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Abstract. The relationship between the geometric proper-
ties of a surface and the properties of the electromagnetic
field generated by a current arbitrarily distributed on the
surface is discussed. There is a continual cardinality of
surfaces for which this field cannot even approximately
describe any randomly chosen pattern or any field in the
near region. Study of these surfaces is based on the fact
that they are zero surfaces of some auxiliary electromag-
netic field which obeys the Maxwell equation. The mere
proximity of the surface to any surface having these
properties gives rise to nontrivial properties in the fields
generated by the currents induced on the surface.

1. Introduction

1.1 Introductory comments
We shall review the properties of the electromagnetic fields
generated by currents distributed on some special surfaces,
i.e. induced on some metallic bodies.

In the case of some simple surfaces these properties of
the fields are obvious; it has been found that ‘very many’
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surfaces display them. The essence of these properties is that
any complete system of currents on the surface generates an
incomplete system of fields, and in particular an incomplete
system of patterns. Therefore ‘very many’ fields cannot be
described even approximately by these fields: more pre-
cisely, all the fields which fail to satisfy a given condition.
Many nontrivial physical corollaries follow from this
statement.

In Sections 1-4 the two-dimensional scalar fields
generated by current distributed on lines will be dis-
cussed. In this model all the formulations and the
mathematical apparatus are simpler, and the main results
can be transferred to three-dimensional vector fields almost
automatically (see, especially Section 5.1), with only one
exception (Section 5.3). In this review the discussion will be
confined to electric currents and to monochromatic fields
[~exp(iwt)]. Some of the results have recently been
published [1, 2].

Let us examine the relationship between the field u(r, @)
and the line C on which the currents which generate this
field are distributed. The field u(r, @) satisfies the homoge-
neous wave equation

Viu+k*u =0 (1.1
(k = ®/c), the Sommerfeld radiation condition
exp(—ikr) .
ur. ¢) - 2 i) (1.2)

Vkr

where f(¢@) is a pattern, and the condition that the field
itself is continuous on C but its normal derivative Ou/ON
has a discontinuity equal to the given current j(s) (where s
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is the coordinate along C). The f(@) pattern is obtained
from j(s) by the integral transformation

ﬂ@=:LK@¢M®dL

K(s, @) = exp[—ikr(0) cos(¢ —0)] ,

(1.3a)
(1.3b)

where r = r(6) is the equation of the line C, and 6 = 0(s).
An unimportant factor has been omitted in Eqn (1.3b): in
similar circumstances the omission will not be pointed out
again in the discussion to follow.

If f(p) is given, Eqn (1.3a) is a known integral equation
of the first kind for j(s); by definition it has a solution if the
current norm

N=(mehgm

is finite (N < 00). The patterns generated by any type of
current in C will be called patterns generated by the line C.

In most of the results reported below N < oo is not a
necessary condition. The current can have singularities
which make [j(s)]* not integrable: we only require the
existence of the integral on the Ileft-hand side of
Eqn (2.6) (see below), and for this it is sufficient for
the current itself to be integrable. The condition is satisfied
also for the current near the edge of a half-plane (for any
polarisation), and for j(s) = d(s — sg), i.e. in the approx-
imation often used in the theory of antenna arrays. We shall
use the condition N < oo in order to simplify the treatment
(especially in Section 4).

(1.4)

1.2 Realisability, approximability, amplitude
approximability

The following relationships between the patterns generated
by the line C and any function F(¢) are possible:

(a) Realisability. A current which generates the
pattern of F(¢) exists. Eqn (1.3a) has a solution if f(¢p)
is replaced by F(g).

(b) Approximability. For any 6 >0 there is a
current such that the distance (in root-mean-square
metrics) between the pattern generated by that current
and F(¢) is not greater than J:

(fIF(q)) — )| dq))l/z <45, (1.5)

(c) Amplitude approximability. There exists a
real function Y(¢) (the ‘phase’) such that the function
F(p) exp[—iy(@)] is approximable

(d) Amplitude nonapproximability. The ampli-
tudes of all the patterns generated by the line are not close
to |F(g)|-

Of course, any other metrics apart from the quadratic
can be used to determine the approximability.

The realisability depends on the analytic properties of
the F(¢) function [3], and a realisable function can be made
unrealisable (and vice-versa) by an infinitesimally small
change. The approximability is a coarser function: its
presence (or absence) in any function is shared with all
the functions close to it.

2. Nonapproximable patterns

2.1 Nonapproximability and zero lines of a wave field
The line C for which nonapproximable functions exist has
one specific property: it has a corresponding function F(¢)
which can be normalised over the range (0, 2n) and is
orthogonal to all the f(¢) patterns generated by the line C.
The orthogonality of the functions f(¢) and F(¢) means
that the product of these function (f F), equal (by
definition) to the integral

21

(ﬂﬁ)=j.ﬂmf%md¢, @.1)

0

vanishes. The normalisability condition means that the
product (F, F) is finite; we shall normalise F(¢) by using
the equation (F, F) = 1.

We know [4] that if the functions f(p) satisfy the
condition (f, F) = 0, a finite distance must exist between
them and any function F(¢@) for which (F, F) # 0:

2 ) 1/2 R
([ 1@ -0 ao) > 1m.F . 02

If (furthermore) we stipulate that both F(¢) and all the
functions f(¢@) are normalised to unity, i.e. that (F, F) = 1,
(f, f) = 1, the minimum distance between F(¢@) and f(¢)
becomes greater than the right-hand side of condition (2.2)
and equal to

4= (2—2\/1 —|(F, B )I/Q.

The lines C for which all the resulting patterns have this
property will be called special lines and designated by the
symbol C. N N

There are C lines corresponding not to a single F(¢)
function but to several such functions
F,(¢) (p =1,2,...,P). All these functions produce an
orthogonal complement in the space of the patterns. They
can be orthonormalised, (F,, F,) =0,, In this case in
formula (2.3) for the ‘gap width’ between f(¢) and F(¢)
the term |(f, F)|* must be replaced by the sum over all the p
of the squares of these products, and a corresponding
change must be made in form-ula (2.2). The necessary
and sufficient condition for the approximability of any
function F(¢) by the special line C is the equality of all the
(F, F,) products to zero. The existence of one or several
orthogonal complement functions shows that the complete
system of currents on C gives an incomplete system of
patterns.

We shall show that all the special lines are zero lines of
some wave field, and that all the zero lines of any wave field
are special lines.

We require a proof of the equivalence of the condition
that all the patterns created by the line C are orthogonal to
some function F(¢) to the conditions that there exists a field
u(r, @) equal to zero on C:

2.3)

u(r, )| . =0. 24

c
The field u{r, ) should obey the same homogeneous wave
equation (1.1) as the field u(r, @), and it should have no
singularities over the whole plane. At r — oo it contains [as
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in expression (1.2)], in addition to an outgoing cylindrical
wave, an incoming (‘non-Sommerfeld’) wave which is

effectively the source of the field &(r, @), so that its
asymptote at r — co becomes

~ exp (—ikr exp (ikr) =,

i, ) - 2 ) Wy )

Vkr Vkr

Here F(qo) is a function to which all the patterns generated
by currents on the line C found in condition (2.4) are
orthogonal. The function ®(¢) is unimportant in the
subsequent calculations; if, as is often the case, ilr, @) is
real we have @(¢p) = F((p)

The proof of the equivalence of the two conditions is
elementary. It is a scalar variant of Lorentz’s lemma for two
fields: the field u(r, ), generated by the current j(s) on C,
and the field ul(r, @), generated by the approaching
cylindrical wave of amplitude F*(¢). We shall apply
Green’s second formula to these fields over the entire
surface. The line C must be eliminated by a supplementary
contour (which is doubly bound if C is closed). Since both
fields obey Eqn (1.1) the formula retains only the integral
over this contour, i.e. the integral over C, and the integral to
infinity. According to (1.2) and (2.5) and to the condition
for u(r, @) on C it takes the form

[t 005 = [ o) (@)

If condition (2.4) is satisfied we have (f, 1:"\) = 0 for all
currents. And conversely, if (f, F) = 0 for all currents we
find, by applying Eqn (2.6) to any complete system of
currents on C, that the value of &{r, @) on C is orthogonal,
in the usual meaning, to the complete system of functions,
i.e. that Eqn (2.4) applies.

The inequality (2.2), i.e. the nonapproximability of
‘nearly all’ the functions, is an important property of the
line C for practical applications. It follows directly from the
property (f, F) = 0, buta direct proofofthisproperty is not
usually possible. This proof of the equivalence means that
inequality (2.2) is a consequence of the existence of some
field u{r, @) having the property (2.4) on C and often it is
possible either to demonstrate the existence of this field
(sometimes by a simple plot) or to prove that it cannot exist.

Thus, the approximability problem is related to the
analytic properties of the fields, i.e. to the solution of the
homogeneous wave equation. The special lines are the zero
lines of the fields, and the orthogonal complement functions
which characterise the degree of nonapproximability of any
function F(¢) [i.e. the right-hand side of inequality (2.2) or
expression (2.3)] contribute to the asymptotics of these
fields. This result is the starting point of the present
review. In it, the properties of the fields #(r, ) and of
their zero lines C, and also the physical consequences of the
nonapproximability phenomenon, will be examined.

(2.6)

2.2 Properties of special lines

The function F((p) and the field u(r, @) are unambiguously

interrelated. All solutions of the homogeneous wave

equation without singularities can be expressed in the form
u(r, @) = ZC,,J,,(kr)cosmp , 2.7

where only fields which are even in ¢ are considered in

order to simplify the treatment. In this case F(¢p) can be

expressed as a Fourier series with the same coefficients;
more precisely

) = ch(—i)" cosng .

Usually a function having a zero line is real. In that case C,
are also real, and F(¢) satisfies the condition F(p +m) =
F* ().

The assertion that there are ‘very many’ special lines
follows, essentially, from the existence of ‘very many’
different a{r, @) fields. In the geometric neighbourhood
of any special line we find other special lines. More exactly,
if the equation of the line C; is r = r|(¢) we can construct,
for any & > 0, a line C, with an equation r = r2((£), where
|r2(@) — ri(@)| <& and the functions Fi(¢@)and F,(¢) are
not brought closer together by shifting or rotating the
system of coordinates. Similarly, in any neighbourhood
(in mean-square metrics) of any function F] (@) we always
find another function F>(@). If two special lines with
different E((p) functions are known, we can construct a
series of C lines continuously depending on the parameter.

Any arc of a special line is a special line. A closed special
line produces a resonant contour, i.e. in its inner region we
find a nonzero solution of Eqn (1.1), which becomes zero
on the contour. As many special lines as required can be
drawn through any point on the surface.

(2.8)

2.3 Examples of special lines. ‘Forbidden’ forms of
antennas R R
The relationship between C and F(@) is of practical
interest, the field a{r, @) being only an auxiliary function.
However, in examples studied to illustrate the relationship
between C and F((p) it is convenient to set the latter field
and calculate from it (usually with a computer) C and
E(@). 1t is also relatively easy to find #(r, @) from a given
F(qo) [for example, by comparing Eqns (2.7) and (2.8)], and
hence to find C. Constructing il(r, ¢) and F(p) from a
given line C is a more difficult problem (see Section 3.3).
We shall take as our first example

u(r, ) = J,(kr)sinnp, n=12,.... (2.9)
The line C is composed of the resonant circles
r=p/k(m =1,2,..)t and 2n rays = mn/n

(m=0,1,...,2n—1); u,, is the mth root of the nth
Bessel function. To all these lines corresponds the function

ﬁ( ) . 1
@) = sinnp—.
NG

Patterns produced by a cylindrical mirror antenna as arcs
of a resonant circle corresponding to some value of the
index n cannot be approximated (with the appropriate
polarisation) by any function whose Fourier series includes
sin ng or cosng.

The fact that a function containing sinn¢@ cannot be
approximated by the patterns of currents on any of the
given straight lines can also be interpreted as a consequence
of the following obvious fact: the function sinn¢ is odd
with respect to a straight line, whereas all the patterns are
even with respect to the straight line on which their
generating currents are distributed. In general the mutual
relationship between the line and F((p) can be treated as a
generalisation of the symmetry properties of fields gener-
ated by currents on a straight line. The only nontrivial
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consequence is that these simple lines are not the only
special lines.

Two straight lines on which &{(r, @) vanishes [Eqn (2.9)]
intersect at an angle which is a rational fraction of =, i.e. it
has the form a = mt/n (t = 1,2, ..., n). On the other
hand, if the angle « between the two straight lines does
not have this form, the lines do not form a special line, and
their currents give rise to a complete system of patterns.
Contrasting these two cases has no physical significance,
since any number o/m can be approximated by a rational
fraction. The apparent paradox is eliminated by noting that
for large n the right-hand side of inequality (2.2) is small, so
that even for o = mt/n the nonapproximability almost
vanishes when n is large.

The surface of the antenna does not have to be special.
In particular, the walls of horn antennas do not need to
intersect at angles of the type of @ = mz/n with small n. We
must avoid divergence angles equal or close to [see
Section (4.4)] the angles

0 =90° (n=2); 60°, 120° (n = 3); 45° 135° (n=4) .

(2.10)

In an elliptical system of coordinates we can define the
field i in the same elementary form as in Eqn (2.9); in the
form of the product of two Mathieu functions. In this case
the special lines take the form of arcs of ellipses or
hyperbolas. The eccentricity of the ellipses will depend
on the frequency or, more strictly, on the parameter kc,
where 2¢ is the distance between the foci. For example, an
ellipse with an eccentricity of 0.91 becomes a special line for
kc = 3.86, an ellipse with an eccentricity of 0.63 for
kc = 1.73, etc. Hyperbolas are conveniently characterised
by the angle B between the asymptotes. For example, for
ke = 2.0 and kc = 6.3 the special lines will be hyperbolas
for which the angle B is equal (respectively) to 106°, 66°,
124°,99°... and 144° 116°, 146°, 118°.... These special
lines correspond to orthogonal complement functions equal
to Mathieu functions of ¢. Elliptical and hyperbolic mirrors
with appropriate eccentricities or angles f produce patterns
with which only functions orthogonal to these functions can
be approximated.

The resonance rectangle is not a special line. The field
whose zero lines are the sides of the rectangle a x b
(n*/a* +7*/b* = k?) is described over the whole surface
by the formula

i(x, y) = cos (%’C) cos(%) .

This field is produced by the interference of four
approaching plane waves, and therefore the function
F(p) contains a d-function, i.e. it is not normalisable.
Although all the patterns generated by this line satisfy the
condition (f, F = 0), as can also be shown directly from
symmetry considerations, inequality (2.2) does not follow
from this argument: there is no nonapproximability. For
the same reason two parallel straight lines do not form a
special line if the distance between them is greater than
one-half of the wavelength, nor is a special line formed by
an equilateral resonant triangle (or by several other
resonant triangles [S]) on which the field produced by
the interference of six plane waves falls to zero. We should
also note that for near fields (but not for patterns) these
resonant contours form special lines (in a slightly loose
application of the term).

2.4 Example of amplitude nonapproximability

The special line corresponding to two straight lines forming
an angle o = mz/n is the zero line of the denumerable set of
fields u(r, ) corresponding to different orthogonal
complement functions,

Fp:sinpngo\/LT_t (p=12 ...

The function F(¢) is approximable if the system of
conditions (F,F,) = 0 is satisfied. If the number of
F,(p) functions is finite (p = 1,2, ..., P) it should be
possible [by an appropriate choice of the phase Y(¢)] to
satisfy these equalities for F(¢) exp[—iy/(@)] in any function
F(¢), i.e. to ensure the amplitude approximability of the
function F(¢@). The greater P and the narrower the |F(¢)|
pattern, the more broken will this phase be, and the greater
will be the norm of the corresponding current. For P = oo
this norm may reach infinity in narrow patterns, i.e.
amplitude nonapproximability will occur.

[t can be shown that for P = oo all the (F, F) =0
equalities can be satisfied by an appropriate choice of the
phase if the 2n nonnegative functions |F(¢ — 2sa)],
|F(2sa — )|, s =0, 1, ,2n—1 have the following
property for all ¢: the greatest of them does not exceed
the sum of the others. For example, for n = 2 (i.e. when the
currents are distributed on two perpendicular straight lines)
this conditions is satisfied for the Gaussian curve of

exp [—A sin’ <§ - g)]

(with its maximum along the bisector ¢ = m/4),
amplitude approximability occurs only if A < 1.76, which
corresponds to a half-width greater than 53°. The half-
width of a similarly oriented IT-shaped pattern should be
greater than 90°. Narrower patterns cannot be made
approximable by an appropriate choice of the phase.

2.5 Determination of the shape of a body from its
scattering pattern

By measuring only the scattering pattern without a
knowledge of the illuminating field we can formulate
some conclusions on the probable shape of the scattering
body. First, we can establish the validity of the hypothesis
that “‘the shape of the body is close to that of the special
line C to which corresponds the function F((p)”. If this
hypothesis is valid we should have |(f, F)| <1 [for
(f.f) = 1] at any level of illumination. If |(f,F)| is not
small at even one level of illumination, the hypothesis is
erroneous. Second, by measuring f(p) we can evaluate the
function F(@), which is close to it, ie. such that
[(f, F)| ~ 1. The contour of the body is not close to
that of the special line corresponding to this function, F(¢).
Third, from the measured (@) pattern we can construct
F{¢) functions orthogonal to it, i.e. such that (f, F) = 0.
The contour of the body may be close to the special line
corresponding to one of these functions.

The information contributed by each of these conclu-
sions increases if several measurements are carried out for
different illuminations and different positions of the body.
Because a smoothing (integral) functional (2.1) of f(¢) is
being calculated small errors in the measured diagram
should not seriously affect the results, and, furthermore,
incorrectly formulated methods of inferring the phase f(¢)
from the measured amplitude |f(@)| may be used. The
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method can be applied also to scattering on thin screens,
which may be treated as nonclosed lines. Measurements of
the scattering of nonmonochromatic signals may also be
used.

3. Nonapproximability of near fields

3.1 Incompleteness of a system of near fields

A complete system of currents on the special line C forms
an incomplete system of fields not only at infinity but also
on any contour X surrounding C.

There is a function W (c), , where ¢ is the coordinate on
the contour X, such that (u, W) = 0, where u(0) is the field
generated on X by the line C, and the scalar product is
determined as in Eqn (2.1) but the integration is carried out
over o rather than over ¢. Thus, any function U(c) given on
X can be approximated by the fields u(g) to within a
precision not exceeding that defined by the inequality

[(U—u, U=u)]" > (U, W), 3.1

which is analogous to expression (2.2). In inequality (3.1)
the fields u(o) are not normalised, and (W, W) = 1. If the
contour extends to infinity W(a) must be replaced by
F* (¢) exp(ikr)/VEr.

To find the function W () we shall construct outside X a
solution of the wave equation which satisfies the radiation
condition and which takes the same value on 2 as the field
u(r, @) whose zero line is C. We shall denote as w(r, ¢) a
field equal to {r, ¢) within X and equal to this solution
outside it. The only singularity of the field w(r, @) is a
discontinuity of its normal derivative on Z, which we shall
call W *(0). Green’s formula is then applied over the whole
surface to the fields u(r, @) and w(r, ). Both these fields
satisfy the radiation condition, so that their integral to
infinity falls out, and two integrals are equal: that of the
product of j(s) by w(r, @) on C and that of the product of
W *(o) by u(c) on X. The former is equal to zero according
to Eqn (2.4), and this is a proof of the basic formula
(u,W) = 0.

Not only u(g) but also On/ON form an incomplete
system of functions on X. To prove this statement we
must construct the field w(r, ) outside ¥ not by the
Dirichlet condition on X but by the Neumann condition
(thus ensuring the continuity of the normal derivative), and
again apply Green’s formula over the whole surface.

3.2 The contour X" and the singularities of the field (r,¢)
The function W (o) is smoother than the function F(¢)
corresponding to the same field u(r, @). If X denotes the
neighbourhood (¢ = ¢), the Fourier coefficients of the
function W(q)) decrease more slowly with increasing
number than those of the function F(¢), and if smooth
functions F(¢) and U(p) are given we must have
|(F, F)| > |(U, W)|. Comparison of inequalities (2.2) and
(3.1) shows that the nonapproximability decreases with the
distance from the line on which the current is distributed. It
can vanish entirely at infinity, as in the case of resonant
rectangles and triangles, when F(¢) becomes nonnormalis-
able (and there is no nonapproximability) whereas W(a) as
can easily be verified, remains normalisable, so that the
nonapproximability persists on any contour X at a finite
distance. N

A more significant situation is found when C is the zero
line of the field u(r, ¢), which has no singularities in a finite

region only. We shall apply the name special and the
symbol C also to these fields. On any contour X lying
in this region the system of fields is incomplete. If the
contour X widens, and even a single singular point of the
field u(r, @) falls within it, the system of ficlds on X becomes
complete (unless C is also the zero line of another field with
a greater degree of analyticity). Under these conditions
increasing the distance from X to C not only decreases the
defect of the system of fields generated by currents on C (i.e.
their lack of completeness) but eliminates it completely.

The arc of a nonresonant circle is an example of such a
line. No field a{r, @) can be equal to zero in this region, and
no field without singularities within the region can exist. If
u(r, @) is zero on the arc of the circle it must be zero over
the whole of the circle, because both the zero line and the
circle are analytic curves, and two such curves having a
common arc must coincide. However, a field equal to zero
on a nonresonant circle must have some singularities within
it. It can easily be shown that the centre of the circle is a
singular point. Currents on the arc of a nonresonant circle
give rise to an incomplete system of fields on any contour
that does not include the centre of the circle; a complete
system of fields is obtained when the centre falls within the
contour.

3.3 Regeneration of the wave field from its zero line
Thus, the approximation problem gives rise to the following
problem in the theory of the analytic properties of wave
fields: we must establish whether a given line is the zero line
of some field and if it is (i.e. if the line is special) we must
find this field and in particular the region in which it has
no singularities.

In any case, a line can be special only if it consists of
arcs of analytic curves, and at the break point the angle
between them must be a rational fraction of w. The closed
special line should be a resonant contour. However, these
two conditions are not sufficient.

If C coincides with the line in the coordinate system in
which Eqn (1.1) divides into branches, the field u{r, )
which satisfies condition (2.4) can easily be constructed in
an explicit form. For example, if C is an arc of the
boundary, we can equate u{(r, ¢) to J,(kr)cosve or
N,(kr)cosvp, and find the index v from the equation
J,(ka) = 0 or N,(ka) = 0, where a is the radius of the
circle. A field equal to zero on ellipses or hyperbolas can be
constructed in a similar way.

If C is not a closed line, it can be converted in many
ways into a closed resonant contour Cy. The problem then
becomes to define an analytic continuation of the eigen-
mode field outside Cy, i.e. to construct a field which is zero
on Cy and has the same value of the normal derivative. This
is the Cauchy problem outside C, formulated for values of
iwand 0i/ON on C, such that within C, this problem has a
solution without singularities. An analytic continuation
may not exist, it may have singularities at a finite distance
from Cy (Cy is a curvilinear rectangle consisting of the arcs
of two concentric nonresonant circles and parts of two
radii) or at infinity (C, is a rectangle), or it may have no
singularities over the entire surface (resonant circle). A
closed line can be special only on a denumerable set of
frequencies, an open line can be special only on a band of
frequencies.
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3.4 Analytic continuation of the eigenmode field

This problem has been discussed in several mathematical
papers. For a given type of contours C,, various authors
used the methods of the analytic theory of the solution of
the wave equation as a function of two complex variables
x =x'+ix” and y =y +iy” [6]. In the region of
complex x and y the elliptic equation (1.1) (like a
hyperbolic equation) has complex characteristics along
which the singular points of the field can move. Special
points with real coordinates can be treated as ‘traces’ of
these characteristics.

Another method can be constructed by the following
scheme. First we choose a nonresonant circle with its centre
at the origin of the coordinate system and lying wholly
within Cy. The field a{r, ) on it can be expressed as the
series i{a, @) = >, B, cosng (a is the radius of the circle),
where the B, are known or the field &{r, ¢) is known. At all
the (r, @) for which the series which differs from the series,
for ila, @) by the factors J,(kr)/J,(ka), is convergent and
differentiable by terms this series is the required analytic
continuation, and the problem reduces to establishing the
convergence region of this series. By applying the Debye
asymptotic to J,(kr) and to J,(ka) we find that for any
finite r this series converges simultaneously with the series
> Bu(r/a)". If the number

I = lim |B,|'/"
n—oo

is not zero, its general term is of the order of (rl/a)", so
that the nearest singular point of the analytic continuation
is at a distance a/l: nearer, the greater [ is, i.e. the more
slowly decreasing are the B, coefficients. On the other hand
if the B, decrease so rapidly that /[ = 0, the analytic
continuation has no singular points at a finite distance. To
establish its convergence at infinity we must use the Hankel
asymptotic. At r — oo the series for the analytic continua-
tion converges simultaneously with the series > (ag/a)",
where

e=27...

ap = ik lim (n[B,|'/"), (3.2)

€K n—oo
(see Ref. 7, where problems of this type are discussed). The
analytic continuation has singularities at infinity (the
patterns are approximable) if gy = a, but not if gy <a
(when the patterns are nonapproximable).

The above methods are not properly posed (or, more
strictly, they are correct only for analytic deformations of
Cy). This is not a defect of the methods, but stems from the
formulation of the special lines problem used above.
However, as will be shown in Section 4, the two assertions
““C is a special line” and ‘°C is close to a special line’” are
from the physical point of view identical. In this sense the
‘crudeness’ of the method of calculation used below to
construct u(r, @) from its zero line can be interpreted as an
advantage of the approach.

The method is based on Kupradze’s method of sub-
sidiary sources in the variant developed, for example, in
Ref. [8] The field u(r, @) is expressed as a sum of
cylindrical waves anHO(2)(kpn) (n=1,3,...,N) where
p, is the distance from the nth source; all the sources
are located on some boundary X surrounding C. The
amplitudes a, are found from the requirement that
u(r, ) must be zero at N points on C. If no singular
points of this field are found within X, the system of N

homogeneous equations for a, has a nontrivial solution,
stable at N — oo. If the line C is closed this solution is
possible only at discrete resonant frequencies; the method
can also be applied to open C curves.

It is easy to show that the function Wy(o), calculated
from X by the equation

~ Is &
Wi(o) = % > abd(o~0,) .

(where [y is the length of the boundary, and o, is the
coordinate of the nth source) plays the role of a ‘discrete
orthogonal complement function’ in the sense that the
discrete  orthogonality  condition in the form
>, u(o,)a, = 0 applies to the field u(s) induced on X
by arbitrarily chosen points on C. We can introduce the
normalised (not containing 5—functi025) Wy(o) function,
equal in some sense to the limit of Wy (o) at N — oo, by
stipulating that its value at ¢ = g, is a,. For N — oo this
function has the same significance as in Section 3.1.

This generalisation of the method [8] can be used to
determine u(r, ) and F(¢) even when C is the zero line of a
field which has no singularities over the entire surface. In
this case u(r, @) must be expressed as a sum of plane
(instead of cylindrical) waves:

N
ilr, @) = %t Za” exp [ikr cos(p — (Pn)] .
n=I1

(3.3)

3.4

If u(r, @) is everywhere analytic, the system of equations
for a, has a nontrivial solution_and is stable for N — oo.
We can construct a function Fy(¢@) analogous to Wy(o)
[Eqn (3.3), Iy —2m, 06, —0,] and find its ‘limit’ for
N — oo, ie. the function F(@) to be normalised, by
imposing the condition F(¢) = a, at N points. This
function has the same significance as in Section 2.

4. Current norm

The concept of approximability was introduced into the
theory of fields as a reaction to the incorrect formulation of
the realisability property. To a physicist there is no
difference between realisability and nonrealisability of a
given diagram if realisable diagrams as close to that
diagram as necessary can be obtained in the latter caset.
However, even the concept of approximability, which
generalises the concept of realisability, is suspect from a
physicist’s point of view, though to a smaller extent. First,
often a small (though finite) perturbation of the diagram
can allow it to be approximated by a current with a small
norm (1.4) (N & 1), and under these conditions it is
unimportant whether the initial diagram was nonapprox-
imable (N = oo0) or whether it was approximable but with
a very large norm N < oo but N > 1). Second, a small
perturbation of a special line can make it not special, i.e. it
can change nonapproximable (N = oo) diagrams into
approximable diagrams, (but with N > 1M a situation
almost indistinguishable from the first from the physical
point of view). The concepts of optimum current synthesis
and of region of influence of the special line, discussed in
this section, are generalisations of the ‘approximability’
and ‘special line’ concepts and add physical reality to the
mathematical model.

FThe writer gratefully acknowledges the contribution of A F Chaplin,
recently deceased, whose untiring support of these views stimulated much
of the work in this direction.
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4.1 Minimum current norm for a given precision of the
approximation

The line C and the pattern F(¢@) are given; all the patterns
discussed in the subsection are normalised to unity on the
modulus. The problem of the optimum current synthesis
consists essentially in replacing F(¢) by the realisable
pattern F(¢), separated from F(@) by not more than a
distance § and such that the norm N(J) of the current that
produces it is the smallest of the norms for all the currents
giving rise to these patterns. If even for a small 6 ( < %) the
N(0) value becomes small, it is convenient to construct
F(p) rather than F(¢), whether N(0) = oo or whether
N(0) < oo but N(0) > 1.

Of course, N(d) is not a rising function. At small §
values its form depends only on whether or not the initial
pattern F(¢) is realisable by the line C. If F(¢p) is not
realisable but is approximable we have N(0) = oo, but for
any 6 > 0 we have N(d) < oo; the curve N() has a vertical
asymptote at 6 = 0, If C is a special line, and F(¢) is not
approximable [(F, F) # 0], there are no realisable patterns
in the range 0 < d < 4; here the gap width 4 is given by
formula (2.3) with (f, F) replaced by (F, F) This approx-
imable function nearest to F(p) (not normalised) is
F(@) — (F, F)Fo). If it is realisable, i.e. if the lower limit
of the distance between F(¢p) and F(¢) is accessible, we have
N(4) < oco. If it is unrealisable we find that N(4 + ¢) < oo,
i.e. the curve N(d) has a vertical asymptote 6 = 4.

For any line C we can construct a realisable pattern
[which we shall call me(go)] for which the norm of the
generating current is a minimum among the norms of all the
currents on C which produce patterns normalised to unity.
When ¢ is greater than the distance between F(¢) and
Foin (@) the optimum current synthesis problem becomes
meaningless, N(J) no longer decreases as d increases, and
the optimum F(¢) function becomes equal to Fy, ().

4.2 Systems of orthogonal functions for currents and
patterns

We shall now describe a mathematical procedure which
provides a formal solution of the optimum current
synthesis problem for any line C. We introduce [9] the
two systems of functions V¥,(¢) and j,(s), full and
orthonormalised respectively in the range 0< ¢ <2n
and on C:

(‘//m s Wq) = 5mq s
(jn > /p) = 5np s

(4.1a)
(4.1b)

such that each current j,(s) generates [by formula (1.3a)] a
pattern proportional to one of the functions of the system
V,.(®). The scalar product in Eqn (4.1b) is constructed as
in Eqn (2.1), but the integration is taken over s rather than
over @.

We now write the relationship between the pattern and
the current in the form F = K;, where K is the integral
operator in Eqns (1.3a) and (1.3b), and we introduce the
operator K€ conjugate to it with respect to the scalar
products which contribute to Eqns (4.1), i.e. an operator
which converts a pattern into a current (or, more exactly,

into a function on C), so that the identity
(K°F.j) = (F. Kj) . 4.2)

applies to any function F(¢@) and j(s). The integral opera-
tor K€ differs from Eqns (1.32) and (1.3b) in that the

integration is carried out over ¢ instead of over s, and the
kernel K is replaced by its complex conjugate.

The function ¥,,(¢) and j,(s) will be defined as the
eigenfunctions of the self-conjugated operators KK € and
KK respectively. They are associated with the eigenvalues
U, and 4,, nonnegative and tending towards zero at m — oo
and at n — oco. These numbers are equal in pairs in the sense
that for every number m we find a number n [which we shall
call n(m)] such that 4, = u,; at the same time we define
m(n) so that ) = 4, It is easy to show that
K/n(m) ‘\/m‘pm((p) and K ‘pm(n) - \/—/n( )

Lines C for which the eigenvalues include zero values
are of special interest in our problems. Therefore, we shall
arrange the function ¥,,(¢) and j,(s) not in the order of
decreasing eigenvalues (since in that case the function
corresponding to the zero eigenvalue would not have a
number) but in the order of increasing complexity (for
example, in the order of increasing integral of the square of
the modulus of their derivative).

[f the line C has the property that one of the numbers p,,
is equal to zero (uq = 0), it is a special line. Any current on
C gives rise to patterns which do not approximate to the
function F(p) if (F, y,) # 0. The symmetric situation can
also be examined in this formalism: among the 4, numbers
one is equal to zero (4, = 0). Obviously, under these
conditions a nonradiating current 1( ) can exist on C,
i.e. a current such that Kj=0](s) = j,(s)]. This means
that C is a resonant contour, as the current flowing on it at
its eigenmode (and equal to 0it/ON ) does not generate a
field outside C. Any cylindrical wave arriving from infinity
generates a field on the resonant contour which does not
approximate the function J(s) if (J, j,) # 0.

These two symmetry properties of the lines are inde-
pendent, though in simple contours of the ellipse type they
appear at equal frequencies. Thus, for an open special line
Y, = 0, but there is no nonradiating current on it and
Ay #0 for all n. If p, =0, but 4, #0, it means that
n(g) = oo: on this special line the ‘nonradiating current’

Rs) changes infinitely rapidly along C, and therefore it does

not generate a field. On the other hand, the resonant
contour (4, = 0) formed by a nonanalytic line is not
special, and pu, #0 for all m. If 4, = 0 but g, #0 we
have m(p) = oo, and for this resonanct contour the
‘orthogonal complement function’ F((p) changes infinitely
rapidly as @ is increased and is therefore orthogonal to any
function.

There is a simple relationship between the procedure
described in this section and the procedure based on the
analytic properties of the fields u(r, ¢) and u(r, ¢). lf the
kernel (1.3b) in the operator K is replaced by H( (kp),
where p is the distance from a point on C to any point, the
action of this operator on j(s) gives the field i(r, @) over the
whole surface. If in the kernel (1.3b) of the operator K€ we
replace r(6) by the coordinate of an arbitrary point, then
the action of this operator on functions F(¢) gives the field
u(r, ) over the whole surface. The simultaneous use of
both methods of analysis simplifies the study of the
properties of both functions V¥, (¢) and j,(s) and the
numbers f,,, 4,, and of the fields u(r, ) and u(r, @).

We constructed the systems ¥,,(¢) and j,(s) by using the
operator K, which translates the current into a pattern, and
these systems are particularly convenient for solving the
problem of synthesis from a given pattern. For problems
associated with the near field we can use the same method
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to construct the systems of function on X and on C, with the
use of an operator which translates the current into a field
in the near region [10].

4.3 General solution of the problem of the optimum
current synthesis

We shall denote the coefficients of the Fourier expansions
F(p) and F(g) into series of the function ¥, (¢) as A, and
A, respectively, so that A,, = (F, ¥,,) and A,, = (F, {,,).
The norm of the current which produces the pattern F(¢)
and the distance between F(¢) and F(¢), expressed in terms
of these coefficients, are

- 1/2
N = (ZlAml u,;'> ,

m

. 1/2
0= <Z|Am _Am|2> .

m

(4.3a)
(4.3b)

According to Eqn (4.3a) the function ,,(¢), corresponding
to the maximum value of p,,, is the pattern which we have
called Fmin ((P)

_ The numbers A, are given: we must find the numbers
A, which minimise the functional N [Eqn (4.3a)] for a given
unitary norm of F(¢) and a given distance 8. Reducing this
problem from a search for a nominal extremum by
Lagrange’s method to a search for an unconditional
extremum of some more complex functional gives

~ o
Am :Am—a
I+ Bu,'

where o and f§ are real constants depending on all the A,
and on 6. They must be found by introducing Eqn (4.4)
into condition (4.3b) and into the normalisation condition.

Replacing F(¢) by F(¢) changes [according
to Eqn (4.4)] all the Fourier coefficients: the coefficient
corresponding to the greatest u,, is the least affected, and
the coefficients with small values of u, are the most
affected, especially the higher terms of the series. If C is
a special line, i.e. if , = 0, we have A, = 0, as must be the
case for a realis-able F(¢) pattern. For 6 < 4 [Eqn (2.3)]
there is no solution with a finite current norm and, for
0 = 4, F(p) differs from F(¢@) only by the absence of the
term Aqqu(<p) and by a proportional change in the other
Fourier coefficients.

The problem of the optimum current synthesis can be
solved by another method [11], expressing N, condition
(4.3b), and the normalising condition directly as quadratic
functionals of the current which produces the required
pattern [N* = (J, Jj), etc.]. The Lagrange method gives the
Euler equation for j(s):

(4.4)

J+LKKj+L(KKi—K°F) =0, (4.5)
where /; and [, are the Lagrange multipliers. They must be
found by solving Eqn (4.5) simultaneously with condition
(4.3b) and the normalisation condition. Eqn (4.5) can be
solved as a series expansion of j(s) in terms of j,(s), which
leads to the initial formula (4.4), or by various other
methods. In this variant the introduction of K¢ and KK
into the theory of operators is quite simple. Euler equations
of the type of Eqn (4.5) can be obtained also for current
norms more complex than Eqn (1.4), containing the
integral with respect to |dj/ds|*.

These methods, based on formulas (4.4) and (4.3a), were
used [1]to calculate N () for several functions F(¢) and for
lines C in the form of nonresonant (ka = 1) and resonant
(ka = 3.83) circles and in the form of arcs. For this type of
resonant circle and for its arcs we have F(p) = cos .

As could have been expected, for ka = 1, N(d)
decreases more rapidly with & the wider the pattern. For
example, in a II-shaped (i.e. nonrealisable) pattern
[N(0) = oo] of width 2y = 3.0 rad, N> = 2.1 even for
8% = 0.1, and a narrower pattern of width 2y = 2 can
be approached only to within approximately & =03
without large currents (N? < 2). The same is true of the
Gaussian pattern F(¢) ~ exp(—A sin? ¢/2). Although it is
realisable by currents on the ka = 1 boundary only when
A < 2, and narrower patterns with A > 2 are nonrealisable,
even at & = 0.1 the difference between the N? values for
these patterns [A = 1.5, N(0) <oco and A =22,
N(0) = oo] practically disappears. Even for a very narrow
pattern [A = 5.67, N(0) = oo] a pattern differing from it
by 8% = 0.1 can be generated by moderately large currents.
The N(d) curves for the arc of the circle have the same
character as the curves for the whole circle. The current
norm needed to approximate any pattern to within a given
(finite) accuracy is, of course, greater for the arc than the
circle.

In the case of a special line, i.e. for a resonant circle or
for its arc, we find a more complicated state of affairs. The
N(6) curves for the Il-shaped pattern have vertical
asymptotes § = 4, and the quantity 4, depending on
the product (F, F), decreases nonmonotonically with the
width of the pattern. For example, 4 = 0.51, 0.72, and 0.69
for y = 0.5, 1.0, and 1.5 respectively (for the whole circle).
As the pattern is widened from y = 0.5 to y = 1.0 the gap
becomes wider, i.e. the vertical asymptote is shifted towards
larger 6 values. Although, generally speaking, the wider the
pattern the more rapidly N decreases with increase in ¢ (for
0 > A), this shift of the asymptote makes it possible for the
narrower pattern to be approached to within a given
distance ¢ with a lower current than the wider pattern.

If C is not a special line the N(d) curves have the same
asymptote & = O for all the IT-shaped patterns. However, if
the curve C is geometrically close to the resonanct circle or
to its arc the inversion of the distribution of the N(d) curves
for different y is retained, at least up to moderately large &
values. In general, fields created by a line close to C have
some properties close to those of fields created by C.

Other formulations of the optimum current synthesis
problem are possible. For example, we may stipulate a
maximum concentration of the energy in a given solid
angle [12] rather than closeness of the resulting pattern to
the given pattern. If the irradiation takes place not in free
space but in a waveguide, the corresponding requirement is
the maximisation of the energy in a given group of waves in
the waveguide (for a fixed distribution of the current). In
the latter form of the problem we can use as a basis the
eigenfunctions of an operator [13, 14] analogous to the
operator K.

4.4 Region of influence of the special line

The smallest u,, corresponding to the line C can be used as
a characteristic of the nearness of the line C to_any special
line C, since the zero eigenvalue p, exists for C. However,
the use of the systems ¥, (¢) and j,(s) is justified only in
theoretical arguments, because in applied problems finding
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the functions ¥,,(¢) and the numbers y,, for a given line C
requires cumbersome calculations. It is easier to use any
simple orthonormalised system of functions ¥, (@) (for
example, trigonometric functions) not associated with the
line C. In order to evaluate by this method the influence of
the nearness of C to a special line without solving the
integral equation for j(s) we use the following inequality
for the norm of the current giving rise to the F(p) pattern:

2
(@, F)]
(K@, KCP) "
This can easily be obtained by multiplying the equation
Kj = F by @(¢), with the use of definition (4.2) of the

conjugated operator K€ and the Cauchy inequality

(f1, /1) X (fas f2) = |(f1, f2)I°. In inequality (4.6) ®(g) is
any function. Writing it in the form

B(p) = Y Coutn(®) -

N2> (4.6)

converts inequality (4.6) into

-1
N?> (ZMZA,,,A:QC:,> (ZMZBWC"C;) @47

where A, are the coefficients of the expansion of F(¢) in a
Serles Of Xﬂ((p)’ and ﬁmn = (chn’ KCXIH)'

By appropriate choice of the functions @(¢), i.e. of the
coefficients C, (n = 1,2, ..., M), we can maximise the
right-hand side of inequality (4.7). As is well known, the
maximum of this ratio of two quadratic forms, which we
shall call X ™) is the largest root of the algebraic equation
of the Mth order

=0.
M

det|A,A;—Xxp (4.8)
lneq)uality (4.6) means that N2 >XM™_ As M increases,
X™) also increases (or, at least, does not decrease), and
this inequality becomes more informative, i.e. it gives a
more precise estimate of N%. An important property of the
inequality is that, as can easily be shown, it becomes an
equality for M — oco. The quantity X ™) characterises the
norm of the current which must be distributed on C in
order to approximate the F(¢) pattern.

If the system y,,(¢) corresponds to V¥, (@) we have
Bun = UnOun, and if p, = 0, i.e. if the line C is a special
line, Eqn (4.8) has the root XM = (if A, #0). This
simply means that a pattern whose Fourier series contains
qu(<p) is nonapproximable. The region surrounding the
special line within which its influence is detectable (i.e.
N is not large) depends on the complexity of the F(¢)
pattern, or, more precisely, on the relative values of its
higher Fourier coefficients. If M is the number of the
highest significant coefficient, i.e. of the term after which
the series can be truncated with only a slight perturbation to
F(¢), the characteristic of this region is the number X ),

We can determine a norm N independent of the
particular form of the function F(¢p) and dependent only
on this number M. Eqn (4.8) has the root XM = oo if the
condition det |B,,,|,; = 0 is satisfied. Of course, for M — oo
the condition is satisfied for any line C, which simply means
thatlargecurrentsareneededtoproduceverycomplexpatterns.
However, if when M is increased this determinant becomes
small for moderately large values of M, and its calculation
remains stable, the line C is close to some special line.

A characteristic for N somewhat more precise than the
value of det |B,,,|,, , also depending only on M and not on
the function F(¢), can be obtained if inequality (4.6) is
supplemented by replacing (@, F) by (®, ®) in the numer-
ator: in this case we must assume that (F, F) = 1. The
highest value of the right-hand side becomes the largest root
Y ™) of the Mth-order equation

det =0.

Sum — Y 0B 4.9)

nm

For large Y ™) the Mth-order polynomial on the left-hand
side can be truncated after the second leading term. The
Y ™) value is large for any line close to a and decreases
more slowly when M is large. The size of the region of
influence of the special line depends on the class of the
functions to be approximated. The simplest characteristic
of this class is the number M, and the parameters X(M),
det |B,,,]y, and Y ™) are explicitly dependent on this
number.

5. The electromagnetic field. The Maxwell
equations

5.1 Fundamental result

For the scalar problem it was shown that if a line C has
one of the properties formulated below it also has the
second property: N

(a) All the currents distributed on C induce on the
closed line 2 surrounding C an electromagnetic field u to
which any function U given on ¥ can be approximated with
a precision not greater than that specified by inequal-
ity (3.1).

(b) There is a solution it of the homogeneous Helmholtz
equation which has no singularities within 2, and such that
condition (2.4) is satisfied on C.

All the theory developed above was based on this
assertion, whose proof is elementary and which uses
only Green’s formula. It can be generalised to three-
dimensional scalar problems by replacing the word ‘line’
by the word ‘surface’.

The corresponding statement for the three-dimensional
vector problem is the basis of the approximability theory of
the vector field. Its proof is also elementary, but Green’s
formula is replaced by Lorentz’s lemma. We shall not give
this proof, but simply formulate the results. In spite of being
outwardly cumbersome this formulation simply mirrors the
formulation given above for the scalar problem. In the
paragraph following formula (5.2) the con-struction
described after inequality (3.1) is repeated, but the solution
of Dirichlet’s external problem is replaced by the solution of
the first boundary condition for Maxwell’s equations. The
next paragraph gives an extension of the results from near
fields to far fields.

If a surface C has one of the two properties formulated
below, it also has the other. N

(a) Any current distributed on C generates on the closed
surface X surrounding C an electric field e to which any pair
of functions E,(c), E,(g) given on X (where ¢ is the
coordinate of the point on X') can be approximated with
a precision not greater than that specified by the inequality

2
z)do>“ (E]ﬁ]*_'_Ezﬁg‘)do ,
z

J, (2 —ef+lm =,

.1
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where #; and t, are two directions tangential to X, and the
functions F,(¢) and F,(s) are determined on X, indepen-
dent of the currents, and normalised to the condition that
the integral obtained by replacing £, and E, by Fl and F2,
respectively, on the right-hand side of inequality (5.1) is
equal to unity.

(b) There is a solution E H of the homogeneous
Maxwell equation which has no singularities within 2
and such that on C the two tangential components of
the field E are both zero:

E"\tang ~= 0.
c

The functions F\(s) and F>(o) in inequality (5.1) and
the field E in Eqn (5.2) are unambiguously related. These
functions are equal to the difference between the values on
2 of the tangential components of two magnetic fields: the
field H (within %) and another field obtained outside X
from the problem of the electromagnetic field which
satisfies the irradiation condition and which has (on )
the same value of the tangential component of the electric
field as E. But the field E within X is equal to_the field
produced by the currents with components, Fz(a) and
F\ (o), distributed on X.

If the field E, H having the property (5.2) has no
singularities in the entire space, condition (5.1) can be
applied not only to the field e at a finite distance from
C but also to the patterns, and therefore ¢ is replaced by
(6, @) in inequality (5.1); E(6, @) and E,(0, @) are the
given pattern (i.e. its 8- and @-components), and F), 6, o),
F,(0, @), are the angular dependences of those components
in the asymptotic for r— oo of the field E, which
correspond to a converging spherical wave.

The existence of a field which satisfied condition (5.2)
can be proved for many surfaces. The equivalence of
conditions (5.2) and (5.1) means that these surfaces also
display the property of nonapproximability.

(5.2)

5.2 Trivial generalisations

The result given in the last subsection is a reformulation for
the three-dimensional vector problem of one of the results
obtained above for the two-dimensional scalar model. In
general this transformation involves only one basic
difficulty, which we shall discuss in subsection 5.3. The
automatic nature of this transposition is what makes it
nontrivial. It means that similar results may be formulated
for acoustic, seismic, and other fields described by linear
equations. Essentially these results follow directly from the
reciprocity theorem. They must be allowed for when the
sources of the field are contained in a region smaller than
the region occupied by the field.

We shall give two corollaries for surfaces which satisfy
condition (5.2) and therefore also condition (5.1), i.e. such
that the complete system of currents on these surfaces
generates an incomplete system of patterns.

(a) The surface of the antenna should not be a special
surface, or close to a special surface. When applied to a
conical horn this means that one-half of the angle of
divergence a should not be a root of Eqns (5.3a) or (5.3b):

P (cosa) = 0, (5.3a)
dP, (cos 6) _
—r | =0, (5.3b)

where P,' are the associated Legendre functions, m
(m =0,1,...) defines the dependence of the pattern
(~cosme@) on the azimuthal angle ¢, and n is a small
integer. For m = 0 the ‘forbidden’ angles are a = 55°
(n = 2);39° 63° (n = 3), etc. For m = 1 we find & =63°,
31° (n = 3), etc.

(b) If a surface Chasa high degree of symmetry it can
show amplitude nonapproximability for narrow patterns,
when no conceivable choice of phase can make it approx-
imable by the patterns of currents distributed on C. For
example, if C consists of three mutually perpendicular
planes and the pattern has an  amplitude
exp[—A sin’(0’/2)], where the angle 8’ is measured from
a direction making equal angles with all three lines of
intersection of the planes, amplitude approximability occurs
only for patterns with a half-width greater than 34°. This
limitation was found to be less intrusive than in the
corresponding two-dimensional problem [see Eqn (2.4)].

5.3 Properties of the special surfaces

Many properties of the special surfaces mirror the
corresponding properties of the special lines. A closed
special surface must be a resonant surface; the inverse does
not always apply. A very large continuum of special
surfaces can exist.

However, unlike th/g scalar case, it is known that for an
arbitrary vector field E (even if real), there are no surfaces
perpendicular to E at every point, i.e. such that both
conditions (5.2) are satisfied on them. The conditions for
which these surfaces exist contains curl E. For fields which
obey Maxwell’s equations it takes the form E-H = 0. Ifit is
satisfied over some volume, this is a sufficient as well as a
necessary condition for the existence of special surfaces. The
class which includes these fields studied by Khudak [15], is
relatively limited. The opposite situation, in which
E-H = 0 only on some surface, is more typical. How-
ever, in that case this is only a necessary condition for
making this a special surface. B

Therefore, the problem of constructing C from two
given orthogonal complement functions F] (0, ¢) and
F2(0 @) is much more complex than in the scalar case.
[f these functions are given independently, there will be no
surfaces having the property (5.2) in the field E generated
by them, even if E is real. For C to exist we require that the
conditions (5.2) should also be satisfied on the surface for
which E-H = 0. Only one of the functions F], F2 can be
fixed arbitrarily [and only with some limitations, similar to
that stipulated above after formula (2.6)]. This fact com-
plicates most seriously the realisation of one of the methods
of identifying the surface of a scatterer from the measured
graph described above. In the two variants of this method
the orthogonal supplement functions (either close to the
pattern or orthogonal to it) are found, and the appropriate
special lines are then constructed. Under these conditions
F(p) should experience only a very slight limitation,
stipulating the reality of the field u(r, ). In the three-
dimensional vector problems the functions F] (6, @) and
F5(6, ¢) should be additionally related as discussed above
so as to form an element of orthogonal complement space,
i.e. a pair of functions corresponding to a special surface.

This relationship cannot be formulated analytically. We
note that the same difficulty arose in an another problem:
the constructive synthesis of resonator antennas [16]. This is
typical of the easily formulated but basically difficult
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mathematical problems encountered in specific studies of
high-frequency electrodynamics, associated with synthesis
problems in different formulations.
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