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Abstract. Soliton-like elementary excitations in bistable 
systems with nondegenerate equilibrium positions are 
considered. Models of specific physical systems, which 
can be described on the basis of this approach by a single 
Hamiltonian, are discussed. A detailed analysis of 
continuum equations of motion demonstrates the existence 
in such systems both of nontopological solitons participat­
ing in energy transfer and of topological solitons 
responsible for transitions between different equilibrium 
positions (transfer of a state). The results of a computer 
simulation are compared with the results of analytic 
investigations. 

1. Introduction 
The development of modern nonlinear physics has led to the 
discovery of new fundamental mechanisms which govern, at 
the molecular level, many physical processes in crystals and 
in other ordered molecular systems. The role of non­
topological solitons, ensuring the most efficient mechanism 
of energy transfer in processes such as, for example, heat 
conduction and fracture of solids [1-3] or propagation of 
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signals in biological macromolecules [4], is now fully 
understood. The passage of such localised excitations 
does not alter the state of the system, because the 
topological charge of such excitations is zero. On the 
other hand, in the case of soliton excitations in those 
bistable structures where the energy degeneracy of equilib­
rium states provides favourable conditions for a possible 
'transfer of a state' if the interaction between structure 
elements of the system is sufficiently strong, a topological 
soliton (kink or antikink) describes a transition from one 
equilibrium state to another, i.e. it ensures the most efficient 
(wave) mechanism of this process [4, 5]. This mechanism is 
encountered, for example, in the motion of domain walls 
and dislocations [3, 5, 6] and it governs the dynamic nature 
of structural phase transitions and of plastic flow in crystals. 
Until recently it has been regarded as self-evident that the 
existence of topological solitons requires not only more than 
one equilibrium state, but also energy degeneracy of 
equilibrium states. This second condition seems quite 
natural, because otherwise the propagation of a steady-
state wave would involve either dissipation or acquisition of 
energy (depending on the ratio of the energies of the 
equilibrium states), whereas the investigated dynamic model 
usually postulates the Hamiltonian structure of the main 
equations and conservation of the total energy. 

In this case the fundamental excitations are topological 
solitons (kinks) which induce transitions between two 
equivalent equilibrium states. Such transitions have been 
considered primarily for one-component models. If the 
analysis is made of, for example, molecular crystals, the 
one-component nature of the model implies a weak 
influence of the intramolecular mobility on structural 
changes in the system. However, in some cases, particularly 
in studies of structural transitions in the molecules 
themselves, this influence becomes of primary importance 
and it is then essential to allow for the mutual coupling of 

http://ecosrv.msk.su
mailto:savin@depll.ifftr.msk.su
mailto:qeitp@gluk.apc.org


860 L I Manevich, A V Savin, V V Smirnov, S N Volkov 

the intramolecular and intermolecular degrees of freedom, 
i.e. for the multicomponent nature of the molecule. In a 
degenerate system this coupling does not give rise to any 
new types of soliton solutions, but it may alter the spectrum 
of the soliton velocities (a new band may appear in the 
spectrum [7]). 

Naturally, the condition of energy degeneracy greatly 
reduces the class of processes to be considered. In 
particular, one should exclude from consideration the 
structural transitions in nondegenerate systems, the prop­
agation of detonation waves, topochemical reactions in 
molecular crystals, and conformational changes in polymers 
and biological macromolecules. However, topological sol­
itons do not exist in one-component nondegenerate systems 
and nontopological solitons can exist only against the 
background of a metastable state [8, 9]. On the other 
hand, studies of the dynamics of nondegenerate bistable 
quasi-one-dimensional molecular chains within the frame­
work of a two-component model have revealed [10-12] a 
wider class of nontopological solitons than the one-
component model [8]. Such solitons describe local perturba­
tions of the stable state of a chain and may exist not only 
against the background of a metastable state with a higher 
energy, which is true of the one-component model, but also 
against the background of the ground state. These solitons 
have been used to describe B - A conformational transitions 
in DNA molecules [13-16]. 

Although at first sight the existence of topological 
solitons in nondegenerate systems seems to be impossi­
ble, recent numerical experiments carried out primarily for 
the purpose of simulation of propagation of a detonation 
wave in two-component models of solids (in this case the 
homogeneous state corresponding to the reaction products 
can be regarded as displaced to infinity), have revealed a 
soliton structure of the detonation wavefront and the 
existence of a preferred velocity of its propagation, in 
spite of the energy nondegeneracy of the system. In a 
study of simulation of detonation in a one-dimensional 
crystal this has been attributed to the occurrence of a 
specially introduced dissipation [17], but the results 
reported in Refs [18, 19] apply to structurally more com­
plex, but still Hamiltonian models. An ordered structure of 
the region near the front is clear evidence of the existence of 
topological solitons. However, the complexity of such 
systems prevents precise identification of the elementary 
process responsible for the 'transfer of a state' in the 
nondegenerate case. This requires the construction of a 
simpler model which can be investigated analytically. 

Such a model of an infinite one-dimensional molecular 
crystal, proposed in Ref. [20], has made it possible to reveal 
explicitly the internal mechanism responsible for the 
formation of a topological soliton (kink) and for the 
constancy of the wavefront velocity. 

The kink found analytically describes the transition of a 
system from its initial equilibrium configuration to an 
intermediate steady (dynamic) state in the region of 
attraction of the final ground state. The existence of 
such an intermediate state is a necessary condition for 
the formation of a topological soliton in a nondegenerate 
bistable system. The explicitly found solution describes a 
two-component kink which represents coupled nonlinear 
waves of intramolecular deformation and displacements of 
the centres of mass of the molecules. After the passage of 
such a kink the system undergoes a transition from the 

initial configuration to an intermediate steady state in the 
region of attraction to the final equilibrium state. This 
intermediate state and, consequently, a topological soliton, 
exist in a certain range of molecular parameters for a unique 
value of the wave velocity V = V0. Although this state is of 
nonequilibrium nature (because the centres of mass of the 
molecules have nonzero velocities behind the front), in the 
selected reference frame linked to the travelling wave this 
state becomes indistinguishable from an equilibrium state 
with a 'potential' energy equal to the energy of the initial 
equilibrium state. The formation of a topological soliton 
becomes possible because of the degeneracy of the potential 
energy at two stationary points. This means that the class of 
systems in which the observed soliton 'state transfer' 
mechanism can take place is much wider than has been 
assumed hitherto and, consequently, fundamentally new 
opportunities arise in nonlinear physics of crystal and other 
ordered systems. 

Our aim will be to identify soliton excitations in a wide 
class of nondegenerate bistable systems, as well as to 
analyse the conditions for the existence of these excitations 
and of their stability. 

The second section consists of a description of an 
analytic study of the investigated class of systems in the 
continuum approximation. It begins with the derivation of 
the appropriate continuum Hamiltonian and of the equa­
tions of motion. The introduction of a kinetic variable 
resulted in explicit integration of the equations. The 
conditions of existence of possible soliton excitations are 
found for bistable nondegenerate systems. The mechanism 
of selection of a unique wave velocity corresponding to a 
topological soliton is considered. 

The third section gives the results of a numerical 
investigation of the equations of motion of a discrete 
model. A study is made of the soliton dynamics under 
initial conditions which correspond to the exact solutions 
obtained analytically in the continuum approximation. The 
nature of propagation of a structural transition is inves­
tigated under sufficiently general initial conditions which 
describe local excitations of the investigated systems. 
Special attention is given to a comparison of the predicted 
and observed characteristics of an elementary excitation 
and to an analysis of the fine structure and stability of the 
front of a steady-state wave. The role of a topological 
soliton in the formation of a steady-state wave responsible 
for a structural transition at the atomic level is studied. 

The appendices give several examples from different 
branches of physics. It is shown that the relevant 
Hamiltonians are special cases of the general Hamiltonian 
whose soliton spectrum is considered in Sections 2 and 3. 

2. Solitons in molecular systems with 
nondegenerate bistability 
We shall now consider nonlinear lattices in which we can 
distinguish two interacting degrees of freedom ('external' 
and 'internal') and find several (at least two) stable 
equilibrium configurations with unequal energies. The 
simplest case of such a system is a diatomic lattice with 
alternating potentials of the interaction between the nearest 
neighbours, when one of the potentials is of the double-well 
type and the other nearly harmonic. The natural 
coordinates are then the mutual displacements of the 
neighbouring atoms coupled by the double-well potential 
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(internal coordinate) and the mutual displacements of the 
centres of masses of such atom pairs (external coordinate). 
A similar lattice, but with a long-range interaction is 
considered in the Appendix 5.1. 

2.1 Generalised model of a bistable system 
We shall now consider the class of bistable nondegenerate 
systems described by the following Hamiltonian: 

l-MR2

n + l-mr2

n + X-K{Rn+l 

1 

•Rnf 

+ - £ ( r „ + 1 - rn)1 + 0(r„) + (Rn+1 - R„)G+{rn) 

+ (R„-R„-l)G_(rn) (1) 

which corresponds to the total energy of a two-component 
system of bistable elements with nonequivalent equilbrium 
positions, shown schematically in Fig. 1. Here, Rn and rn 

are the relative displacements of the links in the external 
and internal sublattices (external and internal components); 
M and m are the masses of the links in the sublattices; K 
and k are their rigidity constants; <P(r) is an asymmetric 
double-well potential, which can be selected in the form 

<2>(r) = s0 [1 - (mo1)2]2 + S^UQ1 + £2 , 

where the parameters e0 and Si represent the barrier height 
and the difference between the energies of equilibrium 
states, the parameter s2 defines the level from which 
energies are measured, and w0 represents the width of the 
potential barrier. The functions 

G±(r) =Xh±(r-ul)u0

l + X2^(u\ 2\ -: 

represent the interaction between the sublattices. In 
contrast to the traditionally discussed two-mass lattices 
(see, for example, Ref. [21]), the parameter k governing the 
slope 
of the optical branch of the dispersion relationship can be 
both smaller and larger than zero, and the interaction 
between the sublattices may be asymmetric (Xii+ ^ Xt_, 
/ = 1 , 2 ) . 

protons along hydrogen-bonded chains, and the dynamics 
of local conformational transitions in biological macro-
molecules of the DNA type. 

We shall introduce the following dimensionless vari­
ables: the displacements xn = rn/u0, yn=Rn/u0, time 
T = ty/\k\/m, and energy H = E/\k\ul. Then the 
Hamiltonian (1) becomes 

+V(xn) + (yn+i -yn)F+(xn) + (yn-yn-i)F_(xn) ,(2) 

where a prime denotes differentiation with respect to the 
dimensionless time T, fi = M/m, K = K/\k\, and 3 = +1 if 
K > 0 and 3 = —I if K < 0. A dimensionless asymmetric 
double-well potential is 

V(x) = £ o ( * 2 - I ) 2 +g\* +82 , 

where g 0 = B0/\k\ul, gx = £ I / | £ | W Q , g2 = s2/\k\u2

0. If 
0 ^ gi < 8g0/Vr/, the potential V(x) has two minima, 
£i and {3, which are separated by a maximum, £2: 
\i < - 1 < 0 < £2 < ^ < 1, where 

2 / a 2TI 

2 a 

2 / a 2K 

and a = arcos(—y/27g1/%g0). The parameter g2, where 
g2 = — go(%l — l ) 2 — gifi , is found from the condition 
V(£i) = 0. The functions F±(x) are 

F±(x)=xh±(x-^)+X2,±(^-x2) ' 

where the parameters Xi,± — ^ i , ± / l ^ l w o (j = 1,2) represent 
the sublattice interactions. 

In the subsequent analysis of the dynamics of the 
investigated two-component system we need to know its 
stable homogeneous states. We shall find them on the 
assumption that xn = x, x 'n = 0, yn+x —yn = p and yf

n = 0. 
Then the energy of the system is proportional to the 
function 

n-2 n - 1 n+\ n + 2 

f(x,p) = V(x)+^p2+2pFs(x) 

where 

Fs(x)=\[F+(x)+F_(x)] 

(3) 

Figure 1. Schematic representation of a two-component bistable system 
with inequivalent states. 

In the more general case the internal component may be 
associated with several external components or vice versa. 
However, the principal characteristics of the dynamic 
behaviour, which appear because of the interaction 
between the components, can be revealed even if there 
are only two components. On the other hand, it is shown in 
one of the appendices that when the appropriate values of 
the parameters are selected, the Hamiltonian of Eqn (1) can 
describe structural transitions and the propagation of 
chemical reactions in molecular crystals, transport of 

and 

Xi.i 3 + i=l>2 
Stable homogeneous states of a chain correspond to 

minima of the function described by Eqn (3) and these are 
given by the equilibrium equations 

— - — + 2 p — - 0 
dx dx dx 

dp 
= Kp + 2Fs(x) = 0 (4) 

It follows from Eqn (4) that p = —2FS(X)/K and this 
equality makes it possible to rewrite the function of 
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Eqn (3) in the form p(x) = f[x,p(x)] = V(x) — 2F2

S(X)/K. 
This function is a fourth-degree polynomial with a double 
root x = £i. We can easily show that a third-degree 
polynomial p'{x) has not only the simple root x = £ l 9 but 
also two more real roots rjl = — (£i/2) — \fD[, 
rj2 = — (£i/2) + y/D\, if the discriminant obeys 
Z>i = ( * i / 2 ) -

b\ = 3 ^ 1 

CI > 0, where 

1 

KgO 2 icg0 

2 * F 

The polynomial p(x) assumes the minimum values at two 
points £i and rj2 if the coefficient in front of the term with 
the highest degree is 1 — (2xl,s/K§o) > 0 a n d the root is 

Therefore, if 

2 x 1 , 

K G 0 

< 1 ; 0 < J D 1 < | « ? (5) 

the investigated two-component system has two stable 
homogeneous states: a state # lower on the energy scale, 
{xn = £uyn+i-yn = 0}9 and a higher e state 
{*n = ri2,yn+l ~ y n = Pe}> w h e r e Pe = -1Fs(y\2)/K < 0. If 
the asymmetry of the double-well potential (gj = 0 and 
Xi,5 — 0) i s lifted, both homogeneous states of the chain 
become equivalent: xn = =bl, — j n = 0 ( ± j states). 

2.2 Equations of motion 
The Hamiltonian (2) corresponds to the following discrete 
system of equations of motion: 

X>' = 5 { X n U - 2 X n + X n _ , ) - ^ { X n ) 

-(yn+i bn-yn-\)^-(xn) , (6) 

Wn = K(yn+i - 2yn+yn-X) 

+F+(xn)-F+(xn_1)+F_(xn+1)-F_(xn) , (7) 

n = 0, ± 1 , ± 2 , . . . . 

We shall assume that the structural excitation extends over 
a certain fairly large region (compared with one link of the 
chain). The continuum approximation xn(r) = x(z,T)\Z=N, 
yn(T) — y{z>T)\z=n c a n then be applied and the discrete 
equations of motion [Eqns (6) and (7)] reduce to a system 
of two coupled partial differential equations: 

dV dF 
•5xzz- — (x)-2yz — (x) -yz dx 

a ( \ 

• 4ya + 
1_ _d_ 

fi dz 
2Fs(x)-—Fa(x) 

(8) 

(9) 

where z is the spatial coordinate, and the functions in the 
above equations are 

&,a = - X / ,-) /2, i = l ,2; 5 I = 1 and ^2 = y^ic/p are 
the dimensionless velocities of long-wavelength vibrations 
in the internal and external sublattices (velocities of 

'sound'); the subscripts % and z indicate differentiation 
with respect to the indicated variable. 

In the approximation of small displacements Eqns (8) 
and (9) reduce to equations for long-wavelength vibrations 
of a one-dimensional lattice. The slope of the optical branch 
of the dispersion curve is then governed by the sign of 
the parameter 3. If the displacements are not small, then in 
the system under consideration we can expect nonlinear 
vibrations and waves. The dynamics of structural excita­
tions with a steady-state profile is of the greatest interest 
from the point of view of possible applications. We shall 
study this class of solutions by going over to the wave 
variables x(z, T) = x(£), y(z, T ) = £ = z — ST, where s is 
the velocity of an excitation. 

The adoption of the variable £ transforms the equations 
of motion (8) and (9) to 

{s - s 2 ) X K - ^ ( x ) - 2 y t f w - y « f w = o , d o ) 

(s2-s2)yK + l-{2Fs(X) - [Fa(x)\} = 0 . (11) 

Integration of Eqn (11) gives 

yc = [{2F,{x) - [Fa{x)](} ^ - d ] ( s 2 - si)'1 , (12) 

where Cx is the constant of integration the value of which 
can easily be found from the given asymptotics of the 
solution at infinity. Substitution of Eqn (12) into Eqn (10), 
multiplication of the latter by x^, and integration gives 

\p(x, s)x\ + q(x, s) = 0 (13) 

where 

p(x, s) = 3 • + ( X l , A - 2 x X 2 , A ) 2 [ ^ 2 - ^ ) ] " 

q(x,s) = -V(x) + 2[CX - Fs(x)p-l]Fs(x)(s2- s2

2)~l-C2 , 

and C2 is the constant of integration. 
Eqn (13) represents the law of conservation of energy of 

a nonlinear oscillator with an effective potential energy 
Q(x,s) = q(x,s)/p(x,s). An analysis of phase portraits of a 
nonlinear oscillator of Eqn (13) for different values of the 
travelling-wave velocity readily identifies possible classes of 
the wave solutions of Eqns (8) and (9), whereas the 
solutions themselves can be obtained in quadratures 

f*( c ) du 

* ( 0 ) y/-2Q[u,s) 

2.3 Soliton excitations of a nondegenerate bistable chain 
Among possible solutions of Eqns (10) and (11) we shall 
seek those dynamic solutions which represent solitary 
waves with a steady-state profile and an asymptote 
corresponding to homogeneous states of the system. 
These solutions are represented by phase paths that are 
separatrices in the phase space of the nonlinear oscillator of 
Eqn (13). 

We shall first consider the steady-state solution for 
3 = +1 . In this case the asymmetry of the interaction of 
the sublattices is unimportant. Therefore, we shall limit 
ourselves just to a discussion of the symmetric interaction 
when = Xi- = Xi (* = h 2), F+(x) = F_(x) = Fs(x), and 
the function Fa(x) vanishes identically. 
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2.3.1 Soliton excitations of the b state. We shall now find 
the solution of the system of equations (10) and (11) with 
the asymptote 

(15) 

Under these conditions the constants of integration are 
Ci = 0 and C 2 = 0, and the potential Q is described by a 
fourth-degree polynomial with a double root x = 

Q(x) = a(x - ^)2[(x + £ 0 2 + b(x + £ i ) + cb] (16) 

where 

go 1 + 2x1 
goK*2 - 4). 

-4*1 *2 1 + - 2x1 i - i 

goKs -4) L goK* -4). 

cb=2 
goK*2 •4)11 

i + 2*1 

goK*2 4)1 
Thus, 2 ( x ) has not only the double root x = £ l 9 but 
also two more real roots cpx = — £x — (b/2) — 
p2 = -Zx - (b/2) + if = (b/2)2 -cb^0. 

It follows from the explicit expression (16) for the 
potential Q(x) that the necessary and sufficient conditions 
for the existence of bounded solutions of Eqn (13) with the 
asymptote (15) are either the inequalities 

a < 0, q>l> ^i. 

or the inequalities 

Db > 0 , 

a > 0, P i < £ i , Db > 0 . 

(17) 

(18) 

If inequalities (17) apply, the differential equation (13) 
has only one soliton solution ^ < xb{ (£) ^ pl 9 but if 
inequalities (18) are obeyed, there are two soliton solutions 
P i < xb2(C) < Zi and £x < xh(0 ^ <p2 (Fig. 2). 

In fact, if inequalities (17) are satisfied, the integral 
equation (14) becomes 

r<Pi du 

X(0 (u - £ i V ( P i -u)((p2-u) 
= V^2aC 

-Q 

\<Pl <P2 J 

c 

A , ® 

17' 
Figure 2. Fo rm of the ^-soliton solutions xbi ( 0 , *a2(C), (£)• 

from which we can readily obtain the explicit form of the 
soliton bx\ 

xbl(Q = Zi + 
2 ( p 1 - f 1 ) ( p 2 - f 1 ) 

P i + <?2 - 2 £ i + (P2 - P i ) cosh(/^Q 
,(19) 

where = ^\2a(cpl - £i)(p2 £ i ) | . 
However, if the inequalities (18) are obeyed, then the 

integral equation (14) becomes 

*(o) du 

where x(0) = px applies to the soliton b2 and x(0) = p2 to 
the soliton # 3 . Hence, we have the explicit expressions for 
the solitons b2 and b3: 

2 ( p 1 - £ 1 ) ( p 2 - £ 1 ) 
^ 3 ( 0 = { i + - •(20) 

P ! + p2 - 2 ^ ± (p2 - pO cosh(/^£) 
The second component of the solution pb(Q = dyb(C)/d£ 
can be found from Eqn (12) 

2 
/ i ( , 2 JK(C)], = 1,2,3 . (21) 

It follows from the explicit form of the b solitons of 
Eqns (19)-(21) that if £ - > ± o o , then -> 
Pa(C) 0, i.e. the b solitons are local perturbations of 
the b state. 

The solitons bi9 b2, and b3 have dome-shaped profiles 
along the component x and kink-shaped along the 
component y. The amplitudes of the first and second 
components are Ax =xb(0) — ^ and Ay = pb(0), and the 
width is 

r+oo 

l „ = \ \[Xb(o-^][xb(o)-^ri\dc, 
J —oo 

which is measured in terms of the lattice constants; the 
energy E is measured from the energy level of the b state. 

The spectrum of the velocities of the soliton bx is 
governed by inequalities (17) and that of the solitons b2 

and b3 is determined by inequalities (18). The condition 
Db > 0 is equivalent to the inequality sPl < s < s2, where 

= s 2 X l - 2X2

2 

0K g0K(Zi ~ 1) 

It should be noted that on the basis of inequalities (5), we 
have 0 < spi < s2. 

The inequality a < 0 determines the range of the 
velocities 0 ^ s < min(l, sP2), max(l, sP2) < s < s2 if 
s2 > 1, but 0 ^ s < spi, s2 < s < 1, if s2 < 1. Here, 

sP2 = s2yj\ -2x2

2(g0K) 1 

The condition p1 > ^ determines the range of values 
0 ^ s < m i n ( l , ^ 3 ) , and m a x ( l , ^ 3 ) < s < s2, where 

Consequently, the soliton bx generally has a two-band 
velocity spectrum: 

spi < s < m i n ( l , ^ 2 , ^ 3 ) , max(l, spi, sp3) < s < s2 .(22) 
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If s2 > 1, the velocity spectrum is of the two-band type only 
ifsP] <l,sp > sp , and sp < s2. If s2 < 1, the soliton bx 

can only have a one-band spectrum. 
The inequality a > 0 governs the range of velocities 

min(l, sp2) < s < max(l, sp2), and the condition q>x < ^ 
governs the range 0 ^ s < min(l, sP3), and 
m a x ( l , ^ 3 ) < s < s2. Hence, the solitons b2 and b3 have a 
one-band velocity spectrum with 
min(l, sp2) < s < min(l, sp3) if spi < sp3 and a one-band 
spectrum with m a x ( l , ^ 3 ) < s < ( 1 , ^ ) if sp > sf3. 

In addition to the ^-soliton solutions found here and 
representing local perturbations of the b state, the system of 
equations (10) and (11) has a solution which describes a 
transition from the state b to a metastable state me, which is 
topologically close to the state e. 

In fact, if s = sp and a < 0, the potential of Eqn (25) 
has two double roots x = £i and x 
integral equation (14) becomes 

: p u = - (b/2). The 

r*(0 du 

J(£i+<p°)/2 (U ~ £i)((p° ~ U) 

Hence, we obtain the explicit form of the topological 
soliton tb± 

xtb±{Q=\{^+qP)±\{qP-i,)t^HRtbQ , (23) 

where Rtb = — cp))yJ—a/2 (Fig. 3). The second compo­
nent of the solution ptb±(Q = dv#,±(£)/d£ is found from 
the equation 

p A ± ( 0 = 2 F [ ^ ± ( 0 ] [ ^ 1 - ^ ) ] " 1 • ( 2 4 ) 

i f c ^ z b o o , xa±(Q^Zi> x»t(0^<p°, p * ± ( 0 ^ o , 
PtbT(0 ~^ = 2F(cp )/K4i t h e topological soliton 
tb± describes the transition of a chain from the state b to the 
metastable state me {xn = <p°, yn+l -yn = pme, y'n = sb}, 

The energy of the metastable state me is 
higher than the energy of the state b, so that — depending on 
the direction — the motion of the soliton tb is accompanied 
either by the evolution or absorption of energy. The soliton 
width is Ltb = (cp° - fi)Ai(O) = 2/Rtb. 

The necessary condition for the existence of the soliton 
tb± is the inequality a(spi) < 0. It should be noted that if 
X\ = 0, then sPl = sPl and a(spi) = 0, so that the soliton tb± 
can exist only if X\ ^ 0-

2.3.2 Soliton excitations of the e state. We shall find the 
solution of the system of equations (10) and (11) with the 
asymptote 

0, (25) 

Under these conditions the constants of integration are 

d = 2F(rj2)s2K~l , 

C 2 = -V(n2) + 2F2(ri2)(2s2 - S2)[K(S2 - s2)}'1 . 
Then the potential Q is of the form 

Q(x) = a(x - rj2)2[(x + rj2)2 + b(x + rj2) + ce] , 

where 

(26) 

d + xi 
s2

2). 
1 + 2x1 

s2

2). 

d = nl 
KgQ 

The fourth-degree polynomial Q(x) not only has the 
double root x = rj2, but two more real roots 

0i = • b + JDe 

if De = (b/2) — ce ^ 0. It follows from the form of 
Eqn (26) describing the potential Q that the necessary 
and sufficient condition for the existence of bounded 
solutions of Eqn (13) with the asymptote (25) is either the 
satisfaction of the inequalities 

a < 0, 02<r\2, De>0 

or of the inequalities 

a > 0, 62>rj2, De>0 

(27) 

(28) 

When conditions (27) are satisfied, the differential 
equation (13) has one soliton solution 62 < x6{ (£) ^ rj2, 
but in the case of inequalities (28) there are two soliton 
solutions 9i ^ xe (Q < rj2 and rj2 < xe (Q ^ 92. The explicit 
form of the solitons e u e 2 , e 3 can be found in the same way 
as the explicit form of the solitons bx,b2,b3. The solution ex 

is 

xe,(0 =rj2 + 
2 ( 0 1 - ! / 2 ) ( 0 2 - l / 2 ) 

ex + e2 - 2rj2 - (02 - ex) c o s h ^ o 
(29) 

Figure 3. Topological soliton xtb (£) 

and the solutions e2 and e3 are 

2 ( 0 i - 1 / 2 ) ( 0 2 -ni) 
6X + 62 - 2ri2 ± (62 - 0j) cosh ( / ? e Q 

, (30) 

where Re = y/\2a(9i — rj2)(92 — rj2)\. The second compo­
nent of the solution pe(Q = dye(Q/d£ follows from 
Eqn (12) 

2F(r,2)}[K(s2-s2)]-1 , 
(31) 

pek(0 = 2{s2

2F[xek(C)] 

k = 1,2,3 . 
It follows from the explicit form of the e solitons described 
by Eqns (29), (30), and (31) that if £ -> ±oo, then 
xe(0 —> Pe(0 ~^ Pe> t n e e solitons are local 
perturbations of the e state. 

The solitons ei,e2, and e3 have dome-shaped profiles 
along the component x and are kink-shaped along y. They 
have the following amplitudes along the first and second 
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components, Ax = rj2 — xe(0) and Ay = pe(0) — p e , and their 
width is 

L0 = | K ( 0 - ^ ] [ ^ ( o ) - ^ ] _ 1 | ^ , 

which is measured in terms of the lattice constants, and the 
energy is E, measured from the energy level of the e state. 
The velocity spectrum of the soliton ex is determined by 
inequalities (27), and that of the solitons e2 and e3 is 
governed by inequalities (28). 

In addition to these e-soliton solutions, the system of 
equations (10), (11) has a solution which describes a 
transition from the state e to the metastable state mb, 
topological^ close to the state b. 

In fact, if the velocity is s = s p 4 , described by 

S2i 1 M 
g0K g0Kd 

xi 

the discriminant is De = 0, so that the potential (26) is a 
fourth-degree polynomial with two double roots x = rj2, 
x = 6° = —rj2 — (b/2). The soliton solution te± exists only 
if a(spJ and has the form 

* * ± ( 0 = I + 0°) ± \ Ofe - 0°) tanh(i?teC) , (32) 

where Rte = (rj2 — 0Q)yJ—a/2. The second component of 
the solution pte±(0 — &yte±(0/*s found from Eqn (12): 

(33) 

If C - > • ± 0 0 , then xte±(0 -» m> * * « = F ( 0 ~^ Pte±(0 
PuT(0 - Pmb = 2[s2F(6°) - s2

P4F(ri2)]/K(s2

P4 - s2), i.e 
topological soliton te± describes a transition of a chain 
from the state e to the metastable state mb {xn = 0°, 

Pe, 
the 

yn+\ —yn = Pmb 

e to 
/ 

yn = XPme-Pe)-
The energy of the metastable state mb is higher than the 

energy of the state e, so that the motion of the soliton te is 
accompanied by the evolution or absorption of energy, 
depending on the direction of its motion. The soliton width 
is Lte = (r,a-60)/x'te(0)=2/Rte. 

The necessary condition for the existence of the 
topological soliton te± is the inequality a(sp4) < 0. It 
should be noted that if Xi — 0, then sP4 = sP2, a(sp4) = 0, 
so that the soliton te±, like the soliton tb±, can only exist if 
Xl 7^0. 

We shall consider the steady-state solutions correspond­
ing to 3 = —1. For simplicity, we shall confine ourselves to 
the case when Xi + — Xi - — 0-

As in the case when 3 = +1 , we shall first consider the 
soliton excitation of the b state, i.e. we shall find the 
solutions of the system of equations (10) and (11) with the 
asymptote (15). The effective potential Q of the nonlinear 
oscillator (13) is then a fourth-degree polynomial given by 
Eqn (16) and the coefficients in this polynomial are 

c„=2 

1 +sz + 
Xl,a 

Ks2 •s2

2). 
b = 0 

xl,s 

g0p(s2 - 4). 

In this case the condition a < 0 is incompatible with the 
condition cb ^ 0, so that the solitons bx and tb± cannot 
exist. For example, only the nontopological solitons b2 and 
b3 can exist against the background of the b state. 

We shall next consider the soliton excitations of the e 
state. We shall find the solutions of the system (10), (11) 
with the asymptote (25). In this case the effective potential 
Q is a fourth-degree polynomial of Eqn (26) with the 
coefficient ce = 2{r\\ — 1 + [x2

s/gop(s2 — si)]}. Here, the 
conditions a < 0 and ce ^ 0 are compatible and they 
determine the velocity spectrum of the soliton ex\ 
sps < s < sp6, where the velocity of the topological soliton 
sps is found from the condition ce(s) = 0 and the velocity sp6 

is deduced from the condition a(s) = 0. In the former case 
the velocity is sps = s2[\ + Xi^/go^O — ^\)]1^ > s2, and in 
the latter case it is sP6 = [{s^ — 1 + [(s\ + 1) 2 + 
4#i J 1 / 2 } ^ ] 1 / 2 . We note that when the interaction between 
the sublattices is symmetric (xi,a = 0), the solitons ex and 
te± cannot exist, because in this case we have sP6 = s2 < sP5. 
Therefore, if 3 = — 1, the asymmetry of the lattice inter­
action ( x \ , a > XP> where x P is found from the condition 
spe = sps) is the necessary condition for the existence of the 
solitons ex and te±. 

The soliton te± exists only for one velocity s = sps 

and it has the form xte±(C) = ±rj2 tanh(/? t e^) 9 where 
Rte = rj2y/—2a(sp5). The second component of the solution 
is found from Eqn (12). 

An analysis carried out in this section shows that in a 
bistable chain with nondegenerate ground states we can 
expect the existence, not only of nontopological solitons, 
but also (at fixed values of the velocity) of the topological 
solitons tb± and te±, which induce a transition of a chain 
from its initial equilibrium state to an intermediate steady 
state in the region of attraction to another equilibrium state. 
These solitons exist because of the sublattice interaction 
that results in a dynamic degeneracy of the effective 
potential of a phase transition at a specific value of the 
velocity. 

3. Computer simulation of soliton dynamics in a 
bistable chain 
Our analytic investigation of soliton motion is based on the 
long-wavelength approximation. The question therefore 
arises of the influence of the discrete nature of the lattice. 
Moreover, it is necessary to study the stability of the 
soliton solutions. 

We shall consider the dynamics of solitons for two 
limiting types of sublattice interaction: %2,± = 0 a n < ^ 
X \ ± = 0. In the former case the main effect of a reduction 
by p in the step (period) of the external sublattice is a 
reduction of the difference between the energy levels of the 
ground states of the effective double-well potential 
V(x)+2%is p(x — This sublattice interaction has 
been used before [20, 22, 23] in simulation of the propaga­
tion of exothermal reactions in quasi-one-dimensional 
molecular crystals. In the case of the latter type of 
sublattice interaction a reduction by p in the step 
(period) of the external sublattice is related to a change 
in the height of the barrier between the two 
ground states of the effective double-well potential 
V(x) + 2;fc}1sp(£i — x2). This type of the sublattice inter­
action has been used [7, 24, 25] in simulation of the 
transport of protons in quasi-one-dimensional chains of 
hydrogen bonds and later [10-12, 26] in simulation of the 
dynamics of local conformational transitions in DNA 
molecules. 



866 L I Manevich, A V Savin, V V Smirnov, S N Volkov 

We shall first consider the dynamics of solitons in a 
chain characterised by %l± = XuX2,± = 0 a n d 8 = +1- For 
such a chain the bistability condition (5) becomes 

Xi < XPl = VWo(£i - 1) (34) 

When this inequality is satisfied the two-component system 
under discussion has two stable states: the state b more 
favourable from the energy point of view, and the state e, 
which is less favourable from this point of view. 

The spectrum of the permissible velocities of the solitons 
bi,b2, and b3 is derived in the preceding section. In the 
sublattice interaction case considered here, we have 

=s2^i-x\[g,<ei-i)r\ 

= s2^i-x\[g«<H\-i)rl 

= s2 

When the bistability condition (34) is obeyed, it is found 
that 0 < sPl < sP3 < s2. Therefore, the soliton bx has a two-
band velocity spectrum (22): 

spi < s < m i n ( l , ^ 3 ) , max(l, sp3) < s < s2 , 

if s2 > 1, and the one-band spectrum sP{ < s < sp3, if s2 < 1. 
The solitons b2 and b3 have a one-band velocity spectrum 
max(l ,sP3) < s < max(l, , s 2 ) , i-e. they exist only if s2 > 1. 

The topological soliton tb has only one permissible 
velocity s = sPl and it exists for values of Xi s u c n that 
sPl < 1. 

The velocity spectrum of the soliton ex is found from the 
inequalities (27). The inequality a < 0 defines the range 
s < 1, and the condition De > 0 defines the range 
0 ^ s < s2, sf4 < s < o o if Xi < XP2

 a n d the range 
s„A <s<s2 if xP2 <Xi< XPl> w h e r e S

P4 

and s„A = 0 
„ ~ s2(l-Rf2 for 

R =Xi/goK(rj2

2-\) <\ and sf4 = 0 for R ^ 1, but 
Xp> = [Kgoifi + Zi)]1/2 < XPr ^ X<XP2, then rj2 < 1, 
sp4 > s2, but if xP2 <Xi< XPl, then 1 < n2 < £u sp4 < s2. 
The condition 02 < rj2 

s2 < s < oo , where 
defines the range 0 ^ s < sp 

s2^\-x\[g,K(}ril-\)] 

Hence, subject to the condition Xi < XPl^ the soliton ex has 
a two-band velocity spectrum 

0 ^ s < min(l, sp), < s < 1 

and for xPl < Xi < XPl it has a one-band spectrum 
sp4<s< m i n ( l , ^ 7 ) . 

The velocity spectrum of the solitons e2 and e3 is found 
subject to the inequalities (28). The inequality a > 0 defines 
the range of values s > 1 and the condition 92 < rj2 

corresponds to the range sPl < s < s2. Therefore, these 
solitons have a one-band velocity spectrum 
m a x ( l , ^ ? ) < s < s2, i.e. they exist only if s2 > 1. 

The topological soliton te has only one permissible value 
of the velocity s = sp4 and exists for Xi < XP3> where the 
threshold value xP3 < XPl i s found from the condition 
SPA(XP3) = 1' 

In molecular chains the displacements along the 
component x are intramolecular and they deform relatively 
rigid valence bonds, whereas the displacements along the 
external component y represent displacements of the 
molecules relative to one another, leading solely to 
deformations of the soft nonvalence bonds. Therefore, 
the rigidity of the internal sublattice is as a rule higher 
than that of the external sublattice: sx = 1 > s2. We shall 
now consider the soliton dynamics in that typical case when 
the solitons butb,eu and te can exist. 

We shall now consider the specific case when s2 = 0.5, 
/i = 1, K = 0.25, g 0 = 0.01, gx= 0.005. We then have 

1 = -1.057454, g2 = U.UUM48, xPl 

XP2 = 0.012324. The dependences of the intramolecular coor­
dinate rj2, of the compression of the external sublattice pe, of 
the energy level Ee of the e state, and of the boundary values of 
velocities sPl, sP3, sp4,spi on the sublattice interaction parameter 
Xi are listed in Table 1. It is clear from this table that the 
soliton te exists only for Xi ^ 0.011, when its velocity is 
sP4 > s2. 

The soliton 
C v > ^ 3 ) - I f xi = 
The dependences of the amplitudes Ax and Ay of the width 
Lb, and of the energy E of the soliton bx on the velocity s 
are shown in Fig. 4. Only the amplitude Ax depends 
monotonically on s. If s—> sp, then Ax —> 0, Ay —> 0, 
Lb —> oo , E —> 0. The profiles of the soliton bx are shown in 
Fig. 5 for different velocities. The width and the energy of 
the soliton increase monotonically on approach to s —> spr 

In this limit, one soliton bx splits into two topological 
solitons tb+ and tb_. The increase in the width of the 
soliton bi is due to the movement apart of the centres of 
the topological solitons. The rise of its energy is a 
consequence of the higher energy, compared with the 

0.017191, 

bi has a one-band velocity spectrum 
0.01, then sm = 0.406699, s„ = 0.495735. 

Table 1. Dependences of the parameters ri2, pe, and Ee of the e state and of the limiting values in the velocity spectra sPl, sP3, 
interaction parameter X\-

, and sn„ on the sublattice 

12 Pe Ee 
SP. SP! 

0.000 0.930403 0.000000 0.009980 0.500000 0.500000 0.500000 0.500000 

0.002 0.932390 -0.031884 0.009853 0.496605 0.499830 0.499751 0.503052 
0.004 0.938292 -0.063864 0.009472 0.486276 0.499320 0.499024 0.513203 
0.006 0.947945 -0.096259 0.008832 0.468557 0.498469 0.497873 0.534325 
0.008 0.961097 -0.129187 0.007925 0.442559 0.497275 0.496373 0.577830 
0.010 0.977440 -0.162792 0.006742 0.406699 0.495735 0.494612 0.688594 
0.011 0.986705 -0.179886 0.006043 0.384238 0.494834 0.493660 0.841482 
0.012 0.996641 -0.197193 0.005271 0.358024 0.493847 0.492673 1.548257 
0.013 1.007207 -0.214725 0.004423 0.327159 0.492770 0.491660 0.000000 
0.014 1.018363 -0.232491 0.003497 0.290157 0.491605 0.490628 0.000000 
0.016 1.042287 -0.268767 0.001404 0.182848 0.489007 0.488537 0.000000 
0.017 1.054981 -0.287291 0.000233 0.074274 0.487572 0.484870 0.000000 
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s s 
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Figure 4. Dependences of the amplitudes Ax and Ay, of the width Lb (in 
chain periods), and energy E (measured from the energy level of the b 
conformation) of the bx soliton on the velocity s, calculated for g0 — 0.01, 
gi - 0.005, fi = 1, K = 0.25 (s2 - 0.5), X\ = 0.01, Xi - 0. 

0 20 40 60 80 100 
n 

J j L 
0 20 40 60 80 100 

n 

Figure 5. Transformation of the soliton bx into a pair of topological 
solitons tb+ and tb_ in the limits s —> sPl for a chain with g0 — 0.01, 
gx — 0.005, fi — 1, K — 0.25,/ j = 0.01, and # 2 — 0. The soliton bx is shown 
for s = 0.49, 0.46, 0.42, 0.407 and 0.4067 (curves 1 - 5 ) . 

state b of the ends of the chain, of the metastable 
conformation me in the part of the chain between the 
centres of the topological solitons. 

The dynamics of the nontopological solitons b and e can 
be investigated conveniently subject to periodic boundary 

conditions. This can be done by replacing Eqns (6) and (7) 
with the system 

//_ ~ dV dFs 

xn — xn+l ~ 2xn + Xn_i — (XN) — (pn + pn_i ) — j - ^ [XN) , 

(35) 
Wn=K(Pn+l-2Pn+Pn-l) 

+Fs(xn+2) - Fs(xn+i) - Fs(xn) + Fs(xn-\) , (36) 

where pn = yn+x — yn are the relative displacements of the 
nth site in the external sublattice, and n = 1, ...,N, where 
N is the number of links in the chain (n + 1 = 1, n + 2 = 2 
if n = N, but n-\-2 = 1 for n = N — 1, and n — 1 = N for 
n = 1). The initial conditions are selected to correspond to 
the exact soliton solutions of Eqns (19), (20), (21), and (29), 
(30), (31). 

Computer simulation of the dynamics of the soliton bx 

reveals that it is stable only at velocities s close to sp . For 
example, for a cyclic chain with N = 200 molecules and the 
initial velocity s = 0.40699 or s = 0.41, this soliton travels at 
a constant velocity conserving its profile; in the time 
T = 1200 it crosses 489 'cells' or links of the chain when 
the initial velocity is s = 0.40699 and 492 such links if 
s = 0.41. The energy of this soliton decreases monotonically 
on increase in the velocity in the range s < 0.42, but for 
s > 0.42 the energy rises monotonically (Fig. 4). The energy 
minimum corresponds to s = 0.42. If s ^ 0.42 the soliton is 
unstable. The soliton motion results in its deceleration to a 
velocity close to sPl and then the soliton moves at a constant 
velocity. 

The soliton ex has a two-band velocity spectrum 
0^s<spi, sp4<s< \ (spi = 0.494612, sp4 = 0.688594) if 
X\ = 0.01. In the first band of the velocity spectrum in the 
localisation region the external sublattice becomes elon­
gated and in the case of the second band this sublattice is 

1.0 r_ 

0 20 40 60 80 n 100 

0 20 40 60 80 

Figure 6. Profiles of the soliton ex in a chain with g0 — 0.01, gx — 0.005, 
fi — 1, K — 0.25, Xi — 0.01, and Xi — 0 for s from the second band in the 
velocity spectrum: s = 0.6886, 0.7, 0.8, 0.9, and 0.99 (curves 1 - 5 ) . 
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compressed. The profile of the soliton travelling at the 
velocity s from the second subband is shown in Fig. 6. 

Near the limit s - the soliton width and its energy 
increase monotonically. In this limit, one soliton ex splits 
into two topological solitons te_ and te+. The increase in 
the soliton width ex is explained by spreading apart of the 
centres of the topological solitons and the rise of the energy 
is due to the fact that the metastable state mb of the part of 
the chain between the centres of the topological solitons, 
has a higher energy than the state e of the ends of the chain. 
As the velocity approaches the right-hand edge of the 
second band of the velocity spectrum the soliton amplitude 
decreases monotonically, its width approaches zero, and the 
energy approaches infinity. 

Computer simulation of the dynamics of the soliton ex has 
revealed its instability in both intervals of the velocity 
spectrum. During its motion the soliton either splits into 
two kinks, which take the chain from the state e to the 
conformation b, which is more favourable from the energy 
point of view, or the soliton is transformed in a two-
component breather and this process is accompanied by 
the emission of low-amplitude phonons. 

The dynamics of the topological solitons tb and te was 
simulated for a finite system of N = 400 molecules with a 
free right-hand end and a clamped left-hand end, the latter 
moving uniformly at a velocity sk, where sk = sb = —spipmb 

for the soliton tb and sk = se = —sp4(pme — pe) for the 
soliton te. 

The dynamics of a chain is described by the system of 
equations 

X i — x2 — x i 
dV 
dx ( * i ) - (yi-yi) 

dF, 
dx 

Xn— Xn+i — 2xn+Xn_i — —j—- (xn) — (yn+i — yn-\)—^{xn) •> 

Pyn = K(yn+l-2yn+yn_l)+Fs(xn+l)-Fs(xn_l) , (37) 

n = 2,3, ...,N- 1 , 

" _ d V ( \ ( \ & F s ( \ xN—xN_\—xN — \xN) — \ y N — y N - \ ) —j-^-[xN) , 

w'N = K(yN-i - y ^ - F

S(XN) - fs(XN_X) 

subject to the initial conditions 

xn(0)=x(n), # 1 = 1 , 2 , . . . , / / , yn(0)=yn-l(0)+pn_l(n) , 

4 - 1 (0) = s[xn(0) - x„_ i (0 ) ] , yf

n(0) 

n = 2,3, ...,N, xf

N(0) = 0 , 

s[p(n)-p° 

where x(Q, p(Q are the soliton solutions of Eqns (23), (24), 
(32), and (33) obtained in the continuum approximation, 
p° = pb = 0 applies to the soliton tb+, and p° = pe applies 
to the soliton te±. If Xi — 0.01, the soliton tb has the width 
L = 12.92 and its velocity is s = sp = 0.406699; in the case 
of the soliton te, we have L = 10.26 and s • • 0.688594, 
which confirms the validity of the continuum approxima­
tion used to find the soliton profile in Section 2. 

It therefore follows that in simulation of the dynamics of 
the soliton tb+ (and te+) the left-hand end of the chain is in 
the metastable state me (mb), and the chain at the right-
hand end is in the state b (e). The soliton motion to the right 
at the velocity s = spi (s = sp^ is accompanied by an 
increase in the energy of the finite chain because of the 

Figure 7. Decay of the topological te+ soliton with s — sp4 in a chain with 
go - 0.01, gt - 0.005, fi = 1, K = 0.25, X\ = 0.01, and %2 - 0. 

induced leftward motion of the left-hand end sk = sb 

( s k — se) a n d the motion to the left at the velocity 
s = —spi (s = —sp4) is accompanied by a reduction in the 
energy because of the induced rightward motion of the left-
hand end sk = -sb (sk = -se). 

Computer simulation of the dynamics of the soliton tb+ 

demonstrates its stability. For example, if s = sPl then in the 
time T = 800 it crosses, at a constant velocity and retaining 
its profile, 326 links of the chain, but for s = —sP{ it crosses 
325 such links. Simulation of the dynamics of the te+ 

soliton reveals its instability, manifested by the loss of 
matching of the sublattice motion. If s = sp4, a one-
component kink is formed from the soliton and after 
formation this kink begins to move opposite to the initial 
direction (Fig. 7), but for s = —sp4 a one-component kink is 
formed and it becomes detached from the soliton compo­
nent moving in the direction of the initial motion (Fig. 8). 

We shall now consider the transition from the metast­
able state e to the state b which is more favourable from the 
energy point of view, and we shall do this for the case of a 
chain of N = 400 links with free ends. Let the first 15 links 
be in the state b, and the other links in e. Then the chain 
dynamics is described by the following system of equations 

0 - D 
0 

-0.1 r 

Pn 

- 0 . 2 

- 0 . 3 

100 200 300 400 

T 

J 

0 100 200 300 400 

Figure 8. Decay of the topological te_ soliton with s — —sp4 in a chain with 
g 0 = 0 . 0 0 1 , gi= 0.005, JI = 1, K = 0.25, ^ = 0 . 0 1 , and %2 = 0. The 
soliton profile is given at the initial moment T = 0 (curves 1 and 2), at 
T = 200 (curves 3 and 4), and at T = 400 (curves 5 and 6). 
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" d V f \ ( \ d F s ( ^ 

X l = x 2 - x 1 - - ^ i x i ) \y2-y\)-fa\x\) > 

w" = K&I -y\) +FS(X1) +FS(X2) , 

" _ o . d v r \ ( \ d F u \ 

xn—xn+i—zxn±xn_i — —^{xn) — [yn+i — yn-i)—^\xn) •> 
Wn=K{yn+\-2yn+yn-\)+Fs(xn+x)-Fs(xn-\) , (38) 
n = 2,3, 1 , 

xN = xN_i — xN — (xN) — (yN — y^-i) —^ (x N ) , 

WN = K(yN-i -yN) - Fs(xN) - Fs(xN_x) 

subject to the initial conditions 

*i(0) = . . . = x 1 4 ( 0 ) = ! / 2 , x 1 5 ( 0 ) = 0 , 

x16(0) = ...=xN(p) = {1 , 

J l ( 0 ) = . . . = v 1 5 ( 0 ) = 0 , yn+i(P)=yn(p)+pe , 

n = 15, 16, 1 , 

xi (0) = . . . = x'N(0) = 0, ^ (0) = . . = ^ ( 0 ) = 0 . 

The total energy of the system 

1 a , V a 1 / _ ^ 

2 V X « + 1 X « J 

+ 2 Cy»+i -yn) + Cy«+i - J J ^ ^ J 

+Cy«+i -yN)Fs(xn+i) (39) 

is an integral of motion, which can be used conveniently to 
check the precision of numerical integration. 

Numerical integration of the system of equations (38) 
shows that the conformational transition can occur in 
accordance with two scenarios. 

If the sublattice interaction is weak (i.e. when Xi < XP3) 
the transition splits into two stages: first a one-component 
kink forms in the chain and moves at supersonic velocity 
s > s2 without dilation of the external sublattice and then a 
wave of dilation of this sublattice travels at the velocity of 
sound s2 (Fig. 9). Depending on the sublattice interaction-
parameter Xu t n e dissipation of energy may occur mainly 
during the first or second stage of this exothermal process. 
The first stage corresponds to the motion of a supersonic 
reaction wave and is not accompanied by an increase in the 
linear dimensions of the molecular system. The topological 
soliton te then approximates the profile of the front of a 
supersonic wave. The second stage is accompanied by 
dilation and active thermalisation of the external sublattice 
quite far behind the front. 

If the sublattice interaction is strong (i.e. if Xi > X?3)-> 
when there is no topological soliton te, the conformational 
transition does not split into two stages. A subsonic 
two-component soliton (s < s2) forms in the chain and 
immediately transforms the chain from the state e to b 
(Fig. 10). Energy is then released in the soliton localisation 
region. 

This transition mechanism corresponds to dynamic 
propagation of an exothermal reaction [27]. The first 
scenario with a nonthermalised supersonic detonation 
wave may be attributed to an explosive reaction in which 
the energy is released behind the reaction front. The second 
scenario represents smooth combustion when the energy is 
released in the region of the reaction front. 

1 - i t 

3 5 

100 200 300 400 
n 

Figure 9. Conformational e —*• b transition in a chain with g0 = 0 . 0 1 , 
gi — 0.005, fi — 1, k — 0.25, X\ — 0.01, and %2 — 0- The displacements xn 

and p n are given at the initial moment T = 0 (curves 1 and 2), at T = 180 
(curves 3 and 4), and T = 360 (curves 5 and 6). The velocity of the 
conformational transition front is s — 0.92. 
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Figure 10. Conformational e —> b transition in a chain with g0 — 0.01, 
gi — 0.005, fi — 1, k — 0.25, X\ — 0.012 and Xi — 0. The displacements xn 

and p n are given at the initial moment T = 0 (curves 1 and 2), at T = 180 
(curves 3 and 4), and T = 360 (curves 5 and 6). The velocity of the 
conformational transition front is s — 0.38. 
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t=0 

1 

f=35.5 

Figure 11. Evolution of a topological soliton in a diatomic chain with free 
ends (g0 = 0.014, g l = 0.011, fi = 5, Xi,s = 0-026, Xi,a = 0-634, 
s2 = 0 . 1 5 5 ) . The initial soliton velocity is 5 = 0.246 (7 is the internal 
coordinate xn, and 2 is the external coordinate p n ) . 

We shall now consider the dynamics of the topological 
solitons for such parameters of a chain when X\ a 0- I n 

this case we can expect the existence of the topological te 
solitons both for 3 = +1 and 3 = — 1. These solitons travel 
at a supersonic velocity ste = sps > s2. Computer simulation 
of the te-soliton dynamics has revealed a number of features 
that distinguish such dynamics from the cases discussed 
earlier. The te soliton is also unstable, but its decay occurs 
in accordance with a different scenario. Supersonic te 
solitons have a finite lifetime, which depends on the lattice 
parameters. Simulation of the dynamics of the te soliton in 
a chain with free ends shows clearly that there are several 
stages of its evolution (Fig. 11). The first stage is char­
acterised by the absence of deceleration and the front 
velocity is practically identical with the calculated value. 
A postfrontal region is established in this stage. In this 
region an intermediate dynamic state, corresponding to the 
metastable conformation mb, relaxes to the final state with 
oscillations near the equilibrium configuration of the 
products (b state). The subsequent soliton evolution is 
associated with the emission of radiation, which transfers 
the energy of the frontal region itself to a region occupied 
by molecules in the intermediate state. During this stage the 
soliton is decelerated slightly and its profile is distorted in 
the region of the intermediate state which follows directly 
behind the front. The final stage begins with a strong 
deceleration of the front and is completed by its total 
stoppage and formation of a clear boundary which 

Figure 12. Dependence of the range of the soliton te on the width of its 
profile. 

separates the reagents from the reaction products. The 
process of formation of this boundary begins with the 
formation of an extended transition region, which then 
breaks up. The total range of the te soliton is 20-100 unit 
cells, depending on the lattice parameters. This scenario of 
the stoppage of the reaction front is similar to the 
deceleration and stoppage of spinodal decomposition in 
mixtures of polymers observed over quite different spatial 
and temporal scales [28]. 

Another unexpected feature of the case under discussion 
is an unusual dependence of the lifetime (range) of the te 
soliton on its width (or, which is equivalent, on its velocity). 
Traditionally it is assumed that an increase in the width of a 
topological soliton reduces the influence of the discrete 
structure of the lattice and, consequently, increases the 
lifetime. However, in the system under discussion the 
dependence of the lifetime on the width is opposite 
(Fig. 12). Very wide solitons, with the velocity close to 
that of sound s2, decay practically immediately, so that it is 
not possible to determine their range. An increase in the 
velocity of a kink (and a reduction of its width) increases its 
range, which reaches the maximum value Nt = 65 of unit 
cells when the velocity is Ste w \.%s2. To the right of the 
maximum value the soliton range falls slightly. This 
behaviour of the lifetime of a topological soliton can be 
explained by a competition between two mechanisms. The 
decay of wide ('slow') solitons is related to a long-
wavelength instability, whereas in the case of narrow 
('fast') solitons the discrete nature of the lattice is the 
decisive effect. 

Numerical investigation of the soliton dynamics in a 
chain with X\ ± — 0> l2±—li^ 3 =+\ is reported in 
Ref. [12]. For this type of the sublattice interaction only 
nontopological solitons can exist in a bistable nondegener­
ate chain and only topological solitons ti±, describing the 
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transition of a chain from one equivalent state to another, 
can appear in a degenerate chain (gx = 0). 

If the bistability condition Xi < y/K§o/2 is satisfied, a 
degenerate chain (gi = 0) has two equivalent stable homo­
geneous states xn = ±l,yn+i — yn = 0} (±i states). In the 
limit gi —> 0 the state b goes over to a state — i and the state 
e to +i. The soliton solution of the system of equations (10) 
and (11) should have the asymptote 

* - > ± l ( = F l ) , J C ^ 0 ' C ^ ± o o , 

when the effective potential of the nonlinear oscillator of 
. Therefore, only if 
< 0 can the system 

2 \ 2 Eqn (13) has the form Q(x) = a(l — x 
a = S o O + PXi/gK*2 - si)]} (s2 ~ 1)" 
of equa t ions (10) and (11) have the solut ions 

xli±(C) = ± t a n h ( V - 2 a C ) , 

PuAO = 2XMs2 ~ $) c o s h ^ v ^ C ) ] " 1 , 

(40) 

which correspond to the topological solitons ti± describing a 
localised transition from one steady state (=p) to another 
(± / ) . 

The existence of the topological solitons ti± requires 
that the inequality a < 0 should be satisfied, which 
determines the spectrum of the permissible velocities: 
0 ^ s < sp2, s2 < s < 1 if s2 < 1 and 0 ^ s < min(l, sp2), 
max(l, sP2) < s < s2 if s2 > 1. Because of the bistability 
condition we have sPl > 0, so that the ti± solitons always 
have a spectrum of velocities consisting of two bands 
separated by a gap of width s2 if s2 < 1 and of width 

-a l-sr Ks - 4 ) ( !
 ~ s ) i 

2g0(\-s2) 
3 V ^ 2 - ^ ) ^ 2 - ^ ) 3 

( , 2 - ^ ) 2 - ( ^ - 4 ) ( / - 2 , 2 + ^ ) 
X 1 - s2 

The dependences of Eti and Lti on s when s2 > 1 are 
plotted in Fig. 13, whereas those for s2 < 1 are given in 
Fig. 14. It should be noted that if s —> ma.x(l,sP2) when 
s2 > 1 and if s —> sPl when s2 < 1, the soliton width goes to 
the limit Lti —> oo, so that for these values of the velocities 
the discrete system of equations (6) and (7) always has 
smooth soliton solutions. The soliton energy increases 
monotonically in the first band of the velocity spectrum 
and inside the second band the energy has a minimum at the 
velocity s = s'. 

The stability of the topological solitons ti± at velocities 
corresponding to the lower band of the spectrum has been 
demonstrated analytically [7, 25]. A numerical investigation 
of the stability has shown [7] that solitons are stable in the 
upper band of the spectrum if s > sf and unstable if s < sf. 
This allows us to conclude that the topological solitons ti± 
are stable only at velocity values such that dEti/ds > 0. 

If gi > 0 the bistability condition of Eqn (5) becomes 

Hi < Hp 
4 « ? - l ) " 

\spi — 1| if s2 > 1. For s2 > 1 the external sublattice is and the limiting values of the velocities are 
compressed in the soliton localisation region, but if 
s2 < 1, the compression occurs in the lower velocity band 
and dilation in the upper band. 

The width of the topological soliton is 

SP, = SP, = S2\l 1 - < Sp, = W 1 -
g0K(3£i - 1) 

: 2[*{(0)]"1 = ^ / 2 ( l - ^ ) ( , 2 _ S 2 ) B ( Y •4)1" 

and its energy is 

The soliton b\ has a one-band velocity spectrum 
max(l, sp) < s < s2 and the solitons b2 and b3 have a 
one-band spectrum m i n ( l , ^ 2 ) < s < m i n ( l , ^ 3 ) . Therefore, 
the necessary condition for the existence of the soliton bx is 
the inequality s2 > 1 and the necessary condition for the 
existence of the solitons b2 and b3 is the inequality sP2 < 1. 

10 — 20 

10 

Figure 13. Dependences of the energy Eti and width Lti (expressed in terms of the chain periods) of the topological soliton ti on the velocity s, calculated f 
or g 0 = 0.1, gl=0,ii=l,K = 4,s2=2,Xi= 0, and x2 = 0-33 (sPi = 1.34981). 
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The dependences of the amplitudes Ax and Ay9 of the 
width Lb, and the energy Eb, measured from the energy level 
of the b state, of the soliton bx on its velocity s are plotted in 
Fig. 15. The energy of the soliton bx is a monotonic 
function of s only for fairly high values of the asymmetry 
parameter gx. At low values of gx the function Eb(s) has a 
local minimum. Near the limit gx —> 0 the width of the 
soliton bi increases monotonically and in the limit it decays 
into two topological solitons ti± and ti_ (Fig. 16). The 
interval of the velocities of the soliton bx then goes over to 
the upper band of the velocity spectrum of the topological 
soliton. A numerical investigation of the dynamics of the 
soliton bx shows that it is stable only for such velocities s 
that dEb/ds > 0. 

The velocity spectrum of the soliton ex is found from the 
system of inequalities (27). For a chain with 
d = rjl — 1 + [2x2^s(ri2)/K§o] < 0 the spectrum consists of 
two bands 0 ^ s < min(l, spg), s2 < s < 1, if s2 < 1 and of 
one band 0 ^ s < m i n ( l , ^ g ) if s2 > 1, where 

"8 2 V Kg,[\ + {d/2n\)]-
A soliton can exist in a chain with d > 0 only if s2 > 1, 
when the soliton has a one-band velocity spectrum 
m a x ( l , ^ g ) < s < s2. The velocity spectrum of the solitons 
e2 and e3 is found from the system of inequalities (28). For 
d < 0 it consists of the interval max(l, spg) ^ s < sp2, 
whereas for d > 0 the interval is sPl < s < min(l, spg). 

Figure 15. Dependences of the amplitudes Ax and Ay, width Lb (in 
chain periods), and energy E (measured from the conformational energy 
level b) of the soliton bx on the velocity s, calculated for gQ = 0 . 1 , 

fi = 1, K = 4, X\ = 0, Xi = 0.33, gx - 0.05 (sp3 - 1.389727, curve 7) , 
gi = 0 . 0 0 5 {sP3 = 1.354726, curve 2), and g l = 0.005 ( S p 3 = 1.350318, 
curve 3). 
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Numerical simulation of the dynamics of the e solitons has 
demonstrated their instability at all velocities. 

4. Conclusions 
A full classification is given above of localised nonlinear 
excitations that exist in a wide class of bistable energetically 
nondegenerate systems. One of the conclusions that follows 
from the analysis of the results obtained is the existence of 
a cooperative fundamental mechanism of structural 
transitions and of chemical reactions in bistable systems 
which are nondegenerate from the energy point of view. 
This mechanism is realised by topological solitons of a new 
type, which (in contrast to the conventional topological 
solitons) have a unique velocity of motion, convert a region 
behind a wavefront into an intermediate dynamic state; this 
is followed by relaxation to the final state quite far behind 
the front and in practice without any influence on the front 
dynamics. It is shown that such very (physically) different 
processes as structural transitions and chemical reactions in 
molecular crystals, transport of protons in hydrogen-
bonded lattices, and conformational transitions in DNA 
can all be described by various specific realisations of the 
general Hamiltonian of Eqn (1). Therefore, the conclusions 
drawn apply equally well to a wide class of bistable systems 
and make it possible to explain a number of 'anomalies' 
revealed by real experiments and computer simula­
tions [27]. 

The above analysis of the models, based on linearisation 
of the equation associated with one of the components of 
the system (according to the current terminology this is 
called the 'external sublattice' deformation), is an important 
stage in the development of realistic models of the dynamics 
of complex molecular systems. At this stage it is possible to 
investigate analytically the soliton solutions of the equa­
tions of motion so as to identify the nature of elementary 
excitations in complex systems which are energy-nonde-
generate. Therefore, a basis can then be provided as a 
starting point of a more detailed investigation of nonlinear 
dynamics, thermodynamics, and kinetics of specific systems. 

One of the potential directions of further research is the 
construction of models of solid-phase reactions of the 
dissociative type (similar to the dissociation of solid 
explosives), which requires allowance for the anharmo-
nicity of the intermolecular interactions and an analysis 

of the behaviour of soliton-like solutions when the energy 
minimum corresponding to the final stage is shifted to 
infinity. 

The question of initiation of soliton excitations in real 
systems is particularly important. Local initiation of 
solitons seems to be the most likely process. However, 
preliminary investigations have shown that formation of a 
kink-antikink pair by thermal fluctuations is also possible. 
It follows from our results that in the case of exothermal 
reactions or structural transitions the relevant soliton 
solution is unstable and has a finite lifetime. This makes 
the problem of the influence of the anharmonicity of the 
intermolecular interaction on the dynamics of solitons 
particularly important. 

We shall conclude by noting that soliton-type excita­
tions, similar to those discussed in the present paper, may 
exist in many other physical systems. 
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Appendices 
A.l Exothermal reactions in a diatomic molecular 
crystal. Detonation of solid explosives 
For a long time the propagation of shock waves in 
chemically active media has been the subject of close 
attention both of physicists and of chemists working in 
various specialised fields. On the one hand, analytic and 
experimental methods based on the macroscopic approach 
to the propagation of a detonation wave are being 
developed extensively [17-20] and, on the other, the 
subject of molecular structure and of possible paths of 
the reactions of explosives [21-24] are being investigated 
actively. However, there still remain many unsolved 
problems. There have been several recent investigations 
which in truth can be regarded as the 'missing link' between 
the macroscopic approach to the phenomenon of propaga­
tion of high-temperature processes in a condensed medium, 
on the one hand, and molecular methods for active media, 
on the other. The methods of molecular-dynamic Simula-
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U(r) 

Figure 17. Qualitative representation of the intramolecular potential 
U{f) in the case of a structural transition (a) and dissociation of the 
chain molecules (b). 

U(r) 
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Figure 18. Schematic model of a diatomic molecular chain. 

tion have been applied to the propagation of shock and 
detonation waves in gaseous and condensed media [13-15, 
25-29] . In fact, the processes of physicochemical trans­
formations, which occur in the region of the shock 
wavefront, require a time comparable with the inter­
molecular vibration time 10~1 2 s) and are localised in 
ordered regions extending over just a few interatomic states 

1 0 _ 9 m ) . Therefore, these processes represent an ideal 
object for the investigation by the molecular-dynamic 
method, both from the point of view of the temporal 
and spatial resolution. However, as pointed out in the 
Introduction, an analytically soluble model is essential to 
provide an unambiguous interpretation of numerical 
experiments. 

We shall consider the quasi-one-dimensional model of a 
diatomic crystal proposed in Ref. [20]. We shall assume that 
a one-dimensional chain consists of alternating particles of 
two types: A and B. To be specific, we shall assume that 
mA ^ m B , where mA and m B are the masses of the molecules 
A and B. A molecular chain is formed as a result of 
consecutive attachment of diatomic AB molecules because 
of the intermolecular interactions. The qualitative form of 
the intramolecular potential U is shown in Fig. 17. The 
intermolecular interactions of atoms can be described by 
harmonic potentials, which is justified by the fact that in the 
shock wavefront the chain is compressed and the molecules 
interact only by repulsion. Compression makes the harmonic 
potential physically equivalent to that encountered in reality 
and characterised by a positive curvature in this range of 
values. 

Let us assume that the link in the initial state of a chain 
is / and that the equilibrium length of intramolecular bonds 
is r 0 . The Hamiltonian of the chain is 

"1 2 1 2 

2 m ^ A n + 2 M B ^ B W + U(zBn -ZaJ 

+ 2 ^ I ( Z A W -Zb„. 

•ZBn 
•lf + l-KA(zAn_ -ZAn •i)2 (41) 

where zAn

 a n d Z B W

 a r e the coordinates of the nth chain 
particles An and Bn; U(z) is the potential of the 
intramolecular interaction, which has a minimum at 
z = r 0 ; Ki,K2,K3,K4 are the rigidities of the intermolec­
ular interactions; the dot implies differentiation with 
respect to the dimensionless time t. A schematic model 
of the lattice is shown in Fig. 18. 

We shall now go over from absolute coordinates to 
relative displacements uAn = zAn — nl + r0 — ui9 uQn = 
zB — nl. Then Hamiltonian (41) becomes! 

'1 2 1 2 

2 M A " A W + 2 M B ^ B W + ®(uBn ~ UA„) 

1 2 1 
+ 2 ^ 1 (UAn - uBn_x + « 1 ) + ^ K2 (UBn. UAn 

2 1 \2 

\ 2 
•Ml) 

(42) 

where the intramolecular potential is &(r) = U(r + r0 — U\). 
In simulation of the structural modification of the chain it 

is convenient to use the potential cp — 4 (a quartic double-well 
potential) with a linear asymmetry 

<P(u) = Sq [(uUq ) — 1] + SiUUq + e2 , (43) 
where the parameter s0 > 0 represents the height and 
u0 > 0 the width of the energy barrier between two stable 
states of a molecule. The parameter EX > 0 represents the 
difference between the energies of the ground states. If 
Si = 0, then Eqn (43) is a double-well symmetric potential 
with minima ±u0 and a barrier e 0 , whereas for 
0 < Si < %s0/y/27 it is an asymmetric double-well potential 
with a minimum ux corresponding to the initial state of the 
chain. The parameter s2 (from which energies are 
measured) is selected on the basis of the condition 
&{u\) = 0, i.e. it is assumed that 
£2 = - S o l 1 - ( M I M Q - 1 ) 2 ] 2 - SxUxUQ1. 

Let us also introduce variables representing the motion 
of a molecule as a whole: a displacement of the centre of 
mass Rn = (mAuAn + m B w B J / M , where the total mass of the 
molecule is M = mA + m B and the intramolecular displace­
ment (reaction coordinate) is rn = uQn — uAn. We then have 

MA„ =Rn -mQrnM~ : Rn -mArnM~ 

Using these expressions, we can transform Hamilton­
ian (42) with the aid of elementary procedures into 

E = ^\\MR2

n+^mr2

n + Qx(rn) +^k(rn+l - rnf 
n v 

+ \K(Rn+1-Rn)2 + (rn-Ul) 

( [ x ^ J V i - f l ^ + X - ^ - J V i ) ] } , (44) 

f A different form of Hamiltonian (41) is used in Ref. [20] and the 
asymmetry of the potential &(u) is ensured by a term proport ional to u3. 
However, we can easily show that these two formulations are equivalent. 

file://-/22222229-
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where m = mAmQ/M is the reduced mass of a molecule in a 
chain, ^ ( r ) = $(r) + [(Kx + K2)(r - uxf/2] is the reduced 
intramolecular potential, and k = [K3mA + KAm\ 
-mAmB{Kx + K2)]/M2, K = Kl+K2+K3+ K4, X+ 

= [mB(K2+KA)-mK(Kx +K3)]/M, X_ = [mA(K2 + K3) 
-m^K.+K^/M. 

Hamiltonian (44), which is a special case of the 
generalised Hamiltonian of Eqn (1), allows us to consider 
a diatomic chain as a system of two interacting sublattices: 
the intramolecular (internal) sublattice with relative dis­
placements of the sites rn, with the site mass m, and with the 
rigidity k, as well as the external sublattice, which describes 
the motion of molecules with the relative displacements of 
the sites Rn, with the site mass M ^ m, and the rigidity K. 
The parameters X+ and X_ represent the sublattice inter­
action. In contrast to the traditionally investigated two-
mass lattices (see, for example, Ref. [21]), the parameter k 
governing the slope of the optical branch of the dispersion 
equation can be both less or more than zero. 

In our model the topological te soliton corresponds to 
the motion of the reaction front, whereas the nontopolog­
ical e solitons may form a front with a complex structure 
when the detonation is initiated by impact. Since the 
velocities of the nontopological solitons are higher than 
the velocity of the topological soliton, it is the former that 
form the visible edge of the front of a detonation wave. This 
mechanism can account for the results of computer 
experiments [17-19] and in particular we can see why 
steady-state motion of the front of a detonation wave 
appears only on introduction of a dissipative term in the 
equation of motion [17]. It can be shown that in the model 
of a solid explosive considered in Ref. [17] the long-
wavelength Hamiltonian does not contain the term 
pzF(x), which governs the existence of the topological 
solitons similar to the te solitons and responsible for the 
soliton mechanism of the propagation of a detonation 
front. On the other hand, the model of an elementary 
cell, which admits the existence of both te and e solitons, 
has been used [18, 19] and this leads to the existence of a 
steady-state front of a detonation wave. It follows from the 
results of computer simulations of the stability of the te 
solitons that even a weak nonlinearity of the potential 
increases considerably the lifetime of a reaction kink. The 
last comment should be made about the profile of the 
intramolecular potential. The propagation of a detonation 
wave has been simulated with the aid of a potential of the 
dissociative type (Fig. 17), for which a minimum corre­
sponding to the reaction products is shifted to infinity. We 
have used a double-well potential in which the equilibrium 
states, corresponding to the reagents and reaction prod­
ucts, are separated by a finite distance. However, the 
effective potentials Q in Eqn (13) are qualitatively equiva­
lent for these two cases, i.e. they have two minima 
separated by a finite distance [20]. It therefore follows 
that a change of the potential from the double-well to the 
dissipative form does not fundamentally alter the reaction 
propagation mechanism. An important feature of the 
investigated models is relaxation of the intermediate state 
to the final state of the products. Such a process cannot be 
described within the framework of the adopted analytic 
model, but it appears clearly in the computer simulation 
results. It follows that an analytic solution corresponds to 
the intermediate asymptote of the process and describes 
only the region of the front. 

A.2 Dynamics of local transitions in DNA molecules 
Biological macromolecules exhibit a strong polymorphism 
of their secondary structures. Relatively small barriers, 
which separate stable states, and the small differences 
between the free energy of possible structural forms means 
that the relative positions of the structure elements 
(conformation) of the cells macromolecules can vary 
within wide limits, which both ensures reliable storage of 
genetic information and easy transfer of this information. 
These polymorphic properties are manifested most strik­
ingly by the DNA macromolecule [29]. Under physiological 
conditions DNA molecules are in the B conformation of a 
double helix, but in local regions they may go over to the 
A, C, D, Z, and other conformations [30]. It is assumed 
that it is the transitions to the metastable states that are 
responsible for the high reactivity of biological macro­
molecules [31, 32]. Studies of the dynamics of localised 
excitations (conformational solitons) should make it 
possible to interpret the experimental data on the long-
range effects in biological systems and to gain a better 
understanding of the mechanisms of regulation of the 
biological activity of the cells. Some progress in this 
direction has been made in studies of the B - A transitions 
in DNA macromolecules [13-16]. 

In general, the model of a DNA-type macromolecule is a 
double chain of bistable components, which corresponds to 
the presence of two of the lowest-energy forms of the sugar 
ring of a nucleoside [16, 33]. The mobility of a monomer 
link in a chain can be described simply by considering a unit 
cell with four components, two of which correspond to 
nucleosides, whereas the other two correspond to the 
phosphate groups of the 'backbone' [16]. The positions 
of these components of the double helix of DNA determine 
the parameters of the model, which are calculated from the 
known x-ray structure data. The masses of the backbone 
units (m0) are constant along the whole macromolecular 
chain, but the masses of the nucleosides (m,) are different, 
because they include the masses of the nucleic bases. Here 
the index / = 1,2 labels the macromolecular chains. The 
energy of a macromolecule, considered in the four-compo­
nent approximation, is 

E = \^{m0R2(n)+mi^(n) + U[ri(n),Ri^} , (45) 
n,i 

where the summation over n includes all the monomers in 
the chain; the position vectors Rt and rt describe the 
displacements of the centres of mass of the backbone and 
nucleosides, respectively; U is the potential energy which 
depends on the coordinates of the conformational 
displacements. In the linear approximation the model of 
Eqn (45) makes it possible to describe qualitatively and 
quantitatively the vibrations of the structure elements of 
DNA and to interpret the If (low frequency) Raman 
scattering spectra [34]. 

This model of the conformational mobility of DNA is 
fairly complex, but in studies of the dynamics of specific 
conformational transitions, such as B —> A, it can be 
reduced to the two-component form [16]. Allowance is 
then made for the fact that the conformational transition 
occurs simultaneously in both strands of the double chain 
of the macromolecule. The nuclear acid bases move 
simultaneously in coupled pairs without a significant 
change in the lengths of the hydrogen bonds. In the course 
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of the B —> A transition the shape of the sugar ring and of 
the nucleoside as a whole changes. The changes in the 
geometry of a monomeric link are accompanied by 
simultaneous twisting (torsion) and bending of the back­
bone of the macromolecule. Bearing these points in mind, 
we can now use the four-component model to describe 
simultaneous motion of the structure elements in the 
double-chain links. It is shown in Ref. [16] that the 
dynamics of a conformational transition can be described 
in terms of displacements of the centres of mass of 
monomeric links [R = (mprp + 2m0rq)/M ] and of displace­
ments of the pairs of nucleosides relative to the core 
(r = rp —rq). Such a description is possible because of 
neglect of the relative displacements of nucleosides in 
pairs, which is typical of the A —> B transitions. It is 
important to stress that the difference between the masses 
of the nucleic acid bases has no influence on the macro­
molecular dynamics. 

In the derivation of an explicit Hamiltonian it is 
convenient to adopt variables which describe torsion of a 
monomeric link (cp) and a shift of a pair of bases along the 
dyad axis (r) (Fig. 19). As is known [29, 30], these compo­
nents are mutually linked and are used traditionally in 
calculations of the energy of the double helix. Flexural 
deformation of a chain varies symbatically with the torsional 
deformation and allowance for it does not give qualitatively 
new results [35]. The Hamiltonian can therefore be retained 
in the form 

E = El +E2+E3 , 

where the torsional energy of the chain is 

n 

the energy of the intramonomer conformational modification 
is 

E2 = Yslmrn+lk(rn+l-rn)2 + ®(rn) , 

I 

Figure 19. Two-component model of the conformational mobility of the 
double-helix D N A molecule. 

and the energy of the interaction of the torsional 
deformation and of the intramonomer conformational 
coordinate is 

E3 = ^G(rn)((pn+l -(pn_x) . 
n 

Here, / and m are, respectively, the moment of inertia and the 
reduced mass of monomeric link of the chain; K and k are 
the force constants of the interaction between neighbouring 
monomers; &(r) is a double-well potential function of a 
structural transition between stable states of a monomer. In 
view of the energy inequivalence of stable states of the system, 
the function &(r) may be asymmetric. It can be described 
conveniently by means of Eqn (43) and the function G 
representing the sublattice interaction can be taken as 
G(r)=X(u\ — r2)/ul. The parameter X is responsible for 
the change in the height of the effective barrier of the 
intramonomer potential in the course of twisting of the 
DNA macromolecule. 

An analysis of this model demonstrates that a chain has 
two stable homogeneous states: the ground state 
{rn = ui < 0, pn = 0 } ^ ^ ^ , which corresponds to the B 
state of the DNA molecule, and a state higher on the 
energy scale {rn = u2 > 0, pn = p(u2) < 0 } ^ ^ , correspond­
ing to the metastable A conformation, where pn = cpn+l — cpn 

is the relative displacement of the nth monomer of the chain. 
The inequivalence of these states corresponds to the 
inequivalence of the B and A conformations under physi­
ological conditions. 

Such quantitative estimates show that there may be an 
effective long-range mechanism mediated by the motion of 
the nontopological bx solitons [13-15]. The proposed 
soliton mechanism should make it possible to provide a 
self-consistent interpretation of the experimental 
results [36-38]. 

A.3 Topochemical polymerisation of diacetylenes 
The solid-phase polymerisation of diacetylene is a true 
topochemical reaction, which occurs in an undeformed 
crystal in the absence of lattice defects. It begins at the 
points distributed at random throughout the volume of a 
crystal and occurs homogeneously inside a monomer 
crystal [39-42]. Growing polymer macromolecules form a 
solid solution of these molecules in a monomer crystal. This 
preserves the continuity of the original crystal. It follows that 
the solid-phase polymerisation of diacetylene represents 
effectively a special phase transition between a solid 
monomer and a solid polymer, as a result of which a 
perfect monomer single crystal is transformed into a perfect 
polymer single crystal without participation of a liquid-like 
intermediate state in this transition. 

A monomeric link of diacetylene and the configuration 
of the resultant polymer molecule are shown in Fig. 20, 
where the symbols R and Rf denote radicals that are side 
substituents. The polymerisation reaction represents the 
1,4-trans-addition process, which occurs because of specific 
rotations of the monomer molecules relative to their centres 
of masses, accompanied by the approach of these macro­
molecules by 0.04-0.1 of the lattice constant of the 
monomer crystal. The result of this stereo specific polymer­
isation is a stereoregular polymer with a small number of 
defects. In some cases the length of the chain formed in this 
way is comparable with the size of a single crystal. 
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The schematic diagram in Fig. 20 makes it possible to 
understand readily the processes that occur in topochemical 
polymerisation of diacetylene. The molecules in a monomer 
crystal are distributed in piles around one of the crystallo-
graphic directions in such a way that the last carbon atom of 
one of the molecules approaches to a distance r ^ 4 A the first 
carbon atom of the adjacent molecule. Polymerisation involves 
successive rotation of each molecule, which alters the angle of 
slope of the monomer units toward the pile axis. In ideal cases 
such a change in the angle of slope occurs even without 
displacement of the centres of mass of the individual molecules. 
If this condition is satisfied or nearly satisfied, we have the 
'principle of small displacements' in topochemical reactions, 
which has been formulated earlier [43]. Moreover, the type of 
the spatial packing of the side substituents R, as well as the 
specific volume and the space symmetry of the crystal lattice do 
not change in the course of polymerisation. The majority of 
polydiacetylenes have approximately the same lengths of the 
repeated macromolecular link (~ 4.91 A) and also of the 
same lengths and angles of the bonds between the carbon 
atoms, which form the backbone of the chain [44]. 

The results of experimental investigations support qual­
itatively the geometric model shown in Fig. 20. In some cases 
the same diacetylene monomer can be obtained in different 
crystalline modifications, which are very different in respect 
of their reactivity. Consequently, in the solid phase the 
reactivity of diacetylenes is controlled by the geometric 
packing of the monomer and not by the chemical nature 
of the side substituents R and Rf [39]. On the other hand, 
knowledge of just these packing parameters is sometimes 
insufficient to judge reliably the reactivity of one particular 
diacetylene. It is known that there are several monomers of 
this compound and they have practically identical crystallo-
graphic packings, but they differ very greatly in respect of 
their reactivities. 

In the approximation of a quasi-one-dimensional 
isolated chain the process of solid-phase topochemical 
polymerisation of diacetylene can be described by the 
'molecular mechanical' model. In this model the monomer 
molecules are replaced by absolutely rigid 'dumbbells' each 
of mass M and with a moment of inertia /. The exothermal 
potential U(cp) determines the dependence of the energy of a 
monomer link on the angle of its tilt relative to the 
crystallographic axis. This angle plays the role of the 
reaction coordinate. Displacements of the centres of 
masses of monomer links and the geometric deformation 
of the unit cell are controlled by harmonic bonds of 
rigidities KX,K2,K3, and K4: bonds with the rigidities K3 

and K4 should connect identical ends of the dumbbells (in 
the case of different side substituents, R and Rf and the 

rigidities are different); the bonds with rigidities ^ a n d K2 

connect the opposite ends, i.e. they are diagonal. The 
potential U(cp) for —n^cp^n has only one minimum 
at the point 0 < cpm < \j/09 where \j/0 < % is the equilibrium 
value of the angle of tilt of the monomer relative to the 
crystallographic axis of a monomer crystal. 

The deformation energy of the model lattice is 

= £ l-Kx{Ln-Lz)2 + l-K2{Sn-SQ)2 

+ \k3{Iu„ - k?+\KA{ld

n - l0)2 + U(cpn) 

where Ln,Sn,lu

n,ld

n are the actual lengths of the bonds; 
L 0 , 5 0 , and l0 are their equilibrium lengths in a monomer 
crystal. The length l0 is the lattice constant of a monomer 

1/2 and crystal, and L 0 = (/p + a + 2al0 cos^ 0 ) 
^0 = Qo + a2 — 2al0 cos^ 0 ) are the lengths of the 
diagonal bonds (a is the length of the monomer molecule). 

If we bear in mind the deformation of the intermonomer 
links during polarisation of diacetylene, we can write the 
Hamiltonian of the system in terms of variables represent­
ing the displacements of the centres of mass of a monomer 
unit R and of the slope angles cp: 

£ -MR2

n+-Iq>i ) +Ed 

1 

Yl{\MK2n+Wn+\K(.Rn+l 
n v 2 ™ 2 

>2 

•Rn? 

+X_(Rn - * „ _ ! ) ] + UX (<?„)} , 

•Rn) 

where 

K = (l0 + a cos<A 0 f(KiLo 2 + K2So2) + K3 + K4 

k=-{K3+ KA) -alosiniA0(^o2 + K2so2) , 

X = 2al0 sin tj/0(KiL^2 + K2SQ 2 ) , 

X_ 

(K3 - K4) - ok sin « A o ( ^ o + W ) . 

(K4 - K3) - ah, sin « A o ( ^ o + W ) 

The effective potential Ul(q>) = U((p) + X(q> — \I/Q) can in 
general now have two minima: one at \j/x w cpm, and the 
other at ip2 w rj/0. The absolute minimum rj/l corresponds to 
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the polymer state of the chain and the higher value of i//2 

corresponds to its monomer state. 
In this model the motion of the topological te soliton 

corresponds to an elementary event in the growth of a 
polymer chain and the finite range of a soliton may reduce 
considerably the observed activation energy. The decelera­
tion of solitons and the formation of a monomer-polymer 
interface corresponds to chain breaking and formation of a 
defect in a single crystal. On the other hand, the influence of 
external stresses and of the process of relaxation of a crystal 
from the monomer phase to the polymer can influence 
significantly the lifetime of the te soliton, which alters the 
molecular-mass distribution as the degree of conversion to 
the polymer increases. 

A.4 Model of the proton mobility in a strongly polarised 
chain of hydrogen bonds 
Proton transport in molecular systems with hydrogen-
bonded chains is one of the important topics in biophysics. 
For example, transmembrane proton transport is an 
intermediate mechanism in energy conversion in bio sys­
tems [45]. According to the well-known hypothesis of 
Mitchell, the intermediate stage in realisation of the 
energy from the oxidation of food products in mitochon­
dria is the energisation of their coupled membranes, which 
is achieved by increasing the proton concentration on the 
outer surfaces by proton 'pumps'. 

The molecular mechanism of transmembrane proton 
transport was first discussed by Onsager [46, 47] who 
postulated that proton channels are formed from contin­
uous chains of polar groups of amino acid residues of 
transmembrane protein molecules. This hypothesis has been 
developed further [48-50] and confirmed by studies of the 
structure of the proton channels in the bacteriorhodopsin 
molecule, which is a light-controlled proton pump. For 
example, according to Ovchinnikov et al. [51], the proton 
path in the bacteriorhodopsin molecule passes along amino 
acid residues containing a hydroxyl group. 

It is currently assumed that the transport of protons 
across a membrane via protein proton channels occurs 
along hydrogen-bond chains O - H • • - O - H • • - O -
H - - - 0 - H - - - , which are formed by amino acid residues 
containing O - H groups (serine, threonine, tyrosine). 
Tyrosine residues, which occur in seven transmembrane 
alphahelical segments of the molecule, for a chain of 
hydrogen bonds in the bacteriorhodopsin molecule [52-
53] (Fig. 21). 

A chain of hydrogen bonds may also be in a different 
state: H - O • • • H - O • • • H - O • • • H - O • • • . In the absence 
of an external field the two states of the chain are equivalent. 
A high proton gradient at the 'energy membrane' of a cell 
gives rise to a transmembrane electric field of intensity 
£ ~ 1 0 7 V m - 1 , which polarises the hydrogen-bond chain 
forming a proton channel. The two ground states of the 
chains are then no longer energy-equivalent. Therefore, the 
transmembrane chains of hydrogen bonds in biosystems 
are bistable and have energy-nondegenerate ground states. 

In the absence of an external electric field directed along 
a chain, a proton (H) in each O - H • • • O hydrogen bond has 
two energy-equivalent stable equilibrium positions, separ­
ated by a barrier of a symmetric-well potential. This 
potential can be derived as a sum of two single-well 
oxygen-proton potentials. 

Tyr43 
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\ H 
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Figure 21. Structure of the proton-conducting path of the molecule of 
bacteriorhodopsin [53]. 

The interaction of a proton with an atom of oxygen can 
be described conveniently by the Morse potential 

U(r)=D0{exV[-b(r-r0)}-\}2 , 

where D0 and r 0 are the energy and length of the O - H 
valence bond in an isolated hydroxyl group; b is the 
phenomenological parameter of the potential, which can be 
determined from the frequency of the longitudinal 
vibration of the valence bond; r is the actual length of 
the valence bond. It is assumed that the proton is always 
located on the hydrogen-bond line. Then its double-well 
symmetric potential can be defined as the sum of two 
Morse potentials [54-56] 

V(u, p) = U + P 
+ u\+U 

U - + w 0 U 

+ P 

• w 0 

= e 0 ( a - 1)~ a — cosh(Z?w) exp I —-bp 

-exp( -bp)]} , 

1 1 2 

(46) 

where / is the lattice period (step), p is the relative 
elongation of the hydrogen bond, and u is the coordinate of 
the proton measured from the midpoint of the line joining 
the neighbouring oxygen atoms. 
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At an equilibrium position of the chain the potential of 
Eqn (46) has two minima u = =bw0, where w0 is found from 
a = cosh(Z?w0) = |exp{£[(//2) — r 0 ]}, separated by a barrier 
of height 8 0 = D0(\ — a - 1 ) 2 . If p ^ 0, the minima of the 
potential ±w(p) are found from the equation 
cosh(Z?w) = aexp(Z?p/2), and the barrier height is 
g(p) = D 0 [ 1 - a _ 1 e x p ( - £ p / 2 ) ] 2 . The potential (46) is of 
the double-well type only if p > p0 = — 2b~l In a. If the 
bond is strongly compressed, so that p ^ p 0 , it becomes a 
symmetric single-well potential. 

The energy of a hydrogen bond in which the proton is in 
one of its two ground states can be described by the 
harmonic potential V00(p) = \Kp2, where K is the rigidity 
constant of the hydrogen bond. In this case the last term of 
the potential described by Eqn (46) should be replaced with 
the potential V00(p) in such a way that the total energy of 
the 0 - H - - - 0 bond is W(u,p) = V011(u,p) + V00(p), 
where 

2 

^ O H ( W , p ) =D0 
1 — a lcosh(bu) exp 

1 -bp (47) 

Let us now assume that the chain is in an external static 
electric field of intensity E. Then the total energy of the 
chain can be represented by the expression 

R n ) +V0H(urnpn) +e£un , (48) 

where Rn is the displacement of the nth oxygen atom of 
mass M from its equilibrium position and rn is the 
displacement of the nth proton of mass m, measured from 
the midpoint of the nth step in the chain which is in an 
equilibrium position, k is the strength of the p r o t o n -
proton interaction, e is the proton charge, and the 
variables are 

(Rn+Rn+l), Pn=R n+1 Rn 

In an analytic investigation it is desirable to replace the 
double-well potential of Eqn (47) in the Hamiltonian (48) 
by a simpler expression 

4>(rn) + [Gi(rn) + G2(rn)](Rn+l-Rn) , 

which differs little from Eqn (48) if pn is small and where 
the potential &(r) is given by Eqn (43) and the functions 
Gi(rn) are defined as follows: 

G\{r) =Xl(r-ul)uo\ G2(r) = X2(u\ - ?)u^ . 

Here, one parameter is Si = eSu0 > 0, Xx = eSdu(p) d p | p = 0 

represents the change in the asymmetry of the potential 
when the bond is deformed, and X2 = d e ( p ) / d p | p = 0 is the 
change in the barrier height. We shall select the reference 
point e2 for the proton energy in such a way that in the 
ground state r = u\ < 0 the energy is ${u\) = 0. Then the 
Hamiltonian of the system can be represented by the sum 
E = Ei + E2 + E3, where 

= £ l-MR2

n + l-K{Rn+x-Rn)2 

is the energy of the oxygen sublattice, 

£ 1 -2 1 , , 
-mrn+-k(rn+l 

rn) + * W 

is the energy of the proton sublattice, and 

E3 = ^2[Gi(rn) + G2(rn)](Rn+l-Rn) 
n 

is the energy of the interaction of the oxygen and proton 
sublattices. The Hamiltonian E represents a natural 
generalisation of the two-component function first used 
to describe proton transport in a chain of hydrogen 
bonds [7, 24, 57]. 

In the proton transport model the motion of the te 
soliton corresponds to an elementary event as a result of 
which all the protons are transferred, in some part of the 
chain, from the 'left' oxygen atom to its 'right' neighbour. 
The resultant proton current represents a series of consec­
utive runs of topological solitons. 
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