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Abstract. The mass spectrum for the system (bc) is
considered in the framework of potential models for the
heavy quarkonium. Spin-dependent splittings, with account
taken of the change of a constant representing the effective
coulomb interaction between the quarks, and widths of
radiative transitions between the (bc) levels are calculated.
In the framework of QCD sum rules, the masses of the
lightest vector B} and pseudoscalar B, states are estimated,
the scaling relation for the leptonic constants of heavy
quarkonia is derived, and the leptonic constant fgp is
evaluated. The B, decays are considered in the framework
both of the potential models and of the QCD sum rules.
The relations, following from the approximate spin
symmetry for the heavy quarks in the heavy quarkon-
ium, are analysed for the form factors of the semileptonic
weak exclusive decays of B.. The B, lifetime is evaluated
with account taken of the corrections to the spectator
mechanism of the decay, because of the quark binding into
the meson. The total and differential cross sections of the
B. production in different interactions are calculated. The
analytic expressions for the fragmentational production
cross sections of B, are derived. The possibility of the
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practical search for B, in current and planned experiments
at electron —positron and hadron colliders is analysed.

1. Introduction

A complete picture for precise tests of the Standard
Model [1] together with a search for effects from new
physics requires direct measurement of the three-boson
electroweak vertex; searches for Higgs particles [2], the
supermultiplets [3] etc., at colliders of super-high energies
(LEP200, LHC); as well as a study of CP-violation and a
measurement of the fundamental parameters of the
electroweak theory (first of all, in the heavy quark sector).

In the next ten years, the main efforts directed to the
achievement of this programme will certainly be in the field
of heavy quark physics both at the running colliders (LEP
and Fermilab) and the B-meson factories (being planned in
SLAC, KEK, and at HERA-B). In this case, the extraction
of effects related to high values of the energy scale will be
essentially determined by the accuracy of the theoretical
and empirical knowledge of the mechanisms of the quark
interactions at less than high energy and, primarily, about
effects caused by QCD dynamics [4]. Therefore, experi-
mental research on processes with heavy c-, b-, and t-quarks
has a special importance.

The presence of the small parameter Aqcp/mq, where
Aqcp is the scale of the quark confinement and mg, is the
heavy quark mass, has allowed one to develop powerful
tools for the study of QCD dynamics in heavy quark
interactions. Such methods include the phenomenological
potential models [5—10], the QCD sum rules [11—-13], and
effective heavy quark theory (EHQT) [14], which has been
successfully applied to the study of hadrons containing a
single heavy quark.
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Thus, the investigation of processes with heavy quarks
allows one to extract and to study nonperturbative QCD
effects causing quark hadronisation, by means of the use of
the heavy quark as the ‘marked’ atoms. The successful
implementation of such a programme of studies becomes
possible because of progress in the experimental technique
of the detection and identification of particles (it is mainly
related to the invention and the improvement of the vertex
detectors, allowing one to observe the heavy quark particles
because of its running gap from the primary vertex of the
interaction).

Among the heavy quarkonia (QQ'), the (bc) system
with open charm and beauty takes a particular place. In
contrast to the hidden charm (cc) and beauty (bb) families
which have been studied in detail experimentally [15] and
quite accurately described theoretically [13, 16, 17], the
heavy quarkonium (l_)c)—the family of B,-mesons—has
some specific production and decay mechanisms and
spectroscopic features. The study of these mechanisms
and features allows one to extend and clarify the quanti-
tative understanding of QCD dynamics as well as to
progress in the study of the most important parameters
of the electroweak theory.

From the spectroscopy viewpoint, the (bc) is the heavy
quarkonium whose spectrum can be quite reliably calcu-
lated in the framework of the QCD-motivated
nonrelativistic potential models as well as in the QCD
sum rules. (bc) is the only system composed of two heavy
quarks where the description of its mass spectrum can test
the self-consistency of the potential models and the QCD
sum rules, whose parameters (the quark masses, for
instance) have been fixed from the fitting of the spectro-
scopic data on the charmonium and bottomonium.

Thus, the study of B.-family spectroscopy can serve to
improve the quantitative characteristics of the quark models
and the QCD sum rules, which are intensively applied in
other fields of heavy quark physics (for example, when one
extracts values of elements in the matrix of mixings of the
heavy quark charged weak currents and one estimates
contributions interfering with the effects of the CP-invar-
iance violation, in the heavy hadron decays [18]).

Moreover, there is the problem of the precise description
of the P-wave level splittings in the charmonium and
bottomonium, when the experimental measurement pro-
duces an essential deviation from the values expected in
some well-acknowledged quark models [19]. The study of
the B.-meson family can help in a solution of this problem.

In addition, the (bc) system is interesting because it
allows one, in a new way, to use the phenomenological
information obtained from the detailed experimental study
of the charmonium and bottomonium. So, for example,
(bc) takes an intermediate place between the charmonium
and bottomonium with respect to both the system level
masses and the values of average distances between the
heavy quarks.

As has been clarified, in the region of the average
distances in the (ct) and (bb) systems, the heavy quark
potential possesses simple scaling properties [8, 20, 57],
which state that the kinetic energy of the heavy quarks is
practically a constant value, independent of the quark
flavours and the excitation level in the heavy quarkonium
system. Furthermore, this leads to the fact that the heavy
quarkonium level density (the distance between the nL- and
n’'L-levels) does not depend on the flavours of quarks

composing the heavy quarkonium. This regularity is quite
accurately valid empirically for the (cc) and (bb) systems and
it can be used in the framework of the QCD sum rules, where
a scaling relation connecting the leptonic constants of the
S-wave levels in the different quarkonia [21, 22] is derived.

Further, having no strong and electromagnetic annihila-
tion channels of decays, the excited (bc) system levels, being
below the threshold of the decay into the BD-meson pair,
will decay into the lightest basic pseudoscalar state BZ (07)
due to the radiative cascade transitions into the underlying
levels. Therefore, the widths of the electromagnetic (y) and
hadronic (nm, n, .. .) radiative decays of the given excitation
into the other levels will compose its total width. As a result,
the total widths of the excited levels in the (bc) system turn
out to be two orders of magnitude less than the total widths
of the charmonium and bottomonium excited levels, for
which the annihilation channels are essential.

Moreover, maybe, the data on the radiative hadronic
decays in the (bc)-family provide the possibility of solving
some problems in the theory of hadronic transitions in
heavy quarkonia (for example, the problem of the anom-
alous distribution over the mm-pair invariant mass in the
decay of Y" — Ynm [23 -28)).

Thus, on the one hand, the methods applied in heavy
quark physics are able quite reliably to point out the
spectroscopic characteristics of the (l_)c) system for one
to make a purposefully directed experimental search of the
given heavy quarkonium. On the other hand, the measure-
ment of the spectroscopic data in the B.-family would allow
one to improve these methods for the extraction of the
fundamental parameters of the Standard Model from both
B.-meson physics and the other fields of heavy quark physics.

Like the other mesons with open flavour, the basic state
of the B;-meson family, the pseudoscalar meson B (07), is
a long-living particle, decaying due to the weak interaction
and having a lifetime comparable with the lifetimes of B-
and D-mesons, so this feature essentially distinguishes B,
from the heavy quarkonia m, and n,. Therefore, the study
of B,-meson decays is the rich field of heavy quark physics,
where one extracts important information about both the
QCD dynamics and the weak interactions.

The spectroscopic B.-meson characteristics such as the
leptonic constant, determining the width of the wave
package of the (l_)c) system in the basic state, essentially
determine the description of the B, decay modes, in which
some specific features and effects are observed. First of all,
the presence of the valent heavy quark-spectator leads to a
large probability for the B, decay modes with the heavy
mesons in the final state, i.e. in the decays B, — y(n,) and
B, — BS*) [29-36]. The large -particle yield is interesting,
in addition, in that the {-particle has a perfect experimental
signature in the leptonic decay mode.

Furthermore, in the consideration of the semileptonic
Bf — U(n,)/"v decays, the nonrelativistic heavy quark
motion inside the quarkonia leads to a major effect caused
by large Coulomb-like o/v-corrections, which notably
change the calculation results for these decays in the
framework of the QCD sum rules [31]. It is only when
these corrections are taken into account that the results of
the QCD sum rules and the potential quark models become
consistent.

Recently, the semileptonic transitions of the heavy
quarks Q — Q’Iv in the framework of the effective heavy
quark theory (EHQT) for hadrons with a single heavy quark
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(Qq, Qqq), have been taken into consideration to determine
the universal regularities [14], which permit, for example,
the model independent extraction of the Kobayashi—
Maskawa matrix element value |V |. This universality in
the limit of Agcp/mq — 0 is caused by the heavy quark
flavour-independence of the light quark motion in the gluon
field of the static source (the heavy quark), so that the wave
functions of such hadrons are universal.

In the case of the heavy quarkonium with two heavy
quarks, the distances between the quarks depend on the
values and ratios of its masses, i.e. the wave functions of the
heavy quarkonia are not universal and depend on the quark
flavours. However, in this case, one can neglect the low
value of the spin-dependent splitting in the heavy
quarkonium and suppose the wave functions of the nL ;-
quarkonia to be J-independent. This fact finds expression in
an approximate spin-symmetry for the heavy quarks, so it
puts some relations on the form factors of the weak
semileptonic exclusive decays of B, [37]. Such relations
for the form factors are unique and characteristic of the
B.-meson and reflect the high degree of understanding of
heavy quark decay dynamics, which nevertheless need direct
experimental verification.

Considering the B, decays with the spectator b-quark,
one has particularly to note the essential role of the effects
caused by the fact that the c-quark is not in the free state,
but in the bound one. The decrease of the phase space for
the c-quark decay within the heavy quarkonium makes the
probability of the decay to be 40% less than the probability
in the D- and Dg-meson decays [34]. The annihilation
channel of the weak B,-meson decay [52], allowing one
to determine the value of the quark wave function at the
origin |¥(0)|*, acquires an important meaning.

As in the case of the (bc) system spectroscopy, the heavy
quark theory is able to make basic predictions on the
mechanisms of the B.-meson decays, whose measurement
would allow one essentially to develop methods for
description and also to use these methods for the precise
investigation of the Standard Model as well as possible
deviations from predictions of the latter.

In the case of B,-meson production, a low value of the
AQCD/mQ ratio and, hence, the low value of the quark—
gluon coupling a; ~ 1/1In(mq/Aqcp) < 1 allow one to take
into consideration the pair production of the bb and cc
quarks, from which the B.-meson is formed, in the
framework of perturbative QCD theory, and also, in a
way, to factorise contributions caused by the perturbative
production of heavy quarks and overcoming nonperturba-
tive binding of the latter into the heavy quarkonium.

So, calculation of the cross sections of the S-wave B.-
state production in the Z-boson peak is enough to compute
the matrix elements for the joint production of the bb and
cC pairs in the colour-singlet state of the (bc) pair with the
fixed total spin of quarks (S = 0, 1), when the quarks, being
bound into the meson, move with one and the same
velocity, equal to the meson velocity. After that, one has
to multiply these matrix elements by the nonperturbative
factor whose value is determined by the spectroscopic
characteristics of the bound state (the quark masses and
the leptonic constant, related to the probability of the
observation of quarks with zero distance between them in
the bound state) [38—47].

The last notion is caused by the fact that the character-
istic virtualities of heavy quarks inside the heavy

quarkonium are much less than its masses, since the heavy
quarks inside the bound states are moving nonrelativis-
tically, otherwise the quark virtualities in its production are
of the order of its masses. Therefore, considering the B,
production, one can assume that, inside the meson, the b-
and c-quarks are close to the mass shell and practically at
rest with respect to each other. Thus, after the extraction of
the nonperturbative factor, the analysis of the B, heavy
quarkonium production is determined by consideration of
the matrix elements, calculated in the perturbation theory
of QCD.

Note first of all that the necessity of the two-pair
production of heavy quarks in the electromagnetic and
strong processes for the B, yield leads to the fact that the
leading order of perturbative QCD has an additional factor
of the suppression ~ ozﬁ with respect to the leading order of
the perturbation theory for the production of the single-
flavour heavy quarks; for example, the bb pair (see Fig. 7,
9), so a(B,)/o(bb) ~ a?|¥(0)]*/m?. This causes the low
yield of the B.-mesons with respect to the B-meson
production.

The analysis of the leading approximation in the
perturbative QCD for the B,-meson production allows
one to derive a number of analytical expressions for the
B. production cross sections [38, 39], where one has
especially to stress the expressions for the functions of
the fragmentation of the heavy quark into the heavy
quarkonium in the scaling limit M?/s — 0, so these
functions are determined by the values of oy, the quark
masses, and the leptonic constant of the meson [42—44].
Thus, fragmentational B, production can be reliably
described by analytic expressions, and this opens new
possibilities in the study of QCD dynamics, essential in
the complete picture of heavy quark physics.

As one can show, fragmentational B, production
certainly dominates in Z-boson decays [44], so that it
can be straightforwardly studied at the LEP facilities.
Moreover, one can analytically study notable spin effects
in the fragmentation into the vector Bi-meson [48], decay-
ing electromagnetically: B — B_y.

In hadronic B, production, patron processes at the
energies comparable with the B, mass dominate, so that
processes having the character of the fragmentational and
also recombinational type [38, 46] (see Fig. 9) are essential.

Furthermore, the numerical estimates of the B,-meson
yield at the LEP and Tevatron colliders show that the
fraction of B.-mesons in the production of beauty hadrons
is of the order of 1073 [38—47, 49]. This leads to the fact
that, at the current experimental facilities, a quite large
number of B,-mesons are being produced.

Thus, one can point out the expected number of B.-
mesons being produced at different colliders, and the
differential B.-characteristics whose experimental study
would significantly clarify the picture of the QCD inter-
actions of heavy quarks.

A solution of the problem of the experimental discovery
and study of the B.-mesons is determined, first, by the
theoretical description of the features of the B.-meson
family (the spectroscopy, the production and decay mech-
anisms), and so the present review is devoted to this
purpose. Second, this programme is determined by the
experimental methodology at the current detectors, so that
the latter would allow one to observe the events with B,
production and decays, predicted by the theory.
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As for the second part of the problem, at present, as
mentioned, colossal progress being made, related to the use
of the electronic vertex detectors that operate rapidly and
allow one to isolate processes with long living particles (B,
B., D) from the production processes (the technique of
distinguishing the primary and secondary vertices), and also
accurately to reconstruct the decay vertices of the particles
in space [50].

The presence of distinct signatures in B,-meson decays
and the practical possibility of registering these decay
modes have led to a real chance of discovering the B.-
meson at the LEP and Fermilab detectors [51], as well as to
the sharp rise of theoretical interest in the (bc) system. The
latter is reflected in the achievement of a large number of
important results in the consideration of the heavy quark
interaction mechanisms in the example of B,-mesons. So,
the present paper is devoted to the review of these results.

2. Spectroscopy of B.-mesons

Some preliminary estimates of the bound state masses of
the (bc) system have been made in Refs. [5, 6], devoted to
the description of the properties of the charmonium (cc)
and bottomonium (bb), as well as in Ref. [52]. Recently in
Refs [53, 35], the revised analysis of the B, spectroscopy
has been performed in the framework of the potential
approach and QCD sum rules.

In the present section we consider the (bc) spectroscopy
with account taken of the change of the effective Coulomb
interaction constant, defining spin-dependent splittings of
the quarkonium levels. We calculate the widths of radiative
transitions between the levels and analyse the leptonic
constant fp_in the framework of the QCD sum rules in
the scheme, allowing one to derive the scaling relation for
the leptonic constants of the heavy quarkonia.

2.1 Mass spectrum of B.-mesons

The B,-meson is the heavy (bc) quarkonium with open
charm and beauty. It occupies an intermediate place in the
mass spectrum of the heavy quarkonia between the (Cc)
charmonium and the (bb) bottomonium. The approaches
made to the study of the charmonium and bottomonium
can be used to describe the properties of the B.-meson, and
an experimental observation of B, could serve as a test of
these approaches and could be used for the detailed
quantitative study of the mechanisms of heavy quark
production, hadronisation, and decays.

In the following, we obtain results on B, meson
spectroscopy. We will show that below the threshold of
hadronic decay of the (bc) system into the BD meson pair,
there are 16 narrow bound states, cascadingly decaying into
the lightest pseudoscalar Bf(07) state with mass
m(07) =~ 6.25 GeV.

2.1.1 Potential. The mass spectra of the charmonium and
the bottomonium have been studied in detail experimen-
tally [15] and are properly described in the framework of
phenomenological potential models of nonrelativistic heavy
quarks [5—8, 10]. To describe the mass spectrum of the
(bc) system, one would prefer to use the potentials whose
parameters do not depend on the flavours of the heavy
quarks, composing a heavy quarkonium, i.e. one would use
the potentials which rather accurately describe the mass
spectra of (Sc) as well as (bb), with one and the same set of

potential parameters. The use of such potentials allows one
to avoid an interpolation of the potential parameters from
the values fixed by the experimental data on the (cc) and
(bb) systems, to the values in the intermediate region of the
(bc) system.

As has been shown in Ref. [20], with an accuracy up to
an additive shift, the potentials, independent of heavy quark
flavours [S—8, 10], coincide with each other in the region of
the average distances between heavy quarks in the (cc) and
(bb) systems, so

0.1 fm<r<l1fm, )

although those potentials have different asymptotic
behaviour in the regions of very small (r — 0) and very
large (r — oo) distances.

In the Cornell model [5], in accordance with the
asymptotic freedom in QCD, the potential has a Cou-
lomb-like behaviour at small distances, and the term
confining the quarks rises linearly at large distances:

4 0, r
Vc(r)=—§7s+;+€0 P 2
so that
a0, =036, a=234GeV",

m, =184 GeV, ¢y =-0.25GeV. 3)
The Richardson potential [7] and its modifications in
Refs [10, 54] also correspond to the behaviour expected in

the framework of QCD, so
3

Vel quex(ir)4 487 1
V)= — = . —
R en) PNV 3TN = 20 (1 + /A7)

4 oo (255

2

A 8,
Z1+2Z4 4
[21n<1+q2/A2) q“]* ’ @

K

with
A=0.398 GeV . %)

In the region of the average distances between heavy
quarks (1), the QCD-motivated potentials allow approx-
imations in the forms of the power (Martin) or logarithmic
potentials.

The Martin potential has the form [§8]

Va(r) = —cu +dy (Ayr)" (6)
so that

Ay =1GeV, k=0.1,

my, =5.174 GeV, m,= 1.8 GeV,

oy = 8.064 GeV, dy =6.869 GeV . 0

The logarithmic potential is equal to [9]

Vi(r) =cL+dIn(ALr) , (®)
so that

A =1GeV,

my, =4.906 GeV, m.=1.5GeV,

cp, = —0.6635 GeV, dp =0.733 GeV . O]
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The approximations of the nonrelativistic potential of
heavy quarks in the region of distances (1) in the form of
the power (6) and logarithmic (8) laws, allow one to study
its scaling properties.

In accordance with the virial theorem, the average
kinetic energy of the quarks in the bound state is
determined by the following expression:

n-3()

Then, the logarithmic potential allows one to conclude
that for the quarkonium states one gets

(10)

(Tp) = const

an

independently of the flavours
composing the heavy quarkonium,

of the heavy quarks

% = const = 0.367 GeV .

In the Martin potential, the virial theorem (10) allows
one to obtain the expression

(Tw) = 3 £ (em +E), (12)

+k
where E is the binding energy of the quarks in the heavy
quarkonium.

Phenomenologically, one has |E| < ¢y [for example,
E(1S, cc) = —0.5 GeV], so that, neglecting the binding
energy of the heavy quarks inside the heavy quarkon-
ium, one can conclude that the average kinetic energy of
the heavy quarks is a constant value, independent of the
quark flavours and the number of the radial or orbital
excitation. The accuracy of such an approximation for (T)
is about 10%, i.e. |AT/T| =~ 30—40 MeV.

From the Feynman —Hellmann theorem for the system
with reduced mass p, one has

dE (T)

du T
and, in accordance with condition (11), it follows that the
difference of the energies for the radial excitations of the
heavy quarkonium levels does not depend on the reduced
mass of the QQ’ system

(13)

E(ii, ) — E(n, p) = E(i, /') — E(n, ') . (14)

Thus, in the approximation of both the low value for the
binding energy of quarks and the zero value for the spin-

Table 1. The mass difference (in MeV) for the two lightest vector

dependent splittings of the levels, the heavy quarkonium
state density does not depend on the heavy quark flavours:

= const .

. 15)
The given statement has also been derived in Ref. [21] by
means of Bohr—Sommerfeld quantisation of the S-wave
states for the heavy quarkonium system with Martin
potential [8].

Relations (14) and (15) are phenomenologically con-
firmed for the vector S-levels of the bb, ct, s§ systems [15]
(see Table 1). Thus, the structure of the nonsplit S-levels of
the (bc) system must repeat not only qualitatively, but
quantitatively the structure of the S-levels for the bb and &c
systems, with an accuracy up to the overall additive shift of
masses.

Moreover, in the framework of the QCD sum rules, the
universality of the heavy quark nonrelativistic potential [the
lack of dependence on the flavours and the scaling proper-
ties (11), (14), (15)] allows one to obtain the scaling relation
for the leptonic constants of the S-wave quarkonia with
mass M [21],

2

i const , (16)
independently of the heavy quark flavours in the regime
when

Aqcp
mq,q’
i.e., when one can neglect the heavy quark mass difference.

On the other hand, in the regime when the mass
difference is not low, one has

<]s

|mg —mgq| limited

;/[—2 (3/[—#)2 = const , 17
where
_ QOQl
mq +mq:

Consider the mass spectrum of the (bc) system with the
Martin potential [8].

Solving the Schrodinger equation with potential (6) and
the parameters (7), one finds the B, mass spectrum and the
characteristics of the radial wave functions R(0) and R’(0),
shown in Tables 2 and 3, respectively.

Table 3. The characteristics of the radial wave functions R,g(0) (in
GcV3/2) and R,p(0) (in GCVS/Z), obtained from the Schrodinger
cquation.

states of different heavy systems, AM = M (2S) — M (1S). " Martin (53]
System T v B, ® R15(0) 1.31 1.28

R5(0) 0.97 0.99
AM 563 588 585 660 R2p(0) 0.55 0.45

R3p(0) 0.57 0.51
Table 2. The energy levels of the (bc) system, calculated without taking into account relativistic corrections (in GeV).
n [52] [55] [54] n [52] [55] [54] n [52] [55] [54]
1S 6.301 6.315 6.344 2P 6.728 6.735 6.763 3D 7.008 7.145 7.030
2S 6.893 7.009 6.910 3P 7.122 — 7.160 4D 7.308 — 7.365
38 7.237 — 7.024 4P 7.395 — — 5D 7.532 — —
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Table 4. The average kinetic and orbital energies of the quark motion
in the (be) system (in GeV).

nL 1S 28 2P 3P 3D
(T) 0.35 0.38 0.37 0.39 0.39
AV, 0.00 0.00 0.22 0.14 0.29

The average kinetic energy of the levels lying below the
threshold for the decay of the (bc) system into the BD pair
is presented in Table 4, wherein one can see that the term
added to the radial potential due to the orbital rotation,

12
=27 (18)
weakly influences the value of the average kinetic energy,
and the binding energy for the levels with L #0 is
essentially determined by the orbital rotation energy,
which is approximately independent of the quark flavours
(see Table 5), so that the structure of the nonsplit levels of
the (bc) system with L # 0 must quantitatively repeat the
structure of the charmonium and bottomonium levels, too.

AV,

Table 5. The average energy of the orbital motion in the heavy
quarkonia, in the model with the Martin potential (in GeV).

System (Cc) (bc) (bb)

AV,(2P) 0.23 0.22 0.21

2.1.2 Spin-dependent splitting of the (bc) quarkonium. In
accordance with the results of Refs [55, 56], one introduces
the additional term to the potential to take into account the
spin —orbital and spin—spin interactions, causing the split-
ting of the nL-levels (n is the principal quantum number, L
is the orbital momentum), so it has the form

(LS, LS\ [ dv() 8 1
Vsn(r) = (2m§ + 2m12)>( rar 3% 5
4 1 L-S 4 2
g —— L % s[4S
+3oCS memy, P +3a” 3memy, ¢ [4m o))
4 1 1 r
+3% . [3(Sc-n)(Sy-n) — S.-Sy) 5. on=-.
(19)

where V(r) is the phenomenological potential confining the
quarks. The first term takes into account the relativistic
corrections to the potential V(r); the second, third and
fourth terms are the relativistic corrections coming from
the account of the one-gluon exchange between the b and ¢
quarks; o, is the effective constant of the quark—gluon
interaction inside the (bc) system.

The value of the o, parameter can be determined in the
following way. The splitting of the S-wave heavy quarkon-
ium (Q,Q,) is determined by the expression

AM (1S) = > L R,s(0)P 20

(1) =5 % o [R,sO)F (20)
where R ,5(0) is the value of the radial wave function of the
quarkonium, at the origin. Using the experimental value of
the 1S-state splitting in the cc system [15]

AM (18, cg) = 117 £2 MeV @1

and the R5(0) value calculated in the potential model for
the cc system, one gets the model-dependent value of the
o,(V) constant for the effective Coulomb interaction of
heavy quarks (in the Martin potential, one has
a, (W) = 0.44).

In Ref. [53] the effective constant value, fixed in the
described way, has been applied to the description of not
only the cC system, but also the bc and bb quarkonia. In the
present paper we take into account the variation of the
effective Coulomb interaction constant versus the reduced
mass of the system (u).

In the one-loop approximation at the momentum scale
p*, the ‘running’ coupling constant in QCD is determined
by the expression

2 4n

) = e An)
where b =11 —2n¢/3, and n; =3, when one takes into
account the contribution by the virtual light quarks,
P < mg,b~

In the model with the Martin potential, for the kinetic
energy of quarks (cC) inside s, one has

(22)

(T1s(cT)) = 0.357 GeV , (23)
so that, using the expression for the kinetic energy,
2
ry =42, ()
one gets
T L — 5)
bIn(2(T)u/Aqep)
so that o (y) = 0.44 at
Agep = 164 MeV . (26)

As has been noted in the previous section, the value of
the kinetic energy of the quark motion depends weakly on
the heavy quark flavours, and is practically constant; hence,
the change of the effective a, coupling is basically deter-
mined by the variation of the reduced mass of the heavy
quarkonium. In accordance with Eqns (25)—(26) and
Table 4, for the (bc) system one has

nL 1S 28 2P 3P 3D
0t 0.394 0.385 0.387 0.382 0.383

Note that the Martin potential leads to the Rg(0)
values, which—with an accuracy up to 15% —20% —
agrees with the experimental values of the leptonic decay
constants for the heavy ¢¢ and bb quarkonia. The leptonic
constants are determined by the expression

_ _. 4m fag
FQQ = I'17) =5 et 37 @7
QQ
where e is the heavy quark charge.
In the nonrelativistic model one has
3 \2
foo = (z—) R 8)
TCMQQ

For the effective Coulomb interaction of the heavy
quarks in the basic 1S-state one has

co (4 32
Ris(0) =2 FH% ) (29)
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Table 6. The leptonic decay constants of the heavy quarkonia, the
values, measured cxperimentally and obtained in the model with the
Martin potential, in the model with the effective Coulomb interaction
and from the scaling relation (SR) (in MeV).

Model Exp. [15] Martin Coulomb SR

Sy 410 £ 15 547 £+ 80 426 £ 60 410 £ 40
S, — 510 + 80 456 £ 70 460 + 60
Ir 715 £ 15 660 %+ 90 772 £120 715+ 70

One can see from Table 6 that, taking into account the
variation of the effective «, constant versus the reduced
mass of the heavy quarkonium [see Eqn (25)], the Coulomb
wave functions give the values of the leptonic constants for
the heavy 1S-quarkonia, so that in the framework of the
accuracy of the potential models, those values agree with
the experimental values and the values obtained by the
solution of the Schrodinger equation with the given
potential.

Consideration of the variation of the effective Coulomb
interaction constant becomes especially important for the
Y-particles, for which ay(Y) ~ 0.33 instead of the fixed
value oy = 0.44.

Thus, calculating the splitting of the (bc) levels, we take
into account the «, dependence on the reduced mass of the
heavy quarkonium.

As one can see from Eqn (19), in contrast to the LS-
coupling in the (Sc) and (bb) systems, there is jj-coupling in
the heavy quarkonium, where the heavy quarks have
different masses [here, LS. is diagonalised at the given J,
momentum, (J; =L +S_., J =J,+Sy), J is the total spin of
the system]. We use the following spectroscopic notation for
the split levels of the (bc) system—nzi“Lj.

One can easily show that, independently of the total spin
J projection, one has

P,y =J=L+1,5=1),

Pl ) ==L 1.8 =1),

L
2L+1
L) =\ M =L S =)

L+1

=L s=0).
201 L+1
L,))= J=L,S=1
oLy =y et )
L
— 2L+]|J=L,S:0>, (30)

where |J, S) are the state vectors with the given values of
the total quark spin S =S.+S,, so that the potential
terms of the order of 1/mgmy,, 1/mi lead, generally
speaking, to the mixing of levels with the different J,
values at the given J values. The tensor forces [the last term
in Eqn (19)] are equal to zero at L =0 or S =0.

To calculate values of the level shifts appearing because
of the spin —spin and spin—orbital interactions, one has to
take the averaged expression (19) over the wave functions
of the corresponding states.

The averaging over the angle variables can be performed
in the following standard way. Let us represent the matrix
element of the unit vector n =r/r pair in the form
(L, mn"n?|L,m"y = a(LPLY + LILP), , + b6, , (31)
where L are the orbital momentum matrices in the
corresponding irreducible representation.

From the conditions of the normalisation of the unit
vector, (n”n?)é"? = 1, the orthogonality of the radius-vector
to the orbital momentum, n”’L? =0, the commutation
relations for the angular momentum, [L?; LY] =ig"'L,,
one finds the values of constants ¢ and b in Eqn (31):

1

TR 42
2L — 1

Note further that from the condition for the quark spins
SSSS —l—SSSS = 8P/2 it follows, that

1 3 1
3(/1”/1” —gép”)ScpSé’ =3 (n”n” —55””)5”5” . (G

Thus, (see also Ref. [57])

1 1
6(nPn? ——5P1\sPsay — _
< (" S ) ‘ "> 473

x [6(L-S)* +3(L-S) —2L°S?] . (35)

Using Eqns (30) and (35), for the level shifts, calculated
in the perturbation theory at § = 1, one gets the following
formulae:

2
AE,i5, = —a T |R,.s(0)], (36)
c b
AE, = o —2 |R,s(0) 37
nls, = % 9mcmb| nS( )| ) (37)
AEﬂ,:a,_fL—<L>
2 Smemy, \1r°
1/1 1 dv(r) 8 1
=+ {——+=0, =), 38
+4(m§+m12)>< rdr +30C5 r3> (38)
4 1
AE"IPO: % me nty, <ﬁ>
1/1 1 dv(r) 8 1
— | —=+—= (- = O — 39
2<mg+mﬁ>< rdr +3 ‘sr3>’ (39)
52 1
AEysp, Ocs21mcmb <p>
1/1 1 dv(r) 8 1
| —=+—={(——+=-0,—=), 40
+2<m§+mﬁ>< rdr +3a5rJ> (40)
92 1
AE -
"Dy % 21mgmy, r3>
371 1 dv(r) 8 1
S LN P Sa— 41
4(m§+m% < rdr +3a”r"’>’ @1
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where R,s(0) are the radial wave functions at L =0, and
(...) denote the average values calculated under the wave
functions R, (r).

The mixing matrix elements have the forms

2 1
% Iy my, \1°

1 5 dv(r) 8 1
— - - S ), (42
+<4m§ 12m§>< rdr +3abr’> “42)

(°Py|AE|’Py) = -

1 = —q
{'P\|AE|'P;) “ o mb< >
1
+( 2mc )< rdr 3 S§>’(43)
(°P)|AE| P>——oc< < >
V2 dV(r) 8 1
“ond <‘ rar T3% > )

(°D,|AE|*D,) =

.
515mmb< >
(r) ,

+<2172—#)<’ rdr > “
(*D,|AE’D,) = —a, lSmcmb< >
* <_ T 20m? )< & §as %> 0
("DaIAE|'Da) = o, <1>
1:)/,51, < JGHE ri> )

As one can see from Eqn (37), the S-level splitting is
essentially determined by the |R,s(0)| value, which can be
related to the leptonic decay constants of the S-states (07,
17). Section 2.3 is devoted to the calculation of these
constants in different ways. We only note here that,
with enough accuracy, the predictions of different potential
models on the |[R5(0)| value are in agreement with each
other as well as with predictions from other approaches.

For the 2P level, the mixing matrices of the states with
the total quark spin S =1 and § =0 have the forms

2P, 1't) = 0.294|S = 1) + 0.956|S = 0) ,
2P, 1*) = 0.956|S = 1) —0.294|S = 0) ,

(48)
(49)

so that in the 17 state the probability of the total quark
spin value S =1 is equal to

w; (2P) =0.913 . (50)
For the 3P-level one has

3P, 1) = 0.371|S = 1) + 0.929|S = 0) , (51)

3P, 1*) = 0.929|S = 1) —0.371|S =0) , (52)
so that

w, (3P) = 0.863 . (53)

m/GeV
7.5
i 4P
4D
3S
2t BD-threshold
3P —_
=i 5 2
70 L 0t =1
28 1~ 2=
0~ 2+
2P [las
"
0+
6.5
1S 1~
E— 0
6.0

Figure 1. The mass spectrum of the B.-meson states with account
taken of splittings.

Table 7. The masses (in GeV) of the bound (bc) states below the
threshold of the decay into the (BD) meson pair ( is the present

paper).

State (53] [54] State [53] [54]
1'S, 6253 6264 6314 3P, 7.088 7.108 7.134
1'Sy 6317 6337 6355 3P1Y 7113 7.135  7.159
2'S,  6.867 6856 6889 3P1UT 7124 7142 —
2'Sy 6902 6899 6917 3*P, 7.134 7153 7.166
2Py 6683 6700 6728 3D27 7.001  7.009 —
P11t 6717 6730 6760 3Dy 7.007  7.005 —
P17 6729 6736 — 3*D, 7008 7.012 —
2°P, 6743 6747 6773 3D2° 7.0l6 7012 —

Table 8. The masses (in GeV) of the lightest pscudoscalar B, and
vector B} states in different models (* is the present paper).

State * 551  [54  [381  [6] [59]  [21, 65]
0~ 6253 6249 6314 6293 6270 6243 6246
1~ 6317 6339 6354 6346 6340 6320 6319

State 531  [60] [61] [621 [63] [64]  [35]

0~ 6.264 6.320 6.256 6276 6.286 — 6.255
1~ 6.337 6370 6.329 6365 6.328 6.320 6.330
For the 3D-level one gets
13D, 2'7) = —0.566|S = 1) +0.825|S = 0) , (54)
3D, 27) = 0.825|S = 1) +0.566|S = 0) , (55)
so that
w,(3D) = 0.680 . (56)

The B, mass spectrum, with account having been taken
of the calculated splittings, is shown in Fig. 1 and Table 7.
The masses of the B, mesons have also been calculated
in Ref. [66]. As one can see from Tables 2 and 8, the place
of the 1S-level in the (bc) system [m(1S) ~ 6.3 GeV] is
predicted by the potential models with the rather high
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accuracy dm(1S) = 30 MeV, and the 1S-level splitting into
the vector and pseudoscalar states is about
m(17) —m(07) = 70 MeV.

2.1.3 B, meson masses from QCD sum rules. Potential model
estimates for the masses of the lightest (bc) states are in
agreement with the results of the calculations for the vector
and pseudoscalar (bc) states in the framework of the QCD
sum rules [35, 36, 67], where the accuracy of the calculation
is lower than the accuracy of the potential models, because
the results essentially depend on both the modelling of the
nonresonant hadronic part of the current correlator (the
continuum threshold) and the parameter of the sum rule
scheme (the moment number for the spectral density of the
current correlator or the Borel transformation parameter),

m O ~m*®(17) x~ 6.3-6.5 GeV . (57)

As has been shown in Ref. [11], for the lightest vector
quarkonium, the following QCD sum rules apply

f\%M% 1 [ ds CD (per
R 7 == —— Im HS (per) (s)
%

T : 2
5 $—4

+H8CD(nonpcrt)(q2) ) (58)

where fy is the leptonic constant of the vector (bc) state
with the mass My,

ifyMy & exp(ipx) = (O17,()IV(p. ) .
Jxr) = &b () |

(59
(60)

where A, p are the B} polarisation and momentum,
respectively, and

J d*x exp (igx) (O[T J,(x) J,(0)[0)

qud
- <_guv + ;2v> H8CD +qﬂq" H(S)CD ’ (6])
3P () = IYPE () + Y () L (62)
HSCD(nonpcn)(qz) _ Z ci(Po', (63)

where O' are the vacuum expectation values of the
composite operators such as (myy), (o G.,), etc. The
Wilson coefficients are calculable in the perturbation
theory of QCD. s; = (m, +my)* is the kinematical thresh-
old of the perturbative contribution, M\z, > 8, Sy 1S the
threshold of the nonresonant hadronic contribution, which
is considered to be equal to the perturbative contribution at
§ > Sth-

Considering the respective correlators, one can write
down the sum rules, analogous to Eqn (58), for the scalar
and pseudoscalar states.

One believes that the sum rule (58) must rather
accurately be valid at ¢*> < 0. For the nth derivative of
Eqn (58) at q2 =0 one gets

. —n 1 Sin dS CD (per
rondy = [ o m O

i

(_])n d" QCD (nonpert) , 2
nl d()" Y (@)

(64)

so, considering the ratio of the nth derivative to the
(n+ 1)th one, one can obtain the value of the vector B}
meson mass. The calculated result depends on the n value
in the sum rules (64), because of account having been taken
both of the finite number of terms in the perturbation
theory expansion and of the restricted set of composite
operators.

The analogous procedure can be performed in the sum
rule scheme with the Borel transform, leading to the
dependence of the results on the transformation parameter.

As one can see from Eqn (64), the result obtained in the
framework of the QCD sum rules depends on the choice of
the values for the hadronic continuum threshold energy and
the current masses of quarks. Then, this dependence causes
large errors in the estimates of the masses for the lightest
pseudoscalar, vector, and scalar (bc) states.

Thus, the QCD sum rules give estimates of the quark
binding energy in the quarkonium, and the estimates are in
agreement with the results of the potential models, but sum
rules involve a considerable parametric uncertainty.

2.2 Radiative transitions in the B, family

The B, mesons have no annihilation channels for the
decays due to QCD and electromagnetic interactions.
Therefore, the mesons, lying below the threshold for the
production of B and D mesons, will, in a cascade, decay
into the 07(1S) state by emission of y quanta and =
mesons.

Theoretical estimates of the transitions between the
levels with the emission of the m mesons have uncertain-
ties, and the electromagnetic transitions are quite accurately
calculable.

2.2.1 Electromagnetic transitions. The formulae for the
radiative El-transitions have the form [17, 68]

4
F(ﬁPJ - ”]SI + Y) =3 achgffm312(ﬁP; nS)wj(ﬁP) s

9

4
F(ﬁpj — HIS() + 'Y) =3 achgff('o3

9
x I*(@iP; nS)[1 — w,(@P)] ,

4 .
r(n'S; — Py +7) = = ten Qo @’

27
x 17 (nS; iP)(2J + 1w, (iP) ,

_ 4
F(n]SO e nPJ + Y) = 5 ‘xchgffw3

x I°(nS; aP)(2J 4+ 1)[1 — w, (@P)] ,

3

_ 4
F(I’le - nDJ' +Y) = “chgffw

27
x 1%(nD; P)(2J" + Nw, (AP)w,: (nD)S 5/ ,

3

_ 4
F(nDJ - l’le! + Y) = 2_ “chgffw

7
x 1%(nD; iP)(2J" + Dw;(iP)w;(nD)S,1;, (65)

where o is the photon energy, o, is the electromagnetic
fine structure constant.
In Eqn (65) one uses

chB — mec
me + my,

Qctr = (66)
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where Q. are the electric charges of the quarks. For the B,
meson with the parameters from the Martin potential, one
gets Qo = 0.41.
w;(nL) is the probability that the spin S =1 in the nL
state, so that wy(nP) = w,(nP) =1, w;(nD) = w3(nD) =1,
and the w; (nP), w,(nD) values have been presented in the
previous section [see Eqns (50), (53), (56)].
The statistical factor S,;/ takes values [68]
J' S
2
1/2
9/10
1/50
9/50
18/25.

The I(iiL; nL') value is expressed through the radial
wave functions,

NN = = O N
W N = N ==

I(AL; nL') = HRﬁL(r)R,,Lr(r) Pdr| . (67)

In the model with the Martin potential, for the set of
transitions one obtains (in GeV_l) [52]

(18, 2P) = 1.568, (1S, 3P) = 0.255 ,
(28, 2P) =2.019,  I(2S, 3P) =2.704 ,

I(3D, 2P) =2.536 , 1(3D, 3P) = 2.416 . (68)

For the dipole magnetic transitions one has [5, 17, 68]

16
F(A'S; = n'Sp+7) == mer @’ (28 + 1) A, (69)

Table 9. The energies (in MeV) and widths (in keV) of the electro-
magnetic El-transitions in the (bc) family (x is the present paper).

Transition ) T [¥] I [53]
2P, — 1S, +v 426 102.9 112.6
2Py — 1S, + v 366 65.3 79.2
2P 1T - 1S+ 412 8.1 0.1
2P 1T - 1S, +v 400 77.8 99.5
2P 1T - 1Sg+y 476 131.1 56.4
2P 1T = 1S, +y 464 11.6 0.0
3P, = 1S, +vy 817 19.2 25.8
3Py — IS, + 7 771 16.1 21.9
3P — 1S, 4y 807 2.5 2.1
3P1T — 1S, 4+ 796 15.3 22.1
3P > 1Sy +y 871 20.1 —
3P1t = 1Sy +7y 860 3.1 —
3P, =28, +7y 232 49.4 73.8
3Py — 28, + 7 186 25.5 41.2
3P =28, 4y 222 5.9 5.4
3P1T — 28, 4+ 211 32.1 54.3
3P 1" =284y 257 58.0 —
3P1t =280+ 246 8.1 —
28, — 2P, +vy 159 14.8 17.7
28, = 2Py + 7 219 7.7 7.8
28, - 2P ' +vy 173 1.0 0.0
28, » 2P 1T +y 185 12.8 14.5
28, — 2P 't vy 138 15.9 5.2

28y — 2P 1T+ 150 1.9 0.0

where
Ajp = JRﬁS(r)RnS(r)jO <w7r> rdr,
1 /%em
Moty = (Qcmy — Qg my) . (70)

2 2m, my,

Note, in contrast to the y- and Y-particles, the total width
of the B} meson is equal to the width of its radiative decay
into the B,(07) state.

The electromagnetic widths, calculated in accordance
with Eqns (65) and (69), and the frequencies of the emitted
photons are presented in Tables 9—11.

Note that the EO-transitions with the conversion of a
virtual y-quantum into a lepton pair can take place.
Moreover, due to the tensor forces, the states with J >0
and S =1 can, in addition to the L-wave, have an
admixture of |L £ 2|-waves, giving a quadrupole moment
to the corresponding states and causing the E2-transitions.
However, these transitions are suppressed by the additional
factor a, in the first case, and by the small value of
amplitude, determining, say, the probability of the admix-
ture appearance of the D-wave in the 17 (nS)-state.

Thus, the registration of the cascade electromagnetic
transitions in the (bc) family can be used for the observa-

Table 10. The energies (in MeV) and widths (in keV) of the electro-
magnetic El-transitions in the (bc) family (x is the present paper).

Transition () I [%] I [53]
3P, = 3D, +y 126 0.1 0.2
3P, »3D2 " +v 118 0.5 —
3P, »3D27 +v 133 1.5 32
3P, —» 3D 4y 127 10.9 17.8
3P — 3D, +¥y 80 32 6.9
3P1" - 3D, +7 116 0.3 0.4
3P1t —3D, +y 105 1.6 0.3
3P1"T —3D2" +7 108 3.5 —
3P1t -»3D27 +y 112 3.9 9.8
3P1"" —=3D27 +v 123 2.5 11.5
3P1t —3D2" +v 97 12 —
3Dy — 2P, 4y 264 76.9 98.7
3D, — 2Py 4y 325 79.7 88.6
3D, - 2P 1" 4y 279 3.3 0.0
3D, = 2P 1t 4y 291 39.2 49.3
3D, — 2P, 4y 265 22 2.7
3D27 2P, 4+ 273 6.8 —
3D27 2P, 4+ 258 12.2 24.7
3D2 2P 1" 4y 287 46.0 9.5
3D2" 2P 1t 4y 301 25.0 —
3D2” 2P 1" 4y 272 18.4 0.1
3D2” 2P 1t 4y 284 44.6 88.8

Table 11. The energies (in MeV) and widths (in keV) of the electro-
magnetic M I-transitions in the (bc) family (x is the present paper).

Transition () T [%] I [53]
28, — 1Sy +7v 649 0.098 0.123
28, — 18, +7v 550 0.096 0.093
1S, — 18y 4y 64 0.060 0.135
28, —2Sy +7v 35 0.010 0.029
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tion of the higher (bc) excitations, having no annihilation
channels for the decays.

2.2.2 Hadronic transitions. In the framework of QCD the
consideration of the hadronic transitions between the states
of the heavy quarkonium family is based on the multipole
expansion for the gluon emission by the heavy nonrelativ-
istic quarks [23], with subsequent hadronisation of gluons,
independently of the heavy quark motion.

In the leading approximation over the velocity of the
heavy quark motion, the action corresponding to the heavy
quark coupling to the external gluon field,

S = = | 4 AL ) an
can be expressed in the form
L : |
S =g J dr r*Ef (1, x) > V()W) (r) K (s f) &dr. (72)

where ¥,(r) is the wave function of the quarkonium
emitting a gluon, ‘P (r) is the wave function of the colour-
octet state of the quarkomum K(s,, f) corresponds to the
spin factor (in the leading approximation, the heavy quark
spin is decoupled from the interaction with the gluons).
Then the matrix element for the E1 —E1 transition of the
quarkonium nL; — n'L’;, + gg can be written in the form

M (nL; — n'Ly + gg) = 4na, ELEL

m

X J d3rd3r'rkrm Gf’lf s, (r, r') Voo, (r) Worrr (r') , (73)
. ./’

where ij:“\."(r, ') corresponds to the propagator of the
colour-octet state of the heavy quarkonium

G= ;c ;
&— HQQ
where H(C)Q is the Hamiltonian of the coloured state.

One can see from Eqn (73) that the determination of the
transition matrix element depends on both the wave
function of the quarkonium and the Hamiltonian H(C)Q
Thus, the theoretical consideration of the hadronic transi-
tions in the quarkonium family is model dependent.

In a number of papers [24], the potential approach has
been developed for the calculation of the values such as in
Eqn (53). In papers [25] it is shown that nonperturbative
conversion of the gluons into the ® meson pair allows one to
give a consideration in the framework of the low-energy
theorems in QCD, so that this consideration agrees with the
studies performed in the framework of PCAC and soft pion
techniques [26].

However, as follows from Eqn (73) and the Wigner—
Eckart theorem, the differential width for the EI1-EIl
transition allows a representation in the form [24]

(74);

dr
. s(nL; —n'Ly +h) = (27" +1)
2
k L L ’
ka{s } L. LY, (75
where m? is the invariant mass of the light hadron system

h; {...} are 6j-symbols; A (L, L’) is the contribution by the
irreducible tensor of the rank equal to k =0, 1, 2; s is the
total quark spin inside the quarkonium.

In the limit of soft pions, one has A (L, L") = 0.

From Eqns (73) and (75) it follows that, with an
accuracy up to the difference in the phase spaces, the
widths of the hadronic transitions in the (QQ) and (QQ")
quarkonia are related to the following expression [23, 24]:

F(QQI) _ <r2(QQ/)>2 (76)
rQQ)  (*(QQ)’
Then the experimental data on the transitions
V—=I/N+nrr, Y —Y+rr, Y(3770) — J/¥ +nr [27]

allow one to extract the values of Ay(L,L’) for the
transitions 2S — 1S + nn and 3D — 1S 4+ nw [53].

The invariant mass spectrum of the © meson pair has the
universal form [25, 26]

LAr_ e

m'cl 2 _
2x
I dm ( D

xr—1, ()
where x = m/2m,[, |kyz| is the mw pair momentum.

Estimates for the widths of the hadronic transitions in
the (bc) family have been made in Ref. [53]. The hadronic
transition widths, which have values comparable to the
electromagnetic transition width values, are presented in
Table 12.

Table 12. The widths (in keV) of the radiative hadronic transitions in
the (bc) family.

Transition I [53] Transition I [53]
28y — 1Sy + 50 3D, — IS, +nn 32
28| = 1S; +nn 50 3D; — IS, +nn 31
3D, — 1S, + mn 31 3D, — 1S, + 7n kY

The transitions in the (bc) family with the emission of 1
mesons are suppressed by the low value of the phase space.
Thus, registration of the hadronic transitions in the (bc)
family with the emission of m meson pairs can be used to
observe the higher 2S- and 3D-excitations of the basic state.

2.3 Leptonic constant of B, meson

As we have seen in Section 2.1, the value of the leptonic
constant of the B, meson determines the splitting of the
basic 1S-state of the (bc) system. Moreover, the higher
excitations in the (bc) system transform, in a cascade, into
the lightest 0~ state of B., whose widths of decays are
essentially determined by the value of f , too.

In the quark models[69—71] used to calculate the weak
decay widths of mesons, the leptonic constant, as the
parameter, determines the quark wave packet inside the
meson (generally, the wave function is chosen in the
oscillator form), therefore, the practical problem of the
extraction of the value for the weak charged current mixing
matrix element |Vy| from the data on the weak B, decays
can be solved only at the known value of fj .

Thus, the leptonic constant fg is the most important
quantity, characterising the bound state of the (bc) system
In the present section we calculate the value of fp in
different ways.

To describe the bound states of the quarks, the use of
nonperturbative approaches is required. The bound states
of the heavy quarks allow one to consider simplifications,
connected both to large values of the quark masses
Agep/mqg <1 and to the nonrelativistic quark motion
v — 0. Therefore the value of fg can be quite reliably
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Table 13. The leptonic B, meson constant (in MeV), calculated in the
different potential models (the accuracy ~ 15%).

Table 14. The leptonic B, constant (in MeV), calculated in the QCD
sum rules (SR is the scaling relation).

Model Martin ~ Coulomb  [6]  [53] [72] [73,74] [75]

Model [76] [35]1 [36] [67] [771 [78] [79] SR [21]

S, 510 460 570 495 410 600 500

S, 375 400 360 300 160 300 450 460

determined in the framework of the potential models and
the QCD sum rules [11].

2.3.1 fg. from potential models. In the framework of the
nonrelativistic potential models, the leptonic constants of
the pseudoscalar and vector mesons [see Eqns (59) and (60)]

(0le(x) 7, b(x)[BZ (p. &) = ify My euexp(ipx) . (78)
(0le(x) 57, b(x)[Bc(p)) = ifp puexp(ipx) , (79)
are determined by expression (28)
3 1/2
v=fr=|———] Ri5(0), 80
fv=re (TCMBC(IS)> 15(0) (80)

where R 4(0) is the radial wave function of the 1S-state of
the (bc) system, at the origin. The wave function is
calculated by solving the Schrodinger equation with
different potentials [5-8, 10, 54] in the quasipotential
approach [72] or by solving the Bethe—Salpeter equation
with instant potential and in the expansion up to the
second order in quark velocity v/c [73, 74].

The values of the leptonic B, meson constant, calculated
in different potential models and effective Coulomb
potential with the ‘running’ constant o, determined in
Section 2.1, are presented in Table 13.

Thus, within the accuracy of this approach, the potential
quark models give f, values which are in a good agreement
with each other, so that

f5°" =500 + 80 MeV . (81)

2.3.2 fg, from QCD sum rules. In the framework of the
QCD sum rules [11], expressions (58)—(64) have been
derived for the vector states. The expressions have been
considered at q2 < 0 in the schemes of the spectral density
moments (64) or with the application of the Borel
transform [11].

As one can see from Eqns (58)—(64), the result of the
QCD sum rule calculations is determined not only by
physical parameters such as the quark and meson
masses, but also by the unphysical parameters of the
sum rule scheme such as the value of the spectral density
moment or the Borel transformation parameter.

In the QCD sum rules, this unphysical dependence of
the fg, value is due to the calculation being performed with
a finite number of terms in the expansion of the QCD
perturbation theory for the Wilson coefficients of the unit
and composite operators. In the calculations, the set of
composite operators is also restricted.

Thus, the ambiguity in the choice of the hadronic
continuum threshold and the parameter of the sum rule
scheme essentially reduces the reliability of the QCD sum
rule predictions for the leptonic constants of the vector and
pseudoscalar B, states.

Moreover, the nonrelativistic quark motion inside the
heavy quarkonium v — 0 leads to the o/v-corrections to

the perturbative part of the quark current correlators
becoming the most important, where «, is the effective
Coulomb coupling constant in the heavy quarkonium.

As is noted in Refs [11, 21, 76], the Coulomb og/v-
corrections can be summed up and represented in the
form of the factor corresponding to the Coulomb wave
function of the heavy quarks, so that

4o, 4mo\ 17
F(v) = ;cj” []—exp(— gj“)] ,

where 2v is the relative velocity of the heavy quarks inside
the quarkonium. The expansion of the factor (82) in the
first order over /v

(82)

21

F(v) =1 s
(V) ~ 1+—=

(83)
gives the expression obtained in the first order of the QCD
perturbation theory [11].

Note that the a, parameter in Eqn (82) should be on the
scale of the characteristic quark virtualities in the quarkon-
ium (see Section 2.1), and not on the scale of the quark or
quarkonium masses, as is sometimes done, thereby decreas-
ing the value of factor (82).

The choice of the o, parameter essentially determines the
spread of the sum rule predictions for the f value (see
Table 14)

f5t = 160—570 MeV . (84)

As one can see from Eqn (84), the ambiguity in the choice
of the QCD sum rule parameters leads to the essential
deviations in the results from the f5_estimates (81) in the
potential models.

However, as has been noted in Section 2.1, the large
value of the heavy quark masses Agcp/mg <1, the
nonrelativistic heavy quark motion inside the heavy
quarkonium v — 0, and the universal scaling properties
of the potential in the heavy quarkonium, when the kinetic
energy of the quarks and the quarkonium state density do
not depend on the heavy quark flavours [see Eqns (10)—
(15)], allow one to state the scaling relation (17) for the
leptonic constants of the S-wave quarkonia

f2 M 2
M (@> = const .

Indeed, at Agcp/mq <1 one can neglect the quark —
gluon condensate contribution, which is of the order of
magnitude O(1/my, m,) (the contribution to the ¥ and Y
leptonic constants is less than 15%).

At v — 0 one has to take into account the Coulomb-like
o, /v-corrections in the form of factor (82), so that the
imaginary part of the correlators for the vector and axial
quark currents has the form

aS

4u .
Im Iy (¢*) ~ Im I (¢*) = = ¢ <_) ,

27 \m (85)
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where
4my, my
(12 - (mb - mc)2

Moreover, condition (15) can be used in the specific
QCD sum rule scheme, so that this scheme excludes the
dependence of the results on the parameters such as the
value of the spectral density moment or the Borel para-
meter.

Indeed, for example, the resonance contribution to the
hadronic part of the vector current correlator, which is of
the form

=1 , v—0.

ds
s —q*

™ (@) =J DM d(s—M3,) . (86)

can be rewritten as

ds ., dn(s) d
s—q° RALS) ds dn zk:e(n k). (87

o™ () = J

where n(s) is the number of the vector S-state versus the

mass, so that
n(mi) =k . (88)

Taking the average value for the derivative of the step-
like function, one gets

(res), 2 d ds 2 dl’l(s)
1 =(— — SFn(s
V@) < an 2. k)> L_qz Fing) g~ (89
and, supposing
d

<52k:0(n—k)> ~1, (90)
one can, on average, write down

Im (I (g%)) = 1m I (%) , 91)

so, taking into account the Coulomb factor and neglecting
power corrections over 1/mq, at the physical points
S, = Mﬁ one obtains

fi (MY o dM, @)
M, \4u) 1w dn’

where one has supposed that
93)
4

my, +m, =~ MBc s
Svn R fon =Fu -

Further, as has been shown in Section 2.1, in the heavy
quarkonium the value of drn/dM, does not depend on the
quark masses [see Eqn (15)], and, with an accuracy up to
logarithmic corrections, o is a constant value (the last fact
is also apparent in the flavour independence of the
Coulomb part of the potential in the Cornell model).
Therefore, one can draw the conclusion that, in the leading
approximation, the right-hand side of Eqn (92) is a constant
value, and there is a scaling relation (17) [21]. This relation
is valid in the resonant region, where one can neglect the
contribution by the hadronic continuum.

Note, scaling relation (17) is in a good agreement with
the experimental data on the leptonic decay constants of the
Y- and Y-particles (see Table 6), for which one has
4u/M =1 [21].

The value of the constant on the right-hand side of
Eqn (17) is in agreement with the estimate when we suppose

dn ©3)

dM 1
< T>%E[(Myr—My)-f—(MY/r—MY/)],
and a, = 0.36, as in the Cornell model.
Further, in the limiting case of B- and D-mesons, when
the heavy quark mass is much greater than the light quark

mass mq > nmg, one has
u ~ mq H]
160, dM
-2 S 2
M=—— . 96
f ~ dn M (96)

Then it is evident that at one and the same value of u one
gets

f*M = const . 7

Scaling law (97) is very well known in EHQT [14] for
mesons with a single heavy quark (Qq) and follows, for
example, from the identity of the B- and D-meson wave
functions within the limit when an infinitely heavy quark
can be considered as a static source of gluon field [then
Eqn (97) follows from Eqn (80)].

In our derivation of Eqns (96) and (97) we have
neglected power corrections over the inverse heavy quark
mass. Moreover, we have taken the masses of the light
constituent quark to be

mq 7330 MeV (98)

so that this quark has to be considered as nonrelativistic
v — 0, and the following conditions apply:

mq + my zMEQq), mg < mg , 99)

fvefo=r1. (100)
In agreement with Eqns (96) and (98), one finds the
estimatest

faer = 120 £20 MeV , (101

fpw =220+£30 MeV , (102)
which are in an agreement with the estimates in the other
schemes of the QCD sum rules [11, 12].

Thus, in the limits of 4u/M =1 and u/M < 1, scaling
relation (17) is consistent.

The fp, estimate from Eqn (17) contains an uncertainty
connected with the choice of the ratio for the b- and c-quark
masses, so that (see Table 14)

fa, =460 £ 60 MeV . (103)

In Ref. [76] the sum rule scheme with the double Borel
transform was used. Thus, it allows one to study effects
related to the power corrections from the gluon con-
densate, corrections due to nonzero quark velocity and
nonzero binding energy of the quarks in the quarkonium.

tIn Ref. [21] the dependence of the S-wave state density dn/dM, on
the reduced mass of the system with the Martin potential has been
found by the Bohr — Sommerfeld quantisation, so that at the step from
(bb) to (bq), the density changes less than about 15%.
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Indeed, for the set of narrow pseudoscalar states, one
has the sum rules

00 4 02
M fex

= (g +me) (M} — )

1 dS 2 o 2
= Js—(f Im I (s) + Cg (g )<;SG > , (104)
where
c (2)—;£
) = 192mm, 72
330 4+ 1)(1 — v*)? v+1\ 9t +4’+3
X ln - 1)
2v° v—1 v*
(105)
4
=~ (m-m), G=1-TREE (106

Applying the Borel operator L,(—¢”) to Eqn (104), one
gets

= % J dsTm ITp(s) exp(—st) + C§ (r)<%G2> , (107)

where
n+1 n
.X d n
L= tm S (Ca) - En 1o
CG(1) =L.(—4") Co(7°) - (109)

For the exponential on the left-hand side of Eqn (107),
one uses the Euler—MacLaurin formula
00 M4 -2
kifpkz exp(—M,?r)
k=1 (mb + mc)

:Joo dm iM“f~2 exp(—M /1)

. k M, k JPk €Xp k

n—1

+ M} fd exp(—Mkzr)—i-...
k=0

(110)

Making the second Borel transform L,:(t) on Eqn
(107) with account of Eqn (110), one finds the expression for
the leptonic constants of the pseudoscalar (bc) states, so that

_ 2(mb + mc)2 dM
oM dk

|
x {E Im T, (M 2) +C6’(M,3)<%GQ>} ,

where we have used the following property of the Borel
operator:

L. (x)x"exp(—bx) — 5(;’)(1 —b).

2
Sk

(111)

(112)

The explicit form for the spectral density and Wilson
coefficients can be found in Ref. [76]. Expression (111) is in
agreement with the above derivation of scaling relation (17).

The numerical effect from the above corrections is
considered to be not large (the power corrections are of

the order of 10%), and the uncertainty, connected with the
choice of quark masses, dominates in the error in the
determination of the f5 value [see Eqn (103)].

Thus, we have shown that, in the framework ofthe QCD
sum rules, the most reliable estimate of the fp value (103)
comes from the use of the scaling relation (17) for the leptonic
decay constants of the quarkonia, and this relation agrees
very well with the results of the potential models.

3. Decays of B -mesons

3.1 Lifetime of B.-mesons
The processes of B.-meson decay can be subdivided into
three classes (Fig. 2): (a) the b-quark decay with the
spectator c-quark, (b) the c-quark decay with the spectator
b-quark, (c) the annihilation channel B — ITv(c5,us),
l=e¢ 1

The total width is summed from three partial widths

(B, — X)=I(b— X)+TI(c— X)+T(ann) . (113)

The simplest estimates with no account for quark
binding inside the B,-meson and in the framework of
the spectator mechanism of the decay for the first and
second cases, lead to the expressions

_ G%‘lvbc|2mg

Ilb— X) = ZF bel Mb g
(b= X) 0
G| Vs ms
Ilc— X) = ZF el Me s 114
(€= X) =5 X (14

So that my and m, are chosen to represent correctly the
spectator parts of the total widths for the B- and D-mesons.
The width of the annihilation channel equals

Gy 2,2 2 m; \
) = 3058 oo it (1= 2] €19
7 on mp,
where C; = 1 for the 1v; channel and C; = 3|VCS|2 for the Cs

channel, and m; is the mass of the heaviest fermion (7 or c).
Note that in the case of nonleptonic decays, considera-
tion of the strong interaction results in a multiplicative factor
of enhancement to formulae (114)—(115) (see Section 3.2).
The mentioned widths, calculated with the use of the
known values of parameters mg, |Vyo| = 0.046, |V| = 0.96,
etc., are presented in Table 15.

c s(d)

-t

Figure 2. Diagrams of the B.-meson decays: (a) the c-spectator decay;
(b) the b-spectator decay; (c) the annihilation.
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Table 15. The widths (in 1076 ¢V) of the inclusive decays of b- and c-quarks in free and bound states (in the B.-meson) and the branching ratios

(BR in %) of inclusive B, decays.

Decay mode Free quarks B BR Decay mode Free quarks B BR
b—c+ecly, 62 62 47 c—s+et+v, 124 74 5.6
b—oc+pty, 62 62 4.7 cos+pt+y, 124 74 5.6
b—c+1Ty, 14 14 1.0 c—s+u+d 675 405 30.5
b—c+d+u 248 248 18.7 c—s+u+s 33 20 1.5
b—C+5+u 13 13 1.0 c—d4ety 7 4 0.3
b—c+5+c 87 87 6.5 cod+pt+v, 7 4 0.3
b—c+d+c 5 5 0.4 c—d+u+d 39 23 1.7
Bf =1t + v, — 63 4.7 Bf —c+5 — 162 12.2
Bf —c+d — 8 0.6 Bl — all — 1328 100
2 2
q’/Gev /GeV?
2.5 12

10

8

6

4

2

| ]
1.0 0 3.0
E/GeV E/GeV

Figure 3. The Dalitz diagrams for the semileptonic decays: (/)
B, — B{lv, (2) B, — Bilv, (3) D = K*lv, (4) D = Klv, (5) ¢ —slv
(m, =1.7GeV, my=0.55GeV), (6) c—oslv (m,=15GeV,
mg = 0.15 GeV); E is the lepton energy, ¢* is the square of the lepton
pair mass.

Thus, a rough estimate of the lifetime leads to
15, ~ (2—5) x 1077 5. So, the fraction of the c-quark
decay is approximately 50%, the b-quark one is 45%,
and the annihilation channel is 5% . However, these
estimates do not take into account the quite strong binding
of the quarks inside the B,-meson: corresponding correc-
tions to the estimates can reach about 40%.

Let us consider this effect in the semileptonic modes of
decay with the spectator b-quark. The final state of such
decays generally contains the B@—mesons with the smaller
phase space of the lepton pair.

The effect of the phase space decrease is shown in Fig. 3,
where the kinematic borders of the Dalitz plot for the
BY — Bse'v decay are compared with the borders for the c-
quark and calculated at different values of the c-quark
mass. As one can see from Fig. 3, the end-point of the
leptonic spectrum is approximately one and the same in the
different decays
Mp, — M3,

2M Bc

E max — (1 ]6)

Figure 4. Dalitz diagrams for the semileptonic decays: (1) B, — VYlv,
(2) B, — n.lv, (3) B—=Dlv, (4) B—=D*lv, (5) b—clv; E is the
lepton energy, ¢° is the square of the lepton pair mass.

However, the maximum values of the leptonic pair masses
qﬁm are different.

One can easily show that the spectator model better
describes the semileptonic decay D — K. In the case of the
B.-meson decay, the admissible kinematical region is
strongly reduced. With account taken of the phase space
reduction in the spectator model, one can get [34]

I'Bf — Xpe™v) = 0.71 (D' — Xetv) . (117)

The effect of the phase space reduction does not notably
appear in the case of decays with the spectator c-quark. For
such decays, as one can see from Fig. 4, the spectator model
well describes the B-meson decays as well as the B,.-meson
decays, and one can believe that

I'Bf — Xetv) = I'BT — X etv) . (118)

Another possible manner of estimation is related to the
summation of the exclusive decays into the channels B,e™v
and Be'v. In agreement with the same kinematical
arguments, their sum is the main fraction of the semi-
leptonic decays [82]. If one neglects the decaying quark
momentum inside the B,-meson, the admissible region of
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masses in the inclusive semileptonic decay Q — Q'ev is
varied within the limits
m2,
2 2 2 2 q
(mgr +mg)” <My <mgr +mg, +mg, P
q

(119)

From approximate formula (119) with the use of the
constituent quark masses, one can see that the admissible
M, region in the decay B, — X, is varied in the limit of
200 MeV and, hence, the final state is saturated by the
lowest states. For the considered case (mq = m, = 1.7 GeV,
mgr =mg=0.55GeV and mg =m, =5.1GeV), this
region has widths equal to 340 MeV, that is less than
the expected difference of masses between the basic state
and the first orbital excitation of the bs system.

Thus, one can consider that

I'(Bf — Xye"v) =~ I'(B, — B +ev) + I'(B, — B! +ev) .
(120)

The results of different quark models for the semi-
leptonic B, decays (see Section 3.2) lead to the following
sum of the widths of decays into B and B}:

I'(B, — By +ev) + I'(B, — B{ +ev)

~ (60+7) x 107" GeV = 0.5I' (D" — X,eTv).(121)

Accounting for the current theoretical uncertainties, one
can calculate

r(B. —X, + etv) = (0.6 £02) (D" — Xeetv) . (122)

For the c-spectator decays, the calculations in quark
models and QCD sum rules show that the semileptonic
decays are saturated by the transitions into the lowest 1 -
and J/\{-states, i.e.

I'(Bf — X etv)

~T[Bf — (. +1/V)etv]~ BT — Xeetv) . (123)

The probabilities of inclusive decays are presented in
Table 15 with these factors taken into account. The widths
of the hadronic inclusive decays, which are discussed in
detail in Section 3.3, are also shown.

The compact sizes of B.-mesons lead to the large value
of the weak decay constant (fp ~ 500 MeV), which
enforces the role of the annihilation channel into the
massive fermions ¢, T. The decays of B.,-mesons into the
light fermions are suppressed because they are forbidden by
the spirality. Although the use of the effective masses for the
u-and  d-quarksinstead ofthe current masses can increase
the width of the annihilation channel into ud, the latter will
yet be much less than the width into the heavy massive
fermions. In agreement with Eqn (115), conservative esti-
mates of the annihila-tion decay probabilities are presented
in Table 15.

Thus, the consideration of three types of processes for
the B.-meson decay leads to the lifetime estimate

T, ~ 5 X 1075 s

with the following approximate sharing of branching
fractions: 37%, 45%, and 18%, corresponding to the c-
spectator mechanism, the b-spectator mechanism, and
annihilation, respectively.

The uncertainty in the estimation of the B.-meson
lifetime is generally related to the choice of quark
masses. The mass of b-quark my, =4.9 GeV is chosen
so that one can describe the B-meson lifetime in the
framework of the spectator mechanism. Note that the
differences of the lifetimes for the charged and neutral
B-mesons are insignificant and, hence, the given choice of
the mass is sufficiently unambiguous. For the D-mesons,
this is not the case, since the lifetimes of D™-and D% mesons
differ by a factor of two.

Nevertheless, there is a more reliable way to obtain the
c-quark mass, and this is the consideration of the semi-
leptonic decays of D-mesons. Indeed, the value
m, = 1.5 GeV in the spectator mechanism well describes
the decays Dt — K%*v and D? — K~eTv, whose widths
are approximately equal to each other. Note, at any other
reasonable choice of m, (from the total widths, say), the
error in the B,-meson lifetime will not be large, since the
summed branching ratio of the B,-meson decays due to the
c-quark decays is about 40% .

3.2 Semileptonic decays of B.-mesons
3.2.1 Quark models. The semileptonic decays of B.-mesons
are considered in Refs [30, 32, 34] in the framework of
quark models. A detailed study of the B.-meson decays in
the quark model of the WSB relativistic oscillator [71] was
first made in Ref. [32] and further in Ref. [34], where the
ISGW quark model [70] was also used. The covariant
description approach, proposed earlier for the composed
quarkonium model, is developed in Ref. [30].

Consider the amplitude of the Bf — Mye™v, transition
with the weak decay of quark 1 into quark 2 (Fig. 5)

G

A= 7% Vipl, H*
where Gg is the Fermi constant, V, is an element of the
Kobayashi—Maskawa matrix. The lepton current [, is
determined by the expression

(124)

L= e(q)y,(1 = ys5)v(42) (125)

where ¢; and ¢, are the lepton and neutrino momenta,
respectively, (¢ + q2)2 =1t

¥, 0, BYY

Figure 5. Diagram of the semileptonic decay of the B.-meson.

The H, quantity in Eqn (124) is the matrix element of
the hadronic current J,

Ju = Vu _Au = Q_IY;A(I _‘))S)QZ .

The matrix element for the B,-meson decay into the
pseudoscalar state P can be written down in the form

(Be(P)|ALP(K)) = FL()(p +k), + F_(1)(p— k), .(127)

(126)
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and for the transition into the vector meson V with mass
My, and polarisation 4, one has

(Bo(P)ulV (K, 2))
As(t)

= —(M + M)A, (1) & +m @p) (p+k),
A;(1)

M+My

2V (1) @

W Ay o PR

+ (€¥p) (p— k), +i

(128)

Relations (127) and (128) define the form factors of the
B — Mye'v, transitions, so, for the massless leptons, F_
and A; do not contribute to matrix element (124).

In the covariant model of the quarkonium (see Appen-
dix I), one can easily find

Fi) =5 (m + o5 —0). (129
FL(0) = =3 (m = m+ 2w [P 80 . (130)

Here mg, is the mass of the spectator quark (see Fig. 5),
and the function &x(7) has the form

200 \? m2 tmax — t
) = (322 ) eo{- 2

o + vk o+ MM x

x ]+(1)2 1 Tmax —t
% AMM x ’
where My is the recoil meson mass, wyx is the wave
function parameter (I.6)—(1.8) for the recoil meson, and

fmax = (M = Mx)? (132)

(131)

is the maximal square of the lepton pair mass.
For the vector state one has My = My, and we obtain

40) :% (M +MV)\/% m%év(t) .

CAMPHMG—t4+2M(my —mg) My 1
Aq(1) =5 ] — —&(1),
+MV M my
(134)

2
10 =3 0+ (1= 22 ) P e s

1 2myg 1
a3 = =3 01+ (14 52) P 600136

[t is interesting to note that the exponential form of the
dependence of the form factor on ¢ (131) can be quite
accurately represented, in the admissible kinematical region,
by the form corresponding to the model of meson
dominance

&k (1) = & (0)

(133)

1

1—t/m}”’

where m are presented in Table 16.
One can see from Eqns (130)—(136), that the form

factors [excepting A (f)] are also representable in
form (137), and the degeneration takes place

(137)

(138)

mV:mAz:mA3zm+s

ifﬂ)p%(l)v, Mp%Mv.

Table 16. The m, parameters (in GeV) for the & (f) representation in
Eqn (137).

Mode Bf —yetv, Bf —netv, Bf — Betv, B — BieTv,

g 6.3 6.45 1.9 1.95

As for the A () form factor, it can be represented in the
form

I A1(0)
A(t)=0() ————= _— 139
=00 =t (139)
where
mAl:mV, (140)
2 2 2
A{(O):lM +My —my, +2M(my —mg,)
2 M+ My
My 1
— V(0 141
X M mzév( )’ ( )
= A,(0) —A1(0) . (142)

The values of the transition form factors at zero mass of
the lepton pair are shown in Table 17. The numerical
calculations in [30] have been performed for the mass values

my, =49 GeV, m, =1.6GeV, m, =0.5—0.55 GeV.(143)

The element of the Kobayashi—Maskawa matrix has been
taken equal to Vi, = 0.046.

Table 17. The form factors of the semileptonic B, decays.

Mode Fo(0)  A0)  A{(0) A5 (0)  V(0)
Bl — YeTv, — 0.73 0.14 0.67  1.31
B — n.ctv, 0.89 — — — —
Bl — Beetv, 0.61 — — — —
Bl — Blctv, — 0.52 — -2.79  5.03

The fg, constant in Ref. [30] has been varied in the limits
fs, =360-570 MeV (144)

where the upper limit corresponds to the values obtained in

the nonrelativistic potential model [34, 52], in the parton

model [75], and in the QCD sum rules [36, 76]. The lower

limit corresponds to the value obtained in the Borel sum

rules of QCD [36, 76]. Note that for the B — yeTv,

decay, the result weakly depends on the f5 choice (3%).
It has also been supposed that

foo =F (145)
and the values

fs, = 100—110 MeV , (146)

fgr = 160—180 MeV (147)

have been varied, which does not contradict the estimates
made in the QCD sum rules [12].

Note that for the semileptonic B,-meson decays
B — Mye'tv,, where My is the recoil meson, the explicit
covariance of the model allows one to take into account
corrections to the velocity of the Mx meson. As for
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corrections due to the quark motion inside the meson, they
are taken into account by means of the difference between
the constituent and current masses of the quark.

In the ISGW model for the meson state vector, the
following nonrelativistic expression is used:

|X(I7x7 > \/ 2my J d pZC;;;,LmS Lm, Xf:ns

m _[mg _
q (—ql’x +p. s) q (—“px —-p, s>> . (148)
mX mX

where xg ° is the spin wave function of the quark-
antiquark pair in the state with the total spin S and the
spin projection myg, C,‘,,IL,,,X is the coupling between the
orbital momentum L and the total spin S of the system
with the total momentum s,, ¢x(p).,, is the correspond-
ing nonrelativistic wave function, px is the meson
momentum, p is the relative momentum of quarks. In
the considered model, the meson mass is equal to the sum
of quark masses only in the approximation of infinitely
narrow wave packets.

As the probe functions, the nonrelativistic oscillator
wave functions have been chosen:

3/2 2 2
plis _Ps exp(—ﬁsr> .

3/4 2
i
2 9

2N\ /2 7/2 3 2,2
28 _ (= Ps (2 Sp2 _ Ps”
P = (3) o (r > Ps >exp( > )

The B parameters have been determined by the variational
principle and the Cornell potential [5].

In the WSB model, the mesons are considered as a
relativistic bound state of a quark q; and an antiquark g, in
the system of infinitely large momentum [71]:

X

Sms

5/2
PP = 54 rexp(

P, m, j. j:) = V2(2m)*? ZJ &pi &°py 8 (P —py —py)

81,8

)“1 (171)]72 ()0} ,

where P, = (P, 0,0,P), and at P —o00, x=p/p
corresponds to the momentum fraction carried out by
the nonspectator quark, p;, is the transverse momentum.
For the orbital part of the wave function, the solution of
the relativistic oscillator is used:
5)
2w

Ll (P Sk o B
2w2(x 27 22 >] (149)

In both models, the calculation of hadronic matrix
elements (B.(p)[/,|X(k)) corresponds to the calculation
of the matrix elements of the quark currents between the
quark states and the overlapping corresponding wave
functions.

In the potential models, the bound state of two particles
is described by the wave function whose argument is the
relative momentum of the particle motion relative to the
centre of mass of the meson system. However, in the case of

XLm (plt’x $1, 8

Lm(ptsx):Nm x(]_x) exp<_

X exp [—

decays with large recoil momenta, one cannot choose a
system where both mesons (the initial one and the decay
product) would be at rest, so that one has a kinematical
uncertainty in the form factor values.

For instance, in the ISGW model the form factor
dependence on the invariant mass of lepton pair ¢ is
determined by the function

3/2
Sigsw(t) = (ﬁ?iﬁ;ﬁ) exp(

where f; and f; are the parameters of wave functions for
the initial and final mesons, mg, is the spectator quark
mass, and M, and M are the model parameters (the masses
of the initial and final ‘mock™mesons) [70].

The k parameter in Eqn (150) is introduced synthetically
for the correct description of the electromagnetic form
factor of m-meson (k =0.7). So, the authors of Ref. [70]
related this factor with possible relativistic corrections at
large recoil momenta.

Recently in Ref. [83], a model for the description of the
heavy quarkonium decays has been offered. In this model,
the required behaviour of form factors (at k =0.7) is
automatic with no introduction of additional parameters.
In contrast to the above approaches (the covariant quark
model and ISGW model), the nonrelativistic approximation
is performed for the hadronic matrix element as a whole,
but it is not performed separately for the wave functions of
just the initial and final states. At small recoil momenta, this
formalism practically repeats the ISGW model, but at large
momenta there are some differences in the structure of the
spin part of the wave function and the argument of the wave
function of the final meson. So, the latter change is the most
important and leads to the difference in the form factor
dependence on ¢ [84].

The transition form factors in the ISGW model depend
on Bz and By . For its values, B = 0.82 and f = 0.51 are
obtained from the variational prmCIple Since the consid-
ered model is the nonrelativistic approximation, the form
factors are the most accurately predicted at ¢ = ¢lay =
(M, —MX)2 (at the maximal value of the lepton pair
invariant mass).

One can calculate the form factors in the region of low
q2 values in two different ways: by the use of the
exponential dependence on ¢* as in ISGW or in the pole
model of meson dominance. The results for the decay
widths, calculated in these ways, are presented in
Table 18. The additional parameter in the ISGW model
is k =1 [see Eqn (150)].

The results obtained in [83] are also presented in the
same table. In the constituent quark model, the exponential
dependence of the form factors can be represented in the
pole form. As one can see from Table 18, in the ISGW
model for the decays, where the c-quark is the spectator, the
exponential dependence and the pole model give different
results.

In the WSB model, the form factor values at q2 =0 are
predicted in terms of the w parameter [see Eqn (149)], which
corresponds to the average transverse momentum of quarks
inside the meson. In Ref. [34] the w values were equal to the
average pf values, estimated in the ISGW model (wx = fx).
Note that the w parameter is external for the WSB model.

The results of these approaches are presented in
Table 18.

2
Mgy tmax 150
2MMfk2</32+/sf)> (150)
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Table 18. The partial widths (in 107 eV) of the semileptonic B,
decays (ISGW1 and ISGW2 are the results of the ISGW model with
the exponential dependence of the form factors and the pole model,
respectively).

Mode ISGW1 ISGW2  WSB[34] [30] [83]
[34] [34]

B — yetv, 38.5 53.1 21.8 37.3 344
B — n.etv, 10.6 16.1 16.5 204 142
Bf — D%"v, 0.033 0.12 0.002  — 0.094
Bf — D™cTv, 0.13 0.32 0.011 — 0.268
Bf — y(28)etv, — — — — 1.45
Bl — nletv, — — — — 0.727
Bl — BeTv, 16.4 17.9 11.1 16+4 266
Bl — Bletv, 40.9 46.3 43.7 41+£6 44.0
Bl — BgeTv, 1.0 1.1 0.5 — 2.30
B — BjeTv, 2.5 3.0 2.9 — 3.32

Note that the relative yield of the pseudoscalar states
with respect to the vector states is much greater in Ref. [83],
where I'"/I' ~2 in comparison with I'*/I ~3—4 in the
ISGW model. This leads to the fact that, for example, the
exclusive decay modes BY — {i(n,)etv, practically saturate
the b — cev transition. This feature is analogous to the
consideration of the B — D®ey decay, which also saturates
free b-quark decay. The decays into the excited states and
many-particle modes are suppressed.

As one can see, these three models for decays with the
spectator b-quark, give the close values

I'B,—By+e+v)+I'(B.— B +e+V)
=(60£7)x 10 %eV.

Note also that in the case of the heavy quarkonium B,
the application of the nonrelativistic wave function instead
of the wave function of the relativistic oscillator in the
meson of the WSB model seems to be more acceptable. This
circumstance and uncertainty in w perhaps explains why the
WSB model gives an underestimated value for the width of
the Bf — J/{ +e+ v decay.

322B - J/¥(mJ)e"v decay in QCD sum rules. The
most suitable for the registration modes of the B, decays
are the semileptonic or hadronic transitions with the J/{-
particle in the final state. But in the QCD sum rules
(SR) [30, 36, 35] and in the quark models, one found
different results both for the widths of the corresponding
decays and for the form factors of the transitions;
although, in the framework of the separate approach the
calculations performed in different ways coincided with
each other. Recently in Ref. [31], we have shown that the
existing discrepancy can be cancelled by the taking into
account of the higher QCD corrections in SR.

The widths of the semileptonic B, decays are defined, in
general, by the form factors F,, V, Ay, and A, [see
Eqns (127) and (128)]. Following the notation of
Ref. [31], the form factors (127) and (128) are redefined
as follows:

fe=Fy, Fo=Mg +My)A;,

Fi:_—’ V=37 1 a5
Mg, +My Mg, +My

For the calculation of these form factors in the QCD
SR, let us consider the three-point functions

m,(pi.p2n q°) = i2J dx dy expi(pax — p1y)

x (0T {e(x)ysc(x), V,u(0), b(y)ysc(»)}O) » (151)
HZJA(PI, D2, (12) = izj dx dy expi(prx — p1y)
x(O|T{&(x)yye(x), 1,22 (0), b(y)psc(y)}O) . (152)

We introduce the Lorentz structures in the correlators:

I,=1.(p+p),+1_q,, (153)
I, = illy ey P07’ (154)
M, = illyg,, + I p} pi + Mo pfp}

+1I3pY ps + M pl ps (155)

The form factors f,, Fy, FQ and Fﬁ: are determined
by the amplitudes IT,, ITy, ITy and IT} = (I, + II,) /2,
respectively. For the amplitudes, one can write down the
double dispersion relation

pi(s1. 82, 0%)
(s1 —p})(s2 — p3)

1
2 2 2 o
o(pi, p2. ) = — (21‘6)2J ds;ds, , (156)
where 0% = —¢> > 0.
The integration region in Eqn (156) is determined by the

condition
2518, + (51 + 8 — ) (mp — mg — 1)
j'1/2(5']» 82, 6/2)/11/2(”1%’ 81, m%))

where A(x1, X2, x3) = (x| + x5 —x3)? —4x1x,.

In accordance with the general ideology of the QCD
sum rules [11], the right-hand (theoretical) side of Eqn (156)
can be calculated at large euclidian p% and p% values by the
use of the operator product expansion (OPE). The
perturbative parts of the corresponding spectral densities
(the unit operator in OPE) of the one-loop approximation
are presented in Appendix II. Since we are considering
systems composed of heavy quarks, one can neglect the
power corrections [36].

Consider the physical part of SR. As has been already
mentioned in the consideration of the axial constant of B,
there are two approaches. In the first one, one assumes that
the physical part includes the contribution of the lowest
mesons and the continuum that is approximated by the
perturbative part of the spectral function from some
threshold values sy and sj [35, 36]. The contribution of
the higher excitations and the continuum is suppressed
because of the Borel transformations over two variables
—p% and —p%. The numerical results obtained the same way
as in Refs [35, 36] are presented below.

In the second way, one saturates the spectral density by
an infinite number of narrow resonances [30], so that

-1 <

<1, (157

2 1N, Mg j M# ij( )2
- c . c £
palsns s, @) = (uf Do fh = P e (O

i,j=1

X8(s; —Mg) (s, —M7),  (158)
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M12 j2 -
.DV(Sl’ S2» ) - 2(211: ZfB my, +m g\j/ F\I/j(Qz)
X 8(s; — ME) 8(s, — M) (159)
A 2 ) > . Mg ‘1,2 i 2
S1, 9, =(2n o F!
Po,+ (515 82, Q7) = (2m) ilzzlch PR, 0+(27)
X 8(sy =My ) (s, — M) . (160)

Substituting the expressions for the spectral densities
(158)—(160) in the dispersion relations for correla-
tors (156) on the one hand, and their perturbative values
on the other, one gets the corresponding sum rules.

Applying the procedure described in Appendix [II for
both sums over the resonances, one obtains for the form
factors under consideration:

8m(my, +my) dM éc dM,l1c

-kl
f+(Q) MkM[ /_B fnc dk dl
! 2 A2
(2 )2 p (Mg M7, 0%), (161)
2(my, + m)gy, dmy dm
F\l/d(Q) E\/le )‘) dkB dlw
c ‘j’ Bc
1 k2
M 9 9 ]62
i g2y = 40 +rjzc_)g$ dM§ dM,
’ MécM‘j"kac dk dl
1
a2 Po, +M k2 M , 0 ) (163)

“m)
Choosing the k£ and / values, one can extract the transitions
between the given resonances. At k =/=1, one gets the
required form factors for the Bf — J/{(n )ev decays.

Thus, we wuse the phenomenological parameters
dM,/dk instead of the additional parameters such as
the continuum thresholds. As has been mentioned, the
former is, in a sense, the density of the quarkonium states
with the given quantum numbers. One can quite accurately
calculate these factors. The masses of the radial excitations
of \r are known experimentally [15], and for the B, and m,
systems composed of heavy quarks, one can use the
predictions of the potential models [5—10, 52, 57—-66].

The dM,/dk values at k =1 for the systems under
consideration, are presented in Table 19.

Let us choose the following values of the parameters:
fa, =360 MeV, f, =330MeV [36,76], m, =4.6+£0.1GeV,
m,=14=+0.05 GeV, gy =28.1 [from the data on
I'(J/y —e*e”’)]. For the axial constant, we choose
360 MeV [30] instead of 460 MeV, to compare the form
factor values with the results of Ref. [36]. The B.-meson
mass will be varied from 6.245 to 6.284 GeV (the data of the
different potential models). Note that with this choice of
parameters we do not depart from the integration
region (157). In Ref. [36] M = 6.35 GeV was used.

Table 19. The derivaties dM;/dk (in GeV) for the lowest states at
k=1.

Quarkonium B, I .

dM, / dk 0.75 0.75 0.76

The values of form factors obtained in Refs [30, 36, 35]
at Q2 =0 are shown in Table 20. The deviation from the
central values in Table 20 corresponds to the variation of
the quark and B,-meson masses within the limits mentioned
above (for Ref. [30]). As in the case of the potential models,
the SR predictions agree with each other.

Tal)le 20. The form factors of the B, — J/{(n.)ev transitions at
Q*=0.

£+(0) Fy(0)/Gev™' F2(0)/GeV™' F§'(0)/GeV Ref.
0.2340.01  0.035+0.03  —0.02440.002 2.040.2 130]
0.2040.02  0.04 0.01 —0.03 £0.01  2.5+0.3 136]
0.55+0.1  0.048+0.007  —0.03040.003 3.040.5 135]

In Ref. [30], the form factors have the following pole
behaviour:

Fi(0)

_Ti\Y) 0?2
o @)

F(0%) = (164)

where myq. = 6.3-6.4 GeV and ¢,(Q*) =1+ a0’ The
representation of f,, Fy, FO and F{ by the form (161)—
(163) gives the following a; values, which are quite low and
equal to —0.025, —0.007, —0.012, and —0.02, respectively.
The behaviour considered above hardly differs from the
ordinary pole behaviour [30], where ¢; = 0. The results for
the transition widths are presented in Table 21.

Table 21. The widths (in 107® ¢V) of the semileptonic B, decays in the
QCD sum rules with no account of & /v-corrections

Mode [30] [36] [35]
Bf — I/Yctv 4.6 7 10.5
Bl — n.ctv 1.4 1 9

As one can see from Tables 20 and 21, the results of the
Borel SR are, in general, in good agreement with the results
of the considered approach within the accuracy of the
model. The widths obtained in Ref. [35] are greater than in
Refs [30, 36], since in Ref. [35] the q2dependence of the
transition form factors strongly differs from the behaviour
expected in the meson dominance model.

The deviation from the quark models is related, from
our point of view, to that in the calculations of the
transition form factors in the QCD sum rules; one has
to account for og/v-corrections, where v is the relative
velocity of the quarks inside the meson. For the heavy
quarkonia, where the velocity of the quark motion is small,
such corrections, corresponding to Coulomb-like interac-
tions (Fig. 6), can play an essential role [31].

Bc P1 Pn P q1 qm

e IV

Figure 6. The Coulomb corrections in the semileptonic B.-meson
decay.
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Indeed, the spectral densities p;(s;, s,, Q°), determining
the B, decay form factors, are calculated near the threshold
s = Méc, §y = Mfk_,q,. When the recoil meson momentum is
small, the calculation ofthe ladder diagrams in the formalism
of the nonrelativistic quantum mechanics (see Ref. [17],
Fig. 5) leads to the finite renormalisation of p, so that

/_)i(SIsSZs Qﬁmx) = C,Di(S],.SQ, Qﬁlax) ’ (]65)
where the factor C has the form
ws (0)¥C (0
:‘ Bc( ) T]c,ljl( )‘ , (166)

e (0) ey (0)

and Y T°(0) are the Coulomb and free wave functions of
quarks, so that

ve0) | 4ma, 1 4\ 17"
vEe()| ~ 30 [ "Xp( 30 >] |

For the two-point quark correlators, determining the
decay constants f of the heavy quarkonia V, Y, B, the
consideration of factor (166) led to the essential enhance-
ment of f, so that one observes agreement with the
experimental data on f;, and fy. Note that the expansion
in Eqn (167) over o /v — 0 leads exactly to the dominant
term appearing in account of the one-loop a,-corrections to
the two-point correlator of currents. Moreover, these
corrections have been taken into account in the evaluation
of f for the three-point correlators, but one did not take into
account the loop corrections in the determination of the
three-point spectral densities.

For the sake of consistency, one should either ignore the
a—corrections in the evaluation of f as well as in the
determination of p, or one should take into account these
corrections in both cases. As one can see, for example, from
Eqn (161), one can write down

(167)

8m(my, +m.)C
MM, 1RO el

(0% =

dMf dmy 1
dk d/ (211:)2

PO M, M, 0%, (168)

where the f(o) and p(o) values are calculated with no
account for the ag—corrections, and the factors C appear
because of Coulomb-like corrections and are defined in
Eqns (166), (167). It is evident that
C

—=1 (169)

e

Thus, in the determination of the transition form
factors, we can use the ‘bare’ f and p quantities, calculated
in the zero approximation over « [85], instead of that, say,
done in Ref. [36], where p(o) was used without the C factor
and the f constants with the og-corrections taken into
account, (i.e. with the factors Cg, and C, y) were
instantaneously used.

As a result, one gets the following values for the form
factors f, and F(f‘ [31]:

£.(0)=0.85+0.15, F;=65+1GeV.
For the corresponding widths, one has found [31]

I'(Bf — Yetv) ~ 44 x10™° eV,

IrBf = n.etv)=15x10%ev .

Note that we have neglected the contributions of the form
factors Fy and Fi‘ in the decay B, — J/Wev. This can result
in an overestimation of the value of the widths of up to
10% —20% . One can make agreement between the obtained
values of the widths and the results of the quark models
(see Table 18) within the limits of the theoretical
uncertainties of the methods used.

Comparing the results of the QCD SR and the quark
models, one can accept as a central value of the B, — J/{rev
decay width (with an accuracy of about 40%)

I'(B, — J/Yev) ~ 40 x 1070 eV ,

which corresponds to a branching fraction equal to 3%.
Then the relative probability of a three-lepton yield in B,
decays, when two of them reconstruct J/{, is

BR(BS — (I"17), 4 1"'v) ® 8 x 1077,

where 1,1’ denotes e or p.

3.2.3 Approximate spin symmetry. In the bound state, the
heavy quark virtualities are much less than their masses, i.c.
the following kinematic expansion for the quark momen-
tum pq is accessible

p§ = mqu* +k*, (170)
so that
vk ~0, [K°|<mg . (171

Then, in the system where v = (1,0), the heavy quark
Hamiltonian in a gluon field of an external source has the
form

Kk’ ‘B 1

so that in the limit Agcp < mgq, the spin-flavour symmetry
EHQT [14] occurs for hadrons with a single heavy quark.
For the heavy quarkonium, one has purely phenomen-
ologically that the kinetic energy is practically independent
of their flavours; however, the value of the potential energy
term V(r) is determined by the average distance between the
heavy quarks. This distance depends on the quark masses,
i.e. the flavours. Therefore, there is no flavour symmetry of
the wave functions in the heavy quarkonium. However, the
magnetic field of the heavy quark is determined by its motion
velocity (as well as magnetic moment). The quark motion is
nonrelativistic in the heavy quarkonium, so that

BNO(v)No(L) .
mq

From Eqns (172) and (173) it follows that the spin-
dependent potential in the heavy quarkonium appears in
the second order over the inverse heavy quark masses (see
Section 2)

1
VSD ~ O (—2> .
"nq

Thus, in the leading approximation for the heavy
quarkonium, one can neglect the spin-dependent forces
in comparison with the kinetic energy and the non-
relativistic ~ potential. This means that in this
approximation the quark spin is decoupled from inter-
action with the gluons of low virtualities, therefore the
masses of the nL j—quarkonium states are degenerated over
J, and these states have identical wave functions.

(173)

(174)
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Thus, there is an approximate spin symmetry for the
heavy quarks in the heavy quarkonium.
Further, let us consider the matrix element

M = (n*L;(QQ")|I'|hY ,

where I is the operator of quark currents, 4 is a state. Then
the spin symmetry means that the action of spin operators
of the heavy quark is factorised, and the matrix element M,
obtained by the action of the quark Q spin (or by the

antiquark Q' spin)

(175)

(176)

1 i
SI? :Z 8uvoc/3 Uédaﬂ, O_aﬁ :5['))“; 'yﬁ] s

is related to the matrix element M by the equation

M = (n*L,(QQ")S2T|hy = 3" & (n*'L,;(QQ")I|hY
177

where M is the sum of the matrix elements with J’, and
C;SJr are defined by the rules for the spin operator action.

For the semileptonic Bf — m ({)ITv decays, the spin
symmetry is valid at the point of zero recoil of n. (V).
Indeed, in this case the spectator c-quark and the c-quark,
produced in the weak decay of the b-quark, are practically
at rest with respect to each other so, binding into the state,
they interact with the low virtualities characteristic of the
heavy quarkonium. At a nonzero velocity of the c-quark, it
must exchange with the c-quark by a momentum compar-
able to its mass in order to make the bound state, where
their velocities are close. Thus, at the nonzero meson recoil,
the gluons with high virtualities can shift the heavy quark
spin, and the spin symmetry does not appear.

At the zero recoil of the charmonium vg, = vy (y), in the
covariant amplitude of the weak current, the nonzero
contributions are given by A(¢), Fi(t) at t=t,.,, and
the heavy quark spin symmetry means that

(Mg, +Mp) Fy+ (Mg, =My ) F_=(Mp +My)A,,

t=tnaxs My =My. (178)

Thus, in the approximation of zero spin-dependent
splitting of the heavy quarkonium, one derives the specific
relation for the form factors of the semileptonic exclusive B,
decays into the charmonium.

Note now that the covariant model considered above
gives the semileptonic form factor values for the B, decay
into the charmonium, so that these quantities satisfy the
symmetry relation (178). In contrast to the decays of the
heavy hadrons with a single heavy quark, where the form
factor normalisation at zero recoil is fixed due to the flavour
symmetry, the normalisation of form factors for the weak
semileptonic transitions between the heavy quarkonia is
determined by the overlapping of their wave functions,
which depend on the quarkonium model.

For the oscillator wave functions in the considered
potential model, we get

(M B, + M\jl) A 1 (tmax) = 21”[3c X 2A/[\|/ é(tmax) ) (179)
where
2mp oy, 32
thax) = | 50— . 180
flom) = (7% (150)

In Ref. [37] the factor &(¢,..) was determined in the
quarkonium model with the Coulomb potential, which is
quite a rough approximation.

Note further that in the semileptonic B, decay, the
lepton pair kinematically has, on average, large invariant
masses m(ITv) ~ 1.9 GeV, thus the A, form factor con-
tribution dominates, so that in accordance with the meson
dominance of the r-dependence of the form factors,
relation (178), giving A (fn.«), determines, in a sense, the
matrix element of the semileptonic Bf — y(n,)1Tv decay.
This feature can be used for the determination of the B.-
meson mass from the Yl mass spectrum as well as the
element |Vy| of the Kobayashi—Maskawa matrix.

3.3 Hadronic decays of B.-mesons

Although the semileptonic B —>J/\|Ju+(e+)vu(vc) decays
can serve as a good trigger for the B, registration, the
complete B, reconstruction needs large statistics because of
the neutrino presence in the decay products. The direct
measurement of the B.-meson mass is possible only in the
hadronic exclusive decays. The preliminary estimates of
some nonleptonic decay widths with the J/{-particle in the
final state were made in Refs [29, 33, 81] in the framework
of the potential models.

The hadronic decays were considered in detail in
Refs [32, 34, 83]. In Ref. [34] the transition form factors
were calculated with the use of the WSB and ISGW models,
mentioned above. In the calculation of the decay widths, the
reduction of the phase space for the c-spectator decays was
taken into account (see Section 3.1), in contrast to some
other calculations [33, 81]. In the following analysis of the
hadronic decays of the B.-meson, we will follow the results
of the latter paper.

The effective four-fermion Hamiltonian for the non-
leptonic decays of the c- and b-quarks has the form [86]

C

G
off = W5 Vig,

b
Hegs =

Vi, [CS o5 + (w0 ]+ he. . (181)

G « b b b b
— Vi Va,a. |C 01+ C2(u)O2|+h.c., (182
2\/5 q;b _q.x[ +(ﬂ) + (ﬂ) ] ( )
where
Oi = [qlaYV(l - ‘))S)Cﬂ] [ﬁyyv(] - ‘))5)(/25] (5aﬂ6y6 + 5&55}'/3) ’

OE: = [qlaYV(l - ‘))S)bﬁ] [(73yyv(l - ‘))5)(/25] (5aﬂ6y6 + 6a56yﬁ) .

The factors Ci’b(/,t) account for the strong corrections to
the corresponding four-fermion operators because of hard
gluons [34, 86].

The transition amplitudes should not depend on the
subtraction point u if one consistently calculates them in the
perturbation theory, i.e. one constructs the corresponding
functions of the initial and final hadronic states in the
perturbation theory, in accordance with the operators.

The problem is complicated when one deals with the
factorisation approximation used for the calculation of the
matrix elements. In this approximation, one assumes that
the current is proportional to a single stable or quasistable
hadronic field, and one calculates its matrix element
between the vacuum and the corresponding asymptotic
hadronic state; this procedure gives a value proportional
to the decay constant of the hadron. After that, the
amplitude of the weak decay is factorised and is completely
determined by the hadronic matrix element of another
current that can be calculated by the use of a model, as
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Table 22. The widths (in 1076 ¢V) of two-particle hadronic b-spectator decays (M B, = 6.27 GeV, Mg =5.39 GeV, Mp: =5.45 GeV).

Decay mode WSB ay =123 ISGW a =123 83] a =112
a =0.33 a, =0.33 a =—0.26
Bf — B, +nt a 31.1 478 @ 44.0 67.7 @ 58.4 73.3
Bf — B, +p* @ 12.5 19.2 al 202 3.1 @ 44.8 56.1
Bf — B!+ 7" al 25.6 39.4 @ 34.7 53.4 @ 51.6 64.7
Bl — B +p* al 115.6 177.8 al 152.1 234 @ 150 188
Bf - Bt +K° a3 282 3.1 a5 61.4 6.7 a5 96.5 425
Bf - Bt +K* as 10.0 1.1 @ 24.1 2.6 a5 68.2 3.01
Bf — B*t +K° a 31.0 3.4 @ 283 3.1 @ 733 3.23
Bf - Bt +K* a3 147.1 16 a5 163.8 18 @ 141 6.23
Bf - B’ + 7t al 0.97 1.49 a 1.89 2.9 & 3.30 4.14
Bf — B’ +p* al 0.94 1.45 @ 2.14 3.3 @ 5.97 7.48
Bf - B 4+ ¢t a 158 2.42 @ 1.28 2.0 @ 2.90 3.64
Bf — B 4+ p* @ 8.82 13.6 @ 8.86 12 @ 11.9 15.0
Bf - B +n a3 0.48 0.05 @ 0.95 0.1 @ 1.65 0.074
Bf - BY +p’ a5 047 0.05 a3 1.07 0.12 @ 2.98 0.132
Bf =B +w a3 0.38 0.04 a5 0.87 0.009 — —
Bf - B* +n’ a3 0.79 0.09 a5 0.64 0.07 @ 1.45 0.064
Bf - B +p° a3 4.41 0.48 a; 443 0.48 a5 5.96 0.263
Bf =B +w a3 3.60 0.39 @ 3.53 0.38 — —
Bf - B,+K™ a 2.18 3.35 al 3.28 5 & 4.2 527
Bf - B! +K* al 171 2.6 a 2.52 3.9 @ 2.96 3.72
B, —» B’ +K* — — — — @ 0.255 0.32
B, — B’ + K** — — — — a; 0.180 0.226
B, — B +K* — — — — a 0.195 0.244
B, — B* + K** — — — — @ 0.374 0.47
) ) ) ) ) . (M2 ) 6/23 o (mz) —-3/25
in the case of the semileptonic decays. In this approxima- CE(I‘) _ [ s\ W ] [ s\""b ] (186)
tion, the interaction in the final state is neglected. ozs(m%) ozs(u2)
Note that the exact factorisation takes place in the 1o L1225
leading order of the 1/N_ expansion [87]. In this approx- Cb(y) — aS(M\%V) as(mf,) 187
imation, one has to be careful in the choice of the ~(w) = ag(m3) os(12) ) (187)

subtraction point, since the matrix elements depend on
. (The dependence of coefficients for the four-fermion
operators of the effective Hamiltonian on the subtraction
point is not compensated by the functions of the initial and
final states.) The most suitable choice is u = m,, since the
radius of the B,-meson is determined by the mass of the c-
quark, and the transferred momenta in the decays are about
m, [34]

The anomalous dimensions of the Of and O¢ operators
at g = m, have the form

o 3

vi=—§N—c(l¢Nc)~ (183)
In the leading logarithm approximation at u > m., one
has [88]

2 \10/23 % m2 6/25
=) [aid)
C(w) = [csw)] ™" (184)

with ag(m?) = 0.27, a,(mi) = 0.19, a (M &) = 0.11, one has
the values C§(m.) =0.80 and C*(m,) = 1.57.

When u > my,, the anomalous dimensions of the Ci
operators are determined by Eqn (183), but when
my < p < my one finds
o [3 Ne—1, 3

TP an, T,

Vo= (1FN)| . (185)

The numerical values are C2(m.) =090 and
C®(mg) =1.57.

For the nonleptonic inclusive spectator decays of the
B.-meson, the enhancement factor due to the ‘dressing’ of

the four-fermion operators by hard gluons is equal to

N.+1 N, —1
3|c2=s cr=s ,
[+2Nc+ 2NC]

(188)

where 3 is the colour factor. For the annihilation decays,
the corresponding factor equals

No+1 N.—1]°
3 [C+ 2NC + C_ 2NC ]
The widths of the annihilation and inclusive spectator
decays are presented in Table 15. As has been mentioned,
the quark masses have the following values: m, = 1.5 GeV,
my =4.9 GeV and m, = 0.15 GeV, i.e. one makes a choice
that provides a good description both of the semileptonic
decays of B- and D-mesons and of the total B-meson width.
The enhancement factors (188) and (189) are calculated in
the large N_ limit (this approximation gives a good
description of B- and D-meson decays [71, 89]). For the
b-spectator decays, one accounts for the phase space
reduction, in contrast to calculations in Ref. [32].
The results of calculations for the widths of exclusive

decays (here we consider the two-particle states) were
performed in the models of WSB, ISGW, and Ref. [83],

(189)
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Table 23. The widths (in 107 ¢V) of two-particle hadronic c-spectator
decays.

Decay mode ISGW a;p =1.18  [83] a; =1.26
Bf -»n, +7n" @ 1.71 2.63 a 2.07 3.29
Bf 5> mn.+p" @ 4.04 6.2 a 548 8.70
Bf - I/ +nt & 1.79 2.75 @ 197 3.14
B = IV +p" a 5.07 7.8 al 5.95 9.45
Bf - n, +K* a 0127 0.195 @ 0.161  0.256
Bf — 1, +K** @ 0203 031 al 0286 0453
Bf - I/ +K™T a 0.130 0.2 a 0.152 0242
B — Iy +K*F @ 0263 04 a 0324 0514
B, — (28) + n* — — al 0251 0398
B, — (2S) + p* — — al 0.71 1.13
B, — (28) + K™* — — al 0.018  0.029
B, — U(28) + K** — — al 0.038  0.060

and are presented in Tables 22 and 23. The Cabibbo
nonsuppressed widths of b-spectator decays are shown in
Table 22.

The @, and a, coefficients, accounting for the renorma-
lisation of the four-fermion operators, are defined in the
following way:

N,+1 N.—1

—c, e c_Zc 190

R ) TR TN (190)
N.+1 N.—1

— — 191

@ =Cr o=, s
In the limit N, — oo one has

ap=05(CL.+C_), (192a)

a~=05(C,—C_). (192b)

The a; and a, values used in Refs [34, 83], differ from each
other because of the different choices for the quark masses
and the Agcp parameter.

Note that for decays with B-mesons in the final state,
the contribution of the annihilation and ‘penguin’ diagrams
is suppressed as O(sin'§,). As one can see from Table 22,
the WSB results agree with the ISGW model, and the sum
of the two-particle decay widths is equal to the total
inclusive width of the b-spectator decay (see Table 15).

The widths in the model of Ref. [83] are slightly greater.
The reason for the deviation from the results of two other
models might be the fact that for the b-spectator decays
there are B- and B-mesons in the final state, so that these
mesons are relativistic systems because of the presence of
the light quark and, hence, the nonrelativistic approxima-
tion would work poorly.

Among the c-spectator decays, widths (Table 23) are
given for the decays, where the WSB and ISGW models
result in close values and one can neglect the contributions
of the annihilation and ‘penguin’ diagrams. As one can see
from Table 23, the data of the ISGW model agree well with
the results of the model in Ref. [83].

The total inclusive nonleptonic width of the B.-meson
decay with the J /{-particle in the final state can be obtained
from the corresponding width of the semileptonic decay:

I(B = /WX, 5) = 31T (B, — 1/Wev) |V * . (193)
In the limit of large N, one has 3a% =4.6 (a; = 1.18) and
I(B, — J/YX 565) = 190 x 107 eV .

The branching ratio of the B, decay with the J /{-particle in
the final state is

BR(B, — J/Y+ X) ~ 0.2 .

The WSB and ISGW models give close results for the
two-particle B.-meson decays with the B-mesons in the final
state. Unfortunately, it is complex to detect the B.-mesons
in such decay modes, since one has to reconstruct the B-
mesons from the products of their weak decays. The
B — J/\I/‘n:+ decay is more suitable for the detection of
the B,-meson and the measurement of its mass [34]. Its
branching ratio is

BR(Bf — J/ym™) ~2x 1073 .

The B.-meson decays in which CP-violation can be
observed — BE — (c€)D*, B, — Dp(r) and B, — DD, —
are of a special interest.

Approximate estimates for the decay branching frac-
tions and the asymmetry parameter of CP-violation were
obtained in Ref. [80]. The corresponding results are pre-
sented in Table 24. The asymmetry parameter A is defined
in the following way:

_F(Bg—»X)—F(Bj—»X)

A= = .
I'B; - X)+I'(Bf —X)

(194)

Table 24. The branching ratios (BR) and asymmetries A for the CP-
violating B.-decays

X BR (B — X) A

n.D** 1.0 x 107 1.5%x 1072
n.D* 1.2 %107 —0.3 x 1072
JNDT 0.5x 107 0.6 x 1072
D%+ 2.8x107° 1.9%x 1073
D*p? 1.6 x107° 3.0 x 1073
D*rn* 33x107° 13 %107
D**n’ 1.8 x107° 2.0 x 1073
Dr* 1.6 x 107° —89x 107
D’ 0.4x107° —~13.8 x 107°

A large value of the asymmetry is expected in the

B, — D;‘D0 decays with the D%meson, decaying into the
CP-invariance eigenstate. However, the branching ratio of
such an event is too low:

BR(Bf - DD~ 107° .

The identification of the DT-meson is also complicated. As
one can see from Table 24, the best mode for the
observation of CP-violation in the B.-meson decay is
BF — (ct)D*. However, even at the expected statistics of
the Bo-meson yield in future colliders (about 10°—10"
events), it is difficult to observe such events because of the
branching fractions of the (cc)-states and D-meson decays.
It is difficult to estimate the decay widths, but it is worth
mentioning B.-meson decay modes such as B, — 3DX or
B, — D¢ and B, — DK. The B, — {(3S)D decay can be
of a great interest when (3S) decays into a D-meson pair.
However, it is probable that this decay width, like the width
of the decay into three D-mesons, is small because of the
smallness of the phase space. The B, — D¢ decay width
can beroughly estimated to be of the order of 2% [52], but it
will be very difficult to observe the B.-meson in such mode
because of the complex reconstruction of the D-meson.
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4. Production of B_.-mesons

The electromagnetic and hadronic production of B, as the
particle with mixed flavour requires the joint production of
the heavy quarks b and c. This explains the low value of
the B, production cross section in comparison with the
production cross sections of particles from the y and Y
families. On the other hand, the absence of B, decay
channels into light hadrons because of the strong inter-
actions implies that all bound (bc) states are basically
transformed into the lowest state with a probability close to

unity because of radiative transitions (see Section 2).
From the theoretical point of view, the production of
small B.-mesons takes place with virtualities of the order of
the sum of the heavy quark mass. This fact assures the
applicability of perturbation theory to the processes of B,
production. The nonperturbative part, associated with the
B, wave function, is quite reliably calculated in this case.
*e -annihilation
T

4.1 B.-meson production in e
The simplest example of B, production in e"e -annihila-
tion (in the region of a Z peak) is described by the
diagrams in Fig. 7.

B —— B
et ¢ et f ¢
—~%e— b
Y,Z Y,Z
£ b
e e

C [§
—— B,

et et e
A N

Figure 7. Diagrams of single B-meson production in ¢™e -annihila-
tion.

The matrix element of the (bc) quarkonium production
is transformed from the corresponding matrix element
T(p;, p.) for four-heavy-quark production by integration
over the relative momentum of the b- and c-quarks,
weighted by the quarkonium wave function:

d3q a N ’
T, = j—wq) T (5. pe) (=P + my)*®

(2n)’
N L R
X (=P +me)" " T; Wﬁ, (195)
ny, me
where M is the meson mass and
1 1
o =—y# = ;ﬁgg , (196)

V2 V2

24 F

20 B,

0.8 -

04

| 1 | |
0 0.2 0.4 0.6 0.8

Figure 8. The functions of b-quark fragmentation into B,- and BZ-
mesons.

for the pseudoscalar state and the vector state (B, Bg),
respectively. The quark momenta are determined by the
relations

my

Py =27P+4,

v (197)

_mc
Pc—MP q,

pqg=0. (198)
For the heavy quarkonium one has |q| < m,, m., and
Eqn (195) can be simplified by the substitution of
T:;(pg, pc) by its value at ¢ = 0. Then

[

(2n)’

In Refs [41 —44] the total cross sections of the B.- and
Bi-mesons and their distributions over the variable
7z =2Eg_[+/s have been obtained. Fig. 8 shows the result
of the precise numerical calculation with the technique of
spiral amplitudes and Monte Carlo integration over the
phase space. One can see that this distribution is rather
sharp and is maximum at z,,, =M /(M +m.) ~ 0.8. At
this value of z,,, the B.-meson and c-quark have zero
relative velocity.

If one recalls that in our approximation the c- and b-
quarks inside the B.-meson have no relative motion, then
one clearly finds that the maximum in the distribution
corresponds to the configuration in which all quarks
move as a whole with one and the same velocity. In this
case the minimum virtualities of the initial b-quark
P = (my, —|—2mc)2 and the gluon k* =~ 4m? are achieved.
At any other z values, these virtualities increase.

Note that these speculations are correct only for the
last two diagrams in Fig. 7, in which one can neglect the
contribution of the first and second diagrams, suppressed
up to two orders of magnitude with respect to the former.
In the asymptotic limit s — oo, in which one can neglect
terms of the order of M 2/s and higher powers of this ratio,
choosing the special gauge condition (the axial gauge with
the four- vector n= (1, 0,0, — 1) along the direction of
motion of the b-quark), one can show that the contribution
of only the last diagram in Fig. 7 survives. In this case the

P(g) = P(x),y - (199)
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expression for o' do/dz acquires the sense of the frag-
mentation function of the b-quark into the B,-meson, if one
chooses the b-quark production cross section & as the
normalisation factor at the same energy.

The function of the b — B, fragmentation, where B, is
the pseudoscalar state, has the following form:

DE)e _82[P(0) (1 —2)?
$Jb—-B, T 81mg [] _ (] _ r)z]6

x [6—18(1 —2r)z + (21 — 74r + 682"
—2(1 = r)(6 — 197 + 18/%)

+3(1 =)’ (1 —2r+27)"] . (200)

And for fragmentation into the vector state one has

_ 8| #(0)*

rz(1 —z)2
D(Z)B—>B: - 27m3
c

(1= =nr2°

x [2-2(3-2r)z+3(3 —2r+47)7
=2(1—-r)(4—r+ 2}’2)23

+(1 =@ —2r+27)" .

(201)

where r = m/(my + m.).

As one can see from Fig. 8, Dg_p (z) and Dj_p.(2) are
in a good agreement with the results of precise calculations.
The b — B process has a slightly sharper distribution in
comparison with the b —B, one. At o, =022,
|P0))° =faMg /12, fs, =560 MeV and m, = 1.5 GeV,
the corresponding integral probabilities are equal to
38x 107 for b —» B, and 5.4 x 107 for b — B:. The
probabilities of fragmentation of the c-quark into B, are
suppressed by two orders of magnitude with respect to the
values given above.

As a fraction of the bb production, the total number of
produced B.(B.)-mesons, with the B}(BY) states and the
first radial excitations taken into account, is (at o = 0.22)

_a(e’e =B +x)+0(e’e — B, +x)

- =2x1073.
¢ ag(ete” — bb)

Ry
(202)

Owing to the quark—hadron duality, there is an
independent way of estimating this ratio. To reach this
goal, one has to compare the obtained cross section for the
production of the bound bc state with the cross section for
the production of the colour-singlet (l_)c) pair in the process
ete™ — bbct with the low values of invariant mass Mg,:

be-singl
dm;

(203)

c

M do(ete” — bbc)
J e

2
m 0

where my =my +m, <My, <Mg+Mp +AM =M, and
AM =~ 0.5—1 GeV. Supposing my = 6.1 GeV and My= 8
GeV as the threshold value, one gets a bc system
production cross section of the order of 7 pb. On the
other hand, the sum of the cross sections for the
production of B, and its first excitations equals 9.3 pb,
as is seen from Table 25.

Comparison of these two independent estimates indi-
cates, on the one hand, good agreement. On the other hand,
it means that the contribution of the higher excitations is

Table 25. The cross sections (in pb) for the production of the S-wave
states of B.-mesons in the Z-boson peak at a, = 0.22.

State 1's, 1's, 2's, 2's,

4 3.14 4.37 0.805 1.078

not large, and the total cross section is saturated by the S-
wave levels.

Recent direct calculations of the cross sections for P-
level production [91] confirm this conclusion. According to
the estimates of this paper, the sum over the cross sections
for the production of P-wave levels is less than 10% of the
sum of the S-wave level contributions.

In Ref. [48] the functions of the fragmentation of the
heavy quark into the heavy polarised vector quarkonium
have been studied and for the longitudinally polarised
quarkonium, one has found the expression

rz(1 —z)?
[1—(1=n)z°
x [2=2(3 = 2r)z + (9 — 10r + 16/%)7
—2(1 =14 —=5r+6°)7°
+(1—-r)*@—6r+ 6r2)z4] ,

L 8az | P (0) [
D(2)g_p: = S81m3
C

(204)

which does not depend on the polarisation of the
fragmenting quark. At r:%, expression (204) coincides
with the result obtained for the heavy quarkonium with the
hidden flavour (Y, V) [48].

Fragmentation function (204) agrees with the analysis
of the fragmentation of the heavy quark into the heavy
meson (QQq), where, in the limit of an infinitely heavy quark,
EHQT leads to equal probability of production of the
vector quarkonium with an arbitrarily orientated spin, i.e.
to the absence of spin alignment and to a ratio of the vector
and pseudoscalar state yields equal to V/P =3 [94].

For the heavy quarkonium, the relative yield of the
vector and pseudoscalar mesons is close to unity, and the
spin alignment of the vector state has a significant value.
For the Bi-meson, this can be observed in the angular
distribution of the B} — B,y decay, which composes the
total B} width. This distribution has the form

ar 3¢ -2

_ 2
dcosf 2-¢ cos™ 8,

(205)

where 0 is the angle between the photon and the B}
polarisation axis in the system in which B is at rest, and
the asymmetry parameter ¢ determines the relative yield of
the transversely polarised B} state

T

T (206)

For the integral asymmetry at the small mass of the
generated quark entering the meson, r < 1, one has

2 5
€:§+—r+0(r2) .

" (207)

The anisotropy in the B} — B,y decay is numerically equal
to 6%.

In Ref. [48] the vector quarkonium spin alignment was
studied as a function of the transverse momentum with
respect to the fragmentation axis. Quite bulky analytic
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expressions have been derived for the fragmentation
functions DE’—TB*([")’ that linearly tend to zero at p, — 0
and decrease as l/p? at p, — oo. It is interesting that the
average transverse momentum in the fragmentation into the
longitudinally polarised vector B.-quarkonium is twice as
large as the average transverse momentum in the fragmen-
tation into the transversely polarised B-meson,
{p;) =7 GeV.

The event with a B.-meson has a characteristic sig-
nature. The hadron jet from the b-quark must be produced
in the direction opposite to the B, motion. The B,-meson
must be accompanied by a D-meson with an average ratio
of the momenta (zp)/(zp,) = 0.3 and an average angle
between the momenta of about 20° [44].

The production of a single B.-meson in e
tion has also been considered in Refs [41, 52].

In Ref. [39] the exclusive production of Bg* +B£*)_ pairs
in e"e -annihilation has been calculated at low energies,
where one can neglect the Z-boson contribution. The total
cross sections of the vector and pseudoscalar states have the
form

ale’e” — (Q1Q2)p(Q1Q2)s]

— n3“§(4m%)“gm f4(] _ 02)303
37 x 4mg P

2
m m
x M—{3 [2,,7?— g —"2>]

3 2
4

3, [2 _(- 02)m2] mgas( m;)

m3 o (4m3)

m;

e —annihila-

2
} . (208)

olete™ = (Q1Q2)p(Q1Q1)y]

3204 2y 2
_ % (4m3)dem 2 f2(1 . 02)403
37 x 2mg IRV

(209)

3 2\12
4
» [331 _362M] ,

m3og(4m3)
oleTe” — (Q1Q2)v(Q1Qu)v]

— n3a§(4m%)a§m f4(1 . U2)303
37 x 2mg v

3 . 4 2\12
x [331 —3e2%] [3(1 — o)
2
+(1+0)(1 —a)2+%(1 — ) —302)] , (210)

where v =+/1 —4M?/s, M = m| + m,, and
_m e2m§as(4m%) e2m§as(4m%) -
a=—[1-2= U -2 (21])
M eymiog(4m3) e m;iog(4m3)
The relative yield of the B.-meson pairs

R = o(BYB;)/a(bb) reaches its maximum at the energy
Vs =14 GeV, where R ~ 10™*. This ratio rapidly decreases
with increasing energy, where single-B; production becomes
dominant.

As one can see, the study of B,-meson production in
ete -annihilation allows one to make analytical studies of
heavy quark dynamics.

Thus, in the Z%-boson pole, where the b-quark produc-
tion cross section is large, one has to expect of the order of 2
events with B, production per thousand bb pairs. It is
expected that, in the experiments at the LEP accelerator,
about 2 x 107 Z%-bosons will be detected. This means that
the total number of B,(B,) events has to be of the order of
10%, However, the real number of reconstructed events will
be less, if one takes into account the particular modes of the
decay.

4.2 Hadronic production of B.-mesons

As has been mentioned, the process of B,.-meson produc-
tion in e'e -annihilation at high energies can be
reformulated as the process of the b — BC(B’C‘) fragmenta-
tion, appearing with a probability about 107",

The hadronic B, production turns out to be more
complex. First, in hadronic production the region of low
partonic energies dominates, so that the asymptotic regime
with the cross section factorisation

do

2~ Oob Do, (2) (212)
is not yet achieved. Second, in the hadron interactions a
new type of diagram appears which we shall label a
recombinational diagram, for which the factorisation does
not take place.

The contribution of such diagrams, dominating at low
masses of the B{Ec system, decreases with the growth in this
mass; however, it remains significant even at large masses
and large transverse momenta. The contribution of these
type of diagrams to the Bg*) production was first calculated

g
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gI>-: B,
e
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g
e B,
g g:Z
B,
AN
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\o-g— +
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g
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g _
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Figure 9. Diagrams of single B.-meson production in gluon and quark
subprocesses.
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for the exclusive Bg*) pair production in the quark-—
antiquark annihilation at low energies [38].

A typical set of QCD diagrams of the fourth order in o
is shown on Fig. 9. Here, as in the case of the B, production
in ete -annihilation, the matrix element of the (bc)-
quarkonium production is obtained from the correspond-
ing matrix element of four-quark production by integration
over the relative momentum of the ¢ and b-quarks,
weighted by the quarkonium wave function.

At high energies, where the B, production cross sections
permit meson observation, the gluon—gluon contribution
to the production dominates.

The energetic spectra of the B~ and Bi-mesons in the
centre-of-mass system (c.m.s.) for two colliding gluons are
shown in Fig. 10 at different values of the total energy
/s =20, 40, and 100 GeV.

The o(gg — B.(B:)cb) values are presented in Fig. 11 at
several energies of the interacting gluons for my, = 5.1 GeV,
my = 1.5 GeV, and a, = 0.2. The ratio of the cross sections
O'B:/O'Bc is about 3 at the energies 20, 40, and 100 GeV, and
is about 2 at 1 TeV. In ete -annihilation, where the b — B,
fragmentation dominates, this ratio is op+/op = 1.3.

C]U/nb a
dz 32 f

238 —— 100 GeV
—— 40 Gev

(;f /nb b
- 2.8

!

—
!
|

0 01 02 03 04 05 06 07

Figure 10. The differential do/dz cross sections for the single
production of the Bi-mesons (a) and B-mesons (b) in gluon annihila-
tion at different values of the total energy /s.

o/nb
107!
107
10~
JAN
10*4 1 [ | 1 [ |
10 10? 10° /5/GeV

Figure 11. The total cross sections for the single production of B.-
mesons (empty triangles) and Bj-mesons (solid triangles) in the gluon
annihilation in comparison with the production cross section
(multiplied by the factor 2 x 107%) of the bb-quark pairs (solid line).

The variation of the op:/op_ ratio is the consequence of
the change in the production mechanism. The fragmenta-
tional component gives a low contribution in comparison
with the contribution of the recombination diagrams. This
can be noted from Fig. 10, where the differential cross
sections for the B~ and B}-meson production, calculated by
Monte Carlo integration of the exact expression for the
matrix element squared, are presented in comparison with
the cross section, calculated by the fragmentation formulae
(200) and (201).

The total cross section of the B.(B;)-mesons is obtained
from the partonic one ;(5) by convolution with the
functions of the parton distributions in the initial hadrons:

5 ds 1-5§/s
Guo(s) = j —j

4(my+me)* S J-148/s

* ( 2 4C)]/2
X =[|x"4+— .
K}

The cross sections, calculated with account taken of the
known parameterisations for fd’ﬁ](x) [92], are presented in
Table 26.

The energy 40 GeV is close to the c.m.s. energy for
carrying out fixed-target experiments at the HERA accel-
erator. At 4/s = 1.8 TeV we present the cross section of the
B, production in pp-collisions at Tevatron, and, finally, the
energy /s = 16 TeV corresponds to the conditions of the
pp-experiment at the future LHC collider. The energetic

d " Y n /n
x—f Z.fa(xl)f;f(h)cy(s) )
ij

13)

Table 26. The cross sections (in nb) of hadronic production of the
B.(Bf)-mesons (the standard deviation in the last digit is shown in
brackets).

L, 1's, 133, 2's, 2%,

G100 10° (40 GeV) 1.63(2)  95@2) 0.13(1) 0.75 (2)
0.t 10° (100 GeV) 78(2)  36(1) 1.1(2) 52(2)
it (1.8 TeV) 133@®)  53(3) 2.7(2) 10.4 (5)
610e 1072 (16 TeV) 196(8) 7.6(2) 0432 1.66 (8)
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Figure 12. The total cross sections (in nb) for the single production of
B.-mesons (empty circles) in pp-interactions at different energies and
the cross sections (in pb) for beauty particle production (solid circles).

dependence of the cross section, summed over the particle
and antiparticle B, production, is shown in Fig. 12.

From the values presented in Table 26, it follows that at
v/s =40 GeV the summed cross section g, for the meson
production is about 107* of the total cross section 0, of the
bb production, so this makes the study of B, practically
impossible in this experiment. One should note that in this
case we cannot restrict ourselves by the gg — B.cb con-
tribution and we have taken into account the contribution
of the qq@ — B.cb process.

The experiments at Tevatron and LHC, where o, /0y;
is about 1072, will provide a real possibility for observing
hadronic B, production. Therefore, at the energies of these
two facilities, we present the most interesting distributions
of the cross sections for the production of the l]SO— and
13S]—states (note that, as our calculations show, the cross
section at the energies under consideration is completely
determined by the gluon—gluon interaction, since the
quark —quark contribution is suppressed by two orders
of magnitude, 1072).

The distributions for the 1180 pseudoscalar and 1°s,
vector mesons are shown on Figs 13 and 14 at the energy of
the interacting hadrons, 1.8 TeV.

The distributions do/dx (see Fig. 14b) show that we are
dealing with the central B, production, where the complete
cross section is collected in the interval from —0.3 to 0.3. The
average transverse momentum of B, is about 6 GeV, and
from the distribution over the angle between the directions
of the B, and c-quark motions, one can conclude that the c-
quark generally moves in a direction close to that of B, [46].

One should note that these diagrams of the QCD
perturbation theory are of the fourth order in o This
results in the strong dependence of the cross section on the
particular a choice. The latter must be determined by the
typical virtuality in the production process. The analysis
shows that this virtuality is large in the contributions,
decreasing faster that 1/5. In the remaining contribu-
tions, including the fragmentational one, it is not large
and is about 4m my. For this reason the a, = 0.2 value,
chosen as the strong coupling constant, is the most
reasonable at this scale. The use of the running coupling
constant o« (5), for example, leads to a decrease of the

18 20
p/GeV

0 2 4 6 8 10 12 14 16

Figure 13. The differential do/dp, cross sections for the single
produc-tion of B,- and Bj-mesons in pp interactions at the energy
1.8 TeV.

do
dy

10!

Figure 14. The differential cross sections for the single production of
B.- and Bi-mesons in pp-interactions at the energy 1.8 TeV: (a) do/dy,
where y is the particle rapidity, (b) do/dx, where x =2E/+/s.
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B.(B?) production cross section by a factor of about 7.
Pessimistic estimates of B.(B}) production are presented in
Ref. [93], where, as one can see, the o,(5) value was used.

At low energies of hadron collisions, the quark—
antiquark annihilation with B, production dominates
with respect to the gluonic one, since, in this case, the
latter has a much lower luminosity, which decreases also
with the growth of the total energy of the partonic
subprocess. At low energies of quark —antiquark annihila-
tion, exclusive BYB; pair production can be significant.

The total cross sections for the production of vector and
pseudoscalar B.-mesons due to the quark-—antiquark
annihilation have the form

4.3 4

o(17,17) = 8“;“38-2—‘; PVT—2(13+ 144+ 0342, (214)

BT f3fE (my = me)’

]— -_— — 'S P P C

o 0) =95
xBVI—2(1+422), (215
(0 0—)—ﬁﬁ,13\/1 —A(1 -4 216)
16 x 38 e ’

from which one can see that the vector state production
dominates. In Eqns (214)—(216) we have introduced the
notation
4m*
A= ,

s T my4mg

myi,

The numerical estimates of the total cross sections for the
B, production in pp interactions are presented in Table 27.

Table 27. The total cross sections (in 107" b) for the pair production
of B,-mesons due to the quark—antiquark annihilation in pp(pp)
interactions at low energies.

Vs/GeV o(17,17) ¢(17,07) ¢(07,07)

30 0.9 (0.08)  0.24 (0.022) 0.006 (0.0004)
40 58(0.94)  1.6(0.25) 0.054 (0.007)
50 15.8 (3.5) 4.3 (0.95) 0.18 (0.034)

Summing up the analysis of hadronic production, one
can draw the following conclusions:

— The mechanism of hadronic B.(Bg) production strongly
differs from the production in ete -annihilation;

—the relative fraction of the fragmentation contribution is
low even in the region of large transverse momenta;
—the vector state production is enforced with respect to
ete -annihilation.

Thus, the hadronic B, production requires an analysis of
the large number of diagrams and its detailed study raises the
possibility of investigating the effects of the heavy quark
dynamics in the higher orders of QCD perturbation theory.
The B, yield at the real physical facilities is quite high, but the
registration of the B, events is essentially determined by the
detector acceptance (cut-off over the transverse momenta of
particles, characteristics of the vertex detector, and so on).

4.3 B.-meson production in vN-, ep- and vy -collisions

In the previous sections we considered B.-meson produc-
tion in processes where one has the maximal current
statistics for the production of hadrons with heavy quarks,

i.e. at the Fermilab and the LEP colliders. In the present
section we consider estimates for B.-meson production in
processes of deep inelastic scattering of neutrinos and
electrons by nucleons and in fyy-interactions at future
facilities.

4.3.1 B.-meson production in vN-interactions. The diagrams
of the neutrino production of B,-mesons on quarks and
gluons are show in Fig. 15. Note that for B, production in
the neutrino collisions with gluons, the suppression of the
partonic subprocess cross section by the factor |Vbc|2 in
comparison with the partonic subprocess of B, neutrino
production on light quarks is compensated by the higher
luminosity of the gluonic subprocess in comparison with the
quark one. Thus, both mechanisms of B, production in
neutrino —nucleon scattering give comparable contribu-
tions, and (W — B.X) ~ 107" ¢cm? at the neutrino
energy E, =~ 500—1000 GeV in the laboratory system.

W*

— -9

a b

Figure 15. Diagrams of B,-meson production in processes of the
neutrino scattering on gluons (a) and quarks (b).

After integration over the valent parton d distribution,
c-quark production in the W*Td — ¢ process, suppressed as
sin? 0., has a value comparable with c-quark production in
the W*ts — ¢ process, since the strange quark ‘sea’ is
suppressed with respect to both the valent quark distribu-
tion and the ‘sea’ of the lighter d-quark.

The estimates of the B,-meson production cross sec-
tions, calculated on the basis of the diagrams in Fig. 15,
agree with the estimates obtained in the model of vector
meson dominance (Fig. 16) and in the model of the soft
gluon emission of the (l_)c) pair that, in the colour-singlet
state and with the low invariant mass M (bc) < Mg+ Mp,
transforms, in accordance with the quark —hadron duality,
into the (bc) bound state, which radiatively decays into the
basic 1Sy-state, in a cascade, with a probability of 1.

As a result, one can reliably state that the total cross
section for B.-meson production in vN-collisions is of the
order of 107® from the total cross section of the VN-
scattering, so that, at a characteristic statistic of about 10°
events in neutrino experiments, one can expect only a few
events with B,-meson production.

Figure 16. Diagrams of Bj-meson production in the model of vector
meson dominance.
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4.3.2 Production of B.-mesons in ep-scattering. In contrast
to VN-scattering, in ep-collisions in addition to processes of
weak charged current exchange, the main contribution to
the B,-meson production will give processes with virtual y-
quanta exchange (Fig. 17).

gl B E— B, +...
g g:z

Figure 17. Diagrams of B.-meson production in parton process of y*g-
scattering.

The exact calculation of the diagrams in Fig. 17 has not
yet been performed. However, one can imagine that the
estimate of the Monte Carlo simulation system for hadron
production HERWIG [49] is quite reliable, since the
HERWIG parameters have been chosen to give correct
values for total hadronic cross sections of the production of
charmed and beauty particles, being in agreement with the
experimental values. Moreover, the HERWIG estimates of
the B, production cross sections in ete™ and hadronic
interactions agree with the values obtained in the exact
calculation of the diagrams in the QCD perturbation theory.

Thus, in accordance with the estimates in the HERWIG
system, one can expect about 10° events per year with the B,
production at the HERA facilities. This B, yield is
comparably close to that of LEP. However, the extraction
of B, events at HERA is complicated by the presence of a
hadronic background, which is significantly lower at LEP.

4.3.3 Photonic production of B.-mesons. Future yy-colliders
with the high luminosity (NlO34 cm > sfl) have been
intensively discussed. In this section we calculate the
cross section of single B, production at energies +/s
about 30 GeV in accordance with the diagrams shown
in Fig. 18. The calculation technique coincides with that
described in the section on the hadronic production of B,.

gl B ——— B, +...
Y g:z

Figure 18. The types of diagrams in the photonic production of B.-
mesons.

The total cross sections of B, and B} production are
presented in Table 28, in which o, ~ 0.2. One can see that
near the threshold the pseudoscalar state production is
suppressed in comparison with the production of the vector
one, so at /s =15GeV one has op:/op ~ 55. Such
behaviour of the aB:/ch ratio has been noted in
Ref. [6], where the strong suppression of pseudoscalar
meson pair production with respect to the vector one
occurs in quark —antiquark annihilation. At high energies
of the initial photons this ratio decreases and becomes
aB:/ch ~ 4. The inclusive cross sections op, and og: have
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Table 28. The cross section (in pb) of the photonic production of
B.(B).
V3/GeV 15 20 40 100
o5, 50x107°  38x1072  67x1072  2.5x1072
ope 28x107" 60x107"  40x107"  1.1x107

their maximum at /s = 20—30 GeV. As s increases they fall
like the total cross section for heavy quark production o,j.

The distributions ¢ 'do/dz over the variable
z =2|p|/+/s, where p is the meson momentum, are shown
on Figs 19 and 20 for the B,- and B}-mesons. It follows
from these figures that the scaling in these distributions is
broken: as energy increases a shift to low z values takes
place. Note that an analogous picture has been observed in
the gluonic production of B,-mesons.

Note that detailed consideration shows that in the matrix
element of the yy — bbecE process and hence in the
vy — B.bc matrix element one can distinguish three groups

_ do
¢

35 -
dz

3.0

—— 100 GeV i

2.5

2.0

0 01 02 03 04 05 06 07 08 09

Figure 19. The cross section distributions, normalised to the unity as
functions of z for B,-meson production at different energies.

—1 do
dz 30 ~
25 F  —— 100 GeV .'""_.!_i
—— 40 GeV . |
----- 20 GeV  _ii ]
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|
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Figure 20. The cross section distributions, normalised to unity as a
function of z for Bi-meson production at different energies.
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of contributions which are separately gauge invariant under
both the gluon field transformation and the photon one.

The first group of contributions is composed of the
diagrams in which quark production is independent (we will
label these diagrams as recombination diagrams), the
second group consist of diagrams where the cc pair is
produced from the b-quark line (we will call these diagrams
the b-quark fragmentation diagrams, their contribution will
be denoted as ¢ ™€), the third group contains diagrams
with bb pair production from the c-quark line, so that they
are c-fragmentation diagrams with the corresponding
contributions denoted as ¢ €,

In Refs [43, 91, 93] the assumption was made that the
b-fragmentation contribution has to dominate at large
values of the B, transverse momentum, independently of
the type of process. So the following approximate equation
has to be valid:

q-frag 1
doy_ N J
dp

2p /s dkt 2 2
where dogg/dk, is the differential cross section for the
production of the fragmenting q-quark in the Born
approximation, k, is its transverse momentum, and
Dy, (2) is the function of the ¢ — B, + X fragmentation.

Recall that in the e'e -annihilation the b-quark
fragmentation dominates and the c-quark fragmentation
contribu-tion is suppressed by two orders of magnitude. In
the yy-interactions, the c-quark fragmentation contribution
is enlarged due to the quark charge ratio (Q./Q)* =16
and therefore we cannot neglect it (as one does in ete -
annihilation). Note further that the c-quark fragmentation
contribution and the b-quark fragmentation one are related
to each other by simple permutation of the quark masses
and charges (m, <> my, and Q. « Qy) (217).

The distributions  d¢™®/dp,  de®&/dp, and
de ™/ dp, at 100 GeV for B.- and Bi-meson production

0 5 10 15

20 25 30 35 40 45 50

p/GeV

Figure 21. The do'® /dp,, do®™¢/dp,, and do®™¢/dp, distributions
as functions of the transverse momentum for the invariant
contributions to the cross section of B,-meson production at
100 GeV. The curves I and 2 correspond to the prediction of the
fragmentational mechanism (217) for the b-quark (/) and c-quark (2).

p,/GcV

Figure 22. The do* /dp,, de* 8/ dp,, and de® 8/ dp, distributions
as functions of the transverse momentum for the invariant
contributions to the cross section of Bi-meson production at
100 GeV. The curves I and 2 correspond to the prediction of the
fragmentational mechanism (217) for the b-quark (/) and c-quark (2).

are shown in Figs 21 and 22. The distributions predicted in
accordance with Eqn (217) for the b-fragmentation
(curve /) and c-fragmentation (curve 2) are also shown.

One can see that, as in the hadronic production, the
contribution of the recombinational type diagram is
significant at any reasonable values of the transverse
momentum of the B.-meson and cannot be neglected
when one calculates the cross sections even at large
transverse momenta. One can see from the figure that
for the b-fragmentation contribution in terms of p, greater
than about 30 GeV, the fragmentational mechanism gives
correct predictions.

Thus, at its maximum at the energy 20—30 GeV, the
total cross section, including the B and corresponding
antiparticle production, is about 1 pb. This corresponds
to 10 B., produced at a yy-collider with luminosity of
10** em ™ s7'. At large energies, the cross section falls like
that of the bb-pair production. The B, production mech-
anism is close to that of the gluon —gluon interactions, and is
also not reduced to the simple b-quark fragmentation.

5. Conclusion

The discovery and study of the family of the (bc) heavy
quarkonium with open charm and beauty will allow one
significantly to specify the notion of the dynamics of heavy
quark interactions and the parameters of the Standard
Model of elementary particles (such values as the b- and c-
quark masses, the coupling of the b- and c-quarks—|Vy,|,
etc.). The present review is aimed at the creation of a
theoretical basis for object-oriented experimental research
and study of the (bc) heavy quarkonium family.

Summarising the problems considered, one can note the
following.

We have shown that below the threshold at which the
(bc) system decays into the BD meson pair, there are 16
narrow states of the B, meson family, whose masses can be
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reliably calculated in the framework of the nonrelativistic
potential models of the heavy quarkonia.

The flavour independence of the QCD-motivated
potentials in the region of average distances between the
quarks in the (bb), (cc) and (bc) systems and their scaling
properties allow one to find the regularity of the spectra for
the levels that are not split by the spin-dependent forces: in
the leading approximation the state density of the system
does not depend on the heavy quark flavours, i.e. the
distances between the nL-levels of the heavy quarkonium do
not depend on the heavy quark flavours.

We have described the spin-dependent splittings of the
(bc) system levels, i.e. the splittings appearing in the second
order in the inverse heavy quark masses, Vgp = O(1/mym,),
with account taken of the variation of the effective
Coulomb coupling constant of the quarks (the interaction
is due to relativistic corrections, coming from the one-gluon
exchange).

The approaches developed to describe emission by the
heavy quarks have been applied to the description of the
radiative transitions in the (bc) family whose states have no
electromagnetic or gluonic channels of annihilation. The
last fact means that, due to the cascade processes with the
emission of photons and pion pairs, the higher excitations
decay into the lightest pseudoscalar B, meson, decaying in
the weak way. Therefore, the excited states of the (bc)
system have widths significantly less (by two orders of
magnitude) than those in the charmonium (c€) and
bottomonium (bb) systems.

The value of the leptonic decay constant fz can be
measured in the annihilation channels of decay, for example
Bf — t'v,. It can be most reliably estimated from the
scaling relation for the leptonic constants of the heavy
quarkonia, due to the relation obtained in the framework of
the QCD sum rules in the specific scheme. In the other
schemes of the QCD sum rules, it is necessary to do an
interpolation of the scheme parameters (the hadronic
continuum threshold and the number of the spectral
density moment or the Borel parameter) into the region
of the (bc) system, so this procedure leads to significant
uncertainties.

The fg, estimate from the scaling relation agrees with the
results of the potential models, whose accuracy for the
leptonic constants is notably lower. The value of fg
essentially determines the decay widths and the production
cross sections of the B, mesons.

The theoretical study of semileptonic B, decays shows
that the results of the potential quark models agree with the
predictions of the QCD sum rules, if one accounts for the
Coulomb-like «g/v-corrections. In this case, the approx-
imate spin symmetry in the sector of heavy quarks allows
one to derive the relations for the form factors of
semileptonic B, decays at the rest point of the recoil meson.

B.-meson production allows in some cases a description
on the level of analytic expressions, such as the universal
functions of the heavy quark fragmentation into the heavy
quarkonium. The fragmentational mechanism dominates in
the B, production in the ete -annihilation at high energies
(at the Z-boson peak) and can be studied at the LEP
facilities.

The hadronic production of B, is basically determined
by the processes of the b- and c-quark recombination, since
the partonic subprocesses have the highest luminosity in the
region of low invariant masses of the resultant system

(bbct). The B.-meson yield with respect to the production
of the beauty hadrons is of the ordert of 107°.

Modes of B — yX decays with the characteristic
signature of the J /\-particle have the quite large probability

BR(Bf — yX)~0.2.

Therefore, the search for the B -particle can start from the
separation of events containing the J/\{-particle, whose
production vertex is beyond the primary intersection point.

The selected set of events will, of course, contain a
background from decays of ordinary heavy —light B-mesons
(Eu, bd, Es), since the probability of the B — J /YK X decay
is about 1%, and the heavy—light B-meson yield is three
orders of magnitude greater than that of the B.,. The
separation from background requires a cut-off from below
the effective mass of the J/YX system, where X denotes
those charged particles whose tracks originate from the J /s
vertex.

The most preferable channel for B, extraction is that of
the Bf — YItv, decay, since B, is the only heavy particle
with the three-lepton vertex of the decay |1t — 1’171,
The probability of this channel is

BR(Bf — Yltv)~8%, I=e¢ p 1.

In a quite large statistical samplef, events with the decay
BY — itV can raise the possibility of the determination of
the B, mass value under the Yl mass spectrum or the missed
transverse momentum of the neutrino with respect to the
direction of the B, motion (see Fig.23). The necessary
condition for the such measurement is a quite high
separation of charged hadrons and leptons.

A straightforward measurement of the B, mass can be
made in the mode of the B — J/\Im+ decay, having the
branching ratio

BR(Bl — yn") =~ 0.2% .

The mode of the Bf — J/\Ilni‘n:inq: decay, where three m-
mesons can compose the a;-meson, is also of interest. This
mode must have a significantly greater probability than the
B, — J/Vm decay.

Since B, production in colliding ee™ beams has, as
mentioned, fragmentational character, in general (see
Fig. 7) it must be accompanied by a D-meson presence
in the jet where the B, candidate is being observed. Such a
signature of the event would provide a large advantage to
the search for B.-mesons at eTe™ colliders compared with
that at hadron colliders, where the recombinational mech-
anism dominates in B,-meson production at energies
accessible in the immediate future (see Fig. 9).

However, one must take into account the possibility that
the probability of the b-quark fragmentation production of
the free cc-quark pair is one order of magnitude greater
than the probability of the fragmentation into the B.-meson
and the single free c-quark. This means that with account
for the branching ratios for the B- and B.-decays into J/{X,
events with B, decay and a single D-meson will appear only

FIn the present review we do not consider in detail B, production in
the neutrino —nucleon interactions, where one can expect only a few
events with B, production per year, since the coupling constant of the
b- and c-quarks is low [52], so that these processes have no practical
significance for the experimental search for B..

f The CDF facility with the vertex detector at the Tevatron FNAL
has, in this sense, a preferable position.
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Figure 23. The distribution over the invariant masses of the / (a) and Yiv,;, (b) systems in the Bf — 1™v, decay, where v, is a neutrino with
momentum equal to the missing transverse momentum with respect to the direction of the B.-meson motion.

twice as often as the decay of the heavy —light B-meson into
J/¥X, with the instantaneous production of two D-
mesons in the same jet. It is not clear whether one can quite
effectively separate these two processes in the present vertex
detectors, i.e. whether one cannot lose the vertex of the
second D-meson.

[t is evident that progress in the experimental study of
the B,-meson and the general physics of heavy quarks will
be mainly related to the development of the vertex
detectors, so that the latter would give the possibility of
the reliable observation of several heavy quarks instanta-
neously (to search the cascade decays, for example).
However, since at the present yields of LEP and Fermilab
several dozen B -meson production events may be
observed, one would think that the practical detection of
B, will be achieved in the near future.
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Appendices

I. Covariant quark model
Consider the general statements of the covariant descrip-
tion of the composed quarkonium model.

By definition, the energy fraction carried out by quark i
in the (QQ’) meson is its constituent mass m;, so that

(L.1)

. !
where M is the meson mass, and m and m' are fixed values.
For the four-momenta, one has

M=m+m',

m
k:MP'f'({a
’ m'

where P is the meson momentum, and ¢ is the relative
momentum of quarks inside the meson.
For the quark propagator, one has

S(k) = (k“y” +m)D(k) . (1.3)
The constituent quark has, in fact, fixed energy, so that in
the D(k) function, only the imaginary part contributes. In
the meson rest frame, one has

Im D(k) = = 5(Jko| — m) . (1.4)

m
Eqn (I.4) with account for Eqn (I.2) can be rewritten in the
covariant form

M

Im D(k) = " 5(Pq) . (L5)
m

The quark —meson vertex can be represented as

Lygy = 0(k) v’ (k") D™ (k) D' (K') x(P; q) (1.6)

where v and v’ are the quark spinors, the D(k) function is
defined in Eqn (I.3), and I is the spinor matrix determining
the quantum numbers of the meson.

The nonrelativistic description of the meson means that
the form factor is determined by the expression

1(P: q) =2m8(Pq) $(4°) - (1.7)
In the following, we suppose
2
¢(g*) = Nexp % : 1.8)

The choice (I.8) reflects the typical form of the S-wave
functions of the charmonium and bottomonium, and it
allows one to perform the analytic calculation of the
semileptonic decay widths for B.-meson.

Let us define the decay constants f for the pseudoscalar
and vector mesons,

(01 J5,(x) [P(q)) = ifp g, exp(igx) , 1.9)
(0],(x) [V(g 2)) = ify My e exp(igx) (1.10)

where 4 is the vector meson polarisation, and the quark
currents are

Js,u(x) = Q(X)VSVyQ’(x) >
Ju(x) = 0(x) 7, 0'(x) .

(1.11)
(1.12)

In the nonrelativistic potential model, one has

fe=fiv=r, (1.13)
so that

. 3

f:2\/% 'I/(O) s (1.14)

where ¥(0) is the quarkonium wave function at the origin.
The oscillator function, resulting in Eqn (I.8), has the
form

2\ 3/4 22
W o
Yir)=|— - .
0=G) ()
Condition (I.14) means that the normalisation constant N
in Eqn (1.8) is
M V6

mm' f

(1.15)

(1.16)

Thus, for the quark—meson form factor, one finds

M Ve q2

x(P; q)zzné(Pﬁl)mTexpE» (L.17)

where w is determined by Eqns (I.14) and (I.15), so that

the only free parameter of the model is the constant f. For

the y-particle, fy can, for example, be related to the width
of the y — ete™ decay

~,_4n fi

r—ete) = Fat e g

(1.18)

where e, = 2/3 is the electric charge on the c-quark. From

Eqn (I.18), the experimental value of the leptonic
width [15] gives
fy =410+ 15 MeV . (1.19)

The values of the fp, and fp, constants are determined
theoretically in the framework of the QCD sum rules and
in the potential models.

Note that the stated model of the composed quarkon-
ium gives, for instance, the exact formula of the
nonrelativistic M 1-transition for the electromagnetic decay
of the vector state into the pseudoscalar state, V. — Py

1 X
r(v—pry)= ?6 W . (1.20)

where @, is.the energy of the y-quantum, and the magnetic
moment [ 18

1 e e
H:§ vV %em (%"‘m) p

where e and e’ are the electric charges on quarks in units of
the electron charge.

(1.21)

II. Spectral densities for three-particle functions
The spectral densities for the three-particle functions are
determined in the following way [36]:

3 4,4+ 4
S 2 1 2
p+(A|, 82, Q ) _2/(3/2 {k 5

—k [m3(m3 —my) +my(mz — mz)]

~[20514; + 5241) — u(4) + 4)]

u
X <m% —§+m|m2 — Mymy —m]m3>} N

(IL.1)
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3
py(s1, 52, QF) = on [(2s|A2 —udy)(m3 — my)

+ (25241 — udy)(m3 — my) + msk] ,(11.2)

3
:m{(ml —my)
1
X |:m§ +E(S]A% + SzA% —_ MA]A2):|

A4 A4
(=) (v =3)

A+ 4, —
+m3 <m% —¥+mlm2) }, (“3)

3
p‘i(S], 82, Q2) = W {ml (2S2A1 — MA2 =+ 4A]A2 + ZA%)

p(;A(SI’ 52, QQ)

+m1m§(4s2 — 2u) +m2(2s1A2 — uA])
—m3 (235241 + 514;) —u(34, + 4y) +k
+44,4, + 245 + m3(4s, — 2u)]

+E(m] —m3)[4s15,414,

_M(2S2A|A2 + S]A% + SzA%)

+255 (5143 + szA%)]} , (1.4
where
k=(si4+5+0°) —4sis,, u=s+s5+0°
A, =5 —m%—l—m%, Ay =5, —m%—l—m% .

In the B, — n,(J/¥)ev decays,
m, = my = m, for the masses.

one has m; =m, and

III. QCD sum rule scheme for three-point correlators
Let us consider the sum rules for the f,(Q?) form factor

X, M M
Z’(éum _|_m fTL ncf (Q)
i,j=1 c
1
x Ml2 1‘,[/2 _
(Mg —pi)(Mn, = p3)

,0+(S] 5 82, Qz)

G127 (L1

1
:WJ d\] d\z

Applying the Borel operators I:Tl(—p%) and LATz(—p%),
defined in section 2, to Eqn (IIl.1), one derives the
following sum rules

Z FaMERME Q) exp(-ME T, = M{1)
i, j=1
_ Z(mb + mc)mc

(2n)’ J dsy ds; py(s1, 52, O%)

X exp(—s1T; — $272) - (I11.2)

Introduce the notation

i —meM/Z

and transform the left-hand side of Eqn (I11.2) with the use
of the Euler—MacLaurin formula [90]

(Q%) exp(—M#15) (I11.3)

o0

ZfBMle exp(— MB 7)

i=1

00
dn
:J dM g 7 fBM§2S exp(—M g, 171)
Mk dM
" n2 n2
Z fEMp S,exp(—Mp. 1) + ...
n=0

(I11.4)

Applying LAT/(M’,;%) to Eqn (II1.2) and accounting for
Eqn (II1.4), one gets

2mg(my, + m,) dMéc

(2r)’ dk

(%) exp(—M o) =

o0

joagi2 £k
D RE
J=1

dsy p(M§2, 55, Q%) exp(—s,1;) . (IIL5)

x 2 J
Mg fs,
Using the analogous procedure for the sum of the ni

resonances, one obtains

8my(my, + m,) dM éc dm ,’10

-kl 2 —
+(Q) MEMY fh a0 dkdl
] k2 2 2
X —— p. (ME, M2, 0% . 111.6
(21[',)2 p+( B, Ne ) ( )

Here we have used the property of the Borel operator
L(x) [x" exp(—bx)] — 5(+") (t—0).

It is not difficult to generalise this procedure to the
remaining form factors.



