
Physics-Uspekhi 37(9) 9 0 3 - 9 1 3 (1994) ©1994 Jointly Uspekhi Fizicheskikh N a u k and Turpion Ltd 

FROM THE CURRENT LITERATURE PACS numbers: 41.20.bt 

The approximability problem of the electromagnetic field 

B Z Katsenelenbaum 

Contents 

1. Introduction 903 
1.1 Introductory comments; 1.2 Realisability, approximability, amplitude approximability 

2. Nonapproximable patterns 904 
2.1 Nonapproximabil i ty and zero lines of a wave field; 2.2 Properties of special lines; 2.3 Examples of special lines 
'Forbidden ' forms of antennas; 2.4 Example of amplitude nonapproximabili ty; 2.5 Determination of the shape 
of a body from its scattering pattern 

3. Nonapproximability of near fields 907 
3.1 Incompleteness of a system of near fields; 3.2 The contour I and singularities of the field u(r, (p); 
3.3 Regeneration of the wave field from its zero line; 3.4 Analytic continuation of the eigenmode field 

4. Current norm 908 
4.1 Minimum current norm for a given precision of the approximation; 4.2 Systems of or thogonal functions 
for currents and patterns; 4.3 General solution of the problem of the opt imum current synthesis; 4.4 Region of influence 
of the special line 

5. The electromagnetic field. The Maxwell equations 911 
5.1 Fundamenta l result; 5.2 Trivial generalisations; 5.3 Properties of the special surfaces 
References 913 

Abstract. The relat ionship between the geometr ic p r o p e r ­
ties of a surface and the proper t ies of the e lectromagnet ic 
field generated by a current arbi t rar i ly dis tr ibuted on the 
surface is discussed. There is a cont inual cardinal i ty of 
surfaces for which this field cannot even approximate ly 
describe any r a n d o m l y chosen pa t t e rn or any field in the 
near region. Study of these surfaces is based on the fact 
tha t they are zero surfaces of some auxiliary e lec t romag­
netic field which obeys the Maxwel l equat ion . The mere 
proximi ty of the surface to any surface having these 
proper t ies gives rise to nontr iv ia l proper t ies in the fields 
generated by the currents induced on the surface. 

1. Introduction 
1.1 Introductory comments 
W e shall review the proper t ies of the electromagnet ic fields 
generated by currents dis tr ibuted on some special surfaces, 
i.e. induced on some metallic bodies . 

In the case of some simple surfaces these proper t ies of 
the fields are obvious ; it has been found tha t 'very m a n y ' 
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surfaces display them. The essence of these proper t ies is tha t 
any complete system of currents on the surface generates an 
incomplete system of fields, and in par t icular an incomplete 
system of pa t te rns . Therefore 'very m a n y ' fields cannot be 
described even approximate ly by these fields: m o r e p r e ­
cisely, all the fields which fail to satisfy a given condi t ion. 
M a n y nontr iv ia l physical corollaries follow from this 
s ta tement . 

In Sections 1 - 4 the two-dimens iona l scalar fields 
generated by current dis tr ibuted on lines will be dis­
cussed. In this mode l all the formulat ions and the 
ma themat ica l a p p a r a t u s are simpler, and the main results 
can be t ransferred to three-dimensional vector fields a lmost 
au tomat ica l ly (see, especially Section 5.1), with only one 
exception (Section 5.3). In this review the discussion will be 
confined to electric currents and to m o n o c h r o m a t i c fields 
[^exp(iatf)]. Some of the results have recently been 
publ ished [1, 2]. 

Let us examine the relat ionship between the field w(r, cp) 
and the line C on which the currents which generate this 
field are dis tr ibuted. The field w(r, cp) satisfies the h o m o g e ­
neous wave equat ion 

V2u + k2u = 0 (1.1) 

(k = co/c), the Sommerfeld rad ia t ion condi t ion 

u(r, cp) ^ - ^ l f M , (1.2) 
y/kr 

where f{cp) is a pa t t e rn , and the condi t ion tha t the field 
itself is con t inuous on C bu t its n o r m a l derivative du/dN 
has a discont inui ty equal to the given current j(s) (where s 
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is the coord ina te a long C ) . The f{cp) pa t t e rn is obta ined 
from j(s) by the integral t r ans format ion 

fM = K(s, <p)j (s) ds , 

JC(s, cp) = exp[—ikr{0) cos(cp — 9)] , 

(1.3a) 

(1.3b) 

where r = r(ff) is the equat ion of the line C, and 6 = 6(s). 
A n u n i m p o r t a n t factor has been omit ted in E q n (1.3b): in 
similar c i rcumstances the omission will no t be poin ted out 
again in the discussion to follow. 

Iff(cp) is given, Eqn (1.3a) is a k n o w n integral equat ion 
of the first kind for j(s); by definition it has a solution if the 
current n o r m 

N \J(s)\2ds 
1/2 

(1.4) 

is finite (N < oo). The pa t t e rns generated by any type of 
current in C will be called pa t t e rns generated by the line C. 

In most of the results repor ted be low N < oo is no t a 
necessary condi t ion. The current can have singularities 
which m a k e \j(s)\2 no t integrable: we only require the 
existence of the integral on the left-hand side of 
E q n (2.6) (see below), and for this it is sufficient for 
the current itself to be integrable. The condi t ion is satisfied 
also for the current near the edge of a half-plane (for any 
polar isa t ion) , and for j(s) w 3(s — s0), i.e. in the a p p r o x ­
imat ion often used in the theory of an tenna arrays . W e shall 
use the condi t ion N < oo in order to simplify the t r ea tment 
(especially in Section 4). 

1.2 R e a d a b i l i t y , approximability, amplitude 
approximability 
The following rela t ionships between the pa t t e rns generated 
by the line C and any function F{cp) are possible: 

( a ) R e a l i s a b i l i t y . A current which generates the 
pa t t e rn of F(cp) exists. Eqn (1.3a) has a solut ion if /(^>) 
is replaced by F(q>). 

(b) A p p r o x i m a b i l i t y . F o r any (5 > 0 there is a 
current such tha t the distance (in roo t -mean- squa re 
metrics) between the pa t t e rn generated by tha t current 
and F(cp) is not greater t han 3: 

2n x l / 2 
\F{cp)-f{cp)\2dcp) ^5 (1.5) 

(c) A m p l i t u d e a p p r o x i m a b i l i t y . There exists a 
real function \j/((p) (the 'phase ' ) such tha t the function 
F{cp) exp[—i\l/(q>)] is approx imab le 

(d) A m p l i t u d e n o n a p p r o x i m a b i l i t y . The ampl i ­
tudes of all the pa t t e rns generated by the line are no t close 
to \F(<p)\. 

Of course, any other metrics apar t from the quadra t i c 
can be used to determine the approximabi l i ty . 

The realisability depends on the analyt ic proper t ies of 
the F{cp) function [3], and a realisable function can be m a d e 
unreal isable (and vice-versa) by an infinitesimally small 
change. The approximabi l i ty is a coarser function: its 
presence (or absence) in any function is shared with all 
the functions close to it. 

2. Nonapproximable patterns 
2.1 Nonapproximability and zero lines of a wave field 
The line C for which n o n a p p r o x i m a b l e functions exist has 
one specific p roper ty : it has a cor responding function F(cp) 
which can be normal ised over the range (0, 2n) and is 
o r thogona l to all the/ (cp) pa t t e rns generated by the line C. 
The or thogonal i ty of the functions f{cp) and F{cp) means 
tha t the p roduc t of these function (f, F), equal (by 
definition) to the integral 

(f,F) f(cp)F*(cp)dcp 
Jo 

(2.1) 

vanishes. The normalisabi l i ty condi t ion means tha t the 
p roduc t (F, F ) is finite; we shall normal ise F{cp) by using 
the equat ion (F, F ) = 1. 

W e k n o w [4] tha t if the functions f(cp) satisfy the 
condi t ion (/ , F ) = 0, a finite distance must^exist between 
them and any function F{cp) for which (F, F ) ^ 0: 

(JQ \F(<p)-A<p)\d<P) >\(F,F)\ • (2-2) 

If ( fur thermore) we st ipulate tha t b o t h F(q>) and all the 
functions f{cp) are normal ised to uni ty, i.e. tha t (F, F ) = 1, 
( / » / ) — 1> t n e m i n i m u m distance between F(q>) and f(q>) 
becomes greater t han the r igh t -hand side of condi t ion (2.2) 
and equal to 

A = (l-2^\-\{F, F)\2 J' (2.3) 

The lines C for which all the result ing pa t t e rns have this 
property^will be called special lines and designated by the 
symbol C. ^ 

There are C lines cor responding no t to a single F(q>) 
function bu t to several such functions 
Fp(q>) (p = 1, 2, All these functions p roduce an 
o r thogona l complement in the space of the pa t te rns . They 
can be or thonormal i sed , (Fp, Fq) = 3pq. In this case in 
formula (2.3) for the 'gap w id th ' between f(cp) and F(q>) 
the term \(f, F ) | 2 mus t be replaced by the sum over all t h e p 
of the squares of these p roduc t s , and a cor responding 
change mus t be m a d e in form-ula (2.2). The necessary 
and sufficient condi t ion for the approximabi l i ty of any 
function F(q>) by the special line C is the equali ty of all the 
(F, Fp) p roduc t s to zero. The existence of one or several 
o r thogona l complement functions shows tha t the complete 
system of currents on C gives an incomplete system of 
pa t te rns . 

W e shall show tha t all the special lines are zero lines of 
some wave field, and tha t all the zero lines of any wave field 
are special lines. 

W e require a p r o o f of the equivalence of the condi t ion 
tha t all the pa t t e rns created by the line C are o r thogona l to 
some function F(q>) to the condi t ions tha t there exists a field 
u(r, cp) equal to zero on C: 

u(r, cp) 0 . (2.4) 

The field u(r, cp) should obey the same h o m o g e n e o u s wave 
equat ion (1.1) as the field w(r, cp), and it should have no 
singularities over the whole p lane . At r —> oo it conta ins [as 
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in expression (1.2)], in addi t ion to an ou tgo ing cylindrical 
wave, an incoming ( 'non-Sommerfe ld ' ) wave which is 
effectively the source of the field w(r, cp), so tha t its 
a sympto te at r —> oo becomes 

(2.5) 
ykr ykr 

H ere F{cp) is a function to which all the pa t t e rns generated 
by currents on the line C found in condi t ion (2.4) are 
o r thogona l . The function 4>(q>) is u n i m p o r t a n t in the 
subsequent calculat ions; if, as is often the case, w(r, cp) is 
real we have $(q>) = F(cp). 

The p r o o f of the equivalence of the two condi t ions is 
e lementary. It is a scalar var iant of Loren tz ' s lemma for two 
fields: the field w(r, cp), generated by the current j(s) on C, 
and the field w(r, cp), generated by the app roach ing 
cylindrical wave of ampl i tude F*(cp). W e shall apply 
G r e e n ' s second formula to these fields over the entire 
surface. The line C mus t be el iminated by a supplementary 
con tour (which is doubly b o u n d if C is closed). Since b o t h 
fields obey E q n (1.1) the formula retains only the integral 
over this contour , i.e. the integral over C, and the integral to 
infinity. Accord ing to (1.2) and (2.5) and to the condi t ion 
for w(r, cp) on C it takes the form 

^u(r,(p)j(s)ds = \ f(<p)F*(<p)Acp . (2.6) 
Jc Jo 

If condi t ion (2.4) is satisfied we^have (/ , F) = 0 for all 
currents . A n d conversely, if ( / , F) = 0 for all currents we 
find, by applying E q n (2.6) to any complete system of 
currents on C, tha t the value of w(r, cp) on C is o r thogona l , 
in the usua l meaning , to the complete system of functions, 
i.e. tha t Eqn (2.4) applies. 

The inequali ty (2.2), i.e. the nonapprox imabi l i ty of 
'nearly all ' the functions, is an impor t an t p rope r ty of the 
line C for pract ical appl icat ions. It follows directly from the 
p rope r ty (/ , F) = 0, bu t a direct p r o o f of this p rope r ty is no t 
usually possible. This p r o o f of the equivalence means tha t 
inequali ty (2.2) is a consequence of the existence of some 
field w(r, cp) having the p rope r ty (2.4) on C, and often it is 
possible either to demons t ra t e the existence of this field 
(sometimes by a simple plot ) or to p rove tha t it cannot exist. 

Thus , the approximabi l i ty p rob lem is related to the 
analytic proper t ies of the fields, i.e. to the solution of the 
h o m o g e n e o u s wave equat ion . The special lines are the zero 
lines of the fields, and the o r thogona l complement functions 
which characterise the degree of nonapprox imab i l i ty of any 
function F{cp) [i.e. the r igh t -hand side of inequali ty (2.2) or 
expression (2.3)] cont r ibu te to the asymptot ics of these 
fields. This result is the s tar t ing poin t of the present 
review. In it, the proper t ies of the fields w(r, cp) and of 
their zero lines C, and also the physical consequences of the 
nonapprox imabi l i ty p h e n o m e n o n , will be examined. 

2.2 Properties of special lines 
The function F(cp) and the field w(r, cp) are unambiguous ly 
interrelated. All solut ions of the h o m o g e n e o u s wave 
equat ion wi thout singularities can be expressed in the form 

w(r, cp) = CnJn(kr) cosncp , (2.7) 

where only fields which are even in cp are considered in 
order to simplify the t rea tment . In this case F(cp) can be 

expressed as a Four ie r series with the same coefficients; 
m o r e precisely 

% ) = ^ C H y c o s n p . (2.8) 
n 

Usual ly a function having a zero line is real. In tha t case Cn 

are also real, and F(cp) satisfies the condi t ion F(cp + 7i) = 
F*{<p). 

The assert ion tha t there are 'very m a n y ' special lines 
follows, essentially, from the existence of 'very m a n y ' 
different w(r, cp) fields. In the geometr ic ne ighbourhood 
of any special line we find other special lines. M o r e exactly, 
if the equat ion of the line C\ is r = rx(cp) we can construct , 
for any s > 0, a line C2 with an equat ion r = r2(cp), where 
\ri{(p) — r\{cp)\ ^ 8 , and the functions Fx(cp) andF2{cp) are 
no t b r o u g h t closer together by shifting or ro ta t ing the 
system of coordinates . Similarly, in any ne ighbourhood 
(in mean-squa re metrics) of any function Fx(cp) we always 
find ano ther function F2(cp). If two special lines with 
different F(cp) functions are known , we can construct a 
series of C lines cont inuously depending on the pa ramete r . 

A n y arc of a special line is a special line. A closed special 
line p roduces a resonant contour , i.e. in its inner region we 
find a nonzero solution of E q n (1.1), which becomes zero 
on the contour . As m a n y special lines as required can be 
d rawn th rough any poin t on the surface. 

2.3 Examples of special lines. 'Forbidden' forms of 
antennas ^ ^ 
The relat ionship between C and F{cp) is of pract ical 
interest, the field w(r, cp) being only an auxiliary function. 
However , in examples studied to i l lustrate the relat ionship 
between C and F(cp) it is convenient to set the latter field 
and calculate from it (usually with a compute r ) C and 
F(cp). It is also relatively easy to find w(r, cp) from a given 
F(cp) [for example, by compar ing E q n s (2.7) and (2.8)], and 
hence to find C. Cons t ruc t ing w(r, cp) and F(cp) from a 
given line C is a m o r e difficult p rob lem (see Section 3.3). 

W e shall t ake as our first example 

w(r, cp) = Jn(kr) sinncp, n = 1, 2, . . . . (2.9) 

The line C is composed of the resonant circles 
r = finm/k(m = 1, 2, . . .)K and In rays cp = mn/n 
(m = 0, 1, ... ,2n— 1); \inm is the mth roo t of the nth 
Bessel function. To all these lines cor responds the function 

F(cp) = sin ncp-^-= . 
V 7 1 

Pa t t e rns p roduced by a cylindrical mir ror an tenna as arcs 
of a resonant circle cor responding to some value of the 
index n cannot be approx imated (with the appropr i a t e 
polar isa t ion) by any function whose Four ie r series includes 
sinncp or cosncp. 

The fact tha t a function conta in ing sin ncp cannot be 
approx imated by the pa t t e rns of currents on any of the 
given straight lines can also be interpreted as a consequence 
of the following obvious fact: the function sin ncp is odd 
with respect to a straight line, whereas all the pa t t e rns are 
even with respect to the straight line on which their 
generat ing currents are dis tr ibuted. In general the m u t u a l 
relat ionship between the line and F(cp) can be t reated as a 
general isat ion of the symmetry proper t ies of fields gener­
ated by currents on a straight line. The only nontr iv ia l 
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consequence is tha t these simple lines are no t the only 
special lines. 

Two straight lines on which w(r, cp) vanishes [Eqn (2.9)] 
intersect at an angle which is a ra t iona l fraction of K, i.e. it 
has the form a = nt/n {t = 1, 2, . . . , n). On the other 
hand , if the angle a between the two straight lines does 
no t have this form, the lines do no t form a special line, and 
their currents give rise to a complete system of pa t te rns . 
Con t ras t ing these two cases has no physical significance, 
since any number a/n can be approx imated by a ra t iona l 
fraction. The apparen t p a r a d o x is el iminated by no t ing tha t 
for large n the r igh t -hand side of inequali ty (2.2) is small, so 
tha t even for a = nt/n the nonapprox imabi l i ty a lmost 
vanishes when n is large. 

The surface of the an tenna does no t have to be special. 
In par t icular , the walls of h o r n an tennas do no t need to 
intersect at angles of the type of a = nt/n with small n. W e 
mus t avoid divergence angles equal or close to [see 
Section (4.4)] the angles 

a = 90° (n = 2); 60° , 120° (n = 3 ) ; 45°, 135° (n = 4) . 
(2.10) 

In an elliptical system of coordina tes we can define the 
field um the same elementary form as in E q n (2.9); in the 
form of the p roduc t of two Ma th i eu functions. In this case 
the special lines t ake the form of arcs of ellipses or 
hyperbolas . The eccentricity of the ellipses will depend 
on the frequency or, m o r e strictly, on the pa ramete r kc, 
where 2c is the distance between the foci. F o r example, an 
ellipse with an eccentricity of 0.91 becomes a special line for 
kc = 3.86, an ellipse with an eccentricity of 0.63 for 
kc = 1.73, etc. Hype rbo la s are conveniently characterised 
by the angle between the asymptotes . F o r example, for 
kc = 2.0 and kc = 6.3 the special lines will be hyperbolas 
for which the angle ft is equal (respectively) to 106°, 66°, 
124°, 9 9 ° . . . and 144°, 116°, 146°, 1 1 8 ° . . . . These special 
lines cor respond to o r thogona l complement functions equal 
to Ma th i eu functions of cp. Elliptical and hyperbol ic mi r rors 
with appropr i a t e eccentricities or angles p roduce pa t t e rns 
with which only functions o r thogona l to these functions can 
be approx imated . 

The resonance rectangle is no t a special line. The field 
whose zero lines are the sides of the rectangle a x b 
(n2/a2 + %2/b2 = k2) is described over the whole surface 
by the formula 

u{x,y) = co* c o s ( ^ ) . 

This field is p roduced by the interference of four 
app roach ing p lane waves, and therefore the function 
F(cp) conta ins a ^-function, i.e. it is no t normal isable . 
A l though all the pa t t e rns generated by this line satisfy the 
condi t ion (/ , F = 0), as can also be shown directly from 
symmetry considerat ions , inequali ty (2.2) does not follow 
from this a rgument : there is no nonapproximabi l i ty . F o r 
the same reason two paral lel straight lines do no t form a 
special line if the distance between them is greater t han 
one-half of the wavelength, nor is a special line formed by 
an equilateral resonant tr iangle (or by several other 
resonant tr iangles [5]) on which the field p roduced by 
the interference of six p lane waves falls to zero. W e should 
also no te tha t for near fields (but no t for pa t te rns) these 
resonant con tours form special lines (in a slightly loose 
appl icat ion of the term). 
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2.4 Example of amplitude nonapproximability 
The special line cor responding to two straight lines forming 
an angle a = nt/n is the zero line of the denumerab le set of 
fields w(r, cp) cor responding to different o r thogona l 
complement functions, 

F = sinpncp-^= (p = 1, 2, . . . ) . 
V 7 1 

The function F(cp) is approx imab le if the system of 
condi t ions (F,Fp) = 0 is satisfied. If the n u m b e r of 
Fp{cp) functions is finite (p = 1, 2, . . . , P) it should be 
possible [by an appropr i a t e choice of the phase i//(cp)] to 
satisfy these equalities for F(cp) exp[—ii//(cp)] in any function 
F(cp), i.e. to ensure the ampl i tude approximabi l i ty of the 
function F{cp). The greater P and the nar rower the \F(cp)\ 
pat te rn , the m o r e b roken will this phase be, and the greater 
will be the n o r m of the cor responding current . F o r P = 00 
this n o r m m a y reach infinity in n a r r o w pa t te rns , i.e. 
ampl i tude nonapprox imabi l i ty will occur. 

It can be shown tha t for P = 00 all the (F, Fp) = 0 
equalities can be satisfied by an appropr i a t e choice of the 
phase if the 2n nonnegat ive functions \F{cp — 2sa) | , 
\F(2s(x — cp)\, s = 0, 1, . . . , 2n — 1 have the following 
p rope r ty for all cp: the greatest of them does no t exceed 
the sum of the others . F o r example, for n = 2 (i.e. when the 
currents are dis tr ibuted on two perpendicular straight lines) 
this condi t ions is satisfied for the Gauss ian curve of 

(with its m a x i m u m along the bisector cp = TC/4), i.e. 
ampl i tude approximabi l i ty occurs only if A < 1.76, which 
cor responds to a half-width greater t han 53°. The half-
width of a similarly oriented I I - shaped pa t t e rn should be 
greater t han 90°. N a r r o w e r pa t t e rns cannot be m a d e 
approx imable by an appropr i a t e choice of the phase . 

2.5 Determination of the shape of a body from its 
scattering pattern 
By measur ing only the scat tering pa t t e rn wi thout a 
knowledge of the i l luminat ing field we can formulate 
some conclusions on the p robab le shape of the scattering 
body . Firs t , we can establish the validity of the hypothesis 
tha t " the shape of the b o d y is close to tha t of the special 
line C to which cor responds the function F(cp)". If this 
hypothesis is valid we should have | ( / , F ) | <̂  1 [for 
( / » / ) — 1] a t a n y l e v e l ° f i l luminat ion. If | ( / , F ) | is no t 
small at even one level of i l luminat ion, the hypothes is is 
e r roneous . Second, by measur ing f(cp) we can evaluate the 
function F(cp), which is close to it, i.e. such tha t 
| ( / , F ) | w 1. The con tour of the b o d y is no t close to 
tha t of the special line cor responding to this function, F(cp). 
Third , from the measured f(cp) pa t t e rn we can construct 
F{cp) functions o r thogona l to it, i.e. such tha t ( / , F ) = 0. 
The contour of the b o d y m a y be close to the special line 
cor responding to one of these functions. 

The informat ion cont r ibuted by each of these conclu­
sions increases if several measurements are carried out for 
different i l luminat ions and different pos i t ions of the body . 
Because a smooth ing (integral) functional (2.1) of f(cp) is 
being calculated small errors in the measured d iagram 
should no t seriously affect the results, and, fur thermore , 
incorrectly formulated m e t h o d s of inferring the phase f(cp) 
from the measured ampl i tude \f(cp)\ m a y be used. The 
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me thod can be applied also to scattering on thin screens, 
which m a y be t reated as nonclosed lines. Measu remen t s of 
the scattering of n o n m o n o c h r o m a t i c signals m a y also be 
used. 

3. Nonapproximability of near fields 
3.1 Incompleteness of a system of near fields ^ 
A complete system of currents on the special line C forms 
an incomplete system of fields no t only at infinity bu t also 
on any con tour Z su r round ing C. 

There is a function W(c r ) u where a is the coord ina te on 
the con tour Z, such tha t (u, = 0, where u(a) is the field 
generated on Z by the line C, and the scalar p roduc t is 
determined as in E q n (2.1) bu t the integrat ion is carried out 
over a ra ther t han over cp. Thus , any function U(G) given on 
Z can be approx ima ted by the fields U(G) to within a 
precision no t exceeding tha t defined by the inequali ty 

[{U-u, U-u)]l/2^\(U, W)\ , (3.1) 

which is ana logous to expression (2.2). In inequali ty (3.1) 
the fields U(G) are no t normal ised, and (W, W) = 1. If the 
con tour extends to infinity W(a) mus t be replaced by 
F* (cp) exp (ikr)/y/kr. 

To find the function W(a) we shall construct outs ide Z a 
solut ion of the wave equat ion which satisfies the rad ia t ion 
condi t ion and which takes the same value on Z as the field 
u[r, cp) whose zero line is C. W e shall denote as w(r, cp) a 
field equal to u{r, cp) within Z and equal to this solution 
outs ide it. The only singularity of the field w(r, cp) is a 
discont inui ty of its n o r m a l derivative on Z, which we shall 
call W*(CJ). Green ' s formula is then applied over the whole 
surface to the fields u{r, cp) and w(r, cp). Bo th these fields 
satisfy the rad ia t ion condi t ion, so tha t their integral to 
infinity falls out , and two integrals are equal: tha t of the 
p roduc t of j(s) by w(r, cp) on C and tha t of the p roduc t of 
W*(CJ) by U(G) on Z. The former is equal to zero according 
to E q n (2.4), and this is a p r o o f of the basic formula 
(u, W) = 0. 

N o t only u(a) bu t also dn/dN form an incomplete 
system of functions on Z. To p rove this s ta tement we 
must construct the field w(r, cp) outs ide Z no t by the 
Dirichlet condi t ion on Z bu t by the N e u m a n n condi t ion 
( thus ensuring the cont inui ty of the n o r m a l derivative), and 
again apply G r e e n ' s formula over the whole surface. 

3.2 The c o n t o u r ^ and the singularities of the field uir^ip) 
The function W(a) is smoother than the function F(cp) 
cor responding to the same field u(r, cp). If Z denotes the 
ne ighbourhood (a = cp), the Four ie r coefficients of the 
function W(cp) decrease m o r e slowly with increasing 
number t han those of the function F(cp), and if smooth 
functions F(cp) and U(cp) are given we must have 
\{F, F)\ > \{U, W)\. C o m p a r i s o n of inequalit ies (2.2) and 
(3.1) shows tha t the nonapprox imabi l i ty decreases with the 
distance from the line on which the current is dis tr ibuted. It 
can vanish entirely at infinity, as in the case of resonant 
rectangles and triangles, when F(cp) becomes n o n n o r m a l i s -
able (and there is no nonapprox imabi l i ty ) whereas W(a), as 
can easily be verified, remains normal isable , so tha t the 
nonapprox imabi l i ty persists on any con tour I at a finite 
distance. 

A m o r e significant s i tuat ion is found when C is the zero 
line of the field u(r, cp), which has no singularities in a finite 

region only. W e shall apply the n a m e special and the 
symbol C also to these fields. On any con tour Z lying 
in this region the system of fields is incomplete . If the 
con tour Z widens, and even a single singular poin t of the 
field u(r, cp) falls within it, the system of fields on Z becomes 
complete (unless C is also the zero line of ano ther field with 
a greater degree of analyticity). U n d e r these condi t ions 
increasing the distance from Z to C no t only decreases the 
defect of the system of fields generated by currents on C (i.e. 
their lack of completeness) bu t eliminates it completely. 

The arc of a non re sonan t circle is an example of such a 
line. N o field u[r, cp) can be equal to zero in this region, and 
no field wi thout singularities within the region can exist. If 
u(r, cp) is zero on the arc of the circle it mus t be zero over 
the whole of the circle, because bo th the zero line and the 
circle are analyt ic curves, and two such curves having a 
c o m m o n arc must coincide. However , a field equal to zero 
on a nonresonan t circle must have some singularities within 
it. It can easily be shown tha t the centre of the circle is a 
singular poin t . Cur ren t s on the arc of a non re sonan t circle 
give rise to an incomplete system of fields on any con tour 
tha t does no t include the centre of the circle; a complete 
system of fields is obta ined when the centre falls within the 
contour . 

3.3 Regeneration of the wave field from its zero line 
Thus , the approx ima t ion p rob lem gives rise to the following 
p rob lem in the theory of the analyt ic proper t ies of wave 
fields: we must establish whether a given line is the zero line 
of some field and if it is (i.e. if the line is special) we mus t 
find this field and in par t icular the region in which it has 
no singularities. 

In any case, a line can be special only if it consists of 
arcs of analytic curves, and at the b reak poin t the angle 
between them must be a ra t iona l fraction of n. The closed 
special line should be a resonant con tour . However , these 
two condi t ions are no t sufficient. 

If C coincides with the line in the coord ina te system in 
which E q n (1.1) divides into b ranches , the field u(r, cp) 
which satisfies condi t ion (2.4) can easily be constructed in 
an explicit form. F o r example, if C is an arc of the 
b o u n d a r y , we can equate u(r, cp) to Jv(kr)cosvcp or 
Nv(kr) cos vcp, and find the index v from the equat ion 
Jv(ka) = 0 or Nv(ka) = 0, where a is the rad ius of the 
circle. A field equal to zero on ellipses or hyperbolas can be 
constructed in a similar way. 

If C is not a closed line, it can be converted in m a n y 
ways into a closed resonant contour C 0 . The p rob lem then 
becomes to define an analyt ic cont inua t ion of the eigen-
m o d e field outs ide C 0 , i.e. to construct a field which is zero 
on C0 and has the same value of the n o r m a l derivative. This 
is the Cauchy p rob lem outs ide C 0 , formulated for values of 
iTand du/dN on C 0 such tha t within C 0 this p rob lem has a 
solut ion wi thou t singularities. A n analyt ic cont inua t ion 
m a y not exist, it m a y have singularities at a finite distance 
from C0 (C0 is a curvilinear rectangle consisting of the arcs 
of two concentr ic non re sonan t circles and pa r t s of two 
radii) or at infinity ( C 0 is a rectangle), or it m a y have no 
singularities over the entire surface ( resonant circle). A 
closed line can be special only on a denumerab le set of 
frequencies, an open line can be special only on a b a n d of 
frequencies. 
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3.4 Analytic continuation of the eigenmode field 
This p rob lem has been discussed in several ma themat i ca l 
papers . F o r a given type of con tours C 0 , var ious au tho r s 
used the m e t h o d s of the analyt ic theory of the solution of 
the wave equat ion as a function of two complex variables 
x = x'-\-ix" and y = y' + iy" [6]. In the region of 
complex x and y the elliptic equat ion (1.1) (like a 
hyperbol ic equat ion) has complex characterist ics a long 
which the singular po in t s of the field can move . Special 
po in t s with real coordina tes can be t reated as ' t races ' of 
these characterist ics. 

Ano the r me thod can be constructed by the following 
scheme. Firs t we choose a non re sonan t circle with its centre 
at the origin of the coord ina te system and lying wholly 
within CQ. The field w(r, cp) on it can be expressed as the 
series u(a, cp) = J2n^n cosncp (a is the rad ius of the circle), 
where the BN are k n o w n or the field w(r, cp) is k n o w n . At all 
the (r, cp) for which the series which differs from the series, 
for u(a, cp) by the factors Jn(kr)/Jn(ka), is convergent and 
differentiable by te rms this series is the required analyt ic 
cont inua t ion , and the p rob lem reduces to establishing the 
convergence region of this series. By applying the Debye 
asymptot ic to Jn(kr) and to Jn(ka) we find tha t for any 
finite r this series converges s imultaneously with the series 
J2nBn(r/a)n. If the number 

/ = lim \BN\L/N 

n—>oo 

is not zero, its general te rm is of the order of (rl/a)n\ so 
tha t the nearest singular po in t of the analyt ic cont inua t ion 
is at a distance a/1: nearer , the greater / is, i.e. the m o r e 
slowly decreasing are the BN coefficients. On the other hand 
if the BN decrease so rapidly tha t / = 0, the analyt ic 
cont inua t ion has no singular po in ts at a finite distance. To 
establish its convergence at infinity we must use the H a n k e l 
asymptot ic . At r —> oo the series for the analyt ic con t inua­
t ion converges s imultaneously with the series J2(ao/aY> 
where 

a0 = 4 - lim (n\Bn\l/n), e = 2.7 . . . (3.2) 

(see Ref. 7, where p rob lems of this type are discussed). The 
analytic cont inua t ion has singularities at infinity (the 
pa t t e rns are approximable ) if a 0 ^ a , bu t no t if a0 < a 
(when the pa t t e rns are nonapprox imab le ) . 

The above m e t h o d s are no t p roper ly posed (or, m o r e 
strictly, they are correct only for analytic deformat ions of 
C 0 ) . This is not a defect of the me thods , bu t stems from the 
formulat ion of the special lines p rob lem used above. 
However , as will be shown in Section 4, the two assert ions 
" C is a special l i ne" and " C is close to a special l i n e " are 
from the physical po in t of view identical. In this sense the 
'c rudeness ' of the me thod of calculat ion used be low to 
construct u(r, cp) from its zero line can be interpreted as an 
advan tage of the approach . 

The m e t h o d is based on K u p r a d z e ' s me thod of sub­
sidiary sources in the var iant developed, for example, in 
Ref. [8]. The field w(r, cp) is expressed as a sum of 
cylindrical waves anH^ (kpn) (n = 1, 3, . . . , N) where 
pn is the distance from the nth source; all the sources 
are located on some b o u n d a r y Z su r round ing C. The 
ampl i tudes an are found from the requi rement tha t 
w(r, cp) mus t be zero at N po in ts on C. If no singular 
po in t s of this field are found within Z, the system of N 

h o m o g e n e o u s equa t ions for an has a nontr iv ia l solution, 
stable at N —> oo. If the line C is closed this solut ion is 
possible only at discrete resonant frequencies; the m e t h o d 
can also be applied to open C curves. 

It is easy to show tha t the function WN(G), calculated 
from Z by the equat ion 

/
 N 

W ^ = ^ $ > „ < 5 ( < 7 - 0 , (3.3) 

(where is the length of the b o u n d a r y , and on is the 
coord ina te of the nth source) plays the role of a 'discrete 
o r thogona l complement funct ion ' in the sense tha t the 
discrete o r thogona l i ty condi t ion in the form 
J2n

 u{Gn)an — 0 applies to the field u(s) induced on Z 
by arbi t rar i ly chosen poin ts on C. W e can in t roduce the 
normal ised (not conta in ing ^-functions) WN(G) function, 
equal in some sense to the limit of WN(G) at N —> oo, by 
st ipulat ing tha t its value at a = an is an. F o r N —> oo this 
function has the same significance as in Section 3.1. 

This general isat ion of the m e t h o d J 8 ] can be used to 
determine w(r, cp) and F(cp) even when C is the zero line of a 
field which has no singularities over the entire surface. In 
this case w(r, cp) mus t be expressed as a sum of p lane 
(instead of cylindrical) waves: 

2n n 

" f c (p) = — ^ a n exp [ikr cos(cp - cpn)] . (3.4) 
n=l 

If w(r, cp) is everywhere analytic, the system of equa t ions 
for an has a nontr iv ia l solut ion and is stable for N —> oo. 
W e can construct a function FN(cp) ana logous to WN{a) 
[Eqn (3.3), / z —> 27U, an —> an] and find its ' l imit ' for 
N —> oo, i.e. the function F(cp) to be normal ised, by 
imposing the condi t ion F(cp) = an at iV poin ts . This 
function has the same significance as in Section 2. 

4. Current norm 
The concept of approximabi l i ty was in t roduced into the 
theory of fields as a react ion to the incorrect formulat ion of 
the realisability p roper ty . To a physicist there is no 
difference between realisability and nonreal isabi l i ty of a 
given d iagram if realisable d iagrams as close to tha t 
d iagram as necessary can be obta ined in the latter c a s e | . 
However , even the concept of approximabi l i ty , which 
generalises the concept of realisability, is suspect from a 
physicist 's po in t of view, t hough to a smaller extent. First , 
often a small ( though finite) pe r tu rba t ion of the d iagram 
can al low it to be approx imated by a current with a small 
n o r m (1.4) ( i V « 1), and under these condi t ions it is 
u n i m p o r t a n t whether the initial d iagram was n o n a p p r o x ­
imable (N = oo) or whether it was approx imab le bu t with 
a very large n o r m N < oo bu t N 5> 1). Second, a small 
pe r tu rba t ion of a special line can m a k e it no t special, i.e. it 
can change n o n a p p r o x i m a b l e (N = oo) d iagrams into 
approx imable d iagrams, (but with N 5> \M a s i tuat ion 
almost indist inguishable from the first from the physical 
po in t of view). The concepts of o p t i m u m current synthesis 
and of region of influence of the special line, discussed in 
this section, are general isat ions of the ' approximabi l i ty ' 
and 'special l ine ' concepts and add physical reality to the 
ma themat i ca l model . 

fThe writer gratefully acknowledges the contribution of A F Chaplin, 
recently deceased, whose untiring support of these views stimulated much 
of the work in this direction. 
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4.1 Minimum current norm for a given precision of the 
approximation 
The line C and the pa t t e rn F(cp) are given; all the pa t t e rns 
discussed in the subsection are normal ised to uni ty on the 
modu lus . The p rob lem of the o p t i m u m current synthesis 
consists essentially in replacing F(cp) by the realisable 
pa t t e rn F(cp), separated from F(cp) by not m o r e t h a n a 
distance 3 and such tha t the n o r m N(3) of the current tha t 
p roduces it is the smallest of the n o r m s for all the currents 
giving rise to these pa t te rns . If even for a small 3 ( < \) the 
N{3) value becomes small, it is convenient to construct 
F(cp) ra ther t han F(q>)9 whether N(0) = oo or whether 
N(0) < oo bu t N(0) > 1. 

Of course, N(3) is no t a rising function. At small 3 
values its form depends only on whether or no t the initial 
pa t t e rn F{cp) is realisable by the line C. If F(cp) is no t 
realisable bu t is approx imab le we have N(0) = oo, bu t for 
any 3 > 0 we have N(3) < oo; the curve N(3) has a vertical 
a sympto te at 3 = 0. If C is a special line, and F(cp) is no t 
approx imable [(F, F) ^ 0], there are no realisable pa t t e rns 
in the range 0 < 3 < A; here the gap width A is given by 
formula (2.3) with (/ , F ) replaced by (F, F ) . This a p p r o x ­
imable function nearest to F(cp) (not normal ised) is 
F(cp) — (F, F)F(cp). If it is realisable, i.e. if the lower limit 
of the distance between F(cp) and F(cp) is accessible, we have 
N(A) < oo. If it is unreal isable we find tha t N(A + e) < oo, 
i.e. the curve N{3) has a vertical a sympto te 3 = A. 

F o r any line C we^ can construct a realisable pa t t e rn 
[which we shall call Fmin(cp)] for which the n o r m of the 
generat ing current is a m i n i m u m a m o n g the n o r m s of all the 
currents on C which p roduce pa t t e rns normal ised to unity. 
W h e n 3 is greater t han the distance between F{cp) and 
Fmin(<p) the op t imum current synthesis p rob lem becomes 
meaningless, N^d) no longer decreases as 3 increases, and 
the o p t i m u m F(cp) function becomes equal to Fmin(cp). 

4.2 Systems of orthogonal functions for currents and 
patterns 
W e shall n o w describe a ma themat i ca l p rocedure which 
provides a formal solution of the o p t i m u m current 
synthesis p rob lem for any line C. W e in t roduce [9] the 
two systems of functions i//m(cp) and jn(s), full and 
o r thonormal i sed respectively in the range 0 ^ cp ̂  2K 
and on C: 

0Am> = dmq > ( 4 - ! a ) 

U n , Jp) = K , (4.1b) 

such tha t each current jn(s) generates [by formula (1.3a)] a 
pa t t e rn p ropo r t i ona l to one of the functions of the system 
\//m(cp). The scalar p roduc t in Eqn (4.1b) is constructed as 
in E q n (2.1), bu t the integrat ion is t aken over s ra ther t han 
over cp. 

W e n o w write the relat ionship between the pa t t e rn and 
the current in the form F = Kj, where K is the integral 
opera tor in Eqns (1.3a) and (1.3b), and we in t roduce the 
opera tor Kc conjugate to it with respect to the scalar 
p roduc t s which cont r ibu te to E q n s (4.1), i.e. an opera tor 
which converts a pa t t e rn into a current (or, m o r e exactly, 
into a function on C ) , so tha t the identi ty 

(KCFJ) = (F,Kj) , (4.2) 

applies to any function F(cp) and j(s). The integral opera ­
tor Kc differs from E q n s (1.3a) and (1.3b) in tha t the 

integrat ion is carried out over cp instead of over s, and the 
kernel JC is replaced by its complex conjugate. 

The function i//m(cp) and jn(s) will be defined as the 
eigenfunctions of the self-conjugated opera to r s KKC and 
KCK respectively. They are associated with the eigenvalues 
fim and 2,n, nonnegat ive and tending towards zero at m —> oo 
and at n —> oo. These n u m b e r s are equal in pai rs in the sense 
tha t for every number m we find a n u m b e r n [which we shall 
call n(m)] such tha t An(m) = \im \ at the same t ime we define 
m(n) so tha t \im{n) — K- It is easy to show tha t 
Kjn(m) = VTvAmM and KC\jfm{n) = yfKjn{s). 

Lines C for which the eigenvalues include zero values 
are of special interest in our p rob lems . Therefore, we shall 
a r range the function i//m(cp) and jn(s) no t in the order of 
decreasing eigenvalues (since in tha t case the function 
cor responding to the zero eigenvalue would not have a 
n u m b e r ) bu t in the order of increasing complexity (for 
example, in the order of increasing integral of the square of 
the m o d u l u s of their derivative). 

If the line C has the p rope r ty tha t one of the n u m b e r s \im 

is equal to zero (/JL = 0), it is a special line. A n y current on 
C gives rise to pa t t e rns which do no t app rox ima te to the 
function F(cp) if (F, \jjq) ^ 0. The symmetr ic s i tuat ion can 
also be examined in this formalism: a m o n g the Xn n u m b e r s 
one is equal to zero {Xp = 0). Obviously, under these 
condi t ions a nonrad ia t ing current j(s) can exist on C, 
i.e. a current such tha t Kj = 0[j(s) = jp(s)]. This means 
tha t C is a resonant contour , as the current flowing on it at 
its e igenmode (and equal to du/dN) does no t generate a 
field outs ide C. A n y cylindrical wave arr iving from infinity 
generates a field on the resonant con tour which does no t 
app rox ima te the function J(s) if (J,jp) ^ 0. 

These two symmetry proper t ies of the lines are inde­
pendent , t hough in simple con tours of the ellipse type they 
appear at equal frequencies. Thus , for an open special line 
fiq = 0, bu t there is no nonrad ia t ing current on it and 
Xn ^ 0 for all n. If \iq = 0, bu t Xn ^ 0, it means tha t 
n(q) = oo: on this special line the ' nonrad ia t ing cur ren t ' 
j[s) changes infinitely rapidly a long C, and therefore it does 
no t generate a field. On the other hand , the resonant 
con tour {Xp = 0) formed by a nonana ly t ic line is no t 
special, and \im ^ 0 for all m. If Xp = 0 bu t \im ^ 0 we 
have m(p) = oo, and for this resonanct con tour the 
' o r thogona l complement funct ion ' F{cp) changes infinitely 
rapidly as cp is increased and is therefore o r thogona l to any 
function. 

There is a simple relat ionship between the p rocedure 
described in this section and the p rocedure based on the 
analytic proper t ies of the fields w(r, cp) and w(r, cp). If the 
kernel (1.3b) in the opera tor K is replaced by HJp(kp), 
where p is the distance from a poin t on C to any point , the 
action of this opera tor on j(s) gives the field w(r, cp) over the 
whole surface. If in the kernel (1.3b) of the opera tor Kc we 
replace r(Q) by the coord ina te of an a rb i t ra ry point , then 
the action of this opera tor on functions F(cp) gives the field 
w(r, cp) over the whole surface. The s imul taneous use of 
b o t h m e t h o d s of analysis simplifies the s tudy of the 
proper t ies of b o t h functions i//m(cp) and jn(s) and the 
n u m b e r s \im, Xn, and of the fields w(r, cp) and w(r, cp). 

W e const ructed the systems i//m(cp) and jn(s) by using the 
opera tor K, which t ransla tes the current into a pa t te rn , and 
these systems are par t icular ly convenient for solving the 
p rob lem of synthesis from a given pa t t e rn . F o r p rob lems 
associated with the near field we can use the same me thod 
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to construct the systems of function on I and on C, with the 
use of an opera tor which t rans la tes the current into a field 
in the near region [10]. 

4.3 General solution of the problem of the optimum 
current synthesis 
W e shall denote the coefficients of the Four ie r expansions 
F£q>) and F(q>) into series of the function \l/m{g>) as and 
Am respectively, so tha t Am = (F, \jtm) and Am = (F, ipm). 
The n o r m of the current which p roduces the pa t t e rn F(cp) 
and the distance between F(cp) and F(<p), expressed in te rms 
of these coefficients, are 

/ ~ X 1 / 2 

N = ( X ^ l 2 ^ 1 ) ' 
\ m / 

EU - A I 

1/2 

(4.3a) 

(4.3b) 

Accord ing to E q n (4.3a) the function ^ m (<p) , cor responding 
to the m a x i m u m value of /jLm, is the pa t t e rn which we have 
called Fmin(cp). 
_ The n u m b e r s Am are given: we must find the n u m b e r s 

Am which minimise the functional N [Eqn (4.3a)] for a given 
un i t a ry n o r m of F(q>) and a given distance 3. Reduc ing this 
p rob lem from a search for a nomina l ex t remum by 
Lagrange ' s me thod to a search for an uncond i t iona l 
ex t remum of some m o r e complex functional gives 

(4.4) 

where a and $ are real cons tan ts depending on all the Am 

and on 3. They mus t be found by in t roducing E q n (4.4) 
into condi t ion (4.3b) and into the normal i sa t ion condi t ion. 

Replac ing F(q>) by F(q>) changes [according 
to E q n (4.4)] all the Four ie r coefficients: the coefficient 
cor responding to the greatest \im is the least affected, and 
the coefficients with small values of \im are the mos t 
affected, especially the higher termsjDf the series. If C is 
a special line, i.e. if \iq = 0, we have Aq = 0, as must be the 
case for a realis-able F(q>) pa t t e rn . F o r 3 < A [Eqn (2.3)] 
there is no solution with a finite current n o r m and, for 
3 = A, F(cp) differs from F(cp) only by the absence of the 
term Aq\jjq(cp) and by a p ropo r t i ona l change in the other 
Four ie r coefficients. 

The p rob lem of the o p t i m u m current synthesis can be 
solved by another me thod [11], expressing N, condi t ion 
(4.3b), and the normal is ing condi t ion directly as quadra t i c 
functionals of the current which p roduces the required 
pa t t e rn [N2 = (j, j)^ etc.]. The Lagrange me thod gives the 
Euler equat ion for j(s): 

j + lxKcKj + l2(KcKj - KCF) = 0 , (4.5) 

where lx and l2 are the Lagrange multipliers. They mus t be 
found by solving E q n (4.5) s imultaneously with condi t ion 
(4.3b) and the normal i sa t ion condi t ion. Eqn (4.5) can be 
solved as a series expansion of j(s) in te rms of jn(s), which 
leads to the initial formula (4.4), or by var ious other 
me thods . In this var iant the in t roduct ion of Kc and KCK 
into the theory of ope ra to r s is qui te simple. Euler equa t ions 
of the type of E q n (4.5) can be obta ined also for current 
n o r m s m o r e complex than Eqn (1.4), conta in ing the 
integral with respect to | d j / d s | 2 . 

These me thods , based on formulas (4.4) and (4.3a), were 
used [1] to calculate N(3) for several functions F(q>) and for 
lines C in the form of non re sonan t {ka = 1 ) and resonant 
(ka = 3.83) circles and in the form of a r c s^For this type of 
resonant circle and for its arcs we have F(cp) = cos cp. 

As could have been expected, for ka = 1, N(3) 
decreases m o r e rapidly with 3 the wider the pa t t e rn . F o r 
example, in a I I - shaped (i.e. nonreal isable) pa t t e rn 
[N(0) = oo] of width 2y = 3.0 rad , Af2 = 2.1 even for 
32 = 0.1, and a na r rower pa t t e rn of width 2y = 2 can 
be approached only to within approximate ly 32 = 0.3 
wi thout large currents (N2 < 2). The same is t rue of the 
Gauss ian pa t t e rn F(q>) w exp(— A s in 2 cp/2). A l though it is 
realisable by currents on the ka = 1 b o u n d a r y only when 
A < 2, and nar rower pa t t e rns with A > 2 are nonreal isable , 
even at 32 = 0.1 the difference between the N2 values for 
these pa t t e rns [A = 1.51, N(0) < oo and A = 2.2, 
N(0) = oo] practical ly d isappears . Even for a very n a r r o w 
pa t t e rn [A = 5.67, N(0) = oo] a pa t t e rn differing from it 
by 32 = 0.1 can be generated by modera te ly large currents . 
The N(3) curves for the arc of the circle have the same 
character as the curves for the whole circle. The current 
n o r m needed to approx ima te any pa t t e rn to within a given 
(finite) accuracy is, of course, greater for the arc t han the 
circle. 

In the case of a special line, i.e. for a resonant circle or 
for its arc, we find a m o r e complicated state of affairs. The 
N(3) curves for the I I - shaped pa t t e rn have vertical 
asympto tes 3 = A, and the quan t i ty A, depending on 
the p roduc t (F, F ) , decreases nonmono ton ica l ly with the 
width of the pa t te rn . F o r example, A = 0.51, 0.72, and 0.69 
for y = 0.5, 1.0, and 1.5 respectively (for the whole circle). 
As the pa t t e rn is widened from y = 0.5 to y = 1.0 the gap 
becomes wider, i.e. the vertical a sympto te is shifted t owards 
larger 3 values. Al though , generally speaking, the wider the 
pa t t e rn the m o r e rapidly N decreases with increase in 3 (for 
3 > A), this shift of the asympto te makes it possible for the 
na r rower pa t t e rn to be approached to within a given 
distance 3 with a lower current t han the wider pa t t e rn . 

If C is no t a special line the N(3) curves have the same 
asympto te 3 = 0 for all the I I - shaped pa t te rns . However , if 
the curve C is geometrically close to the resonanct circle or 
to its arc the inversion of the dis t r ibut ion of the N(3) curves 
for different y is re tained, at least up to modera te ly large 3 
values. In general, fields created by a line close to C have 
some proper t ies close to those of fields created by C. 

Other formula t ions of the op t imum current synthesis 
p rob lem are possible. F o r example, we m a y st ipulate a 
m a x i m u m concent ra t ion of the energy in a given solid 
angle [12] ra ther t han closeness of the result ing pa t t e rn to 
the given pa t t e rn . If the i r radia t ion takes place not in free 
space bu t in a waveguide, the cor responding requi rement is 
the maximisa t ion of the energy in a given group of waves in 
the waveguide (for a fixed dis t r ibut ion of the current) . In 
the latter form of the p rob lem we can use as a basis the 
eigenfunctions of an opera tor [13, 14] ana logous to the 
opera tor K. 

4.4 Region of influence of the special line 
The smallest \im cor responding to the line C can be used as 
a characterist ic of the nearness of the line C to any special 
line C, since the zero eigenvalue \iq exists for C. However , 
the use of the systems i//m(cp) and jn(s) is justified only in 
theoret ical a rguments , because in applied p rob lems finding 
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the functions \jim((p) and the n u m b e r s \im for a given line C 
requires cumbersome calculat ions. It is easier to use any 
simple o r thonormal i sed system of functions XmM ( f ° r 

example, t r igonometr ic functions) no t associated with the 
line C. In order to evaluate by this me thod the influence of 
the nearness of C to a special line wi thout solving the 
integral equat ion for j(s) we use the following inequali ty 
for the n o r m of the current giving rise to the F(q>) pa t t e rn : 

(Kc$, Kc$) 
(4.6) 

This can easily be obta ined by mult iplying the equat ion 
Kj = F by $(q>)9 with the use of definition (4.2) of the 
conjugated opera tor Kc and the Cauchy inequali ty 
( / i , / i ) X ( / 2 , / 2 ) > | ( / i , / 2 ) | 2 . In inequali ty (4.6) <P(cp) is 
any function. Wri t ing it in the form 

M 

0 M = ^2Cmlm{(p) , 

Y,Y,^mCnC"m) ,(4.7) 

converts inequali ty (4.6) into 

n 2 > i Z ) Z > » a - c » c » 

where An are the coefficients of the expansion of F(q>) in a 
series of xn(<p), and pnm = (Kcxn,Kcxm). 

By appropr i a t e choice of the functions $((p), i.e. of the 
coefficients Cn (n = 1, 2, . . . , M ), we can maximise the 
r ight -hand side of inequali ty (4.7). As is well known , the 
m a x i m u m of this rat io of two quadra t i c forms, which we 
shall call X^M\ is the largest roo t of the algebraic equat ion 
of the M t h order 

det ^m^n A Pi = 0 (4.8) 

Inequal i ty (4.6) means tha t N2^X^M\ As M increases, 
X^M> also increases (or, at least, does not decrease), and 
this inequali ty becomes m o r e informative, i.e. it gives a 
m o r e precise est imate of N2. A n impor t an t p rope r ty of the 
inequali ty is tha t , as can easily be shown, it becomes an 
equali ty for M —> oo. The quan t i ty X ^ characterises the 
n o r m of the current which mus t be distr ibuted on C in 
order to approx ima te the F(cp) pa t t e rn . 

If the system XmM cor responds to i//m((p) we have 
finm = \imbnm9 and if \i = 0, i.e. if the line C is a special 
line, E q n (4.8) has the roo t X{M) = oo (if Aq ^ 0). This 
simply means tha t a pa t t e rn whose Four ie r series conta ins 
i//q(<p) is nonapprox imab le . The region su r round ing the 
special line within which its influence is detectable (i.e. 
N is no t large) depends on the complexity of the F(q>) 
pat te rn , or, m o r e precisely, on the relative values of its 
higher Four ie r coefficients. If M is the number of the 
highest significant coefficient, i.e. of the term after which 
the series can be t runca ted with only a slight pe r tu rba t ion to 
F(cp)9 the characterist ic of this region is the n u m b e r X^M\ 

W e can determine a n o r m N independent of the 
par t icular form of the function F(cp) and dependent only 
on this number M. E q n (4.8) has the roo t X ^ = oo if the 
condi t ion det \ finm\M = 0 is satisfied. Of course, for M —> oo 
the condi t ion is satisfied for any line C, which simply means 
tha t l a rgecu r ren t sa reneeded top roduceve rycomplexpa t t e rns . 
However , if when M is increased this de te rminant becomes 
small for modera te ly large values of M , and its calculat ion 
remains stable, the line C is close to some special line. 

A characterist ic for N somewhat m o r e precise t han the 
value of det \ finm\M , also depending only on M and no t on 
the function F(cp)9 can be obta ined if inequali ty (4.6) is 
supplemented by replacing F) by 0) in the n u m e r ­
ator : in this case we mus t assume tha t (F, F) = 1. The 
highest value of the r igh t -hand side becomes the largest roo t 

r\M) of the M t h - o r d e r equat ion 

det r(M) 
P. 0 . (4.9) 

F o r large the M t h - o r d e r po lynomia l on the left-hand 
side can be t runca ted after the second leading term. The 
y ( M ) value is large for any line close to C, and decreases 
m o r e slowly when M is large. The size of the region of 
influence of the special line depends on the class of the 
functions to be approx imated . The simplest characteris t ic 
of this class is the number M , and the pa rame te r s X^M\ 
d e t | / ? n m | M , and are explicitly dependent on this 
number . 

5. The electromagnetic field. The Maxwell 
equations 
5.1 Fundamental result 
F o r the scalar p rob lem it was shown tha t if a line C has 
one of the proper t ies formulated be low it also has the 
second proper ty : 

(a) All the currents dis tr ibuted on C induce on the 
closed line I su r round ing C an electromagnet ic field u to 
which any function U given on I can be approx imated with 
a precision not greater t han tha t specified by inequal -
ity (3.1). 

(b) There is a solution uof the h o m o g e n e o u s He lmhol t z 
equat ion which has no singularities within I, and such tha t 
condi t ion (2.4) is satisfied on C. 

All the theory developed above was based on this 
assert ion, whose p r o o f is e lementary and which uses 
only G r e e n ' s formula. It can be generalised to th ree-
dimensional scalar p rob lems by replacing the word ' l ine ' 
by the word 'surface' . 

The cor responding s ta tement for the three-dimensional 
vector p rob lem is the basis of the approximabi l i ty theory of 
the vector field. I ts p r o o f is also elementary, bu t G r e e n ' s 
formula is replaced by Loren tz ' s lemma. W e shall no t give 
this proof, bu t simply formulate the results. In spite of being 
ou tward ly cumbersome this formulat ion simply mi r ro r s the 
formulat ion given above for the scalar p rob lem. In the 
p a r a g r a p h following formula (5.2) the con-st ruct ion 
described after inequali ty (3.1) is repeated, bu t the solution 
of Dir ichle t ' s external p rob lem is replaced by the solution of 
the first b o u n d a r y condi t ion for Maxwel l ' s equat ions . The 
next p a r a g r a p h gives an extension of the results from near 
fields to far fields. 

If a surface C has one of the two proper t ies formulated 
below, it also has the other . 

(a) A n y current distr ibuted on C generates on the closed 
surface I su r round ing C an electric field e to which any pair 
of functions F^c r ) , F 2 (cr) given on I (where a is the 
coord ina te of the poin t on I ) can be approx imated with 
a precision no t greater t han tha t specified by the inequali ty 

^ ( | F i - eh | 2 + \E2 - eh | 2 ) da > | £ ( F ^ + F 2 ^ * ) da 

(5.1) 
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where t\ and t2 are two directions tangent ia l to Z, and the 
functions Fx(a) and F2(a) are determined on Z, indepen­
dent of the currents , and normal ised to the condi t ion tha t 
the integral obta ined by replacing EX and E2 by FX and F2, 
respectively, on the r igh t -hand side of inequali ty (5.1) is 
equal to uni ty. 

(b) There is a solution E, H of the h o m o g e n e o u s 
Maxwel l equat ion which has no singularities within Z 
and s u c h j : h a t on C the two tangent ia l componen t s of 
the field E are b o t h zero: 

tang = 0 (5.2) 

The functions F\(p) and F2(G) in inequali ty (5.1) and 
the field E in E q n (5.2) are unambiguous ly related. These 
functions are equal to the difference between the values on 
Z of the tangent ia l componen t s of two magnet ic fields: the 
field H (within Z) and another field obta ined outs ide Z 
from the p rob lem of the electromagnet ic field which 
satisfies the i r radia t ion condi t ion and which has (on Z) 
the same value of the tangent ia l componen t of the electric 
field as E. But the field E within Z is equal to the field 
p roduced by the currents with componen t s , F2(a) and 
FI(<T), dis tr ibuted o n ^ 1 . 

If the field E, H having the p rope r ty (5.2) has no 
singularities in the entire space, condi t ion (5.1) can be 
applied no t only to the field e at a finite distance from 
C bu t also to the pa t te rns , and therefore a is replaced by 
(6, cp) in inequali ty (5.1); Ex(6, cp) and E2(6, cp) are the 
given pa t t e rn (i.e. its 6- and (^-components), and Fx(6, cp), 
F2(6, cp), are the angular dependences of those componen t s 
in the asymptot ic for r —> oo of the field E, which 
cor respond to a converging spherical wave. 

The existence of a field which satisfied condi t ion (5.2) 
can be proved for m a n y surfaces. The equivalence of 
condi t ions (5.2) and (5.1) means tha t these surfaces also 
display the p rope r ty of nonapproximabi l i ty . 

5.2 Trivial generalisations 
The result given in the last subsection is a reformula t ion for 
the three-dimensional vector p rob lem of one of the results 
obta ined above for the two-dimens iona l scalar model . In 
general this t r ans format ion involves only one basic 
difficulty, which we shall discuss in subsection 5.3. The 
au tomat i c na tu re of this t ranspos i t ion is wha t makes it 
nontr ivial . It means tha t similar results m a y be formulated 
for acoustic, seismic, and other fields described by linear 
equat ions . Essentially these results follow directly from the 
reciprocity theorem. They must be allowed for when the 
sources of the field are contained in a region smaller t han 
the region occupied by the field. 

W e shall give two corollaries for surfaces which satisfy 
condi t ion (5.2) and therefore also condi t ion (5.1), i.e. such 
tha t the complete system of currents on these surfaces 
generates an incomplete system of pa t te rns . 

(a) The surface of the an tenna should not be a special 
surface, or close to a special surface. W h e n applied to a 
conical ho rn this means tha t one-half of the angle of 
divergence a should no t be a roo t of E q n s (5.3a) or (5.3b): 

P n

m ( c o s a ) = 0 

d P n

m ( c o s 0 ) 
d6 

= 0 

(5.3a) 

(5.3b) 

where P™ are the associated Legendre functions, m 
(m = 0, 1, . . . ) defines the dependence of the pa t t e rn 
(^cosmcp) on the az imutha l angle cp, and n is a small 
integer. F o r m = 0 the ' forbidden ' angles are a = 55° 
(n = 2); 39°, 63° (n = 3), etc. For m = 1 we find a = 6 3 ° , 
31° (n = 3), etc. 

(b) If a surface C has a high degree of symmetry it can 
show ampl i tude nonapprox imabi l i ty for n a r r o w pa t te rns , 
when no conceivable choice of phase can m a k e it a p p r o x ­
imable by the pa t t e rns of currents dis tr ibuted on C. F o r 
example, if C consists of three mutua l ly perpendicular 
p lanes and the pa t t e rn has an ampl i tude 
exp[—A s i n 2 ( 0 ' / 2 ) ] , where the angle 0' is measured from 
a direction m a k i n g equal angles with all three lines of 
intersection of the planes, ampl i tude approximabi l i ty occurs 
only for pa t t e rns with a half-width greater t han 34°. This 
l imitat ion was found to be less intrusive t han in the 
cor responding two-dimens iona l p rob lem [see E q n (2.4)]. 

5.3 Properties of the special surfaces 
M a n y proper t ies of the special surfaces mir ror the 
cor responding proper t ies of the special lines. A closed 
special surface must be a resonant surface; the inverse does 
no t always apply. A very large con t inuum of special 
surfaces can exist. 

However , unl ike the scalar case, it is k n o w n tha t for an 
arb i t ra ry vector field E (even if real), there are no surfaces 
perpendicular to E at every point , i.e. such tha t b o t h 
condi t ions (5.2) are satisfied on them. The condi t ions for 
which these surfaces exist conta ins curlZ?. F o r fields which 
obey Maxwel l ' s equa t ions it takes the form E*H = 0. If it is 
satisfied over some volume, this is a sufficient as well as a 
necessary condi t ion for the existence of special surfaces. The 
class which includes these fields studied by K h u d a k [15], is 
relatively limited. The opposi te s i tuat ion, in which 
E'H = 0 only on some surface, is m o r e typical. H o w ­
ever, in tha t case this is only a necessary condi t ion for 
m a k i n g this a special surface. 

Therefore, the p rob lem of const ruct ing C from two 
given o r thogona l complement functions Fx(6, cp) and 
F2(6, cp) is much m o r e complex than in the scalar case. 
If these functions are given independent ly , therejwill be no 
surfaces having the p rope r ty (5.2) in the field E generated 
by them, even if E is real. F o r C to exist we require tha t the 
condi t ions (5.2) should also be satisfied on the surface for 
which E'H = 0. Only one of the functions FX, F2 can be 
fixed arbi t rar i ly [and only with some l imitat ions, similar to 
tha t st ipulated above after formula (2.6)]. This fact com­
plicates most seriously the realisat ion of one of the m e t h o d s 
of identifying the surface of a scatterer from the measured 
g raph described above. In the two var iants of this m e t h o d 
the o r thogona l supplement functions (either close to the 
pa t t e rn or o r thogona l to it) are found, and the appropr i a t e 
special lines are then constructed. U n d e r these condi t ions 
F(cp) should experience only a very slight l imitat ion, 
s t ipulat ing the reality of the field u(r, cp). In the three-
dimensional vector p rob lems the functions Fx(6, cp) and 
F2(6, cp) should be addi t ional ly related as discussed above 
so as to form an element of o r thogona l complement space, 
i.e. a pair of functions cor responding to a special surface. 

This relat ionship cannot be formulated analytically. W e 
no te tha t the same difficulty arose in an another p rob lem: 
the construct ive synthesis of resona tor an tennas [16]. This is 
typical of the easily formulated bu t basically difficult 
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ma themat i ca l p rob lems encountered in specific studies of 
high-frequency electrodynamics, associated with synthesis 
p rob lems in different formulat ions . 
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