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PACS numbers: 01.10.Fv

Scientific session of the Division of General Physics
and Astronomy of the Russian Academy

of Sciences (27 April 1994)

A scientific session of the Division of General Physics and
Astronomy of the Russian Academy of Sciences was held
on 27 April 1994 at the P L Kapitsa Institute of Physical
Problems. The following papers were presented at this
session:

(1) V B Shikin “Charges near the free surface of liquid
helium: collective effect’;

(2) VM Pudalov ‘‘From the quantum Hall effect to a
Wigner crystal’’.

Summaries of these papers are given below.

PACS numbers: 01.10.Fv; 67.57.Np

Charges near the free surface of
liquid helium: collective effects

V B Shikin

Two types of two-dimensional (2D) charged systems can
appear near the free surface of liquid helium: surface
electrons and surface ions [1]. The existence of these two
systems has been predicted almost simultaneously (see
Ref. [2]). However, the electron variant of the problem has
subsequently been investigated more thoroughly both
theoretically and experimentally. The interest in 2D ion
systems has increased significantly only recently because of
certain specific features of their collective behaviour.

This short review is intended to serve as a brief
introduction to the current status of the problem of the
2D ion systems near the free surface of liquid helium. In
addition, some qualitatively new trends in the study of the
properties of 2D electron systems above helium are
discussed.

2D ion system under the surface of helium
1. Charged particles near the surface of liquid helium on
the liquid phase side are repelled from the surface by a
force F of polarisation origin (image force)

e 1
S \2z) e(e+ 1)’ O

where e is the charge of the particle; ¢ is the dielectric
constant (permittivity) of helium, which is I for vacuum; z is
the actual distance of the ion from the free surface. The
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repulsion, i.e. the inequality F > 0, clearly applies to ions of
either charge, since F defined by Eqn (1) contains the
square of the charge.

Introduction of an additional electric field E,;, which
drives ions with a given sign to the surface of helium, makes
it possible to balance out the action of the force F defined
by Eqn (1) at a certain finite distance z, from the free
surface [2]

1[ e(e—1) ]‘/2.

=3 E gle+1)

It follows that the competition between the image force
(1) and the external field E;| localises ions with a given
charge, introduced into liquid helium, in the z = z; plane
transforming the ion system into a two-dimensional one.

Near the equilibrium position z, the ions may execute
harmonic vibrations of frequency w; [2]

oo Cl=1)

2M 28(8 + 1)
where M are the effective masses of ions with a given sign
(cations or anions). Determination of this frequency gives
direct information on the effective masses of helium ions.

Such experiments have been carried out in France [3] and
gave the following values:

M, =(45+£2)my, M_=(243+5)my; *)

@
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where m, is the mass of the He* atom.

The results (4) are particularly clear for negative ions
which are known to be hollow bubbles of radius R,
containing an electron localised inside the bubble. The
theoretical bubble radius is R =~ 18 A [1]. The correspond-
ing effective mass is simply the associated hydrodynamic
mass of a sphere of radius R in an ideal liquid. Hence the
experimental value of M _ makes it possible to estimate the
radius of the sphere:

R~174A. )

The agreement between the calculated and experimental
values of R is very good.

2. The problem of the effective mass of helium ions near
the surface of liquid helium has been studied further in
connection with experiments on the excitation of plasma
oscilla-tions. The results obtained [4] demonstrate that
classical two-dimensional plasma oscillations (i.e. oscilla-
tions with the dispersion law wocq]/z, where o is the
frequency and ¢ is the corresponding wavenumber of the
oscillations) occur in the 2D ion system, but the effective
mass of positive ions is strongly temperature dependent.
Fig. 1, taken from Ref. [4], demonstrates the strength of
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Figure 1. Temperature dependence of the effective mass of a cation M
near the surface of liquid helium [4].

this dependence. One therefore has to distinguish between
two different masses: vertical and longitudinal, which have
different numerical values. So far, this interesting observa-
tion has not been given a convincing explanation, but the
existence of the effect has been confirmed by later
independent measurements [5].

3. Investigations of the 2D ion systems have led, naturally,
to the question of the Coulomb crystallisation of ions. This
effect, predicted by Wigner over 50 years ago, has been
discovered and investigated in detail for a 2D system of
electrons above helium, as discussed several times in the
present journal [6—8]. Nevertheless, the example of the 2D
ion system is particularly interesting because in this case a
theoretical description of the details of the ion—ripplon
resonances, which appear in the course of the Coulomb
crystallisation, is possible with the use of perturbation
theory. Electrons above helium represent the other limiting
case of strong coupling (in accordance with the classifica-
tion of Monarkha [9]) and the simple perturbation theory
does not work.

One of the characteristic features of the limiting case of
weak coupling in the theory of ion—ripplon resonances,
which accompany the Coulomb crystallisation, is the relative
ease with which the nonlinear effects appear. Experiments [5]
have confirmed this prediction. Fig. 2, taken from Ref. [5],
demonstrates the excitation of the first of the ion-ripplon
resonances which occurs around the frequency

ot =2q. g =2, ©)

p a
here, p is the density of helium, « is its surface tension and
a2 is the average density of ions in the 2D system. In this
figure we can also see nonlinear submultiple resonances at
frequencies w,/2 and w,/3.

Naturally, the resonances are much less sharp than that
those involving electrons. However, the phase diagram of
melting of an ionic crystal, deduced from an analysis of the
temperature dependence of the w = w; peak, has the
necessary properties: the lattice is triangular, the law
T, oca”' is obeyed, and the coefficient of proportionality
in this law

& (mny)’ /2

T,

r= =130, n,=a> )

(where T, is the melting point) is of the same order of
magnitude as for an electronic crystal [1].
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Figure 2. Detection of the Coulomb crystallisation, which
manifests itself by the absorption of an rf field at a frequency

fa=w;/2n, where w; is taken from Ref. [6]. The experiment

was carried out on a system of 2D helium cations under the
following conditions: 7 =10 mK, ng=9.4 x 10° cm™. Submultiple
resonances with frequencies fy/2 and f/3 can also be seen [5].

In conclusion, it should be pointed out that experiments
on ionic crystals that would highlight the difference between
the behaviour of a strongly bound electronic crystal and a
weakly bound ionic crystal, are still awaiting to be carried
out.

2D electron system above helium

In the case of electrons above helium one can look forward
to qualitatively new developments because of the proposal
to use these electrons for the diagnostics of electric fields
that accompany the flow of a Hall current under conditions
corresponding to the quantum Hall effect (QHE). There
are still divergent views on the origin of this effect. There is
theoretical and experimental evidence of the presence, in
the interior of a 2D electron system subjected to a strong
magnetic field, of ‘bulk’ extended electron states. The
alternative explanation of the main details of the QHE is
based solely on edge electron states in systems of this kind.
A discussion of these topics can be found in, for example,
the latest review of von Klitzing [10].

Practice has shown that transport measurements are not
very effective in identifying the details of the distribution of
Hall current density. New methods have therefore been
developed for obtaining local information on the distribu-
tion of fields and densities in the Hall experiments. The best
known among them is the linear electro-optic effect [11, 12],
in which the plane of polarisation of light propagating
across a heterostructure with an optically controlled gate
electrode is rotated by an angle proportional to the
difference between the gate potential and the local poten-
tial of the 2D electron system. If the diameter of a light
(laser) beam is sufficiently small compared with the
dimensions of the 2D system, information can be obtained
on the distribution of local electric fields which accompany
the flow of current through the 2D system under the QHE
conditions, as demonstrated in Refs [11, 12]. However, von
Klitzing points out [10] that the method used in Refs [11,
12] is still insufficiently sensitive.

In view of this it would be interesting to obtain
independent local information on electrostatic fields in
the Hall experiments with electrons on a helium film
[13]. Let us consider an isolated heterostructure containing
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a 2D electron system. Let a helium film cover the surface of
this structure and let us distribute surface electrons over this
film. Let the geometry of the electron system repeat the
geometry of the heterostructure. In the presence of the Hall
currents and, consequently, potentials in the heterostructure
the electrons on the helium film behave as a screening
electrode and should become redistributed along the surface
of the helium film. Such a redistribution can be detected
optically, since the electron pressure on the helium film
would nonuniformly alter its thickness. Similar optical
effects that appear on a film of helium when multielectron
dimples appear on it have been found to be highly sensitive
in the detection of the deformation of the film under the
action of the pressure exerted by such a multielectron
dimple [1, 14]. Estimates show that this approach can be
effective also in studies of the distribution of the potentials
in systems with Hall currents.
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From the quantum Hall effect to a
Wigner crystal

V M Pudalov

The general relationships governing the appearance of the
quantum Hall effect (QHE)—representing transitions
between the various phases and transitions from a
quantised (metallic) to an insulator state—have become
the focal point of recent experiments and of vigorous
theoretical debates. The problem is closely related to the
global behaviour of a two-dimensional (2D) electron
system in the presence of a quantising magnetic field
and disorder. A reduction in the electron density ng tends to

Density of states

oxy(€*/h)

Figure 1. (a) Schematic representation of the density of the 2D statesin a
quantising field. The thick vertical lines represent the extended states.
(b) Dependence of the Hall conductance on a magnetic field, predicted by
the scaling theory in the one-electron approximation.

order the 2D system so that it forms a crystal lattice
because of an increase in the role of the electron —electron
interaction energy E. = ﬂ:ns)'/zez/x compared with the
Fermi energy Ep =mndi’/m*. On the other hand, a
reduction in the electron density is accompanied by an
increase in the relative degree of disorder in the system,
which tends to result in a complete localisation of the 2D
system. There is a related very interesting problem of the
‘termination’ of QHE, i.e. of a transition of a system to an
insulator phase from the QHE state. In contrast to
metal—insulator transitions in three-dimensional systems,
in two dimensions there is a unique opportunity to study
the behaviour of extended delocalised states and thus
establish the exact scanario of the transition to an
insulator.

One-electron approach

In the QHE the transport of charge in a quantised 2D
system occurs because of the existence of extended Landau
states at each level. Against the background of the overall
density of states, shown in Fig. la, these extended states
occupy (as is usual to assume) only a narrow strip in the
centre of the Landau band. Each of these states makes a
contribution, equal exactly to eZ/h, to the Hall conduc-
tance. This means that if there are i extended states below
the Fermi level, the conductance amounts to ie’/h, which
corresponds to the ith plateau or the state of the quantum
index s,, =i. This is true only in the limit of strong
magnetic fields when w.t > 1. Halperin [1], Khmel’nitskii
[2], and Laughlin [3] have predicted that a reduction of the
magnetic field, so that w,t becomes ~ 1, should mark the
start of the increase of the energy of the nth extended state
E .

ne

E,= (n + %) fw, [1 + (0.1)*](w.7) 7 . 1)
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Figure 2. (a) Phase diagram under the conditions of the integral
quantum Hall effect [4] (reproduced by kind permission of D-H Lee);
the ordinate represents the degree of disorder and the abscissa is the
magnetic field. Both these quantities are in dimensionless units.
(b) Results of measurements [7, 8] carried out at 7 =35 mK. The
shading represents the insulator phase.

It therefore follows that in the limit w,t — 0 such
extended states become ‘detached’ from the Landau levels
and ‘float up’, passing in turn through the Fermi level.
When the lowest extended state (n = 0, s,, = 1) floats up in
this way, the system becomes an insulator. According to
this scenario of the termination of the QHE, the Hall
conductance should vary with reduction in the magnetic
field as shown schematically in Fig. 1b. It should be stressed
that the Hall conductance and the Hall resistance then lose
the single-valued classical and quasiclassical relationship to
the density of mobile charge carriers.

Global phase diagram

These ideas have recently been generalised by Kivelson,
Lee, and Zhang [4], who have proposed a global phase
diagram (Fig. 2a) to describe transitions between various
states in a quantised 2D system. The y axis represents the
degree of disorder in the system or the ‘resistance’ and the
x axis is the magnetic field in dimensionless units. The
outer shaded region represents an insulator phase with
sy, = 0 which does not contain even one extended state.
The insulator region extends right down to the axis of zero
disorder at H =0 and also at a half-filled lowest Landau
level, which obviously corresponds to the hypothesis of
weak localisation. Nestling curves separate regions with
different values of s, i.e. with different plateaux of the
quantised Hall resistance. The transitions from an arbitrary
initial state with s,, =m to any other state can occur, in

accordance with this diagram, only by a chain of
transitions with consecutive changes in the index s,, by
+1. This applies to transitions which occur as a result of a
change in the magnetic field or under the influence of
disorder; this corresponds to the motion of mapping points
along a horizontal or vertical line in Fig. 2a.

Results of measurements

In experimental studies of the transitions in a two-
dimensional electron system it is convenient to use silicon
metal —insulator —semiconductor (MIS) structures in which
the density of states can be varied by altering the gate
voltage. In the work by our team we selected MIS
structures with an ultrahigh mobility g ranging from
5% 10* to 7.5 x 10* em? v~! sfl, in which a low-density
phase (down to 4 x 10" cm72) could be created. The
results of earlier measurements have shown [5, 6] that the
Landau levels in such samples remain well-resolved right
down to the actual transition to an insulator. This provides
a unique opportunity for the study of the paths of mobile
states in the phase diagram when transitions occur between
different phases.

Fig. 3 shows a typical dependence of the diagonal
R., and Hall p,, resistances on a magnetic field near a
metal— insulator transition in a 2D system [7, 6, 8] When
the electron density is sufficiently low, n; < 10" cmfz, and
temperatures are in the millikelvin range, a typical insulator
state is obtained: it is characterised by the overall diagonal
resistance (per unit area) p,, ~ 10" Q 7' or more [7].
Several previous investigations [5, 7, 9] have shown that the
insulator state is a collective solid phase. However, for the
purpose of our analysis it is important only that the state
is a real insulator with the following properties:
(1) dR,, /AT < 0; (2) p,, >h/3¢*; (3) the diagonal conduc-
tance o, has a sharp threshold in its electric-field
dependence [9, 10].

The insulator phase is interrupted by a metallic state in
the QHE regime at values of the magnetic field which
correspond to the filling of an integral number of Landau
levels. If the electron density is kept fixed and the magnetic
field is varied, the observed changes in p,, appear as a chain
of alternate metal—insulator transitions and the insulator
phases are strongest near the filling of a half-integral
number of Landau levels.

The resistance R, , plotted in Fig. 3 as a function of H,
is not an appropriate measure of disorder, since its value
represents also the threshold of the transition to an
insulator. Therefore, a comparison with the theory is
made in Ref. [6] on the basis of the density of scatterers
per electron, n;/n,. The experimental points in Fig. 2b are
deduced from measurements of the critical density n. at a
metal— insulator transition [7] and n; = 3 X 10" em™2 is
estimated from the mobility [9] The shaded region in
Fig. 2b represents the insulator. The region below the
curve corresponds to metallic states in the QHE regime:
it is possible to distinguish readily the states with i = 1, 2, 6,
and the nascent state i = 10.

These results apply to a two-valley electron system in
(100) Si; in a comparison with theory one can ignore, for the
sake of simplicity, the intervalley interaction and consider
two noninteracting one-valley systems. When this not very
realistic assumption is made, both regions with i =1 and 2
should have the same index s,, = 1. Under these assump-
tions the general form of the experimental diagram in the
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Figure 3. Dependences of the diagonal and Hall resistances on magnetic field in the region of an oscillatory metal — insulator transition [7,

6l.

range 2.5 > v > 0.8 slightly resembles the theoretical dia-
gram: thereis a peak at v=1and 2 and a fallatv > 0.8 (v is
a coefficient representing the occupancy of the Landau
levels). A more detailed analysis of the experimental data in
the extreme quantum limit [12] shows that the metal—
insulator transition occurring in strong fields from the
lowest Landau level is not in conflict with the hypothesis
of the ‘floating up’ of the extended states across the Fermi
level.

However, there is also a fundamental difference between
the theory and the diagram in Fig. 2a: the experimental
results [6, 10] demonstrate clearly a direct transition from a
state with the quantum Hall resistance at v= 6, i.e. for
sy =3, to an insulator; such a transition is not permitted
by the topology of the diagram in Fig. 2a. It follows from
the scaling theory [1 —3] that such a transition would require
the passage of six delocalised states across the Fermi level.
This should be accompanied by six anomalies of p,, and
pxy; however, not a single anomaly appears in the
experimental results. It remains to conclude that either
the various branches of the diagram in Fig. 2a merge into
one universal curve in the limit H — 0 and then delocalised
states ‘float up’ in groups, or the observed transition is
totally unrelated to such ‘floating up’. The first possibility
has indeed been suggested [13] and is related to the
treatment of the electron —electron interaction as a pertur-

bation. The second possibility is based on the assumption
that the electron— electron interaction is the main factor:
this will be analysed in greater detail below.

Collective metal —insulator transition

This is the transition which should produce a ‘pinned’
crystal. The formation of such a crystal does not require
that delocalised states pass across the Fermi level, but can
remain ‘frozen’ in the lattice. Experiments involve a study
of a transition to an insulator which occurs as a result of
reduction in the electron density and not under the
influence of an increase in the real disorder at a fixed
density. A reduction in the density is accompanied, as
mentioned above, by an increase in the importance of the
electron —electron interaction.

Fig. 4a shows schematically the boundary between a
2D electron liquid and a solid phase at T = 0, plotted in the
coordinates ry and H, where r, = a/ag is the radius of a
Wigner —Seitz cell and ag =21.4 A is the effective Bohr
radius in (100) Si. Let us see how this boundary should vary
with magnetic field on the assumption that, by definition,
the chemical potentials of the solid and liquid phases are
equal at any point on this boundary. The application of a
magnetic field induces quantum oscillations of the chemical
potential of the liquid phase, whereas in the solid phase
there is no orbital motion of electrons and the chemical
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Figure 4. (a) Schematic representation of the dependence of the phase
boundary in quantum melting of a Wigner crystal on magnetic field.
(b) Theoretical dependence calculated from measurements of the
oscillations of the chemical potential (dashed curve) and the results of
direct measurements (continuous curve). The numbers with arrows
identify the degree of occupancy near the main singularities.

potential is, in the first approximation, independent of the
magnetic field. Therefore, to maintain an equilibrium of the
phases the actual boundary should experience quantum
oscillations in a magnetic field, shown schematically in
Fig. 4a. These oscillations of the boundary directly lead to
the appearance of alternating metal—insulator transitions if
we assume that the density (or ry) is fixed near the critical
value and the field is varied, i.e. that the mapping point is
moved horizontally.

This simple idea and earlier measurements of the
oscillations of the chemical potential in the liquid phase
can be used to plot the boundary of quantum melting [14]
shown dashed in Fig. 4b. The following assumptions are
made in plotting this boundary:

(1) the critical value is r, =10 for H =0, in accordance
with the recent calculations of quantum melting [15, 16];

(2) the value of the derivative d(EE — E£)/0r; = —0.17 meV
is found from a computer simulation [15] of quantum
melting in 2D systems (here, E§ and Ef are the energies of
the ground state per particle in the solid and liquid phases,
respectively).

The same Fig. 4b gives, for the sake of comparison, the
experimental results taken from Refs [6, 8]. Although the
dashed curve is plotted without recourse to any fitting
parameter, the agreement with the direct measurement rc
(continuous curve) is fairly good in respect of the amplitude
and phase of the oscillations of the boundary in the r.(H )
diagram. According to this approach the insulator phase is
formed by a ‘pinned’ electron lattice and escape of extended
states is not needed for its formation. It follows that

transitions are allowed from any quantised state sy,
directly to an insulator state; this is obviously in agreement
with experiments. If the density is kept fixed near r, =r,
and the magnetic field is varied (corresponding to motion
along a horizontal line in Fig. 4), the mapping point will
repeatedly cross the oscillating boundary and this should
give rise to alternating metal—insulator transitions, in
agreement with the experimental results [5, 7]. The giant
maxima of R, which are then observed correspond to the
insulator phase and the minima of R, represent the minima
of the chemical potential (in contrast to the QHE, in which
the maxima correspond to the position of the Fermi level
within the energy gap). A more detailed quantitative
analysis shows that this model is in agreement with the
experimental results.

To conclude, let us consider the oscillatory metal—
insulator transitions which terminate the QHE when the
density of the 2D electron system is reduced. In the case of
silicon MIS structures with ultrahigh mobilities such
transitions can be explained quantitatively by quantum
oscillations of the boundary representing melting of a
collective solid electronic state.
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