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Abstract. Today scientists can create, with the aid of a  of stereo images, as well as by means of standard modern

personal computer three-dimensional (3D) representations
of objects — a specific data base, containing not only the
space coordinates and colours of all points of an object,
but also allowing it to be examined from a bird’s-eye point
of view. The data base reveals the characteristic features of
the object as a whole and allows them to be named.
Examples of 3D representations are given and the
principles of their creation and viewing are discussed.

“Frankly speaking, I don’t like to listen to
news reports on the radio... My globe is much
more convenient... [f you look closely, you will see
the details as well ...”

Margarita bent over the globe and the square
of land expanded, became infused with many
colours and turned into something like a relief
map.

Mikhail Bulgakov The M aster and M argarita

1. Introduction

With the aid of a personal computer it is now possible to
create three-dimensional (3D) representations (copies) of
objects. Such copies can then be inspected from different
points of view and different distances with the help of any
of the known methods of individual and collective viewing
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methods of 3D visualisation.

To construct a 3D computer copy one can use the
results of various physical measurements or photographs of
the object.

A personal computer allows the expert to use his deep
knowledge of 3D objects in his area of research (the mental
representation of the object, which is extremely difficult to
formalise) for interpreting the results of measurements or
for reconstructing the usual flat ‘copy’ of an object —its
photographic image (optical, electronic, x-ray, infrared).
The 2D image is in essence a greatly distorted copy,
compressed in one direction—in depth, and its recon-
struction results in the creation of a true 3D image of
an object.

The 3D object can be a set of points, lines, or surfaces in
space; lines and surfaces themselves also consist of points.
The points are coloured; in modern personal computers the
colour of a point is characterised by the intensity of red,
green, and blue colours (RGB), which for each of the
colours can take on an integer number from 0 to 255.

After a 3D object has been created in the computer, the
question arises how to examine it.

No doubt ‘glass-like’ media (such as aerogel or other
transparent substances) will soon become available for the
visualisation of 3D models, with the possibility to address
any given point of the volume and insert at this point a
colour with a unique value of the RGB palette. But flat
image carriers (paper, photographic film, flat screen) will
remain the most commonly used media and in many cases
the most convenient ones.

In some cases for the adequate perception of volume
it is sufficient to reproduce one of the standard flat images
of the 3D object. As an example one can give here the
schematic image of the Universe (in other words, the
Metagalaxy) as a set of ‘layers’ of cubes of various
colours, such that the colour of a cube is equivalent to
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the average volume density of galaxies (in a given cube), as
shown in Fig. 5. However, such a flat image cannot be used
to represent the data for the space positions of all galaxies
constituting the Universe; here we need a stereo image, such
as is shown in Fig. 6.

Nowadays the simplest way to look at a 3D computer
copy of an object is to produce stereo slides (or some other
form of stereo representation) of the copy and then use one
of the devices for individual or collective viewing of the
stereo image.

2. Stereo images and stereoscopic vision

The word ‘stereoscopic’ derives from the Greek stereo
(solid) and scopos (watcher). A stereo image or a stereo
pair consists of two images of the same subject. When the
stereo image is viewed with a stereoscope (and after some
practice without any device), the depth of image one
perceives is the same as if one viewed the real subject itself.

Any form of photographic process, subject to the laws
of refraction of light (electronic beams, x-rays, etc), creates
in the photosensitive material a severely distorted, strongly
compressed in depth ‘copy’ of a 3D object. Hence the
problem has arisen how to fix and see an undistorted copy
of a portion of the three-dimensional world. One way of
solving this problem is to use stereo images: stereo
photography, stereoscopic microphotography with scan-
ning electron microscopes, etc (holography is essentially
a variant of stereoscopy and solves the same problem: how
to see an image fixed in a photosensitive layer as the true
copy of a real object or scene [8]).

It is not difficult to produce a single stereo pair. For
example, to construct the stereo image of a transparent cone
one needs only a sheet of stiff white paper (say,
9.5cm x 7.0 cm) and draw on it two circles around a
coin, with the centres of the circles placed 6 cm apart
and 2.5 cm above the lower edge of the paper. Let us now
draw two points displaced, respectively, 1 mm to the right
and 1 mm to the left from the centres of the left and right
circles (so that the distance between these points is 5.8 cm).
Then viewing the sheet in a standard stereoscope we can see
a transparent cone: round edge of the base of the cone and
(nearer to us) the apex of the cone. If the paper used for the
stereo picture is opaque, then it must be viewed in scattered
light, penetrating through a slit into the stereoscope; to view
the stereo picture in transmitted light it must be drawn on a
transparent foil or parchment.

If, instead, we move these two points further apart so
that the distance between them is now 6.2 cm, we see a
transparent cone with the apex remote from us.

Many people can fuse a stereo pair without the use of a
stereoscope.

Let us now construct some more simple stereo pictures,
which can be viewed in a standard stereoscope. For
example, we shall see a segment inclined in depth if we
joint the apexes of the cones in the previous example in the
right and left halves of the stereo image with one of the ends
(the upper, for example ) of the vertical diameter of the
circles. A truncated pyramid can be constructed by
displacing a small square inside a large one to the left in
one half of the stereogram and to the right in the other half
of the stereogram. We perceive a rectangular box resting in
the horizontal plane if we displace the squares representing

Object A I’

Image separations differ

Figure 1. Retinal disparity.

the rear side of the box with respect to those representing
the front side. Finally, let us construct a number of
segments inclined in space in such a way that the end of
one segment coincides with the beginning of the next one. In
this way one can build broken line in space and even tie it
into a knot.

What is stereoscopic vision? If a person looks at a
small object A in front of him, we say that the observer
‘fixates the object’. The rays going from A through the lens
of the eye focus on the retina in regions A; and A, (Fig. 1).
In the observer’s mind the two images ‘fuse’ into one
percept. The angle between the ‘viewing axes’ A —A;
and A — A, (angle of convergence ) and the difference
between the positions of the images A; and A, relative to
the centres of the retinas of the left and right eyes (retinal
disparity) are the measures by which the observer judges his
distance from object A.

The rays from a second object B focus on the retina in
regions B; and B,; the angle of convergence and the retinal
disparity have different values, and the observer perceives
object B as being at a different distance than object A. Ifthe
observer perceives objects A and B as belonging to one
subject, this gives rise to a natural sensation of the depth of
this subject.

Studies of the vision of man and of animals have shown
that for the perception of depth two phenomena are
important: accommodation and vergence.

Accommodation of the eye is its ‘‘adaptation to clear
vision of subjects at various distances; with the aid of eye
muscles the shape of the lens is changed so that the image of
the subject on the retina becomes sharp” [9].

“Viewing of near objects forces the eye to accommodate
to a greater extent than is nessesary for fixating points that
are more remote. The difference in the muscular effort
required for the accommodation of the eye allows us to see
and judge the distance to various objects also by monocular
vision. However, the estimate of distance derived from
monocular vision is very imperfect and limited. When the
target is further away than 6—8 m the eye does not
accommodate any more. Therefore the ability to see and
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to evaluate accurately the distance of subjects and their
parts is based mainly on binocular vision.

“In addition to accommodation, cues to binocular depth
perception are provided by convergence movements and the
discrepancy of images on the two retinas. Convergence
movements are eye movements that bring together the
visual axes of both eyes on the fixated object. Because
the eyes are spaced some distance apart (about 60 mm),
they see the object from slightly different points of view,
which gives rise to the discrepancy of the images on the
retinas’’ [9].

However, ‘‘convergence and accommodation do not
play a main role in stereoscopic vision. This is demon-
strated by the well-known Hering experiment involving
judging the distance of a dropping ball. Through a pipe,
which hides from us the whole surrounding scene, we fixate
with both eyes some target, for example a chalk ball
suspended on a thread. The experimenter then drops
another white ball so that it passes ahead or behind the
fixated point. Since we view this binocularly, we have no
difficulty in deciding whether the ball has passed ahead of
or behind the fixated target. But the time of passage of the
ball through our field of view is less than the time required
for accommodation or vergence movements. Hence, we can
judge distance without either of these cues” [9].

One of the main factors in stereopsis is the retinal
disparity of the images received by the two eyes. ‘“‘However,
not every kind of retinal disparity entails the impression of
three-dimensionality of an object. If the disparity is too
great or if the target produces in one eye an image on the
left-hand side of the retina and in the other eye an image on
the right-hand side of the retina, then we see the target as
double. Let us take two needles and place them about 15 cm
apart, one behind the other. Let us fixate the nearer needle,
located at point ¢ (Fig. 2), then the more remote needle
(placed at point a), will be seen as double, at points a’ and
a”. If we fixate the more remote needle (again placed at
point c), the nearer needle (placed at point b) will produce
two images, at b’ and b”. As can be seen from Fig. 2, in
both cases the image of the needle that is not fixated falls on
different halves of the retinas. Conversely, if the disparity is

Figure 2. Experiment with two needles.

not too great or it is unilateral (so that the disparity points
in the retinas of both eyes are in the right-hand sides of the
retinas or their left-hand sides), then doubling of the image
is absent. Instead one gets an impression of a third
dimension, i.e. that the object is nearer or farther than
the fixed point. The degree and the direction of the
perceived distance of the object depend in this case on
the so-called binocular parallax’ [9].

The binocular parallax p of a visible point A is equal to
the angle A;AA, (see Fig. 1), and for small p (< 1)

d

==, 1
P =7 M
where d is the spacing between the pupils of the eyes and /
is the distance to point A. The relative binocular parallax

dp of two points A and B is

dl/
dp = diy s (@)

where d/is the difference between the distances to A and B.
“If the difference between the angles, made in both eyes by
fixation lines and the direction from a given (not fixated)
point through the nodal point of the eye produces an angle
in the temporal half of the retina, we see the given point as
located closer than the fixated point. If this difference gives
an angle in the nasal half of the retina, this point appears
to be further away than the fixated point™ [9].

As in the case of other senses of man (for example,
touch, hearing, etc. ), there is a threshold in stereo vision.
To distinguish the spacing of two points, the difference in
their depth must be greater than the threshold. The
threshold for binocular parallax equals 5—10 arc seconds.

This threshold defines a limiting distance, the so-called
radius of stereoscopic vision, above which the eye is no
longer capable of recognising differences in relief. Accord-
ing to formula (1), the radius of stereoscopic vision for
different people varies in the range 1-1.5 km.

3. Stereoscopes

The stereoscope appears to have been invented around
1830, before the appearance of the first ‘daguerrotypes’
(1839). “In the first stereoscopes, before the invention of
photography, only drawings of geometric bodies and
simple perspective drawings were placed’’ [10]. A descrip-
tion of the various types of stereoscopes used in the past
can be found, for example, in Ref [1].

In Russia at the beginning of this century high quality
stereophotographs were produced (in particular, for geog-
raphy and zoology textbooks), which were usually viewed
through so-called stereo lorgnettes.

Today there is a range of commercially available
stereoscopes, both in Russia and abroad. Stereoscopes
are used to view colour stereo slides, produced by
stereophotography of landscapes, cities, architectural
monuments, fairy tale toy models, models of technical
devices, etc.

Stereoscopy is also used in various fields of science (see
list of applications in Section 8§).

The stereoscope is constructed so that each eye sees only
one picture of the pair. [f these pictures correspond to what
each eye can see when viewing a real object, then the
observer has the impression of seeing a real object, extended
in depth.
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Figure 3. Wheatstone stercoscope.

by
a

Figure 4. Brewster stercoscope.

“The first stereoscope was invented by Wheatstone in
1833. It consists of two mirrors placed at right angles to
each other (Fig. 3). In front of one of the mirrors is placed a
picture of the object in a projection seen by the left eye, and
in front of the other mirror a picture of the object in a
projection seen by the right eye. The first picture, reflected
by the mirror, is visible by the left eye of the observer, the
second by the right eye. By moving the pictures in front of
the mirrors it is possible to adjust their position so that their
centres fall on the corresponding parts of the retinas in the
two eyes. In this case the unilateral disparity of the other
parts of the pictures gives the impression of relief. In the
plane A — B we then see a single, stereoscopic image of the
object.

Another stereoscope that is quite widespread is the
Brewster stereoscope (Fig. 4). Two pictures corresponding
to the projections of the object received by the left and the
right eye, are placed in ab and aff. When viewed by both
eyes through lenses P, they give a stereoscopic image in the
plane A—-B” [9].

The stereo lorgnette consists of spectacles with lenses of
approximately +6 dioptre, i.e. focal length about 16 cm,
fixed to a handle. By turning the lens mounting around the
point at which it is fixed to the handle it is possible to
change the distance between the centres of the lenses,
choosing the most convenient one for each viewer.

Still in the past century, Helmholtz designed a tele-
stereoscope for topographical and military purposes: “‘A
device for determining which distant objects are ahead of
others. Two mirrors are located in the front part of the eye
pieces...; in one line with the mirrors, to the right and to the
left of them, two further mirrors are placed that reflect the
images of the objects to the first mirrors. Each eye receives
an image of the distant object. If the ruler, at the ends of
which the more remote mirors are fixed, is 1-1.5 m long,
then it is possible to judge, for example, which hilltop, seen

alongside others, is nearer to the observer’’ [10]. In this case,
however, “‘the depth relief becomes magnified and this can
lead to a disruption of the image of subjects close to the
observer’s eyes” [10].

“It would be possible to extend the radius of our
stereoscopic vision and in general to improve sharpness
of the relief and resolution of the image by increasing the
relative binocular parallax for the points of the object that
we want to distinguish stereoscopically. According to
equation (2), by increasing the distance between pupils
d, we also increase dp. This is, in fact, what the Helmholtz
teleostereoscope does’ [9].

“With an increase of the distance B between the
objectives of the instrument, the radius [of our stereoscopic
vision] increases as the ratio of B to the distance between
the eyes d. The ratio B/d is called the relative plasticity of
the device. If the device also magnifies by a factor w, then
both the binocular parallax threshold (10 arc seconds) and
the total plasticity of the device increase by the factor w”.
Usually, in the focal plane of sterecoscopic range meters
there are “‘stereoscopic photographs of a series of vertical
landmarks located at fixed distances from the observer.
Viewing through such a range meter we have the impression
that the landmarks extend in depth, and this allows us to
estimate the distance of points in the observed landscape
from the position of the nearest calibrated landmark” [11].
At present such devices, which are now called hyperscopes,
are used for the study of perception of three-dimensional
space by man.

“The increase in the effective distance between eyes
increases the retinal disparity of images formed on the
retinas and the difference in convergence angles, when you
look from one object to another at a different distance.
Suppose you look at A through the hyperscope while B is
also in view. The new disparity of separation between the
images of the two objects on the retinas forces you to
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perceive greater depth between them. You also perceive
greater depth because the difference in convergence angles is
now greater.

“The hyperscope also alters the apparent height and
width of nearby objects. In normal vision you are
accustomed to a certain relation between the size of an
object’s image on the retina and the object’s distance as
implied by the convergence of the eyes when you look at it.
Seen through the hyperscope an object looks smaller
because the angle of convergence required to see it through
the mirrors is larger than normal.

‘“Many other familiar objects take on a strange
appearance through the hyperscope. For example, a
person’s face looks thinner and seems to have a prominent
nose. All the objects immediately return to their normal
appearance if you close one eye while still looking through
the instrument with the other one. Because you are no
longer able to compare retinal disparity or convergence
angles between the eyes, you are left with only the pictorial
cues about depth” [6].

These effects seen when real objects and scenes are
viewed in a hyperscope, can also be seen in a stereoscope,
when viewing a stereo pair taken so that the distance
between the stereocamera objectives is greater than the
distance between the eyes.

If the stereogram of an object is black-and-white or
gray-scale halftone, then to perceive the effect of volume
one can colour one half red, and the other half green and
view the resulting anaglyph through red —green spectacles.
Instead of a computer or a TV screen, one can use a white
paper screen and project onto it the red —green image. Such
a red —green anaglyph can also be printed on white paper.
In all such cases red —green spectacles are necessary.

Another way is to alternate the left (green) and right
(red) halves of a stereo pair on the screen of a computer and
look at them through red —green glasses.

One can combine the use of polarisation filters when
projecting the two halves of a stereo image with the use of
corresponding polarisation filters in spectacles. This
method makes it possible to view in full colour stereo
images of any size, ‘hanging in air’, by projecting the stereo
image on a special screen that retains polarisation in the
reflected light.

A modern device for viewing colour stereo images that
holds promise for the future incorporates liquid-crystal (LC)
stereo spectacles, controlled by a personal computer. Here,
the alternating appearance of the left and right halves of the
stereo image on the computer screen is synchronised with the
opening and closing of left and right shutters in LC stereo
spectacles (Yu V Devyatkin et al., Microcosm, Moscow).

Any spectacles (red—green, polarised, or LC) make
possible the collective viewing of stereo slides or stereo
movies.

A comparison of 3D technologies, such as holographic
stereograms, varifocal mirrors, stereo pairs, and alternat-
ing pairs for displaying cartographic data is presented in
Ref. [4].

4. Stereo postcards, integral photography,
and holography
Viewing of 3D images of objects without the use of

stereoscopes has been under consideration from the
beginning of this century. The techniques put forward

include integral photography, lens raster images, holog-
raphy, and other methods [1, 2].

From recent results one should single out the applied
work carried out at the Yaroslavl Pedagogical Institute
(G V Zhus, S V Turundaev) and the Illinois Institute of
Technology (‘phscolograms’ of Helen Sandor).

Computer holograms are being studied in the MEDIA
Laboratory of the Massachusetts Institute of Technology
(S A Benton), the Moscow Institute of Problems of Transfer
of Information (A Yaroslavskii et al), and the University of
Alabama (J Caulfield).

5. Photostereo algorithm

How does one construct a stereo image? Suppose we view a
parallepiped along its horizontal axis Oz, the parallepiped
lying in the horizontal plane Oxz, rotated around the
vertical axis Oy, and its nearest vertex coordinates are 0, 0,
0. Suppose that the image generated on the retina of each
eye is the same as in a photo camera placed at that eye.
Then the coordinates of projections of the vertex x,y,z in
the focal plane, i.e. on the retinas of the left and right eyes,
are

x—d
=F
XL 1—z/L°
. x+d
R 1—z/L
yL:yR:yI:FLs (3)
1—z/L

where L is the distacce from point 0, 0, O to the middle of
the line joining the eyes, F is the focal length of the camera,
and d is the distance between the pupils. Therefore the
stereo image of point x, y, z is a pair of points on the screen
with the coordinates (u; , v) and (ug, v)

ML:X0+R+mXL,
ug =Xg—R +mxg ,
V:yo_myla (4)

where X, Y are the coordinates of the centre of the screen,
R is the distance between the left and right halves of the
stereo pair, and m is the magnification factor.

By changing parameter R one can choose the most
comfortable conditions for viewing the image.

6. Finding the space coordinates

There is a number of physical methods for determining the
space coordinates of different objects: radar, sonar, and
lidar measurements; acoustic, x-ray, and seismic methods;
tomography, interference photography, etc.

Of particular interest is the determination of space
coordinates from a single photograph of the object, with
account taken of the expert’s knowledge of the nature of the
object, its properties, and its features.

Suppose that we can approximate an object shown in an
ordinary photograph with a known three-dimensional body
(spherical ball, parallepiped, pyramid, etc) or with a
combination of such bodies. Then by measuring the
dimensions of the projections of these bodies on the
photograph we can find the depth of the object and of
its parts. Take as an example a simple building (see, e.g.,
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Ref. [7]), whose form can be approximated by a paral-
lepiped. Let the observer view the building from the ground.
We need to measure (with a mouse, for example) the
dimensions of the projection, on the computer screen, of
the parallepiped approximating the building. For simplicity
let us assume that the distance / (of the observer from the
building) is much greater than the dimensions of the
building; then for the depth z;,z, of the side walls of
the building we obtain the equations:

l

l
Vi =Yo7 Y2 —yom-

l“rZ] ’
Hence for dy; =y; —yo and dy, =y, —yo we have

dy, 21
_ , 5
8/)92 le ( )
_ 2 6
Yo l ©

Because the parallepiped is rectangular
a _*
X1 <2

From Eqns (5§) and (6) we have

a_dn

22 dy, ’

wherefrom we can find the depth of the sides of the
building:

18 = X1X2

2
—

XXy —— 2 =

> XXy ——
dy,

dy;’
and the distance of the observer from the building:

lzzld—yl.

7. Examples

7.1a The Universe
The CfA catalogue [5] contains about 50000 galaxies
shown in Fig. 5 as a standard image of two parallepipeds,
each cut into 5 horizontal layers (layers 1-5 and 6—10 in
Table 1). Positive and negative declinations (—90 to +90
degrees) and latitudes (0 h 00 min—24 h 00 min) are
plotted along the horizontal axes of the parallepipeds,
and the velocity (Doppler red shift) or distance on the
vertical axis. The layers are divided into cubes, and the
average density of galaxies in each cube is shown as a gray
colour on a 16-grade scale.

The coordinates of the layers (in km s_l) and the total
number of galaxies in each layer are listed in Table 1.

Since the intensity of light from very distant galaxies,
measured by a device on Earth, drops below the instrument
threshold, an apparent ‘edge of the Universe’ can be seen.
The dark, curved bands seen at nearly the same declination

Figure 5. The
layers.

Universe. (a) The near S5 layers; (b) the distant 5

and lattitude in all layers, are partly due to light absorption
of lack or observations in the Milky Way.

7.1b 1/8 of the Universe (Fig. 6)
Approximately 1/8 of the Universe
stereogram of nearly 5000 galaxies, represented as
identical black points. Negative declination (0—90
degrees) is plotted along the vertical axis of the paral-
lepiped, velocity (Doppler red shift) or distance along the
horizontal axis, directed away from the observer, and
longitude (12 h 33 min — 16 h 59 min) along the second
horizontal axis of the parallepiped.

is shown as a

7.2 Screw instability plasma (Fig. 7)

This is a 3D reconstruction of one of the first photographs
of screw instability of the plasma toroid with electric
current in the external magnetic field. Such instabilities
have delayed by 30 years the design of thermonuclear
fusion reactors with magnetic field confinements.

7.3 Hot plasma in the fusion reactor model (Fig. 8)

A schematic diagram of the structure of the magnetic
surface, confining the hottest region of plasma in T-10
installation, an experimental model of a thermonuclear

Table 1.

kms™! 0 10 30 50 70 100 150 200 300 400 500 900
Layer 0 1 2 3 4 5 6 7 8 9 10 11
Number of galaxies 20951 1258 4573 5246 5044 5491 5786 3144 2859 1084 737 1510
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Figure 6. 1/8 of the Universe.

. ”..,..,.._‘

Figure 7. Screw instability of plasma.

Figure 8. Hot plasma in an experimental model of a thermonuclear fusion reactor.

fusion reactor with magnetic field confinement. It is
assumed that in a full-size thermonuclear fusion reactor
the shape of the hot plasma will be the same.

7.4 Clay (Fig. 9)
The montmorillonite swelling clay consists of many parallel
aluminium silicate lamellac about 10 A thick (with
transverse dimensions of the order of 1 pm), separated
by water layers of equal dimensions.

Each lamella consists of two layers of Si—O tetrahedra
(Si in the centre of the tetrahedron, O in its vertices)

interspersed by one or two (in different minerals) A1-O
octahedron layers (Al in the centre, O in the vertices of the
octahedon). The bottom part of the vertices lamella is
shown schematically in Fig. 9. Hydrogen bonds extend
downwards from the layer of the tetrahedra towards the
layers of water.

The approximate equality of the dimension of the
hexagonal structure (in the plane of the Si—O layer) and
the dimension of the periodic structure of ice-1 (in the plane
of the water layer, parallel to the Si—O layer) is the main
cause of the capacity of the clay to swell. The second
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Figure 9. Element of clay structure.

necessary condition for swelling is the existence in the
natural clay minerals of Mg2+ impurities (substituting
for AI**) or APPT impurities (substituting for Si**). These
impurities create a negative electric charge in the lamella,
which leads to the appearance of 1-, 2- and 3-valent
cations—Na, Ca, and Fe—in the water layer between
the lamellae.

The thickness of the water layer is governed by the
balance between the van der Waals forces, electrostatic
forces, and osmotic pressure. It depends on salt concen-
tration in water and ranges from 0 to 100 A. Alternating
layers of aluminium silicate and water form lamellar
structures up to a fraction of a micrometer thick.

7.5 Antigen — antibody contact (Fig. 10)

How does an antigen bind to an antibody? The mechanism
of their interaction has been discussed in scientific
literature for many years. In 1986 molecular structure
data for an antigen —antibody complex were published for
the first time: the antigen was the protein lysozyme (Lys),
and the antibody in this case was one of blood
immunoglobulins, named Fab.

The analysis of the set of amino acids in the area of
contact of these two macromolecules has shown that the
area of contact is a nearly flat irregular closed curve, a ‘ring’
with a diameter of 30 A and a ‘thickness’ of 5 A. The points
represent the centres of segments joining atoms of the
carbon chain of the antigen Lys to atoms of the carbon
chain of the antibody Fab, spaced not more than 6 A apart.

Thus, here the area of contact of the two macromolecules is
a line in space, not a ‘hand-and-glove’ contact (two adjacent
closely fitting surfaces) or an ‘uneven stone — plane’ (three-
point) contact.

7.6 The tobacco mosaic virus

The tobacco mosaic virus (TMV) is, historically, the first
virus that has been discovered, and one of the first viruses
whose molecular structure has been fully established. It
consists of a helical protein tube (external diameter 180 A,
internal diameter 40 A, length 3000 A) and of RNA,
wound helically over the inner surface of the tube. The
protein tube consists of 2130 identical protein molecules
(Fig. 11), stacked in a right-handed helix (49 protein
molecules per three windings of the helix) with a pitch of
23 A (Fig. 12).

In vitro, at different values of pH and ionic strength,
other aggregates occur instead of the tube: a long helical
aggregate; an aggregate with 52 rather than 49 subunits in
three turns; a protein disk with 34 subunits, or a helix with
38 subunits with a little over two turns; disks and aggregates
of disks; and mixtures of small oligomers.

The TMYV virus is, as any other virus, a purely physical
object (at least outside of the cell of the plant in which it
reproduces). From the physical point of view TMV is a
giant molecule with a definite arrangement of atoms in
space. The study of the structure of TMV, of its motion,
passage through various microscopic barriers, binding to
surfaces, degradation, etc., is a subject that belongs to

Figure 10. Line of antigen—antibody contact.

f
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Figure 11. The TMV protein.

Figure 12. Part of the helical protein tube of TMV.

conventional fields of physics. The same is true of problems
relating to the observation and diagnostics of the type and
concentration of the virus and of its filtration.

7.7 3D reconstruction of a quasicrystal specimen (Fig. 13)
The starting material for the reconstruction was the
photograph by An Pang Tsai, Akihisa Inoue, and
Tsuyoshi Masumoto (Tohoku University) from the article
by P W Stephens and A I Goldman: ‘The structure of
quasicrystals’’ [Scientific American 264 (4) (1991)].

7.8 ‘Sir Isaac Newton’ (grey-scale version) (Fig. 14)

The reconstruction is based on the portrait by Godfrey
Kneller [Scientific American 244 122 (1981)] and a
photograph of a bas-relief, presumably by J Wedgwood,

drawn from S I Vavilov’s biography of Isaac Newton
published in Moscow in 1945.

8. Reconstruction of a 3D scene from a stereo
image

So far we have discussed the construction of stereo images.
There is, however, also the inverse problem: analysis of a
digitised stereo pair leading to the reconstruction of the 3D
object or scene represented by it.

In scientific work the simplest (next to conventional
photography) method of fixing information about an object
under study is to make simultaneously two photographs
from different positions, in particular to take a stereophoto-
graph of the object.

Figure 13. 3D reconstruction of quasicrystal sample.
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Figure 14. Sterco portrait ‘Sir Isaac Newton’ (grey scale version).

This method has for a lomg time been used in various
areas of scientific research, such as:

materials science;

biology;

medical science;

fluid mechanics, particularly the study of explosion;

criminology and its applications;

architecture;

mathematics;

anthropology;

cosmology;

geography;

education.

Reconstruction of the 3D scene by stereo image analysis
is also needed for the solution of a number of applied
problems: remote determination of the relief of the Earth
(or other planets) and of the bottom of the sea, autonomous
navigation of moving robots, etc.

The main idea behind all methods used for solving this
problem consists of finding corresponding (homologous)
points on the left and right halves of the stereco image and
measuring the distance between these points to define the
local depth of the point in question.

For the solution of this task, various algorithms have
been put forward in the past decade: hierarchical Marr—
Poggio and Grimson algorithms, mutual amplification of
equal- disparity points (the Prazdny algorithm), a number
of neural net algorithms, ‘form from shadow’ and ‘form
from texture’ algorithms, and fractal algorithms.

However, the problem is very complex and at the
present time would appear to be far from solution, because
for the understanding of a scene represented in a stereo
image one needs in the computer memory an enormous
amount of information from very different fields. Without
such knowledge, analysis of an arbitrary stereo pair may be
beyond our capacity.

This does not, of course, exclude the feasibility of
creating a system of effective stereo image analysis for a
limited subject area. This can be, for example, the analysis
of relief, or the analysis of buildings or structures, belonging
to definite (a priori known) categories.

In a number of cases for the reconstruction of the 3D
structure of the object or a scene one needs only a limited
number of homologous points. In this case a compromise is
possible: the work is divided between man and computer.
The man finds (working, for example, with a ‘mouse’) a
number of important pairs of homologous points in a stereo
pair on the computer screen, reducing the whole problem to
a number of simple tasks.The remaining work is done by
the computer. Another way is to divide manually the entire
object or scene into parts and then to reconstruct the spatial
positions of points in these parts automatically with the aid
of one of the aforementioned algorithms (a similar method
has been used for the solution of the ‘traveling salesman
problem’ [12]). As an example one can quote the reconstruc-
tion of the carbon skeleton of the lisozyme molecule from
its published stereo image [3].

With a scanner it is possible to input into a computer
stereo images published in scientific periodicals and mono-
graphs (for example stereo images of various microworld
objects [13]) and then create 3D representations of these
objects.

9. Conclusions

A computer-generated three-dimensional representation of
an object is a ‘data base’ which not only contains full space
coordinates and brightnesses (or colours) of all points of an
object, but also makes it possible to look at a complex
object from a ‘bird’s-eye’ point of view, and identify some
features of the object as a whole.
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As an old Chinese proverb says, ‘‘one picture is worth
ten thousand words’’[14].

After creation in the computer of a 3D image of an
object, it is possible to rotate it, zoom in and out, change
the scale and colour, carry out different ‘filtration’ opera-
tions, and perform other transformations.

The ability to visualise invisible objects, such as
temperature fields, intensities of radioactive or neutron
radiation (in nature and in industry), etc., as three-
dimensional images holds great promise for the future.

In conclusion I would like to express my gratitude to
scientists without whose help this article could not have
appeared. Files of atomic coordinates of the Lys—Fab
complex were kindly provided by Yu P Lysov (Engelhardt
Molecular Biology Institute, Moscow), the photograph of
the plasma toroid and the results of measurements of the
3D structure of hot plasma by K A Razumova (Russian
Research Centre ‘Kurchatov Institute’, Moscow), the red-
shift catalogue with comments by V S Avedisova (Astro-
physical Institute, Moscow), and information about the
work at the Illinois Institute of Technology by A A
Filyukov (Institute of Applied Mathematics, Moscow).
To all of them I am sincerely thankful.
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