m b e r of sections. W h e n the spin degrees of freedom 
are included, N is equal to four t imes the number of M B 
nodes , i.e. N = 2N°, where N° is the n u m b e r of M B -
configurat ion sections in tha t version of the M B theory 
which ignores the SOC. 

W e thus find tha t each \t; i) packet , which appears after 
any M B scattering, evolves semiclassically unt i l it is 
scattered by the next M B node , and so on. Such scattering 
occurs at the following momen t s : 

N 

tL = Y,kTi=L-T> (62) 
i=i 

where Tt is the t ime of t ravel a long a section /; lt represents 
nonnegat ive integers, which are equal to the n u m b e r of 
t imes tha t a conduct ion electron passes t h rough a section / . 
The t ime tL is measured from the m o m e n t of the first 
scattering event. The set N of quant i t ies {At} in expression 
(62), which represent quasiclassical sections of an M B 
configurat ion (/ = 1,, 2, ...,N), will be called the N vector 
and denoted by A [6]. Therefore, expression (62) is wri t ten 
in the form of a scalar p roduc t L T of the vectors. 

Mul t ip le scattering of semiclassical packe ts multiplies 
their number , which rises exponential ly with t ime (Fig. 3b). 
Each packet , which appears in some section (for example, a 
section / ) can be assigned to a specific pa th , a long which it 
travels in the t ime L>T between the sections / and j . This 
p a t h can in general be closed or open and it is called the X 
path. It cor responds to a packet of ampl i tude a\j(L), which 
conta ins a phase factor e x p j z ' y ^ } and the p roduc t of the 
elements of the s matr ices of the M B nodes t h rough which 
the X pa th passes. The integers l u /2,..., lN indicate the 
number of t imes tha t each of the MB-conf igura t ion 
sections is included in the X pa th , bu t some of these 
n u m b e r s m a y be zero. 

The following feature of the M B theory plays a 
fundamenta l role: any pair of sections (/, j) and a t ime 
L'T can as a rule be matched to m a n y X p a t h s differing in 
the sequence of pass ing a long semiclassical sections. Packets 
cor responding to such X p a t h s differ only in respect of their 
ampl i tudes ajj(L) and, therefore, they interfere forming a 
packet with a combined ampl i tude 

A , y . ( L ) = ^ « S ) ( i ) - (63) 
X 

In q u a n t u m mechanics , expression (63) is a F e y n m a n p a t h 
integral, which is t ransformed into a sum over X p a th s 
because of a characterist ic combina t ion , under the M B 
condi t ions , of semiclassical mo t ion a long sections and of 
smallness of the M B regions. In the semiclassical case 
(w = 0) there is only one X p a t h for each pair of sections (if 
they are linked by a classical pa th ) . 
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The combined ampl i tude of the interfering packets , 
given by expression (63), is the q u a n t u m ampl i tude of 
the probabi l i ty of detection of conduct ion electrons in a 
section j at a m o m e n t L*T after the first scat tering event in 
the first section /. A complete descript ion of the dynamics of 
conduct ion electrons under the M B condi t ions requires the 
knowledge of the whole infinite series of ampl i tudes 
A y ( L ) . These ampl i tudes can be calculated by combina to r ­
ial analysis [5]. In the simplest s i tuat ions this presents no 
difficulties [8], bu t in the general case of an arb i t ra ry M B 
configurat ion, such analysis proves very cumbersome. 
However , in pract ice the ma themat i ca l formalism of the 
M B theory makes it possible to avoid combina tor ia l 
analysis, since the ampl i tudes A y ( L ) satisfy recurrence 
re la t ionships [18], which are derived in Ref. [18] ignoring 
the SOC and the conduct ion electron spin. 

W e shall i l lustrate the der ivat ion of the recurrence 
relat ionships, which take account of the spin degrees of 
freedom of conduct ion electrons, by considering the simple 
example of a closed figure-of-eight M B configurat ion with 
one M B n o d e and four inequivalent sections (Fig. 4a). In 
te rms of the new no ta t ion we have / = 1,2 for the mo t ion of 
conduct ion electrons in the first b a n d and / = 3, 4 for the 
second band . 

In accordance with the s t ructure of the s mat r ix (47), 
when a wave packet begins its mo t ion in the section / = 1 
and crosses an M B region, it splits into three packets : one in 
its own b a n d with the initial spin or ienta t ion (/' = 1) and 
two in the other b a n d with opposi te spin or ienta t ions 
(/' = 3 , 4 ) . These packe ts in tu rn are scattered at t imes 
Tl9 T 3 , and TA = T3, respectively. Next , the packet \t\ i) is 
scattered again, creat ing each t ime three new states localised 
in the sections / = 1 — 4. It is clear tha t at m o m e n t s 
t\ + L * r the scat tering is accompanied by interference 
between some packe ts which are encountered in a section 
j . Here , tx is the m o m e n t of the first splitting of the initial 
packet ; L = L ( / 1 ? / 2 , h i h ) - All the interfering packets have 
the same structure, bu t different ampl i tudes . 

The combined ampl i tude (63) of all the packets which 
begin their mo t ion in a section / and interfere at a m o m e n t 
Tt+L'T in a section j (j = 1 — 4) satisfy the following 
relat ionships: 

Ai,i(L) =TQxp(iy1)Aijl(L-el) 

- ^ e x p ( i y 3 ) A i j 3 ( L - e3) +°j e x p ( i y 4 ) A i j 4 ( L -eA), 

A&(L) = T e x p ( i y 2 ) A i j 2 ( L - e2) 

- | e x p ( i y 4 ) A M ( L -eA) -°jQxp(iy3)Aij3(L - e3), 

A 1,3 (L)=t exp (i y3 )A ij3 (L — e3) (64) 

+ j exp (i yx )A f > 1 (L - ex) + °j exp (i y2)A ij2 (L — e 2 ) , 

AiA(L) =TQxp(iy4)AiA(L - eA) 

+ ^ e x p ( i y 2 ) A i j 2 ( L - e2) - ^ e x p ^ j A ^ L - ex) 9 

where ej is the uni t N vector with one nonzero componen t 
whose serial number is the same as the serial number of 
the section in which interference takes place, i.e. 
ej = iShJ> S2J>>~>f>N,j}-

Rela t ionships (64) are obvious from the na tu re of the s 
matr ix (47), from Fig. 4a, and from simple combina tor ia l 
considerat ions . Moreover , the following b o u n d a r y condi ­
t ions are assumed in the derivat ion of re la t ionships (64): 

AI-,-(0) = 8I.,., 

Aij(-h hi hi k) =Aij(h, - 1 , hi k) (65) 

= Aij(lu ^ 2 , - 1 , k) = A i ) i ( / i , hi hi - 1 ) = 0 , 

where btj are the Kronecke r deltas, each of which can be 
represented as a 5-like spike, which appears in a section 
i=j; 0 = {0, 0, 0 ,0} is the null vector. 

The b o u n d a r y condi t ions (64) can be rewri t ten as an 
o rd inary p roduc t of matr ices: 

iV=4 

AU(L) = J2A>AL -«*) VfjexP(%). ( 6 6 ) 
k 

where on the left is the mat r ix of the ampl i tudes tha t 
interfere in a section j and on the right is the p roduc t of 
a mat r ix Aik(L — e k ) , interfering in a section k, and a 
dynamic mat r ix vf\,9 which is defined by formula (57). 

The above expressions ( 6 4 ) - ( 6 6 ) can be generalised 
directly to other types of M B configurat ions. In par t icular , 
the recurrence re la t ionships (66) are valid in the case of all 
nonnegat ive values of l u l2, with the exception of 
L = 0. Then Aik(L) satisfies the b o u n d a r y condi t ions 

AiJ(0) = SiJ, AiJ[L-(lk + l)ek]=0, (67) 

where k assumes values from 1 to N. 
In t roduc t ion of a un i t a ry mat r ix of r ank N 

UkJ(y) = vf^xp(iyk), (68) 

expressed in te rms of and yk [see formulas (57) and 
(58)], yields the following form of relat ionship (66) valid for 
any M B configurat ion: 

N 

AiJ(L) = YfAiik(L-ek)Ukj9 (69) 
k 

where for an arb i t ra ry M B configurat ion the mat r ix Ukjt is 
constructed in such a way tha t there are only three nonzero 
elements in the jth co lumn. These elements are on rows k, 
the serial n u m b e r s of which are identical with the serial 
n u m b e r s of the sections coupled to a section j by a shared 
M B n o d e with a nonzero M B transi t ion probabi l i ty . 

The system of recurrence re la t ionships (69), together 
with the b o u n d a r y condi t ions (67), can be represented in a 
compact form with the aid of the generat ing functions [6, 18] 

FuAl) = J2'Au(L) e x p ( i L . y ) , (70) 
L 

where the summat ion symbol is p r imed to indicate the 
absence of the te rm with L = 0 and 

A ( J . ( L ) = 5 > - « ( L ) 
k 

is the smooth pa r t of the combined ampl i tude (63). Here , 
a\j is the p roduc t of the elements of the s mat r ix for the 
M B nodes t raversed by the X pa th , derived ignoring the 
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phases acquired in the sections and as a result of M B , 
because the phases occurr ing in y are taken into account 
separately [see, for example, formula (70)]. 

The mat r ix described by formula (70) satisfies the 
following linear system of equat ions : 

FtM = f > a « Vf] e x p ( % ) + V?) e x p ( t y ) . 
k 

(71) 

A similar system of equa t ions is obta ined for the above 
example of an M B configurat ion with one M B n o d e 
(Fig. 4a) if the recurrence re la t ionships (64) and (70) are 
subst i tuted and the b o u n d a r y condi t ions (65) are applied. 

In view of the relat ionship between U and V, the system 
of equa t ions (71) can be wri t ten in the mat r ix form: 

F(y) = F(y) U(y) + U(y). (72) 

Therefore, we can find the ampl i tude A y ( L ) by solving 
the system of N linear equa t ions (71) and finding the 
relevant Four ie r componen t of the resul tant solution. 

3.2 Dispersion equations and magnetic breakdown 
spectrum 
It is po in ted out in Section 2.1 tha t the energy levels of 
conduct ion electrons become quant ised in a magnet ic field 
and the quant i sa t ion rule is given by expression (19). 
It follows from this expression tha t the spacing between 
discrete energy levels Ema(n,pz) is AEm = B(Qm(E, pz) and 
tha t this spacing depends very weakly on the level number 
n. In the preceding section we have shown tha t under the 
M B condi t ions a simple per iodic mo t ion of the centre of a 
packet within one b a n d is replaced by a complex pa t t e rn of 
q u a n t u m interference of an e n o r m o u s number of packets . 
In this case the electron energy spectrum differs qua l i ta ­
tively from the semiclassical spectrum. 

P ippa rd solved the difficult quan tum-mechan ica l p r o b ­
lem of the mo t ion of conduct ion electrons under the M B 
condi t ions and derived the M B spectrum by in t roducing the 
concept of a network of coupled orbits in real space (see Refs 
[4, 46, 50]). This app roach yields a fairly clear p ic ture of the 
mo t ion of conduct ion electrons, so tha t it is possible to 
utilise the probabi l i t ies of a j u m p of a conduct ion electron 
from one orbit to another and to consider a set of phases for 
the mo t ion of conduct ion electrons a long these orbits , 
deriving thus the dispersion equa t ions the solution of 
which gives the M B energy spectrum. 

The idea under ly ing this me thod is i l lustrated in 
sufficient detail in Shoenberg ' s b o o k [8] on the basis of 
a simple mode l of a meta l in which a ne twork of coupled 
circular orbi ts is obta ined a long an r-direct ion perpendic ­
ular to the direction of var ia t ion of the lattice potent ia l . A 
similar ne twork can be obta ined from the M B configurat ion 
shown in Fig. 4d, if the relat ionship between the p and r 
p a t h s given by expression (9) is utilised. One should 
ment ion also the work of C h a m b e r s [51 - 5 3 ] , who analysed 
M B ne tworks and found the M B spectrum by complex 
combina tor ia l p rocedures . 

The ma themat ica l p rocedures used in the preceding 
section m a k e it possible to formalise and simplify the 
deriva-t ion of the dispersion equat ions , at least in the 
case of simple one-dimensional per iodic M B configurat ions 
[6, 49] or when the spin degrees of freedom are included [9]. 
This der ivat ion reduces to the finding of the de te rminant of 

the system of equa t ions (56) or of the mat r ix E — U(y), 
where E is a uni t matr ix . The mat r ix E — U(y) can also be 
derived from the mat r ix equat ion (72) and zeros of the 
de te rminant 

det \E-U(y)\ =0 (73) 

yield the singularities of the generat ing function Ftj(y). 
It is clear from the general principles of q u a n t u m 

mechanics [84] tha t the roo t s of Eqn (73) give possible 
values of the energy of conduct ion electrons under the M B 
condi t ions , i.e. the M B spectrum, whereas the quant i t ies 
Ftj(y) represent a s ta t ionary q u a n t u m ampl i tude of a 
t ransi t ion of a conduct ion electron from a section / to a 
section j . The un i ta ry na tu re of the mat r ix U(y) and the 
k n o w n proper t ies of the de te rminan ts lead to 

det \E-U(y)\ = 2exp (74) 

where Xo — (7 C/^)[—1 + sgn (det |V|)] and D(y) is a real 
function of the phases y*, which is per iodic in the phases 
with the per iod 2K. 

It follows from E q n (74) tha t zeros of the spectral 
equat ion (73) are real and tha t D({yt}) represents a finite 
t r igonometr ic po lynomia l for N phases y* in which the 
coefficients depend only on the M B probabi l i t ies and on the 
SOC paramete r , i.e. on p , t , and a [see the mat r ix (47)]. It 
therefore follows tha t the M B spectrum can be deduced 
from the solution of the t r anscendan ta l equa t ion 

(75) 

k n o w n as the dispersion equat ion . 
The semiclassical n a t u r e of the mo t ion between M B 

nodes implies the existence of large phases (59) of the wave 
functions of conduct ion electrons, which depend on the 
energy, on the project ion of the m o m e n t u m along the 
applied magnet ic field, and on the field itself. The 
independence of the phases acquired in different sections 
/, and the incommensurabi l i ty of these phases and their 
derivatives (in respect of their energy and m o m e n t u m ) has 
the effect tha t under the M B condi t ions the energy of 
conduct ion electrons becomes a quas i r andom function of E 
and pz [6]. If the spin is t aken into account , these phases 
depend also on the value of the g factor of the conduct ion 
electrons in a section /, and, consequently, in general the g 
factor of conduct ion electrons represent ing the whole M B 
configurat ion can also become a quas i r andom quant i ty . 

W e believe tha t it is impossible to separate (in general) 
the spin degrees of freedom from the 'o rb i ta l ' degrees and, 
in our opinion, it is one of the mos t impor t an t results of the 
M B theory which takes account of the spin flip of 
conduct ion electrons. Moreover , it has been assumed 
earlier [ 4 - 8 ] tha t the mo t ion of conduct ion electrons 
under the M B condi t ions is semiclassical b o t h in the 
absence of M B (w = 0) and in the case of to ta l b r e a k d o w n 
(w = 1). In our case this applies only to conduct ion 
electrons moving a long their own ' legi t imate ' p a t h s in 
the w = 0 case. If w = 1 (and w s ^ 0!), the wave functions 
of conduct ion electrons become entangled. W e shall show 
later tha t this m a y create states with an effective spin \ and 
each of these states represents a mixture of ' p r e b r e a k d o w n ' 
states with opposi te spins. This leads to an effective g factor 
of conduct ion electrons, which is governed by the ' spin ' 
splitting in a magnet ic field [see expressions (12) and (19)]. 
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In the m o r e complex case of advanced M B 
[w(l — w) ^ 0] when spin flip is t aken into account 
(ws ^ 0), it is necessary to modify the classification of 
the states of the M B system. The effect of this is tha t in 
calculat ion of m a n y physical proper t ies of the system it is 
no t possible to separate summat ion of the spin index. This 
summat ion can be carried out only for some special cases 
such as the case of composi te M B orbi ts which lie entirely 
within one b a n d and on which there is no spin flip of 
conduct ion electrons under the M B condi t ions . Therefore, 
in general , there are conduct ion electron states which are 
given by the solut ions of the dispersion equat ion (75) and 
the n u m b e r of these solut ions is doubled, compared with the 
zero spin case. W e then cannot identify the spin of each of 
these states. 

It therefore follows tha t in the case of closed M B 
configurat ions and a fixed value of pz, E q n (75) gives a 
discrete set of MB-modif ied L a n d a u levels: 

E = E(n,pz), (76) 

and in the case of open M B configurat ions, a spectrum of 
the magnet ic b a n d type [4, 6] is possible: 

E = E(n,pz,R), (77) 

where n is the serial n u m b e r of the solut ion of the disperse 
equat ion which takes account of the SOC and the 
cont inuously variable pa ramete r R is defined by expres­
sion (58). U n d e r the advanced M B condi t ions [ w ( l - w ) ~ 
1] the energy levels E(n, pz) and E(n, pz, R) are distr ibuted 
at r a n d o m : their dependence on pz is a r a n d o m function. In 
this case the serial n u m b e r n of an M B level differs from 
tha t obta ined in the semiclassical approx ima t ion [11, 13], 
because the n u m b e r of the magnet ic flux quan ta , which 
pass t h rough the area within the classical conduc t ion-
electron pa th , ha s no simple physical meaning . 

W e shall consider this in greater detail by deriving the 
D(y) function for simple M B configurat ions and we shall 
t ake into account the spin degrees of freedom (Fig. 4). 

(a) W e shall begin with a closed M B configurat ion with 
one M B n o d e (Fig. 4a), which subject to the spin splitting 
can be called the double figure-of-eight. A four th-order 
de te rminant is obta ined from expressions (47), (53), (58), 
(68), and (73). Omission of the phase factor [see expression 
(74)] and simple t r ans format ions yield the dispersion 
equat ion 

D ( { y , . } ) = c o s f l 
4 3 

- ( 1 - W ) 1 / 2 ^ C 0 S 0 ; + (1 - w ) ^ C O S ^ - 4 

W o 
H T ( c o s 0 2 4 + or cos fi2 3) = 0 , (78) 

l + a 2 V ' ' y 

where 

& = ^ ( 7 i + 72 + 73 + 74)> Qi = Q - y i 9 Qtj-

In the absence of the SOC (a = 0), the dispersion 
equat ion (78) can be factorised: 

D»({7i})=2 cos 

T 2 + T 4 

Jl + 73 VT w c o s 
7i - 7 3 

X COS • v T • w COS 
7 2 - 7 4 0 . (80) 

If y* = 0 is subst i tuted in all yt [see relat ionship (60)], which 
is equivalent to complete neglect of the spin splitting, then 
each factor in the dispersion equai ton (80) is identical with 
the function D({yt}) for the simple figure-of-eight given in 
Ref. [6]. 

If w = 0 (weak fields H <^ H0, no b r eakdown) , the 
spectrum becomes semiclassical. The dispersion function 
(78) then splits into factors: 

Dw=0({7i}) = 8 sin I sin I s i n | s i n | . (81) 

Equa t ing to zero each of them, we obta in the Lifshi tz-
Onsager condi t ion of the type given by formula (19): 

x / , w 2nehH ( 1 
si(E> Pz) ~ (-1) ngi^miH = — " — ( n + 5 (82) 

which determines the spectrum of conduct ion electrons 
moving a long semiclassical pa ths . Therefore, 

Si(E, p. 
> - r Px 

m(i) 
(Py)dPy (83) 

is the area of a section of the constant-energy surface 
obta ined ignoring the spin splitting ( integrat ion is carried 
out a long the whole of a section / ) and 

eHTi 1 f*S\ ( 8 4 ) 

2nc 2% \dE 

is the effective cyclotron mass in the same section / (Tt is 
the t ime of t ravel a long the section). The following 
equalities then apply: 

m k - \ — mk> Tk_i — Tk, Sk_i — Sk , 

gk-i =8k = gm{k)> k = 21, 
(85) 

where / is an integer (in our example, this integer is / = 1, 
2). Conduc t ion electrons then move a long their initial 
orbi ts and do not undergo in te rband t ransi t ions . 

If w = 1 (s t rong fields H > H0, complete b reakdown) , 
the mo t ion of conduct ion electrons considered tak ing 
account of the spin degrees of freedom is no t fully 
semiclassical. In this l imiting case electrons move wi thout 
'not ic ing ' the in te rband gaps, as in the earlier theory [5, 6]. 
However , each passage of a conduct ion electron th rough an 
M B n o d e m a y result in spin flip associated with the SOC. 
N e w pa ths appear and they are composed of sections of the 
old semiclassical orbi ts . Mix ing of the states with the 
opposi te spins modifies the dispersion function (78) to 

A v = i ( { 7 ; } ) = c o s 
7i + 72 + 73 + 74 

+ 1 + a 2 

7 i - 72 + 73 - 74 (86) 

+ a 2 c o s 7 i ^ 7 2 ^ 7 1 ± 7 4 

It is clear tha t quant i sa t ion condi t ions are different for 
the two limiting cases because the orbit topologies are very 
different. By ana logy with condi t ion (82), subject to 
re la t ionships ( 8 3 ) - ( 8 6 ) , we can wri te the Lif­
s h i t z - O n s a g e r condi t ion for the resul tant complete 
figure-of-eight as follows: 

S W ( E , P z ) ± ^ \ m ^ H = ^f- (n + ^ (87) 
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where s ( w = 1 ) =sl-\-S3 is the to ta l zero-spin area of this 
figure and m^w=l^ = mx + m 3 . Condi t ion (87) allows us to 
in t roduce the effective spin of a conduct ion electron: the 
plus (minus) sign then cor responds to an effective spin-up 
(spin-down) state. 

W e thus obta in the following very interest ing result. In 
spite of the fact tha t a conduct ion electron crosses sections 
of an M B configurat ion with opposite spins (represented by 
even and odd numbers ) , under the complete b r e a k d o w n 
condi t ions a mix ture of states degenerates into two (!) 
effective ' q u a n t u m ' states which differ in respect of the 
or ienta t ion of the effective spin. This gives rise to an 
effective g factor of the new orbit , which in the case of 
complete b r e a k d o w n is 

2 m ( 1 > = 1 ) 
71 m (w=l) arccos < 1 + a 2 

j-COS 
2m 

(88) 

W e recall tha t , as in the Hami l t on i an (26a), m denotes the 
mass of a free electron. The effective g factor of a new orbit 
can be described in a na tu r a l manne r in te rms of the 
characterist ics of sections (gt, m*) and in te rms of the SOC 
paramete r a defined by expression (48). 

The results obta ined can be m a d e clearer by compar i son 
with similar spectral characterist ics [see formula (87)] of 
conduct ion electrons moving a long a simple closed orbit 
wi thout M B nodes (for example, a circle or an ellipse) with 
the g factor equal to g^w=1\ 

If the SOC does no t influence M B (i.e. if a = 0) the 
states with opposi te spins do not merge: each of the figures-
of-eight exists independent ly of the other . In this s i tuat ion 
expression (88) reduces to the fully expected formula for 
gav» which is the g factor averaged over the new orbits : 

(w=i) g\mx + g3m3 

(a=0) (89) 

which for greater clarity can be rewri t ten as follows 
[compare with formula (84)]: 

glTl +g3T3 

Ti+T3 

(90) 

It is evident from expressions (89) and (90) tha t one of 
the reasons for the change in the g factor of conduct ion 
electrons under the condi t ions of complete b r e a k d o w n is the 
difference between the characterist ics of the inequivalent 
sections in an M B configurat ion. On the other hand , it 
follows from expression (88) tha t even if all mt and gt are 
equal , the effective g factor gaY is not in general equal to gt 
because of the possibili ty of spin flip of conduct ion 
electrons in each passage t h rough an M B n o d e (a ^ 0). 
This conclusion is of fairly general validity and is applicable 
to different types of M B configurat ions. 

The in termedia te case of advanced b r e a k d o w n 
[w(l — w) ~ 1, H ~ H0], which requires numer ica l solution 
of the dispersion equat ions , is discussed in the next section. 

(b) W e no te tha t a closed M B configurat ion (Fig. 4a) 
t ransforms topological ly into an open M B configurat ion 
(Fig. 4c) by the following procedure . Sections 1, 2, and 3, 4 
have to be b roken and re-joined differently. In this way we 
obta in the uni t cell of an open M B configurat ion. It is 
necessary to change then the direction of mo t ion of 
conduct ion electrons a long the lower b ranch . This t r a n s ­
format ion results in the d i sappearance not only of the 
tu rn ing po in t s on the pa th s with the phases yu bu t also of dt 

[see formula (58)]. Therefore the results obta ined above and 
described by expressions ( 7 8 ) - ( 9 0 ) apply also to the M B 
configurat ion shown in Fig. 4c, apar t from the fact tha t the 
phases yt mus t include the te rms Rnt in formula (58), which 
appear because of the periodici ty of the M B configurat ion: 
n 1 } 2 = + 1 , ^3,4 = —1- This leads, in par t icular , to a con­
t inuous spectrum (lifting of degeneracy of Px) when w = 0 
and to a discrete spectrum when w = 1. W h e n the b reak ­
down probabi l i ty w = 1 — t 2 differs slightly from uni ty and t 
differs slightly from zero [compare with expression (48)], 
n a r r o w b a n d s appear (they are discussed in the next section). 

(c) The M B configurat ions with two M B nodes , shown in 
Figs. 4b and 4d, can also be t ransformed cont inuously into 
one ano ther by a similar topological p rocedure . A n open M B 
configurat ion (Fig. 4d) is obta ined from a close config­
u ra t ion (Fig. 4b) by tu rn ing the latter t h rough 90° in the 
clockwise direction, b reak ing sections 1, 2 and 7, 8, and re ­
jo in ing them with equivalent sections which are in the 
adjacent cells. 

In contras t to cases (a) and (b), we shall n o w consider in 
greater detail the case of an open M B configurat ion. In 
general , M B nodes m a y be inequivalent , i.e. they m a y be 
characterised by different s matr ices (identified by I and II in 
Fig. 4d). However , for the sake of simplicity we shall assume 
tha t the M B nodes in a configurat ion are equivalent , i.e. tha t 
w i — w\\ =w,(Xi= a n = a. This M B configurat ion consists 
of eight different sections. The periodici ty of p y in the phases 
described by expression (58), cor responding to sections 1, 2, 
7, and 8 intersecting the bounda r i e s of the cell (Fig. 4d), 
means tha t we have to retain te rms Rnt, where nt = 1 for 
/ = 1, 2; nt = — 1 for / = 7, 8; nt = 0 for / = 3 — 6. 

Appl ica t ion of the rules for the derivat ion of the 
dispersion equat ion yields an eighth-order de terminant 
and expansion of this de te rminant gives the following 
expression: 

D({yt}) = c o s f i - ( l - w ) 1 / 2 ^ cosQt 

/=1,2,7,8 

+ ( 1 — w ) ( c o s ( 2 1 ) 2 + c o s ( 2 1 ) 7 + c o s ( 2 1 ) 8 

+ COS ( 2 2 , 7 + c o s ^ 2 , 8 + COS&7 8 — COS&3 5 — 

— COS (2 4 ) 6 — COS (2 l 5 2 , 3 ,5 — COS ( 2 l 5 2 , 4 , 6 ) 

— (1 — w ) 3 / 2 ( c O S ( 2 l 5 2 , 7 + COS ( 2 l 5 2 , 8 + c o s ^1,7,8 

+ C 0 S 0 2 5 7 , 8 ) + (1 - w ) 1 / 2 ( l - W S ) ( C 0 S 0 1 A 5 

+ C0S£2 3 5557 + COS (2 2 , 4 ,6 + C 0 S ^4,6 ,8) 

+ (1 - W ) 1 / 2 ( l - W 0 ) ( C O S D 2 , 3 , 5 

+ c o s & 3 5 5 5 8 + c o s ( 2 1 ) 4 ) 6 + c o s ( 2 4 ) 6 ) 7 ) 

+ (1 — w ) 2 COS(2 1 ) 2 ,7,8 ~~ (1 ~~ w S ) 2 c o s ^ l , 3 , 5 , 7 

- ( 1 - w 0 ) 2 c o s G 1 j 4 j 6 j 7 - (1 - w s ) ( l - w ° ) x 

x ( c o s ( 2 1 ) 3 ) 5 ) 8 + c o s ( 2 1 ) 4 ) 6 ) 8 ) + w ° w s ( c o s Q x 3 ^ 7 

+ cos£2 l 5 4 5 5 5 7 — qosQi^3^6^ — cos£2 l 5 4 5 5 5 8 ) = 0 , (91) 

where w° and w s are taken from expressions (3) and (53), 
and expression (91) is simplified by in t roducing quant i t ies 
Q similar to those described by formula (79): 

1 N 

i=l 

Qj,k = Qj ~ 7k > Qj,k,l = &j,k ~ l u • • • 
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If the influence of the SOC on M B is ignored (a = 0), 
the M B configurat ion considered here degenerates into two 
independent M B configurat ions for each spin or ienta t ion. 
The dispersion function (91) splits into two factors 
corresponding, under the M B condi t ions , to spin-up and 
spin-down conduct ion electrons: 

• 7 1 + 7 3 + 7 5 + 7 ? D\{7i}) = -2 sin 

+ ( 1 - wyl sin 

1 2 
7i - 7 3 - 7 s - 7 ? 

2 
77 - 7 i " 7 3 " 7 5 

-(1 — w) sin 7i + 77 - 73 - 7s 

x sin 
72 + 74 + 76 + 7s 

+ ( 1 - w ) 1 / 2 s i n - r 

_ ( 1 _ w ) s i n Z l ± I ^ i ^ 6 U o . (92) 

If the spin splitting is neglected completely [by assuming 
tha t in all yt we have y] = 0, in accordance with relat ionship 
(60)], each factor in the above equat ion is identical with the 
dispersion function for the zero-spin M B configurat ion [6]. 

By analogy with case (a), we shall n o w give the 
dispersion equa t ions for the l imiting cases. 

If w = 0, the dispersion function (91) becomes 

Dw=0({7i}) = - 3 2 sin | sin | s i n ^ ± ^ 

x s i n Z i + l 6 s i n Z l s i n Z 8 
2 2 2 

(93) 

Elect rons move a long their orbi ts wi thout t rans i t ions from 
one b a n d to another . If the periodici ty is t aken into 
account , the te rms Rnt are retained in the phases , yl9 y2, y 7 , 
and y 8 . Conduc t ion electrons in the b a n d s to which sections 
1, 2, 7, 8 be long move a long infinite pa th s conserving the 
spin project ion a long the magnet ic field. This gives rise to a 
con t inuous spectrum. In the b a n d to which sections 3, 4, 5, 
and 6 be long the mot ion of conduct ion electrons remains 
finite and the quant i sa t ion rules (19) remain valid. 

If w = 1, closed orbi ts are formed and they consist of 
eight sections (1-2) — ( 3 ^ ) — (7-8) — (5-6) with opposi tely 
oriented spins. The dispersion equat ion (91) then becomes 

A v = i ( { 7 ; } ) = c o s O - 1 [ co s^i 3 5 7 

( 1 + a 2 ) 

+ a 2 ( c o s O M 5 5 5 8 + c o s G 1 j 4 j 6 j 8 ) 

+ a 4 ( c O s O M A 7 - C O S f i i j 3 j 6 j 7 + C O S f i i j 3 j 6 j 8 

— c o s ( 2 1 ) 4 ) 5 ) 7 + c o s ( 2 1 ) 4 ) 5 ) 8 ) ] (94) 

W e can easily show tha t the dependence on the con t inuous 
pa ramete r R d isappears from E q n (94), because in all the 
a rguments of the cosines the phases cor responding to the 
different directions of mo t ion of conduct ion electrons 
occur in the form of pair sums. Consequent ly , a discrete 
spectrum is obta ined under complete b r e a k d o w n condi ­
t ions (w = 1, H > H0). A s in case (b), n a r r o w b a n d s appear 
in small values of t (see next section). 

Conc lud ing this section, we no te tha t open M B con­
figurations characterised by Yl^i nt ^ 0 a r e possible. This 
gives rise to a characterist ic spectrum with a nonzero 
average velocity of conduct ion electrons par t ic ipa t ing in 
M B . W e shall no t consider this case because it has been 
discussed sufficiently tho rough ly in Ref. [6]. 

3.3 Phase spectrum of conduction electrons under 
coherent magnetic breakdown conditions. Problems in 
calculation of the energy spectrum and the g factor of 
conduction electrons under conditions of advanced 
magnetic breakdown 
Before considering the M B spectrum obta ined numerical ly 
for a simple M B configurat ion with one M B n o d e 
(discussed in the preceding section), we shall discuss 
briefly the general p rob lems . 

The p rocedure for the der ivat ion of the dispersion 
functions D [see Eqn (74) or E q n (75)], the zeros of which 
govern the M B spectrum, has been developed only for one -
dimensional M B configurat ions [6, 9]. Na tura l ly , in this 
case the p rob lem can be solved only for per iodic M B 
configurat ions which appear a long specific directions of 
the magnet ic field. Even small deviat ions of the magnet ic 
field from the relevant crystal axes can alter greatly the 
proper t ies of the open M B configurat ions (see, for example, 
Figs 4c and 4d). This occurs because the areas of the closed 
loops, which are located in different uni t cells in t h e p space, 
become incommensurab le with one another . Slutskin and 
Gorel ik have shown [47] tha t the resul tant weak aper io -
dicity of the M B configurat ions leads to the possibili ty of 
q u a n t u m localisation of conduct ion electrons under the M B 
condi t ions . 

In the case of two-dimens iona l M B configurat ions the 
p rob lem is even m o r e complex. It is m o r e correct to speak 
n o w of two-dimens iona l MB networks (see Section 1), 
because the pa th s of conduct ion electrons in real space 
have been considered in the analyses of the spectra of 
hexagona l (Pippard [4]) and rec tangular (Chamber s [53]) 
ne tworks . Even in the case of these symmetr ic cases there is 
a p rob lem associated with the fact tha t the characteris t ic 
per iod of an M B network , formed by circular conduc t ion-
electron orbits , is inversely p r o p o r t i o n a l to the magnet ic 
field and becomes commensurab le with the spatial per iod of 
the crystal lattice only for specific discrete values of the field 
H. The phase spectrum (discussed below) can be con­
structed for these values of H and, in general , this 
spectrum cannot be t ransformed into the energy spectrum 
[8], which complicates in terpre ta t ion of the results. 

Let us n o w tu rn to the p rob lems relat ing to inclusion of 
the spin degrees of freedom of conduct ion electrons under 
the M B condi t ions . Na tura l ly , compared with the zero-spin 
case the task of calculat ing the M B spectrum becomes m o r e 
difficult. This is due to the doubl ing of the order of the 
de te rminant (73), from which the dispersion function is 
derived, and due to the appea rance of a spin cont r ibu t ion to 
the phase , which is associated with the g factor of 
conduct ion electrons. 

The M B spectrum can be determined for an arb i t ra ry 
probabi l i ty w by a numer ica l calculat ion of a set of 
solut ions of the t ranscendenta l equa t ions (74) and (75). 
These solut ions are finite t r igonometr ic po lynomia ls r ep ­
resenting the phases acquired by conduct ion electrons in 
different pa r t s of an M B configurat ion. In this way the 
phase spectrum is constructed from the set of solut ions 
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a b 

Figure 6. Phase spectrum of the double figure-of-eight type (compare 
with Fig. 4a): (a) gi — g2 — 0, a = 0 is the zero-spin case; 
(b) g\ = y/2/3, gs

3 = y/3/2, a = 0, each zero-spin level splits into two, 

c 

three ponts of random level crossing can be seen; 
(c) g\ = y/2/3, gs

3 = y/3/2, a = 0.8, full account of the spin properties, 
random degeneracy lifted by the SOC. 

yi(E, pz) ob ta ined for different values of w a n d p z . Na tura l ly , 
the spectra will be different for topological ly different (open 
and closed) M B configurat ions. Open configurat ions have a 
spectrum of the magnet ic b a n d type, which increases 
considerably the vo lume of calculat ions. 

The next p rob lem is tha t of finding the energy spectrum 
from the phase spectrum. The spin splittings which are then 
obta ined should give the g factor of conduct ion electrons 
under the M B condi t ions . Na tu ra l ly , the g factor is a 
function of pz, of the M B probabi l i ty w, of the SOC 
paramete r a, and of the serial number of the b ranch of 
the spectrum. In general , wi thout specifying the dispersion 
law of conduct ion electrons in the absence of M B [such as 
tha t given by expression (1)], it is possible to determine the 
phase spectrum of conduct ion electrons under M B condi ­
t ions [ 6 9 - 7 1 ] , which will be discussed below. 

We shall n o w illustrate the results of the preceding 
section and analyse the M B spectra for M B configurat ions 
shown in Fig. 4 on the assumpt ion of a fixed value of pz. W e 
shall begin by considering an M B configurat ion of the 
double figure-of-eight type with one M B node (Fig. 4a). The 
phase var iable is then 

x = £ k ' s > = T s * - ( 9 5 ) 

H e r e Sx =S2 is the zero-spin area of the upper b ranch 
described by expression (83). The above relat ionship 
between the areas of the sections is selected for 
convenience of compar i son with Refs [8, 46], which is 
discussed below. The g factors are incommensurab le when 
the spin splitting pa rame te r s are selected to be 

s ml \/2 s y/3 

The values of the variable x cor responding to D(y) = 
D(x) = 0 give the phase spectrum in accordance with the 
classification used in Ref. [8]. Fig . 6 shows the dependences 
of the ' phase ' x on the to ta l M B probabi l i ty w, calculated for 
different values of a. Here , w = 1 cor responds to complete 
b r e a k d o w n and w = 0 to the absence of b r eakdown . 

Fig. 6a is the spectrum of a completely zero-spin 
si tuat ion when the spin splitting (g\ = gs

3 = 0) and the 
SOC (a = 0) are ignored. This phase spectrum is formed 
by any of the factors in the dispersion function (80). I ts 
physical mean ing is readily unde r s tood by considering the 
periodici ty in simple limiting cases. 

In the absence of b r e a k d o w n there are two sets of 
equidis tant levels (n = 0, 1, 2, . . .) : 

4^(w = 0) = Ji (« + 0. 4^w = ° ) = 2 ( « + \) • (97) 

The first set cor responds to the mot ion of conduct ion 
electrons a long the lower zero-spin loop and the second set 
cor responds to the upper loop (Fig. 4a). It follows from 
expression (97) tha t there are 6 + 1 = 7 branches in the 
interval 0 ^ x < 3. 

In the case of complete b r eakdown , an equidistant 
spectrum cor responding to the to ta l area of the figure-
of-eight is obta ined (n = 0, 1, 2, . . .) : 

4 * ) ( * = l ) = j ( » + J ) . (98) 

Natura l ly , inclusion of the spin splitting doubles the 
number of roo t s of the dispersion equat ion D(x) = 0 
and doubles the number of the b ranches of the spectrum. 
This can be seen clearly in Figs 6b and 6c. 

W h e n the SOC is ignored and there is no conduc t ion-
electron spin flip dur ing crossing of M B nodes [a = 0; see 
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Figure 7. Phase spectrum of an open M B configuration with a single M B node (compare with Fig. 4c): (a) zero-spin case; (b) full account of the 
spin properties. 

the dispersion equat ion (80)], the spectrum m a y have po in t s 
of 'accidental ' degeneracy for specific values of w (or H). 
Fig. 6b demons t ra tes clearly three regions of such degen­
eracy. In the limiting cases the sets of levels are described by 
the following expressions 

* ! > = o ) = 6 

i i 
3 s 

> = 0 ) = 2 „ + - Tg\-

( w = l ) n + : =F:J4 ( S i + g ! ) -

(99) 

(100) 

The upper sign (minus) cor responds to the effective d o w n -
spin. The last te rm in expression (100) determines the spin 
splitting pa ramete r in the case when w = 1 and cor responds 
to the average g factor given by formulas (89) and (90). 

Final ly, the case il lustrated in Fig. 6b cor responds to 
tak ing the SOC fully into account (a = 0.8) and is described 
by the dispersion equat ion (78). Even a weak SOC lifts the 
' acc identa l 'degeneracy of the phase spectrum. It follows from 
general formulas (81) and (82) tha t if w = 0, the spectrum is 
completely identical with tha t described by expressions (99) 

when a = 0. If w = 1, two sets of equidis tant levels with 
Ax = ^ are formed (as shown in Fig. 6b, bu t cor responding to 
opposi te or ienta t ions of the effective spin with even and odd 
values of n, respectively). The spin splitting is different from 
tha t given by expression (100): the splitting is approximate ly 
1.3 t imes stronger. This confirms the conclusion reached in 
discussing general formula (88) tha t new effective semiclass­
ical states with up and down spins form in this l imiting case. 

In the general case of advanced M B [w(l — w) ^ 0] it is 
no t possible to select any specific relat ionship to describe 
this behaviour of the spin splitting, which begins to depend 
nonmono ton ica l ly also on the serial number of the spectral 
b ranch . This is indirect evidence tha t the to ta l electron g 
factor of even this simple M B configurat ion depends in a 
complex manne r on the pa rame te r s of the p rob lem. As 
ment ioned earlier, the identification ( among the dispersion 
equat ion solutions) of those states which cor respond to the 
opposi te or ienta t ions of the effective spin and, conse­
quently, the direct de terminat ion of the effective g factor 
from the phase spectrum have no t yet been carried out for 
a rb i t ra ry values of w and a. 

W e shall consider a con t inuous spectrum which appears in 
the case of a simple open M B configurat ion (Fig. 4c) 
discussed in the preceding section as case (b). The phase 
spectrum is shown in Fig. 7. Case (a) cor responds to a 
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completely zero-spin s i tuat ion. In case (b) the spin degrees 
of freedom are allowed for fully (a = 0.8). The phase 
re la t ionships and the pa rame te r s of the spin splitting are 
described by expressions (95) and (96). 

In the limit of s t rong M B (w = 1) it is found tha t 
conduct ion electrons move a long closed composi te orbi ts 
and a discrete spectrum appears . This spectrum is com­
pletely identical with tha t given for w = 0 in Figs . 6a and 6c, 
respectively. This is to be expected because in these limiting 
cases the areas of the closed figures are identical. The zero-
spin spectrum obeys the rela t ionships described by formula 
(98). The spectrum becomes completely con t inuous for 
w = 0 (Fig. 7a) and for w w 0.4 (Fig. 7b). This is due to 
the superposi t ion, in the latter case, of two sets of magnet ic 
energy b a n d s cor responding to the opposi te spin or ienta­
t ions. 

W e shall consider the simpler example (Fig. 7a) in 
discussing the behaviour of the spectrum near charac ter ­
istic instabili ty po in t s w = 1 and w = 0. This can be done 
conveniently by in t roducing the quant i ty x = \J\ — w. If we 
assume tha t the first factor in the dispersion function (80) 
vanishes and if we use the definition of the phase var iable 
(95), we find tha t for any value of x the spectrum is given by 
the relat ionship 

C 0 S Z l ^ = T C 0 S ^ Z l ^ 3 + ^ 

-x ^ cos l x * 7 3 ^ X. (101) 

W e have separated here the con t inuous pa rame te r 
R(Px)[sgg expression (58)] and yt = yt — Rnt. At low values 
of x there are fairly n a r r o w intervals of the permissible 
values of yx + y 3 = (14 /3)x , repeated at intervals of 3/7 
(see expression [98]). 

The a rgument of the cosine, which occurs in expression 
(108) to the left of the equali ty sign, can be represented in 
the form n/2 + nn + 3, where the first two te rms cor respond 
to the posi t ion of the level in a discrete spectrum at x = 0, 
and m a x \d\, which depends on t, determines the half-width 
of a magnet ic band . In the limit x —> 0, the value of 3 is also 
small and, consequently, we have 

m a x |<5| « t = V l - w . (102) 

In the other limiting case ( t —> 1) we can readily ob ta in 
from expression (101) an est imate for the half-width of the 
empty b a n d s of the forbidden states which appear in the 
con t inuous spectrum and are located near 
xn = (3/7)n (/i = 0 , 1 , 2 , . . . ) : 

m a x \3\ = arccos x ^ y/2(l — x) ^ y/w. 

W e shall conclude this section by considering the M B 
spectrum of an open M B configurat ion with two M B nodes 
(Fig. 4d), shown in Fig. 8. The special case of the posi t ion of 
an M B ne twork formed by circular orbi ts was considered by 
P ippa rd [46] and is discussed in detail in Ref. [8]. W e shall 
therefore confine ourselves to a computer-calcula ted illus­
t ra t ion and a brief discussion. 

In the symmetr ic zero-spin case, we find tha t 

~ , 11 , 71 
yhl = yl±R= — nx±R, y3=y5=nx +-. 

The no ta t ion used in Ref. [8] is identical with ours apar t 
from tak ing account of the tu rn ing poin ts described by 
expression (59) on lens-shaped diangular orbi ts (which 

Figure 8. Phase spectrum of an open M B configuration with two M B 
nodes (compare with Fig. 4d), plotted ignoring the spin degrees of 
freedom (this is an analogue of the phase diagram given in Refs [4, 8]). 

account for K / 2 in the above relat ionship) . Consequent ly , 
our whole spectrum is shifted a long the x axis by \ , 
compared with the result repor ted in Ref. [8]: our phase 
var iable x and the quant i ty x are identical with { and the 
variable q in Shoenberg ' s t rea tment . 

The spectrum of allowed values is readily obta ined from 
the de terminant (92): 

^ ^ ^ 1 - 7 3 ) - ^ ! + 7 3 ) . ( 1 Q 3 ) 

2x sin y3 

If x is exactly zero, a discrete spectrum is obta ined and it 
cor responds to the mot ion of conduct ion electrons a long a 
composi te closed orbit 1 - 3 - 7 - 5 : 

*"(w = 1 ) = n ( n + 0 - ao4) 
By ana logy with the derivat ion of expression (102), the 

half-width of the allowed levels, obta ined for the case of 
small values of x from expression (103), is 

m a x \3\ = 2x | sin y3 \ =2x\ sin (2tix)|. 

This level b roaden ing varies periodically at a frequency 
Ax = 1, which cor responds to the area of the lens-shaped 
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orbit S3 +S5. Oscil lations can be seen clearly in Fig . 8 for 
w —> 1. Na tura l ly , in a Four ie r analysis of an M B spectrum, 
in addi t ion to the componen t with this frequency a stronger 
componen t , described by formula (104) and with the 
frequency Ax = ^ , as well as ha rmonics of this componen t 
are obta ined [46]. 

In the opposi te limiting case ( t —> 1 or w —> 0) there are 
per iodic discontinuit ies of the spectrum at (n = 0, 1,2,...) 

1 
x£\w = 0) =n + : (105) 

which cor respond to the area of the lens-shaped orbit 3 - 5 . 
There are discontinuit ies in the spectrum also if 
x ^ — (6/7)n . These discontinuit ies are weak because in 
this l imiting case the mot ion of conduct ion electrons a long 
the large orbit 1 - 3 - 7 - 5 has a very low probabi l i ty : 
conduct ion of electrons must b reak consecutively t h rough 
four M B nodes with the probabi l i t ies w —> 0! 

The phase spectrum shown in Fig . 8 is a superposi t ion 
of the spectra cor responding to 40 different values of the 
var iable R. It is quite clear from this spectrum tha t the 
darker regions with a higher density of levels merge at w = 0 
where they become mult iply degenerate levels of expression 
(105). 

3.4 Principal identities in magnetic breakdown theory 
In calculat ion of var ious macroscopic characterist ics of a 
meta l the M B spectra (76) and (77) must be supplemented 
by formulas which give the mat r ix elements of the physical 
quant i t ies in the representa t ion of s ta t ionary state vectors 
\rj) [6]. The symbol rj represents a complete set of q u a n t u m 
n u m b e r s represent ing a s ta t ionary state (55): 
rj = (?z, pz,Py). Since conduct ion electrons spend a very 
short t ime at an M B node , we can use the rj representa t ion 
to calculate the mat r ix elements by ext rapola t ion of 
expression (55) over the whole of the p space. 

The classical physical quant i t ies f, which are smooth 
functions of the q u a s i m o m e n t u m f=ft(p), have corre­
sponding analogues in the M B theory. A typical 
example of a quant i ty / is the electron velocity vt(p) [see 
E q n (7) where sm(T should be replaced with the^ M B 
spectrum]. F a r from M B nodes the opera to r s / are 
constructed by the cor respondence principle, which 
involves the subst i tut ion described by formula (11). 

If fi(p) is used in the wave function (55) and if 
expressions (11) and (13) are taken into account , expansion 
of the difference between the phases of the semiclassical 
exponent ia l functions in te rms of En — En> yields the mat r ix 
elements of the opera tors : 

fm{i)ith Ev,pz)QXp &tt. (106) 

The integrat ion var iable tt is the dura t ion of classical 
mo t ion a long a section / when the beginning of the section / 
cor responds to tt = 0. Expression (106) is derived d ropp ing 
the cross te rms (Y^Y?), which is permissible because of 
fast oscillations of the semiclassical exponent ia l functions 
conta ined in the wave functions (13). 

A complete descript ion of the dynamics of conduct ion 
electrons under the M B condi t ions must include the 
condi t ion of normal i sa t ion of the s ta t ionary wave function 

(55) to uni ty. The normal i sa t ion of the wave funcions Yt of 
the individual sections should be selected so tha t (Y^Y?) is 
equal to the t ime Tt t aken by a conduct ion electron to travel 
a long a section /. W e then have 

E l . (107) 

Therefore, ci^/Ti has the mean ing of the ampl i tude of the 
probabi l i ty of detection in a section / of a conduct ion 
electron which is in a s ta t ionary state Y. 

Express ions (56), (71), and (106), together with the 
normal i sa t ion condi t ion (107), form a complete set of 
re la t ionships needed for the calculat ion of any t r anspor t 
and t h e r m o d y n a m i c quant i t ies under the M B condi t ions . It 
mus t be stressed tha t the ampl i tudes and the energy En 

as well as the mat r ix elements (r{\f\r\) vary rapidly and 
r a n d o m l y with pz. This creates a quali tat ively new si tuat ion 
in the kinetics of conduct ion electrons and modifies 
completely the s t ructure of the t r anspor t coeffi­
cients, compared with the quasiclassical case such as 
tha t described in Ref. [11]. Moreover , an irregular depend­
ence of the mat r ix elements on rj and rj\ described by 
expression (106), complicates addi t ional ly the task of 
calculat ion of these elements. It is no t even possible to 
say in advance whether in this case the t r anspor t coefficients 
are regular functions of the pa rame te r s of the p rob lem (// , 
co, t etc.) or whether they have the same r a n d o m st ructure as 
En and the ampl i tudes 

However , these difficulties have been overcome because 
of certain regulari t ies in the quas i r andom M B spectrum. 
These regularit ies have m a d e it possible to develop a 
formalism [18, 45, 49] tha t has led to analyt ic expressions 
b o t h for the rapidly oscillating (with H) pa r t s of the linear 
response of the t r anspor t coefficients and for the number 
density of states v ( £ , pz). 

This formalism is based on a c i rcumstance which will be 
seen to be fundamenta l later: the r a n d o m dependence of the 
ampl i tudes can be expressed directly in te rms of the 
M B spectrum Ev because it follows from the wave function 
(55) tha t these ampl i tudes are 

ci{n)=ci[1{En,pz)l (108) 

where ct(y) is a smooth analyt ic 27i-periodic function of N 
arguments . 

W e shall n o w give an analyt ic expression for the number 
density of states v(E,pz) when w( l — w) ^ 0 in the case of 
an a rb i t ra ry closed M B configurat ion: 

v(£ , pz) = YtS[E-E(n,pz)]. (109) 

W e recall tha t if the SOC is taken into account , the spin 
degrees of freedom are h idden in the serial number n of the 
solut ion of the dispersion equat ion . 

The familiar equali ty 

where xt a re the roo t s of the equat ion f(x) = 0, leads to 

dD[y(E, Pz)] 
v(E>Pz) dE 

b{[D[y(E,Pz)]}. (110) 

Replac ing the derivative with respect to energy dD/dE 
with the derivative with respect to phases dD/dyh we obta in 
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the following expression for the number density of states in 
te rms of zeros of the dispersion function and its derivatives: 

v(E,pz) = £ 
T, 8D(y) 

8ft 
8[D(y)], (111) 

where Tt is the per iod of revolut ion on the iih closed orbit 
[see the subst i tut ion (11)]. 

The dispersion functions have been found for some 
specific M B configurat ions [6, 9, 46, 6 9 - 7 1 ] , discussed in 
Sections 3.2 and 3.3, b o t h ignoring and tak ing into account 
the spin degrees of freedom. However , calculation of the 
number density of states (111) meets with ma themat ica l 
difficulties even in the case of a simple M B configurat ion 
with one M B node . 

The p rocedure of finding general analytic expressions 
for the mat r ix elements of physical quant i t ies can be m a d e 
easier by the use of two identities which are satisfied [see 
expressions (108) and (109)] by the number density of states 
v(E,pz) and by the quadra t i c combina t ion of the ampl i tudes 
c*(y)c,(Y) [49]: 

1 N 

2nH 
1=1 

c« (y) c,'(y) = ^ — ! , 

i=l 

(112) 

(113) 

where the mat r ix # ] / ( y ) represents the following sum of 
generat ing functions and a uni t matr ix : 

• M y ) = M r + i 0 ) + M y + i 0 ) + h (114) 

The appea rance of iO sets the rule for going a r o u n d 
singularities which appear on an A/-dimensional D surface, 
described by expression (75), on which Ftj(y) becomes infinite. 
W e shall conclude this section by stressing tha t , if the spin 
degrees of freedom of conduct ion electrons are t aken into 
account , then in all the above expressions the index / no t 
only represents the n u m b e r of a section bu t also the spin 
or ienta t ion in this section. Moreover , the phases y include 
the spin cont r ibut ion described by the relat ionship (60). 

4. Magnetic breakdown oscillations of the 
galvanomagnetic properties of a metal including 
the spin degrees of freedom 
It is well k n o w n [6] tha t q u a n t u m oscillations of the 
t r anspor t coefficients ( S h u b n i k o v - d e H a a s effect) origi­
na te from the consecutive crossing of discrete quasiclassical 
levels by the F e r m i energy when the applied magnet ic field 
is varied. Asympto t i c dependences of the t r anspor t 
coefficients in s t rong and weak fields are closely related 
to the na tu re of mo t ion of conduct ion electrons. These 
dependences can be calculated in the semiclassical 
approx ima t ion and the answers can be obta ined in the 
form of integrals over the F e r m i surface [11]. 

It follows from Section 3 tha t M B contr ibutes much 
which is new to the na tu re of the mo t ion of conduct ion 
electrons. The energy spectrum becomes much m o r e 
complex. Hence it follows tha t the s t ructure of the M B 
oscillations is much m o r e complex than in the semiclassical 
case. Moreover , the difference between the semiclassical 
and M B oscillations cannot be reduced to a m o r e complex 
s t ructure of the M B levels and of the oscillations of the 

number density of states. The M B oscillations appear 
because of interference between semiclassical waves scat­
tered by M B nodes in the p space. Moreover , effects 
associated with the spin proper t ies of conduct ion electrons 
are observed. 

The most striking manifes ta t ions of the M B effects can 
be seen in the M B oscillations of the t r anspor t coefficients 
of a number of metals such as Be, M g , Zn , Al, Sn, etc., 
which have small closed orbi ts in their M B configurat ions 
(see, for example, the configurat ion of Zn in Fig. 3b). The 
linear dimensions of these orbi ts are much smaller t han the 
reciprocal lattice cons tan ts [55] and conduct ion electrons 
spend mos t of their t ime on large semiclassical sections. 
This case is interest ing because the appearance of small 
orbi ts is frequently related to the existence of small F e r m i 
surface sheets the format ion of which is usual ly influenced 
strongly by the SOC [10, 100]. As poin ted out in Section 3.3, 
this frequently leads to large deviat ions of the g factor of 
conduct ion electrons from its free-electron value and to 
small cyclotron masses. The latter indicates tha t the L a r m o r 
per iod Tcq, describing the mot ion of conduct ion electrons 
a long small orbi ts , is short compared with the characteris t ic 
t ime spent on large orbi ts Tc. The index q will be used here 
and later in this section to denote the quant i t ies which apply 
to small orbi ts . 

In the case of small orbi ts the condi t ions (54a) and (54b) 
for coherent mot ion of conduct ion electrons are satisfied 
under stringent condi t ions on the pur i ty of a meta l and on 
t empera tu re , compared with the orbi ts whose linear 
dimensions are of the order of the reciprocal lattice 
vector. One can have here the si tuat ion of intermediate M B : 

Tc > T s . a > T{ cq 5 (115) 

when the mot ion of conduct ion electrons a long large orbi ts 
shifts the wave function phase (stochastic M B ) , whereas the 
mo t ion of these electrons a long small orbi ts is coherent . 
The in termedia te M B regime na tura l ly satisfies the 
condi t ion xp > Tc which is usua l in the case of classical 
ga lvanomagnet ic effects. The smallness of the orbi ts makes 
it possible to consider them as special ' q u a n t u m switches ' 
control l ing the mot ion of conduct ion electrons a long an 
M B configurat ion. They are called the effective M B nodes 
and the cor responding s ma t r ix is k n o w n as effective. 

There are metals with M B configurat ions conta in ing 
small d iangular and t r iangular orbi ts [5, 6, 8] (Figs 9a and 
9b). W e shall find, for these orbits , the effective s matr ices 
and probabi l i t ies of crossing effective M B modes P, Q and 

, , Pc, respectively, deduced tak ing into account the 
spin degrees of freedom. 

The existence of coherent mot ion a long small orbi ts 
under the M B condi t ions gives rise to oscillations of the 
t r anspor t coefficients and the per iod of these oscillations 
cor responds to the area of a small orbit [ 5 - 8 , 55]. W e shall 
n o w consider h o w these oscillations are modified if we 
include the spin degrees of freedom and the SOC in the 
analysis, especially as the theory of Fal icov, P ippard , and 
Sievert [ 55 ]—which accounts for the existence, profile, and 
order of magn i tude of these oscillations — does no t explain 
correctly the experimental ly observed s t ructure of double 
oscillation peaks of the ga lvanomagnet ic proper t ies of Zn 
[101]. 

Before we compare the spin-flip M B theory [65, 66] with 
the publ ished exper imental ga lvanomagnet ic characterist ics 
of a real M B metal , we must apply this theory to a simple 
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mode l of a meta l [64] i l lustrated in Fig. 4d. Wi thou t t ak ing 
into account the spin degrees of freedom for circular orbi ts , 
this mode l was used in Stark and Fa l icov ' s review [5] and in 
Shoenberg ' s b o o k [8] to analyse in detail the ga lvanomag­
netic proper t ies . This will reveal directly the effects of 
inclusion of the spin of conduct ion electrons. 

W e shall begin by discussing the general principles 
under ly ing description of the ga lvanomagnet ic proper t ies 
of metals under the M B condi t ions . 

4.1 Static conductivity tensor under stochastic magnetic 
breakdown conditions 
As noted in Section 3, the na tu re of mo t ion of conduct ion 
electrons under the M B condi t ions is extremely sensitive to 
small-angle scattering. It is essential to develop a consistent 
t r anspor t theory which should be based on a q u a n t u m 
t r anspor t equa t ion for the nonequi l ib r ium pa r t of the one -
electron density mat r ix [19]. However , in m a n y cases of 
interest in physics the semiclassical approx ima t ion is 
sufficient. This approx ima t ion works not only in the 
case of s tochast ic M B , bu t also for coherent M B when 
condi t ion (54a) is satisfied [6]. W e shall confine ourselves to 
the derivat ion of the conduct ivi ty tensor a for s tochast ic 
M B [described by condi t ion (54c)] as a function of the 
applied magnet ic field. W e shall base this derivat ion on the 
solut ion of the linearised Bo l t zmann t r anspor t equat ion . 

A specific ergodic dis t r ibut ion of conduct ion electrons 
between M B configurat ions is created under the stochast ic 
M B condi t ions . The b r e a k d o w n begins to act as a s tochast ic 
factor which mixes conduct ion electrons over all semiclass­
ical sections. The t ime interval between two consecutive M B 
scattering events plays the role of the re laxat ion t ime. It is 
governed by the characterist ic cyclotron frequency coc and 
by the cor responding M B probabi l i ty . The componen t s of 
the conduct ivi ty tensor cra j 8 na tura l ly depend on the 
topo logy of the M B configurat ion. In the limiting case 
w( l — w) —> 0 pa r t s of an M B configurat ion t ransform into 
convent ional open or closed orbi ts : the values of cra j 8 begin 
to determine the real t ime of a free run of conduct ion 
electrons between collisions T* = zp [see condi t ions (54)]. 

The si tuat ion described above cor responds to the 
Bo l t zmann t r anspor t equat ion with a linearised collision 
integral . I ts general solut ion for the stochast ic M B case can 
be sought in the same way as in the semiclassical case (see, 
for example, Refs [11, 13]): 

fm(p)=fr(p)-j^eE-<Fm(p), (116) 

w h e r e / m ( / ? ) is t he c o n v e n t i o n a l d i s t r ibu t ion funct ion; f¥ (p) 
is t he equ i l ib r ium F e r m i - D i r a c d i s t r i bu t ion funct ion; E is 
t he electric field; Ym(p) is a vector funct ion wi th the 
d imens ions of length , which h a s to be de t e rmined . Th i s 
funct ion is a semiclassical a n a l o g u e of the o p e r a t o r 
descr ibed b y E q n (106). 

The na tu r a l variables for the Bo l t zmann t r anspor t 
equa t ions in the case when static electromagnet ic fields 
are present are E, pZ9 tt [13]. Then, in the lowest order in 
*Pm(p)9 these equat ions become 

where Vt are the values of the functions *Pm(p) in the pa r t s 
of an M B ne twork in the r space; I is the linear collision 
opera tor . 

The differential equa t ions (117) in tt require the 
b o u n d a r y condi t ions . If, for given values of E and pZ9 a 
conduct ion electron orbit is closed, then obviously the 
function Vt should depend periodically on tt. However , 
if the orbit is open, then the b o u n d a r y condi t ion states tha t 
*Pi is finite in the limit ti = =boo. F o r simplicity, we shall 
assume tha t a magnet ic field H has a ' good ' direction, and 
the function Vt should be per iodic with its per iod equal to 
the reciprocal lattice constant [18]. This case differs from 
the semiclassical s i tuat ion because under the stochast ic M B 
condi t ions the functions Vt undergo j u m p s when crossing 
M B nodes . This is of fundamenta l impor tance in calcula­
t ion of the conduct ivi ty tensor . 

It follows tha t the equa t ions (117) and the usua l b o u n d a r y 
condi t ions Vt should be supplemented by stochast ic b o u n ­
dary condi t ions at M B nodes . The latter condi t ions are 
derived in accordance with the process of the scat tering of 
a wave packet described in Section 3.1. If the p rocedure used 
in the derivat ion of formula (61) is followed and use is m a d e of 
the uni tar i ty of the s matr ices and of the no ta t ion in Fig. 2c, 
the system of b o u n d a r y condi t ions can be wri t ten in the form 

N 

i=l 

where 

w m = | v S | 2 ( 1 1 9 > 

are the M B probabi l i t ies ; Vt = V{T^) are the values of 
*Pm[p(ti)] at the ends of the sections enter ing an M B node ; 
Vti = are the cor responding values at the ends of the 
sections leaving such a node . The b o u n d a r y condi t ions 
(118) show tha t the flux of part icles leaving an M B n o d e 
a long a given section, for example a section / ' = 1, is 
formed from part icles moving a long incoming sections 
/ = 1, 3, 4 with the weights 1 — w, w°, w s respectively. 

The solution of the equa t ions (117), subject to the 
b o u n d a r y condi t ions (118), makes it possible to find the 
componen t s of the conduct ivi ty tensor cra j 8 , which are 
expressed in te rms of Vt in accordance with the usua l 
semiclassical formulas: 

(120) 

x f2 dPz { 'v?(f,)!P?(f,)df,. 
Jo Jo 

It therefore follows tha t when the coherence is destroyed by 
small-angle scattering, M B begins to play the role of a 
s tochast ic factor and the small-angle scattering charac ter ­
istics do not enter the final expressions for cr a j 8 . 

4.2 Effective s matrices and effective probabilities of 
magnetic breakdown for small orbits 
The procedures for the calculat ion of the effective s 
matr ices of d iangular and t r iangular orbi ts are very 
similar. This p rocedure is described in Ref. [6] for the 
zero-spin case. Therefore, we shall confine ourselves to the 
derivat ion of this s ma t r ix for the case of a d iangular orbit 
and in dealing with the t r iangular case we shall use the 
expressions for the first co lumn of the mat r ix [64]. 

F o r the sake of clarity we shall go back to explicit 
inclusion of the spin index in the serial number of the cross 
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^̂  2'T 
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Figure 9. Small orbits: (a) diangular orbit; (b) triangular orbit; 
(c) reduced M B configuration corresponding to Fig. 4d. Small 
diangular orbits perform the role of effective M B nodes. The spin 
splittings are not shown for the sake of clarity. 

section, which will become i0a. The expressions for the 
elements of the effective s ma t r ix can be obta ined from the 
general system of equa t ions (56) by excluding from it the 
ampl i tudes cioa, which apply to inner pa r t s of small orbi ts 
(Figs 9a and 9b). The mat r ix elements S ^ i V link the initial 
pa r t s of sections labelled i0<r9 which enter an effective M B 
node , to the final pa r t s labelled i'^a 9 which leave an effective 
M B n o d e with identical or opposi te spin or ienta t ions . 

W e recall tha t conduct ion electrons tha t have crossed a 
single M B n o d e and have remained in their own b a n d 
conserve the spin direction in accordance with the s t ructure 
of the s mat r ix (47): s^j^ = 0 if the b a n d n u m b e r s are 
identical; m ( / 0 ) = fn(/o)9

 a n d cr ̂  a. If M B nodes are 
equivalent and the spin indices are included explicitly, 
the mat r ix element SflVa> of a d iangular orbit (Fig. 9a) 
is described by the following series: 

L, | = r e x p ( — L i ) 

/ \ 2 

" (A) {Texp[ i ( -^ l + y q t ) ] + T 3 exp[ i ( - ,4 + 2y q T ) ] + . . .} 

- a 2 Q {Texp[ i ( - ^ l + yq[)} + T 3 exp[ i ( ->l + 2yq[)} + ...}. 

(121) 

The first te rm in the series (121) represents the process in 
which a conduct ion electron, which begins to move a long a 
section j 0 = 1, is reflected by an M B n o d e and remains in its 
own band . The second term represents the tunnel l ing of a 
conduct ion electron wi thout a change in its spin direction. 
Each componen t of the expression in the braces differs from 
the preceding componen t by one revolut ion of a conduct ion 
electron a long a small orbit and two reflections from M B 
nodes . The third te rm in the series (121) is similar to the 
second, except for a change in the spin or ienta t ion as a 

result of M B tunnel l ing and revolut ions a long a small orbit 
with spin down. If H ^ 0, the series (121) is readily 
summed: 

2 
Sf^ = T exp (—Li) 1 - -

1 + a 2 

• + 
a 2 expfrrqi) 

1 - T exp ( i y q | ) 1 - T 2 exp (iyq[) 
(122) 

The elements of the effective s matr ices ,-,„/ can be 
described m o r e compact ly by in t roducing the no ta t ion 

l ^ l - T ' e x p ^ ) ' W o = 1>2> (123) 

where / is the number of sections of a small orbit (in the 
case of a diangular orbit , this number is / = 2); 

HeH 
(124) 

is the phase acquired by conduct ion electrons in a small 
orbit [Sq is the zero-spin area of a small orbit and yqrj is the 
spin cont r ibu t ion described by expression (60)]; • is the 
par t ia l phase given by expression (58) and acquired (Fig. 
9a) dur ing the mot ion of conduct ion electrons in sections 
of a small orbit . 

The subscripts / 0

 a n d Jo in formula (123) apply to the 
phase acquired in inner sections of a small orbit a long the 
direction of mot ion of conduct ion electrons as it crosses 
consecutively all the nodes between the sections which enter 
(z'o) and leave (/ 0) an effective M B node . Na tura l ly , if / 0 = Jo? 
the phase y^ o J o is replaced by the complete phase yqrj. The 
symbol rj is used to index the spin state of a small orbit . 

The mat r ix elements Sf^/^ for a diangular orbit 
therefore have the form [64] 

-,eff 
>1|,1'T = S eff 

2T,2'T 

= r e x p ( — L i ) 

c e f f 

c e f f 

c e f f 
^2 | , 2 ' | 

r e x p ( — L i ) 

1 + a 2 

1 + o r 

r.eff 
>2t,2'| 

c e f f r.eff 
>2|,2't 

ceff _ 
^1T,2 | — — 

7 eff _ 

-.eff 
>2T,1'T ' 

-.eff 

1 + a -

1 + a 2 ( a M , 2 + 4 2 ) 5 

1 + a -

p 2 

(125) 

p ( 4 i + a 2 4 i ) > 

1 + a 2 ( « 2 4 i + 4 i ) ' 

1 + a 2 

P2 

-.eff 

-.eff 
^21,1'T 

= S eff 
1T,2'| 

= S eff 
2 t , n 

ocp 

T T ^ 2 

a p 2 

1 + a : 

1,2 

( 4 2,1 
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W e shall n o w give the first co lumn in the effective s 
matr ix [64, 66] for a t r iangular orbit [Fig. 9b, 1 = 3 in the 
no ta t ion of expressions (123) and (124)]: 

Si| f , i 'T = ^ exp(—M) 7 - T ^ ( 4 i + ^ . . ) 
y 1 + a 

^ n = T e x p ( - i ^ ) - ^ ( r i 5 l - r l 5 l ) , 
l + a 2 

c e f f 

c e f f 
^1 | ,2 'T 

c e f f 

I ( r l i 2 + a 2 r { i 2 ) , 
1 + a -

: X1 1,2 J 1,27 

(126) 

l + a 2 

- T e x p ( M ) - 4 - j ( H 3 + a 2 H 3 ) , 

In the limiting case of the absence of the SOC the mat r ix 
elements (125) and (126) simplify greatly and they describe 
two independent types of conduct ion electron mot ion : with 
spin up and spin down. F o r each spin direction they are 
formally identical with the results repor ted in Ref. [6], bu t 
the spin term yqrj is re tained in the phases described by 
expression (124). 

However , if yqrj assumes a value nr (r = 0, 1,2,...), we 
can see from expression (123) tha t rJo J- o = rjQjQ. In this case 
the pa ramete r a d isappears from the mat r ix elements (125) 
and (126), and we once again obta in the results of Ref. [6]. 
The only difference is tha t the SOC paramete r a still occurs 
in expression (50) which gives the renormal ised b r e a k d o w n 
field H0. 

W h e n we k n o w the elements of the effective s mat r ix 
(125), we can find the effective probabi l i t ies tha t conduct ion 
electrons follow a diangular orbit with different spin 
ro ta t ions : 

W eff 
1(7, I V 

c e f f 
P 1(7, I V (127) 

which can be utilised directly to calculate the magne to re -
sistance in a simple mode l of a meta l which has a per iodic 
M B ne twork (Fig. 4d). 

W e recall tha t within the limits of a small orbit the 
mot ion of conduct ion electrons is coherent and over large 
pa r t s of the orbi ts the phase coherence is destroyed 
completely by small-angle scattering. This t ransforms the 
mot ion of conduct ion electrons into a r a n d o m walk. In 
calculat ion of the conduct ivi ty the spin of conduct ion 
electrons appears only in the expression for the acquired 
phase (60), which is different for different spin or ienta t ions . 
In the case of stochastic mo t ion in large orbi ts the process 
of small-angle scat tering causes phase shifts. Therefore, the 
spin or ienta t ion of conduct ion electrons moving a long large 
pa r t s is u n i m p o r t a n t in the processes of charge transport 
under intermediate MB conditions. In this case the to ta l 
probabi l i t ies of passing a long small orbi ts or of reflection 
from these orbi ts are impor tan t . 

In the case of a diangular orbit when the spin degrees of 
freedom are taken into account the effective probabi l i t ies 
will be denoted by Pa and Qa, respectively (cr = j j ) . Then, 
in the case of a conduct ion electron approach ing an 

effective M B n o d e with spin up (Fig. 9a, i0a = 1 | ) , the 
probabi l i t ies are 

2 
W 

l + « 2 V | l - T 2 e x p ( i r q T ) | 2 | l - T 2 e x p ( i r q l ) | 

Q1 = W?ln + wfln = l - P \ 
(128) 

Similarly, in the case of a conduct ion electron approach ing 
an effective M B n o d e with spin down (Fig. 9, i0G = l j ) , we 
find tha t 

p i = < 2 , T + < n 

l + « 2 V | l - T 2 e x p ( i ^ T ) | 2 |1 - T 2 e x p ( i r q l ) | 2 

Ql = wfw + w f i t n = i - p L , 
(129) 

where w is the to ta l M B probabi l i ty , described by 
expression (2) for equivalent small-orbit nodes . 

The mat r ix elements (126) can be used to find three pai rs 
of probabi l i t ies Pa

A, Pa

B, and Pa

c (Fig. 9b) for a t r iangular 
orbit : 

+ -
l + a 2 V| 1 - T 3 e x p ( i r q T ) | 2 |1 - T 3 e x p ( i r q l ) | 

pl = W f l 3 l 1 + wfln=r2Pl (130) 

+-
l + a 2 V| 1 - T 3 e x p ( i T q T ) | 2 |1 - T 3 e x p ( i T q i ) | 

W eff 
U,3'T 

eff T2pi 
i , 3 ' i —iPb- (131) 

PlA=K,vi + wn,i'i = i - p B - P c -

A n impor t an t result is tha t , for a rb i t ra ry values of gq 

and a ^ 0, the probabi l i t ies (127) for each spin or ienta t ion 
oscillate in very different ways with the magnet ic field. W e 
can see tha t the to ta l effective probabi l i t ies (128), (129) 
and (130), (131) for each spin or ienta t ion are per iodic 
functions of two phases (124), which differ by an a m o u n t 
2yq = ngqmq/m, where gq is the electron g factor for a small 
orbit and mq is the cyclotron mass . 

If the SOC and the spin are ignored, a small d iangular 
orbit m a y 'switch off and o n ' the mot ion of a conduct ion 
electron in an M B configurat ion. If the SOC is taken into 
account , it is difficult to satisfy the condi t ion of complete 
t r ansparency which applies to a zero-spin diangular orbit . 
In addi t ion to the condi t ion, which resembles the L i f s h i t z -
Onsager quan t i t a t ion rule for a small orbit [6] 

Sq(E,Pz) 
2neRH 

(132) 

it is n o w necessary to m a k e sure tha t yq is equal to 2%r 
(where r is an integer) or gq = 4mqr/m, for which there is 
no justif ication at all. 
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Express ions ( 1 2 8 ) - ( 1 3 1 ) for the probabi l i t ies are rela­
tively clear. This is because we have been considering a fairly 
simple case of small symmetr ic orbi ts and equivalent M B 
nodes on these orbi ts . In other cases the elements of the 
effective s ma t r ix and, consequently, the probabi l i t ies are 
described by fairly cumbersome and asymmetr ic expressions 
for the dependences on the phases [102]. This is t rue, for 
example, of Al [103] when wha t are called the ft orbi ts are 
considered. 

4.3 Resistance oscillations in a simple model of a metal 
W e shall consider the magnetores is tance in a simple mode l 
of a meta l with a per iodic M B configurat ion, which has 
small closed diangular orbi ts (Fig. 4d). W e shall ignore the 
t ime spent by conduct ion electrons in small orbi ts and 
replace them by effective M B nodes (points) . The result is a 
reduced M B configurat ion which is shown schematically in 
Fig. 9c. 

In the zero-spin mode l this example is considered in 
greater detail in Shoenberg ' s b o o k [8] where the effective 
p a t h me thod p roposed by P ippa rd [4, 46, 104] is used. 
Similar expressions can be derived s tar t ing from the 
t r anspor t equa t ions (117) [6]. W e shall ob ta in an expres­
sion for the resistance on the basis of the theory developed 
above and we shall show tha t if the SOC is included, the 
resistance oscillations have the s t ructure of double peaks . 

W e shall begin with a qual i ta t ive explanat ion of the 
dependences of the conduct ivi ty a on the effective p r o b ­
abilities P and Q ignoring the spin degrees of freedom. Let 
us tu rn to Fig . 9c. Star t ing from a poin t A and moving 
a long an M B configurat ion characterised by P = 0 (Q = 1), 
a conduct ion electron is in infinite mo t ion a long the upper 
pa th . A small orbit does not t ransmi t this electron. W h e n 
high fields (H H0) are applied or when P = 1 (Q = 0), a 
conduct ion electron moves only a long a closed circular 
pa th . The to ta l t r ansparency of the small orbit (in the 
absence of the spin degrees of freedom!) leads to finite 
mot ion of the electron. 

U n d e r advanced b r e a k d o w n condi t ions (PQ ^ 0) we 
can expect features typical of these two types of mot ion . 
Expressions obta ined from the semiclassical theory [11 - 1 3 ] 
of the ga lvanomagnet ic proper t ies of a meta l are quite 
different in the case of closed and open pa ths . 

W e shall assume tha t in the case of advanced b r e a k d o w n 
a conduct ion electron moves a long an open pa th . U n d e r the 
in termedia te M B condi t ions the role of the effective 
electron-scat ter ing t ime T* is played by the scat tering 
t ime for M B nodes . It is the M B scattering tha t dis turbs 
infinite mo t ion of conduct ion electrons in this case. The 
frequency of such scattering can be easily est imated. The 
frequency is p r o p o r t i o n a l to cocP, where P is the probabi l i ty 
of the escape of a conduct ion electron from an open orbit to 
a closed one. It follows from semiclassical concepts [11, 13] 
tha t the mo t ion a long an open pa th resembles the mo t ion of 
a conduct ion electron in the absence of a magnet ic field. If 
the open direction coincides with py, then 

Let us n o w assume tha t the same conduct ion electron 
moves a long a closed orbit . In this case the role of T* is 
played by the effective t ime spent on closed orbits , such tha t 
T * _ 1 w cocQ, where Q is the probabi l i ty of the escape of a 
conduct ion electron from a closed orbit to an open one. In 
the case of closed orbi ts [ 1 1 - 1 3 ] the mo t ion in a p lane 
perpendicular to the applied magnet ic field resembles a 
diffusion walk. A conduct ion electron moves for a long t ime 
a long a closed orbit and the longi tudinal conduct ivi ty 
componen t decreases inversely p ropo r t i ona l to the square 
of the magnet ic field: 

(135) 

Subst i tut ion of the expression for the conduct ivi ty (133) 
and of T* in expression (135) gives 

H 
(136) 

Therefore, oxx is on the one h a n d p r o p o r t i o n a l to Q [as 
in the above expression] and, on the other , it is inversely 
p r o p o r t i o n a l to P [as in expression (134)]. Consequent ly , 
the to ta l conduct ivi ty should be 

nec Q 
(137) 

It should be noted tha t in the case of small values of the 
p roduc t s such tha t PQ —> 0 the collision frequency is again 
determined by the real scat tering t ime T* = xp [defined by 
inequalit ies (54)]. 

W e shall n o w derive an expression for the conduct ivi ty 
tensor which takes account of the spin degrees of freedom 
and we shall do this on the basis of the t r anspor t equa t ions 
(117) —(120). This can be done if we find the dependence of 
Vt on the effective probabi l i t ies Pa and Q°. If the collision 
integral in the Bo l t zmann equat ion (117) is ignored, the x 
componen t of *P] is 

nw = n (o ) -^ [^w-^ (o ) ] . (138) 

H e r e Wx(0) is the value of the dis t r ibut ion function at the 
beginning of the iih section and the second term in the 
above expression follows from Eqn (7). 

If tt = Th then expression (138) becomes 

(139) 

2 * 
ne x (133) 

where At = ntby represents an increment in the coord ina te 
py due to the passage of a conduct ion electron a long the /th 
section [the definition of nt is given in the text following 
expression (59)]. It is impor t an t to no te tha t the open 
per iodic M B configurat ion shown in Fig. 9c has the 
p rope r ty 

N N 

£ ) 4 = *y5>,. = 0 . (140) 
i i 

It follows from the system of equa t ions (117) and from 
formula (120) tha t if I = 0 the componen t axx is given by 

H e r e cr0 is the conduct ivi ty when H = 0; n is the number of 
electrons per uni t volume, m* is the effective mass . Since 
coc = eH/m*c, we can rewrite the conduct ivi ty (133) thus : 

Ovc^-Hp' ( l 3 4 ) 

e2 eH 

i Jo Jo dt. 

( I 4 l ) 
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where the integral with respect to t ime is 

1 
-[yf(Tl)-vf(0)]. (142) 

The b o u n d a r y condi t ions (118) for the reduced M B 
configurat ion (Fig. 9c) in the case of stochastic mo t ion 
of conduct ion electrons a long large sections [condition 
(115)] become 

(143) 

The spin index is included explicitly above, a l though earlier 
it has been incorpora ted in /. The condi t ion of periodici ty 
of the function Wx(p) in t e rms of py leads to 

U/x _ n/x u/x _ n/x _ u/x 
*Ao — * A'oi * Bo — * B'o — * Wa­

lt therefore follows tha t formulas (143) can be rewri t ten 
in the form 

(144) 

Subst i tut ion of formulas (144) and (142) in expression (141) 
yields the following expression for a componen t of the 
conduct ivi ty tensor: 

e1 eH 

(145) 

The symmetry of the M B configurat ion (Fig. 9c) and the 
p rope r ty (140) give 

*Ae + Vie = 0, AA+dB = 0. (146) 

Subst i tut ion of expression (139) in expression (145), 
subject to the equalities (146), gives aa

xx 

Or 
eH 

(2n%y 

(147) 

W e can determine the quant i ty WA(T(0) if in the 
b o u n d a r y condi t ions (144) we replace ^Aa(FA) and 
WX

B(T(TB) with the values of the function (139). The qualit ies 
(146) give 

Qa - P a 

(148) 

Subst i tut ion of the function (148) in expression (147) 
subject to p rope r ty (140) gives the expression 

G x X (27i/i)3//Jo P z Pa 
GffM (149) 

W e shall obta in the results specifically for circular orbi ts 
(Fig. 9c). F o r simplicity, we shall also assume tha t the 
F e r m i surface is cylindrical. Then Q and P are independent 
of pz and by = 2p±, where p± is the rad ius of the circle. 

Since 2Vp/(2nH) = n, where Vp = bzn{p±) is the vo lume 
occupied by a conduct ion electron, we finally obta in 

a nec 2Q° 
H nPa' 

(150) 

The remain ing componen t s of the conduct ivi ty tensor can 
be found by the convent ional semiclassical app roach 
[ 1 1 - 1 3 ] when the average of the velocities a long closed 
orbi ts is zero. 

The conduct ivi ty tensor then looks as follows: 

H 

2Qa 

nPG 

1 

1 

~ 2 

0 
(151) 

This expression agrees with the quali tat ive est imate (137) 
and it is easy to unde r s t and from the physics po in t of view. 
If Q° = 0, conduct ion electrons move a long closed orbi ts 
and the conduct ivi ty axx a long an M B ne twork is zero. If 
Q° = 1, and Pa = 0, a conduct ion electron can escape to 
infinity, so tha t ' superconduct iv i ty ' appears . W e have 
ment ioned earlier tha t in these limiting cases we should 
use the real m o m e n t u m relaxat ion t ime xp, which leads to 
finite values of the conductivi ty. In the collision-free case, 
conduct ion electrons cannot move a long the y axis 
( transversely relative to the open direct ion), which is 
unders tandab le . This is why in the adop ted approx imat ion 
the componen t ayy also vanishes. 

Therefore, inclusion of the spin degrees of freedom gives 
rise to the conductivit ies cr̂  , and a\x, which oscillate 
together with the effective M B probabil i t ies . Summat ion 
over the spin index in Eqn (145) can yield an expression for 
the resistivity tensor p a j 8 = a~p. The expression for the 
componen t pyy is: 

2H 
Pyy = unec 

( P T ) - 1 + ( P i ) ~ 1 - 2 (152) 

where use is m a d e of Pa + Q° = 1. Expressions (151) and 
(152) are fully identical with the results obta ined by the 
effective p a t h me thod tak ing the spin into account [66]. 

The above expression for the resistivity can be presented 
graphically. In the limit of s t rong fields H ^> H0 the 
resistivity p oscillates (Fig. 10) app roach ing the value 
p s a t . Here , p s a t = %H0/nnec is the sa tura t ion value of the 
resistivity calculated ignoring the coherent small-orbit 
effects, i.e. assum-ing completely stochast ic M B . This 
result can be obta ined formally by averaging expression 
(152) over the phase (dot ted curve in Fig. 10b). 

In the limiting case when the spin degrees of freedom are 
ignored, i.e. when yq = 2nr (r is an integer) bu t for any value 
of a, we obta in the zero-spin results from expression (152) 
[5, 8]. This result is represented by the con t inuous curve in 
Fig. 10b. W e can see tha t , for specific magnet ic fields, 
defined by the relat ionship (132) the resistance of a linear 
M B ne twork falls to zero. This cor responds to complete 
inter-ference t r ansparency of small d iangular orbi ts [see also 
the discussion following relat ionship (132)]. 

In general, the behaviour of the t ransverse resistivity 
curve pyy/psat in in termedia te fields depends on the small-
orbit g factor g q and on the SOC pa rame te r a. In the case of 
coherent mot ion of conduct ion electrons a long a diangular 
orbit when possible spin flip (a ^ 0) is taken into account , 
the number of the oscillation peaks is doubled. The relative 
ampl i tudes of two peaks from one zero spin pa ren t depends 
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Figure 10. M B oscillations of the transverse magnetoresistance pyy/psat 

plotted for the M B configuration shown in Fig. 4d: (a) totally coherent 
motion of conduction electrons along a diangular orbit (a = 0.4 and 
and ys

m — 0.4tt); (b) continuous curve represents the results of Refs [4, 
8] for any value of a and ys

m — 2nr (r = 0, 1, 2, ...); the dashed curve 
corresponds to stochastic motion of conduction electrons in a small 
orbit. In plotting these curves the area Sm of the small orbit is assumed 
to be (2nHe/c) x \0H0. 

on g q . This is shown in Figs 10a and 11a. Fig . l i b il lustrates 
the fact tha t if the SOC is ignored, the inclusion of g q in 
expressions (151) and (152) alters the oscillation ampl i tudes , 
bu t does no t double the number of peaks . 

It therefore follows tha t the adop ted mode l makes it 
possible to account consistently for the appearance of a 
complex s t ructure of the M B oscillation peaks by the SOC 
and by the spin splitting of the L a n d a u levels. It should be 

Pyy I Psat 
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Figure 11. M B oscillations of the transverse magnetoresistance p /psat: 
(a) a = 1, ys

m — 0.5n; (b) SOC is ignored (a = 0), continuous curve 
ys

m — 0.4tt, and the dashed curve to ys

m — 0.5tl The values of Sm used 
in plotting these curves are the same as in Fig. 10. 

no ted tha t similar splitting of the peaks was observed by 
Stark [101] for Zn (this is discussed in detail later). 

It should also be noted tha t Sowa and Fal icov 
investigated [57] the influence of small-angle scattering 
on the M B oscillations in a meta l described by the same 
model . A similar double-peak s t ructure is predicted there 
and the stronger the small-angle scattering, the flatter are 
the oscillation peaks . Peak doubl ing repor ted in Ref. [57] 
originates from the assumpt ion of the au tho r s abou t the 
b imoda l na tu re of the dis t r ibut ion of the small-orbit areas, 
which leads to the possibili ty of the existence of conduct ion 
electrons with two different phases in the course of different 
passages t h rough a section /. The results repor ted in this 
review allow us to conclude tha t a m o n g possible reasons for 
the appearance of a b imoda l dis t r ibut ion are the spin 
splitting of the L a n d a u levels, [described by relat ionship 
(60)] in a magnet ic field and the spin flip of conduct ion 
electrons under the M B condi t ions because of the SOC. 

4.4 Galvanomagnetic properties of zinc: theory and 
experiment 
W e shall n o w adop t a mode l which cor responds m o r e 
closely to reality. In the case of hep metals (Be [7], M g , and 
Zn [5, 55, 101]) a hexagona l two-dimens ional M B 
configurat ion appears if the field H is paral lel to the 
hexagona l axis of a crystal (Fig. 3). The F e r m i surfaces of 
these metals are well k n o w n (Fig. 3a) [90]. In our analysis 
the impor t an t pa r t s are those associated with M B : a 'hole ' 
mons ter , which lies in the second b a n d and whose 
characterist ic d imensions are comparab le with the d imen­
sions of the Bril louin zone, and six small electron sheets in 
the form of cigars or needles, which are in the third b a n d 
and are located on the vertical edges of the Brillouin zone. 

If H <^ H0, the n u m b e r s of electrons and holes are equal . 
All the orbi ts are in this case closed and, in the absence of 
M B , the resistance rises p ropor t iona te ly to H2, which is 
typical of compensa ted metals [11]. However , M B dis turbs 
the exact compensa t ion and open as well as closed orbi ts 
appear . If H > / / 0 , all the charge carriers (both those which 
move a long giant orbi ts in the course of b r e a k d o w n and 
those which move a long an inner belt of the mons te r ) have 
an electron spectrum and, therefore, the magnetores is tance 
saturates . If a sample is of sufficiently high qual i ty so tha t 
the mo t ion of conduct ion electrons a long a small t r iangular 
orbit is coherent the resistance oscillations appear and they 
cor respond to the area of a small t r iangular orbit which 
m a y be the area of a needle in the case of Zn [101] or a cigar 
in the case of M g [5] and Be [7]. These are the orbi ts which 
can be regarded as effective M B nodes [5, 6], which are only 
slightly m o r e complex than diangular orbi ts (Fig. 9b). 

The effective M B probabi l i t ies (130) and (131) oscillate 
if the phase coherence is conserved in the course of mot ion 
of conduct ion electrons a long these small orbi ts . It is 
obvious tha t the characterist ic cyclotron frequency of a 
small t r iangular orbit (oe

Q is much greater t han the cyclotron 
frequency of a large hexagona l orbit coj [5, 8], i.e. 
conduct ion electrons move stochastically over large sec­
t ions of an M B ne twork (the phase of their wave function is 
lost!) and they move coherent ly a long small o r b i t s . | This 
cor responds to the real s i tuat ion of the intermediate M B 
regime described by inequalit ies (115). 

f Here and in Section 5, the index Vindicates a small orbit of the triangular 
type and the index % refers to a hexagonal orbit. 
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Since the dimensions of the needles are much less t han 
those of the monster , such an M B ne twork can be replaced 
by a reduced ne twork in which all small t r iangular orbi ts 
are replaced by effective M B nodes described by the 
effective s matr ices S e f f . In our case, when the spin degrees 
of freedom are taken into account , the un i ta ry mat r ix S e f f is 
of sixth rank . The expressions for some of its mat r ix 
elements are given in Section 4.2 [see set of expressions 
(126)]. 

In calculat ion of the ga lvanomagnet ic proper t ies of Zn 
which has a two-dimens iona l M B ne twork with small 
orbi ts , it is convenient to use the 'effective p a t h ' m e t h o d 
[104]. This m e t h o d is applied to hep metals (Zn and M g ) in 
Refs [4, 55] and it is given in a sufficiently detailed form in 
Ref. [8]. A m o r e general app roach [18], based on consistent 
der ivat ion of the t r anspor t equat ion , unfor tuna te ly has no t 
yet been developed for quant i ta t ive analysis of t w o -
dimensional M B ne tworks [6]. 

General isa t ion of the effective pa th me thod to the case 
of existence of a probabi l i ty of spin-flip M B in the 
in termedia te M B regime, which is defined by condi t ion 
(115), can be found in Refs [ 6 4 - 6 6 ] . Our analysis will be 
based on Ref. [66], where the ga lvanomagnet ic proper t ies of 
Zn are considered. 

The results obta ined by the effective p a t h me thod can be 
wri t ten down conveniently in te rms of a complex var iable 
x + i v . In this case the conduct ivi ty becomes 

• 10V (153) 

In contras t to the preceding section, we have to bear in 
mind tha t a layer of M B configurat ions in te rms of pz has a 
finite thickness 2pzm and the M B pa rame te r s (x and a), as 
well as the cross-sectional area of a small orbit S Q = SQ, are 
functions of pz. 

Averaging over the initial spin or ienta t ions (a similar 
averaging p rocedure is used in calculat ions dealing with the 
K o n d o effect), we obta in 

and, omi t t ing the in termedia te steps given in Ref. [66], we 
find the expression for the to ta l conduct ivi ty tensor b is 

(154) 

T h e c o m p o n e n t s of the tensor D a re 

1 • i + 3 | r , | V 
4 ^ i - 3 | r „ | 2 + 3 | r „ | 4 ( i + T 2 + T 4 ) 2 ' 

V 3 v ^ l - | r J 2 ( 2 + t 2 ) 

4 " ^ i - 3 | r „ | 2 + 3 | r „ | 4 ( i + T 2 + T 4 ) 1 2 + 

(155) 

The summat ion is carried out over the small-orbit spin 
index rj: 

1 
(156) 

1 + T 6 — 2T 3 cos ^ ' 

The second term in E q n (154) describes the cont r ibut ion 
m a d e to the conduct ion process by all the closed orbi ts tha t 
do not par t ic ipa te in M B . In this sense the quan t i ty a is a 
fitting pa ramete r in the theory [8, 55, 66]. In the absence of 

M B , all the electron orbi ts are in this case closed and if 
coct* > 1, they m a k e the usua l cont r ibut ion to axx « a/H2 

[11-13]. The resul tant n a r r o w layer of open (because of 
M B ) orbi ts (for zinc, we have pzm w 0.04/?F [105]) is 
represented by the first te rm in expression (154). It is 
this te rm tha t domina tes the ga lvanomagnet ic proper t ies 
under advanced M B condi t ions (when (H ^ H0). 

In the limiting case when there is no M B , the whole 
componen t of the conduct ivi ty tends to zero (pxy oc H~2), as 
expected [ 1 1 - 1 3 ] , because a meta l is completely compen­
sated in fields H <^ H0. The quant i ty b, which represents the 
imbalance between electrons and holes which appears as a 
result of M B , can be est imated from the integral 

[Pzm 6nec , 
b = dpz. 

Jo ™ 
(157) 

Here , n(pz)dpz determines the number of conduct ion 
electrons per uni t vo lume in an e lementary section of 
the F e r m i surface. 

E q n s (154) and (157) are wri t ten down on the a s s u m p ­
t ion tha t n(pz) varies smooth ly with pz, in contras t to D(pz) 
which varies periodically with the phase yon{pz)- This phase 
is given by expression (124) except tha t the no ta t ion is 
altered: q —> 6. If a conduct ion electron moves s tochas­
tically over small-orbit sections (co|? < T~a

!) , the result should 
be s tochast isat ion of the phase y0rj in E q n (156). Conse ­
quently, the results can be obta ined in the limit of s tochast ic 
M B if E q n s (154) and (155) are averaged over this phase 
(see Refs [57, 58, 66]). 

In general, the conduct ivi ty of E q n (154) depends on the 
magnet ic field / / , on the microscopic pa rame te r s of M B 
nodes , on the thickness 2pzm of an M B layer, and on the 
fitting pa ramete r a. The strongest dependence on pz in the 
in tegrand applies to the area of a t r iangular orbit [55] 

S(pz) = S0 + £p2

z, (158) 

where S0 is the extremal section of a needle (pz = 0). The 
needle na r rowing pa rame te r 

C = 2 f e ) P i = 0 

has been est imated on the basis of var ious theoret ical 
models . In par t icular , the following est imates of { are given 
in Refs [5, 55]: = - 1 . 1 3 x 10~ 2 a.u. and 
£ 2 = —1-77 x 10~ 2 a.u. The componen t s of the resistivity 
tensor are related to a by the expressions 

Pxx = 
^xx ^"xv 

Pxy = 
°2xx + oi. 

(159) 

W e shall n o w discuss the results obta ined and then 
compare them with the publ ished exper imental da ta of 
Stark [101] and Fal icov, P ippard , and Sievert (FPS) [55]. 
The theoret ical dependences were fitted to the exper imental 
da ta by the least-squares me thod in a wide range of values 
of HQ ( 2 - 6 kG) . The op t imal values of the pa rame te r s were 
found by the simplex me thod [66]. The results of this 
p rocedure are p lot ted in Figs 12 and 13, and the p a r a ­
meters found are compared with the k n o w n values in Table 
1. The following quant i ty is used in this table: 

2m 
(160) 

The value of b lies within the limits (0 .67 -0 .695 ) x 
10 8 kG Q _ 1 m _ 1 . This value can be used together with 
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axyH/itfkG Q _ 1 c m _ 1 
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Figure 12. Oscillations of the off-diagonal component of the 
conductivity tensor GxyH\ (a) theoretical results [55]; (b) theoretical 
results taking account of the SOC [66]; (c) experimental curves [101] 
taken from [55]. The parameters used in calculation of the theoretical 
curves are listed in Table 1. 

the integral (157) to find the ' exper imenta l ' est imate of 
the half-width of an M B belt on the needles: 
pf£ w (1.8 - 1.9) x 1 0 " 2 a.u., which is close to the t h e o ­
retical est imate of the half-width of the belt on the monster , 
p ^ e o r = 1 9 5 x 1 0 - 2 a u | - 5 5 j T h i s a g r e e m e n t S U p p o r t s the 

adop ted model . 
It should be noted tha t the integral with respect to p z , 

encountered in the calculat ion of gH, was calculated in 
Ref. [55] by simple summat ion . The interval 0 < p z < p z m 

was split into 20 layers equidis tant from one another . It 
follows from our calculat ions [66] tha t the adop t ion of this 
p rocedure in the calculat ion of an integral of the type 
described by Eqn (154) leads to errors of the order of 
2 0 % - 4 0 % . 

W e carried out numer ica l in tegrat ion by adop t ing one of 
the modif icat ions of the Simpson me thod (the relative error 
did no t exceed 1% and the number of layers in weak fields 
H ^ H0 reached 320). 

Na tura l ly , the F P S results [55] can be obta ined also 
from our formulas if the following changes are made : 

(1) it is assumed tha t a = 0, i.e. tha t the SOC does no t 
affect M B ; 

(2) if the dependence on the spin of conduct ion electrons 
is removed from all formulas , i.e. if the spin index is 

p x x / 1 0 ~ 8 Q cm 

10 -
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Figure 13. Oscillations of the field dependence of the 
magnetoresistance pxx : (a) theoretical results [55]; (b) theoretical results 
taking account of the SOC [66]; (c) experimental curves [101] taken 
from [55]. The parameters used in calculation of the theoretical curves 
are listed in Table 1. 

Table l .Parameters of theoretical curves plotted in Figs 12 and 13, 
compared with the results reported in Ref. [55]. 

Calculation parameters Ref. [55] Ref. [66] 

a / 1 0 8 k G 2 Q " 1 c m - 1 0.17 0.17 

6 /10 8 k G 2 O - 1 c m - 1 0.67 0.67 
H0 (H°0)/kG 2.7 ( - ) 3.0 (3.7) 
S0/\0~5 a.u. 4.24 4.05 

p%/10~2 a.u. 2.0 1.83 
C / 1 0 - 2 a.u. - 1 . 7 7 - 1 . 1 3 

go - geme/2m - 1 . 2 2 0.41 

a — 0.75 

d ropped and no summat ion over the spin is carried out ; 
the conduct ivi ty can then be calculated from an expression 
which differs only slightly from the integral (154); 

(3) if the phase acquired by a conduct ion electron in a 
revolut ion a r o u n d a small orbit is altered: 
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where y0 = —3.84 is a pa ramete r in t roduced in the theory 
and independent of the magnet ic field; in the F P S theory 
[55] this pa ramete r is needed to improve the agreement 
with the exper imental results and to est imate the value of 
the g factor of conduct ion electrons in a needle. 

Since the spin cont r ibut ion to the phase , given by 
expression (124), is determined to within 2nr (r is an 
integer), our value of gs can be used, in combina t ion 
with m 0 / m o = 0.0075 [8], to est imate the g factor of 
conduct ion electrons in a needle: ge w 109 + 642r. In 
view of the theoret ical restrict ion on this value, ge < 266 
[91, 105], we obta in ge w 109, in agreement with the 
est imates given in Ref. [91]. 

The value of the SOC pa ramete r a = 0.75 confirms tha t 
in the case of Zn the SOC has a s t rong influence on the 
spectrum in M B regions. In this sense this meta l can be 
regarded as a test g round for checking the theory of spin-
flip M B (see Sections 5 and 6, where we shall consider the 
de H a a s - v a n Alphen effect and conduct ion-elect ron spin 
resonance) . It is evident from expression (50) tha t inclusion 
of the SOC increases somewhat the in te rband gap A : the 
increase is by a factor of (1 + a 2 ) ^ 4 w 1.1, compared with 
the est imates based on the b r e a k d o w n field HQ in the 
absence of the SOC. The value of the b r e a k d o w n field / / 0 , 
which depends on the SOC pa ramete r a is given in Table 1 
and is in agreement with the exper imental da ta [106]. 

The p roposed theory, like the F P S theory [55], agrees 
poor ly with experiments carried out in low fields (H ^ H 0 ) . 
This is manifested by the appearance of hf oscillations with 
a considerable ampl i tude , which does fall when the field is 
reduced bu t no t as fast as in the experiments . However , this 
is associated with the limited na tu re of the adop ted mode l 
of in termedia te M B and of the effective pa th me thod . The 
role of small-angle scattering m a y increase in weak fields. In 
fact, even par t ia l s tochast isat ion of the mo t ion of conduc ­
t ion electrons a long small orbi ts should result in flattening 
of the sharp peaks of the M B oscillations [57, 58]. 
Na tura l ly , in the case of completely stochastic M B , the 
oscillations disappear completely, as demons t ra ted by the 
simple mode l (Fig. 10). The theoret ical curves plot ted in 
Figs 12 and 13 for weak fields (H ^ 2 k G ) are based on the 
exper imental dependences . These weak-field pa r t s of the 
theoret ical curves are shown dashed in the figures. 

It follows from Figs 12 and 13 tha t a consistent theory 
of M B which takes account of spin flip explains much bet ter 
no t only the na tu re of the behaviour of the exper imental 
curves (appearance of a fine s t ructure in the form of double 
peaks) , bu t also ensures a satisfactory quant i ta t ive agree­
ment with experiments in the case of such complex 
oscillations. Hence , it follows tha t under the exper imental 
condi t ions described in Ref. [101] the in termedia te M B 
regime is observed. 

5. The de Haas - van Alphen effect under spin-
flip magnetic breakdown conditions 
5.1 Fundamentals of the theory of the de H a a s -
van Alphen effect 
Oscillations of the t h e r m o d y n a m i c poten t ia l and of its 
derivatives in a magnet ic field, i.e. the de H a a s - v a n 
Alphen (dHvA) effect, p rovide reliable informat ion on the 
energy s t ructure of metals and F e r m i surfaces [8, 1 1 - 1 3 ] . 
These oscillations appear because discrete quasiequidis tant 
energy levels cross consecutively the F e r m i energy e F when 

the magnet ic field is varied. This is possible only in the 
presence of closed electron orbi ts on the F e r m i surface and 
in the semiclassical approx imat ion these orbi ts should 
satisfy expressions (1) and (8). 

Let us recall the main principles of the theory of the 
d H v A effect in its general form. It is well k n o w n (see, for 
example, Refs 11, 13]) tha t , in the case of a system which 
obeys the F e r m i - D i r a c statistics and has states with an 
energy E, the t h e r m o d y n a m i c potent ia l is given by the 
expression 

Q = - k Q T ^ \ n ^ 1 + e x p ^ - ^ ) . (161) 

Here and later in this section the quan t i ty \i is the chemical 
po ten t ia l equivalent to e F . The summat ion in expression 
(161) is carried out over all possible states. The energy 
E = E{n,pz,o) is defined as the solution which satisfies the 
implicit equat ion (19) with the q u a n t u m number n. 

The oscil latory par t of the t h e r m o d y n a m i c poten t ia l 
(161) is calculated in the s tandard way [11, 13, 74]. As usual , 
fast oscillations of the cosines tha t contain the semiclassical 
phases described by formula (15) have the effect of selecting 
the values of S^(E,pz) which are extremal in te rms of pz 

when E = e F ( the index { identifies the extremal sections). 
The expression for the oscil latory pa r t Q of the 

t h e r m o d y n a m i c poten t ia l per uni t vo lume of a meta l is 

- _ ( e 
n2cm^ 

-1/2 
(162) 

0 0 P P P 

where 

: cS({E, pz) 
2neH 

(163) 

is the frequency of the d H v A oscillations [8] which can be 
expressed in te rms of the area of an extremal section of 
the F e r m i surface described by formula (158), 

rTajH 
sinh (rTtf «*///) 

is the t empera tu re factor, and 

rxDa^ 
RD = exp -

H 

(164a) 

(164b) 

is the Dingle factor [8]. 
The quant i ty x D in expression (164b) is k n o w n as the 

Dingle t empera tu re , which is governed by the average 
scattering t ime of conduct ion electrons. Express ions 
(164a) and (164b) contain the coefficient 

= ^ — i = 1.47 x 10 5 G K " 1 . (165) 
He 

In formula (162) the quant i ty 

^ s = cos I ^ rg£-±) = cos(nrg\) (166) 

is the spin factor which appears as a result of superposi t ion 
of oscillations of conduct ion electrons with two spin 
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or ien ta t ions [8, 11, 13, 74]. As in the preceding sections, the 
quant i ty 

represents the spin splitting pa ramete r . 
It should be poin ted out tha t in the case of free 

conduct ion electrons (g% = 2, = m) the factor described 
by expression (166) is simply (— l ) r . The spin splitting is 
exactly equal to the separa t ion between the L a n d a u levels. 
This remains approximate ly t rue also of b a n d s which are 
characterised by mjm <̂  1, because of the s t rong SOC, since 
in this case the relative deviat ion of the g factor is 
A ^ / g o ~m/m£ (see Section 2.3 and Ref. [10]) and, there­
fore, we have g | w 1. How-ever , even a relatively small 
deviat ion of gs from uni ty can alter qui te s trongly the 
ampl i tude of the d H v A oscillations. 

Expression (162), apar t from the Dingle factor (164b), 
was first derived by I M Lifshitz and A M Kosevich [107] 
and we shall refer to this expression as the L K formula. As 
poin ted out earlier, in general, the F e r m i surface is complex 
and has several extremal cross sections [represented by the 
sum over { in expression (162)] a long a selected direction of 
the magnet ic field and, consequently, several sets of values 
of and g%. Therefore, the oscil latory quant i ty 
consists of the sum with several cont r ibu t ions and each 
of them is described by the L K formula, bu t with different 
values of the pa ramete r s . 

The L K formula accounts satisfactorily for the exper­
imenta l results on the d H v A effect. Essentially, it is the 
main work ing formula used in de terminat ion of the F e r m i 
surfaces of var ious metals [8, 11, 12]. However , the L K 
formula ignores the role of M B . | 

U n d e r the M B condi t ions the ha rmonics of the d H v A 
effect m a y include the frequencies F^ which cor respond to 
areas tha t exceed the dimensions of a section of the 
Bril louin zone even in the case of metals with a closed 
F e r m i surface. The M B spectrum of conduct ion electrons is 
k n o w n only for specific direct ions of the magnet ic field and 
for the symmetr ic M B configurat ions (see Sections 3.2 and 
3.3). In spite of this, the current ideas on the mo t ion of 
conduct ion electrons in a magnet ic feld have proved 
sufficient to develop a theory of the oscil latory effects 
under the M B condi t ions [5, 6, 8]. The main feature of the 
d H v A effect under the M B condi t ions is a reduct ion in the 
ampl i tude of isolated orbi ts and an increase in the ampl i tude 
of composi te orbi ts as the b r e a k d o w n probabi l i ty increases. 

A n expression for the oscil latory pa r t of the poten t ia l Q 
is obta ined in Ref. [108] for a simple M B configurat ion 
which has two equivalent M B nodes . It is shown there tha t 
the L K formula has an addi t iona l factor which is due to 
M B . It should be poin ted out tha t the t r ea tments given by 
K o c h k i n [108], in Shoenberg ' s m o n o g r a p h [8] for M g , and 
by Lonzar ich and H o l t h a m [103] for Al t ake into account 
the influence of the SOC on the d H v A effect, bu t they 
ignore spin flip of conduct ion electrons under the M B 
condi t ions . Belokolos [94] deals with M B in Tl and 
calculates the d H v A effect due to composi te orbi ts . 

In general, an oscil latory correct ion to the t h e r m o d y ­
namic quant i ty under the M B condi t ions can be calculated 

f The LK formula ignores also the magnetic interaction [8], which is 
outside the scope of the present review. 

by two m e t h o d s p roposed in Refs [6, 56]. They are based on 
a calculat ion of the oscil latory par t of the number density of 
states v = v ( £ , pz) of a system with given values of E and pz. 

Fal icov and Stachowiak [56] use a theorem relat ing the 
number density of states to the Four ie r t r ans format ions of 
the Green function. This function cor responds to the sum of 
semiclassical wave packets which re turn to a given poin t of 
an M B coupled-orbi t ne twork following all possible pa ths . 
Their ampl i tudes then decrease in accordance with the 
number of the M B nodes crossed. The phases are deter­
mined by the areas of the sectors b o u n d e d by these pa ths . 
The me thod p roposed in Ref. [56] yields expressions similar 
to the L K formula in the case of a one-dimensional M B 
ne twork (as shown in Fig . 4d, bu t for circular orbi ts and 
ignoring the spin splitting) [5, 8], which are also valid in the 
case of a m o r e complex real s i tuat ion of a two-dimens ional 
M B ne twork observed under the M B condi t ions in M g (Fig. 
3) [5, 8, 56]. 

The results given in Ref. [56] can be stated as follows: 
the oscil latory pa r t of the free energy is determined similarly 
to the sum in expression (162) over all the closed orbits , 
which are possible in an M B network , except tha t each term 
is multiplied by the ' M B weaken ing ' factor 

Rb = (ipr(t)n\ (168) 

where nx and n2 are the n u m b e r s of the b ranch ing poin ts of 
a given orbit at which respectively b r e a k d o w n and 
reflection can be expected. It is assumed tha t all M B 
nodes are equivalent . The appea rance of the imaginary 
uni ty i in expression (168) follows from the condi t ion of 
conservat ion of the number of particles in the semiclassical 
P ippa rd mode l [4, 104]. W e have seen tha t in the 
microscopic theory the b r e a k d o w n gives rise, in the 
phase of the wave function of conduct ion electrons, no t 
to 7i/2, which cor responds to i in expression (168), bu t to a 
quant i ty A which depends in a complex m a n n e r on H0/H 
[compare with expression (49)]. In the course of mo t ion 
a long open orbi ts the phase acquires a correct ion Rnt [see 
formula (58)]. 

The mos t consistent der ivat ion of the oscil latory par t Q 
of the t h e r m o d y n a m i c poten t ia l wi thout l imitat ions on the 
na tu re and connectivi ty of M B configurat ions is given in 
Refs [6, 49]. The Slutskin me thod involves representa t ion of 
the oscil latory pa r t of the number density of states v(E,pz) 
as a sum of mult iple Four ie r series (112). The coefficients in 
this series are expressed in te rms of the p roduc t s of the s-
matr ix elements for a given M B configurat ion and the 
phases are p ropo r t i ona l to the areas of closed orbi ts 
composed of semiclassical sections. 

However , these theories (see also Refs [5 -8 ] ) deal with 
the p h e n o m e n a associated solely with the orbi ta l mo t ion of 
conduct ion electrons under the M B condi t ions and the spin 
proper t ies of conduct ion electrons are included only in the 
formal sense: the SOC is assumed to alter the value of the g 
factor of conduct ion electrons [see expressions (166) and 
(167)]. In this connect ion it would be undoub ted ly of 
interest to analyse theoretical ly the influence of the SOC 
on the oscillations of the number density of states under the 
coherent M B condi t ions , since spin flip of conduct ion 
electrons associated with M B leads to interference between 
semiclassical conduct ion-elect ron states with different spin 
or ienta t ions , which influences the d H v A effect. 
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5.2 Magnet ic breakdown oscillations of the number of 
states density including the spin degrees of freedom 
If we use the definition (112) of the number density of 
states v(E,pz) under the M B condi t ions and expand the 
exponent ia l function [see formula (70)] occurr ing in 
Fi,i(y + i0) [given by expression (114)] as a Four ie r series, 
we obta in the oscil latory pa r t of the n u m b e r density of 
states 

i L 

(169) 

The Four ie r coefficients [representing the smooth pa r t 
of the probabi l i ty ampl i tude , which is discussed after 
formula (70)] 

A,.,.(L) = <F,.,.(y + iO) exp(-iL-y)) 

are real because V$ are real and uni ta ry . Accord ing to 
expression (69), they represent the p roduc t of the ^-matrix 
elements with A = 0 for each specific value of L . It should 
be poin ted out tha t , in contras t to formula (4.2.3) given in 
Ref. [6], expression (169) cannot be summed explicitly over 
the spin of cr because of the inclusion of the SOC. W e recall 
tha t in our case the spin index is 'h idden ' in the serial 
number / of a section [see discussion following formula 
(61)]. 

In the sum over L in expression (169) the only nonzero 
ampl i tudes Ait(L) are those with such values of L which 
generate closed orbi ts tha t pass t h rough a section /. All the 
closed orbi ts tha t begin and end in the section / create all 
possible closed j pa ths . Each jth pa th passes 4 t imes a long 
the kth section of a closed orbit (k = 1, 2, N). F o r a 
given L , these jth p a t h s differ from one another by the 
sequence of passing a long semiclassical sections of an M B 
network . The sequence in which the jth pa th is t raversed 
cor responds to a specific sequence of the serial n u m b e r s of 
the sections [/, . . . , / ] . The serial n u m b e r s of the first and last 
t e rms in the sequence are identical with the first and second 
subscripts in Ait(L). 

Wri t ing down the given values of L in the form L = rj, 
we obta in the following expression for the ampl i tude 

Ai,(L)=jiRb(rj), (170) 

where j are the N vectors with the relatively p r ime integer 
componen t s tha t have no c o m m o n divisors; r gives the 
number of revolut ions a long the jth pa th ; Rt(jj) is a 
quant i ty independent of the section n u m b e r /, bu t defined 
uniquely by the N vector L = rj. It should also be 
ment ioned tha t the quant i ty Rb(rj) is equal to the p roduc t 
of the ^-matrix elements which are complex ampl i tudes of 
the probabi l i ty of a t ransi t ion between adjacent pa r t s of the 
jth pa th . The n u m b e r of t imes tha t each ^-matrix element 
occurs in Rt(jj) is the same as the number of t imes tha t the 
jth p a t h crosses a given M B node . F o r m u l a (170) states 
tha t the closed j p a th s [ / , / ] , differing in respect of 
cyclic t ranspos i t ion of the te rms in the sequence 
[ / ' , / ' ] , cor respond to the same ampl i tude A^-(L). 
Since there are sequences [ / , / ] , invar iant under the cyclic 
t ranspos i t ion (/' = /), it follows tha t the quant i t ies Rb{rj) 
are the same for all such t ranspos i t ions and tha t formula 
(170) conta ins the n u m b e r of such sequences j t . 

Therefore, the sum 

X)%('l.'2,-,fo) 
h,i2,...,iN > o 

with N vectors L , which give rise to closed orbits , can be 
represented as the sum over j pa ths . It follows from 
formulas (169) and (170) tha t 

P z ) = tfi E T ' j E R b { f j ) c o s f o ' - 7 ) ' 
(171) 

where the scalar p roduc t s of the vectors T'j = Tj and 
j.y = yj give, respectively, the cyclotron per iod and the 
quasiclassical phase acquired by a conduct ion electron on a 
closed orbit when this electron begins its mot ion with one 
spin or ienta t ion and after a t ime Tj r e tu rns to the same 
poin t with the unal tered spin or ienta t ion. 

Summat ion in expression (171) is carried out over all 
possible values of j , which generate closed j pa ths . 
Fo l lowing [6], we shall use the term j orbit for all the j 
p a t h s cor responding to the N vector j . The vector j in 
expression (171) carries informat ion also abou t the or ienta­
t ions of the spin of conduct ion electrons on all possible 
closed orbi ts . 

5.3 Oscil latory part of the thermodynamic potential 
It is well k n o w n tha t in the absence of M B the q u a n t u m 
oscillations of the t h e r m o d y n a m i c quant i t ies with the 
magnet ic field can be expressed in te rms of the oscillatory 
pa r t of the n u m b e r density of states v(E,pz) with given 
values of E and pz. 

The oscil latory par t of the t h e r m o d y n a m i c poten t ia l Q is 
calculated from the number density of states (171) in a 
manne r similar to tha t used in the s tandard derivat ion of 
expressions (161) and (162). Therefore, we shall give directly 
the final expression for Q per uni t vo lume of a meta l 
[67, 102]. It should be stressed, in general, tha t it is no t 
possible to sum explicitly over the spin project ions: 

e ^eUH5'2 

Q = 
2nc% 

X cos 

d 2 S ? 

dpi 

2n2c 

- 1 / 2 -

- E 
RTRb(rj) 

r 5 / 2 
(172) 

cSf(E,Pz) 

eTiH + y) + Aj - 2%y ) ± 

H e r e SJ(E9pz) is the zero-spin area of a closed jth orbi t ; 2ny is 
the cons tan t p h a s e , | which is independen t of M B ; RT is the 
t e m p e r a t u r e factor ident ical with tha t given by formula 
(164a), except for the following subs t i tu t ions tha t represent 
new s u m m a t i o n over all the j orbi ts : 

a^^a^, m^-, —> SJ . (173) 

All the quant i t ies in expressions (172) and (173) 
dependent on E and pz are t aken to cor respond to 
E = 8 F and pz =pZ9 where the index c; labels the extremal 
areas of the j orbi ts . In the case of closed composi te orbi ts 
(for example, orbi ts tha t do no t fit within the first Bril louin 
zone), exactly as in Ref. [6], all the quant i t ies with the index 

j are composi te M B analogues of the cor responding 
semiclassical quant i t ies . In par t icular , yj and Aj are given 
by the relevant sums of the spin cont r ibu t ion (60) and of the 
phase shifts (49) of the wave function of conduct ion 

f The sum of parameters y and Aj give a quantum correction to the \ 
usually employed in the Lifshi tz-Onsager formula [8, 11]. 
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electrons which occur a long the jth orbit under the M B 
condi t ions . 

In the case of the j orbi ts which are in the same zone and 
for which there is no spin flip of conduct ion electrons for 
a ^ 0 (as is t rue , for example, of the t r iangular orbi ts on the 
needles of Zn) , it is possible to sum in expression (172) over 
the spin p ro jec t ions . ! W h e n this is done , the expression for 
Q acquires the s tandard spin factor Rs(j) = cos (nugj), 
where gj is the spin splitting pa ramete r of the jth orbit 
(167) modified by the subst i tu t ions (173). In the case of 
these orbits , expression (172) is identical, apar t from the 
no ta t ion , with the formula for Q derived in Ref. [6]. 
Na tura l ly , in the absence of the SOC and spin flip of 
conduct ion electrons under the M B condi t ions ( a = 0), a 
similar result is obta ined if the spin states are taken into 
account . 

W e shall conclude this section by no t ing tha t expression 
(172) ignores the dissipative processes in the electron 
system. A reduct ion in the oscillation ampl i tude , associated 
with the scat tering of conduct ion electrons, is t aken into 
account by in t roducing the Dingle factor. It is shown in 
Ref. [49] tha t inclusion of the Dingle factor under the M B 
condi t ions gives rise to an addi t iona l factor in expression 
(172) and this factor is similar to tha t given by formula 
(164b). 

5.4 Amplitudes of the de H a a s - van Alphen effect for the 
principal orbits in zinc 
W e have shown in Section 4 tha t the SOC has a significant 
influence on the ga lvanomagnet ic proper t ies of Zn . 
Therefore, it would be of interest to apply the theory 
developed above in order to calculate the absolute values of 
the ampl i tudes of the d H v A effect cont r ibuted by the four 
main orbi ts tha t appear in the central section ( summat ion 
over c; will n o w be ignored) of the hexagona l M B ne twork 
of Zn (Fig. 3b). The M B factor Rb{rj) with r = 1 in 
expression (172) can be calculated by a combina tor ia l 
p rocedure as the sum over j orbi ts . A simple i l lustration of 
this me thod , applied to several orbi ts tha t appear as a 
result of M B in M g , is given in Shoenberg ' s b o o k [8]. F o r 
large values of r such a combina tor ia l calculation of Rb(rj) 
becomes very cumbersome even if the SOC is ignored. It is 
then m o r e convenient to employ the integral representa t ion 
of Rb{rj) [6]. 

In dealing with the influence of the SOC on the 
ampl i tude of the d H v A effect under the M B condi t ions 
from the fundamenta l po in t of view one can use a clearer 
combina tor ia l me thod when r = 1. This makes it possible to 
deduce relatively simply the M B factor Rb{rj) and to carry 
out the summat ion over the spin in expression (172). 

Expression (172) for the first ha rmon ic (r = 1) bu t 
wi thout the Dingle factor gives the magnet ic susceptibility 
of the jth orbi t :} 

dMj _ / e \ 3 / 2 fm\ 1 / 2 kQTFJ 

dH \cn) [mjj H5/2 swh(cijT/H) 

(174) 

f This is true also of closed loops, which may possibly occur in the j orbit 
and which belong to the same band. 
JOn ly the longitudinal component of the magnetic susceptibility 
A M / A H = - ( 8 2 0 / 8 # 2 ) M is considered; here, \ i is the chemical potential 

[see formula (161)]. 
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where Fj is the frequency (163) of the d H v A oscillations for 
the jth orbit and cp is a cons tant (for a fixed field H) phase , 
the value of which is un impor t an t . 

The mass rat io nij/m in the susceptibility (174) follows 
from the factor \d2Sj/dp2\ in expression (172) for circular 
orbi ts and those formed from arcs of a circle (see, for 
example, the results repor ted for M g in Ref. [8], chapter 7), 
which is t rue also of Zn (Fig. 3b). 

The susceptibility expression (174) is derived ignoring 
the difference in respect of the spin§ in all the composi te M B 
quant i t ies [apart from the spin cont r ibu t ion to the phase yj 
and the M B factor Rb(rj), which governs the ampl i tude Q\ 
Moreover , the index j is t reated as a scalar quant i ty , 
i.e. these M B quant i t ies are replaced with their semiclass­
ical analogues . 

The scalar symbol j in expression (174) applies to a set of 
j orbi ts of one type, which enclose the same zero-spin area, 
bu t differ from one another in respect of the spin 
or ienta t ion in at least one of the sections. Par t ia l s u m m a ­
tion over j has to be carried out over sets of such orbi ts and 
this effectively represents spin averaging. 

Since a semiclassical packe t crossing M B nodes splits into 
three [see formula (61)], it follows from the s t ruc ture of the s 
mat r ix (47), where we should subs t i tu te A = 0 [6, 9], t ha t 
Rb(jj) f ° r a closed jth orbi t is given by 

where ny is the n u m b e r of b r e a k d o w n s wi thout spin flip; 
n2j is the number of reflections; n3j is the number of 
b r e a k d o w n s with spin flip on the jth orbi t ; the plus and 
minus signs for each M B n o d e are defined in accordance 
with rule (51). F o r simplicity, we shall assume tha t all M B 
nodes are equivalent . The main difference between the 
above expression and the semiclassical formula (168) 
is — apar t from the difference between the phases discussed 
earlier — the occurrence of b r e a k d o w n s with spin flip. 

The identical M B factors in expression (175) and the 
different signs in front of yj in expression (174) for the phase 
yield, after averaging over spin, a factor Rs(j) = cos (ngj) 
for any pair of two j orbi ts which are of the same type. In 
the final analysis, the field dependence of the ampl i tude 
dM / dH for the jth orbit is governed by the sum over all 
the orbi ts which are of the same type, subject to the 
difference between the spin or ienta t ions , and each term 
in the sum should be multiplied by its own M B factor (175) 
and also by the factor Rs(j) which appears as a result of spin 
averaging. Moreover , some p a t h s are characterised by an 
addi t iona l weighting factor Cp which is related to the 
symmetry and is equal to the number of ways which can 
be used to construct a given orbit j [8, 56]. 

W e shall consider a hexagona l M B ne twork of Zn and 
we shall t ake account of the doubl ing of the number of 
sections because of the SOC (Fig. 3b). As in the case of M g 
[8], we shall identify four main types of orbit (Fig. 14): 0 is 
a giant circular orbit which appears because of M B ; 6 is a 
t r iangular orbit associated with needles; X is a diangular 
orbit combining large sections of the mons te r with small 
sections of the needles; % is a hexagona l orbit associated 
with the mons ter . The cross-sectional area of the mons te r is 
assumed to be negative, i.e. it is assumed tha t a conduct ion 

§This is usually done in the derivation of the formula for Q , because 
g f i B H < f i . 
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electron follows a whole orbit opposi te to the direct ions of 
revolut ion a long electron orbi ts 0 , 6 and L Some of the 
orbit characterist ics are listed in Table 2. 

The circular orbit 0 has twelve M B nodes and it splits into 
six pai rs of large sections and six pai rs of small sections, 
identified by the symbols L (large) and S (small), respectively. 
It is clear tha t the remain ing orbi ts can be composed of L and 
S sections. This splitting makes it possible to determine the 
spin cont r ibu t ions yj of all possible orbi ts shown in Fig. 14 
and to calculate directly the p roduc t of the factors 

CjRh(j)Rs(j) 

by the p rocedure described above. 

(176) 

Figure 14. Principal orbits in the hexagonal M B network of Zn 
calculated taking into account the spin degrees of freedom. The black 
areas are the points of reflection of conduction of electrons from M B 
nodes and the shaded regions are M B positions. The characteristics of 
the orbits of conduction electrons in the absence of spin flip are given 
in Table 2. 

Table 2. Characteristics of the orbits shown in Fig. 14. 

Orbit t^h 
type m 

Weighting N o . of 
factor Cj break­

downs 
n\j + n3j 

N o . of dHvA frequency 
reflections F^/MHz 
n2j 

1 1* 
0.0075 [85] 2 
0.337 [8] 3* 
0.0986 [8] 1 

12 
0 
4 
0 

831.26 [85] 
0.0158 [109] 

47.179 [110] 
543.31 [110] 

* The weighting factor is given for just one orbit (n3j — 0). 

Calcula t ion of the to ta l ampl i tudes (176) for the 
t r iangular and hexagona l orbi ts presents no difficulties 
because there is no spin flip on these orbi ts . F o r exam­
ple, the phases in expression (174) cor responding to such 
orbi ts with opposi te spins are yQ =b 3y s and yx =b 6y L , where 

= 2%Fj/H + cp is the phase acquired by a conduct ion 
electron when spin is ignored (j = 0, x): 7l a n d 7s a r e the 
spin cont r ibu t ions to the phase in the large and small 
sections, respectively. W h e n these phases and the da ta of 
Table 2 are used in spin summat ion , the result is 

Q t f * ( 0 ) ^ ( 0 ) = 2 ( l - w ) c o s ( 3 y s ) , 

CxRb(X)Rs(x) = (l-w)3cos(6yL) 

( 1 1 1 ) 

(178) 

for the t r iangular and hexagona l orbi ts , respectively. 
The to ta l ampl i tude , consisting of the cont r ibu t ions 

described by formula (176), can be determined for the 

diangular orbit X t ak ing account of the spin or ienta t ion in 
each of the sections (Fig. 14). In general , there are five orbit 
pai rs which are of the diangular type. F o r example, the 
mot ion of a conduct ion electron wi thout spin flip cor re ­
sponds to the pair of phases 

y A ± 2 ( y L + 2 y s ) . 

The phase with the plus sign cor responds to the mot ion of 
a conduct ion electron a long external spin-up sections 
wi thout spin flip, whereas the phase with the minus sign 
represents the mot ion of such an electron a long internal 
spin-down sections. F o r this pair expression (176) is of the 
form 

3 ( w ° ) 2 ( l - H > ) c o s [ 2 ( r L + 2 r s ) ] . 

Inclusion of the remain ing orbi ts of this type leads to the 
following to ta l M B ampl i tude , which appears in expression 
(174) and in which the SOC (a ^ 0) and the spin cont r ibu­
t ions of the phase are taken into account : 

x 
: 3 ( w ° ) 2 ( l - w){cos[2(y L + 2 7 s ) ] 

+ 4 a 2 [ c o s ( y L + 2ys) cos(2y s - yL) - 1] (179) 

+ a 4 c o s [ 2 ( 2 y s - y L ) ] } . 

In the case of the circular 0 orbit , if spin flip is t aken 
into account in each 12 M B nodes (Fig. 14), the result is 25 
orbit pa i rs differing in respect of the spin or ienta t ion in the 
large and small sections. Inclusion of the symmetry of these 
orbi ts in this analysis gives 57 p roduc t s described by 
expression (176) with different weighting factors C 0 , 
even powers of the n u m b e r s n 1 0 and n3Q, and combina t ions 
of the phases ys and yL. 

By way of example, we shall show h o w to derive some of 
these p roduc t s . F o r example, in the case of mo t ion of 
conduct ion electrons wi thout spin flip a long the circular 
orbit 0 (Fig. 14), it is found tha t the phases , described by 
expression (174) and cor responding to orbi ts with opposi te 
spins, are 

)>o±rcgo = yQ±6(yL + y s ) , 

where gs

0 is the spin splitting pa ramete r of the circular 
orbit . The pair of phases 

y 0 ± 6 ( 6 y s -2yL) 

cor responds to one pair of orbi ts , which differ symmet­
rically in respect of the spin or ienta t ions . The sign which 
occurs in the phase in front of yL (ys) determines the spin 
or ienta t ion in a large L (or small S) section. It is clear tha t 
the replacement of the up spin ( j ) with the down spin ( j ) 
t ransforms one of these orbi ts into the other . In this case 
we have n3Q = 8. If all possible orbi ts on which a 
conduct ion electron acquires this phase are included, 
spin averaging yields 

1 5 ( w 0 ) 2 ( w s ) 4 c o s ( 2 y s - 6 r L ) . 

Ano the r pair of phases yQ ± 4 ( y s + cor responds to 
two pai rs of orbi ts with different serial n u m b e r s of spin-flip 
b r eakdowns . The spin or ienta t ions in one small and one 
large section are then opposi te to the or ienta t ions in the 
other sections. If all possible orbi ts are included and the 
sequence in which conduct ion electrons cross all M B nodes 
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is t aken into account , spin averaging gives the following 
expression for these orbit pairs : 

- 1 2 ( w 0 ) 5 w s cos[4(y s + y L ) ] , 24w°(w 8 ) 5 cos[4(y s + yL)] 

respectively. 
The cont r ibu t ions of the remain ing orbi ts are found 

similarly. The final expression for the to ta l M B ampl i tude 
of the circular orbit , which appears in expresison (174) after 
spin averaging, is 

^ C 0 R b ( G ) * , ( © ) = ( w 0 ) 6 [cos (6y+) + a 2 Z ( l ) + a 4 Z ( 2 ) 
0 

+ a 6 Z ( 3 ) + a 8 Z ( 4 ) + a 1 0 Z ( 5 ) + a 1 2 cos (6y_)], (180) 

where the following no ta t ion is used to simplify the above 
expression: 

y+ = ys + yh, y- = ys-yh, 

1(1) = 12{cos y_[cos(5y + ) + c os (3y + ) + cos y+] 

- [ c o s ( 4 y + ) + c o s ( 2 y + ) + l ] } , 

1(2) = cos (4y + ) [30cos(2y_) + 24] 

—48 cos y_ [2 c o s (3y + ) + 3 cos y+] 

+ 2 4 cos (2y + ) [2cos (2y_) + 3 ] 

+ 2 7 cos(2y_) + 9 6 , 

1(3) = 18cos(3y + ) [cos(3y_) + 4 cos y_] 

+18cos (3y_ ) [ cos (3y + ) + 4 c o s y+] 

- 3 6 c o s ( 2 y + ) [ 2 c o s ( 2 y _ ) + 3 ] 

- 3 6 c o s ( 2 y _ ) [ 2 c o s ( 2 y + ) + 3 ] 

+288 cos y+ cos y_ + 4 c o s (3y + ) cos(3y_) — 184 , 

Z ( 2 ) - 2 ; ( 4 ) , Z ( l ) - 2 ; ( 5 ) 

in the subst i tut ion y+ —> y_, y_ —> y+. 
In de terminat ion of the spin correct ions yL and ys it is 

na tu r a l to assume tha t the cyclotron mass m 0 and the g 
factor gQ of the circular orbit 0 are equal to the mass m and 
to the g factor g = 2 of a free electron, since this orbit 
cor responds to a section of the F e r m i sphere in the mode l of 
almost-free electrons. The spin splitting pa ramete r for the 
circular orbit is then uni ty, i.e. 6(yL + ys) = K. In our 
analysis of the ga lvanomagnet ic proper t ies of Zn (Section 
4.4) we derived the spin splitting pa ramete r gs

e for a needle, 
which is 0.41 [see formula (160) and Table 1]. If the spin 
cont r ibut ion 3y s in expression (177) for a t r iangular orbit is 
ngQ, we obta in 

y s = * g e , r L = f ( l - 2 ^ ) . (181) 

Subs t i tu t ionofexpress ions(181) in toformulas(176)- (180) 
and subst i tut ion of the cyclotron masses and d H v A 
frequencies listed in Table 2, as well as of the pa rame te r s 
HQ = 3.0 kG and a = 0.75 from Table 1, gives the resul tant 
oscillation ampl i tudes dMj/dH for each orbit . Fig. 15 
shows field dependences of the ampl i tudes \dMj/dH\ 
calculated for the four orbi ts discussed above. The t em­
pera tu re factor RT, where it is assumed tha t T = 1 K, is 
included to ensure a closer app roach to reality. 

l o g | d M / d # | 
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o.io - ; \ a = °> s s = 0 
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Figure 15. Magnetic-field dependences of the dHvA amplitudes 
obtained at 1 K for the principal orbits in Zn in the presence 
(continuous curves) and absence (dashed curves) of the spin degrees of 
freedom: (a) logarithmic field dependence for all types of orbits; (b) 
dependence for a circular orbit; (c) dependence for a triangular orbit. 
The graphs are plotted ignoring the Dingle factor. The parameters 
used in the calculation of the curves are listed in Tables 1 and 2. 

As in the case of the theory of M B wi thout spin flip, 
developed for M g [8, 56], an increase in the field reduces the 
oscillations of the % and 9 orbi ts , so tha t the oscillations of 
the composi te 0 and X orbi ts become dominan t as the role 
of M B increases. Inclusion of the spin degrees of freedom of 
conduct ion electrons and of the SOC reduces significantly 
the ampl i tudes of the d H v A oscillations for all the orbi ts 
except for the circular one. This is due to the fact tha t the 
orbit 0 crosses a large number of M B nodes and at each 
M B node we can expect spin flip of conduct ion electrons. 
This increases the number of possible pa th s each of which is 
determined by its own M B ampl i tude . 
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It therefore follows tha t the probabi l i ty of finding 
conduct ion electrons of the opposi te spins on this orbit 
increases. This probabi l i ty depends in a complex manne r 
[see expression (180)] on the SOC pa ramete r a and on the g 
factors of different sections. 

The behaviour of the oscillations associated with the 6 
orbit , which passes a long a needle in Zn , has been used as 
one of the early proofs of the existence of M B [3, 4]. If spin 
is included, the m a x i m u m ampl i tude (Fig. 15c) is m o r e t han 
halved. The appearance of the factor Rs = cosfngl) in 
expression (174) does indeed account satisfactorily for 
the experi-mental ly observed [105] s t rong dependence of 
the ampl i tude of the d H v A oscillations on the g factor of 
the needles. 

W e can summar ise by saying tha t , in general , M B 
ampl i tudes depend in a complex manne r on the SOC 
pa ramete r a and on the g factor. 

5.5. Oscillations of the de H a a s - v a n Alphen effect 
in the case of magnetic breakdown and spin splitting 
of the Landau levels at 'needles' in zinc 
It would be of interest to subst i tute the characterist ics of an 
M B system (in par t icular , the pa rame te r s of the needles), 
obta ined by compar ing the theoret ical and exper imental 
ga lvanomagnet ic proper t ies of Zn (Section 4.4), in the 
theoret ical expressions for the d H v A effect and to compare 
them with the familiar exper imental results. W e are aware 
of just one investigation in which the spin splitting of the 
energy levels in a magnet ic field under the M B condi t ions 
has been detected in the d H v A oscillations represent ing the 
needles in Zn at T = 1.2 K [105]. 

This compar i son of the theory and experiment is m o r e 
of illustrative na tu re , because in this case of a t r iangular 
orbit the SOC does not p lay such an impor t an t role as in the 
case of diangular or circular orbi ts , because there is no 
conduct ion-elect ron spin flip dur ing mot ion a long these 
orbi ts . Fig . 16a give the exper imental dependence of the 
second derivative of the magnet i sa t ion with respect to the 
magnet ic field. 

General isa t ion of the theory of the d H v A effect under 
the M B condi t ions to include the SOC, which is done in the 
preceding section, makes it possible to determine 
d2M(H, T)/dH2 for the t r iangular 9 orbit of Zn (Figs 
3b and 14) in a m o r e consistent m a n n e r t han is done in 
Ref. [105]. The field derivative of expression (174) con ta in ­
ing the Dingle factor yields [67] 

d2Me(H, T) _ ( e \ 3 / 2 / 

d2M/dH2 

dH2 

1 / 2 4nkQTF3

e 

x sm 
2TZFq 

r\—^- + 3A-2%y 

where x D is the Dingle t empera tu re [see formula (164b); 3A 
is the sum of the phase shifts cont r ibuted by three M B 
nodes [formulas (49)]; ^ i s defined by expression (165) 
subject to subst i tu t ions (173); g | = 0.41 (Table 1). The 
other pa rame te r s which occur in expression (182) have the 
values used in p lo t t ing the g raphs in Figs. 12, 13, and 15 
(H0 = 3 k G , Qi = 0.75, Fe = 15.8 k G ) . 

The theoret ical curve obta ined for T = 1.2 K, assuming 
tha t the Dingle t empera tu re is x D = 1.5 [105] and tha t 

H/kG 

Figure 16. Oscillations of d2M/dH2 for needles of Zn at T = 1.2 K. 
The experimental (a) and theoretical (b) curves are reproduced from 
Ref. [105]. The values of the parameters used in the calculation of 
curve (c) are given in the text. 

y = 0.21, is p lo t ted in Fig. 16c. It is quite clear from Figs 16a 
and 16c tha t the theoret ical and exper imental curves behave 
in the same way, tha t the frequency dependences are the 
same, and tha t b o t h curves include strongly split peaks . W e 
are of the opinion tha t this is evidence of a qual i ta t ive 
agreement between the results, suppor t ing further the 
est imates obta ined in Section 4. 

Since there is no spin of conduct ion electrons dur ing 
their mo t ion a long a t r iangular orbit , the curve in Fig. 16c 
does not differ significantly from the theoret ical curve in 
Fig. 16b, which is t aken from Ref. [105]. However , there is 
an impor t an t difference between the approaches used there 
and here: the results of Ref. [67] are derived consistently 
from the M B theory which takes into account the spin 
degrees of freedom from the microscopic po in t of view (this 
applies in par t icular to ys and a ) [9], whereas in Ref. [105] 
the phenomenolog ica l pa ramete r s , describing the spin 
splitting of the peaks , are found by fitting the theoret ical 
curve to the exper imental results. O'Sull ivan and Schirber 
[105] were forced to use the characteris t ic b r e a k d o w n field 
HQ = 5 kG in order to achieve a better agreement with the 
exper imental results. However , this value differs from 
H0 W 3 kG found from other exper iments [5, 8]. In our 
analysis [67] we used the pa rame te r s (dHvA frequency, / / 0 , 
a, and the g factor of conduct ion electrons on a needle) 
deduced by an independent me thod in Ref. [66] from the 
ga lvanomagnet ic proper t ies of Zn , which were in good 
agreement with the publ ished da ta . 

It should also be noted tha t the phase in the expression 
(182) includes the quan t i ty A [formula (49)], which depends 
in a complex manne r on the field H and on the b r e a k d o w n 
field H0 renormal ised by the SOC. The M B shift of the 
phase A follows from the solution of the q u a n t u m 
Schrodinger equat ion in the M B regions and this shift 
depends strongly on the rat io H0/H. In our case the value 
of 3A ranges from - 0 . 4 9 for H = 1.61 kG to - 1 . 0 2 for 
H = 4 kG when the SOC pa ramete r is a = 0.75. Only the 



Magnetic breakdown with spin flip 79 

cons tant phase shift 2ny is considered by O'Sull ivan and 
Schirber [105]; the pa rame te r y should then assume one of 
two values (0.32 or 0.82) in order to describe the posi t ions 
of the spin-split peaks . 

W h e n this difference between the phases is included, we 
find tha t the dips between the peaks , which cor respond to 
different spin states, are less p r o n o u n c e d (Fig. 16c) t han 
those predicted by the old theory (Fig. 16b), which in our 
opinion agrees bet ter with the experiments (Fig. 16a). 
However , as in Ref. [105], there remains a fairly large 
dis-crepancy between the experiment and theory in the 
posi t ion of the m a x i m u m of the oscillation ampl i tude , 
which in the case of the theoret ical curve is shifted t owards 
weaker fields: 

ff££r = 0.75 < fffX « 2.2 k G . 

Unfor tuna te ly , we were unab le to compare the ampl i ­
tude characterist ics m o r e r igorously, since the exper imental 
results were plot ted in a rb i ta ry uni ts and we did no t k n o w 
at wha t intervals of the field H the measurements were 
made . 

The discrepancies between our theory (describing the 
d H v A effect under the M B condi t ions , t ak ing account of 
the SOC) and exper iments m a y also be related to such 
p h e n o m e n a as the magnet ic interact ion or m a y be asso­
ciated with the inhomogenei t ies of a sample ignored in the 
theory. The inhomogenei t ies m a y lead, as poin ted out 
earlier, to an increase in the role of low-angle scattering 
in the course of mo t ion of conduct ion electrons a long a 
small t r iangular orbit , par t ia l loss of coherence, and 
consequent smooth ing out of the oscillation peaks . 

6. Influence of magnetic breakdown on 
conduction-electron spin resonance in pure 
metals (Zn and Mg) 
In the preceding sections we have considered the 
p h e n o m e n a associated with the orbi ta l mo t ion of conduc ­
t ion electrons under the M B condi t ions . W e demons t ra ted 
tha t the spin of conduct ion electrons and the SOC alter 
considerably the main dynamic characterist ic of M B , which 
is the s matr ix , and complicate considerably the spectrum 
of conduct ion electrons under the M B condi t ions including 
a change in the electron g factor. 

In this connect ion it would undoub ted ly be of interest to 
consider the influence of M B on such purely spin p h e n o m ­
ena as conduct ion electron-spin resonance [98, 99, 111, 112]. 
This resonance was first studied experimental ly by Stesmans 
and Wit ters [16]: they explained the low intensity of the 
resonance signal obta ined for Zn by the occurrence of M B . 
Theoret ical est imates of the influence of stochastic M B on 
conduct ion-elect ron spin resonance in Zn and M g were 
given in Refs [17, 68]. 

Before discussing this resonance under the M B condi ­
t ions, it is useful to consider quali tat ively the influence of 
the F e r m i surface an iso t ropy on the main characterist ics of 
the resonance. 

6.1 Conduction-electron spin resonance in metals 
with a complex Fermi surface. 'Motional narrowing' 
The first theory of conduct ion-elect ron spin resonance in 
metals was pu t forward by Dyson [98], who took account 
of the diffusion of conduct ion electrons out of a skin layer 
on the basis of a mode l of quasifree electrons, i.e. by 

regarding these electrons as a gas of nonin te rac t ing 
quasipart icles with the dispersion law 

where m* is the effective mass of conduct ion electrons. 
D y s o n ' s theory is in good agreement with the exper imental 
results, par t icular ly those obta ined for alkali metals (see, for 
example, Refs [111, 112]). 

However , as is well known , the major i ty of metals have 
anisot ropic and very complex F e r m i surfaces [11, 12, 90]. 
These are the metals tha t have been investigated intensively 
in the last 2 0 - 2 5 years by the m e t h o d s of conduc t ion-
electron spin resonance . The specific dependences of the 
signal intensity, and of the width , profile, and posi t ion of a 
resonance line on the frequency and t empera tu re do not fit 
the f ramework of D y s o n ' s theory. 

The influence of mo t ion of conduct ion electrons with 
an arbitrary dispersion law on the conduct ion-elect ron spin 
resonance spectrum of metals was first considered by 
I M Lifshitz and his colleagues [99, 1 1 3 - 1 1 5 ] . They devel­
oped a theory of this resonance on the basis of the solution 
of the t r anspor t equat ion for the density opera tors . They 
demons t ra ted tha t this affects the results only quant i ta t ively 
(with the exception of one special c a s e | ) : the change from 
one dispersion law to ano ther alters only slightly a 
numer ica l factor represent ing the dimensionless c o m p o ­
nent of the velocity of conduct ion electrons on the 
F e r m i surface a long a static magnet ic field [113]. 

The resonance in quest ion is therefore an integral effect. 
There are no special F e r m i surface sections, belts, or po in t s 
with 'effective' conduct ion electrons. The cont r ibut ion to 
the resonant absorp t ion is m a d e by all the conduct ion 
electrons which are near the F e r m i surface ( A e < ^ e F : the 
definition of As is given in the footnote discussing the 
diffusion of conduct ion electrons). 

The g factor of conduct ion electrons and the spin 
relaxat ion t ime T s are regarded as pa rame te r s in Refs [98, 
99, 1 1 3 - 1 1 5 ] . Therefore, there is only one way of t ak ing into 
account the influence of the F e r m i surface an iso t ropy on 
conduct ion-elect ron spin resonance; it is related to identifying 
the g factor and the lifetime of the spin state of each 
conduct ion electron, b o t h of which depend on the posi t ion 
of the F e r m i surface: g(p) and Ts(p). The dependence on the 
q u a s i m o m e n t u m of conduct ion electrons appears as the 
result of influence of the SOC, which couples the orbi ta l 
mo t ion and the spin degrees of freedom of conduct ion 
electrons, manifested directly in conduct ion-elect ron spin 
resonance (see Section 2.1). 

f If the applied magnetic field is sufficiently strong (CDCT* > 1, where x* is 
the mean free time of conduction electrons), the coefficients representing 
the diffusion of conduction electrons along and across the field are 
different. The transverse diffusion length decreases with the mean free 
path until it becomes equal to the cyclotron orbit radius [11-13] (see also 
Section 4.3). Only the diffusion perpendicular to the face of a sample is 
effective in conduction-electron spin resonance. Therefore, if in the 
interval As ^ max{kBT, gfiBH} (T is the absolute temperature) near s F 

there are only open constant-energy surfaces of conduction electrons and 
their open directions are perpendicular to the boundary of a sample, a 
change in the magnetic field direction does not alter the effective 
coefficient of diffusion in such a metal [114] (see also [111]). However, 
this combination of conditions is not encountered in any of the metals in 
which conduction-electron spin resonance has been observed! 
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The difference Ag(p) = g(p) — go (see Section 2.3) and 
the lifetime Ts(p) (see, for example, Ref. [10]) depend on the 
rat io of the SOC energy to the energy pa rame te r s of the 
b a n d s t ructure of a specific metal , and they vary from one 
poin t on the F e r m i surface to another . Fo l lowing the 
major i ty of the previous t rea tments , we shall discuss 
quali tat ively the influence of the anisot ropic (dependent 
on p) g factor of conduct ion electrons on the investigated 
resonance and we shall regard T s as cons tant for all the 
conduct ion electrons on the F e r m i surface (see, however , 
Refs [116, 117]). 

A c o m m o n feature of all the exper iments on spin 
resonance is the presence of a static magnet ic field / / , 
which splits the spin levels of each conduct ion electron by 
g(p)fiBH, and of a weak a l ternat ing field / / , which is 
perpendicular to H (H <^ H). Then the field H induces 
t rans i t ions between the spin levels of conduct ion electrons 
when a q u a n t u m Hco of the a l ternat ing field is equal to the 
Zeeman splitting: Hco = g(p)fiQH. W h e n this condi t ion is 
satisfied by the major i ty of conduct ion electrons, i.e. w h e n | 

hcos = (g(p))fiBH, (184) 

the absorp t ion of the microwave power of the field H 
increases strongly (this h a p p e n s in wha t are k n o w n as the 
reflection experiments) . 

Ano the r me thod for the observat ion of conduc t ion-
electron spin resonance in metals ( t ransmission experiments 
[112]) is based on selective t r ansparency of meta l plates, 
predicted theoretical ly a long t ime ago [99, 113, 115]. This 
p h e n o m e n o n occurs because the spin diffusion length (5S, 
t raversed by a conduct ion electron wi thout spin flip, is 
usual ly much greater t h a n the depth of the skin layer 3. In 
fact, since the spin relaxat ion t ime T s is pract ical ly always 
much longer t han the mean free t ime T* of conduct ion 
electrons, it follows tha t 

5S ~ ( D t , ) ' / 2 ~ ( v g r ' T , ) 1 ' 2 ~ / ^ > 3, (185) 

where v 0 is a typical velocity of conduct ion electrons; / is 
the mean free p a t h of these electrons; D ~ VQT* is the 
diffusion coefficient (when the field H is perpendicular to 
the b o u n d a r y ) . 

In the t ransmiss ion exper iments the microwave power of 
the field is applied to one side of a sample and the induced 
t ransverse magnet i sa t ion is measured on the other side. The 
thickness of the sample d should be less t han 3S. U n d e r 
resonance condi t ions the microwave field creates a n o n -
equil ibrium magnet i sa t ion of conduct ion electrons in the 
skin layer. These electrons diffuse across the sample and 
t r anspor t the magnet i sa t ion to the other side of the sample 
where the power stored in the spins of conduct ion electrons 
in the skin layer is emitted as rad ia t ion (for details see Refs 
[112, 118]). 

W e shall n o w consider the relat ionship between the 
dis t r ibut ion of g(p) on the F e r m i surface and the observed 
characterist ics of conduct ion-elect ron spin resonance . W e 
shall consider par t icular ly the relat ionship between this 
dis t r ibut ion and the exper imental g factor g e x p , deduced 
from the posi t ion of the centre of the resonance line, and 
also the relat ionship with the profile and width of this line. 
W e shall find the cont r ibut ion of the g-factor an i so t ropy 

fHere , (...) = (2/v) JFS... dS/v(p) represents averaging over the Fermi 
surface [11, 12] and v = §FSdS/v is the number density of states on this 
surface. 

ignoring the factors which reduce the spin lifetime T s because 
of the scat tering of conduct ion electrons by p h o n o n s , 
boundar ies , other electrons, impuri t ies , dislocations, and 
var ious inhomogenei t ies (for details see Ref. [88]) and which 
lead to the h o m o g e n e o u s width of the resonance line. 

The simplest in terpre ta t ion of the observed line width is 
as follows. Conduc t ion electrons with different q u a s i m o -
men ta (and g factors) resonate in different fields. H a d this 
been possible, an experiment would have revealed a spin 
resonance line whose inhomogeneous width represents the 
real scatter of the electron g factor over the F e r m i surface 
(cont inuous curve in Fig. 17), given by 

Aco(, W i cigfiQH . (186) 

Here , ag = ([g(p) — (g(p)}]2}1^2 is the rms deviat ion of the g 
factor varying over the F e r m i surface and Acog is the width 
of a spin resonance line cont r ibuted by the gth factor 
an iso t ropy. 

In fact, such an inhomogeneous ly b roadened line is no t 
observed because conduct ion electrons do no t s tand still on 
the F e r m i surface. In a magnet ic field a conduct ion electron 
moves a long the F e r m i surface either a long orbi ts described 
by expression (8) (cocz* > 1, which is obeyed in s t rong fields 
at low tempera tu res and by pu re metals) or they diffuse 
because of var ious types of scattering (COCT* <̂  1; the range 
in which such scattering p redomina te s will be called 
arbi trar i ly the ' h igh- tempera tu re ' range) . This topic is 
discussed in Refs [88, 97]. In the latter case the influence 
of the applied magnet ic field on the mo t ion of conduct ion 
electrons over the F e r m i surface is essentially negligible [12]. 

At 'high t empera tu re s ' a conduct ion electron visits m a n y 
po in t s on the F e r m i surface in the t ime T S (T S > T). These 
po in t s are characterised by different values of g(p) and, 
consequently, by different resonance fields H ( spec t rom­
eters for the investigation of conduct ion-elect ron spin 
resonance opera te at a fixed frequency co). Consequent ly , 
conduct ion electrons 'feel' a certain average field, the 
resonance line becomes nar rower , and the cont r ibut ion 
of the g-factor an i so t ropy to the observed line width is 
then [10] 

1 

COS CO 

Figure 17. Schematic representation of the absorption spectrum in the 
case of conduction-electron spin resonance [79]. The continuous curve 
corresponds to a hypothetical g distribution and the dashed curve 
represents a resonance signal which is motionally narrowed. 
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ACQ ~ (ACQ,,) T ~ — ^ cos T (187) 

where the resonance frequency cos [see formula (184)] 
determines the posi t ion of the resonance line. 

This effect has been unde r s tood and explained first in 
the case of nuclear magnet ic resonance in l iquids and it has 
been called 'mot iona l n a r r o w i n g ' [119]. Therefore, at 'high 
t empera tu re s ' one n a r r o w spin resonance l i n e | is observed 
for meta ls with the g-factor an iso t ropy. The width of this 
line is ACQ and it is centred at the frequency cos de termined 
by the weighted average over the dis t r ibut ion of the g 
factors over the F e r m i surface (dashed curve in Fig. 17). It 
should be poin ted out tha t g e x p = (g), and tha t ACQ in 
formula (187) depends on the square of the frequency at 
which the experiment is carried out . 

Cool ing increases the m o m e n t u m relaxat ion t ime T* of 
conduct ion electrons when a meta l is sufficiently pure . 
Consequent ly , cooling also increases the cont r ibut ion 
m a d e to the line width by the na r rowing mechanism 
described by formula (187). This increase cont inues unt i l 
H /T* becomes of the order of crgfiBH. At this stage one can 
expect complete d i sappearance of mo t iona l na r rowing of 
the line [120]. However , mo t ion of conduct ion electrons 
a long cyclotron orbi ts begins earlier, before the scattering 
electrons m a n a g e to complete several revolut ions a r o u n d 
the F e r m i surface (in this case we have hcoc ^ H/T*). The g 
factor is then first averaged a long the cyclotron orbi ts . 

In the case of each orbit represented by its own value of 
pz the change in the g factor is [79, 81] 

te(p)>8 
(188) A g f e ) = (g<J>))Pz=C0 

which reduces significantly the rms scatter crg of the g 
factor and we then have (\Ag{pz)]2)1^2. F o r example, in the 
case of Al the averaging by the diffusion of conduct ion 
electrons gives crg = 0.469 and the initial averaging over the 
cyclotron orbi ts gives crg = 0.67 [81]. In the in termedia te 
case (COCT* ~ 1) the averaging p rocedure is highly specific 
[81, 82] and it is associated with the mixed na tu re of the 
mo t ion of conduct ion electrons in a magnet ic field (this 
po in t is discussed later). 

It should also be po in ted out tha t the existence of the 
scatter of the g factors of conduct ion electrons on the F e r m i 
surface gives rise to a pa rame te r of the t ransmiss ion 
resonance: this pa rame te r has the dimensions of length 
and it limits the depth of pene t ra t ion of the nonequi l ib r ium 
magnet i sa t ion [118]. The pa ramete r 3C represents the 
distance to which the spins of conduct ion electrons diffuse 
wi thout loss of coherence: 

(189) 
° (A«>g)2' 

In this case the p ropaga t i on of a signal across a meta l p la te 
is limited by the shorter of the two characterist ic lengths 3S 

and 3C. It should be noted tha t if crg —> 0, then 3C —> oo and 
the results of Ref. [118] are identical with the conclusions 
reached in Refs [99, 113]. 

It therefore follows tha t g e x p is ob ta ined from the 
dis tr ibuted g(p) by averaging over the whole F e r m i sur­
face. However , the averaging p rocedure varies 
somewhat depending on the na tu re of the mo t ion of 

conduct ion electrons on the F e r m i surface. There is a 
change also in the impor t an t pa ramete r ag, which repre ­
sents the rms scatter of the g factor. In contras t to 
conduct ion-elect ron spin resonance, the d H v A effect can 
be used to find the g factors of the extremal orbi ts (see 
Section 5) and, consequently, gexp = g(pz) from the 
exper imental results; here £ is the serial n u m b e r of the 
extremal section. 

6.2 Models of the Fermi surface with g anisotropy 
In calculation of the g factor of conduct ion electrons in 
metals it is na tu ra l to use the real F e r m i surface and the 
real b a n d s t ructure of a meta l . However , we shall consider 
here the mode l F e r m i surfaces used in the theory of 
conduci ton-elect ron spin resonance . The simplest model , 
frequently used for calculat ions based on this theory [11, 
98, 1 1 1 - 1 1 2 ] , is tha t of an electron gas described by 
expression (183) characterised by g(p) w g0 . In this case 
the F e r m i surface is a sphere. The mode l agrees best with 
experiments carried out on univalent metals . Calcula t ions 
have shown (see Ref. [121]) tha t in the case of alkali metals 
we have |Ag(p)| < 0.1, and the exper imental value A g e x p 

varies from 10~ 5 (for Li) to 10~ 2 (for Cs, which is the alkali 
meta l with the strongest SOC) [122]. 

In the case of polyvalent metals the mode l F e r m i surface 
can also be a sphere. (This sphere can be used to plot the 
F e r m i surface of a meta l in the approx ima t ion of a lmost -
free electrons [92)]. The g factor of conduct ion electrons, 
dependent on /?, is dis tr ibuted on the sphere and the sphere 
extends over several Brillouin zones, the spherical mode l 
has been applied most frequently to Al. This mode l of the 
F e r m i surface with a hypothet ica l dis t r ibut ion of the g 
factor has been found to account for the increase in the 
width and for the shift of a resonance line as the frequency 
co is increased in the case of Al, Cu, and Ag: these effects are 
a t t r ibuted to the s imul taneous influence of the g-factor 
an i so t ropy and of the Fermi- l iquid interact ion (first 
experiments were repor ted in Ref. [123] and the theory 
was given in Ref. [79]). This has m a d e it possible to find the 
value of the spin pa ramete r B0 of the Fermi- l iquid inter­
action from the shift of the resonance line in the case of Al. 

The spherical mode l has been developed further by 
including the results of a calculat ion of the g factors of 
conduct ion electrons in Al repor ted in [81]. It ha s been 
found tha t in the second and thi rd Brillouin zones near 24 
W po in t s} the g factor of conduct ion electrons g(p) can 
reach values of the order of h u n d r e d s [in this case the 
energy gap A(p) is small near the W points!] . This 
c i rcumstance is t aken into account as follows [82]. There 
are 48 (24 x 2) small regions scattered over the F e r m i 
surface and they cor respond to the vicinities of the real 
W poin ts . Each such region is characterised by a large and 
constant shift of the g factor \Agw \ ~ 10 3 , and the average 
over the F e r m i surface is (§gw(p)) = 0. Outs ide these 
regions we have Ag = 0. This simple mode l can account by 
the 'mot iona l n a r r o w i n g ' for the linear frequency depend­
ence of the width of a spin resonance line at m o d e r a t e 
t empera tu res (COCT* ~ 1). 

As a rule, the F e r m i surface of polyvalent metals 
consists of several disconnected sheets, which are located 

f i n the case of thin samples, of thickness d <̂  Ss, the profile of the spin 
resonance line of conduction electrons is Lorentzian, but for thick 
samples the line has the Dyson profile [118]. 

J Aluminium is an hep metal and its Brillouin zone is a cubo-octahedron. 
The W points are located at the intersections of this zone with 
quadrilateral and hexagonal faces [90]. 
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in different zones. If we assume tha t small-angle scattering 
of conduct ion electrons p redomina tes , we find tha t this 
leads to the establ ishment of an equil ibr ium on each F e r m i 
surface sheet separately. This happens if the characteris t ic 
t ime of the scat tering of conduct ion electrons, which is no t 
accompanied by the transfer of the electrons from one sheet 
to the other , is less t han the characterist ic intersheet 
scattering t ime. U n d e r these condi t ions it is useful to 
employ a mode l of a meta l pos tu la t ing the existence of 
several conduct ion electron groups . 

Each group can be assigned its own average charac ter ­
istics such as the g factor (gt), the spin and m o m e n t u m 
( T ^ ) re laxat ion t imes, etc., depending on the complexity of 
the model . F o r example, such a mode l has been p roposed 
for Al [77] and the coupl ing between the conduct ion 
electrons belonging to the different g roups is provided 
by three mechanisms: in tergroup scattering of conduct ion 
electrons at a frequency I / T ^ , exchange interact ion, and 
diffuse reflection of conduct ion electrons at a b o u n d a r y . It 
should be no ted tha t experiments [16] on conduc t ion-
electron spin resonance in Zn have revealed a possible 
coupl ing between such groups by M B . 

The p roposed mode l predicts changes in the observed g 
factor as a result of cooling because of reduct ion of the 
coupl ing between two g roups of spins, and also because of 
the absence of the Fermi- l iquid interact ion (discussed 
above) . In the limit of low tempera tu res a spin resonance 
line can have a s t ructure because of the difference between 
the g factors of two conduct ion-elect ron groups . (This has 
p robab ly been observed in the experiments on M g [16, 124]; 
see below.) Moreover , it has been shown tha t diffuse 
(mult ichannel) reflection from a b o u n d a r y wi thout spin 
flip influences the spectrum even in the case of relatively 
thick samples: it t ransfers spin excitation from a weakly 
damped m o d e (when agi is small) to a s trongly d a m p e d 
m o d e (large agi). 

In concluding this section we no te tha t a t t empts have 
been m a d e [75, 76] to utilise the real s t ructure of the F e r m i 
surface of A g and Cu in a qual i tat ive explanat ion of the 
angular dependences of the spin resonance spectrum. A 
quant i ta t ive analysis can be found in Ref. [125]. The real 
F e r m i surface has also been used in considering conduc t ion-
electron spin resonance in Refs [16, 81, 126, 127]. 

6.3 Discussion of the model. The Hamiltonian 
of the problem 
A m o n g all the metals tha t have an anisot ropic and complex 
F e r m i surface and which exhibit conduct ion-elect ron spin 
resonance , the proper t ies of Zn and M g are best suited to 
the s tudy of the influence of M B on this resonance . This is 
due to the fairly low b r e a k d o w n fields of these metals . The 
exper imental est imates for Zn gives values of H0 r ang ing 
from 2.7 kG [5] to 3.5 kG [106] (in Section 4 we gave 3.0 kG 
for Zn) ; the cor responding value for M g is 5.85 kG [5]. 
Magne t i c fields used in studies of this resonance are limited 
to the range H ^ 10 k G , since only a certain range of 
frequencies (v < 1 0 1 0 Hz) is technically a t ta inable in the 
existing spectrometers [16, 111]. 

Bo th Zn and M g are divalent meta ls with the hep lattice. 
In the system of double b a n d s typical of these metals , the 
Bril louin zone represents a straight hexagona l pr ism. These 
two metals have complex F e r m i surfaces consisting of 
unconnec ted sheets. The par t of the F e r m i surface impor ­
tan t in our discussion is shown in Fig. 3a. 

The appl icat ion of a sufficiently s t rong magnet ic field 
directed a long the sixfold axis gives rise to M B which 
couples conduct ion electrons in the mons te r and cigars. The 
role played by M B in conduct ion-elect ron spin resonance 
can be m a d e clear on the basis of a simple mode l pos tu la t ing 
p redominance of small-angle scattering of conduct ion 
electrons and establ ishment of an equil ibrium within each 
F e r m i surface sheet: M B is m a d e stochastic by this 
scattering. Such s t rong small-angle scat tering m a y be on 
the rmal p h o n o n s since the t empera tu res at which the 
resonance is observed in these metals are fairly high: 
T = 40 K for M g [16]. Therefore, three g roups of conduc ­
t ion electrons with pa rame te r s averaged in each group are 
present . Each group has its own g factor and these factors 
are not in general equal . 

In the adop ted mode l in the absence of M B each group 
of conduct ion electrons should give rise to its own 
resonance line, provided this is possible, and each group 
should have its own line width , inversely p ropo r t i ona l to the 
group re laxat ion t ime of the t ransverse magnet i sa t ion . The 
line intensity should depend on the n u m b e r of conduct ion 
electrons on the relevant sheets: the strongest signal should 
come from the conduct ion electrons on the large monster , a 
weak signal is expected from the electrons on a lens, and a 
practical ly undetec table signal should originate from the 
cigars. M B should result in exchange of conduct ion 
electrons and, consequently, it should alter the magne t i sa ­
t ion and b r o a d e n the resonance lines of two electron 
groups : those belonging to the mons te r and the cigars. 
F o r simplicity, we shall assume tha t M B acts independent ly 
of all the factors tha t might b r o a d e n and shift the resonance 
line and, therefore, it makes an addit ive cont r ibu t ion to the 
to ta l line width . This assumpt ion will m a k e possible to 
ignore, in our subsequent calculat ions, all possible mech­
anisms of b roaden ing of the resonance line, apar t from tha t 
under considerat ion. 

W e should bear in mind tha t in the adop ted mode l the 
approx ima t ion of ' i n s t an taneous ' es tabl ishment of an 
in t ragroup equil ibr ium is fairly rough and it is most likely 
to overest imate somewhat the cont r ibu t ion of M B to the 
resonance line width . 

Since in our mode l the conduct ion-elect ron lenses 
interact with external magnet ic fields independent ly of 
the other electron groups , the mode l Hami l ton ian of two 
coupled electron g roups subjected to an external static field 
H\\Oz and to an a l ternat ing field H (H <̂  H\ perpendicular 
to the static field, is [17]: 

H = H0(t)+HMB, H0(t)=Hkm+Hz(t). (190) 

H e r e 

# k i n = ^ iSn(p) -S¥]^n,P,^n,p,a (191) 

is the kinetic energy opera tor ; 

Hz(t)=Hz(t)+H'z(t) 

(192) 

= -H{MX + M2)-H(t)- {Mi +M2) 

is the Zeeman Hami l t on i an ; H(t) varies at a frequency co; 

Pi ai d 
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is the opera to r of project ion of the magnet ic m o m e n t of the 
nth g roup of conduct ion electrons ( a = x,y,z identifies the 
componen t ) ; 

(194) 

is the tunnel l ing Hami l t on i an of M B . 
Here , n = 1 and 2 for the mons te r and cigars (needles), 

respectively; a\pa and alpa are the creat ion and annihi la t ion 
opera to r s for conduct ion electrons belonging to the nth 
group ; p and q describe the q u a s i m o m e n t u m spaces of the 
b a n d s 1 - 2 and 3 - 4 , respectively; a*ai are the Paul i mat r ix 
elements; V™ is the tunnel l ing pa ramete r selected so tha t 
the tunnel l ing probabil i t ies , p ropo r t i ona l to \V\l | 2 , are 
equal to the cor responding M B probabi l i t ies w° and w s 

[see expression (52)]; {p0} and {q0} are the M B regions on 
the mons te r and cigars (needles), respectively. 

The ra tes of re laxat ion of the t ransverse magnet i sa t ion 
of the mons te r conduct ion electrons have been calculated by 
the nonequi l ibr ium density mat r ix m e t h o d s [128]. In 
accordance with the adop ted model , it has been assumed 
tha t their resonance is far from sa tura t ion and the 
t empera tu res of the kinetic (Hkin) and Zeeman (Hz) 
' b a t h s ' have been selected to be equal to the the rmos ta t 
t empera tu re T, which cor responds to the ' i n s t an taneous ' 
es tabl ishment of an equil ibr ium in each of the conduct ion 
electron groups . A nonequi l ib r ium state then appears as a 
result of the absorp t ion of energy from the a l ternat ing field 
by the conduct ion electron spins. 

6.4 Discussion of the experiments and evaluation 
of the theoretical results 
Calcula t ions which are s tandard in the nonequi l ibr ium 
density mat r ix m e t h o d [128] have been used to show [17] 
tha t the cont r ibu t ion of M B to the line width of 
conduct ion-elect ron spin resonance is p ropo r t i ona l to the 
M B probabil i t ies . The probabi l i t ies are k n o w n to depend 
on the law of inclination of the magnet ic field [see 
expression (50)]. (Exper imenta l da ta on the dependence 
of the b r e a k d o w n field on the angle 9 between the field H 
and the sixfold crystal lographic axis c are repor ted for M g 
in Ref. [91] and for Zn in Ref. [106]. Consequent ly , the 
to ta l experimental resonance line width can be represented 
as the following sum of two componen t s : the ' res idual ' 
width a independent of M B and the M B cont r ibut ion 

exp 
— = a + /; exp -
T2J \ H cos 9 

(0=o°; 
(195) 

where b is a phenomenolog ica l pa ramete r . 
The theory should be checked by selecting those 

experiments on the spin resonance in M g and Zn which 
have been carried out on single crystals or on poly crystalline 
samples bu t with the c axis or ienta t ion. In the case of M g 
these are the experiments repor ted in Refs [16, 124, 129], 
whereas for Zn we are aware of only one investigation [16]. 

Before ac tual compar i son with experiments , we shall 
give the est imates repor ted in Ref. [17]. In our case, when 
' t racking ' the response from the conduct ion-elect ron m o n ­
ster (n = 1), theoret ical est imates of the M B cont r ibut ion to 
the resonance line width can be obta ined from the simple 
and physically clear formula 

stheor 
n in. 1 l 

t M B 
K1 2 / 1 

N
 w > 

Pzl 271 

where pzX is the longi tudinal dimension of the mons te r ; p^B 

is the thickness of the M B layer; co c l is the cyclotron 
frequency of the mons te r ; N = 6 is the number of the M B 
regions; w is the to ta l M B probabi l i ty given by expression 
(2). 

W e shall n o w discuss the exper imental results for these 
two metals and use expression (196) to est imate the effect of 
M B on conduct ion-elect ron spin resonance . The 
experiments on M g reveal a wide resonance line with a 
s t rong angular dependence. The line width is max imal at 
9 = 0° and it decreases monotonica l ly with increase in the 
angle up to 6 = 90°. The exper imental po in t s taken from 
Ref. [129] are reproduced in Fig. 18. 

It therefore follows tha t the resonance signal can be 
regarded as the response of the mons te r conduct ion 
electrons and the ^-dependent cont r ibut ion to the line 
width can be a t t r ibuted to the influence of M B described 
by expression (195). It is evident from Fig. 18 tha t the 
resonance line width a t t r ibuted to M B varies from 
(3 ± 1) x 10 8 s _ 1 to zero. The pa rame te r s of the p h e n o m ­
enological experimental curve, described by expression (195) 
and plo t ted in Fig . 18, 

a = 6.2 x 10" s Z?exp 
H (0=0° 

H 
= 2.9 x 10" s~ 

were found by the least-squares me thod in Ref. [17] on the 
assumpt ion tha t H = 3.3 kG [124, 129]. 

On the other hand , expression (196) gives the following 
theoret ical est imate of the cont r ibut ion 

theor 1 
t M B ) 
1 2 / 1 

(9 = 0°) = ( 9 - 1 5 ) x 10 8 s " 1 , (197) 

where the following values are assumed: the static M B field 
H0 = 5.85 kG [5], the a l ternat ing resonance field H = 3.3 
kG [124, 129], and the pa rame te r s of the mons te r 
cox = (4.2 - 6.8) x 1 0 1 0 s " 1 [5, 8] and pf B/pzl = 0.14 [5]. 

W e can see tha t the calculated cont r ibut ion of M B to 
the width of the resonance line of conduct ion electrons on 

/ 1 0 8 s 
10 

9 -

7 -

J _ 
30 60 90 or 

Figure 18. Dependence of the total width of a conduction-electron spin 
resonance line on the angle of inclination of a magnetic field applied to 
pure Mg. The experimental points are taken from Ref. [129]: T — 40 
K, resonance frequency 9.2 GHz, g — 2.00 ± 0 . 0 1 . The position of the 
phenomenological curve, described by expression (195), was 
determined by the least squares method. (196) 
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the mons te r of M g is in qual i tat ive agreement with the 
exper imental results. As expected on the basis of the 
adop ted model , it exceeds the exper imental value by an 
order of magn i tude . A n addi t iona l confi rmat ion of the 
correctness of this theoret ical mode l is the observat ion of a 
weaker and nar rower signal of the conduct ion-elect ron lens 
against the b a c k g r o u n d of the wide spin resonance line of 
M g [16]. 

The resonance in Zn generates only a weak and n a r r o w 
signal of the conduct ion-elect ron lens. The spin resonance 
line of the mons te r conduct ion electrons has no t been 
observed becaue, as pos tu la ted , of its large width . Accord ­
ing to Ref. [16], the failure to observe the mons te r line 
should be a t t r ibuted to the influence of M B . 

W e shall est imate the cont r ibut ion of M B to the to ta l 
width of the resonance represent ing the mons te r conduct ion 
electrons on the basis of expression (196): 

/ ^ \ theor 

\fp\ ( ^ 0 0 ) ^ 3 X 1 0 8 S _ 1 ' O9 8) 
where H0 = 2J k G , pfB/pzl = 0.05 [5], the a l ternat ing 
resonance field is H = 6.5 kG [16], and coc l = 9 x 10 9 s _ 1 

[16, 91]. 
This est imate is considerably larger t han the resonance 

line width (6 x 10 7 s _ 1 ) repor ted for the lens conduct ion 
electrons in Ref. [16]. Hence , it follows from our mode l tha t 
M B does indeed b r o a d e n the resonance line due to the 
mons te r conduct ion electrons. However , it is evident from 
the above results and from Fig. 18 tha t there is an order-of-
magn i tude agreement between this result and the experi­
men ta l width of the resonance line of M g . Consequent ly , 
wi thout other factors, the effect of M B alone cannot 
suppress the line in quest ion, especially as at 9 = 90° there 
should be no influence of M B at all on the resonance of the 
mons ter . (This possibili ty is no t discussed in Ref. [16], 
a l though the direction of the magnet ic field has been varied.) 

It should also be po in ted out tha t in the adop ted mode l 
a similar cont r ibut ion (but independent of 9\) to the 
resonance line width can be m a d e by the transfer of 
conduct ion electrons from the mons te r to the cigars 
(needles) because of the scattering on p h o n o n s [97, 88]. 
Es t imates show tha t the wave vector of t he rma l p h o n o n s 
£ p h — kQT/hs (s is the velocity of sound) remains less t han 
Ak = 6p/h (which is the m i n i m u m separat ion between the 
pa r t s of the F e r m i surface of interest to us) right down to 
t empera tu res T p h . 

In the case of Zn , this t empera tu re is T p h = 20 K and for 
M g it is T p h = 45 — 50 K. The velocity of sound is assumed 
to be sZn = 4 x 10 4 m s _ 1 and sMg = 6 x 10 3 m s _ 1 . In the 
case of Zn it is found tha t Ak = 0.04 a . u . - 1 . Since the 
in te rband gap in M g is twice as large, it follows tha t 
AkMg = 2AkZn. Consequent ly , t he rma l p h o n o n s can only 
par t ic ipa te in the effective in t ragroup mixing (in agreement 
with the adop ted model ) and cannot compete with M B at 
t empera tu res T ^ T p h . 

7. Conclusions 
W e shall n o w summarise our results. F r o m the formal 
po in t of view the ma themat i ca l formalism of the M B 
theory [6] can be generalised qui te simply to the case in 
which the SOC is taken into account . It is then necessary to 
consider the following poin ts : 

— the SOC modifies considerably the conduct ion-elect ron 
spectrum in the regions of a n o m a l o u s app roach of the 
bands ; 
— the main dynamic pa ramete r of M B is the 4 x 4 s 
matr ix , which determines the three-channel M B scattering 
of conduct ion electrons; spin-flip M B becomes p robab le ; 
— the SOC alters fundamental ly the classification of the 
states of conduct ion electrons under the M B condi t ions ; it 
is no t in general possible to separate the spin and orbi ta l 
degrees of freedom; 
— there is a considerable change in the M B spectrum of 
conduct ion electrons; in par t icular , complete b r e a k d o w n 
(when the to ta l M B probabi l i ty is uni ty) does not reduce to 
the semiclassical case: the wave functions of conduct ion 
electrons with opposi tely oriented spins become inter­
mingled and states with an effective spin are formed. 

The theory of spin-flip M B is suppor ted by the 
exper imental results on the ga lvanomagnet ic proper t ies 
and on the d H v A effect in Zn . This is manifested by the 
double t s t ructure of the M B oscillation peaks . The splitting 
in te rms of the magnet ic field can be used to find the 
microscopic characterist ics of conduct ion electrons in a 
metal , such as the g factor, the effective mass of electrons, 
and the SOC pa ramete r in the M B theory. 

M B acts as an addi t iona l mechanism of spin relaxat ion 
of conduct ion electrons. In the case of conduct ion-elect ron 
spin resonance this m a y give rise to a characterist ic angular 
dependence of the resonance line width , which is most likely 
in the case in M g . 

The relatively simple examples, with calculat ions con­
t inued unt i l numer ica l values have been obta ined, thus show 
tha t inclusion of the degrees of freedom in the M B theory 
does no t reduce to simple summat ion (mult ipl icat ion by 2 in 
the final expressions). It has recently been concluded tha t 
the consequences of the spin flip of conduct ion electrons 
under the M B condi t ions have been observed for some p u r e 
metals back in the sixties. 

W e have deliberately limited our discussion to n o r m a l 
metals . In systems with a k n o w n s t rong SOC (transi t ion 
metals , ferromagnet ic compounds ) it is essential to t ake into 
account the spin degrees of freedom. However , the 
theoret ical p ic ture of M B in this case is far from complete 
and not so clear. It is necessary to take into account the 
collective proper t ies of the spin system, which requires a 
separate discussion. 

In recent years the interest in M B has extended to an 
unexpected, from the poin t of view of the theory of metals , 
direction of organic c o m p o u n d s which become supercon­
duct ing at t empera tu res of abou t 10 K. A s tudy of the 
F e r m i surfaces of these organic semiconductors is devel­
oping rapidly and M B can provide much useful and 
accura te informat ion on the energy spectra of these 
mater ia ls . 

N o t everything is clear in the case of simple metals . W e 
have discussed above the p rob lem of finding the energy 
spectrum (and the g factor) of conduct ion electrons under 
the M B condi t ions . The characterist ics of the M B spectrum 
play an impor t an t role in the descript ion of the effects due 
to coherent M B [6]. Consequent ly , the spin degrees of 
freedom should affect also the completely coherent mo t ion 
of conduct ion electrons under the M B condi t ions . It is 
interest ing to consider the p rob lem of the spin charac ter ­
istics of the system under the condi t ions of q u a n t u m M B 
localisation of conduct ion electrons. 
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W e hope tha t the above discussion no t only will 
s t imulate further theoret ical studies of spin dynamics of 
conduct ion electrons under the M B condi t ions , bu t will also 
d r aw the a t tent ion of experimental is ts to the unusua l and 
fine p h e n o m e n o n of magnet ic b r eakdown . 

Acknowledgements. W e are grateful to M I K a g a n o v for his 
very helpful interest in our work over a per iod of m a n y 
years. W e are also grateful to B I Koche laev for the above 
work . One of us (Yu N P) is grateful to A A Slutskin for 
valuable discussions, which helped to confirm the correct­
ness of the selected app roach . 

References 
1. Cohen M H, Falicov L M Phys. Rev. Lett. 7 231 (1961) 
2. Priestley M G Proc. R. Soc. London Ser. A 276 256 (1963); 

Priestley M G, Falicov L M, Weisz G Phys. Rev. 131 617 
(1963) 

3. Dhillon J S, Shoenberg D Philos. Trans. R. Soc. London Ser. A 
248 1 (1955) 

4. Pippard A B Philos. Trans. R. Soc. London Ser. A 256 317 
(1964) 

5. Stark R W, Falicov L M Prog. Low Temp. Phys. 5 235 (1967) 
6. Kaganov M I, Slutskin A A, in Elektrony Provodimosti 

(Conduction Electrons) (Moscow: Nauka , 1985) p . 101; Kaga­
nov M I, Slutskin A A Phys. Rep. 98 187 (1983) 

7. Alekseevskii N E, Nizhankovskii V I, in Elektrony Provodimosti 
(Conduction Electrons) (Moscow: Nauka , 1985) p . 197 

8. Shoenberg D Magnetic Oscillations in Metals (Cambridge: 
Cambridge University Press, 1984) 

9. Proshin Yu N Zh. Eksp. Teor. Fiz. 93 1356 (1987) [Sov. Phys. 
JETP 66 770 (1987)] 

10. Jafet J Solid State Phys. 14 1 (1963) 
11. Lifshitz I M, Azbel ' M Ya, Kaganov M I Electron Theory of 

Metals (New York: Consultants Bureau, 1973) 
12. Kaganov M I, Lifshitz I M Usp. Fiz. Nauk 129 487 (1979) 

[Sov. Phys. Usp. 22 904 (1979)] 
13. Abrikosov A A Fundamentals of the Theory of Metals 

(Amsterdam: North-Hol land, 1988) 
14. Blount E I Phys. Rev. 126 1636 (1962) 
15. Tselfes W, Flouda E, Boukos N , et al. Physica B 172 405 

(1991) 
16. Stesmans A, Witters J Phys. Rev. B 23 3159 (1981) 
17. Kochelaev B I, Proshin Yu N Fiz. Tverd. Tela (Leningrad) 21 

265 (1985) [Sov. Phys. Solid State 21 161 (1985)] 
18. Slutskin A A Zh. Eksp. Teor. Fiz. 58 1098 (1970) [Sov. Phys. 

JETP 31 589 (1970)]; Slutskin A A Pis'ma Zh. Eksp. Teor. Fiz. 
18 587 (1973) [JETP Lett. 18 346 (1973)] 

19. Slutskin A A Zh. Eksp. Teor. Fiz. 65 2114 (1973) [Sov. Phys. 
JETP 38 1057 (1974)] 

20. Slutskin A A, Kadigrobov A M Fiz. Nizk. Temp. 4 536 (1978) 
[Sov. J. Low. Temp. Phys. 4 262 (1978)] 

21. Stark R W, Friedberg C B J. Low Temp Phys. 26 763 (1977) 
22. Gorelik L Yu, Kovtun E A Fiz. Nizk. Temp. 19 395 (1993) 

[Low Temp. Phys. 19 (1993)] 
23. Walker I R / . Low Temp. Phys. 90 205 (1993) 
24. Lonzarich G G, in Electrons at Fermi Surfaces 

(Ed. M Springford) (Cambridge: Cambridge University Press, 
1980) Chap. 6 

25. Kumin P R, Dyakina V P, Startsev V E, Cherepanov A N 
Fiz. Met. Metalloved. 12 39 (1990) 

26. McMullan G J, Pilgram D D, Marshall A A Phys. Rev. B 46 
3789 (1992) 

27. Liu C T, Tsui D C, Shayegan M, Ismail K, Antoniadis D A, 
Smith H I Appl. Phys. Lett. 58 2945 (1991) 

28. Beton P H, Dellow M W, Main P C, et al. Phys. Rev. B 43 
9980 (1991) 

29. Hu J, MacDonald A H Phys. Rev. B 46 12554 (1992) 
30. Behler S, Winzer K Z. Phys. B 82 355 (1991) 

31. Audouard A, Richard J, Dubois S, et al. Synth. Met. 56 2629 
(1993); Henriques A B, Morgoon V N , de Souza P L, et al. 
Phys. Rev. B 49 11248 (1994) 

32. Williams J M, Schultz A J, Geiser U , et al. Science 252 1501 
(1991) 

33. Sasaki T, Sato H, Toyota N Solid State Commun. 76 507 
(1990) 

34. Sasaki T, Sato H, Toyota N Physica C 1 8 5 - 1 8 9 2687 (1991) 
35. Wosnitza J, Crabtree G W, Wang H H, et al., in Physical 

Phenomena at High Magnetic Fields (Reading, M A : Addison-
Wesley, 1991) pp 1-11 

36. Kartsovnik M V, Kovalev A E, Kushch N D / . Phys. 13 1187 
(1993) 

37. Sasaki T, Toyota N Synth Met. 56 2303 (1993) 
38. Uji S, Aoki H, Tokumoto M, et al. Phys. Rev. B 49 732 (1994) 
39. Caulfield J, et al. Synth. Met. 61 63 (1993) 
40. Uji S, Aoki H, Brooks J S, et al. Solid State Commun. 88 683 

(1993) 
41. Kanoda K, Kato K, Kawamoto A, et al. Synth. Met. 56 2309 

(1993) 
42. Kartsovnik M V, Laukhin V N , Pesotskii S I Usp. Fiz. Nauk 

162 (10) 183 (1992) [Sov. Phys. Usp. 35 (1992)] 
43. Tamura M, Kuroda H, Uji S, et al. / . Phys. Soc. Jpn. 63 615 

(1994) 
44. Alekseevskii N E, Bazan C, Glinski M, et al. / . Phys. E 12 648 

(1979) 
45. Slutskin A A Zh. Eksp. Teor. Fiz. 53 767 (1967) [Sov. Phys. 

JETP 26 474 (1968)] 
46. Pippard A B Proc. R. Soc. London Ser. A 270 1 (1962) 
47. Slutskin A A, Gorelik L Yu Solid State Commun. 46 601 

(1983) 
48. Sandesara N B, Stark R W Phys. Rev. Lett. 53 1681 (1984) 
49. Slutskin A A, Author ' s Thesis for Doctorate of Physico-

mathematical Sciences (Khar 'kov: Physicotechnical Institute of 
Low Temperatures, 1980) 

50. Pippard A B, in Physics of Metals, Vol. 1: Electrons 
(Ed. J M Ziman) (Cambridge: Cambridge University Press, 
1969) 

51. Chambers R G Proc. Phys. Soc. London 88 701 (1966) 
52. Chambers R G Proc. Phys. Soc. London 89 695 (1966) 
53. Chambers W G Phys. Rev. 140 A 135 (1965) 
54. Falicov L M, Sievert P R Phys. Rev. 138 A88 (1965) 
55. Falicov L M, Pippard A B, Sievert P R Phys. Rev. 151 498 

(1966) 
56. Falicov L M, Stachowiak H Phys. Rev. 147 505 (1966) 
57. Sowa E C, Falicov L M Phys. Rev. B 32 755 (1985) 
58. Freericks J K, Falicov L M Phys. Rev. B 39 5678 (1989) 
59. Bir G L, Pikus G E Symmetry and Strain-Induced Effects in 

Semiconductors (New York: Wiley, 1975) 
60. Kaganov M I, Proshin Yu N Fiz. Tverd. Tela (Leningrad) 28 

1226 (1986) [Sov. Phys. Solid State 28 689 (1986)] 
61. Slutskin A A, Kadigrobov A M Pis'ma Zh. Eksp. Teor. Fiz. 32 

363 (1980) [JETP Lett. 32 338 (1980)] 
62. Slutskin A A, Manzhelii E V Fiz. Nizk. Temp. 19 86 (1993) 

[Low Temp. Phys. 19 (1993)] 
63. Slutskin A A, Manzhelii E V Fiz. Nizk. Temp. 19 824 (1993) 

[Low Temp. Phys. 19 (1993)] 
64. Proshin Yu N , Useinov N Kh Phys. Status Solidi B 166 173 

(1991) 
65. Proshin Yu N , Useinov N Kh Physica B 173 386 (1991) 
66. Proshin Yu N , Useinov N Kh Zh. Eksp. Teor. Fiz. 100 1088 

(1991) [Sov. Phys. JETP 73 602 (1991)] 
67. Proshin Yu N , Useinov N Kh Zh. Eksp. Teor. Fiz. 105 139 

(1994) [Sov. Phys. JETP 78 73 (1994)] 
68. Proshin Yu N , Author ' s Thesis for Doctorate of Physico-

mathematical Sciences (Kazan: Kazan State University, 1987) 
69. Proshin Yu N , Noskova T L XXIX Soveshch. po Fizike Nizkikh 

Temperatur: Tez. Dokl, Kazan, 1992 (Abstracts of Papers 
presented at Twenty-Ninth Conference on Low Temperature 
Physics, Kazan, 1992) Part 2, p . 353 

70. Proshin Yu N , in Program of Sixth Joint Magnetism and 
Magnetic Materials International Conference, Albuquerque, NM, 
1994, p . 131 



86 Yu N Proshin, N Kh Useinov 

71. Proshin Yu N , in Magnetic Resonance and Related Phenomena 
Extended Abstracts of Twenty-Eighth Ampere Congress, Kazan, 
1994) p . 256 

72. Landau L D Zh. Eksp. Teor. Fiz. 30 1058 (1956) [Sov. Phys. 
JETP 3 920 (1956)] 

73. Gorbovitskii B M, Perel' V I Zh. Eksp. Teor. Fiz. 85 1812 
(1983) [Sov. Phys. JETP 58 1054 (1983)] 

74. Lifshitz E M, Pitaevskii L P Statistical Physics Vol. 2, 3rd 
edition (Oxford: Pergamon Press, 1980) 

75. Walker M B Phys. Rev. Lett. 33 406 (1974) 
76. Walker M B Can J. Phys. 53 165 (1975) 
77. Silsbee R H, Long J P Phys. Rev. B 27 5374 (1983) 
78. Zil 'berman G E Zh. Eksp. Teor. Fiz. 30 1092 (1956); 32 296 

(1957); 33 387 (1957) [Sov. Phys. JETP 3 835 (1956); 5 208 
(1957); 6 299 (1958)] 

79. Freedman R, Fredkin D R Phys. Rev. B 11 4847 (1975) 
80. Nedorezov S S, Author ' s Thesis for Doctorate of Physicoma-

thematical Sciences (Kharkov: Physicotechnical Institute of 
Low Temperatures, 1985) 

81. Beuneu F / . Phys. F 10 2875 (1980) 
82. Silsbee R H, Beuneu F Phys. Rev. B 21 2682 (1983) 
83. Roth L M Phys. Rev. 145 434 (1966) 
84. Landau L D , Lifshitz E M Quantum Mechanics: Non-Relativ-

istic Theory 3rd edition (Oxford: Pergamon Press, 1977) 
85. Harrison W A Phys. Rev. 126 497 (1962) 
86. Reitz J R / . Phys. Chem. Solids 25 53 (1964) 
87. Kaganov M I, Slutskin A A Magnitnyi Proboi (Magnetic 

Breakdown) (Moscow: Znanie, 1985) 
88. Gantmakher V F , Levinson Y B Carrier Scattering in Metals 

and Semiconductors (Amsterdam: North-Holland, 1987) 
89. de Graaf A M, Overhauser A W Phys. Rev. 180 701 (1969) 
90. Cracknell A P, Wong K C Fermi Surface: Its Concept, 

Determination and Use in Physics of Metals (Oxford: Clarendon 
Press, 1973) 

91. Van Dyke J P, McClure J W, Doar J F Phys. Rev. B 1 2511 
(1970) 

92. Harrison W A Solid State Theory (New York: McGraw-Hill , 
1970); Heine V Solid State Phys. 24 1 (1970); Cohen M L, 
Heine V ibid. 24 37 (1970); Heine V, Weaire D ibid. 24 249 
(1970) 

93. Slutskin A A, Kadigrobov A M Fiz. Tverd. Tela (Leningrad) 9 
184 (1967) [Sov. Phys. Solid State 9 138 (1967)] 

94. Belokolos E D Fiz. Tverd. Tela (Leningrad) 19 767 (1977) 
[Sov. Phys. Solid State 19 444 (1977)] 

95. Slutskin A A Pis'ma Zh. Eksp. Teor. Fiz. 4 96 (1966) [JETP 
Lett. 4 65 (1966)] 

96. Abramowitz M, Stegun I A (Eds) Handbook of Mathematical 
Functions with Formulas, Graphs, and Mat hematic al Tables 
(New York: Wiley, 1972) 

97. Gurzhi R N , Kopeliovich A I, in Elektrony Provodimosti 
(Conduction Electrons) (Moscow: Nauka , 1985) p. 7 

98. Dyson F J Phys. Rev. 98 349 (1955) 
99. Azbel ' M Ya, Gerasimenko V I, Lifshitz I M Zh. Eksp. Teor. 

Fiz. 31 357 (1956) [Sov. Phys. JETP 4 276 (1957)] 
100. Cohen M H, Blount E I Philos. Mag. 5 115 (1960) 
101. Stark R W Phys. Rev. 135 A1698 (1964) 
102. Useinov N Kh, Author ' s Abstract of Thesis for Candidate of 

Physicomathematical Sciences (Kazan: Kazan State University, 
1992) 

103. Lonzarich G G, Hol tham P M Proc. R. Soc. London Ser. A 
400 145 (1984) 

104. Pippard A B Proc. R. Soc. London Ser. A 287 165 (1965) 
105. O'Sullivan W J, Schirber J E Phys. Rev. 162 519 (1967) 
106. Buot F A, Li P L, Strom-Olsen J O / . Low. Temp. Phys. 22 

535 (1976) 
107. Lifshitz I M, Kosevich A M Zh. Eksp. Teor. Fiz. 29 730 (1955) 

[Sov. Phys. JETP 2 636 (1956)] 
108. Kochkin A P Zh. Eksp. Teor. Fiz. 54 603 (1968) [Sov. Phys. 

JETP 21 324 (1968)] 
109. Joseph A S, Gordon W L Phys. Rev. 126 489 (1962) 
110. Thorsen A C, Joseph A S, Valby L E, in Proceedings of Ninth 

International Conference on Low Temperature Physics, Colum­
bus, OH, 1964 (New York: Plenum Press, 1965) p . 867 

111. 

112. 

113. 

114. 

115. 

116. 
117. 
118. 
119. 

120. 
121. 
122. 
123. 

124. 

125. 
126. 
127. 

128. 

129. 

Winter J Magnetic Resonance in Metals (Oxford: Clarendon 
Press, 1971) 
Platzman P M, Wolff P A Waves and Interactions in Solid 
State Plasma (Suppl. 13 to Solid State Phys.) (New York: 
Academic Press, 1973) 
Azbel ' M Ya, Gerasimenko V I, Lifshitz I M Zh. Eksp. Teor. 
Fiz. 32 1212 (1957) [Sov. Phys. JETP 5 986 (1957)] 
Azbel ' M Ya, Gerasimenko V I, Lifshitz I M Zh. Eksp. Teor. 
Fiz. 35 691 (1958) [Sov. Phys. JETP 8 (1959)] 
Lifshitz I M, Azbel M Ya, Gerasimenko V I / . Phys. Chem. 
Solids 1 164 (1956) 
Kaplan J I, Glasser M L Phys. Rev. 183 408 (1969) 
Czerwonko J Phys. Status Solidi B 67 K15 (1975) 
Montgomery D S / . Phys. F 11 711 (1981) 
Bloembergen N , Purcell E M, Pound R V Phys. Rev. 73 679 
(1948) 
Dupree R, Holland B W Phys. Status Solidi 24 275 (1967) 
Moore R A / . Phys. F 5 2300 (1975) 
Silsbee R H, Beuneu F Phys. Rev. B 21 2682 (1983) 
Lubzens D , Shanabarger M R, Schultz S Phys. Rev. Lett. 29 
1387 (1972) 
Notley R P, Sambles J R, Cousins J E Solid State Commun. 25 
1125 (1978) 
Stanley D J, Walker M B Solid State Commun. 21 449 (1977) 
Rahman T S, Parlebas J C, Mills D L / . Phys. F 8 2511 (1978) 
Couch N R, Sambles J R, Stesmans A, Cousins J E / . Phys. F 
12 2439 (1982) 
Zubarev D N Nonequilibrium Statistical Thermodynamics 
(New York: Consultants Bureau, 1974) 
Oseroff S, Gehman B L, Schultz S Phys. Rev. B 15 1291 (1977) 


