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Abstract. The mass spectrum for the system (be) is 
considered in the framework of potential models for the 
heavy quarkonium. Spin-dependent splittings, with account 
taken of the change of a constant representing the effective 
coulomb interaction between the quarks, and widths of 
radiative transitions between the (be) levels are calculated. 
In the framework of QCD sum rules, the masses of the 
lightest vector Bj and pseudoscalar B c states are estimated, 
the scaling relation for the leptonic constants of heavy 
quarkonia is derived, and the leptonic constant fQc is 
evaluated. The B c decays are considered in the framework 
both of the potential models and of the QCD sum rules. 
The relations, following from the approximate spin 
symmetry for the heavy quarks in the heavy quarkon­
ium, are analysed for the form factors of the semileptonic 
weak exclusive decays of B c . The B c lifetime is evaluated 
with account taken of the corrections to the spectator 
mechanism of the decay, because of the quark binding into 
the meson. The total and differential cross sections of the 
B c production in different interactions are calculated. The 
analytic expressions for the fragmentational production 
cross sections of B c are derived. The possibility of the 
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practical search for B c in current and planned experiments 
at electron-positron and hadron colliders is analysed. 

1. Introduction 
A complete picture for precise tests of the Standard 
Model [1] together with a search for effects from new 
physics requires direct measurement of the three-boson 
electroweak vertex; searches for Higgs particles [2], the 
supermultiplets [3] etc., at colliders of super-high energies 
(LEP200, LHC); as well as a study of CP-violation and a 
measurement of the fundamental parameters of the 
electroweak theory (first of all, in the heavy quark sector). 

In the next ten years, the main efforts directed to the 
achievement of this programme will certainly be in the field 
of heavy quark physics both at the running colliders (LEP 
and Fermilab) and the B-meson factories (being planned in 
SLAC, KEK, and at HERA-B). In this case, the extraction 
of effects related to high values of the energy scale will be 
essentially determined by the accuracy of the theoretical 
and empirical knowledge of the mechanisms of the quark 
interactions at less than high energy and, primarily, about 
effects caused by QCD dynamics [4]. Therefore, experi­
mental research on processes with heavy c-, b-, and t-quarks 
has a special importance. 

The presence of the small parameter ^ Q C D / M Q > where 
AQCD is the scale of the quark confinement and m Q is the 
heavy quark mass, has allowed one to develop powerful 
tools for the study of QCD dynamics in heavy quark 
interactions. Such methods include the phenomenological 
potential models [5-10], the QCD sum rules [11-13], and 
effective heavy quark theory (EHQT) [14], which has been 
successfully applied to the study of hadrons containing a 
single heavy quark. 
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Thus, the investigation of processes with heavy quarks 
allows one to extract and to study nonperturbative QCD 
effects causing quark hadronisation, by means of the use of 
the heavy quark as the 'marked' atoms. The successful 
implementation of such a programme of studies becomes 
possible because of progress in the experimental technique 
of the detection and identification of particles (it is mainly 
related to the invention and the improvement of the vertex 
detectors, allowing one to observe the heavy quark particles 
because of its running gap from the primary vertex of the 
interaction). 

Among the heavy quarkonia (QQ')> the (be) system 
with open charm and beauty takes a particular place. In 
contrast to the hidden charm (cc) and beauty (bb) families 
which have been studied in detail experimentally [15] and 
quite accurately described theoretically [13, 16, 17], the 
heavy quarkonium (be) — the family of Bc-mesons — has 
some specific production and decay mechanisms and 
spectroscopic features. The study of these mechanisms 
and features allows one to extend and clarify the quanti­
tative understanding of QCD dynamics as well as to 
progress in the study of the most important parameters 
of the electroweak theory. 

From the spectroscopy viewpoint, the (be) is the heavy 
quarkonium whose spectrum can be quite reliably calcu­
lated in the framework of the QCD-motivated 
nonrelativistic potential models as well as in the QCD 
sum rules, (be) is the only system composed of two heavy 
quarks where the description of its mass spectrum can test 
the self-consistency of the potential models and the QCD 
sum rules, whose parameters (the quark masses, for 
instance) have been fixed from the fitting of the spectro­
scopic data on the charmonium and bottomonium. 

Thus, the study of Bc-family spectroscopy can serve to 
improve the quantitative characteristics of the quark models 
and the QCD sum rules, which are intensively applied in 
other fields of heavy quark physics (for example, when one 
extracts values of elements in the matrix of mixings of the 
heavy quark charged weak currents and one estimates 
contributions interfering with the effects of the CP-invar-
iance violation, in the heavy hadron decays [18]). 

Moreover, there is the problem of the precise description 
of the P-wave level splittings in the charmonium and 
bottomonium, when the experimental measurement pro­
duces an essential deviation from the values expected in 
some well-acknowledged quark models [19]. The study of 
the Bc-meson family can help in a solution of this problem. 

In addition, the (be) system is interesting because it 
allows one, in a new way, to use the phenomenological 
information obtained from the detailed experimental study 
of the charmonium and bottomonium. So, for example, 
(be) takes an intermediate place between the charmonium 
and bottomonium with respect to both the system level 
masses and the values of average distances between the 
heavy quarks. 

As has been clarified, in the region of the average 
distances in the (cc) and (bb) systems, the heavy quark 
potential possesses simple scaling properties [8, 20, 57], 
which state that the kinetic energy of the heavy quarks is 
practically a constant value, independent of the quark 
flavours and the excitation level in the heavy quarkonium 
system. Furthermore, this leads to the fact that the heavy 
quarkonium level density (the distance between the nL- and 
nL-levels) does not depend on the flavours of quarks 

composing the heavy quarkonium. This regularity is quite 
accurately valid empirically for the (cc) and (bb) systems and 
it can be used in the framework of the QCD sum rules, where 
a scaling relation connecting the leptonic constants of the 
S-wave levels in the different quarkonia [21, 22] is derived. 

Further, having no strong and electromagnetic annihila­
tion channels of decays, the excited (be) system levels, being 
below the threshold of the decay into the BD-meson pair, 
will decay into the lightest basic pseudoscalar state B+(0~) 
due to the radiative cascade transitions into the underlying 
levels. Therefore, the widths of the electromagnetic (y) and 
hadronic (nn, r|, . . .) radiative decays of the given excitation 
into the other levels will compose its total width. As a result, 
the total widths of the excited levels in the (be) system turn 
out to be two orders of magnitude less than the total widths 
of the charmonium and bottomonium excited levels, for 
which the annihilation channels are essential. 

Moreover, maybe, the data on the radiative hadronic 
decays in the (bc)-family provide the possibility of solving 
some problems in the theory of hadronic transitions in 
heavy quarkonia (for example, the problem of the anom­
alous distribution over the 7i7i-pair invariant mass in the 
decay of T " -> Ynn [23-28]). 

Thus, on the one hand, the methods applied in heavy 
quark physics are able quite reliably to point out the 
spectroscopic characteristics of the (be) system for one 
to make a purposefully directed experimental search of the 
given heavy quarkonium. On the other hand, the measure­
ment of the spectroscopic data in the Bc-family would allow 
one to improve these methods for the extraction of the 
fundamental parameters of the Standard Model from both 
Bc-meson physics and the other fields of heavy quark physics. 

Like the other mesons with open flavour, the basic state 
of the Bc-meson family, the pseudoscalar meson B*(0~), is 
a long-living particle, decaying due to the weak interaction 
and having a lifetime comparable with the lifetimes of B-
and D-mesons, so this feature essentially distinguishes B c 

from the heavy quarkonia r|c and r|b. Therefore, the study 
of Bc-meson decays is the rich field of heavy quark physics, 
where one extracts important information about both the 
QCD dynamics and the weak interactions. 

The spectroscopic Bc-meson characteristics such as the 
leptonic constant, determining the width of the wave 
package of the (be) system in the basic state, essentially 
determine the description of the B c decay modes, in which 
some specific features and effects are observed. First of all, 
the presence of the valent heavy quark-spectator leads to a 
large probability for the B c decay modes with the heavy 
mesons in the final state, i.e. in the decays B c —> v|/(r|c) and 
B c —> [29-36]. The large v|/-particle yield is interesting, 
in addition, in that the v|/-particle has a perfect experimental 
signature in the leptonic decay mode. 

Furthermore, in the consideration of the semileptonic 
B+ —> v|/(r|c)/+v decays, the nonrelativistic heavy quark 
motion inside the quarkonia leads to a major effect caused 
by large Coulomb-like as/u-corrections, which notably 
change the calculation results for these decays in the 
framework of the QCD sum rules [31]. It is only when 
these corrections are taken into account that the results of 
the QCD sum rules and the potential quark models become 
consistent. 

Recently, the semileptonic transitions of the heavy 
quarks Q —> Q'/v in the framework of the effective heavy 
quark theory (EHQT) for hadrons with a single heavy quark 
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(Qq, Qqq), have been taken into consideration to determine 
the universal regularities [14], which permit, for example, 
the model independent extraction of the Kobayashi-
Maskawa matrix element value | V b c | . This universality in 
the limit of ^ Q c o / m Q —̂  0 is caused by the heavy quark 
flavour-independence of the light quark motion in the gluon 
field of the static source (the heavy quark), so that the wave 
functions of such hadrons are universal. 

In the case of the heavy quarkonium with two heavy 
quarks, the distances between the quarks depend on the 
values and ratios of its masses, i.e. the wave functions of the 
heavy quarkonia are not universal and depend on the quark 
flavours. However, in this case, one can neglect the low 
value of the spin-dependent splitting in the heavy 
quarkonium and suppose the wave functions of the nLj-
quarkonia to be /-independent. This fact finds expression in 
an approximate spin-symmetry for the heavy quarks, so it 
puts some relations on the form factors of the weak 
semileptonic exclusive decays of B c [37]. Such relations 
for the form factors are unique and characteristic of the 
Bc-meson and reflect the high degree of understanding of 
heavy quark decay dynamics, which nevertheless need direct 
experimental verification. 

Considering the B c decays with the spectator b-quark, 
one has particularly to note the essential role of the effects 
caused by the fact that the c-quark is not in the free state, 
but in the bound one. The decrease of the phase space for 
the c-quark decay within the heavy quarkonium makes the 
probability of the decay to be 40% less than the probability 
in the D- and Ds-meson decays [34]. The annihilation 
channel of the weak Bc-meson decay [52], allowing one 
to determine the value of the quark wave function at the 
origin |*F(0)|2, acquires an important meaning. 

As in the case of the (be) system spectroscopy, the heavy 
quark theory is able to make basic predictions on the 
mechanisms of the Bc-meson decays, whose measurement 
would allow one essentially to develop methods for 
description and also to use these methods for the precise 
investigation of the Standard Model as well as possible 
deviations from predictions of the latter. 

In the case of Bc-meson production, a low value of the 
^ Q C D / ^ Q ratio and, hence, the low value of the q u a r k -
gluon coupling as ~ 1/\n(niQ/AQC D) <̂  1 allow one to take 
into consideration the pair production of the bb and cc 
quarks, from which the Bc-meson is formed, in the 
framework of perturbative QCD theory, and also, in a 
way, to factorise contributions caused by the perturbative 
production of heavy quarks and overcoming nonperturba-
tive binding of the latter into the heavy quarkonium. 

So, calculation of the cross sections of the S-wave B c -
state production in the Z-boson peak is enough to compute 
the matrix elements for the joint production of the bb and 
cc pairs in the colour-singlet state of the (be) pair with the 
fixed total spin of quarks (S = 0, 1), when the quarks, being 
bound into the meson, move with one and the same 
velocity, equal to the meson velocity. After that, one has 
to multiply these matrix elements by the nonperturbative 
factor whose value is determined by the spectroscopic 
characteristics of the bound state (the quark masses and 
the leptonic constant, related to the probability of the 
observation of quarks with zero distance between them in 
the bound state) [38-47]. 

The last notion is caused by the fact that the character­
istic virtualities of heavy quarks inside the heavy 

quarkonium are much less than its masses, since the heavy 
quarks inside the bound states are moving nonrelativis-
tically, otherwise the quark virtualities in its production are 
of the order of its masses. Therefore, considering the B c 

production, one can assume that, inside the meson, the b-
and c-quarks are close to the mass shell and practically at 
rest with respect to each other. Thus, after the extraction of 
the nonperturbative factor, the analysis of the B c heavy 
quarkonium production is determined by consideration of 
the matrix elements, calculated in the perturbation theory 
of QCD. 

Note first of all that the necessity of the two-pair 
production of heavy quarks in the electromagnetic and 
strong processes for the B c yield leads to the fact that the 
leading order of perturbative QCD has an additional factor 
of the suppression ~ a 2 with respect to the leading order of 
the perturbation theory for the production of the single-
flavour heavy quarks; for example, the bb pair (see Fig. 7, 
9), so <7(Bc)/<j(bb) ~ (x2\¥(0)\2/m3

c. This causes the low 
yield of the Bc-mesons with respect to the 5-meson 
production. 

The analysis of the leading approximation in the 
perturbative QCD for the Bc-meson production allows 
one to derive a number of analytical expressions for the 
B c production cross sections [38, 39], where one has 
especially to stress the expressions for the functions of 
the fragmentation of the heavy quark into the heavy 
quarkonium in the scaling limit M 2 / s—>0, so these 
functions are determined by the values of as, the quark 
masses, and the leptonic constant of the meson [42-44]. 
Thus, fragmentational B c production can be reliably 
described by analytic expressions, and this opens new 
possibilities in the study of QCD dynamics, essential in 
the complete picture of heavy quark physics. 

As one can show, fragmentational B c production 
certainly dominates in Z-boson decays [44], so that it 
can be straightforwardly studied at the LEP facilities. 
Moreover, one can analytically study notable spin effects 
in the fragmentation into the vector Bj-meson [48], decay­
ing electromagnetically: B j —> Bcy. 

In hadronic B c production, patron processes at the 
energies comparable with the B c mass dominate, so that 
processes having the character of the fragmentational and 
also recombinational type [38, 46] (see Fig. 9) are essential. 

Furthermore, the numerical estimates of the Bc-meson 
yield at the LEP and Tevatron colliders show that the 
fraction of Bc-mesons in the production of beauty hadrons 
is of the order of 10"3 [38-47, 49]. This leads to the fact 
that, at the current experimental facilities, a quite large 
number of Bc-mesons are being produced. 

Thus, one can point out the expected number of Bc-
mesons being produced at different colliders, and the 
differential Bc-characteristics whose experimental study 
would significantly clarify the picture of the QCD inter­
actions of heavy quarks. 

A solution of the problem of the experimental discovery 
and study of the Bc-mesons is determined, first, by the 
theoretical description of the features of the Bc-meson 
family (the spectroscopy, the production and decay mech­
anisms), and so the present review is devoted to this 
purpose. Second, this programme is determined by the 
experimental methodology at the current detectors, so that 
the latter would allow one to observe the events with B c 

production and decays, predicted by the theory. 
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As for the second part of the problem, at present, as 
mentioned, colossal progress being made, related to the use 
of the electronic vertex detectors that operate rapidly and 
allow one to isolate processes with long living particles (B, 
B c , D) from the production processes (the technique of 
distinguishing the primary and secondary vertices), and also 
accurately to reconstruct the decay vertices of the particles 
in space [50]. 

The presence of distinct signatures in Bc-meson decays 
and the practical possibility of registering these decay 
modes have led to a real chance of discovering the Bc-
meson at the LEP and Fermilab detectors [51], as well as to 
the sharp rise of theoretical interest in the (be) system. The 
latter is reflected in the achievement of a large number of 
important results in the consideration of the heavy quark 
interaction mechanisms in the example of Bc-mesons. So, 
the present paper is devoted to the review of these results. 

2. Spectroscopy of Bc-mesons 
Some preliminary estimates of the bound state masses of 
the (be) system have been made in Refs. [5, 6], devoted to 
the description of the properties of the charmonium (cc) 
and bottomonium (bb), as well as in Ref. [52]. Recently in 
Refs [53, 35], the revised analysis of the B c spectroscopy 
has been performed in the framework of the potential 
approach and QCD sum rules. 

In the present section we consider the (be) spectroscopy 
with account taken of the change of the effective Coulomb 
interaction constant, defining spin-dependent splittings of 
the quarkonium levels. We calculate the widths of radiative 
transitions between the levels and analyse the leptonic 
constant fQc in the framework of the QCD sum rules in 
the scheme, allowing one to derive the scaling relation for 
the leptonic constants of the heavy quarkonia. 

2.1 Mass spectrum of Bc-mesons 
The Bc-meson is the heavy (be) quarkonium with open 
charm and beauty. It occupies an intermediate place in the 
mass spectrum of the heavy quarkonia between the (cc) 
charmonium and the (bb) bottomonium. The approaches 
made to the study of the charmonium and bottomonium 
can be used to describe the properties of the Bc-meson, and 
an experimental observation of B c could serve as a test of 
these approaches and could be used for the detailed 
quantitative study of the mechanisms of heavy quark 
production, hadronisation, and decays. 

In the following, we obtain results on B c meson 
spectroscopy. We will show that below the threshold of 
hadronic decay of the (be) system into the BD meson pair, 
there are 16 narrow bound states, cascadingly decaying into 
the lightest pseudoscalar B ^ O - ) state with mass 
m(0") « 6.25 GeV. 

2.1.1 Potential. The mass spectra of the charmonium and 
the bottomonium have been studied in detail experimen­
tally [15] and are properly described in the framework of 
phenomenological potential models of nonrelativistic heavy 
quarks [5-8 , 10]. To describe the mass spectrum of the 
(be) system, one would prefer to use the potentials whose 
parameters do not depend on the flavours of the heavy 
quarks, composing a heavy quarkonium, i.e. one would use 
the potentials which rather accurately describe the mass 
spectra of (cc) as well as (bb), with one and the same set of 

potential parameters. The use of such potentials allows one 
to avoid an interpolation of the potential parameters from 
the values fixed by the experimental data on the (cc) and 
(bb) systems, to the values in the intermediate region of the 
(be) system. 

As has been shown in Ref. [20], with an accuracy up to 
an additive shift, the potentials, independent of heavy quark 
flavours [5-8 , 10], coincide with each other in the region of 
the average distances between heavy quarks in the (cc) and 
(bb) systems, so 

0.1 fm < r < 1 fm , (1) 
although those potentials have different asymptotic 
behaviour in the regions of very small (r —> 0) and very 
large (r —> oo) distances. 

In the Cornell model [5], in accordance with the 
asymptotic freedom in QCD, the potential has a Cou­
lomb-like behaviour at small distances, and the term 
confining the quarks rises linearly at large distances: 

Vc(r) 
4 as r 
3 r az 

so that 

as = 0.36, a = 2.34 G e V - 1 , 

mc = 1.84 GeV, c 0 = -0.25 GeV . 

(2) 

(3) 

The Richardson potential [7] and its modifications in 
Refs [10, 54] also correspond to the behaviour expected in 
the framework of QCD, so 

VR(r)-- - r exp(ir-fl) 
48TT 1 

- J 

d3

q x / 4 48TT 
3 exp(ir-g)( -

(2TT) 

3 UNc-2nfq2\n(\+q2/A2) 
2 

3 27~ 

1 A2I 

_q2\n(\+q2/A2) q4 J 27 
^ A2 + — Ar 

with 

A • 0.398 GeV . 

(4) 

(5) 

In the region of the average distances between heavy 
quarks (1), the QCD-motivated potentials allow approx­
imations in the forms of the power (Martin) or logarithmic 
potentials. 

The Martin potential has the form [8] 

M = - c M + dM (AM rf , (6) 

so that 

AM = 1 GeV, k = 0.1 , 

mb = 5.174 GeV, mc = 1.8 GeV , 

cM = 8.064 GeV, dM = 6.869 GeV . (7) 

The logarithmic potential is equal to [9] 

VL(r)=cL+dL\z(ALr) , (8) 

so that 

AL = 1 GeV , 

mb = 4.906 GeV, mc = 1.5 GeV , 

cL = -0.6635 GeV, dL = 0.733 GeV . (9) 
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The approximations of the nonrelativistic potential of 
heavy quarks in the region of distances (1) in the form of 
the power (6) and logarithmic (8) laws, allow one to study 
its scaling properties. 

In accordance with the virial theorem, the average 
kinetic energy of the quarks in the bound state is 
determined by the following expression: 

1 /rdV 
~d7 

(10) 

Then, the logarithmic potential allows one to conclude 
that for the quarkonium states one gets 

( r L ) = const ( i i ) 

independently of the flavours of the heavy quarks 
composing the heavy quarkonium, 

%- = const « 0.367 GeV . 
2 

In the Martin potential, the virial theorem (10) allows 
one to obtain the expression 

k 
(Tu) = 2 + k (cM + E) (12) 

where E is the binding energy of the quarks in the heavy 
quarkonium. 

Phenomenologically, one has \E\ <̂  cM [for example, 
£(1S, cc) « —0.5 GeV], so that, neglecting the binding 
energy of the heavy quarks inside the heavy quarkon­
ium, one can conclude that the average kinetic energy of 
the heavy quarks is a constant value, independent of the 
quark flavours and the number of the radial or orbital 
excitation. The accuracy of such an approximation for (T) 
is about 10%, i.e. \AT/T\ « 30 -40 MeV. 

From the Feynman-Hellmann theorem for the system 
with reduced mass /JL, one has 

dE (T) 
( 1 3 ) 

and, in accordance with condition (11), it follows that the 
difference of the energies for the radial excitations of the 
heavy quarkonium levels does not depend on the reduced 
mass of the Q Q ' system 

E(n, fi) — E(n, fi) = E(n, \i ) — E(n, \i ) . (14) 

Thus, in the approximation of both the low value for the 
binding energy of quarks and the zero value for the spin-
Table 1. The mass difference (in MeV) for the two lightest vector 

states of different heavy systems, AM = M(2S) — M(1S). 

System T \|/ B c <j> 

AM 563 588 585 660 

dependent splittings of the levels, the heavy quarkonium 
state density does not depend on the heavy quark flavours: 

dn 
~dMn 

• = const (15) 

The given statement has also been derived in Ref. [21] by 
means of Bohr-Sommerfeld quantisation of the S-wave 
states for the heavy quarkonium system with Martin 
potential [8]. 

Relations (14) and (15) are phenomenologically con­
firmed for the vector S-levels of the bb, cc, ss systems [15] 
(see Table 1). Thus, the structure of the nonsplit S-levels of 
the (be) system must repeat not only qualitatively, but 
quantitatively the structure of the S-levels for the bb and cc 
systems, with an accuracy up to the overall additive shift of 
masses. 

Moreover, in the framework of the QCD sum rules, the 
universality of the heavy quark nonrelativistic potential [the 
lack of dependence on the flavours and the scaling proper­
ties (11), (14), (15)] allows one to obtain the scaling relation 
for the leptonic constants of the S-wave quarkonia with 
mass M [21], 

(16) / 
— = const 
M 

independently of the heavy quark flavours in the regime 
when 

\MQ — rriQi\ limited, JQCD 

*Q,Q' 
< 1 , 

i.e., when one can neglect the heavy quark mass difference. 
On the other hand, in the regime when the mass 

difference is not low, one has 

f (M\2 

m{aH) =CONST (17) 

where 

m Q + m Q / 

Consider the mass spectrum of the (be) system with the 
Martin potential [8]. 

Solving the Schrodinger equation with potential (6) and 
the parameters (7), one finds the B c mass spectrum and the 
characteristics of the radial wave functions R(0) and R'(0), 
shown in Tables 2 and 3, respectively. 

Table 3. The characteristics of the radial wave functions RNS(0) (in 
G e V 3 / 2 ) and / ^ P ( 0 ) (in G e V 5 / 2 ) , obtained from the Schrodinger 
equation. 

Mart in [53] 

*is(0) 
R2S(0) 
*2p(0) 
*3P(0) 

1.31 
0.97 
0.55 
0.57 

1.28 
0.99 
0.45 
0.51 

Table 2. The energy levels of the (bc) system, calculated without taking into account relativistic corrections (in GeV). 

[52] [55] [54] N [52] [55] [54] N [52] [55] [54] 

IS 6.301 6.315 6.344 2P 6.728 6.735 6.763 3D 7.008 7.145 7.030 
2S 6.893 7.009 6.910 3P 7.122 — 7.160 4D 7.308 — 7.365 
3S 7.237 — 7.024 4P 7.395 — — 5D 7.532 — — 
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Table 4. The average kinetic and orbital energies of the quark motion 
in the (bc) system (in GeV). 

nL IS 2S 2P 3P 3D 

(T) 0.35 0.38 0.37 0.39 0.39 
0.00 0.00 0.22 0.14 0.29 

The average kinetic energy of the levels lying below the 
threshold for the decay of the (be) system into the BD pair 
is presented in Table 4, wherein one can see that the term 
added to the radial potential due to the orbital rotation, 

Ay, = 
2/ir2 

(18) 

weakly influences the value of the average kinetic energy, 
and the binding energy for the levels with L ^ 0 is 
essentially determined by the orbital rotation energy, 
which is approximately independent of the quark flavours 
(see Table 5), so that the structure of the nonsplit levels of 
the (be) system with L ^ 0 must quantitatively repeat the 
structure of the charmonium and bottomonium levels, too. 

Table 5. The average energy of the orbital motion in the heavy 
quarkonia, in the model with the Mart in potential (in GeV). 

System (cc) (BE) (bb) 

AV,(2P) 0.23 0.22 0.21 

2.1.2 Spin-dependent splitting of the (be) quarkonium. In 
accordance with the results of Refs [55, 56], one introduces 
the additional term to the potential to take into account the 
spin-orbital and spin-spin interactions, causing the split­
ting of the nL -levels (n is the principal quantum number, L 
is the orbital momentum), so it has the form 

VSu(r) 
2mi 

4 
+ - a. 

2ml 
dV(r) 
rdr 

1 LS 4 
3 s m c m b r 3 3 s 3m c m b 

Sc.Sh[4nd(r)] 

4 
3 m c m b 

1 1 r 
— [3(Sc-n)(Sb-n) - 5 C - S b ] , n = -

(19) 
where V(r) is the phenomenological potential confining the 
quarks. The first term takes into account the relativistic 
corrections to the potential V(r); the second, third and 
fourth terms are the relativistic corrections coming from 
the account of the one-gluon exchange between the b and c 
quarks; AS is the effective constant of the quark-gluon 
interaction inside the (be) system. 

The value of the AS parameter can be determined in the 
following way. The splitting of the S-wave heavy quarkon­
ium ( Q 1 Q 2 ) is determined by the expression 

1 
AM(nS)=-as 

9 m\m2 

(20) 

where RNS(fi) is the value of the radial wave function of the 
quarkonium, at the origin. Using the experimental value of 
the lS-state splitting in the cc system [15] 

AM(1S, cc) = 117 ± 2 MeV 

and the R\S(0) value calculated in the potential model for 
the cc system, one gets the model-dependent value of the 
As(v|/) constant for the effective Coulomb interaction of 
heavy quarks (in the Martin potential, one has 
a,(t|/) = 0.44). 

In Ref. [53] the effective constant value, fixed in the 
described way, has been applied to the description of not 
only the cc system, but also the be and bb quarkonia. In the 
present paper we take into account the variation of the 
effective Coulomb interaction constant versus the reduced 
mass of the system (/1). 

In the one-loop approximation at the momentum scale 
p2, the 'running' coupling constant in QCD is determined 
by the expression 

4TI 
^(p ) b\n(p2/A2

QCD) 
(22) 

where b = 11 — 2n f /3, and n f = 3, when one takes into 
account the contribution by the virtual light quarks, 
P2 < ml,b-

In the model with the Martin potential, for the kinetic 
energy of quarks (cc) inside v|/, one has 

< r l s ( c c ) ) ^ 0.357 G e V , (23) 

so that, using the expression for the kinetic energy, 

(p2) (T)=-

one gets 

«,(p 2) 

2/i ' 

4it 

M n ( 2 ( 7 > / 4 c D ) 

so that as(\|/) = 0.44 at 

iQCD 164 MeV 

(24) 

(25) 

(26) 

As has been noted in the previous section, the value of 
the kinetic energy of the quark motion depends weakly on 
the heavy quark flavours, and is practically constant; hence, 
the change of the effective AS coupling is basically deter­
mined by the variation of the reduced mass of the heavy 
quarkonium. In accordance with Eqns (25)-(26) and 
Table 4, for the (be) system one has 

nL IS 2S 2P 3P 3D 

a s 0.394 0.385 0.387 0.382 0.383 

Note that the Martin potential leads to the R\$(0) 
values, which—with an accuracy up to 15% - 2 0 % — 
agrees with the experimental values of the leptonic decay 
constants for the heavy cc and bb quarkonia. The leptonic 
constants are determined by the expression 

r ( Q Q _> /+/ ) An ft QQ 
Mr 

(27) 

where e Q is the heavy quark charge. 
In the nonrelativistic model one has 

/QQ -
3 

nM QQ 

1 / 2 

* i s (0 ) • (28) 

For the effective Coulomb interaction of the heavy 
quarks in the basic lS-state one has 

(29) (21) J ? ? s ( 0 ) = 2 ^ o , y 
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Table 6. The leptonic decay constants of the heavy quarkonia, the 
values, measured experimentally and obtained in the model with the 
Mart in potential, in the model with the effective Coulomb interaction 
and from the scaling relation (SR) (in MeV). 

Model Exp. [15] Mart in Coulomb SR 

h 410 ± 1 5 547 ± 80 426 ± 60 410 ± 4 0 
— 510 ± 8 0 456 ± 70 460 ± 60 

h 715 ± 15 660 ± 90 772 ± 120 715 ± 7 0 

One can see from Table 6 that, taking into account the 
variation of the effective as constant versus the reduced 
mass of the heavy quarkonium [see Eqn (25)], the Coulomb 
wave functions give the values of the leptonic constants for 
the heavy lS-quarkonia, so that in the framework of the 
accuracy of the potential models, those values agree with 
the experimental values and the values obtained by the 
solution of the Schrodinger equation with the given 
potential. 

Consideration of the variation of the effective Coulomb 
interaction constant becomes especially important for the 
T-particles, for which a s (T) w 0.33 instead of the fixed 
value as = 0.44. 

Thus, calculating the splitting of the (bc) levels, we take 
into account the as dependence on the reduced mass of the 
heavy quarkonium. 

As one can see from Eqn (19), in contrast to the LS-
coupling in the (cc) and (bb) systems, there is jr/'-coupling in 
the heavy quarkonium, where the heavy quarks have 
different masses [here, LSC is diagonalised at the given Jc 

momentum, (Jc = L + 5 C , J = Jc+ 5 b ) , / is the total spin of 
the system]. We use the following spectroscopic notation for 
the split levels of the (be) system — n2jcLj. 

One can easily show that, independently of the total spin 
/ projection, one has 

| 2 L + 1 , ) = | / = L + 1, S = 1) , 

\2L-lLL_l) = \J = L-l,S = l), 

2 L T T l / = L ' * = 1> 
\2L+L LL) = 

The averaging over the angle variables can be performed 
in the following standard way. Let us represent the matrix 
element of the unit vector n = r/r pair in the form 

(L, m\npnq\L, m') = a(LpLq + LqLp)mm, + bbpqbmm, , (31) 

where L are the orbital momentum matrices in the 
corresponding irreducible representation. 

From the conditions of the normalisation of the unit 
vector, (npnq)3pq = 1, the orthogonality of the radius-vector 
to the orbital momentum, npLp = 0, the commutation 
relations for the angular momentum, [Lp; Lq ] = ispqlLh 

one finds the values of constants a and b in Eqn (31): 

1 (32) 
4LZ - 3 

2LZ - 1 
' 4L 2 - 3 

(33) 

Note further that from the condition for the quark spins 
5 Q 5 Q + 5 Q 5 Q = &Pql2 it follows, that 

(34) 

Thus, (see also Ref. [57]) 

6[npnq-l-dpq\spSq 
1 

4L 2 - 3 

\ 2 , o / r c \ o r 2 c 2 l x [6{L-Sf + 3(L-S) - 2L2S2] . (35) 

Using Eqns (30) and (35), for the level shifts, calculated 
in the perturbation theory at S = 1, one gets the following 
formulae: 

AE„.Sl =« 

3mc w b 

2 

M o ) | 2 

9mc m b 

5 m c m b \ r 3 

(36) 

(37) 

4 m b 

dV(r) 8 1 
rar 3 r 

(38) 

lLL) 
L + l 
2L + 1 

\J = L,S = 1) 

2L + 1 
\J = L , S = 0} , (30) 

where |/, S) are the state vectors with the given values of 
the total quark spin S=Sc+Sh, so that the potential 
terms of the order of l /m c m b , l / m b lead, generally 
speaking, to the mixing of levels with the different Jc 

values at the given / values. The tensor forces [the last term 
in Eqn (19)] are equal to zero at L = 0 or S = 0. 

To calculate values of the level shifts appearing because 
of the spin-spin and spin-orbital interactions, one has to 
take the averaged expression (19) over the wave functions 
of the corresponding states. 

1 / 1 1 
2 \m2 m b 

52 
21m c m b \ r 3 

1 / 1 1 
2 \mi mi 

Aiv D i = 92 
21m c m b \ r 3 

3 / 1 1 
4 \ml m b 

rdr + 3 V 

dV(r) { 8 1 

r d r 3 s r 3 

dVW 8 1 \ 
rdr + 3 V / 

(39) 

(40) 

(41) 
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where Rns(0) are the radial wave functions at L = 0, and 
(...) denote the average values calculated under the wave 
functions RnL(r). 

The mixing matrix elements have the forms 

( 3 P 1 | A E | 3 P 1 ) = - a 8 

+ 
1 

Ami 

9mc mh 

5 
\2m\ 

dV(r) 8 1 
rdr 3 r 

(42) 

( 1 P 1 | A E | 1 P 1 ) = - a s 

+ 

9mcmh 

1 1 
2ml 6m2

) 

dV(r) { 8 1 

rdr 3 s r 3 
(43) 

< 3 P 1 | A £ | 1 P 1 ) = - a ; 

. A 
6ml 

< 5 D 2 | A £ | 5 D 2 } = 

( 3 D 2 | A £ | 3 D 2 ) = - a ! 

3 

2^2 
9mc mb 

dV(r) 
rdr + 3 a V 

15racrab \ r 3 

1 \ / dV(r) 
5ml 

+ 

15mc m b 

9 

r d r 

1 
7 

+ 3 a V 

(44) 

(45) 

( 5 D 2 | A £ | 3 D 2 ) = - a s 

V6 

Ami + 20raj; 

2A/6 

dV(r) 8 1 
+ 3 V rd r 

,(46) 

l O m g 

15mc rab 

dV(r) 
rd r + 3 « V 

(47) 

As one can see from Eqn (37), the S-level splitting is 
essentially determined by the | /? n 5 (0) | value, which can be 
related to the leptonic decay constants of the S-states (0~, 
1~). Section 2.3 is devoted to the calculation of these 
constants in different ways. We only note here that, 
with enough accuracy, the predictions of different potential 
models on the |/? 1 S(0)| value are in agreement with each 
other as well as with predictions from other approaches. 

For the 2P level, the mixing matrices of the states with 
the total quark spin S = 1 and S = 0 have the forms 

|2P, 1 / +) = 0.294|S = 1) + 0.95615 = 0) , (48) 

|2P, 1+) = 0.956|S = 1) - 0.294|S = 0) , (49) 

so that in the 1 + state the probability of the total quark 
spin value S = 1 is equal to 

to! (2P) =0.913 . 

For the 3P-level one has 

|3P, 1 / +) = 0.371 |S = 1) + 0.929|S = 0) , 

|3P, 1+) = 0.929|S = 1) - 0.371 |S = 0) , 

so that 

to! (3P) = 0.863 . 

(50) 

(51) 

(52) 

(53) 

n/GeV 

7.5 r 

7.0 -

6.5 

6.0 

4P 
4 D 

3S 

3P 
2 + 

1+ 3D 

2S 

BD-threshold 
2'-
r 
3 " 
2 " 

2P 
2 + 

0+ 

IS 

Figure 1. The mass spectrum of the B c -meson states with account 
taken of splittings. 

Table 7. The masses (in GeV) of the bound (bc) states below the 
threshold of the decay into the (BD) meson pair (* is the present 
paper). 

State * [53] [54] State * [53] [54] 

I'So 6.253 6.264 6.314 3 ! P 0 
7.088 7.108 7.134 

I'SQ 6.317 6.337 6.355 3P 1 + 7.113 7.135 7.159 

2 1 S 0 
6.867 6.856 6.889 3P 1 / + 7.124 7.142 

2 1 S 0 
6.902 6.899 6.917 3 3 P 2 7.134 7.153 7 . 1 6 6 

2'PQ 6.683 6.700 6.728 3D 2 " 7.001 7.009 — 

2P 1 + 6.717 6.730 6.760 3 5 D 3 7.007 7.005 — 

2P 1 / + 6.729 6.736 3 3 D j 7.008 7.012 — 

2 3 P 2 6.743 6.747 6 . 7 7 3 3D 2'- 7.016 7.012 — 

Table 8 . The masses (in GeV) of the lightest pseudoscalar B c and 
vector B * states in different models (* is the present paper). 

State * [55] [54] [58] [6] [59] [21, 65] 

0" 6.253 6.249 6.314 6.293 6.270 6.243 6.246 
r 6.317 6.339 6.354 6.346 6.340 6.320 6.319 

State [53] [60] [61] [62] [63] [64] [35] 

0" 6.264 6.320 6.256 6.276 6.286 — 6.255 
r 6.337 6.370 6.329 6.365 6.328 6.320 6.330 

For the 3D-level one gets 

|3D, 2'") = -0.566|S = 1) + 0.825|5 = 0) 

|3D, 2") = 0.825|S = 1) +0.566|5 = 0) , 

(54) 

(55) 

(56) 

so that 

LU2(3D) = 0.680 . 

The B c mass spectrum, with account having been taken 
of the calculated splittings, is shown in Fig. 1 and Table 7. 

The masses of the B c mesons have also been calculated 
in Ref. [66]. As one can see from Tables 2 and 8, the place 
of the 1 S-level in the (be) system [m(lS) w 6.3 GeV] is 
predicted by the potential models with the rather high 
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accuracy 8m(lS) w 30 MeV, and the lS-level splitting into 
the vector and pseudoscalar states is about 
m ( l " ) - m ( 0 " ) « 7 0 M e V . 

2.1.3 B c meson masses from QCD sum rules. Potential model 
estimates for the masses of the lightest (be) states are in 
agreement with the results of the calculations for the vector 
and pseudoscalar (be) states in the framework of the QCD 
sum rules [35, 36, 67], where the accuracy of the calculation 
is lower than the accuracy of the potential models, because 
the results essentially depend on both the modelling of the 
nonresonant hadronic part of the current correlator (the 
continuum threshold) and the parameter of the sum rule 
scheme (the moment number for the spectral density of the 
current correlator or the Borel transformation parameter), 

(0- ) : (1") « 6.3-6.5 GeV . (57) 

As has been shown in Ref. [11], for the lightest vector 
quarkonium, the following QCD sum rules apply 

_ 1 r ds 
I m 7 J Q C D ( p e r t ) w 

+ 7 J Q C D ( n o n p e r t ) ^ 2 ) (58) 

where / v is the leptonic constant of the vector (bc) state 
with the mass Afv, 

i/ vAfvfi£exp(ipz) = <0|7„(x)|V(p, k)} (59) 

(60) 

where k, p are the B* polarisation and momentum, 
respectively, and 

J d4x exp (iqx) <0|r7 / 1 (x)7v(0)|0) 

= ( - g » * + q - f ) n r + w v n < I C D , (6i) 

7 7 V

C D (q2) = 7 7 f D ( p e r t ) ( s ) + nfD^at){q1) , (62) 

^ Q C D ( „ o „ p e r t y ) = ^ c . f e 2 ) 0 / (63) 

where Ol are the vacuum expectation values of the 
composite operators such as (m\j/\l/), (as G 2

V ) , etc. The 
Wilson coefficients are calculable in the perturbation 
theory of QCD. S[ = ( m c + m b ) 2 is the kinematical thresh­
old of the perturbative contribution, My > S[, s t h is the 
threshold of the nonresonant hadronic contribution, which 
is considered to be equal to the perturbative contribution at 
s > s t h . 

Considering the respective correlators, one can write 
down the sum rules, analogous to Eqn (58), for the scalar 
and pseudoscalar states. 

One believes that the sum rule (58) must rather 
accurately be valid at q < 0. For the nth derivative of 
Eqn (58) at q = 0 one gets 

f i 

+ 
( - 1 ) " d" ^jQCD^onpert) / 2 \ (64) 

so, considering the ratio of the nth derivative to the 
(n + l)th one, one can obtain the value of the vector Bj 
meson mass. The calculated result depends on the n value 
in the sum rules (64), because of account having been taken 
both of the finite number of terms in the perturbation 
theory expansion and of the restricted set of composite 
operators. 

The analogous procedure can be performed in the sum 
rule scheme with the Borel transform, leading to the 
dependence of the results on the transformation parameter. 

As one can see from Eqn (64), the result obtained in the 
framework of the QCD sum rules depends on the choice of 
the values for the hadronic continuum threshold energy and 
the current masses of quarks. Then, this dependence causes 
large errors in the estimates of the masses for the lightest 
pseudoscalar, vector, and scalar (be) states. 

Thus, the QCD sum rules give estimates of the quark 
binding energy in the quarkonium, and the estimates are in 
agreement with the results of the potential models, but sum 
rules involve a considerable parametric uncertainty. 

2.2 Radiative transitions in the B c family 
The B c mesons have no annihilation channels for the 
decays due to QCD and electromagnetic interactions. 
Therefore, the mesons, lying below the threshold for the 
production of B and D mesons, will, in a cascade, decay 
into the 0~(1S) state by emission of y quanta and n 
mesons. 

Theoretical estimates of the transitions between the 
levels with the emission of the n mesons have uncertain­
ties, and the electromagnetic transitions are quite accurately 
calculable. 

2.2.1 Electromagnetic transitions. The formulae for the 
radiative El-transitions have the form [17, 68] 

r(nPj -> n% + y) = ^ aemQ2

effco3I2(nV; nS)wj(nV) , 

r{nVj -> n% + y) = A- aemGeff ^ 

x/ 2 ( / zP ; nS)[l -WJ(nP)] , 

r(n% -^nVj + y ) = ^ aemQ2

EFFCD3 

xI2(nS; HP)(2J + l)wj(HP) , 

r(n% -> fiPj + y) = ^ ctemQ2

eff co3 

x I2(nS; n?)(2J + 1) [l - WJ(nP)] , 

r(n?j -> nDj, + y) = ^ ctemQ2

eff co3 

xI2(nD; HP)(2J' + l)wj(nP)wJI(riD)SjJI , 

r(nDj -> nPj, + y) = ^ ctemQ2

eff co3 

xI2(nD; n?)(2Jf + \)wj>(n?)wj(nD)Sj>j, (65) 

where co is the photon energy, a e m is the electromagnetic 
fine structure constant. 

In Eqn (65) one uses 

mcQ^-mhQc 

CEFF • 
m c + m h 

(66) 
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where g c b are the electric charges of the quarks. For the B c 

meson with the parameters from the Martin potential, one 
gets = 0.41. 

Wj(nL) is the probability that the spin S = 1 in the nL 
state, so that w0(nP) = w2(nP) = 1, Wi(nD) = w3(nD) = 1, 
and the Wi(nP), w2(nD) values have been presented in the 
previous section [see Eqns (50), (53), (56)]. 

The statistical factor Sjjr takes values [68] 

where 

J J' SJJ> 
0 1 2 
1 1 1/2 
1 2 9/10 
2 1 1/50 
2 2 9/50 
2 3 18/25 

The I(nL; nL1) value is expressed through the radial 
wave functions, 

I(nL;nL') = ^RiiL(r)RnL,(r)rid) (67) 

In the model with the Martin potential, for the set of 
transitions one obtains (in G e V - 1 ) [52] 

/(IS, 2P) = 1.568 , / ( IS, 3P) = 0.255 , 

/(2S, 2P) = 2.019 , /(2S, 3P) = 2.704 , 

/(3D, 2P) = 2.536 , I (3D, 3P) = 2.416 . (68) 

For the dipole magnetic transitions one has [5, 17, 68] 

T V S , - n'Sf + y) = y /4ffO> 3 (2S f + l )A? f , (69) 

Table 9. T h e e n e r g i e s ( in M e V ^ a n d w i d t h s (in k e V ) o f t h e e l e c t r o ­
m a g n e t i c E l - t r a n s i t i o n s in t h e (bc ) f a m i l y (* is t h e p r e s e n t p a p e r ) . 

T r a n s i t i o n co r [* R [ 5 3 ] 

2 P 2 -J 

2 P 0 ^ 

2 P 1 / + 

2 P 1 + 

2 P 1 / + 

2 P 1+ 

3 P 2 -J 

3 P 0 ^ 

3P 1 / + 

3P 1 + 

3P 1 / + 

3P 1 + 

3 P 2 -J 

3 P 0 ^ 

3P 1 / + 

3P 1 + 

3P 1 / + 

3P 1 + 

2 S j - » 

2 S j ^ 

2 S j ^ 

2 S i - » 

2 S 0 ^ 

2 S 0 ^ 

I S i + Y 

I S i + Y 

^ l S j + y 

- I S i + Y 

I S o + Y 

- ^ I S o + Y 

I S i + Y 

I S i + Y 

^ I S J + Y 

- I S i + Y 

I S o + Y 

- ^ I S o + Y 

2 S ! + Y 

2 S ! + Y 

^ 2 S ! + Y 

- 2 S J + Y 

^ 2 S 0 + Y 

- + 2 S 0 + Y 

2 P 2 + Y 

2 P 0 + Y 

2 P l / + + y 

2 P 1 + + Y 

2 P 1 / + + Y 

2 P 1 + + Y 

4 2 6 

366 

412 

4 0 0 

4 7 6 

464 

817 

771 

807 

796 

871 

860 

232 

186 

222 

211 

2 5 7 

2 4 6 

159 

2 1 9 

173 

185 

138 

150 

102.9 

65 .3 

8.1 

7 7 . 8 

131.1 

11.6 

19.2 

16.1 

2 .5 

15.3 

2 0 . 1 

3.1 

4 9 . 4 

2 5 . 5 

5.9 

32 .1 

5 8 . 0 

8.1 

14.8 

7.7 

1.0 

12.8 

15.9 

1.9 

112.6 

79 .2 

0.1 

99 .5 

56 .4 

0 .0 

2 5 . 8 

2 1 . 9 

2 .1 

22 .1 

73 .8 

4 1 . 2 

5.4 

54 .3 

17.7 

7.8 

0 .0 

14.5 

5.2 

0 .0 

A if = J * a s (r)RnS (r)j0 {^j r2
 d r , 

1 . fri 
( g c m b - fig mc) . /*eff — o 2 2mc m b 

(70) 

Note, in contrast to the v|/- and T-particles, the total width 
of the Bj meson is equal to the width of its radiative decay 
into the B c (0") state. 

The electromagnetic widths, calculated in accordance 
with Eqns (65) and (69), and the frequencies of the emitted 
photons are presented in Tables 9 - 1 1 . 

Note that the EO-transitions with the conversion of a 
virtual y-quantum into a lepton pair can take place. 
Moreover, due to the tensor forces, the states with / > 0 
and S = 1 can, in addition to the L-wave, have an 
admixture of |L ±2|-waves, giving a quadrupole moment 
to the corresponding states and causing the E2-transitions. 
However, these transitions are suppressed by the additional 
factor a e m in the first case, and by the small value of 
amplitude, determining, say, the probability of the admix­
ture appearance of the D-wave in the l-(?zS)-state. 

Thus, the registration of the cascade electromagnetic 
transitions in the (be) family can be used for the observa-

Table 10. T h e e n e r g i e s (in M e V ) a n d w i d t h s ( in k e V ) o f t h e e l e c t r o ­
m a g n e t i c E l - t r a n s i t i o n s in t h e (bc ) f a m i l y (* is t h e p r e s e n t p a p e r ) . 

T r a n s i t i o n CO R[*] T [ 5 3 ] 

3 P 2 ^ 3 D J + Y 126 0.1 0.2 

3 P 2 ^ 3 D 2 / _ + Y 118 0.5 — 

3 P 2 3 D 2 " + Y 133 1.5 3.2 

3 P 2 ^ 3 D 3 + Y 127 10.9 17.8 

3 P O ^ 3 D J + Y 80 3.2 6.9 

3 P 1 / + ^ 3 D J + Y 116 0.3 0.4 

3 P 1 + ^ 3 D J + Y 105 1.6 0.3 

3 P 1 / + - > 3 D 2 / - + Y 108 3.5 — 

3 P 1 + ^ 3 D 2 " + Y 112 3.9 9.8 

3 P 1 / + - > 3 D 2 " + Y 123 2.5 11.5 

3 P 1 + ^ 3 D 2 ' " + Y 97 1.2 — 

3 D 3 ^ 2 P 2 + Y 
264 7 6 . 9 98 .7 

3 D j ^ 2 P 0 + Y 325 7 9 . 7 88 .6 

3 D j ^ 2 P 1 / + + Y 279 3.3 0.0 

3 D j ^ 2 P 1 + + Y 291 39 .2 4 9 . 3 

3 D j ^ 2 P 2 + Y 265 2.2 2 .7 

3 D 2'~ ^ 2 P 2 + Y 273 6.8 

3 D 2'~ ^ 2 P 2 + Y 258 12.2 2 4 . 7 

3 D 2 ' " ^ 2 P 1 / + + Y 287 4 6 . 0 92 .5 

3 D 2 ' " ^ 2 P 1 + + Y 301 2 5 . 0 

3 D 2 " ^ 2 P 1 / + + Y 272 18.4 0.1 

3 D 2 " ^ 2 P 1 + + Y 284 4 4 . 6 88 .8 

Table 11. T h e e n e r g i e s ( in M e V ^ a n d w i d t h s (in k e V ) o f t h e e l e c t r o ­
m a g n e t i c M 1 - t r a n s i t i o n s in t h e (bc ) f a m i l y (* is t h e p r e s e n t p a p e r ) . 

T r a n s i t i o n CO R W R [ 5 3 ] 

2 S j I S Q + Y 649 0 .098 0 .123 

2 S 0 ^ 1 S ! + Y 550 0 .096 0 .093 

l S j I S Q + Y 64 0 .060 0 .135 

2S i ^ 2 S 0 + Y 35 0 .010 0 .029 
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tion of the higher (bc) excitations, having no annihilation 
channels for the decays. 

2.2.2 Hadronic transitions. In the framework of QCD the 
consideration of the hadronic transitions between the states 
of the heavy quarkonium family is based on the multipole 
expansion for the gluon emission by the heavy nonrelativ­
istic quarks [23], with subsequent hadronisation of gluons, 
independently of the heavy quark motion. 

In the leading approximation over the velocity of the 
heavy quark motion, the action corresponding to the heavy 
quark coupling to the external gluon field, 

Sint = ~G d 4 *A*(*)^ (x ) , (71) 

can be expressed in the form 

S i n t = g j dtrkE£(t, x) ^ V„(r)V?(r)K(Sn,f) d 3 r . (72) 

where Wn(r) is the wave function of the quarkonium 
emitting a gluon, Wj(r) is the wave function of the colour-
octet state of the quarkonium, K{sn, f) corresponds to the 
spin factor (in the leading approximation, the heavy quark 
spin is decoupled from the interaction with the gluons). 

Then the matrix element for the El - El transition of the 
quarkonium nLj —> nLf

Jf + gg can be written in the form 

M(nLj -> n'L'j, + gg) = 47iasEa

kEh

m 

| d 3 r d 3 r G%tSn(r, r') WnLj(r) * W , ( r ' ) (73) 

where G^j?Sn(r, r') corresponds to the propagator of the 
colour-octet state of the heavy quarkonium 

G = 
1 

(74)} 

where / / Q Q is the Hamiltonian of the coloured state. 
One can see from Eqn (73) that the determination of the 

transition matrix element depends on both the wave 
function of the quarkonium and the Hamiltonian #QQ-
Thus, the theoretical consideration of the hadronic transi­
tions in the quarkonium family is model dependent. 

In a number of papers [24], the potential approach has 
been developed for the calculation of the values such as in 
Eqn (53). In papers [25] it is shown that nonperturbative 
conversion of the gluons into the n meson pair allows one to 
give a consideration in the framework of the low-energy 
theorems in QCD, so that this consideration agrees with the 
studies performed in the framework of PC AC and soft pion 
techniques [26]. 

However, as follows from Eqn (73) and the Wigner-
Eckart theorem, the differential width for the E l - E l 
transition allows a representation in the form [24] 

d r ( / i L , - / i ' L ^ + h ) = ( 2 / ' + l) 
dm2 

(75) 

where m is the invariant mass of the light hadron system 
h; {...} are 6/'-symbols; Ak(L,Lf) is the contribution by the 
irreducible tensor of the rank equal to k = 0, 1, 2; s is the 
total quark spin inside the quarkonium. 

In the limit of soft pions, one has Ai(L, Lr) = 0. 

From Eqns (73) and (75) it follows that, with an 
accuracy up to the difference in the phase spaces, the 
widths of the hadronic transitions in the (QQ) and (QQ') 
quarkonia are related to the following expression [23, 24]: 

rm') _(r2m'))2 

(76) 
<^(QQ)>2 ' 

Then the experimental data on the transitions 
\|/ -> J/\|/ + 7171, T ' -> T + 7171, 1^(3770) -> J/\|/ + TUTU [27] 
allow one to extract the values of Ak(L, Lr) for the 
transitions 2S —> IS + TUTU and 3D —> IS + TUTU [53]. 

The invariant mass spectrum of the TU meson pair has the 
universal form [25, 26] 

i dr = B \ k n n \ 
r dm M 2 

(2x2-l)Vx2-l , (77) 

where x = m/2mn, \knn\ is the TUTU pair momentum. 
Estimates for the widths of the hadronic transitions in 

the (be) family have been made in Ref. [53]. The hadronic 
transition widths, which have values comparable to the 
electromagnetic transition width values, are presented in 
Table 12. 

Table 12. The widths (in keV) of the radiative hadronic transitions in 
the (bc) family. 

Transition r [ 5 3 ] Transition r [ 5 3 ] 

2 S 0 -»• 1S 0 +nn 50 3 D 2 lSj + 7T7T 32 
2Sj -»• lSj + 7 T 7 T 50 3 D 3 lSj + 7T7T 31 
3Dj -»• lSj + 7 T 7 T 31 3 D 2 1S0 + nn 32 

The transitions in the (be) family with the emission of r| 
mesons are suppressed by the low value of the phase space. 

Thus, registration of the hadronic transitions in the (be) 
family with the emission of K meson pairs can be used to 
observe the higher 2S- and 3D-excitations of the basic state. 

2.3 Leptonic constant of B c meson 
As we have seen in Section 2.1, the value of the leptonic 
constant of the B c meson determines the splitting of the 
basic lS-state of the (be) system. Moreover, the higher 
excitations in the (be) system transform, in a cascade, into 
the lightest 0~ state of B c , whose widths of decays are 
essentially determined by the value of / B c , too. 

In the quark models [69-71] used to calculate the weak 
decay widths of mesons, the leptonic constant, as the 
parameter, determines the quark wave packet inside the 
meson (generally, the wave function is chosen in the 
oscillator form), therefore, the practical problem of the 
extraction of the value for the weak charged current mixing 
matrix element |V b c | from the data on the weak B c decays 
can be solved only at the known value of / B c . 

Thus, the leptonic constant fB is the most important 
quantity, characterising the bound state of the (be) system. 
In the present section we calculate the value of fBc in 
different ways. 

To describe the bound states of the quarks, the use of 
nonperturbative approaches is required. The bound states 
of the heavy quarks allow one to consider simplifications, 
connected both to large values of the quark masses 
AQQD /MQ <̂  1 and to the nonrelativistic quark motion 
v —> 0. Therefore the value of fBc can be quite reliably 
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Table 13. The leptonic B c meson constant (in MeV), calculated in the 
different potential models (the accuracy ~ 15%). 

Table 14. The leptonic B c constant (in MeV), calculated in the QCD 
sum rules (SR is the scaling relation). 

Model Mart in Coulomb [6] [53] [72] [73, 74] [75] Model [76] [35] [36] [67] [77] [78] [79] SR [21] 

510 460 570 495 410 600 500 375 400 360 300 160 300 450 460 

determined in the framework of the potential models and 
the QCD sum rules [11]. 

2.3.1 fBc from potential models. In the framework of the 
nonrelativistic potential models, the leptonic constants of 
the pseudoscalar and vector mesons [see Eqns (59) and (60)] 

(0k(x)^ /?(x) |B*(p ,8 ) ) = ifYMY8fiQxp(ipx) , 

(0\c(x)y5yIAb(x)\Bc(p)) = if?pfiQxp(ipx) , 

are determined by expression (28) 

fv = / p 
3 

nM B C ( 1 S ) 

1 / 2 

« i s (0) 

(78) 

(79) 

(80) 

where R\s(0) is the radial wave function of the lS-state of 
the (be) system, at the origin. The wave function is 
calculated by solving the Schrodinger equation with 
different potentials [5-8 , 10, 54] in the quasipotential 
approach [72] or by solving the Bethe-Salpeter equation 
with instant potential and in the expansion up to the 
second order in quark velocity v/c [73, 74]. 

The values of the leptonic B c meson constant, calculated 
in different potential models and effective Coulomb 
potential with the 'running' constant as, determined in 
Section 2.1, are presented in Table 13. 

Thus, within the accuracy of this approach, the potential 
quark models g ive / B c values which are in a good agreement 
with each other, so that 

/ B

p o t = 500 ± 80 MeV (81) 

2.3.2 fBc from QCD sum rules. In the framework of the 
QCD sum rules [11], expressions (58)-(64) have been 
derived for the vector states. The expressions have been 
considered at q < 0 in the schemes of the spectral density 
moments (64) or with the application of the Borel 
transform [11]. 

As one can see from Eqns (58)-(64), the result of the 
QCD sum rule calculations is determined not only by 
physical parameters such as the quark and meson 
masses, but also by the unphysical parameters of the 
sum rule scheme such as the value of the spectral density 
moment or the Borel transformation parameter. 

In the QCD sum rules, this unphysical dependence of 
t h e / B c value is due to the calculation being performed with 
a finite number of terms in the expansion of the QCD 
perturbation theory for the Wilson coefficients of the unit 
and composite operators. In the calculations, the set of 
composite operators is also restricted. 

Thus, the ambiguity in the choice of the hadronic 
continuum threshold and the parameter of the sum rule 
scheme essentially reduces the reliability of the QCD sum 
rule predictions for the leptonic constants of the vector and 
pseudoscalar B c states. 

Moreover, the nonrelativistic quark motion inside the 
heavy quarkonium v —> 0 leads to the as/u-corrections to 

the perturbative part of the quark current correlators 
becoming the most important, where as is the effective 
Coulomb coupling constant in the heavy quarkonium. 

As is noted in Refs [11, 21, 76], the Coulomb <xs/u-
corrections can be summed up and represented in the 
form of the factor corresponding to the Coulomb wave 
function of the heavy quarks, so that 

F(v) 
47ias 

~3v~ 
1 — exp 

4jca, 
~~3v 

(82) 

where 2v is the relative velocity of the heavy quarks inside 
the quarkonium. The expansion of the factor (82) in the 
first order over as/v 

1 + ^ , (83) 

gives the expression obtained in the first order of the QCD 
perturbation theory [11]. 

Note that the as parameter in Eqn (82) should be on the 
scale of the characteristic quark virtualities in the quarkon­
ium (see Section 2.1), and not on the scale of the quark or 
quarkonium masses, as is sometimes done, thereby decreas­
ing the value of factor (82). 

The choice of the as parameter essentially determines the 
spread of the sum rule predictions for the fBc value (see 
Table 14) 

/ | c

R = 160-570 MeV . (84) 

As one can see from Eqn (84), the ambiguity in the choice 
of the QCD sum rule parameters leads to the essential 
deviations in the results from the fBc estimates (81) in the 
potential models. 

However, as has been noted in Section 2.1, the large 
value of the heavy quark masses AQCD/niQ<^\, the 
nonrelativistic heavy quark motion inside the heavy 
quarkonium v —> 0, and the universal scaling properties 
of the potential in the heavy quarkonium, when the kinetic 
energy of the quarks and the quarkonium state density do 
not depend on the heavy quark flavours [see Eqns (10)-
(15)], allow one to state the scaling relation (17) for the 
leptonic constants of the S-wave quarkonia 

<2 /AA2 

const . 
MX 

M \4/jl) 

Indeed, at ^ Q C D / m Q ^ 1 o n e c a n neglect the q u a r k -
gluon condensate contribution, which is of the order of 
magnitude 0 ( l / m b m c ) (the contribution to the v|/ and T 
leptonic constants is less than 15%). 

At v —> 0 one has to take into account the Coulomb-like 
as/u-corrections in the form of factor (82), so that the 
imaginary part of the correlators for the vector and axial 
quark currents has the form 

^ 2 

(85) I m i 7 v ( ^ ) ~ I m i 7 P ( ^ ) = ^ V 
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where 

vz = \ -
4mhmc 

q2 - (mb - mcf 
0 

Moreover, condition (15) can be used in the specific 
QCD sum rule scheme, so that this scheme excludes the 
dependence of the results on the parameters such as the 
value of the spectral density moment or the Borel para­
meter. 

Indeed, for example, the resonance contribution to the 
hadronic part of the vector current correlator, which is of 
the form 

4 r e s V finM$nS(s-M$n) , (86) 

can be rewritten as 

where n(s) is the number of the vector S-state versus the 
mass, so that 

n{m\) = k . (88) 

Taking the average value for the derivative of the step­
like function, one gets 

ds 
Vn(S) 

dn(s) 
(89) 

and, supposing 

£ l > - * ) ) « I . 

one can, on average, write down 

I m ( i 7 ( h a d r V ) } = I m i 7 Q C V ) , 

so, taking into account the Coulomb factor and neglecting 
power corrections over l / m Q , at the physical points 
s„ = M2 one obtains 

(90) 

(91) 

Mn \4/i) 7i dn ' 

where one has supposed that 

m b + m c « M Bc , 

fvn ~fpn —fn • 

(92) 

(93) 

(94) 

Further, as has been shown in Section 2.1, in the heavy 
quarkonium the value of dn/ dMn does not depend on the 
quark masses [see Eqn (15)], and, with an accuracy up to 
logarithmic corrections, as is a constant value (the last fact 
is also apparent in the flavour independence of the 
Coulomb part of the potential in the Cornell model). 
Therefore, one can draw the conclusion that, in the leading 
approximation, the right-hand side of Eqn (92) is a constant 
value, and there is a scaling relation (17) [21]. This relation 
is valid in the resonant region, where one can neglect the 
contribution by the hadronic continuum. 

Note, scaling relation (17) is in a good agreement with 
the experimental data on the leptonic decay constants of the 
v|/- and T-particles (see Table 6), for which one has 
4/JL/M = 1 [21]. 

The value of the constant on the right-hand side of 
Eqn (17) is in agreement with the estimate when we suppose 

/ d M y 

\ dn 
1 

[ ( M y / — MY) + ( M y / / — M y / ) ] (95) 

and as = 0.36, as in the Cornell model. 
Further, in the limiting case of B- and D-mesons, when 

the heavy quark mass is much greater than the light quark 
mass m 0 > mQ, one has 

f2M 
16as dM 2 

n dn ^ 
(96) 

Then it is evident that at one and the same value of /I one 
gets 

(97) f2M • const . 

Scaling law (97) is very well known in EHQT [14] for 
mesons with a single heavy quark (Qq) and follows, for 
example, from the identity of the B- and D-meson wave 
functions within the limit when an infinitely heavy quark 
can be considered as a static source of gluon field [then 
Eqn (97) follows from Eqn (80)]. 

In our derivation of Eqns (96) and (97) we have 
neglected power corrections over the inverse heavy quark 
mass. Moreover, we have taken the masses of the light 
constituent quark to be 

mn « 330 MeV (98) 

so that this quark has to be considered as nonrelativistic 
v —> 0, and the following conditions apply: 

m Q + m q 
(*) 
( Q q ) ; m q <̂  m Q 

/ v « / p = / . 

(99) 

(100) 

In agreement with Eqns (96) and (98), one finds the 
estimates! 

/ B w = 120 ± 2 0 MeV , 

/ d W =220 ± 3 0 MeV , 

(101) 

(102) 

which are in an agreement with the estimates in the other 
schemes of the QCD sum rules [11, 12]. 

Thus, in the limits of 4/JL/M = 1 and /i/M <̂  1, scaling 
relation (17) is consistent. 

T h e / B c estimate from Eqn (17) contains an uncertainty 
connected with the choice of the ratio for the b- and c-quark 
masses, so that (see Table 14) 

•• 460 ± 60 MeV . (103) 

In Ref. [76] the sum rule scheme with the double Borel 
transform was used. Thus, it allows one to study effects 
related to the power corrections from the gluon con­
densate, corrections due to nonzero quark velocity and 
nonzero binding energy of the quarks in the quarkonium. 

fin Ref. [21] the dependence of the S-wave state density dn/ dMn on 
the reduced mass of the system with the Mart in potential has been 
found by the Bohr - Sommerfeld quantisation, so that at the step from 
(bb) to (bq), the density changes less than about 15%. 
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Indeed, for the set of narrow pseudoscalar states, one 
has the sum rules 

^(mh+mc)2(M2

k-q2) 

I \ ^ I m I l p ( s ) + CG(q2)(^G2) , (104) 

where 

CG(q2) = 
1 

192mbmc q2 

3(3u2 + l ) ( l - u 2 ) 2 

2v5 
I n 

v+l 
v-l 

9v4 + 4vz + 3' 

f =q2 - (mb - m c ) 2 , vz = \ -
4mhmc 

(105) 

(106) 

Applying the Borel operator Lx(—q2) to Eqn (104), one 
gets 

V M k f F k

 2 e x p ( - M 2 T ) 
* = 1 (mb + mc) 

= ^ | ds Im 77P (5) exp (ST) + ( t ) ^ G2 

where 

, ^ r * " + ' ( d 

LT(x) = hm —— — — 

n,X^oo n\ \ ax 

CG{x)=Lx{-q

2)CG{q2) . 

(107) 

(108) 

(109) 

For the exponential on the left-hand side of Eqn (107), 
one uses the Euler-MacLaurin formula 

00 M 4 f 2 

t = i (mb+mc) 

dk 
M4

kf2

kQxp(-M^) 
Jm„ dM k 

n-L 
+ ^ M t

4 / p 2

t e x p ( - M , 2 T ) + . . . (110) 

the order of 10%), and the uncertainty, connected with the 
choice of quark masses, dominates in the error in the 
determination of the fBc value [see Eqn (103)]. 

Thus, we have shown that, in the framework of the QCD 
sum rules, the most reliable estimate of t h e / B c value (103) 
comes from the use of the scaling relation (17) for the leptonic 
decay constants of the quarkonia, and this relation agrees 
very well with the results of the potential models. 

3. Decays of Bc-mesons 
3.1 Lifetime of Bc-mesons 
The processes of Bc-meson decay can be subdivided into 
three classes (Fig. 2): (a) the b-quark decay with the 
spectator c-quark, (b) the c-quark decay with the spectator 
b-quark, (c) the annihilation channel B^ —> / + v z (cs,us), 
/ = e, \i, x. 

The total width is summed from three partial widths 

T(BC -> X) = T(b -> X) + T(c -> X) + r(ann) . (113) 

The simplest estimates with no account for quark 
binding inside the Bc-meson and in the framework of 
the spectator mechanism of the decay for the first and 
second cases, lead to the expressions 

r ( b ^ x ) = G | i ^ i x 9 , 
192it3 

r(c - x ) 
Gl\Vr \2ml 

192it3 
x 5 (114) 

So that m b and mc are chosen to represent correctly the 
spectator parts of the total widths for the B- and D-mesons. 

The width of the annihilation channel equals 

r ( a n n ) = E l ! I V b c | 2 / £ Af b c m ? ( l - £ £ Y c , . , (115) 

where Ct = 1 for the xvx channel and Ct = 3|VC S | 2 for the cs 
channel, and mt is the mass of the heaviest fermion (x or c). 

Note that in the case of nonleptonic decays, considera­
tion of the strong interaction results in a multiplicative factor 
of enhancement to formulae (114) — (115) (see Section 3.2). 

The mentioned widths, calculated with the use of the 
known values of parameters m q , | V b c | = 0.046, | V c s | = 0.96, 
etc., are presented in Table 15. 

Making the second Borel transform LMI(T) on Eqn 
(107) with account of Eqn (110), one finds the expression for 
the leptonic constants of the pseudoscalar (be) states, so that 

2(mb + m c ) 2 dMk 

Ml dk 

^lmn?(M2) + CG\M2)(^G2^ , (111) 

where we have used the following property of the Borel 
operator: 

LT(x)xnQxv(-bx) -^d{"](T-b) . (112) 

The explicit form for the spectral density and Wilson 
coefficients can be found in Ref. [76]. Expression (111) is in 
agreement with the above derivation of scaling relation (17). 

The numerical effect from the above corrections is 
considered to be not large (the power corrections are of 

W 

Figure 2. Diagrams of the B c -meson decays: (a) the c-spectator decay; 
(b) the b-spectator decay; (c) the annihilation. 
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Table 15. The widths (in 10 6 eV) of the inclusive decays of b - and c-quarks in free and bound states (in the B c -meson) and the branching ratios 
(BR in %) of inclusive B c decays. 

Decay mode Free quarks BR Decay mode Free quarks BR 

b —> c + e + v e 62 62 4.7 c —> s + e + + v e 124 74 5.6 
b —> c + | i + v^ 62 62 4.7 c —> s + \i+ + 124 74 5.6 
b —> c + T + V T 14 14 1.0 c —> s + u + d 675 405 30.5 
b -»• c + d + u 248 248 18.7 c —> s + u + s 33 20 1.5 
b —> c + s + u 13 13 1.0 c —> d + e + v 7 4 0.3 
b —> c + s + c 87 87 6.5 c —> d + \i+ + 7 4 0.3 
b -»• c + d + c 5 5 0.4 c -»• d + u + d 39 23 1.7 
B + ^ T + + V T — 63 4.7 B+ c + s — 162 12.2 
B+ c + d — 8 0.6 B+ all — 1328 100 

Figure 3. The Dalitz diagrams for the semileptonic decays: ( 7 ) 
B c ^ B * l v , ( 2 ) B c ^ B s l v , (3) D K*lv, (4) D Klv, ( 5 ) c slv 
(m c = 1.7GeV, ms — 0.55 GeV), (6) c ^ slv (m c = 1.5 GeV, 
ms = 0 . 1 5 GeV); E is the lepton energy, q is the square of the lepton 
pair mass. 

Figure 4. Dalitz diagrams for the semileptonic decays: ( 7 ) B c —> \|/lv, 
( 2 ) B c ^ r | c l v , (3) B ^ D l v , (4) B —> D*lv, ( 5 ) b ^ civ; £ is the 
lepton energy, q is the square of the lepton pair mass. 

Thus, a rough estimate of the lifetime leads to 
t B c w (2 — 5) x 10~1 3 s. So, the fraction of the c-quark 
decay is approximately 50%, the b-quark one is 45%, 
and the annihilation channel is 5%. However, these 
estimates do not take into account the quite strong binding 
of the quarks inside the Bc-meson: corresponding correc­
tions to the estimates can reach about 40% . 

Let us consider this effect in the semileptonic modes of 
decay with the spectator b-quark. The final state of such 
decays generally contains the B^-mesons with the smaller 
phase space of the lepton pair. 

The effect of the phase space decrease is shown in Fig. 3, 
where the kinematic borders of the Dalitz plot for the 

—> B s e + v decay are compared with the borders for the c-
quark and calculated at different values of the c-quark 
mass. As one can see from Fig. 3, the end-point of the 
leptonic spectrum is approximately one and the same in the 
different decays 

Ml -Ml 
£ m a x = ^ 5 l . (116) 

2 M B c 

However, the maximum values of the leptonic pair masses 
# ^ a x are different. 

One can easily show that the spectator model better 
describes the semileptonic decay D —> K. In the case of the 
Bc-meson decay, the admissible kinematical region is 
strongly reduced. With account taken of the phase space 
reduction in the spectator model, one can get [34] 

T(B+ -> X b e + v ) w 0.71 T ( D + -> X s e + v ) . (117) 

The effect of the phase space reduction does not notably 
appear in the case of decays with the spectator c-quark. For 
such decays, as one can see from Fig. 4, the spectator model 
well describes the B-meson decays as well as the Bc-meson 
decays, and one can believe that 

r(B+ - X c e + v ) « T ( B + - X c e + v) . (118) 

Another possible manner of estimation is related to the 
summation of the exclusive decays into the channels B s e + v 
and B*e+v. In agreement with the same kinematical 
arguments, their sum is the main fraction of the semi­
leptonic decays [82]. If one neglects the decaying quark 
momentum inside the Bc-meson, the admissible region of 
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masses in the inclusive semileptonic decay Q —> Q 'ev is 
varied within the limits 

m21 
(mq, + m s p ) 2 < M2 < m2/ + m 2

p + m,, —— (119) 

From approximate formula (119) with the use of the 
constituent quark masses, one can see that the admissible 
M x region in the decay B c —> X c is varied in the limit of 
200 MeV and, hence, the final state is saturated by the 
lowest states. For the considered case (mq = mc = 1.7 GeV, 
m q ' — m s — 0.55 GeV and m s p = m b =5.1 GeV), this 
region has widths equal to 340 MeV, that is less than 
the expected difference of masses between the basic state 
and the first orbital excitation of the bs system. 

Thus, one can consider that 

r(B+ -> X b e + v ) « T(BC -> B s + ev) + T(BC -> Bj + ev) . 
(120) 

The results of different quark models for the semi­
leptonic B c decays (see Section 3.2) lead to the following 
sum of the widths of decays into B s and B*: 

T(BC -> B s + ev) + T(BC -> B: + ev) 

« (60 ± 7) x 10"1 5 GeV « 0 .5r(D + -> X s e + v ) .(121) 

Accounting for the current theoretical uncertainties, one 
can calculate 

T(BC -> Xfe + e + v) = (0.6 ± 0.2)r(D + -> X s e + v ) . (122) 

For the c-spectator decays, the calculations in quark 
models and QCD sum rules show that the semileptonic 
decays are saturated by the transitions into the lowest r | c -
and J/v|/-states, i.e. 

r ( B + - » X c e+v) 

« T[B + - (nc + J/vk)e+v] « T(B+ - X c e + v ) . (123) 

The probabilities of inclusive decays are presented in 
Table 15 with these factors taken into account. The widths 
of the hadronic inclusive decays, which are discussed in 
detail in Section 3.3, are also shown. 

The compact sizes of Bc-mesons lead to the large value 
of the weak decay constant ( / B c w 500 MeV), which 
enforces the role of the annihilation channel into the 
massive fermions c, x. The decays of Bc-mesons into the 
light fermions are suppressed because they are forbidden by 
the spirality. Although the use of the effective masses for the 
u- and d-quarks instead of the current masses can increase 
the width of the annihilation channel into ud, the latter will 
yet be much less than the width into the heavy massive 
fermions. In agreement with Eqn (115), conservative esti­
mates of the annihila-tion decay probabilities are presented 
in Table 15. 

Thus, the consideration of three types of processes for 
the Bc-meson decay leads to the lifetime estimate 

T B c « 5 x 10"1 3 s 

with the following approximate sharing of branching 
fractions: 37%, 45%, and 18%, corresponding to the c-
spectator mechanism, the b-spectator mechanism, and 
annihilation, respectively. 

The uncertainty in the estimation of the Bc-meson 
lifetime is generally related to the choice of quark 
masses. The mass of b-quark m b = 4.9 GeV is chosen 
so that one can describe the B-meson lifetime in the 
framework of the spectator mechanism. Note that the 
differences of the lifetimes for the charged and neutral 
B-mesons are insignificant and, hence, the given choice of 
the mass is sufficiently unambiguous. For the D-mesons, 
this is not the case, since the lifetimes of D+- and D°-mesons 
differ by a factor of two. 

Nevertheless, there is a more reliable way to obtain the 
c-quark mass, and this is the consideration of the semi­
leptonic decays of D-mesons. Indeed, the value 
mc = 1.5 GeV in the spectator mechanism well describes 
the decays D + —> K°e + v and D° —> K~e + v , whose widths 
are approximately equal to each other. Note, at any other 
reasonable choice of mc (from the total widths, say), the 
error in the Bc-meson lifetime will not be large, since the 
summed branching ratio of the Bc-meson decays due to the 
c-quark decays is about 40%. 

3.2 Semileptonic decays of B c-mesons 
3.2.1 Quark models. The semileptonic decays of Bc-mesons 
are considered in Refs [30, 32, 34] in the framework of 
quark models. A detailed study of the Bc-meson decays in 
the quark model of the WSB relativistic oscillator [71] was 
first made in Ref. [32] and further in Ref. [34], where the 
ISGW quark model [70] was also used. The covariant 
description approach, proposed earlier for the composed 
quarkonium model, is developed in Ref. [30]. 

Consider the amplitude of the B + —> M x e + v e transition 
with the weak decay of quark 1 into quark 2 (Fig. 5) 

(124) 

where G F is the Fermi constant, V 1 2 is an element of the 
Kobayashi-Maskawa matrix. The lepton current is 
determined by the expression 

(125) 
where qx and q2 are the lepton and neutrino momenta, 
respectively, (qx + q2)2 = t. 

W 

(*) 

Figure 5. Diagram of the semileptonic decay of the B c -meson. 

The Hp quantity in Eqn (124) is the matrix element of 
the hadronic current 

JIA = VIA-AIA = Qlyli(l-y5)Q2 . (126) 

The matrix element for the Bc-meson decay into the 
pseudoscalar state P can be written down in the form 

<Bc(p)|A„|P(*)> = F+(t)(p + *)„ + F_(t)(p - *)„ ,(127) 
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and for the transition into the vector meson V with mass 
MY and polarisation A, one has 

<B c(p)|7„|V(*, X)) 

= _(M + Mv)Ax{t)8W + j ^ L - (8Wp) (p + *)„ 

(128) 

Relations (127) and (128) define the form factors of the 
B + —> M x e + v e transitions, so, for the massless leptons, F_ 
and A 3 do not contribute to matrix element (124). 

In the covariant model of the quarkonium (see Appen­
dix I), one can easily find 

F+(t) = \ ( m , + I B 2 ) ^ - L { p ( 0 , (129) 
2 \ M m2 

F-(t) = - \ ( m i - m 2 + 2 m s p ) ^ ^ ? ( t ) . (130) 

Here m s p is the mass of the spectator quark (see Fig. 5), 
and the function £x(0 n a s the form 

_ , , / 2cocox \ 3 / 2 f 
co2 + a>x MM x 

+ — ( \ ' m a x ~ A l 1 (131) 

where M x is the recoil meson mass, cox is the wave 
function parameter (1.6)-(1.8) for the recoil meson, and 

t m a . = (M -Mx)2 

is the maximal square of the lepton pair mass. 
For the vector state one has M v = Mx, and 

Ax{t) 
1 M 2 + My — t + 2M (m2 — m s p ) 
2 M + My 

1 
M m 2 

M O , 

(134) 

A 2 ( 0 i ( M + M v ) ( l - ^ 

• 1 ( M + M v ) ( l + ^ 

1 
M m 2 

M m2 

M O . (135) 

M v 1 M O - d 3 6 ) 

It is interesting to note that the exponential form of the 
dependence of the form factor on t (131) can be quite 
accurately represented, in the admissible kinematical region, 
by the form corresponding to the model of meson 
dominance 

&(') = &(<>) 
l 

1 " t/m2 
(137) 

where mk are presented in Table 16. 
One can see from Eqns (130)-(136), that the form 

factors [excepting A ^ ) ] are also representable in 
form (137), and the degeneration takes place 

if cop & cov, M P « Mw. 

(138) 

Table 16. The mk parameters (in GeV) for the £k(t) representation in 
Eqn (137). 

Mode B+ \[re+ve B+ n c e + v e B+ B s e + v e B+ - B*SO+vc 

™k 
6.3 6.45 1.9 1.95 

As for the Ax(t) form factor, it can be represented in the 
form 

Ai(t) = <p(f) 

where 

mA. = m v , 

1 
1 - t/m2

A 

- a | A i ( Q ) 

i ' 

_ 1 M2+M$-m2

Ai +2M(m2-msp) 
A l ( 0 ) - 2 

V M TYL2 

ax = A 1 ( 0 ) - A 1 ' ( 0 ) . 

(139) 

(140) 

(141) 

(142) 

The values of the transition form factors at zero mass of 
the lepton pair are shown in Table 17. The numerical 
calculations in [30] have been performed for the mass values 

m b = 4 . 9 GeV, mc = 1.6 GeV, ms = 0.5 — 0.55 GeV.(143) 

The element of the Kobayashi-Maskawa matrix has been 
taken equal to V b c = 0.046. 

Table 17. The form factors of the semileptonic B c decays. 

(132) 
Mode *"+(<>) Ai(0) A { ( 0 ) A 2 (0 ) v(o) 

obtain B+ \[re+ve 
— 0.73 0.14 0.67 1.31 

n c e + v e 0.89 — — — — 

(133) B+ B s e + v e 0.61 — — — 

B+ B : e + v e — 0.52 — - 2 . 7 9 5.03 

T h e / B c constant in Ref. [30] has been varied in the limits 

f B c = 360-570 MeV , (144) 

where the upper limit corresponds to the values obtained in 
the nonrelativistic potential model [34, 52], in the parton 
model [75], and in the QCD sum rules [36, 76]. The lower 
limit corresponds to the value obtained in the Borel sum 
rules of QCD [36, 76]. Note that for the B+ -> v|/e+ve 

decay, the result weakly depends on the f B c choice (3%). 
It has also been supposed that 

fr\c —/\|/ > 

and the values 

/ B s = 100-110 MeV , 

fB* = 160-180 MeV , 

(145) 

(146) 

(147) 

have been varied, which does not contradict the estimates 
made in the QCD sum rules [12]. 

Note that for the semileptonic Bc-meson decays 
B+ —> M x e + v e , where M x is the recoil meson, the explicit 
covariance of the model allows one to take into account 
corrections to the velocity of the M x meson. As for 
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corrections due to the quark motion inside the meson, they 
are taken into account by means of the difference between 
the constituent and current masses of the quark. 

In the ISGW model for the meson state vector, the 
following nonrelativistic expression is used: 

| X ( P x ; * x ) ) <T>x(p)LML)£i 

Px +p> s q — Px -p>s 

decays with large recoil momenta, one cannot choose a 
system where both mesons (the initial one and the decay 
product) would be at rest, so that one has a kinematical 
uncertainty in the form factor values. 

For instance, in the ISGW model the form factor 
dependence on the invariant mass of lepton pair t is 
determined by the function 

(148) { I Q S W ( 0 = 
3 / 2 

exp 2M>Mf £ 2 ( # + # ) 
,(150) 

where )£™s is the spin wave function of the q u a r k -
antiquark pair in the state with the total spin S and the 
spin projection ms, C j ^ s is the coupling between the 
orbital momentum L and the total spin S of the system 
with the total momentum s x , <t>x{p)LmL is the correspond­
ing nonrelativistic wave function, px is the meson 
momentum, p is the relative momentum of quarks. In 
the considered model, the meson mass is equal to the sum 
of quark masses only in the approximation of infinitely 
narrow wave packets. 

As the probe functions, the nonrelativistic oscillator 
wave functions have been chosen: 

i s 

'7T-3/4 exp 

i p 

7T-3/4 rexp 
&r2 

•2S 
1 / 2 ^ 

j i 3 / 4 
exp 

The ft parameters have been determined by the variational 
principle and the Cornell potential [5]. 

In the WSB model, the mesons are considered as a 
relativistic bound state of a quark qx and an antiquark q 2 in 
the system of infinitely large momentum [71]: 

\P, m, j , jz) = V2(2nf2 £ [ d'Pl d'p2 Sl(P - P l -p2) 

xLiJz(plt, x, sl9 s2)a[l (px)bs

2

2 (p2)|0> , 

where P^ = (P 0 , 0, 0, P), and at P —> oo, x = P\z/p 
corresponds to the momentum fraction carried out by 
the nonspectator quark, plt is the transverse momentum. 

For the orbital part of the wave function, the solution of 
the relativistic oscillator is used: 

~ 2 

Lm(pt,x) =NmyJx{\ -X) e X p ( - ^ 2 ^ 

x exp m 
~2o? 2m 

(149) 

In both models, the calculation of hadronic matrix 
elements (Bc(p)|7u |X(^)) corresponds to the calculation 
of the matrix elements of the quark currents between the 
quark states and the overlapping corresponding wave 
functions. 

In the potential models, the bound state of two particles 
is described by the wave function whose argument is the 
relative momentum of the particle motion relative to the 
centre of mass of the meson system. However, in the case of 

where fi{ and /?f are the parameters of wave functions for 
the initial and final mesons, m s p is the spectator quark 
mass, and M-x and M f are the model parameters (the masses 
of the initial and final 'mock-mesons) [70]. 

The k parameter in Eqn (150) is introduced synthetically 
for the correct description of the electromagnetic form 
factor of 7i-meson (k = 0.7). So, the authors of Ref. [70] 
related this factor with possible relativistic corrections at 
large recoil momenta. 

Recently in Ref. [83], a model for the description of the 
heavy quarkonium decays has been offered. In this model, 
the required behaviour of form factors (at k = 0.7) is 
automatic with no introduction of additional parameters. 
In contrast to the above approaches (the covariant quark 
model and ISGW model), the nonrelativistic approximation 
is performed for the hadronic matrix element as a whole, 
but it is not performed separately for the wave functions of 
just the initial and final states. At small recoil momenta, this 
formalism practically repeats the ISGW model, but at large 
momenta there are some differences in the structure of the 
spin part of the wave function and the argument of the wave 
function of the final meson. So, the latter change is the most 
important and leads to the difference in the form factor 
dependence on t [84]. 

The transition form factors in the ISGW model depend 
on /?B and /?B .For its values, /?B = 0.82 and /?B = 0.51 are 
obtained from the variational principle. Since the consid­
ered model is the nonrelativistic approximation, the form 
factors are the most accurately predicted at q = qm2i^ = 
( M B — M x ) 2 (at the maximal value of the lepton pair 
invariant mass). 

One can calculate the form factors in the region of low 
q values in two different ways: by the use of the 
exponential dependence on q as in ISGW or in the pole 
model of meson dominance. The results for the decay 
widths, calculated in these ways, are presented in 
Table 18. The additional parameter in the ISGW model 
is k = 1 [see Eqn (150)]. 

The results obtained in [83] are also presented in the 
same table. In the constituent quark model, the exponential 
dependence of the form factors can be represented in the 
pole form. As one can see from Table 18, in the ISGW 
model for the decays, where the c-quark is the spectator, the 
exponential dependence and the pole model give different 
results. 

In the WSB model, the form factor values at q = 0 are 
predicted in terms of the co parameter [see Eqn (149)], which 
corresponds to the average transverse momentum of quarks 
inside the meson. In Ref. [34] the co values were equal to the 
average p2 values, estimated in the ISGW model (cox « /?x). 
Note that the co parameter is external for the WSB model. 

The results of these approaches are presented in 
Table 18. 
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Table 18. The partial widths (in 10~ eV) of the semileptonic B c 

decays (ISGW1 and ISGW2 are the results of the ISGW model with 
the exponential dependence of the form factors and the pole model, 
respectively). 

Mode ISGW1 ISGW2 WSB [34] [30] [83] 
[34] [34] 

B + V[,e+VE 38.5 53.1 21.8 37.3 34.4 

R | c e + V E 10.6 16.1 16.5 20.4 14.2 

B + ^ D ° e + V E 0.033 0.12 0.002 — 0.094 

B + ^ D ° * e + V E 0.13 0.32 0.011 — 0.268 

B+ - v K 2 S ) e + V E — — — — 1.45 

B+ - T! c 'e + V E — — — — 0.727 

B+ B s e + V E 16.4 17.9 11.1 16 ± 4 26.6 

B+ - B : e + V E 40.9 46.3 43.7 41 ± 6 44.0 

B+ B d e + V E 1.0 1.1 0.5 — 2.30 

B+ B d € + V E 2.5 3.0 2.9 — 3.32 

Note that the relative yield of the pseudoscalar states 
with respect to the vector states is much greater in Ref. [83], 
where r*/7" ~ 2 in comparison with r * / 7 " ~ 3 — 4 in the 
ISGW model. This leads to the fact that, for example, the 
exclusive decay modes B+ —> v|/(r| c)e+ve practically saturate 
the b —> cev transition. This feature is analogous to the 
consideration of the B —> D ^ e v decay, which also saturates 
free b-quark decay. The decays into the excited states and 
many-particle modes are suppressed. 

As one can see, these three models for decays with the 
spectator b-quark, give the close values 

T ( B c ^ B s + e + v ) + r ( B c • B*s + e + v) 

= (60 ± 7 ) x 10"6 eV. 

Note also that in the case of the heavy quarkonium B c , 
the application of the nonrelativistic wave function instead 
of the wave function of the relativistic oscillator in the 
meson of the WSB model seems to be more acceptable. This 
circumstance and uncertainty in co perhaps explains why the 
WSB model gives an underestimated value for the width of 
the B+ —> J/v|/ + e + v decay. 

3.2.2 B+ ^ J / * F (nc) e + v decay in QCD sum rules. The 
most suitable for the registration modes of the B c decays 
are the semileptonic or hadronic transitions with the J/v|/-
particle in the final state. But in the QCD sum rules 
(SR) [30, 36, 35] and in the quark models, one found 
different results both for the widths of the corresponding 
decays and for the form factors of the transitions; 
although, in the framework of the separate approach the 
calculations performed in different ways coincided with 
each other. Recently in Ref. [31], we have shown that the 
existing discrepancy can be cancelled by the taking into 
account of the higher QCD corrections in SR. 

The widths of the semileptonic B c decays are defined, in 
general, by the form factors F+9 V9 A l 9 and A 2 [see 
Eqns (127) and (128)]. Following the notation of 
Ref. [31], the form factors (127) and (128) are redefined 
as follows: 

f+=F+9 F 0

A = ( M B c + M v ) A 1 

77 A ^ 2 Fv = 
V 

For the calculation of these form factors in the QCD 
SR, let us consider the three-point functions 

n^Pu pi, q) = i 2 d x dy e x P Kpi* -Piy) 

x (0\T{c(x)y5c(x), V„(0), b(y)y5c(y)}\0) , (151) 

nJ;A(pu pi> q) = { 2 J d x dy e x P Hpi* -p\y) 

x<0 |r{c(x)yvc(x), jJ>A(0)9 b(y)y5c(y)}\0) . (152) 

We introduce the Lorentz structures in the correlators: 

nll = n+(Pl+p2)fl + n_q)l, 

r r V N X B 
"/iv = inv^ml!P2P[ , 

n% = intgtlv+ntp^p\ + n^P\ 

+n$p£pl + niP?pl . 

(153) 

(154) 

(155) 

The form factors / + , F v , and F+ are determined 
by the amplitudes 77+, 77v, 77A and 77+ = (77! +77 2 ) /2 , 
respectively. For the amplitudes, one can write down the 
double dispersion relation 

1 f Pj(sl9s29Q2) 

(2TT)2 J ( ^ i - p \ ) { s 2 - p \ 
where Q2 = -q > 0. 

The integration region in Eqn (156) is determined by the 
condition 

dSl ds2 , (156) 

-1 < 
2sls2 + (sl+s2-q ){ml-

< 1 (157) 
£'\sx, s2, q2)Xll2{ml, su m2

h) 
where A(xl 9 x2, x3) = (x\ + x 2 — x 3 ) 2 — Axxx2. 

In accordance with the general ideology of the QCD 
sum rules [11], the right-hand (theoretical) side of Eqn (156) 
can be calculated at large euclidian p\ and p\ values by the 
use of the operator product expansion (OPE). The 
perturbative parts of the corresponding spectral densities 
(the unit operator in OPE) of the one-loop approximation 
are presented in Appendix II. Since we are considering 
systems composed of heavy quarks, one can neglect the 
power corrections [36]. 

Consider the physical part of SR. As has been already 
mentioned in the consideration of the axial constant of B c , 
there are two approaches. In the first one, one assumes that 
the physical part includes the contribution of the lowest 
mesons and the continuum that is approximated by the 
perturbative part of the spectral function from some 
threshold values s\ and SQ [35, 36]. The contribution of 
the higher excitations and the continuum is suppressed 
because of the Borel transformations over two variables 
—p\ and —pi. The numerical results obtained the same way 
as in Refs [35, 36] are presented below. 

In the second way, one saturates the spectral density by 
an infinite number of narrow resonances [30], so that 

P+(sl9s29 Q2) = (2K)2 Y,fi 
Mi M J'2 

m b + mc 2mc 

xd(Sl-M£)S(s2-Mj2

c) (158) 
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Pv(si,S2, G 2 )=2(2TI) 2 J^f, ° m b + w c 

x5(Sl-Mil)5(s2-Mi2) , (159) 

Pi 
Ml M J2 

q2) = (2*)2 E / b c ^ + ( e 2 ) 

x 5(5! - M f j 8(s2 - MJl) . (160) 
Substituting the expressions for the spectral densities 
(158)-(160) in the dispersion relations for correla­
tors (156) on the one hand, and their perturbative values 
on the other, one gets the corresponding sum rules. 

Applying the procedure described in Appendix III for 
both sums over the resonances, one obtains for the form 
factors under consideration: 

8m c (m b + mc) dMgc dM ^ 
fll(Q2) 

Mk fk fl 

1 

dk dl 

p+(m'2,m*,q2), 

F k i ( N 2 , 2 K + mc)gj, dM^ dM 
Mg fl/f' f k H t A l 

(161) 

dk dl 

pv(Mk2,M$,Q2), 
( 2 7 1 ) 

2 , _ 4 ( w b + m c ) 4 dM^ dMJ, 
M^M'^fl dk dl 

;^-2p0+(M£2,M$,Q2). 
(2K) 

(162) 

(163) 

Choosing the k and / values, one can extract the transitions 
between the given resonances. At k = I = 1, one gets the 
required form factors for the B+ —> J/v|/(r| c)e+v decays. 

Thus, we use the phenomenological parameters 
dMk/dk instead of the additional parameters such as 
the continuum thresholds. As has been mentioned, the 
former is, in a sense, the density of the quarkonium states 
with the given quantum numbers. One can quite accurately 
calculate these factors. The masses of the radial excitations 
of v|/ are known experimentally [15], and for the B c and r| c 

systems composed of heavy quarks, one can use the 
predictions of the potential models [5-10, 52, 57-66]. 

The dMk/dk values at k = 1 for the systems under 
consideration, are presented in Table 19. 

Let us choose the following values of the parameters: 
fBc = 360 M e V , = 330 MeV [36, 76], m b = 4.6 ± 0.1 GeV, 
mc = 1.4 ± 0.05 GeV, g J / v | / = 8.1 [from the data on 
R(J/v|/ —> e + e - ) ] . For the axial constant, we choose 
360 MeV [30] instead of 460 MeV, to compare the form 
factor values with the results of Ref. [36]. The Bc-meson 
mass will be varied from 6.245 to 6.284 GeV (the data of the 
different potential models). Note that with this choice of 
parameters we do not depart from the integration 
region (157). In Ref. [36] M B c = 6.35 GeV was used. 

Table 19. The derivaties dMk/dk (in GeV) for the lowest states at 
k = \. 

Quarkonium 

dMk/dk 

The values of form factors obtained in Refs [30, 36, 35] 
at Q2 = 0 are shown in Table 20. The deviation from the 
central values in Table 20 corresponds to the variation of 
the quark and Bc-meson masses within the limits mentioned 
above (for Ref. [30]). As in the case of the potential models, 
the SR predictions agree with each other. 

Table 20. The form factors of the B c —> J/\ | /(r | c )ev transitions at 
e 2 = O. 

/ + ( 0 ) F v ( 0 ) / G e V _ 1 F ^ ( 0 ) / G e V _ 1 F 0

A ( 0 ) / G e V Ref. 

0.23±0.01 0.035±0.03 
0.20±0.02 0.04 ±0.01 
0.55±0.1 0.048±0.007 

-0.024±0.002 
-0.03 ±0.01 
-0.030±0.003 

2.0±0.2 
2.5±0.3 
3.0±0.5 

[30] 
[36] 
[35] 

In Ref. [30], the form factors have the following pole 
behaviour: 

HQ2) = 
F,-(0) 

1 + Q2/mU 
(164) 

where m p o l e = 6.3 -6.4 GeV, and ^(Q2) = \+atQ2. The 
representation of / + , + > ^ v > F n

A and F~ by the form (161)-
(163) gives the following at values, which are quite low and 
equal to -0.025, -0.007, -0.012, and -0.02, respectively. 
The behaviour considered above hardly differs from the 
ordinary pole behaviour [30], where at = 0. The results for 
the transition widths are presented in Table 21. 

Table 21. The widths (in 1 0 - 6 eV) of the semileptonic B c decays in the 
QCD sum rules with no account of a s /u-corrections 

Mode [30] [36] [35] 

B+ J/^/e+v 4.6 7 10.5 
B+ T!ce+v 1.4 1 9 

As one can see from Tables 20 and 21, the results of the 
Borel SR are, in general, in good agreement with the results 
of the considered approach within the accuracy of the 
model. The widths obtained in Ref. [35] are greater than in 
Refs [30, 36], since in Ref. [35] the g2-dependence of the 
transition form factors strongly differs from the behaviour 
expected in the meson dominance model. 

The deviation from the quark models is related, from 
our point of view, to that in the calculations of the 
transition form factors in the QCD sum rules; one has 
to account for as/u-corrections, where v is the relative 
velocity of the quarks inside the meson. For the heavy 
quarkonia, where the velocity of the quark motion is small, 
such corrections, corresponding to Coulomb-like interac­
tions (Fig. 6), can play an essential role [31]. 

0.75 0.75 0.76 

qm nc, J/\|/ 

Figure 6. The Coulomb corrections in the semileptonic B c -meson 
decay. 
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Indeed, the spectral densities pt(si, s 2 , Q2), determining 
the B c decay form factors, are calculated near the threshold 
Si = M g c , s 2 = M 2 ^ . When the recoil meson momentum is 
small, the calculation of the ladder diagrams in the formalism 
of the nonrelativistic quantum mechanics (see Ref. [17], 
Fig. 5) leads to the finite renormalisation of p, so that 

Pi(S\>S2> G m a x ) — C Pi(sl>S2> G m a x ) •> 

where the factor C has the form 

C = 
( 0 ) 9 ^ ( 0 ) 

^: e (o)^:%(o) 

(165) 

(166) 

and *p c ' f r e e (0) are the Coulomb and free wave functions of 
quarks, so that 

2 47ias 

<Ffree(0) 
1 — exp 

47iag (167) 

For the two-point quark correlators, determining the 
decay constants / of the heavy quarkonia v|/, T, B c , the 
consideration of factor (166) led to the essential enhance­
ment of / , so that one observes agreement with the 
experimental data on and / T . Note that the expansion 
in Eqn (167) over a s /u —> 0 leads exactly to the dominant 
term appearing in account of the one-loop as-corrections to 
the two-point correlator of currents. Moreover, these 
corrections have been taken into account in the evaluation 
off for the three-point correlators, but one did not take into 
account the loop corrections in the determination of the 
three-point spectral densities. 

For the sake of consistency, one should either ignore the 
as-corrections in the evaluation of / as well as in the 
determination of p, or one should take into account these 
corrections in both cases. As one can see, for example, from 
Eqn (161), one can write down 

f+(Q2) 
8mc(mb + m c )C 

dMg dM^ 1 ( 0 ) / , 9 n ? N 

x ^ ^ ( ^ p " ( < ' < ' e ) ' ( 1 6 8 ) 

where the and p ^ values are calculated with no 
account for the as-corrections, and the factors C appear 
because of Coulomb-like corrections and are defined in 
Eqns (166), (167). It is evident that 

p 7 ^ = 1 - < 1 6 9 > 

Thus, in the determination of the transition form 
factors, we can use the ' b a r e ' / a n d p quantities, calculated 
in the zero approximation over as [85], instead of that, say, 
done in Ref. [36], where p ^ was used without the C factor 
and the / constants with the as-corrections taken into 
account, (i.e. with the factors C B c and C^^) were 
instantaneously used. 

As a result, one gets the following values for the form 
factors /+ and F 0

A [31]: 

/+(0) = 0.85 ± 0.15 , F 0

A = 6.5 ± 1 GeV . 

For the corresponding widths, one has found [31] 

T(B+ -> v^e+v) « 44 x 10"6 eV , 

T(B+ -> r | c e + v ) w 15 x 10"6 eV . 

Note that we have neglected the contributions of the form 
factors FY and in the decay B c —> J/v|/ev. This can result 
in an overestimation of the value of the widths of up to 
10% - 2 0 % . One can make agreement between the obtained 
values of the widths and the results of the quark models 
(see Table 18) within the limits of the theoretical 
uncertainties of the methods used. 

Comparing the results of the QCD SR and the quark 
models, one can accept as a central value of the B c —> J/v|/ev 
decay width (with an accuracy of about 40%) 

T(BC -> J/\|/ev) « 40 x 10"6 eV , 

which corresponds to a branching fraction equal to 3%. 
Then the relative probability of a three-lepton yield in B c 

decays, when two of them reconstruct J/v|/, is 

BR(B+ - ( l + R ^ l ' + v ) « 8 x IF)" 3 , 

where /, / ' denotes e or \i. 

3.2.3 Approximate spin symmetry. In the bound state, the 
heavy quark virtualities are much less than their masses, i.e. 
the following kinematic expansion for the quark momen­
tum pq is accessible 

p^=m^ + k \ (170) 

so that 

vkttO, \k2\<m (171) 

Then, in the system where u = ( l , 0 ) , the heavy quark 
Hamiltonian in a gluon field of an external source has the 
form 

(172) KL < 7 - # / 1 
H = NIQ + V(r) + 7 ^ r + g^ + CT 2m Q ' ° 2 m 0 ' \m2 

so that in the limit ^LQCD ^ M Q > the spin-flavour symmetry 
EHQT [14] occurs for hadrons with a single heavy quark. 

For the heavy quarkonium, one has purely phenomen­
ologically that the kinetic energy is practically independent 
of their flavours; however, the value of the potential energy 
term V(r) is determined by the average distance between the 
heavy quarks. This distance depends on the quark masses, 
i.e. the flavours. Therefore, there is no flavour symmetry of 
the wave functions in the heavy quarkonium. However, the 
magnetic field of the heavy quark is determined by its motion 
velocity (as well as magnetic moment). The quark motion is 
nonrelativistic in the heavy quarkonium, so that 

B~0(v) - 0 ( — ) . (173) 
\MQJ 

From Eqns (172) and (173) it follows that the spin-
dependent potential in the heavy quarkonium appears in 
the second order over the inverse heavy quark masses (see 
Section 2) 

1 
' SD O (174) 

Thus, in the leading approximation for the heavy 
quarkonium, one can neglect the spin-dependent forces 
in comparison with the kinetic energy and the non­
relativistic potential. This means that in this 
approximation the quark spin is decoupled from inter­
action with the gluons of low virtualities, therefore the 
masses of the ^L7-quarkonium states are degenerated over 

and these states have identical wave functions. 
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Thus, there is an approximate spin symmetry for the 
heavy quarks in the heavy quarkonium. 

Further, let us consider the matrix element 

M = (nsLJ(QQ,)\r\h)9 (175) 

where r is the operator of quark currents, h is a state. Then 
the spin symmetry means that the action of spin operators 
of the heavy quark is factorised, and the matrix element M, 
obtained by the action of the quark Q spin (or by the 
antiquark Q ' spin) 

S ^ = \ ^ v \ a ^ , C ^ = A (176) 

is related to the matrix element M by the equation 

M = (nsLj(QQ')\S?r\h) = Y,CJss-{nS'LAQQ')\r\h) , 

(177) 

where M is the sum of the matrix elements with and 
C// , are defined by the rules for the spin operator action. 

For the semileptonic B+ —> r|c(v|/)l+v decays, the spin 
symmetry is valid at the point of zero recoil of r|c(v|/). 
Indeed, in this case the spectator c-quark and the c-quark, 
produced in the weak decay of the b-quark, are practically 
at rest with respect to each other so, binding into the state, 
they interact with the low virtualities characteristic of the 
heavy quarkonium. At a nonzero velocity of the c-quark, it 
must exchange with the c-quark by a momentum compar­
able to its mass in order to make the bound state, where 
their velocities are close. Thus, at the nonzero meson recoil, 
the gluons with high virtualities can shift the heavy quark 
spin, and the spin symmetry does not appear. 

At the zero recoil of the charmonium vQc = v^^, in the 
covariant amplitude of the weak current, the nonzero 
contributions are given by Ax(t)9 F±(t) at t = tmax9 and 
the heavy quark spin symmetry means that 

( M B c + M T 1 J F+ + ( M B c - M J F_ = ( M B c + M^)Al9 

t = t m a x 9 M^=M^. (178) 

Thus, in the approximation of zero spin-dependent 
splitting of the heavy quarkonium, one derives the specific 
relation for the form factors of the semileptonic exclusive B c 

decays into the charmonium. 
Note now that the covariant model considered above 

gives the semileptonic form factor values for the B c decay 
into the charmonium, so that these quantities satisfy the 
symmetry relation (178). In contrast to the decays of the 
heavy hadrons with a single heavy quark, where the form 
factor normalisation at zero recoil is fixed due to the flavour 
symmetry, the normalisation of form factors for the weak 
semileptonic transitions between the heavy quarkonia is 
determined by the overlapping of their wave functions, 
which depend on the quarkonium model. 

For the oscillator wave functions in the considered 
potential model, we get 

(M B c +Mvj /) Ai(tmax) = y/2MBe x 2M^ «J(fmax) , (179) 

where 

^ m a x ) = ( ^ ^ ' \ 080) 

In Ref. [37] the factor £(tmax) was determined in the 
quarkonium model with the Coulomb potential, which is 
quite a rough approximation. 

Note further that in the semileptonic B c decay, the 
lepton pair kinematically has, on average, large invariant 
masses m(/ + v) « 1.9 GeV, thus the Ax form factor con­
tribution dominates, so that in accordance with the meson 
dominance of the ^-dependence of the form factors, 
relation (178), giving Ax(tmax)9 determines, in a sense, the 
matrix element of the semileptonic B+ —> v|/(r|c)l+v decay. 
This feature can be used for the determination of the Bc-
meson mass from the v|/l+ mass spectrum as well as the 
element |V b c | of the Kobayashi-Maskawa matrix. 

3.3 Hadronic decays of Bc-mesons 
Although the semileptonic B+ —> J/v |//i+(e +)v^(ve) decays 
can serve as a good trigger for the B c registration, the 
complete B c reconstruction needs large statistics because of 
the neutrino presence in the decay products. The direct 
measurement of the Bc-meson mass is possible only in the 
hadronic exclusive decays. The preliminary estimates of 
some nonleptonic decay widths with the J/\|/-particle in the 
final state were made in Refs [29, 33, 81] in the framework 
of the potential models. 

The hadronic decays were considered in detail in 
Refs [32, 34, 83]. In Ref. [34] the transition form factors 
were calculated with the use of the WSB and ISGW models, 
mentioned above. In the calculation of the decay widths, the 
reduction of the phase space for the c-spectator decays was 
taken into account (see Section 3.1), in contrast to some 
other calculations [33, 81]. In the following analysis of the 
hadronic decays of the Bc-meson, we will follow the results 
of the latter paper. 

The effective four-fermion Hamiltonian for the non­
leptonic decays of the c- and b-quarks has the form [86] 

Ktt = ̂ jf^v;qi[Cl(fi)Ol + Ci(II)Ol] + h.c. , (181) 

Weff = ^jf^VU [Cb+(fi)Ob

+ + Cb_(fi)Ob_] + h.c., (182) 

where 

o± = [qiayv(i - y5)cp] [ v v ( l - y5)q2s](SaPSyS ± Sa53yP), 

o± = [qiayv(i - y5)bp] [q3yyv(i - ysiQis] (SaPsyS ± Sa53yP). 

The factors C± b (/i) account for the strong corrections to 
the corresponding four-fermion operators because of hard 
gluons [34, 86]. 

The transition amplitudes should not depend on the 
subtraction point \i if one consistently calculates them in the 
perturbation theory, i.e. one constructs the corresponding 
functions of the initial and final hadronic states in the 
perturbation theory, in accordance with the operators. 

The problem is complicated when one deals with the 
factorisation approximation used for the calculation of the 
matrix elements. In this approximation, one assumes that 
the current is proportional to a single stable or quasistable 
hadronic field, and one calculates its matrix element 
between the vacuum and the corresponding asymptotic 
hadronic state; this procedure gives a value proportional 
to the decay constant of the hadron. After that, the 
amplitude of the weak decay is factorised and is completely 
determined by the hadronic matrix element of another 
current that can be calculated by the use of a model, as 
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Table 22. The widths (in 10 6 eV) of two-particle hadronic b-spectator decays ( M B c = 6.27 GeV, M B = 5.39 GeV, M B * = 5.45 GeV). 

Decay mode WSB ax = 1.23 
a 2 = 0.33 

ISGW ax = 1.23 
a 2 = 0.33 

[83] ax = 1.12 
a2 - - 0 . 2 6 

B + ^ B S + 7 T + a] 31.1 47.8 a ? 44.0 67.7 a\ 58.4 73.3 
B+ B s + p + ^ 12.5 19.2 a ? 20.2 3.1 a\ 44.8 56.1 
B+ B* + n+ a\ 25.6 39.4 a\ 34.7 53.4 a\ 51.6 64.7 
b + - b : + p + a? 115.6 177.8 a\ 152.1 234 a\ 150 188 
B+ ^ B + + K ° a\ 28.2 3.1 a\ 61.4 6.7 a\ 96.5 4.25 
B + ^ B + + K * ° A2 10.0 1.1 a\ 24.1 2.6 a\ 68.2 3.01 
B+ B * + + K° fli 31.0 3.4 ^ 28.3 3.1 ^ 73.3 3.23 
B+ B * + + K*° a\ 147.1 16 a\ 163.8 18 ^ 141 6.23 

B + ^ B ° + 7 r + ^ 0.97 1.49 a ? 1.89 2.9 a\ 3.30 4.14 
B c

+ - B ° + p + a\ 0.94 1.45 a\ 2.14 3.3 a? 5.97 7.48 

B + ^ B * ° + 7 r + ^ 1.58 2.42 a ? 1.28 2.0 a\ 2.90 3.64 
B+ - B*° + p + ^ 8.82 13.6 a ? 8.86 12 a ? 11.9 15.0 

B + ^ B + + 7 r ° a\ 0.48 0.05 a\ 0.95 0.1 1.65 0.074 
B c

+ ^ B + + p ° 0.47 0.05 1.07 0.12 a\ 2.98 0.132 
B+ B + + c o a\ 0.38 0.04 a\ 0.87 0.009 — — 

B + ^ B * + + 7 r ° fli 0.79 0.09 ^ 0.64 0.07 ^ 1.45 0.064 
B+ - B * + + p ° fli 4.41 0.48 ^ 4.43 0.48 a\ 5.96 0.263 

B + —> B * + + c o a\ 3.60 0.39 a\ 3.53 0.38 — — 

B^ —> B s + K + fli 2.18 3.35 a ? 3.28 5 a ? 4.2 5.27 
B^ —> B* -|- K"*" a\ 1.71 2.6 a\ 2.52 3.9 a\ 2.96 3.72 
B c B° + K + — — — — a? 0.255 0.32 
B c B° + K * + — — — — a\ 0.180 0.226 
B c B*° + K + — — — — a ? 0.195 0.244 
B c B*° + K * + 

— — — — a ? 0.374 0.47 

in the case of the semileptonic decays. In this approxima­
tion, the interaction in the final state is neglected. 

Note that the exact factorisation takes place in the 
leading order of the l/Nc expansion [87]. In this approx­
imation, one has to be careful in the choice of the 
subtraction point, since the matrix elements depend on 
\i. (The dependence of coefficients for the four-fermion 
operators of the effective Hamiltonian on the subtraction 
point is not compensated by the functions of the initial and 
final states.) The most suitable choice is \i w mc, since the 
radius of the Bc-meson is determined by the mass of the c-
quark, and the transferred momenta in the decays are about 
mc [34]. 

The anomalous dimensions of the 0\ and Oz_ operators 
at fi = mc have the form 

y± = -— — 0 t AO . (183) 

In the leading logarithm approximation at \i > mc, one 
has [88] 

cc_(n) = [ci(n)Y 

"a s (M w )" 
6 / 2 3 'ocs(ml)' 6 / 2 5 

_as(ml) _as(/i2)_ 

(184) 

with as(mj) = 0.27, as(ml) = 0.19, a s (M^) = 0.11, one has 
the values C+(mc) = 0.80 and C!(m c ) = 1.57. 

When fi > m b , the anomalous dimensions of the C± 
operators are determined by Eqn (183), but when 
mc < fi < m b one finds 

y±: 

271 
N 

4Nt 

(185) 

cb_(n) = 
1 2 / 2 5 

(186) 

(187) 

The numerical values are C b ( m c ) = 0.90 and 
C b ( m c ) = 1.57. 

For the nonleptonic inclusive spectator decays of the 
Bc-meson, the enhancement factor due to the 'dressing' of 
the four-fermion operators by hard gluons is equal to 

3 Ci 2N, 
+ 1 + c ^ 

2Nr 

(188) 

where 3 is the colour factor. For the annihilation decays, 
the corresponding factor equals 

il 2 

c. ' 2Nr, 
+ C_ N,, 

2N, 
(189) 

The widths of the annihilation and inclusive spectator 
decays are presented in Table 15. As has been mentioned, 
the quark masses have the following values: mc = 1.5 GeV, 
m b = 4.9 GeV and ms = 0.15 GeV, i.e. one makes a choice 
that provides a good description both of the semileptonic 
decays of B- and D-mesons and of the total B-meson width. 
The enhancement factors (188) and (189) are calculated in 
the large Nc limit (this approximation gives a good 
description of B- and D-meson decays [71, 89]). For the 
b-spectator decays, one accounts for the phase space 
reduction, in contrast to calculations in Ref. [32]. 

The results of calculations for the widths of exclusive 
decays (here we consider the two-particle states) were 
performed in the models of WSB, ISGW, and Ref. [83], 
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Table 23. The widths (in 10 6 eV) of two-particle hadronic c-spectator 
decays. 

Decay mode ISGW A i = 1.1 * [83] a\ — 1.26 

B c

+ ^ r ] c + 7 r + a] 1.71 2.63 a\ 2.07 3.29 
B c

+ - T l c + p + CL\ 4.04 6.2 CL\ 5.48 8.70 
B+ J/\|/ -h 7 r + CL\ 1.79 2.75 CL\ 1.97 3.14 
B c

+ ^ J / v [ r + p + ax 5.07 7.8 ax 5.95 9.45 
B C

+ ^ T ! C + K + ax 0.127 0.195 ax 0.161 0.256 
B C

+ ^ T ! C + K * + ax 0.203 0.31 ax 0.286 0.453 

B + - J / \ | / + K + CL\ 0.130 0.2 CL\ 0.152 0.242 
B + ^ J / v k + K * + CL\ 0.263 0.4 CL\ 0.324 0.514 
B c \|/(2S) + n+ — — ax 0.251 0.398 
B c v[r(2S) + p + — — ax 0.71 1.13 
B C ^ \ K 2 S ) + K + — — CL\ 0.018 0.029 

B C ^ \ K 2 S ) + K * + — — CL\ 0.038 0.060 

and are presented in Tables 22 and 23. The Cabibbo 
nonsuppressed widths of b-spectator decays are shown in 
Table 22. 

The a\ and a2 coefficients, accounting for the renorma-
lisation of the four-fermion operators, are defined in the 
following way: 

Nr - 1 
a \ = C,+ ^ w h C_ 

a2 = C. 

• 2NC 

Nc + l 
C. 

2NC 

N„- 1 
2NC ~ 2NC 

In the limit Nc —> oo one has 
ax ^ 0 . 5 ( C + + C_) , 

(190) 

(191) 

(192a) 

a2 « 0.5(C + - C_) . (192b) 
The a\ and a2 values used in Refs [34, 83], differ from each 
other because of the different choices for the quark masses 
and the ^4QCD parameter. 

Note that for decays with B-mesons in the final state, 
the contribution of the annihilation and 'penguin' diagrams 
is suppressed as 0 (s in 1 0 9C). As one can see from Table 22, 
the WSB results agree with the ISGW model, and the sum 
of the two-particle decay widths is equal to the total 
inclusive width of the /^-spectator decay (see Table 15). 

The widths in the model of Ref. [83] are slightly greater. 
The reason for the deviation from the results of two other 
models might be the fact that for the b-spectator decays 
there are B- and Bs-mesons in the final state, so that these 
mesons are relativistic systems because of the presence of 
the light quark and, hence, the nonrelativistic approxima­
tion would work poorly. 

Among the c-spectator decays, widths (Table 23) are 
given for the decays, where the WSB and ISGW models 
result in close values and one can neglect the contributions 
of the annihilation and 'penguin' diagrams. As one can see 
from Table 23, the data of the ISGW model agree well with 
the results of the model in Ref. [83]. 

The total inclusive nonleptonic width of the Bc-meson 
decay with the J/v|/-particle in the final state can be obtained 
from the corresponding width of the semileptonic decay: 

Wudfi)) = 3« 2 r(B c - J/^/ev)|Vu d

 1 2 

ud(s) (193) 

In the limit of large NC9 one has 3a\ = 4.6 {ax = 1.18) and 

T(BC - J / v | / X u a ( s ) ) « 190 x If)"6 eV . 

The branching ratio of the B c decay with the J/v|/-particle in 
the final state is 

BR(BC —> J/v|/ + X) w0.2 . 

The WSB and ISGW models give close results for the 
two-particle Bc-meson decays with the B-mesons in the final 
state. Unfortunately, it is complex to detect the Bc-mesons 
in such decay modes, since one has to reconstruct the B-
mesons from the products of their weak decays. The 
B+ —> J / v | / 7 i + decay is more suitable for the detection of 
the Bc-meson and the measurement of its mass [34]. Its 
branching ratio is 

BR(B+ -> J/\|/TT+) « 2 x 10"3 . 

The Bc-meson decays in which CP-violation can be 
observed — B ^ -> (cc)D ± , B c -> Dp (7c) and B c -> D°D S — 
are of a special interest. 

Approximate estimates for the decay branching frac­
tions and the asymmetry parameter of CP-violation were 
obtained in Ref. [80]. The corresponding results are pre­
sented in Table 24. The asymmetry parameter A is defined 
in the following way: 

_ r ( B - - x ) - r ( B + - x ) 
A = r ( B - - x ) + r ( B + - x ) 

(194) 

Table 24. The branching ratios (BR) and asymmetries A for the CP-
violating B c -decays 

X B R ( B + - > X ) A 

M c D * + 1.0 x 10" 4 1.5 x 10" 2 

McD + 1.2 x 10" 4 - 0 . 3 x 10" 2 

J / \ p + 0.5 x 10" 4 0.6 x 10" 2 

D ° p + 2.8 x 10" 5 1.9 x 10" 3 

D + p° 1.6 x 10" 5 3.0 x 10" 3 

D * ° 7 T + 3.3 x 10" 5 1.3 x 10" 3 

D * + 7 T ° 1.8 x 10" 5 2.0 x 10" 3 

D°n+ 1.6 x 10" 6 - 8 . 9 x 10" 3 

D + 7 T ° 0.4 x 10" 6 - 1 3 . 8 x 10" 3 

A large value of the asymmetry is expected in the 
B c —> D*D° decays with the D°-meson, decaying into the 
CP-invariance eigenstate. However, the branching ratio of 
such an event is too low: 

BR(B^ —> D* + D°) w 10"6 . 

The identification of the D*+-meson is also complicated. As 
one can see from Table 24, the best mode for the 
observation of CP-violation in the Bc-meson decay is 
B^ —> (cc)D ± . However, even at the expected statistics of 
the Bc-meson yield in future colliders (about 109 —1011 

events), it is difficult to observe such events because of the 
branching fractions of the (cc)-states and D-meson decays. 

It is difficult to estimate the decay widths, but it is worth 
mentioning Bc-meson decay modes such as B c —> 3DX or 
B c -> Ds(|> and B c -> DK. The B c -> v|/(3S)D decay can be 
of a great interest when v|/(3S) decays into a D-meson pair. 
However, it is probable that this decay width, like the width 
of the decay into three D-mesons, is small because of the 
smallness of the phase space. The B c —> Ds4> decay width 
can be roughly estimated to be of the order of 2% [52], but it 
will be very difficult to observe the Bc-meson in such mode 
because of the complex reconstruction of the Ds-meson. 
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4. Production of Bc-mesons 

The electromagnetic and hadronic production of B c as the 
particle with mixed flavour requires the joint production of 
the heavy quarks b and c. This explains the low value of 
the B c production cross section in comparison with the 
production cross sections of particles from the v|/ and T 
families. On the other hand, the absence of B c decay 
channels into light hadrons because of the strong inter­
actions implies that all bound (be) states are basically 
transformed into the lowest state with a probability close to 
unity because of radiative transitions (see Section 2). 

From the theoretical point of view, the production of 
small Bc-mesons takes place with virtualities of the order of 
the sum of the heavy quark mass. This fact assures the 
applicability of perturbation theory to the processes of B c 

production. The nonperturbative part, associated with the 
B c wave function, is quite reliably calculated in this case. 

4.1 Bc-meson production in e+e~-annihilation 
The simplest example of B c production in e+e~-annihila-
tion (in the region of a Z peak) is described by the 
diagrams in Fig. 7. 

Figure 7. Diagrams of single B c -meson production in e e -annihila­
tion. 

The matrix element of the (be) quarkonium production 
is transformed from the corresponding matrix element 
T(Pb>Pc) f ° r four-heavy-quark production by integration 
over the relative momentum of the b- and c-quarks, 
weighted by the quarkonium wave function: 

x ( - P c + m c ) " r ; 

T!$(ps,Pc)(-Pb +mbT 

P'P r « r_ 
yjlm\> X 2mc y/3 

where M is the meson mass and 

1 
V2 

1 x 

1 

V2 

(195) 

(196) 

Figure 8. The functions of b-quark fragmentation into B c - and B- ­
mesons. 

for the pseudoscalar state and the vector state (B c , B*), 
respectively. The quark momenta are determined by the 
relations 

PS=WP + «, 

pq = 0 . 

P° = Mp-1 
(197) 

(198) 

For the heavy quarkonium one has \q\ <̂  m b , m c , and 
Eqn (195) can be simplified by the substitution of 
T$(Pb>Pc) by its value at q = 0. Then 

d 3 * 
(2nY 

(199) 

In Refs [41-44] the total cross sections of the B c - and 
Bj-mesons and their distributions over the variable 
z = 2EQJ'y/s have been obtained. Fig. 8 shows the result 
of the precise numerical calculation with the technique of 
spiral amplitudes and Monte Carlo integration over the 
phase space. One can see that this distribution is rather 
sharp and is maximum at z m a x = M/(M + mc) w 0.8. At 
this value of z m a x the Bc-meson and c-quark have zero 
relative velocity. 

If one recalls that in our approximation the c- and b-
quarks inside the Bc-meson have no relative motion, then 
one clearly finds that the maximum in the distribution 
corresponds to the configuration in which all quarks 
move as a whole with one and the same velocity. In this 
case the minimum virtualities of the initial b-quark 
p2 = (mb + 2m c ) 2 and the gluon k2 w Am2 are achieved. 
At any other z values, these virtualities increase. 

Note that these speculations are correct only for the 
last two diagrams in Fig. 7, in which one can neglect the 
contribution of the first and second diagrams, suppressed 
up to two orders of magnitude with respect to the former. 
In the asymptotic limit s —> oo, in which one can neglect 
terms of the order of M 2 js and higher powers of this ratio, 
choosing the special gauge condition (the axial gauge with 
the four- vector n = (1, 0, 0, — 1) along the direction of 
motion of the b-quark), one can show that the contribution 
of only the last diagram in Fig. 7 survives. In this case the 
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expression for cr_ 1 dcr/ dz acquires the sense of the frag­
mentation function of the b-quark into the Bc-meson, if one 
chooses the b-quark production cross section a as the 
normalisation factor at the same energy. 

The function of the b —> B c fragmentation, where B c is 
the pseudoscalar state, has the following form: 

8 a ^ ( Q ) | 2 r z ( l - z ) 2 

81m3 [ i _ ( i _ r ) z f 

x [6 - 18(1 - 2r)z + (21 - 74r + 68r 2 )z 2 

- 2 (1 - r ) ( 6 - 19r+ 18r2)z3 

+ 3(1 - r ) 2 ( l - 2 r + 2r 2 )z 4 ] . (200) 

And for fragmentation into the vector state one has 

8a2|<F(0)|2 r z ( l - z ) 2 

21m\ [1 - (1 - r)z]6 

x [2 - 2(3 - 2r)z + 3(3 - 2r + 4r2)z2 

-2 (1 -r){4-r + 2r2)zl 

+ ( l - r ) 2 ( 3 - 2 r + 2^)z 4 ] . (201) 

where r = m c / (m b + m c ) . 
As one can see from Fig. 8, £> b ^ B (z) and D b ^ B *(z) are 

in a good agreement with the results of precise calculations. 
The b —> B* process has a slightly sharper distribution in 
comparison with the b —> B c one. At as = 0.22, 
|<F(0)|2 = / B

2 M B c / 1 2 , fBc = 560 MeV and mc = 1.5 GeV, 
the corresponding integral probabilities are equal to 
3.8 x 10"4 for b -> B c and 5.4 x 10"4 for b -> B*. The 
probabilities of fragmentation of the c-quark into B c are 
suppressed by two orders of magnitude with respect to the 
values given above. 

As a fraction of the bb production, the total number of 
produced Bc(Bc)-mesons, with the Bj(Bj) states and the 
first radial excitations taken into account, is (at as = 0.22) 

<j(e+e -> B+ + x) + <j(e+e -> B c + x) 
cr(e+e~ —> bb) : 2 x 10"' . 

(202) 

Owing to the quark -hadron duality, there is an 
independent way of estimating this ratio. To reach this 
goal, one has to compare the obtained cross section for the 
production of the bound be state with the cross section for 
the production of the colour-singlet (be) pair in the process 

bbec with the low values of invariant mass M be-

dcr(e+e —> bbec) bc-singl 

be 
dM be (203) 

where m 0 = m b + mc ^ M b c ^ M B + M D + AM = M t h and 
AM w 0.5-1 GeV. Supposing m 0 = 6.1 GeV and M t h = 8 
GeV as the threshold value, one gets a bc system 
production cross section of the order of 7 pb. On the 
other hand, the sum of the cross sections for the 
production of B c and its first excitations equals 9.3 pb, 
as is seen from Table 25. 

Comparison of these two independent estimates indi­
cates, on the one hand, good agreement. On the other hand, 
it means that the contribution of the higher excitations is 

Table 25. The cross sections (in pb) for the production of the S-wave 
states of B c -mesons in the Z-boson peak at a s = 0.22. 

State 1 ! S 0 1 % 2%) 2 % 

3.14 4.37 0.805 1.078 

not large, and the total cross section is saturated by the S-
wave levels. 

Recent direct calculations of the cross sections for P-
level production [91] confirm this conclusion. According to 
the estimates of this paper, the sum over the cross sections 
for the production of P-wave levels is less than 10% of the 
sum of the S-wave level contributions. 

In Ref. [48] the functions of the fragmentation of the 
heavy quark into the heavy polarised vector quarkonium 
have been studied and for the longitudinally polarised 
quarkonium, one has found the expression 

= 8a 2 |y(Q) | 2 r z ( l - z ) 2 

b ^ B * 81m3 [ i - ( i _ r ) z f 

x [2 - 2(3 - 2r)z + (9 - lOr + 16r2)z2 

- 2 (1 - r ) ( 4 - 5 r + 6r 2 )z 3 

+ (1 - r ) 2 ( 3 - 6 r + 6r 2)z 4] , (204) 

which does not depend on the polarisation of the 
fragmenting quark. At r = \, expression (204) coincides 
with the result obtained for the heavy quarkonium with the 
hidden flavour (T, \|/) [48]. 

Fragmentation function (204) agrees with the analysis 
of the fragmentation of the heavy quark into the heavy 
meson (Qq), where, in the limit of an infinitely heavy quark, 
EHQT leads to equal probability of production of the 
vector quarkonium with an arbitrarily orientated spin, i.e. 
to the absence of spin alignment and to a ratio of the vector 
and pseudoscalar state yields equal to V/P = 3 [94]. 

For the heavy quarkonium, the relative yield of the 
vector and pseudoscalar mesons is close to unity, and the 
spin alignment of the vector state has a significant value. 
For the B*-meson, this can be observed in the angular 
distribution of the B* —> Bcy decay, which composes the 
total B* width. This distribution has the form 

dr 
d cos 6 1 

3 £ - 2 
(205) 

where 9 is the angle between the photon and the B* 
polarisation axis in the system in which Bj is at rest, and 
the asymmetry parameter { determines the relative yield of 
the transversely polarised B* state 

(206) 
l + R 

For the integral asymmetry at the small mass of the 
generated quark entering the meson, r <̂  1, one has 

(207) 

The anisotropy in the Bj —> Bcy decay is numerically equal 
to 6%. 

In Ref. [48] the vector quarkonium spin alignment was 
studied as a function of the transverse momentum with 
respect to the fragmentation axis. Quite bulky analytic 
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expressions have been derived for the fragmentation 
functions Z)j^JB*(/?t), that linearly tend to zero at pt —> 0 
and decrease as" \/pt at pt —> oo. It is interesting that the 
average transverse momentum in the fragmentation into the 
longitudinally polarised vector Bc-quarkonium is twice as 
large as the average transverse momentum in the fragmen­
tation into the transversely polarised B*-meson, 
(pt) ^ 7 GeV. 

The event with a Bc-meson has a characteristic sig­
nature. The hadron jet from the b-quark must be produced 
in the direction opposite to the B c motion. The Bc-meson 
must be accompanied by a D-meson with an average ratio 
of the momenta (ZD)/(ZBC) ~ 0 .3 a n d an average angle 
between the momenta of about 20° [44]. 

The production of a single Bc-meson in e+e~-annihila-
tion has also been considered in Refs [41, 521 

(*)+ Bc pairs In Ref. [ 3 9 ] the exclusive production of B, 
in e+e~-annihilation has been calculated at low energies, 
where one can neglect the Z-boson contribution. The total 
cross sections of the vector and pseudoscalar states have the 
form 

cr[e + ( Q i Q 2 ) p ( Q i Q 2 ) p ] 

: ^ ( 4 ^ f / p

4 ( l - , 2 ) 3 , 
3 7 x 4 m ^ J ? y ) 

M 

-3e2 

3 e i 
m2 ( l - v 2 ) 

2 - ( l - » 2 ) ^ 
m3

2cts(4m2)\2 

m\aLs(Am^) J 
(208) 

cr[e ( Q i Q 2 ) p ( Q i Q 2 ) v ] 

e m / P

2 / v 2 ( i - u 2 ) V 
7 i 3 a 2 ( 4 m 2 ) a 2 

3 7 x 2m6, 

m3

2cts(4m2)12 

cr[e 

m\ois\4m2)_ 

(QiQ2)v(QiQ2K 

7 i 3 a 2 ( 4 m ^ ) a 2

m 4 2 ^ n 3 
3 ^ x 2 ^ / v ( 1 ' W , U 

(209) 

' m ^ a s ( 4 m 2 ) ] 2 

J ^ j — 3^2 — 5 7 

m\OLs(4m2)_ 
3 ( 1 - 0 

+ ( l + u 2 ) ( l - a ) 2 + y ( l - l ; 2 ) ( l - 3 u 2 ) 

where u = ^ / l — 4M2/s, M = m, + m 2 , and 

e2m2(Xs(4ml)~\ \ e2m\oi^{4m\) mi 
2 M - 1 

, (210) 

(211) 
^ 1 m 4 a s ( 4 m 2 ) J [ eim3

las(4m2

v)_ 

The relative yield of the Bc-meson pairs 
R = cr(B^B~)/cr(bb) reaches its maximum at the energy 
y/s = 14 GeV, where w 10~4. This ratio rapidly decreases 
with increasing energy, where single-Bc production becomes 
dominant. 

As one can see, the study of Bc-meson production in 
e+e~-annihilation allows one to make analytical studies of 
heavy quark dynamics. 

Thus, in the Z -boson pole, where the b-quark produc­
tion cross section is large, one has to expect of the order of 2 
events with B c production per thousand bb pairs. It is 
expected that, in the experiments at the LEP accelerator, 
about 2 x 107 Z°-bosons will be detected. This means that 
the total number of BC(BC) events has to be of the order of 
104. However, the real number of reconstructed events will 
be less, if one takes into account the particular modes of the 
decay. 

4.2 Hadronic production of Bc-mesons 
As has been mentioned, the process of Bc-meson produc­
tion in e+e~-annihilation at high energies can be 
reformulated as the process of the b —> BC(B*) fragmenta­
tion, appearing with a probability about 10~ . 

The hadronic B c production turns out to be more 
complex. First, in hadronic production the region of low 
partonic energies dominates, so that the asymptotic regime 
with the cross section factorisation 

da 
~dz" 

(212) 

is not yet achieved. Second, in the hadron interactions a 
new type of diagram appears which we shall label a 
recombinational diagram, for which the factorisation does 
not take place. 

The contribution of such diagrams, dominating at low 
masses of the B~bc system, decreases with the growth in this 
mass; however, it remains significant even at large masses 
and large transverse momenta. The contribution of these 
type of diagrams to the B^ production was first calculated 

Figure 9. Diagrams of single B c -meson production in gluon and quark 
subprocesses. 
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for the exclusive pair production in the q u a r k -
antiquark annihilation at low energies [38]. 

A typical set of QCD diagrams of the fourth order in cts 

is shown on Fig. 9. Here, as in the case of the B c production 
in e+e~-annihilation, the matrix element of the (bc)-
quarkonium production is obtained from the correspond­
ing matrix element of four-quark production by integration 
over the relative momentum of the c- and b-quarks, 
weighted by the quarkonium wave function. 

At high energies, where the B c production cross sections 
permit meson observation, the gluon-gluon contribution 
to the production dominates. 

The energetic spectra of the B c - and B*-mesons in the 
centre-of-mass system (c.m.s.) for two colliding gluons are 
shown in Fig. 10 at different values of the total energy 
V^=20, 40, and 100 GeV. 

The cr(gg —> Bc(Bj)cb) values are presented in Fig. 11 at 
several energies of the interacting gluons for m b = 5 . 1 GeV, 
mc = 1.5 GeV, and as = 0.2. The ratio of the cross sections 
crB*/crBc is about 3 at the energies 20, 40, and 100 GeV, and 
is about 2 at 1 TeV. In e+e~-annihilation, where the b —> B c 

fragmentation dominates, this ratio is crB*/crBc w 1.3. 

C / n b 

1 0 - 4 I i i i i i i i i I i i i i i i i 11 
101 102 103 V ^ / G e V 

Figure 11. The total cross sections for the single production of B c -
mesons (empty triangles) and B*-mesons (solid triangles) in the gluon 
annihilation in comparison with the production cross section 
(multiplied by the factor 2 x 1 0 - 3 ) of the bb-quark pairs (solid line). 

da 
' n b 

100 GeV 
40 GeV 
20 GeV 

0.3 0.4 0.5 0.6 0.7 0.8 0.9 

100 GeV 
40 GeV 
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Figure 10. The differential da/dz cross sections for the single 
production of the B c -mesons (a) and B*-mesons (b) in gluon annihila­
tion at different values of the total energy Y/s. 

The variation of the crB*/crBc ratio is the consequence of 
the change in the production mechanism. The fragmenta­
tional component gives a low contribution in comparison 
with the contribution of the recombination diagrams. This 
can be noted from Fig. 10, where the differential cross 
sections for the B c - and Bj-meson production, calculated by 
Monte Carlo integration of the exact expression for the 
matrix element squared, are presented in comparison with 
the cross section, calculated by the fragmentation formulae 
(200) and (201). 

The total cross section of the Bc(B*)-mesons is obtained 
from the partonic one (T^s) by convolution with the 
functions of the parton distributions in the initial hadrons: 

tftotOO 
d[ 

4 ( m b + m c ) 2 s 

1 /2 

1-S/S 

-1+S/S 

dx 

2 4s x2 + (213) 

The cross sections, calculated with account taken of the 
known parameterisations for f^,J

b(x) [92], are presented in 
Table 26. 

The energy 40 GeV is close to the c.m.s. energy for 
carrying out fixed-target experiments at the HERA accel­
erator. At Y/s = 1.8 TeV we present the cross section of the 
B c production in pp-collisions at Tevatron, and, finally, the 
energy Y/s = 16 TeV corresponds to the conditions of the 
pp-experiment at the future LHC collider. The energetic 

Table 26. The cross sections (in nb) of hadronic production of the 
Bc(B*)-mesons (the standard deviation in the last digit is shown in 
brackets). 

n2S+1Lj 1 ! S 0 13S! 2 ! S 0 23Sj 

<7 t o t 10 5 (40 GeV) 1.63 (2) 9.5 (2) 0.13 (1) 0.75 (2) 

<7 t o t 10 3 (100 GeV) 7.8 (2) 36(1) 1.1(2) 5.2 (2) 

(7T O T (1.8 TeV) 13.3(8) 53 (3) 2.7 (2) 10.4 (5) 

(7TOTL0 _ 2(16 TeV) 1.96(8) 7.6 (2) 0.43 (2) 1.66(8) 



Physics of B c -mesons 29 

10 < r s u m / n b 

104 -

103 -

102 -

101 -

10° -

10- ' -

IO-2 -

lO"3 -

IO"4 - . 
_I I I MINI I I I I I 11 IL I 

101 

I I I 11III 
10 10 104 ^ / G e V 

Figure 12. The total cross sections (in nb) for the single production of 
B c -mesons (empty circles) in pp-interactions at different energies and 
the cross sections (in ub) for beauty particle production (solid circles). 

do-
nb G e V " 

18 20 
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Figure 13. The differential do - / dpt cross sections for the single 
produc-tion of B c - and B*-mesons in pp interactions at the energy 
1.8 TeV. 

dependence of the cross section, summed over the particle 
and antiparticle B c production, is shown in Fig. 12. 

From the values presented in Table 26, it follows that at 
y/s = 40 GeV the summed cross section cr s u m for the meson 
production is about 10~4 of the total cross section crt o t of the 
bb production, so this makes the study of B c practically 
impossible in this experiment. One should note that in this 
case we cannot restrict ourselves by the gg —> Bccb con­
tribution and we have taken into account the contribution 
of the qq —> Bccb process. 

The experiments at Tevatron and LHC, where crs u m/crb b-
is about 10~2, will provide a real possibility for observing 
hadronic B c production. Therefore, at the energies of these 
two facilities, we present the most interesting distributions 
of the cross sections for the production of the ^ S q - and 
l ^ - s t a t e s (note that, as our calculations show, the cross 
section at the energies under consideration is completely 
determined by the gluon-gluon interaction, since the 
quark-quark contribution is suppressed by two orders 
of magnitude, 10~2). 

The distributions for the ^ S q pseudoscalar and 
vector mesons are shown on Figs 13 and 14 at the energy of 
the interacting hadrons, 1.8 TeV. 

The distributions dcr/dx (see Fig. 14b) show that we are 
dealing with the central B c production, where the complete 
cross section is collected in the interval from —0.3 to 0.3. The 
average transverse momentum of B c is about 6 GeV, and 
from the distribution over the angle between the directions 
of the B c and c-quark motions, one can conclude that the c-
quark generally moves in a direction close to that of B c [46]. 

One should note that these diagrams of the QCD 
perturbation theory are of the fourth order in a s . This 
results in the strong dependence of the cross section on the 
particular a s choice. The latter must be determined by the 
typical virtuality in the production process. The analysis 
shows that this virtuality is large in the contributions, 
decreasing faster that l/s. In the remaining contribu­
tions, including the fragmentational one, it is not large 
and is about 4m c m b . For this reason the a s = 0.2 value, 
chosen as the strong coupling constant, is the most 
reasonable at this scale. The use of the running coupling 
constant a s (£), for example, leads to a decrease of the 
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Figure 14. The differential cross sections for the single production of 
B c - and B*-mesons in pp-interactions at the energy 1.8 TeV: (a) do) dy, 
where y is the particle rapidity, (b) do) dx, where x — 2E/y/s. 
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BC(B*) production cross section by a factor of about 7. 
Pessimistic estimates of Bc(Bj) production are presented in 
Ref. [93], where, as one can see, the as(S) value was used. 

At low energies of hadron collisions, the q u a r k -
antiquark annihilation with B c production dominates 
with respect to the gluonic one, since, in this case, the 
latter has a much lower luminosity, which decreases also 
with the growth of the total energy of the partonic 
subprocess. At low energies of quark-ant iquark annihila­
tion, exclusive B+B~ pair production can be significant. 

The total cross sections for the production of vector and 
pseudoscalar Bc-mesons due to the quark-ant iquark 
annihilation have the form 

4 3 FA 

(7(1-, R ) = ^ ^ ^ A 3 v T ^ I ( 1 . 3 + L4A + 0.3A2) , (214) 

* ( R , 0") 16 x 3 8 FI6 M2 

from which one can see that the vector state production 
dominates. In Eqns (214)-(216) we have introduced the 
notation 

, 4 M 2 

A = , \I -
mhmc 

s ' m b + m c 

The numerical estimates of the total cross sections for the 
B c production in pp interactions are presented in Table 27. 

Table 27. The total cross sections (in 1 0 - 1 4 b) for the pair production 
of B c -mesons due to the q u a r k - a n t i q u a r k annihilation in pp(pp) 
interactions at low energies. 

V ^ / G e V ff(l-,<r) (7(0", 0 " ) 

30 0.9 (0.08) 0.24 (0.022) 0.006 (0.0004) 

40 5.8 (0.94) 1.6(0.25) 0.054 (0.007) 

50 15.8(3.5) 4.3 (0.95) 0.18 (0.034) 

Summing up the analysis of hadronic production, one 
can draw the following conclusions: 
— The mechanism of hadronic Bc(Bj) production strongly 
differs from the production in e+e~-annihilation; 
— the relative fraction of the fragmentation contribution is 
low even in the region of large transverse momenta; 
— the vector state production is enforced with respect to 
e+e~-annihilation. 

Thus, the hadronic B c production requires an analysis of 
the large number of diagrams and its detailed study raises the 
possibility of investigating the effects of the heavy quark 
dynamics in the higher orders of QCD perturbation theory. 
The B c yield at the real physical facilities is quite high, but the 
registration of the B c events is essentially determined by the 
detector acceptance (cut-off over the transverse momenta of 
particles, characteristics of the vertex detector, and so on). 

4.3 Bc-meson production in vN-, ep- and yy-collisions 
In the previous sections we considered Bc-meson produc­
tion in processes where one has the maximal current 
statistics for the production of hadrons with heavy quarks, 

i.e. at the Fermilab and the LEP colliders. In the present 
section we consider estimates for Bc-meson production in 
processes of deep inelastic scattering of neutrinos and 
electrons by nucleons and in yy-interactions at future 
facilities. 

4.3.1 Bc-meson production in vN-interactions. The diagrams 
of the neutrino production of Bc-mesons on quarks and 
gluons are show in Fig. 15. Note that for B c production in 
the neutrino collisions with gluons, the suppression of the 
partonic subprocess cross section by the factor |V b c | 2 in 
comparison with the partonic subprocess of B c neutrino 
production on light quarks is compensated by the higher 
luminosity of the gluonic subprocess in comparison with the 
quark one. Thus, both mechanisms of B c production in 
neutrino-nucleon scattering give comparable contribu­
tions, and <T(VN —> BCX) w 10~4 3 cm2 at the neutrino 
energy Ev w 500-1000 GeV in the laboratory system. 

:AVl - A ( \ +2A) , (215) v 

W* i W* i 
B c + . 

s(d) 
B c + . 

Figure 15. Diagrams of B c -meson production in processes of the 
neutrino scattering on gluons (a) and quarks (b). 

After integration over the valent parton d distribution, 
c-quark production in the W* + d —> c process, suppressed as 
sin2 0C, has a value comparable with c-quark production in 
the W* + s —> c process, since the strange quark 'sea' is 
suppressed with respect to both the valent quark distribu­
tion and the 'sea' of the lighter d-quark. 

The estimates of the Bc-meson production cross sec­
tions, calculated on the basis of the diagrams in Fig. 15, 
agree with the estimates obtained in the model of vector 
meson dominance (Fig. 16) and in the model of the soft 
gluon emission of the (be) pair that, in the colour-singlet 
state and with the low invariant mass Af (be) < MQ + M D , 
transforms, in accordance with the quark-hadron duality, 
into the (be) bound state, which radiatively decays into the 
basic 1 So-state, in a cascade, with a probability of 1. 

As a result, one can reliably state that the total cross 
section for Bc-meson production in vN-collisions is of the 
order of 10~6 from the total cross section of the vN-
scattering, so that, at a characteristic statistic of about 106 

events in neutrino experiments, one can expect only a few 
events with Bc-meson production. 

W* i 

Figure 16. Diagrams of B*-meson production in the model of vector 
meson dominance. 
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4.3.2 Production of Bc-mesons in ep-scattering. In contrast 
to vN-scattering, in ep-collisions in addition to processes of 
weak charged current exchange, the main contribution to 
the Bc-meson production will give processes with virtual y-
quanta exchange (Fig. 17). 

Table 28. The cross section (in pb) of the photonic production of 

g g VI 
Bc + . 

Figure 17. Diagrams of B c -meson production in par ton process of y*g-
scattering. 

The exact calculation of the diagrams in Fig. 17 has not 
yet been performed. However, one can imagine that the 
estimate of the Monte Carlo simulation system for hadron 
production HER WIG [49] is quite reliable, since the 
HER WIG parameters have been chosen to give correct 
values for total hadronic cross sections of the production of 
charmed and beauty particles, being in agreement with the 
experimental values. Moreover, the HER WIG estimates of 
the B c production cross sections in e + e~ and hadronic 
interactions agree with the values obtained in the exact 
calculation of the diagrams in the QCD perturbation theory. 

Thus, in accordance with the estimates in the HERWIG 
system, one can expect about 10 events per year with the B c 

production at the HERA facilities. This B c yield is 
comparably close to that of LEP. However, the extraction 
of B c events at HERA is complicated by the presence of a 
hadronic background, which is significantly lower at LEP. 

4.3.3 Photonic production of Bc-mesons. Future yy-colliders 
with the high luminosity (~ 10 3 4 c m - 2 s _ 1 ) have been 
intensively discussed. In this section we calculate the 
cross section of single B c production at energies y/s 
about 30 GeV in accordance with the diagrams shown 
in Fig. 18. The calculation technique coincides with that 
described in the section on the hadronic production of B c . 

Y g VI 
Bc + . 

Figure 18. The types of diagrams in the photonic production of Bc -
mesons. 

The total cross sections of B c and Bj production are 
presented in Table 28, in which as w 0.2. One can see that 
near the threshold the pseudoscalar state production is 
suppressed in comparison with the production of the vector 
one, so at y/s = 15 GeV one has crB*/crBc ~ 55. Such 
behaviour of the crB*/crBc ratio has been noted in 
Ref. [6], where the strong suppression of pseudoscalar 
meson pair production with respect to the vector one 
occurs in quark-antiquark annihilation. At high energies 
of the initial photons this ratio decreases and becomes 
crB*/crBc w 4. The inclusive cross sections crBc and crB* have 

BC(BC*). 

V ^ / G e V 15 20 40 100 

5.1 x 10" 3 3.8 x 10" 2 6.7 x 10" 2 2.5 x 10" 2 

2.8 x 10" 1 6.0 x 10" 1 4.0 x 10" 1 1.1 x 10" 1 

their maximum at y/s = 20—30 GeV. As s increases they fall 
like the total cross section for heavy quark production crbg. 

The distributions a~l dcr/ dz over the variable 
z = 2\p\/y/s, where p is the meson momentum, are shown 
on Figs 19 and 20 for the B c - and B*-mesons. It follows 
from these figures that the scaling in these distributions is 
broken: as energy increases a shift to low z values takes 
place. Note that an analogous picture has been observed in 
the gluonic production of Bc-mesons. 

Note that detailed consideration shows that in the matrix 
element of the yy —> bbec process and hence in the 
yy —> Bcbc matrix element one can distinguish three groups 

r *~i i i i i i L 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Figure 19. The cross section distributions, normalised to the unity as 
functions of z for B c -meson production at different energies. 
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Figure 20. The cross section distributions, normalised to unity as a 
function of z for B*-meson production at different energies. 
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of contributions which are separately gauge invariant under 
both the gluon field transformation and the photon one. 

The first group of contributions is composed of the 
diagrams in which quark production is independent (we will 
label these diagrams as recombination diagrams), the 
second group consist of diagrams where the cc pair is 
produced from the b-quark line (we will call these diagrams 
the b-quark fragmentation diagrams, their contribution will 
be denoted as cr b _ f r a g ) , the third group contains diagrams 
with bb pair production from the c-quark line, so that they 
are c-fragmentation diagrams with the corresponding 
contributions denoted as cr c _ f r a g . 

In Refs [43, 91, 93] the assumption was made that the 
b-fragmentation contribution has to dominate at large 
values of the B c transverse momentum, independently of 
the type of process. So the following approximate equation 
has to be valid: 

^ ! r' if™ frA V i M d . ( 2 1 7 ) 

where dc r q q /dk t is the differential cross section for the 
production of the fragmenting q-quark in the Born 
approximation, k t is its transverse momentum, and 
Z ) q _ > B c ( z ) is the function of the q —> B c + X fragmentation. 

Recall that in the e+e~-annihilation the b-quark 
fragmentation dominates and the c-quark fragmentation 
contribu-tion is suppressed by two orders of magnitude. In 
the yy-interactions, the c-quark fragmentation contribution 
is enlarged due to the quark charge ratio ( < 2 C / G b ) 4 = 16 
and therefore we cannot neglect it (as one does in e + e~-
annihilation). Note further that the c-quark fragmentation 
contribution and the b-quark fragmentation one are related 
to each other by simple permutation of the quark masses 
and charges (mc <-> m b and Qc <-> g b ) (217). 

The distributions d<Ttot/dpt, d ( j c " f r a g /dA and 
d ( 7 b _ f r a g / d p t at 100 GeV for B c - and B*-meson production 

A / G e V 

Figure 21. The datot/dpt, d<7C~F R A G/ dpt, and d<7B~F R A G /d/? t distributions 
as functions of the transverse momentum for the invariant 
contributions to the cross section of B c -meson production at 
100 GeV. The curves 7 and 2 correspond to the prediction of the 
fragmentational mechanism (217) for the b-quark (7) and c-quark (2). 

A / G e V 

Figure 22. The d<7T O T/dpt, d<7C~F R A G/ dpt, and d<7 B ~ F R A G /d/? t distributions 
as functions of the transverse momentum for the invariant 
contributions to the cross section of B*-meson production at 
100 GeV. The curves 7 and 2 correspond to the prediction of the 
fragmentational mechanism (217) for the b-quark (7) and c-quark (2). 

are shown in Figs 21 and 22. The distributions predicted in 
accordance with Eqn (217) for the b-fragmentation 
(curve 1) and c-fragmentation (curve 2) are also shown. 

One can see that, as in the hadronic production, the 
contribution of the recombinational type diagram is 
significant at any reasonable values of the transverse 
momentum of the Bc-meson and cannot be neglected 
when one calculates the cross sections even at large 
transverse momenta. One can see from the figure that 
for the b-fragmentation contribution in terms of pt greater 
than about 30 GeV, the fragmentational mechanism gives 
correct predictions. 

Thus, at its maximum at the energy 20 -30 GeV, the 
total cross section, including the Bj and corresponding 
antiparticle production, is about 1 pb. This corresponds 
to 105 B c , produced at a yy-collider with luminosity of 
103 4 c m - 2 s _ 1 . At large energies, the cross section falls like 
that of the bb-pair production. The B c production mech­
anism is close to that of the gluon-gluon interactions, and is 
also not reduced to the simple b-quark fragmentation. 

5. Conclusion 
The discovery and study of the family of the (be) heavy 
quarkonium with open charm and beauty will allow one 
significantly to specify the notion of the dynamics of heavy 
quark interactions and the parameters of the Standard 
Model of elementary particles (such values as the b- and c-
quark masses, the coupling of the b- and c-quarks—|V b c | , 
etc.). The present review is aimed at the creation of a 
theoretical basis for object-oriented experimental research 
and study of the (be) heavy quarkonium family. 

Summarising the problems considered, one can note the 
following. 

We have shown that below the threshold at which the 
(be) system decays into the BD meson pair, there are 16 
narrow states of the B c meson family, whose masses can be 
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reliably calculated in the framework of the nonrelativistic 
potential models of the heavy quarkonia. 

The flavour independence of the QCD-motivated 
potentials in the region of average distances between the 
quarks in the (bb), (cc) and (be) systems and their scaling 
properties allow one to find the regularity of the spectra for 
the levels that are not split by the spin-dependent forces: in 
the leading approximation the state density of the system 
does not depend on the heavy quark flavours, i.e. the 
distances between the nL -levels of the heavy quarkonium do 
not depend on the heavy quark flavours. 

We have described the spin-dependent splittings of the 
(be) system levels, i.e. the splittings appearing in the second 
order in the inverse heavy quark masses, V S D w 0 ( l / m b m c ) , 
with account taken of the variation of the effective 
Coulomb coupling constant of the quarks (the interaction 
is due to relativistic corrections, coming from the one-gluon 
exchange). 

The approaches developed to describe emission by the 
heavy quarks have been applied to the description of the 
radiative transitions in the (be) family whose states have no 
electromagnetic or gluonic channels of annihilation. The 
last fact means that, due to the cascade processes with the 
emission of photons and pion pairs, the higher excitations 
decay into the lightest pseudoscalar B c meson, decaying in 
the weak way. Therefore, the excited states of the (be) 
system have widths significantly less (by two orders of 
magnitude) than those in the charmonium (cc) and 
bottomonium (bb) systems. 

The value of the leptonic decay constant fBc can be 
measured in the annihilation channels of decay, for example 
B+ —> x + v x . It can be most reliably estimated from the 
scaling relation for the leptonic constants of the heavy 
quarkonia, due to the relation obtained in the framework of 
the QCD sum rules in the specific scheme. In the other 
schemes of the QCD sum rules, it is necessary to do an 
interpolation of the scheme parameters (the hadronic 
continuum threshold and the number of the spectral 
density moment or the Borel parameter) into the region 
of the (be) system, so this procedure leads to significant 
uncertainties. 

T h e / B c estimate from the scaling relation agrees with the 
results of the potential models, whose accuracy for the 
leptonic constants is notably lower. The value of fB 

essentially determines the decay widths and the production 
cross sections of the B c mesons. 

The theoretical study of semileptonic B c decays shows 
that the results of the potential quark models agree with the 
predictions of the QCD sum rules, if one accounts for the 
Coulomb-like a s /^corrections. In this case, the approx­
imate spin symmetry in the sector of heavy quarks allows 
one to derive the relations for the form factors of 
semileptonic B c decays at the rest point of the recoil meson. 

Bc-meson production allows in some cases a description 
on the level of analytic expressions, such as the universal 
functions of the heavy quark fragmentation into the heavy 
quarkonium. The fragmentational mechanism dominates in 
the B c production in the e+e~-annihilation at high energies 
(at the Z-boson peak) and can be studied at the LEP 
facilities. 

The hadronic production of B c is basically determined 
by the processes of the b- and c-quark recombination, since 
the partonic subprocesses have the highest luminosity in the 
region of low invariant masses of the resultant system 

(bbec). The Bc-meson yield with respect to the production 
of the beauty hadrons is of the order | of 10~3. 

Modes of B + —> v|/X decays with the characteristic 
signature of the J/\|/-particle have the quite large probability 

B R ( B + —> v|/X) w 0.2 . 

Therefore, the search for the Bc-particle can start from the 
separation of events containing the J/v|/-particle, whose 
production vertex is beyond the primary intersection point. 

The selected set of events will, of course, contain a 
background from decays of ordinary heavy-light B-mesons 
(bu, bd, bs), since the probability of the B —> J/v |/KX decay 
is about 1%, and the heavy-light B-meson yield is three 
orders of magnitude greater than that of the B C . The 
separation from background requires a cut-off from below 
the effective mass of the J/v |/X system, where X denotes 
those charged particles whose tracks originate from the J/v|/ 
vertex. 

The most preferable channel for B C extraction is that of 
the B + —> v | / l + V ! decay, since B C is the only heavy particle 
with the three-lepton vertex of the decay v | / l + —> 1 / + 1 / _ 1 + . 
The probability of this channel is 

B R ( B + -> \|/l+vi) « 8% , 1 = e, u, x . 

In a quite large statistical sample}, events with the decay 
B + —> v | / / + v can raise the possibility of the determination of 
the B C mass value under the v|/l mass spectrum or the missed 
transverse momentum of the neutrino with respect to the 
direction of the B C motion (see Fig. 23). The necessary 
condition for the such measurement is a quite high 
separation of charged hadrons and leptons. 

A straightforward measurement of the B C mass can be 
made in the mode of the B + —> J /v | /7i + decay, having the 
branching ratio 

B R ( B + - > \ | / 7 C + ) wO.2% . 

The mode of the B ^ —> J / \ | / 7 C d = 7 i ; ± 7 C = F decay, where three n-
mesons can compose the ^-meson, is also of interest. This 
mode must have a significantly greater probability than the 
B C —> J/V|/TI decay. 

Since B C production in colliding e + e~ beams has, as 
mentioned, fragmentational character, in general (see 
Fig. 7) it must be accompanied by a D-meson presence 
in the jet where the B C candidate is being observed. Such a 
signature of the event would provide a large advantage to 
the search for Bc-mesons at e + e~ colliders compared with 
that at hadron colliders, where the recombinational mech­
anism dominates in Bc-meson production at energies 
accessible in the immediate future (see Fig. 9). 

However, one must take into account the possibility that 
the probability of the b-quark fragmentation production of 
the free cc-quark pair is one order of magnitude greater 
than the probability of the fragmentation into the Bc-meson 
and the single free c-quark. This means that with account 
for the branching ratios for the B - and Bc-decays into J/v |/X, 
events with B C decay and a single D-meson will appear only 

f in the present review we do not consider in detail B c production in 
the neu t r ino-nuc leon interactions, where one can expect only a few 
events with B c production per year, since the coupling constant of the 
b - and c-quarks is low [52], so that these processes have no practical 
significance for the experimental search for B c . 

J The CDF facility with the vertex detector at the Tevatron F N A L 
has, in this sense, a preferable position. 
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twice as often as the decay of the heavy-light B-meson into 
J/v |/X, with the instantaneous production of two D-
mesons in the same jet. It is not clear whether one can quite 
effectively separate these two processes in the present vertex 
detectors, i.e. whether one cannot lose the vertex of the 
second D-meson. 

It is evident that progress in the experimental study of 
the Bc-meson and the general physics of heavy quarks will 
be mainly related to the development of the vertex 
detectors, so that the latter would give the possibility of 
the reliable observation of several heavy quarks instanta­
neously (to search the cascade decays, for example). 
However, since at the present yields of LEP and Fermilab 
several dozen Bc-meson production events may be 
observed, one would think that the practical detection of 
B c will be achieved in the near future. 
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Appendices 

I. Covariant quark model 
Consider the general statements of the covariant descrip­
tion of the composed quarkonium model. 

By definition, the energy fraction carried out by quark / 
in the (QQ' ) meson is its constituent mass mh so that 

M = m + m ' , (1.1) 

where M is the meson mass, and m and m are fixed values. 
For the four-momenta, one has 

m n 

k' = ^P 
M 

(1.2) 

where P is the meson momentum, and q is the relative 
momentum of quarks inside the meson. 

For the quark propagator, one has 

S(k) = (k^ + m)D(k) . (1.3) 

The constituent quark has, in fact, fixed energy, so that in 
the D(k) function, only the imaginary part contributes. In 
the meson rest frame, one has 

Im D(k) =-3(\k0\-m) . 
m 

(1.4) 

Eqn (1.4) with account for Eqn (1.2) can be rewritten in the 
covariant form 

Im D(k) = — 8(Pq) 
m 

(1.5) 

The quark-meson vertex can be represented as 

i q q M = v(k)rv'(k')D-\k)D-1(k')x(P; q), (i.6) 

where v and vf are the quark spinors, the D(k) function is 
defined in Eqn (1.3), and T is the spinor matrix determining 
the quantum numbers of the meson. 

The nonrelativistic description of the meson means that 
the form factor is determined by the expression 

X(P; q)=2nd{Pq)<j>{q2) . 

In the following, we suppose 
2 

# ? 2 ) = 7 V e x p V 

(1.7) 

(1.8) 

The choice (1.8) reflects the typical form of the S-wave 
functions of the charmonium and bottomonium, and it 
allows one to perform the analytic calculation of the 
semileptonic decay widths for Bc-meson. 

Let us define the decay constants / for the pseudoscalar 
and vector mesons, 

(0| J5li(x) \¥{q)) = i / P exp(i^x) , 

(0\J,(x) \V(q, A)) = ifyMytf exp(i^x) , 

(1.9) 

(L10) 

where A is the vector meson polarisation, and the quark 
currents are 

Jli{x) = Q{x)yllQ'{x) . 

( I l l ) 

(1.12) 

In the nonrelativistic potential model, one has 

/ p « / v = / , (1-13) 

so that 

'3 
/ = 2 no) (1.14) 

where W(0) is the quarkonium wave function at the origin. 
The oscillator function, resulting in Eqn (1.8), has the 

form 
/ 2 \ 3 / 4 

^ ) = y exp 

2 2 
r co (1.15) 

Condition (1.14) means that the normalisation constant N 
in Eqn (1.8) is 

M V6 
N mm' f 

Thus, for the quark-meson form factor, one finds 

(1.16) 

X(P; q)=2nd(Pq)^77^exV^-2 

mm' f co 
(1.17) 

where co is determined by Eqns (1.14) and (1.15), so that 
the only free parameter of the model is the constant/ . For 
the v|/-particle, can, for example, be related to the width 
of the v|/ —> e1 e 

r ( 4 r ^ e + e " ) 

decay 

4TI - a 2 e2^-
3 e m c M 

(1.18) 

where ec = 2/3 is the electric charge on the c-quark. From 
Eqn (1.18), the experimental value of the leptonic 
width [15] gives 

= 410 zh 15 MeV (1.19) 

The values of the / B c and / B § constants are determined 
theoretically in the framework of the QCD sum rules and 
in the potential models. 

Note that the stated model of the composed quarkon­
ium gives, for instance, the exact formula of the 
nonrelativistic M 1-transition for the electromagnetic decay 
of the vector state into the pseudoscalar state, V —> Py 

r ( V ^ P y ) = y / i 2 ^ . (1.20) 

where coy is the energy of the y-quantum, and the magnetic 
moment fi is 

1 e e 
\2m 2m 

(1.21) 

where e and e' are the electric charges on quarks in units of 
the electron charge. 

II. Spectral densities for three-particle functions 
The spectral densities for the three-particle functions are 
determined in the following way [36]: 

Ax+A2 
3 ( 

p+(sl9s2, Q2)=^^k-

-k [m3(m3 - m , ) + m 3 ( m 3 - m2)] 

-[2(slA2+s2Al)-u(Al+A2j\ 

)}• 
( H i ) 
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2 r 
Pv(sl9 s2,Q)= -j-yz [ (2*1^2 - uAl)(m?) - m2) 

+ {2s2Ax — uA2)(m3 — mi) + m3&] ,(II.2) 

P^fai, G 2 ) = - ^ j | ( / W ! - m 2 ) 

m 3 + | ( 1 y 1 / l 2 + M i uAxA2) 

-m2 \ m\ - y j - m, fm 3 - y 

+ » 3 i » i - ^ ± ^ + » I » 2 ) s , a i . 3 ) 

P+fa i , * 2 , G 2 ) = ^ j m i ( 2 M i " ^ 2 + *AXA2 + 2 ^ ) 

+ m\m\(As2 — 2u) + m 2 ( 2 ^ 1 / l 2 — uA{) 

—m3 [2(3^^1 + £ 1 ^ 2 ) ~~ w ( 3 ^ 2 + ^ 1 ) + k 

-\-4A2Al +2Ai+ml(4s2 -2u)] 

+ ? h - ^ 3 ) [ 4 ^ 1 ^ 2 ^ 1 ^ 2 

-u(2s2A1A2 + 5 ^ 2 + ^ 2 ^ 1 ) 

+ 2^(^i A\ +S2A 51} 

where 

£ = fal + ^ 2 + G ) - 4^i^2 , M = Si + ^2 + G , 

Zl 1 = S\ — m 2 + m 2 , A2 = s2 — m\ + m\ . 

In the B c —> r|c(J/v|/)ev decays, one has m, = m b and 
m 2 — m 3 — m c f ° r the masses. 

III. QCD sum rule scheme for three-point correlators 
Let us consider the sum rules for t h e / + ( g 2 ) form factor 

MS 
m b + m c 2mc 

1 

MJ' 2 

( M 2 - ^ ) ( M ^ - p 2 ) 

- ( 2 i )

2 I d s i d s 2 ( , 1 - p ? ) f e - ^ ) (III 1 ) 

Applying the Borel operators LTl(—p\) and LT2(—pl)9 

defined in section 2, to Eqn (III. 1), one derives the 
following sum rules 

00 

£ fiMifiMiftiQ2) e x p ( - M £ T , - M > 2 T 2 ) 

2 (m b + m c )m c 

(271)2 

x exp(—^iTi — ^2^2) • 

J ds! ds 2 p+fai, 5 2 , Q 2 ) 

(III.2) 

Introduce the notation 

00 

(HI 3) 

and transform the left-hand side of Eqn (III.2) with the use 
of the Euler-MacLaurin formula [90] 

J ^ M ^ - e x p ^ M ^ ) 

-r 
JM 

dMl -J£-flMgsn exp(-Af 

n=k-l 

+ 2 ^ / B c M S 2 5 „ e x p ( - M S 2 T 1 ) + . 
n=0 

(III.4) 

Applying LT/(Mg2) to Eqn (III.2) and accounting for 
Eqn (III.4), one gets 

2 m c ( m b + m c ) d M ^ 

j = \ ( 2 7 c ) d£ 

ds2 p(M*2

9 s2, Q2)QXV(-S2T2) . (III.5) 

Using the analogous procedure for the sum of the r\l

c 

resonances, one obtains 

(H.4) f?(Q2) 
8 m c ( m b + m c ) dMgc dM^ 

1 p+{Mg, M'l, Q2) 
(271)' 

(III.6) 

Here we have used the property of the Borel operator 

LT(x)[xnQxp(-bx)] -^d{l\x-b) . 

It is not difficult to generalise this procedure to the 
remaining form factors. 


