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LETTER TO THE EDITOR

PACS numbers: 05.30.-d

Once again about analytical methods of calculating
correlation functions in quantum statistical physics

M F Sarry

About two years ago | published a paper in this journal
under the title ‘“‘Analytical methods of calculating correla-
tion functions in quantum statistical physics’’ [1]. Recently
a methodological note “On the evaluation of the correla-
tion functions in quantum statistical physics” was
published by D N Zubarev and Yu G Rudoi [2]. In the
words of its authors, my paper ‘“abounds in arbitrary or
erroneous statements’’, and they were impelled to write
only because of the “strong and completely unsubstanti-
ated criticism’” of the Green function method. Leaving to
the authors’ conscience the style they chose in their printed
defence of the Green function method, I shall try to
provide a brief and, whenever possible, quite complete
answers to all their critical comments. However, I must
first briefly recall the principal features of the method I
proposed in that paper. They can be summarised as
follows.

(1) It is assumed that in the case of the investigated sys-
tem it is possible to construct a basis of operators {Aj},
which is usually incomplete but nevertheless closed (in a
nonoperator manner) with respect to the operation of
commutation with the Hamiltonian of the system:

n
[Aj, H. =Y KAy, j=1,2,3,...,n. (1
i'=1
Here all the basis operators generally have different orders.
If all the operators are of the same order, then on this basis
the initial problem becomes completely linear in the most
direct sense and, therefore, its solution is then exact and
the operator basis is complete.

(2) An incomplete set of operators can be closed ‘by
force’ if the values of the coefficients K, in the expansion
described by Eqn (1) are selected with the aid of the Jacobi
operator identity, which has to be satisfied exactly. In the
case of a two-operator basis, this identity is

(A [Ay, HI_]. = [As, [y, H_]_ —[IA,,A5)_,H]_ = 0.
)

Substituting here the expansions of the appropriate
commutators
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and the value of the mutual commutator [AI,Az]_, we can
find the required values of K. In this way, the whole
approximation of the solution of the initial problem
‘resides’, here in its K matrix and then only in its elements
K., because the expansion of just one last (nth)
commutator is always inexact. The expansion of all the
preceding commutators is always exact because of the
method used to construct them.

(3) The basis {Aj} is established in such a way that any
correlation function of the investigated system necessarily
contains at least one of these operators. This circumstance,
together with the cyclic invariance of the value of the trace
relative to the operator product (the correlation functions
contain precisely such traces) and the exact ‘undressing’
formula

AjlB1 = lexp(=BK)];A ©)
j=1
for the ‘dressed’ basis operator
Aj[B] = exp(BH)A; exp(—BH)

makes it possible to derive directly the required closed
system of n algebraic equations for the required correlation
functions:
(BA)) = (A;1B1B) =) _lexp(=BK)]; (A;:B),
Jj'=1

j=12,..,n, @)
(...y = Trlexp(—BH)...][sp(—BH)] "

If a given correlation function includes initially several
basis operators, it can be used to write down the same
number of independent equations.

(4) Eqn (4)—which is the main formula in the
‘dressing—undressing’ method —applies to the case of
non-temporal correlation functions, which are the usual
statistical averages representing the equilibrium states of a
system (in this case the Hamiltonian of the system does not
depend explicitly on time). However, if there is a time
dependence, the required correlation functions can be found
without any major changes in the system of equations (4),
with the exception of the transformation f— f = f +it,
because the temporal correlation function of an equilibrium
state of a system is

(BloJAj[n]) = (BA[1]) = (A;[B+i]B), 1=t —15.

The temporal correlation functions may be used, at least
in the linear approximation, to study also transient
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processes in physical systems (when the Hamiltonian of the
system is an explicit function of time) because all the kinetic
coefficients of nonequilibrium systems considered in the
linear approximation can be expressed in terms of their
equilibrium temporal correlation functions that correspond
to equilibrium states of these systems.

We can now analyse the critical comments made in
Ref. [2] about my paper [1].

(I) T shall deal with the statement that my opponents
were forced (at least in their own opinion) to write in order
to “‘prevent possible misunderstandings in the case of those
readers who are approaching the Green function method
for the first time”.

In my paper [1]] simply noted the long-known principal
calculation shortcoming of the Green function method,
which is the absence of a regular procedure for termination
of the usually infinite chain of equations of motion for the
Green functions. For my own part I added just two
comments: first, the anticommutator and commutator
Green functions cannot be regarded as (technically!)
equivalent; second, the spectral theorem of the Green
function method is in practice frequently used incorrectly
and this may be due to the fact that Zubarev [3] gives
examples of how this theorem should be used in specific
calculations, but in fact he applies it in its generally
incorrect form in such examples, as demonstrated by
Eqns (3.28) and (5.11) in Ref. [3]. However, these two
comments from me can hardly be regarded as a criticism of
the Green function method and particularly as a strong
criticism.

[ shall now expand these comments. As far as the
termination method is concerned, this does not come from
me: it has long been known; moreover, it is in fact
acknowledged by my opponents (third paragraph on the
first page of their paper). The next two comments do in fact
come from me. Their meaning is as follows. The technical
inequivalence of the use of the anticommutator and
commutator Green functions in specific calculations is
related particularly to the correct application of the
spectral theorem in the Green function method. This
theorem has the following form, which is given by Eqn
(3.25) in Ref. [3]:

G(w + ig) — G(w — ig) = —ifexp(wf™") — y)J(w). (%)

A mathematically correct solution of Eqn (5), which gives
the spectral intensity J(w) of the required correlation
functions for n =1, is [1, 4]

J(w) = {i[G(w + ie) — G(w — ig)]

©
x fexp(@87") = 1]7'} +£8(w),
i.e. there is a singular term because of the condition
[exp(£wf™") — 1]6(w) =0, (7

which ensures that the initial equation (5) is satisfied when
solution (6) is substituted in it. It is shown in Ref. [5] that
the exact anticommutator and commutator functions
respectively admit and do not admit a pole at the point
w =0, and that the residue of the exact anticommutator
Green function at this point does indeed determine the
unknown function f which occurs in solution (6). This very
important (in practice) analytical property of the exact
Green functions has not been discussed by N N

Bogolyubov and S V Tyablikov [6, 7] or by D N Zubarev
[3]. It is important because the anticommutator or the
commutator Green functions calculated approximately (in
practice only approximate calculations are possible) may
admit a pole at the point w=0. The pole of an
approximately calculated commutator Green function
can then be removed by specifying the necessary condi-
tions and the residue at this pole of the anticommutator
Green function yields an approximate expression for the
unknown function f in solution (6) (the function f is
independent of w). Therefore, if we wish to know a priori
how to write correctly solution (6)—with or without a
singular term —we must always begin with calculation of
an anticommutator Green function in the approximation
adopted for the task in hand. Then, if it is found that
there is no such pole, there should be no singular term in
solution (6). In other words, only the commutator Green
functions do not generally close the Green function
method.

(IT) I shall now consider the criticism of D N Zubarev
and Yu G Rudoi of the ‘direct algebraic method’ (DAM)
that I propose for calculating correlation functions in
quantum statistical physics. The essence of their criticism
of the DAM itself can in fact be reduced to the statement
that this method is, first, not original but essentially
equivalent to the familiar Roth method [8]; second, it
does not—in principle—permit going beyond the gener-
alised Hartree—Fock approximation; third, and in spite of
all this, I propose the DAM as the method that makes it
possible to obtain results pertaining to the ‘truth in the final
instance’. None of these statements of my opponents
corresponds to reality. First, as far as the ‘truth in the
final instance’ is concerned, there is no such statement or
even such an expression anywhere in my paper.

Second, the fact that the DAM is not equivalent to the
Roth scheme should be obvious even to a nonspecialist. The
Roth scheme is intended solely to unify the decoupling of an
infinite chain of equations of motion for the Green
functions: it does not yield the actual equations of motion
for the Green functions and it just supplements the method
of equations of motion by a universal decoupling proce-
dure. Only the combination of the Green function method
with the Roth scheme proves a completely closed method
for the calculation of correlation functions; without a
universal decoupling procedure the Green function remains
internally unclosed and is essentially an incomplete method
for calculating correlation functions in quantum statistical
physics.

The DAM however yields both the equations of motion
(and this is done directly for the required correlation
functions and not for some intermediate functions of the
Green type in the Green function method), as well as a
universal method for decoupling them, i.e. the DAM is an
internally closed method for calculating the correlation
functions. The DAM differs from the Green function
method because it is internally closed, but also because
of its exceptional mathematical and technical simplicity:
there are no differential equations, no spectral transforma-
tions and the associated spectra theorem in the Green
function method, and there is no need to calculate jumps
across the real axis of the functions of complex variables;
finally, there is no need to calculate any Fourier integrals:
the algebraic equations can be written down immediately
for the required correlation functions.
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The procedure of decoupling by the DAM is based on a
rigorous mathematical relationship, which is the Jacobi
operator identity and, moreover, it differs from the Roth
scheme which is essentially arbitrary although universal: in
the Roth scheme a commutator or an anticommutator is
taken from both parts of the expansion described by Eqn
(1) with operators which are Hermitian conjugates of the
operators {Aﬁj}. This is followed by averaging of the
resultant relationships:

- ot N
<[Aj7H]77Aj’]:F> = E/j’ = iji"<[Aj”7A.i’]:F
j"

= E Kj‘j‘”Nj”jI .
Iz

If the N matrix has an inverse, Eqn (8) can be used to find
the required K matrix E = KN — K=EN~" from the
‘known’ E and N matrices. It should be pointed out that
Roth does not propose a procedure for constructing the
basis system of the operators {A}.

(IIT) I shall now consider the actual physical approx-
imation. In the DAM it depends on three factors: the
decoupling method (whether one should use the Roth
scheme, the Jacobi identity, or something else); the
operators selected as the operator basis for the solution
of the problem; third, the dimensionality of the adopted
basis: an increase in this dimensionality by just unity has the
effect of going beyond the framework of the preceding
approximation. Therefore, the statement of D N Zubarev
and Yu G Rudoi that the DAM does not allow us to go
beyond the generalised Hartree—Fock approximation is at
least strange.

(IV) Finally, let us consider the error which [ have been
alleged to have made in discussing the Bardeen—Cooper—
Schrieffer (BCS) model. First, the criticism by D N
Zubarev and Yu G Rudoi of my result does not contain
anything new on the topic compared with my own opinion
given at the end of the discussion of this model. Second,
they say that [ deliberately left in the gap equation two
terms of different orders in N, which is the number in any
part of matter. There is no error there: as is well known to
all those that calculate the properties of large systems from
first principles, it is not permissible to limit the answer to
just the leading terms because of, in the final analysis,
unavoidable transition to the statistical limit. Here is a
simple example. In the Brillouin — Wigner expansion for the
energy of a large system only one (first) term of the
expansion is proportional to N and all the other terms are
of the order of unity. What should one do then: retain just
this term? Moreover, there are also such cases when the
term of a higher order in any range of values of the
physical parameters of the system vanishes and then,
naturally, it is necessary to include the contribution of the
nonvanishing term which is of the next lower order of
magnitude. This is precisely the case in the equation I
derived for the gap in the BCS model. Allowance for this
circumstance leads to the conclusion that the BCS theory is
valid only outside the vicinity of the transition point,
always to the left of it, whereas at the transition point itself
a different equation applies. This conclusion is obtained
naturally within the framework of some decoupling, which
is specifically that which exactly satisfies the Jacobi
identity. In the formal mathematical sense it is more
rigorous than the Valatin decoupling, although only the

®)

latter exactly reproduces the BCS result. In a calculation of
the properties of many interacting bodies there are
naturally such cases when a more rigorous (from the
formal mathematical point of view) refinement does not
improve the physical result, but makes it worse. In such
cases one can speak of the physical unacceptability of the
more refined result and not of a ‘scandalous mathematical
error’.

In conclusion, I would like to state firmly that—in spite
of, or maybe because of, the fact that the comments have
been signed by D N Zubarev (who is undoubtedly a very
authoritative specialist in these matters, whom I know
personally, and with whom [ have discussed various
problems including the DAM)—a reader interested in
the essence of the problem of analytical methods for
calculating correlation functions should be capable of
recognising the true position. As far as my paper is
concerned, it is sufficient to read carefully the introduction
and the first two paragraphs as well as the last paragraph in
the second section.

Now for the final comment. In my opinion an inter-
esting method for calculating correlation functions has been
developed by R R Nigmatullin at the Theoretical Physics
Department of the Kazan State University [9, 10]. Unfor-
tunately, although this method was included in the first
draft of my paper [1], it was somehow omitted from its text
in the subsequent revisions.
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