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Abstract. The theory of Brownian motion as described by 
nonlinear Langevm equations and the corresponding 
Fokker-Planck equations is discussed. The general 
problems of the theory of nonlinear Brownian motion 
considered are: Brownian motion in a medium with 
nonlinear friction; critical analysis of the three forms of 
the relevant Langevin and Fokker-Planck equations (Ito's 
form, Stratonovich's form, and the kinetic form); the 
Smoluchowski equations and master equations for different 
cases; two methods of transition from master equation to 
Fokker-Planck equation; master equations for one-step 
processes; traditional and nontraditional definition of 
transition probabilities, evolution of free energy and 
entropy at Brownian motion; Lyapunov functionals. The 
following particular examples are considered: Brownian 
motion in self-oscillatory systems; H-theorem for the Van 
der Pol oscillator; S-theorem; oscillator with inertial 
nonlinearity; bifurcation of energy of the limiting cycle; 
oscillator with multistable stationary states; oscillators in 
discrete time; bifurcations of energy of the limiting cycle 
and the period of oscillations; criterion of instability upon 
transition to discrete time, based on the H-theorem; 
Brownian motion of quantum atoms oscillators in the 
equilibrium electromagnetic field; Brownian motion in 
chemically reacting systems; partially ionised plasmas; 
the Malthus-Verhulst process. 

1. Introduction 
Brownian motion is a familiar classroom demonstration. 
This phenomenon was discovered as early as 1927 by a 
British botanist called Robert Brown, who was the first to 
report the incessant chaotic movement of pollen particles 
suspended in liquid. 

The cause of Brownian motion was not understood until 
much later. The theoretical foundations were laid at the turn 
of this century in the classic papers of Albert Einstein, 
Marian Smoluchowski, and Paul Langevin. The jerky 
motion of a suspended particle struck at random by 
surrounding atoms is a manisfestation of the atomic 
structure of a 'continuous medium'. The main results of 
this theory were soon confirmed experimentally by Jean 
Perrin and Theodor Svedberg. 

Today the term 'Brownian motion' has acquired a much 
broader meaning, and the theory of Brownian motion is one 
of the main chapters of the statistical theory of open 
systems. Let us explain this general statement. 

In the statistical theory of open systems the atoms, 
considered as microscopic structural units, are used only at 
the first stage of construction of the theory, in connection 
with the choice of the initial model of the macroscopic 
system in question. The 'working equations' are the 
approximate dissipative nonlinear equations of the 
'mechanics of a continuous medium'. On the kinetic 
level, for example, they are given by the Boltzmann 
equations for the distribution function f{r,p,t). Other 
examples are the Vlasov-Landau equations for a 
plasma, and the relevant equations in solid state physics. 
Here use is made of the concept of a 'continuous medium' 
in the six-dimensional space of coordinates and momenta. 

On the hydrodynamic level the basis is provided by the 
dissipative nonlinear equations of a 'continuous medium' 
for local functions in three-dimensional space —for exam
ple, density p(r, t), velocity u{r,t), and temperature T(r,t). 

For an even coarser description one may use the equations 
of chemical kinetics in the case of concentrations of 
chemically reacting components. The latter characterise 
the motion averaged over the volume of the continuous 
medium; they satisfy a set of ordinary differential equa
tions. 

At all three levels of description — kinetic, hydro-
dynamic, chemical-kinetic —we are dealing with 
dissipative nonlinear equations of a continuous medium 
for deterministic (nonrandom) functions of varying degrees 
of complexity. Such equations may be referred to as the 
dynamic equations of the 'continuous medium', so as to 
distinguish them from the stochastic equations in random 
functions, such as the equations of the theory of turbulence 
in the pulsating (random) hydrodynamic functions. 

At any level of description the approximate dynamic 
dissipative equations may be improved to better match the 
exact dynamic equations of the initial microscopic model of 
the system by taking into account the fluctuations which 
reflect the existence of 'atomic structure' of the 'continuous 
medium'. The inclusion of fluctuations into the dissipative 
equations of a continuous medium is also necessitated by 
the fluctuation dissipation relations, which hold at all levels 
of description. 

There are two general methods for calculating the 
fluctuations. The first is based on obtaining a solution 
of the set of equations in the moments or the correlation 
functions. This is the most general and consistent way of 
calculating both equilibrium and nonequilibrium fluctu
ations. The second method consists of solving the kinetic, 
hydrodynamic, or chemical-kinetic equations that include 
the appropriate random sources (Langevin sources), which 
reflect the structure of the 'continuous medium'. Such 
sources were first introduced by Paul Langevin into the 
dissipative dynamic (but linear) equation of motion of a 
Brownian particle. 

Dissipative dynamic equations are, as a rule, nonlinear. 
Because of this, one has to deal with the more general 
problem of defining the structure of Langevin sources for 
nonlinear systems both for equilibrium and for nonequi
librium processes. The intensities of such sources are, as a 
rule, nonlinear. 

The solution of this problem paves the way for a more 
general description of processes in 'continuous media' on 
the bases of the appropriate Langevin equations — the 
equations of fluctuation kinetics and hydrodynamics, and 
fluctuation chemical kinetics. The role of 'Brownian 
particles' is then played by the distribution functions, 
hydrodynamic functions, or concentrations. 

Fluctuations in the 'continuous medium' have to be 
taken into account in the descriptions of many fundamental 
phenomena. First of all, there is the 'classical' Brownian 
motion of small macroscopic particles in liquid. Its 
description calls for consideration of the fluctuations of 
hydro-dynamic functions of the medium. This can be done 
by introducing Langevin sources into the equations of 
hydrodynamics. We see that Brownian motion itself is a 
consequence of the atomic structure of the medium. 

Of course, the list of phenomena which cannot be 
explained without taking the fluctuations into account 
can be continued. There is the molecular light scattering, 
the equilibrium phase transitions which occur because the 
'former' state is destroyed by fluctuations which gain 
strength as the critical point is approached. Finally, there 
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are innumerable nonequilibrium phase transitions, whose 
sequences form the processes of self-organisation. 

Naturally, in many cases the fluctuations of macro
scopic functions can be calculated in the linear 
approximation. This possibility is incorporated in the 
very concept of a 'continuous medium', which implies 
that a 'point' is defined as a physically infinitesimal volume 
which contains many particles. Owing to this fact, the 
fluctuations in many cases may be considered to be small, 
and the Gaussian approximation is efficient for the 
calculation of even the local fluctuations. The situation, 
however, becomes very different when the system 
approaches a critical point. The Gaussian approximation 
is then no longer adequate, and the nonlinear theory of 
fluctuations must be employed. Nonlinearity of fluctuations 
is even more important in the description of nonlinear 
phase transitions. 

In the calculation of nonlinear fluctuation processes it is 
often more efficient to use the kinetic equations in the 
distribution functions of those macroscopic variables whose 
stochastic dynamics is determined by the corresponding 
Langevin equations. As a result, we come to the so-called 
master equations, which include the Fokker-Planck equa
tions. 

Master equations in the distribution functions of 
macroscopic variables are in many cases linear with respect 
to the distribution functions. The nonlinearity of the initial 
Langevin equations occurs because the relevant coefficients 
of diffusion and friction are themselves functions of the 
macroscopic variables. 

An extensive body of literature is devoted to the theory of 
Brownian motion. The pioneering papers of Einstein and 
Smoluchowski are reprinted in Ref. [1]. This collection also 
includes two reviews by Yu A Krutkov and B I Davydov. 
Some textbooks on statistical physics and physical kinetics 
[2-9] include chapters devoted primarily to the linear theory 
of Brownian motion, in which the dissipative coefficients and 
the intensity of the Langevin source are constant. The 
mathematical basis for the equations of Brownian motion 
has been developed in the classic papers of A N Kolmogorov. 

The nonlinear theory of Brownian motion [5-26] has 
been developing rapidly in recent years. Currently it 
constitutes one of the main chapters of the modern 
statistical theory of open systems. The applications of 
this theory are extremely diverse. For illustration the 
reader may refer to the reviews devoted to the theory of 
fluctuations in lasers [20, 21]. 

Despite considerable progress, however, there are a 
number of fundamental questions which have not yet 
received comprehensive treatment. This paper is intended 
to fill the remaining gaps; we have chosen only those issues 
which pertain to the foundations of the theory. 

First of all, there is the intercomparison of different 
descriptions of nonlinear Brownian motion. Given the 
nonlinear dissipative coefficients, Brownian motion is still 
being described by Langevin equations and the correspond
ing Fokker-Planck equations which are different in 
structure and in physical content. One may distinguish 
three ways of writing the stochastic and the corresponding 
kinetic equations: Ito's form (I-form), Stratonovich's form 
(S-form), and the kinetic form (K-form) [17-19]. 

This ambiguity calls for additional physical analysis 
which would enable one to select the most physically 

reasonable formulation of the equations of the nonlinear 
theory of Brownian motion. 

A similar problem is encountered in case of the so-called 
master equations, which are a straightforward implication 
of the integral Smoluchowski equation. The choice of the 
most natural representation here is also based on additional 
physical arguments. The comparison between the alter
native formulations is drawn for the exemplary case of one-
step processes [19]. 

Issues of fundamental importance also include the 
transition from the Fokker-Planck equation for the 
distribution function /(r , v, t) to the Einstein-Smoluchow
ski equation for the spatial distribution of Brownian 
particles f{r,t). In particular, we discuss the analogy 
between this transition and the transition from the 
Boltzmann equation to the equations of gas dynamics. 
This analogy provides the basis for introducing the 
generalised kinetic equation [27, 28] in the theory of 
Brownian motion, which allows the use of the Kramers 
approximation [11, 12, 29, 30] without resorting to the 
methods of the perturbation theory. 

The discussion is illustrated with examples of Brownian 
motion in passive and active nonlinear systems. In partic
ular, we consider Brownian motion at equilibrium and non-
equilibrium phase transitions. Some problems of nonlinear 
Brownian motion are also discussed. 

For consistency, we start with a brief overview of the 
results of the linear theory of Brownian motion. 

2. Two ways of describing Brownian motion 
2.1 The Langevin equation 
Let a Brownian particle be a sphere of radius a and mass 
M. By v we denote the velocity of a particle relative to the 
liquid. The sphere moving in the liquid is acted upon by the 
force of friction, which at constant velocity v is given by 
Stokes' formula 

F = —Myv, y = n, n = pv , (2.1) 
M 

where the coefficient of friction y is proportional to the 
dynamic viscosity rj. 

The equation of motion with only the force of friction is 
not sufficient for describing Brownian motion (such an 
equation corresponds to the approximation of a continuous 
medium). To account for the atomic structure of the medium, 
Langevin introduced an additional force FL = My{t) 

Tt = V' ^ + yP=F°+My(t^ F0 = -gmdU, (2.2) 

where F0 is the external force (for instance, gravity). 
This equation of motion includes three forces: the 

Stokes force (same as in the approximation of a continuous 
medium), the external force, and the Langevin force. The 
Langevin force is a random function of time, as it reflects 
the existence of atomic structure of the liquid. 

Assume that the medium is at equilibrium, and the 
external force is zero. Then all directions of the random 
force are equivalent, and its mean value is therefore zero. 
Now what is the structure of the second moment 
(yt(t) yj(tr))? We may assume that the characteristic 
time of correlation of the values of the Langevin force 
T^ O R is much less than the relaxation time due to viscous 
friction T R E L = \/y — that is, 

y 
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In the zero approximation in this parameter the correlation 
time is taken to be zero. This type of random source is said 
to be delta-correlated. It would be natural to further 
assume that there is no correlation between different 
components of the Langevin source, since there is no 
preferential direction. As a result, we obtain expressions for 
the two moments, 

(y,-(0> = 0 . W W ) ) = 2 0 V ( ' - ' ' ) . ( 2 - 4 ) 

where 2D is the intensity of the Langevin source (the mean 
intensity of random kicks from the side of atoms of the 
medium). A factor of two is introduced for convenience, so 
that D in the kinetic equation below could be regarded as a 
coefficient of diffusion. 

Inequality (2.3) allows us to regard y(t) as a Gaussian 
random process. Thus for the statistical description of the 
process the knowledge of the first two moments is sufficient. 

Equations of motion with the Langevin source are not 
yet closed, because the intensity of noise D is unknown. It 
can be defined from the condition of statistical equilibrium 
between Brownian particles and the surrounding medium. 
This brings us to the so-called Einstein relation 

kT 
D = y— , (2.5) 

which links the intensity of Langevin source with the 
dissipative factor y and the temperature T. Historically, this 
formula is the first example of a fluctuation-dissipation 
relation. 

2.2 The Fokker-Planck equation 
The Langevin equation is a stochastic differential equa
tion— that is, a differential equation which contains both 
deterministic and random forces. Any other parameter of 
the differential equation can also be random. The statistical 
characteristics of Brownian motion can be found by solving 
these equations. 

There is, however, an alternative approach to the 
description of Brownian motion, based on the solution 
of the kinetic equation for the one-particle distribution 
f(r, v, t) of Brownian particles in six-dimensional phase 
space r, v. This equation is similar to the Boltzmann kinetic 
equation for a rarefied gas. In the theory of Brownian 
motion the kinetic equation is usually referred to as the 
Kramers equation, or (more commonly) as the Fokker -
Planck equation. 

For the kinetic description of Brownian motion one has 
to define the ensemble of noninteracting Brownian particles 
(the appropriate Gibbs ensemble). Then, instead of follow
ing the movement of individual particles, we are dealing 
with their distribution in six-dimensional phase space or, in 
other words, with a 'continuous medium' of noninteracting 
Brownian particles. Drawing an analogy with hydrody
namics, the Langevin description corresponds to the 
method of Lagrange, and the kinetic description to the 
method of Euler. 

The Fokker-Planck equation can be established in 
different ways, one of which is based on the Langevin 
equation. For example, the kinetic equation which corre
sponds to equations (2.2) has the following form: 

8/ 8/ 1 W 9/ 
9r M 9r 9v 

(2.6) 

Brownian particles move in the liquid which by itself is at 
equilibrium. If, by assumption, equilibrium can be 
established between the Brownian particles and the 
medium, then the equilibrium solution of the Fokker -
Planck equation is the Maxwell-Boltzmann distribution 

/(r, v) = Cexp 
(M\v\2/2) + U(r) 

kT 
/ d r d v = 1 . (2.7) 

Substitution of this distribution into the Fokker-Planck 
equation results in the Einstein relation (2.5). 

3. Brownian motion in a medium with nonlinear 
friction. Three forms of the Fokker-Planck 
equation 
Consider now the case when the coefficient of friction is a 
function of velocity, 

y(v) = y(-v) ; 

for example, 

r(v) = y ( i + % | 3 ) • (3.1) 

This will obviously complicate the Langevin equations. 
First of all, we should anticipate that the intensity of noise 
will also be a function of velocity D=D(y), as an 
implication of the fluctuation dissipation relation in case 
of nonlinear friction. This gives rise to an additional 
'stochastic force', proportional to the derivative of D(y). 
Then it would be natural to represent the Langevin 
equations in the form 

dr dv 1 W dD 
^ = v, - + 7(v)v + - ^ + fl^=^>M,(f). (3.2) 

Here we have already separated the intensity of the random 
source from the Langevin force, and so the moments of 
random function y(t) are now defined as 

(y(t)) = 0, (yi(t)yJ(t'))=28u5(t-t'). (3.3) 

Now we are worse off than before, because in place of 
one unknown constant D(v) we have an unknown function 
D(v) and an unknown coefficient a. 

Assume as before that statistical equilibrium exists 
between the Brownian particles and the medium. More
over, we assume that the structure of Einstein's fluctuation-
dissipation relation remains the same. Then Eqn (2.5) 
becomes 

D(y) = y(v) 
kT 
~M 

(3.4) 

From the standpoint of the kinetic theory, the con
siderations which brought us to the generalised Einstein 
relation are so natural that the alternatives are not even 
being discussed [4, 9]. This relation follows naturally, in 
particular, from the Boltzmann equation for a mixture of 
heavy and light gases (see below), and from the kinetic 
Landau equation of the Balescu-Lenard equation for 
plasmas. Indeed, the Einstein relation of the form given 
by (3.4) is a direct implication of these equations for the 
state of equilibrium. Problems arise, however, when the 
initial equations for the description of nonlinear Brownian 
motion are the stochastic Langevin equations rather than 
the kinetic equations. 
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Then, depending on the mathematical treatment of the 
integrals containing delta-correlated Langevin sources, there 
are different ways of describing stochastic processes in 
systems with the same nonlinear friction. The most typical 
are three different presentations both of the Langevin 
equations and the corresponding Fokker-Planck equa
tions: Ito's (I-form), Stratonovich's (S-form), and the K-
form, which is a natural implication of the kinetic theory [ 1 1 -
15, 17-19]. 

To show the distinction between these three forms for 
the example of Brownian motion with nonlinear friction, let 
us accomplish the transition from Langevin equations (3.2) 
to the corresponding kinetic Fokker-Planck equation for 
the distribution function f(r,v,t). We shall employ the 
procedure commonly used for deriving the kinetic equa
tions for gases and plasmas [9]. 

Like we did in the kinetic theory of gases, we define the 
microscopic phase density in six-dimensional phase space 
r, v as 

N(r,v,t)= J2 * [ r -r , . (0M(v-v , (0 ] 
(3.5) 

This time, however, functions rt(t), vt{t) satisfy the 
irreversible stochastic Langevin equations rather than the 
reversible Hamilton equations. Since the system of 
Brownian particles may be considered as an 'ideal gas', 
in place of phase density (3.5) we may use the one-particle 
dynamic distribution 

/ ( d ) ( r , v , 0 = 5 [ r - r ( r ) ] 5 [ v - v ( 0 ] , 

/ ( d ) d r d v = 1 (3.6) 

Functions r(t), v(t), satisfy the Langevin equations (3.2). 
Given this, the equation for the dynamic distribution can 
be written as the continuity equation 

J_W 8 / ( d ) 

M 8r 8v 
8 / ( d ) 8 / ( d ) 

—z h v- 8r 

8v ^ v + ^ ) / ( d 1 - | ; ( ^ ^ w / ( d ) ) -
(3.7) 

The sought-for statistical distribution is the first 
moment: 

/(r,v, t) = ( / ( d ) ) a n d t h e fluctuation 8 / = / ( d ) - / . (3.8) 

The equation for the distribution function / follows from 
Eqn (3.7), which after averaging over the Gibbs ensemble 
takes on the form 

8̂  8r M 8r 8v 

_8_ 
: 8v dvJJ\ 8 | ( v ^ M M 0 « / > ) . (3-9) 

This equation is not closed because it includes, along with 
the distribution function/, the correlator (y(t)$f) (we have 
noted that the mean value of (y(t)) is zero). 

To obtain a closed equation, one must express the 
unknown correlator in terms of the distribution function 
/ . This task is now simpler than it was in the case of 
Boltzmann's kinetic equation, since we start with the 

dissipative Langevin equations rather than with the rever
sible Hamilton equations. We proceed as follows [9, 10, 17]. 

Using equations for f u n c t i o n s / ^ and / we construct an 
equation for the fluctuation 8 / For calculating the 
correlator (y(t)8f) it is sufficient to know the solution 
for 8/on small time intervals of the order of T l . This allows 
us to keep only the term with the delta-correlated source 8/ 
in the equation for y(t). As a result, the equation for 
fluctuation of the distribution function assumes the form 

88/ 8 
8; = -Fv[VW)y{t)f{r^t)] (3.10) 

1) 

whence follows the desired solution 

5/(r, v,t) = ~ [^D(y) ^y(t - x)f{r, v,t-r) dt] . (3.1 

Substituting this solution into the last term of Eqn (3.9) 
and taking into account the structure of correlator 
(yMyj(t'))> w e g e t 

D(v) + -, 
8 / 1 8 D 
8v \ 2 8v 

(3.12) 

Substituting this into the right-hand side of Eqn (3.9), we 
obtain the kinetic Fokker-Planck equation: 

8/ 8 / _ 1 W 8/ 
9 f + V" 8r ~M 8r " 8v 

D(y) 9/" 

Like the initial Langevin equations, the Fokker-Planck 
equation (3.13) is not yet completely closed because it still 
contains an unknown function D(v) and an unknown 
coefficient a. To make further progress, we take advantage 
of the statistical equilibrium between the Brownian 
particles and the surrounding medium. 

Under this condition, the equilibrium solution of the 
Fokker-Planck equation must have the form of the 
Maxwell-Boltzmann distribution (2.7). Substituting this 
distribution into Eqn (3.13) for the state of equilibrium we 
come to the following equation: 

D(v) a + ; 
9D(v) 

+ y(v) 
kT (3.14) 

which links the source intensity D(y) with the nonlinear 
dissipative coefficient y(v), but the unknown coefficient a is 
still there. 

If the coefficient of nonlinear friction is known, this 
equation may be regarded as a differential equation with 
respect to the intensity of random source D(v) — that is, as 
a differential fluctuation-dissipation relation. From sta
tistical theory, however, it follows that such a linkage is not 
differential (on the contrary, the fluctuation factor is 
proportional to the dissipation factor). This implies that 
for the case in question the fluctuation-dissipation relation 
must reduce to the generalised Einstein relation (3.4), and 
hence the coefficient a in the equations of Langevin and 
Fokker-Planck is a = —1/2. On the strength of these 
arguments we come to the so-called 'kinetic form' of the 
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Fokker-Planck equation for Brownian motion in a 
medium with nonlinear friction [17-19] 

8/ 9 / _ 1 W 9 / _ 8 
9^ 9r M 9r 9v 9v 

D(v) 6/ 
+ 8v [r(v)vf] 

The corresponding Langevin equations are: 

dr dv , v 1 9f/ 19D , N 

- i ? = v, - + y ( v )v + - ^ - - ^ = ^ > M j W 

(3.15) 

(3.16) 

Now we can summarise the results. 
Although the Langevin equations are nonlinear with 

respect to dissipation, the kinetic Fokker-Planck equation 
is linear with respect to the distribution function. The 
nonlinearity of the medium is taken into account by 
regarding the coefficients D(y), y(v) as functions of velocity. 

Along with the 'kinetic' Fokker-Planck equation (3.15) 
(K-form), other representations of Langevin equations and 
the corresponding Fokker-Planck equations can be found 
in the literature. The most important of these are Ito's (I-
form) and Stratonovich's (S-form) representations. 

The difference between Ito's and Stratonovich's 
approaches consists mainly in the different treatment of 
stochastic integrals which come up in the solutions of 
nonlinear stochastic Langevin equations [11-15, 17-19]. 
Even though these representations are based on similar 
stochastic equations [such as Eqn (3.2) with a = 0], they 
result in different Fokker-Planck equations: 

df_ ctf_j_W 9/ 
9^ 9r M dr d-; = i ? M + i ; M an) 
(I-form), and 

9/ 9/ 1 W 9 / _ 9 
9^ 9r M dr 9v 9v 

+ (3.18) 

(S-form). 
Let us compare the above three forms of the Fokker -

Planck equation with Eqn (3.13) where parameter a has an 
unspecified value. We see that the I-form corresponds to 
a = 1/2, the S-form to a = 0, and the K-form to a = —1/2, 
and it is only in the last case that Eqn (3.14) coincides with 
the generalised Einstein relation. 

Observe that Eqn (3.14) can be formally reduced to the 
Einstein relation (3.4) by introducing the effective coeffi
cient of friction as 

D(v) = y e f f ^ , ye f f = y(v) + (a + ^ 
v_ dD(v) 

L j 2 * A,, (3.19) 

Using this definition, one can also reduce the general 
Fokker-Planck equation (3.13) to the 'kinetic' form. 

This, however, is just a formal trick. The question is why 
are there three different Fokker-Planck equations which 
correspond to the same nonlinear dynamic system with a 
given dissipative coefficient. 

Three different Fokker-Planck equations give rise to 
three different forms of stationary distributions: 

where v = 1 for the I-form, v = 1/2 for the S-form, and 
v = 0 for the K-form. Only in the last case does the 
stationary solution depend on the ratio of fluctuation and 
dissipation factors, in agreement with the general structure 
of fluctuation-dissipation relations. 

Let us return to the Langevin equation (3.2) with an 
arbitrary a. The Langevin force depends on v, and therefore 
its mean value is nonzero. The correlator is defined as 
above. As a result we obtain the expression 

1 /9D(v)N 
(3.21) 

which does not depend on a. 
In the next section we are going to give physical 

examples which support the choice of the Fokker-Planck 
equation in the 'kinetic' form (3.15). Later we shall also 
discuss the inverse transition from the Fokker-Planck 
equation to the Langevin equation [5]. This is important 
because in the context of statistical theory it is the kinetic 
equations that are more justified, or, so to speak, 'primary'. 

4. The Fokker-Planck equation for a 
Boltzmann gas 
Consider an admixture of a heavier gas and a lighter gas. 
The heavier atoms act as Brownian particles in the medium 
represented by the main gas. We denote the distribution 
function of impurity atoms by f[m(r,p, t), and proceed to 
find the appropriate kinetic equation. 

We start with the set of Boltzmann equations for 
distribution functions of light and heavy atoms. Assume 
that the concentration of heavy atoms is small enough to 
make the collisions between them entirely unimportant. In 
the collision integral of heavy and light atoms we carry out 
expansion in a small parameter \p —p'\/MvT (the ratio of 
the change in momentum of light atom to the momentum of 
impurity atom). As a result, we come to the Fokker-Planck 
equation 

d/im 
9; 

d/im 
9r 

d/im 
dp 

(4.1) 

In structure, this equation corresponds to Eqn (3.15); the 
difference is that now the diffusion is characterised by a 
tensor Dtj(p), and the dissipation by a vector At(p). 

There are two possible ways of expressing these 
functions: 

(1) The tensor of diffusion and the vector of dissipation 
are expressed directly via the distribution function of the 
gas of light particles, which satisfies the relevant Boltzmann 
equation. 

(2) Using the fluctuation representation of the Boltz
mann collision integral [31, 9, 17], one can express the 
tensor of diffusion in terms of spectral density of fluctu
ations of the 'potential of scattering' 8£/, and the vector of 
dissipation in terms of the imaginary part of the relevant 
susceptibility a: 

Dij(p)=^\5{w-k-v){WW)a}Kpkikj&a>&k , (4.2) 

£i r |»v y(y') '̂̂ 1 f 
DWeXP[lW) d V J ' p v ) d v = 1 ' < 3 - 2 0 ) Ai(p)=^\d(co-k.v)kiIma(co,k,p)dcodk . (4. 3) 
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Both functions in the integrands are in their turn expressed 
via the distribution function of the light particles which 
satisfies the Boltzmann equation. At equilibrium, when the 
solution of the Boltzmann equation is the Maxwell 
distribution, these functions are linked by the fluctu
ation-dissipation relation 

(*U&U)atkiP = | lma(co, k, p)kT . (4.4) 

This relation ensures that functions Dtj(p), At(p) satisfy 
Einstein's formula 

^ = D ( v ) = y ( v ) * 7 \ 

y(v) = - ^ - 3 [<5 ( f i ) - f c -v )^ Ima(G) , k9p)dcodk . (4.5) 
(2K) J |v| 

The concrete dependence of the coefficient of friction on 
velocity via the function a(co, k, p) is defined by the 
potential of interaction of gas particles. 

Observe once again that the coefficient of diffusion and 
the intensity of the Langevin force reflect the existence of the 
atomic structure of the medium. Atomic structure is the 
source of intrinsic 'natural' noise. Of course, the intensity of 
external noise from various sources may be much greater. 
Nevertheless, the role of even the low-intensity natural 
sources is quite important, as will be illustrated with 
numerous examples. We shall also see that the intensity 
of natural noise increases dramatically when the system 
approaches all kinds of critical points (points of equilibrium 
or nonequilibrium phase transitions). As a rule, the growth 
of fluctuations is a harbinger of forthcoming structural 
change. 

5. The Smoluchowski equation. The master 
equation 
Other forms of kinetic equations are also extensively used 
in the theory of Brownian motion. First of all, there is 
the Smolukhovski equation (also known as Chapman-
Kolmogorov equation). This equation may be interpreted 
as the condition of consistency of distribution functions of 
different orders. 

Let us denote by x an arbitrary set of variables, and by 
f(x, t), and f(x, t,xf, t') the distribution functions for, 
respectively, the given time t, and the two consecutive 
instants t, t'. We use two identities, 

Ax, t) = 

(5.1) 

f(x9 t9 x' 9 t') dx ' 

f(x9 t\x'9 t')f(x'9 t')dx', f(x9 t)dx = 1. 

The first of these is the condition of consistency, and the 
second gives the definition of the conditional distribution 
function referring to two different time instants. This 
distribution function is called the probability of transition. 
We denote it as 

f(x9 t\x' 9 t') = p(x9 t9 x ' 9 t') , 

and use the normalisation condition 

f(x9 t\x '9 t' )dx = t9 x '9 t') dx = 1 . 

Then Eqn (5.1) can be rewritten as 

f(x,t) = Jp(x, t9 x'9 t')f(x'9 t')dx'9 p(x9 t9 x'9 t') > 0 . 

(5.2) 

Substituting the value of f(x'9t') expressed via the 
distribution / ( x 0 , t0) at an earlier time into the right-
hand side, we obtain the integral relation which includes an 
intermediate point x': 

f(x9 t) = Jp(x, t, x'9 t')p(x'9 t'9 x 0 , t0)f(x09 ^ 0 ) d x / d x 0 . 

(5.3) 

This can be used to obtain a closed equation for transition 
probabilities. Into the left-hand side of Eqn (5.3) we 
substitute Eqn (5.2) with x'9 t' —> x 0 , t0. Since the equa
tion obtained in this way holds for the arbitrary 
distribution / ( x 0 , t0), we may equate the integrands. As a 
result, we arrive at the Smoluchowski equation 

p(x, t, x0, t0) p(x9 t9 x '9 t')p(x '9 t'9 x 0 , ^o) dx ' . (5.4) 

In order to return to Eqn (5.3), we have to multiply both 
sides b y / ( x 0 , t0) and carry out integration with respect to 
x0. It is also possible to go back from Eqn (5.3) to 
Eqns (5.2) and (5.1). 

It follows that the above relations are exact, because our 
transitions between equations did not involve any simplify
ing assumptions. In particular, the integral relation (5.2) 
links the distribution functions f(x9 t)9 f(x'9 t') via the 
probability of transition. However, this is not yet a kinetic 
equation, since the transition probability is not known. We 
may only argue that it satisfies the Smoluchowski equation 
(5.4) and the normalisation condition. To obtain a closed 
kinetic equation we need additional information about the 
system. How do we proceed now? 

First we shall go over from the exact relation (5.2) to the 
so-called master equation which is simpler. For this we 
assume that there are two characteristic time scales, the 
'fast' and the 'slow'. Recall that we have used a similar 
assumption in the derivation of the Langevin equations. 

Assume that the distribution function f(x9 t) changes 
slowly with time. As before, the characteristic relaxation 
time we denote by T R E L ; the characteristic correlation time for 
the 'fast' process is T C O R . The probability of transition 
depends explicitly only on the fast time, since in the 
zero approximation with respect to T C O R / T R E L the process 
may be regarded as stationary. 

Given this, Eqn (5.2) can be rewritten as (with the 
replacement t9 tf

9 where t + At, t(At = t — tf)] 

f(x9t + At) p(x9 x ' , At)f(x'9 t)dx' (5.5) 

Now we expand the left-hand side in At and retain the first 
two terms. Assume that there exists the limit 

lim -!- p(x, x At) = W(x9 x') (5.6) 

which determines the rate of change of the transition 
probability. We also note that the probability of transition 
has the following properties: 

p(x\ t\ x, t)dx' = 1, p(x\ x, At) = AtW(x\ x) . (5.7) 
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The first of these follows from the normalisation condition 
of the distribution functions/(x, t),f(xf, t') in Eqn (5.1). 
In the second we use the limit (5.6) and retain only the 
main term in the expansion in A .̂ Taking advantage of 
these properties, we transform the first term in the 
expansion in on the left-hand side of Eqn (5.5): 

•• Jp(x ', x, At) dx 'f(x, t) = At 

Now we use Eqns (5.6) and (5 
the desired 'master equation' 

8/(x, t) 

W(x',x)dx'f(x,t) . 

(5.8) 

to convert Eqn (5.5) to 

8; 

W(x, x') > 0 (5.9) 

This equation is not yet closed, since the structure of 
function W is not defined. Observe that many of the known 
kinetic equations of the statistical theory of nonequilibrium 
processes, including the kinetic Boltzmann equation, can be 
reduced to this form. The master equation, however, is 
nonlinear because the probabilities W themselves depend on 
the distribution function f(x, t). For a spatially homo
geneous Boltzmann gas the variable x = p is a vector. 

So, we have made the first step towards particularising 
Eqn (5.2). This has been made possible by the simplifying 
assumption that there exist two different time scales, and 
that the process is stationary on small time intervals. Then 
the probability of transition p(x, t, x ', t') is replaced by the 
simpler functions W(x, x'), W(xf, x), which do not 
explicitly depend on time. The resulting kinetic equation 
is irreversible because small-scale correlations are elimi
nated. This will be confirmed by the analysis of the relevant 
equation of entropy balance. 

6. Two ways of transition from the master 
equation to the Fokker-Planck equation 
For future discussion it will be convenient to use a different 
form of master equation in place of Eqn (5.9). We 
represent the probability of transition as a sum of 
symmetrical and antisymmetrical parts: 

W(xf, x) = Ws(x, x') + Wa{x, x') , (6.1) 

W\x, x') = W\x', x ) , Wa{x,x') = -Wa{x',x) . 

Then Eqn (5.9) can be rewritten in the form 

8/(x, t) 
^ = \{w\x,x'Mx', t) -f(x, t)] 

-Wa(x,x')[f(x', t) +f(x, t)]}dxf . (6.2) 

It is interesting that all major kinetic equations 
(including the kinetic Boltzmann equation) can be reduced 
to this form. Reduced to the same form can also be the 
quantum kinetic equations for a plasma and for a system of 
atoms interacting with an electromagnetic field. In such 
cases, however, the master equations are nonlinear because 
the probabilities of transition themselves depend on the 
distribution functions. The transition to linear equations is 
only possible for Brownian motion, where the statistical 
properties of the medium are known and the interaction 
between Brownian particles can be neglected. 

As follows from Eqn (6.2), the transition probabilities 
W s , Wa in the stationary state are linked by 

(6.3) 

which is a fluctuation-dissipation relation. Here the 
symmetrical function Ws(x, x') defines the coefficient of 
diffusion in the corresponding Fokker-Planck equation, 
and the antisymmetrical function Wa(x, x') defines the 
coefficient of friction. 

Now let us go over from the master equation (6.2) to the 
Fokker-Planck equation. We shall see that this transition 
is not unambiguous, and may lead to different forms of the 
desired equation. 

6.1 The kinetic form of the Fokker-Planck equation 
In place of x, x' we introduce new variables Ax, x: 

W S ' a ( x ,x ' ) : 

Ax = x 

X + x 
W**[Ax 

Ax 
"~2~ 

(6.4) 

and rewrite the master equation as 

6/(x, t) 
dt - H w 

-w Ax,. 

Ax,x-(Ax/2) [f(x ~ Ax, t) -f(x, t)] 

(Ax/2) [fix - Ax, t) +f(x, t)] } dAx (6.5) 

Assume (!) that Ax <^x, but the dependence of functions 
Ws'a on the first argument Ax is not weak. For the sake of 
simplicity we consider a one-dimensional case when x is a 
scalar, and carry out the expansion in a small variation 
Ax9/9x. Making use of equations 

| W^^Ax dAx = 0, | dAx = 0 (6.6) 

we transform the first and the second terms in Eqn (6.5): 

j A x ^ (wlx>xf) dAx =^[A(x)f] , 

9 / 

W^x g ) dAx 

_6_ 
dx 

D(x) 
dx 

where the coefficients of diffusion and friction are 

D{x) = X-^{Ax)2WlXiXdAx, A(x) = AxW^dAx 

(6.7) 

(6.! 

As a result, we come to the kinetic form of the Fokker-
Planck equation: 

Qt 

_8_ 
dx 

D(x) 
8x 

(6.9) 

In order to obtain the Fokker-Planck equation in the 
forms of Ito and Stratonovich, similar to Eqns (3.17) and 
(3.18), we must make the following replacement in 
Eqn (6.9): 

1\ dD(x) 
A(x) ->A(x) + [a + 

dx (6.10) 

which implies redefinition of either the coefficient of 
diffusion or the coefficient of friction. Here a = \/2 for 
Ito's representation, and a = 0 for Stratonovich's repre
sentation. 
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We see that the coefficients of diffusion and friction are 
completely defined in terms of, respectively, the even and 
the odd parts of the transition probability only for the 
kinetic representation of the Fokker-Planck equation. This 
is yet another argument in favour of the K-form of the 
kinetic equation. 

How do we obtain different forms of the Fokker -
Planck equation from one and the same master equation? 
Return to the initial equation (5.9) and introduce new 
variables in a fashion less symmetrical than in 
Eqn (6.4) [11]: x, x '—>x '—x, x ' = Ax, x + A x , where 
(Ax =x' — x). Accordingly, the first argument is now the 
difference in the former second and first arguments. The 
second argument remains the same. The transition prob
abilities are then redefined as follows: 

W(x, x') -> W(x' - x , x') = W(Ax, x + Ax) , 

W(x', x) -> W(-Ax, x) . (6.11) 

As a result, the master equation (5.9) becomes 

8/(x, t) 

-W(-Ax, x) / (x, t)] dAx . (6.12) 

The terms of zero order cancel out because 

JV(Ax, x)dAx = JV( -Ax , x)dAx . (6.13) 

[This can be easily proved using definition (6.1) of the 
transition probability.] 

As a result, we come to the Fokker-Planck equation in 
I-form: 

dt ' = a ? i D ( x ) f { X y
 °1 +d~x~[A{x)f]' ( 6 - 1 4 ) 

where the coefficients of diffusion and friction are defined 
by 

D(x) = ^ j(Ax)2W(Ax, x) dAx, 

A(x) = JAxW(Ax,x)dAx , (6.15) 

which are close in form to Eqn (6.8). 
So we see that different expansions in Ax lead to 

different forms of the Fokker-Planck equation. As we 
have already noted in Section 3, the choice between them 
has to be based on additional physical considerations. Now 
we are going to continue discussing this point. 

6.2 Stationary solution of the Fokker-Planck equation 
As indicated above, the replacement (6.10) allows one to 
obtain all three forms of the Fokker-Planck equation from 
Eqn (6.9). For the one-dimensional case the general 
stationary solution of these equations can be written in 
the form 

f(x) = C-—.exp \- f ^ - 1 dx '1, [fdx = 1 (6.16) 

where v = 2 for the I-form, v = 1 for the S-form, and v = 0 
for the K-form of the Fokker-Planck equation. Only in 
the last case is the structure of the stationary solution 

simple and is completely defined by the ratio of the 
fluctuation factor D(x) and the dissipation factor A(x). 

Elsewhere we have considered the stationary solution of 
the Fokker-Planck equation for Brownian motion in a 
medium with nonlinear friction [see Eqn (3.20)]. At equi
librium, the coefficients D(y), y(y) satisfy the Einstein 
relation (3.4), and we come to the Maxwell distribution. 
When the master equation (5.9) [or (6.2)] is used, the 
situation is in general more complicated. 

Master equations are used not only for systems in the 
thermostat, when the motion of Brownian particles occurs 
in the medium which is at equilibrium. They also describe 
relaxation in media which are in a stationary but not 
equilibrium state. In such a situation one might question 
the validity of the Einstein relation. We shall see, however, 
that it is both possible and necessary to use this relation. 

Assume once again that the generalised coordinate x in 
the master equation can be interpreted as the velocity of the 
'Brownian particle'. Expressed in terms of this velocity can 
be, for instance, the electric current in a self-oscillatory 
system (Van der Pol oscillator). Then the coefficients of 
diffusion D(v) and friction A(v) will depend also on the 
coefficient of feedback <zf. Owing to the presence of 
feedback, the stationary state will be other than the state 
of equilibrium. From Eqn (6.16) we find that 

C 
[D(v, flf)] v/2 exp 

v A(v ' , flf) 
QD(V'9 Of) 

dv'J, J/dv = 1 , 

(6.17) 
with the above values of v for the three forms of the 
Fokker-Planck equation. 

It would be natural to assume that in the absence of 
feedback (af = 0) the stationary state coincides with the 
state of equilibrium. Then the coefficients of diffusion and 
friction 

D(v, af = 0) =D(v), A(v, af = 0) = A(v) = y(v)v (6.18) 

satisfy the Einstein relation (3.4), and the distribution f(v) 
coincides with the Maxwell distribution. The latter only 
occurs for the K-form of the Fokker-Planck equation — 
that is, when v = 0. 

This again brings us to the conclusion that the kinetic 
form of the Fokker-Planck equation is preferable from the 
standpoint of statistical theory. This conclusion will be 
corroborated with numerous concrete examples in the 
sections to follow. 

Now we are going to study the master equation for a 
system of atoms interacting with an electromagnetic field. 
Here the atoms act as Brownian particles, and the 
fluctuating electromagnetic field as the medium. 

7. The master equation for a system of atoms in 
a electromagnetic field 
The kinetic theory of atoms and fields has advanced greatly 
in recent years to match the progress in quantum 
electronics [ 9 , 2 0 - 2 2 , 3 1 - 3 4 ] . This theory stems from 
Einstein's classic paper of 1916 [35], in which he formu
lated the first equation of balance for atoms at rest and 
equilibrium in a field, and introduced the coefficients of 
induced and spontaneous emission (Einstein's coefficients). 

Consider the most simple model when the atoms are at 
rest and are homogeneously distributed in space. Then the 
state of the atoms is characterised by the distribution 
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function /„ for atoms of internal energy En. In this way, the 
state of the atoms is defined by a discrete set of variables n. 
For the case in question, the kinetic equation can be written 
in the form [9, 33,] 

' n(SE'SE)mnm 1 n 1 
^i" - ^ ( fm fn) 7 7 ^ m ( fm fn) ^n i dt E 4t i 2 

where 

3/i2 
A n — 

4 K , ,3 — . 

3/ic3 

(7.1) 

(7.2) 

are Einstein's coefficients which are found in the course of 
derivation of the kinetic equation (7.1). For the system of 
atoms in an equilibrium electromagnetic field the spectral 
density of fluctuations of the electric field is 

4 ? 
1 , Tl(D 
-nco coth —— 
2 2kT 

(7.3) 

where pw is Planck's distribution for the mean energy of 
equilibrium electromagnetic radiation including the zero-
point energy. 

At equilibrium, the solution of the kinetic equation (7.1) 
is the Gibbs-Boltzmann distribution 

fn 
1 

rexp En 
kT 

exp En 
kT 

(7.4) 

It is important that the 'collision integral' includes only the 
spectral density at the transition frequencies conm. This 
corresponds to the approximation of infinitesimally narrow 
resonances, when the spectral density of fluctuations is 
represented by a set of infinitesimally narrow spectral lines. 
The essence of this approximation is discussed in detail in 
Refs [17, 36]; it corresponds to the so-called 'collisionless 
approximation' in the calculation of small-scale fluctuations, 
the exclusion of which leads to irreversible kinetic equations. 

Let us compare the kinetic equation (7.1) with master 
equation (6.2). This will allow us to particularise the 
expressions for the transition probabilities Ws,a for the 
case in question: 

(&E-8E)m 1 
Ws = B11 - Wa =-An =vn (7 5) 
r r nm ^m ' n m 2 — ' 
Using Eqns (7.2), (7.3), and (7.5), we find the connec

tion between the transition probabilities Ws, Wa: 

Ws = Wa coth H C ° n m 

v v nm v v nm 2kT ' 
(7.6) 

In case of the system of atoms in an equilibrium 
electromagnetic field, this equation links the fluctuation 
charac-teristic W*m to the dissipation characteristic W„m, 
and particularises the general fluctuation-dissipation rela
tion (FDR) (6.3) which also holds good for nonequilibrium 
stationary states. 

Observe that the argument of coth is not the current 
frequency of the spectrum, but the transition frequency 
conm. This structure of the FDR is typical of quantum 
systems [17, 36]. 

Let us quote the expressions for the coefficients of 
diffusion and friction [in the general case they are defined 
by Eqn (6.8)]. We go over from continuous variables x, x' 

to the corresponding discrete variables n,m and make 
substitutions similar to Eqn (6.4). Then the expres
sions (7.5) for the probabilities of transition take on the 
form 

^Vm ^n-m,(n+m)/2 w Anm, n-Anm/2 • (7.7) 

We assume, like we did in case of continuous variables, 
that the dependence on Anm is strong, but at the same time 
it is possible to expand the argument n — Anm/2 in Anm. As 
a result, we come to the following expressions for the local 
(^-dependent) coefficients of diffusion and friction: 

Wa 

7 A 

(7.: 

which are similar to Eqn (6.8) above. In the next section 
these results will be particularised for the case of the 
quantum atom oscillator. 

To end this section, we quote the equation of balance of 
the mean energy, which follows from the kinetic equation 
(7.1): 

{E) = Y,E„m, 

dt 
= fm ~fn) (kTam - \ %Wnm

 f-f^f] . (7.9) 
n m \ z Jm JnJ 

At equilibrium the right-hand side of the equation of bal
ance is zero, and the mean energy is defined by Planck's 
formula. 

So we have succeeded in particularising the expressions 
for the transition probabilities Ws,a for the system of atoms 
and field. As follows from Eqns (7.3)-(7.6), they are 
defined in terms of atomic characteristics: the matrix 
element of the dipole moment dnm, the transition frequency 
conm, and the field temperature — that is, the temperature of 
the medium where the Brownian motion of atoms takes 
place. To refine our results even further, we must consider a 
particular model of the atom. 

8. Brownian motion of quantum atom 
oscillators 
8.1 The master equation 
Let us return to the kinetic equation (7.1), and consider the 
atom as a one-dimensional quantum oscillator. Such an 
'atom oscillator' (that is, Brownian particle) can be 
visualised as a small but macroscopic electric circuit. By 
co0 we denote the eigenfrequency of the oscillator; then the 
square of the matrix element can be represented as 

I T I2 I \2 _ n (m c , m + 1 z \ , o n 

\anm\ - • \xnm\ ~ T ^ - I . B I ^ °m+l,n I 5 l 8 - 1 ] 
ma>Q \2 2 J 

and we come to the following expression for the 'collision 
integral' In in the kinetic equation (7.1): 

~n+ 1 4 = y(^o)s coth — " (fn+1 —fn^j 

+ 2 (fn—l fn^j 
n + 1 

+ \ (/-.+/-)]} 

(fn+l +fn) 

co0 = (o„+hn 
:.2) 
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where 

y(co0) = 
2e2co2

0 

3mc3 
(8.3) 

is the coefficient of radiation friction. 
Now we can write the equation of balance of the mean 

energy: 

;.4) 

Two forms of the equation in the mean energy (E) are 
useful, 

d{E) 
dt 

= y(coo)(kTWo - (E))=D{E)-y(co0)(E) , (8.5) 

where we have used the definition of the coefficient of 
diffusion 

1 ^ , Hco0 • -nco0 coth—— , 
2 u 2kT 

(8.6) 

subscript (E) indicates that is the coefficient of 
diffusion with respect to the energy values. This formula 
may be regarded as the quantum generalisation of the 
classic Einstein relation (2.5). 

Now let us look at expressions (7.8) which define the 
local coefficients of diffusion and friction in the zero 
approximation with respect to Anm/n. For a quantum 
atom oscillator they can be rewritten as 

: y(co0)n , (8.7) 
1 Hcd0 D{E) 

Dn = y(co0)-coth—n = — n , < 

where use has been made of definitions (8.3) and (8.4) for 
the coefficients of radiation friction and diffusion, 
respectively. We see that the local coefficients of diffusion 
and friction are linear functions of n. Making use of 
Eqn (8.7), we can reduce the quantum 'collision inte
gral' (8.2) to a more convenient form: 

/»(') = -fn)-Dn(fn ~ fn-l)] 

+ \[An+l{fn+l+fn)-An{fn +/„_!)] . (8.8) 

We see that the right-hand side contains two induced 
contributions, which are proportional to the relevant 
coefficients of diffusion. Their signs are determined by 
the relative population of the adjacent levels. The last two 
terms are proportional to the relevant coefficients of 
friction. The first of these is positive, since it corresponds 
to the increase in population at the expense of the higher 
level. The second is negative and corresponds to the escape 
to the lower level. 

At equilibrium, the diffusion and the dissipation terms 
cancel out in pairs by virtue of the fluctuation-dissipation 
relation (8.6). 

Observe that for the quantum atom oscillator the matrix 
elements are defined by Eqn (8.1), which implies that the 
transition probabilities in variable n can only change by ±1 
in the course of time evolution, as described by the master 
equation (7.1). Processes of this kind are commonly 
referred to as one-step processes. Accordingly, the quantum 
kinetic equation with 'collision integral' (8.2) or (8.8) is an 
example of the master equation for a one-step process. Since 
the local coefficients of diffusion and friction given by (8.7) 
are linear functions of n, we are dealing here with a linear 
one-step process. 

The general structure of master equations for one-step 
processes will be discussed in the next section. We shall once 
again see the ambiguity of such equations. Prior to that, 
however, we shall prove that our current master equation 
corresponds to the canonical form of the Fokker-Planck 
equation. 

8.2 The Fokker-Planck equation 
Transition to the Fokker-Planck equation is based on the 
expansion in the inverse quantum number \/n, which 
implies that from the discrete spectrum of oscillator energy 
values we go over to the continuous spectrum. Since for 
large n, E = nhco0, we come to the following equation for 
the distribution function of energy: 

+ 8£ M- \? d E i 

(8.9) 

The equilibrium solution of the Fokker-Planck equation 
(8.9) is the Boltzmann distribution with the quantum 
temperature given by Eqn (8.6): 

1 ( E 
f{E)=— exp ( - -kT„ 

{E)=kTa (8.10) 

Examples of such equations for an electric circuit can be 
found in Refs [17, 36]; the emf is then given by 

(E% = 2RkTmo , (8.11) 

which in the classical approximation coincides with the 
well-known Nyquist formula. 

9. Master equations for one-step processes 

9.1 Traditional definition of transition probability 
For description of one-step processes we return to the 
master equation (5.9) and introduce discrete variable x in 
place of continuous variable n. The relevant equation is 

dt 
r i 0 0 

J2[Wnm'fn' (0 ~ Wn>„ f„(t)\ , £ ) / B ( 0 = 1 . (9.1) 
The following expression is traditionally used for the 
transition probability [11, 14] 

Wnn> §n'^n,n'+l ^n'^n,n'- (9.2) 

It is assumed therefore that one event corresponds either to 
emergence (birth) at state n, or to disappearance from state 
n (death). This parlance is used in the theory of 
populations. In semiconductor theory one refers to gn as 
the coefficient of generation, and to rn as the coefficient of 
recombination. 

Substitution of Eqn (9.2) into Eqn (9.1) results in the 
following master equation: 

-g^ = gn-lfn-1 + rn+lfn+l (gn + rn)fn , = 1 . (9.3) 
n=0 

(we assume that n varies from zero to infinity, 0 ^ n ^ oo). 
Equation (9.3) must be supplemented by 'boundary 
conditions' 

r0 = 0, = 0 
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and therefore 

(9.4) 

These conditions forbid escape (recombination) from the 
lowest state and generation from states with negative 
numbers n. The local coefficients of diffusion and friction 
are defined by combinations of rn9 g n \ 

Dn=Wn+gn), •gn • (9.5) 

The master equation (9.3) is widely used for describing 
many diverse processes [11, 14]: radioactive decay, shot 
noise, processes of chemical kinetics, and various 'pred
a tor -prey ' (Volterra) systems. This equation works well 
whenever the main feature of the phenomenon in question 
is the competition between birth and death, or ionisation and 
recombination. As a rule, such cases are dominated by 
nonequilibrium (although perhaps stationary) states, while 
the stationary state becomes less significant. In such 
situations the use of functions g n 9 rn as the main character
istics is perfectly justified. 

Equilibrium, however, remains a fundamental concept. 
It is this state that is stable when the controlling factors are 
switched off, and which corresponds to the highest degree 
of chaos. It would be natural to demand therefore that 
master equations should describe, in particular, the proc
esses of evolution towards equilibrium. Such equations may 
be more conveniently formulated not in terms of functions 
g n 9 rn but in terms of the local coefficients of diffusion and 
friction, which are related to the former by Eqn (9.5). We 
have seen this in case of Brownian motion of quantum atom 
oscillators in an equilibrium electromagnetic field. 

To confirm this point, let us consider some implications 
of the master equation (9.3). 

The equation for the first moment of the distribution /„ 
is obtained with the aid of the master equation (9.5) and has 
the form 

d<») 
dt <{r„) ~ <g„» = -<A„) . (9.6) 

Accordingly, the relaxation of the first moment is 
determined by the mean value of the local coefficient of 
friction. In the case of the linear one-step process, when 

Dn=Dn9 A n = (r-

equation (9.6) becomes 

d(n) 

• yn , 

dt 
-y(n) . 

(9.7) 

(9.8) 

We see that the value of (n) relaxes towards zero. If, by 
way of example, we use formulas (9.8) for a quantum atom 
oscillator, the equation for the mean energy becomes 

\ /. = -y((0o)(E)9 y(co0)=-
dt 3mc 

(9.9) 

As opposed to Eqn (8.5), which follows from the master 
equation with collision integral (8.2) or (8.8), Eqn (9.9) 
does not describe relaxation towards equilibrium with the 
thermostat. 

This disadvantage of the master equation (9.3) also 
manifests itself in the structure of the corresponding 

Fokker-Planck equation. Indeed, expansion in l/n results 
in the Fokker-Planck equation in Ito's form 

[Dnf(n9 * ) ] + A [ A n / ( / i , 0 ] • (9-10) 
9/(n, t) _ 8 2 

8; dn2 

From this one can also obtain Eqn (9.8). The stationary 
solution of this equation has the structure (6.16) with v = 2, 
and does not agree with the Einstein formula. 

We see that the traditional definition of transition 
probability (9.2) for one-step processes leads to a number 
of results which contradict the main assumptions of the 
statistical theory. Our immediate task will therefore be to 
try and define the probability of transition in such a way as 
to overcome these difficulties. 

9.2 Nontraditional definition of transition probability 
We use the general form of the master equation (6.2) and 
define the symmetrical and antisymmetrical parts of 
transition probability as [19] 

•Dn+\?>n+\,n' +Dn?>n-\,n' ~ Wn'n > 

-\[An+\?>n+\y -AnSn_hnr] = -Wn\ . (9.11) 

Substituting these expressions into Eqn (6.2), we get the 
master equation for one-step processes which is different 
from Eqn (9.3). The 'collision integral' is now defined by 
Eqn (8.8), and the local coefficients of diffusion and 
friction are, as before, linked with the coefficients of 
generation and recombination by Eqn (9.5). 

Recall that for the linear one-step process, when the 
coefficients of diffusion and friction are defined by 
Eqn (8.7), we come to the kinetic equation for quantum 
atom oscillators in an equilibrium electromagnetic field. 

Expression (8.8) for the collision integral has a clear-cut 
physical meaning. The diffusion is responsible for the 
'induced' transitions, and the signs of the respective terms 
depend on the relative population of the adjacent states. 

The traditional definition of transition probability 
allows one to separate the symmetrical and antisymmet
rical parts which are expressed via the coefficients of 
diffusion and friction. The resulting expressions, however, 
defy straightforward physical interpretation. 

Let us discuss some properties of the nontraditional 
master equation for one-step processes. For the state of 
equilibrium, from Eqn (8.8) follows the relationship 
between the local coefficients of diffusion and friction 

n _ 1 , fn + / w + l 
V n - ? ^n f _ r 

A Jn Jn+l 
(9.12) 

which is a fluctuation-dissipation relation. Since the 
coefficients of diffusion and friction are positive, the 
higher level at equilibrium is less populated. In general, 
the distribution function cannot be expressed in terms of 
the coefficients of diffusion and friction with the aid of 
Eqn (9.12). For the linear one-step process, when the 
formulae in Eqn (8.7) hold good, the Boltzmann distribu
tion 

fn (9.13) 

follows from Eqn (9.12). The distribution with respect to n 
is, therefore, exponential. 
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There are other implications of the master equation 
obtained in this section. The equation for the mean value of 
(n) differs from Eqn (9.6) and has the form 

d{n) 1 
dt (9.14) 

To understand the physical meaning of this difference, let 
us consider the approximation of large n, when we can go 
over to the continuous variable. Retaining only the main 
terms, we arrive at the following equation: 

d(n) /&Dn\ /&Dn (An) .(9.15) 

This equation differs from Eqn (9.6) in that it contains an 
additional term which is determined by the diffusion. For 
the linear one-step process — when the coefficients of 
diffusion and friction are defined by Eqn (8.7) — from 
Eqn (9.15) follows the equation of balance of mean energy 
of quantum atom oscillators in an equilibrium electro
magnetic field, 

dt 
= y(cD0)(kTWo-(E)) (9.16) 

which, in contrast to Eqn (9.9), does describe the process of 
relaxation towards the equilibrium value of mean energy. 

Finally let us consider the corresponding Fokker -
Planck equation. Unlike Eqn (9.10), it now has the canon
ical form 

dt 8m 9« 
D, + 8m (Anfn) (9.17) 

Because of this, the equilibrium solution is completely 
defined by the ratio of fluctuation and dissipation factors, 

fn = C exp - f ^ dn' 
Jo A.' 

(9.1 J 

For the linear one-step process—when the local coeffi
cients of diffusion and friction are defined by Eqn (8.7) — 
from Eqn (9.17) follows the Fokker-Planck equation (8.9) 
for the distribution function of energy values, and the 
Boltzmann distribution (8.10) follows from Eqn (9.18). 

In the sections to follow we shall illustrate the difference 
between alternative descriptions of stochastic processes with 
concrete examples. First, however, we are going to explore 
the possibility of transition from the Fokker-Planck 
equation for the distribution f(r, v, t) in the phase space 
of coordinates and velocities to the Einstein-Smoluchow
ski equation for the simpler distribution f(r, t). We shall see 
that this task is very similar to the problem of transition 
from the kinetic equation to equations of gas dynamics, and 
is associated with similar difficulties [27, 28]. These diffi
culties can and will be overcome in the theory of Brownian 
motion by going over to the description of nonequilibrium 
processes based on the generalised kinetic equations. We 
shall see that these equations work especially well in the 
case of Brownian motion in nonlinear active media. 

In particular, the generalised kinetic equations will help 
us to draw the limits of applicability of reaction-diffusion 
equations, such as the famous Ginzburg-Landau equation. 
It will be possible to go beyond the limitations of these 
equations so as to obtain information concerning the higher 
moments (which is important in the neighbourhood of 

critical points), and to construct a more consistent theory of 
nonequilibrium large-scale (also known as coarse-grained) 
fluctuations (kinetic, hydrodynamic, reaction-diffusion 
fluctuations). 

10. Spatial diffusion. 
The Einstein-Smoluchowski equation 
So far, in the Langevin equations and in the kinetic 
equations, we have assumed that the medium which hosts 
Brownian motion is practically unlimited. Now, in addition 
to the internal parameters Z), y we introduce the external 
parameter, the characteristic size of the system L. This 
gives rise to a new parameter of time, the diffusion time 

Dr 

(10.1) 

where Dr is the coefficient of spatial diffusion. Earlier for 
the description of Brownian motion we used the coefficient 
of diffusion in the space of velocities D=DV. Now the 
meaning of coefficient D in equations (6.9), (6.14) depends 
on the interpretation of the generalised coordinates x. 

When the Langevin equations (2.2) are used, the 
correlation time of the source is T C O R = 0. Nonzero are 
two time-like parameters, T R E L = l/y and T d . If the diffusion 
time is much greater than the relaxation time, it would be 
natural to anticipate the feasibility of transition from the 
Fokker-Planck equation for the distribution f(r, v, t) to the 
Einstein-Smoluchowski equation for the simpler distribu
tion f(r, t). There are two ways of doing this but only at 
constant y\ 

10.1 Spatial diffusion. The Langevin method 
We return to the Langevin equations (2.2) for a Brownian 
particle, and assume that the external field is absent 
(U = 0), and that the diffusion is slow, xD > T R E L . It would 
then be natural to neglect the velocity derivative dv/ dt in 
the Langevin equations as small compared to yv. Eliminating 
the velocity, we come to the Langevin equation in the 
coordinate 

dr 
~di' y 

=jv(0 , (10.2) 

where yr(t) is the Langevin source which determines the 
displacement of the Brownian particle kicked about by the 
atoms of the medium. The moments of this source are 

< j>,(0> = o , (yr(t)yr(t ')) = 3[2Drd(t-t')}, 
_D _kT 

D(r) -yi-M^- (10.3) 

The last of these defines the linkage between the 
coefficients of diffusion in conventional space and in 
velocity space. 

From the Langevin equation (10.2) one can go over to 
the relevant equation for the distribution function f(r, t). 
Following the guidelines set forth in Section 3, we come to 
the Einstein-Smoluchowski equation in f(r, t): 

dt 
= D(r)Arf \f(r, ,) 

dr 
= 1, n(r, t) = Nf(r, t) . (10.4) 

It is natural that this equation coincides with the familiar 
equation of diffusion. We have also defined the density of 
Brownian particles. The analytical solution of this equation 
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is well known. We shall only quote expressions for the 
moments of displacement r — r 0 of the Brownian particle: 

<r - r „ ) = 0, <(r - r 0 ) 2 ) = 3[2D( r )(f - f0)] (10.5) 

The second equation states that the mean square displace
ment of the Brownian particle is proportional to time 
(Einstein's formula). 

10.2 Diffusion of a Brownian particle in an external field 
When the external force # is taken into account in the 
description of slow processes, Eqn (10.2) includes a new 
term and becomes 

dr \_W 
(10.6) 

The moments of the Langevin source are, as before, given 
by Eqns (10.3). Transition to the kinetic equation follows 
the familiar scheme. As a result, we come to a more general 
Einstein-Smoluchowski equation 

8/(r, t) 
dt 

a 2 / 

"D{r)W kT 
My ' 

F(r) 

_9_ 
dr 

_dU 
dr 

•F(r) 
My 

(10.7) 

which is also known as the Kramers equation, 
equilibrium solution is the Boltzmann distribution 

^ 1 ihi-ip f(r, t) = exp dr ' 

Its 

(10.8) 

So, we have obtained the equation for the distribution 
function/(r, t) for two cases: (1) free Brownian particles, 
and (2) particles in an external field. In both cases we 
started with the Langevin equation under the condition of 
slow motion dv/ dt <̂  yv. The meaning of this condition 
may be quite different, however, depending on the form of 
the potential U(r). Let us look at this matter more closely. 

Recall that we considered the free motion of particles 
under the condition 

(10.9) L 1 
D{r) y 

which contains the squared size of the system, and 
therefore holds as long as the system is large enough. 

In the presence of an external field the situation becomes 
very different if the field restricts the movement of particles. 
By U(r) we denote the characteristic size of the region, and 
consider two examples which are important for our 
subsequent discussion. 

1. Harmonic oscillator: F = —Mcoir is the elastic force. 
Then the equilibrium solution (10.8) coincides with the 
Gaussian distribution 

U(r) = 
Mcol\r\ 

<l>f> = 
kT 

Mco2

0 

Now L acts as r 0 , and condition (10.9) becomes 

and therefore, y 5> co0 . y i 
ID = — > ~ 

(10.10) 

(10.11) 

We see that the Kramers equation (10.7) holds for a 
bounded Brownian particle (harmonic oscillator) only when 
the damping is strong (overdamped oscillator). This 
situation is of certain practical interest — for instance, in 

connection with the Brownian motion of fragments of 
polymer molecules. No less interesting, however, is the 
opposite extreme, when the damping is weak. 

2. Brownian particle as a bistable element: the elastic 
force is nonlinear, and the potential is given by 

U(r) 
Mcol\r\2 

2 "fl + 2 a = cli~ 1 > b>0. (10.12) 

The coefficient af characterises the action of an effective 
field — for instance, the Lorentz field in a dielectric [33, 
37]. When this coefficient is large enough, so that a > 0, the 
coefficient of elasticity becomes negative, and the system 
becomes bistable. As in the case of self-oscillatory systems 
(open active systems), the coefficient <zf can be referred to 
as the coefficient of feedback. 

As a rule, feedback is the property of the medium in 
which Brownian motion takes place. The coefficient of 
nonlinearity b may have a different nature; we shall 
distinguish two possible cases. 

(a) Nonlinearity is the property of the individual 
element of the system (Brownian particle), rather than 
the property of the medium. The equilibrium solution of 
Eqn (10.7) is then represented by the Boltzmann distribu
tion (10.8) with the potential given by Eqn (10.12). If a < 0, 
the Boltzmann distribution has one maximum at x = 0. The 
behaviour at large x is determined by the term with 
coefficient b. If a > 0, the Boltzmann distribution has 
two maxima, and the system is bistable. 

(b) Both the coefficient of feedback and the coefficient b 
depend on the characteristics of the medium. In the absence 
of feedback (af = 0) we come to the Boltzmann distribution 
for a harmonic oscillator. This implies that at af = 0 the 
system has the highest possible symmetry — in other 
words, the system is in the most chaotic state. 

From the condition of existence of the Boltzmann 
distribution in the medium with nonlinear elasticity, one 
can define the coefficient of diffusion as a function of 
coordinates, 

D{r){r)=D{r){l+b\r\2), D{r)=^ (10.13) 

Given this, the equilibrium distribution (for any value of 
<zf) can be represented as 

/ ( r) = Cexp 
kT 

£ U r ) = ^ [ M 2 - f l n ( l + * | r | 2 ) ] (10.14) 

where we have introduced the effective potential which 
takes into account the lowering of thermostat symmetry as 
the coefficient af increases. The change may be caused, for 
instance, by the change in temperature or density. 

Eventually we come to the Einstein-Smoluchowski 
equation with the variable coefficient of spatial diffusion: 

9 / M 
8; My f 

F(r) = -Mco2

0r(l - af + br2) . (10.15) 

For <zf = 0 (the highest possible symmetry) we obtain the 
Einstein-Smoluchowski equation for a linear oscillator. 
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Presently we shall illustrate the use of the more general 
equation (10.15). 

The change in the symmetry of the thermostat can be 
taken into account in a different way. Namely, the 
coefficient of diffusion remains the same, whereas the 
force F(r) is replaced by the relevant effective force 

F(r)^Feff(r) eff 

8r -McooH 1 
l+b\r\ 

(10.16) 

As a result, we get the following Einstein-Smoluchowski 
equation: 

8/(r, t) 
dt 

= D,, 
6|r|2 6|r|: 

r e f f 

My f 
kT 

the equilibrium solution of which is, as before, the 
distribution given by Eqn (10.14). 

We see that in the presence of a nonlinear potential 
(10.12) the thermostat (the surrounding medium) may act 
on the Brownian particles in different ways. In the first case 
one may speak of the linear thermostat, since the non-
linearity is the property of each individual Brownian 
particle. The surrounding medium only affects the charac
teristic frequency: col ^ col(l — af). The value of af = 1 
corresponds to the bifurcation point (the appearance of a 
'soft mode'). In the second case one may refer to a nonlinear 
thermostat, since the nonlinearity of the force acting on the 
Brownian particle is due to the surrounding medium. 

10.3 Comparison of stationary distributions in 'linear' 
and 'nonlinear' thermostats 
The above two cases correspond to different Einstein-
Smoluchowski equations and, as a consequence, to 
different stationary solutions: the Boltzmann distribution 
with the potential given by Eqn (10.12), and the distribu
tion given by Eqn (10.14). It is only the latter that at af = 0 
coincides with the Boltzmann distribution for Brownian 
motion of harmonic oscillators. The distinction between 
these two distributions manifests itself, in particular, in the 
different behaviour (at large values of r) at the 'tails' of the 
distributions. 

For that matter, for the linear thermostat the fall-off 
of the distribution at large values of r is controlled by the 
nonlinear factor exp(—br4) and is therefore much faster 
than in the case of the Boltzmann distribution with the 
harmonic oscillator potential given by Eqn (10.10). By 
contrast, the distribution given by (10.14), as af increases 
(that is, as the symmetry becomes lower), falls off at large 
values of # much slower than the Boltzmann distribution 
for a linear oscillator. 

Let us consider some other characteristics using the 
example of one-dimensional motion. 

(1) The locations of maxima coincide: 

: 0 if af < 1 , 

= ± 
af — I 1/2 

if af > 1 (10.18) 

(2) The ratios of distribution functions at x = x m a x and 
x = 0 indicate that the relative depth of pit for the 
symmetrical bistable potential is smaller in the case of 
the nonlinear themostat. Because of this, the barrier is 
surmounted more easily in case of collective nonlinearity. 

For instance, in the domain of Gaussian approximation the 
ratio of dispersions is given by 

<(S*)V [ ( (5*) 2 > L = af, af > 1 (10.19) 

We see that the form of the Einstein-Smoluchowski 
equation depends on the nature of interaction between the 
particle and the medium. 

The Einstein-Smoluchowski equation has been 
obtained on the basis of the Langevin equation (10.6), 
which follows in its turn from the more general set of 
Langevin equations (2.2) for position and velocity of a 
Brownian particle. As simplifying assumptions we used 
either the condition of slow spatial diffusion of free particle 
i^D ^ o r the condition of strong damping (y co0). 
The first condition is always satisfied for large systems, 
since the diffusion time is proportional to the square of the 
characteristic size of the system L. The second condition is 
based on the internal parameters, and is far from universal. 
What can be done if inequality y 5> co0 does not hold? 

There are also other important questions. How do we 
describe, for instance, spatial diffusion when the coefficient 
of friction depends on velocity and we have to deal with 
dissipative nonlinearity? All these questions are part of the 
general problem concerning the relationship between the 
kinetic and the hydrodynamic description of Brownian 
motion. To begin with, let us consider the possibility of 
hydrodynamic description for the simplest model of 
Brownian motion. This will help us later to find solutions 
for the more complicated cases. 

11. Hydrodynamic description of Brownian 
motion 
Let us go back to the Fokker-Planck equation (2.6) for 
the distribution function/(r, v, t). The temperature of the 
thermostat enters this equation via the coefficient of 
diffusion D(vy We are going to use the known scheme 
of transition from the kinetic Boltzmann equation to the 
equations of gas dynamics. 

In the kinetic description of Brownian motion we are 
actually dealing with a two-component continuous medium. 
One of the components is the medium which represents the 
thermostat. This medium may be at nonequilibrium. The 
second component of our exemplary continuous medium — 
when Euler's method is used — consists of noninteracting 
Brownian particles. Naturally a more general case is also 
possible when the interaction of Brownian particles is taken 
into account [3]. 

So, we are considering a two-component continuous 
medium comprised of the thermostat with the temperature 
T and the 'continuous medium' of noninteracting particles. 
The thermostat is assumed to be linear in the above sense. 
Then the Brownian motion is described by the kinetic 
equation (2.6). 

The hydrodynamic functions for Brownian particles are 
p B ( r , t), uQ(r, t), TQ(r, t); we shall retain subscript 'B' only 
for the temperature to distinguish it from the temperature 
of the thermostat. The continuity equation for the density 
of particles p is 
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The equation for the density of momentum of Brownian 
particles is 

dpuj dpUrUj dp 67i, 7 p . . 

P = — kTQ m 
(11.2) 

where p is the pressure of Brownian particles, and tc^ is the 
so-far unknown 'tensor of viscous stress'. Finally, we have 
the equation for the density of kinetic energy, 

dt{ 2 + 2 m k T B 

= 3yp 

p\u\2 3 p 
+ x — kTB + p + UijUj + St 

kT_ 
m 

2 2 m 

3 
+ pF-u , (11.3) 

where St represents the so-far unknown components of the 
'vector of thermal flux'. The last term on the right-hand 
side of Eqn (11.2) and the first term on the right-hand side 
of Eqn (11.3) are the moments of the 'collision integral' in 
the Fokker-Planck equation. 

The distribution function /(r , t) in the Einstein-
Smoluchowski equation is linked with the density of 
Brownian particles by equation p(r, t) = mnf. Accord
ingly, in order to find the desired equation we must 
eliminate all 'excessive' functions w, T B , 7 ^ , St from equa
tions of the hydrodynamics of Brownian particles. This can 
only be done by the methods of perturbation theory, under 
the assumption that the diffusion process described by the 
Einstein-Smoluchowski equation is the slowest in time and 
the smoothest in coordinates. In the case of the diffusion of 
free particles, the first condition is expressed by the 
inequality xD > y~l, and the second by demanding that 
the relevant Knudsen number Kn = (vT/y)/L should be 
small. In other words, the gradients of hydrodynamic 
functions are assumed to be small. 

In the zero approximation with respect to these param
eters, equation (11.3) implies that the temperature of 
Brownian particles is the same as the temperature of the 
thermostat, 

Tu = T (11.4) 

In case of free Brownian particles (F = 0), the main terms 
on the right-hand side of Eqn (11.2) are the first and the 
last. Then, taking into account Eqn (11.4), we find that 

PU • 
kT dp 
ym dr -D 

dp 
dr 

(11.5) 

Substituting this expression into the continuity equation 
(11.1), we arrive at the Einstein-Smoluchowski equation in 
function p(r, t) and hence in the distribution function 
f(r, t). 

In the presence of an external force, given that the 
process is slow (y 5> co0 in case of oscillator) and the 
Knudsen number is small, we proceed in a similar way. 
Equation (11.4) still holds, as the correction is proportional 
to the gradient and is therefore small. In the equation for 
the density of momentum we have a new term which is 
proportional to the gradient of the potential, and is only 

small given that the potential is smooth enough (again, 
y COQ in the case of an oscillator). Then Eqn (11.5) 
becomes 

pu = -D(r) ^ + — F(r) . 
H {r) dr My w 

(11.6) 

Substitution of this expression into the continuity equation 
(11.1) results in the Einstein-Smoluchowski equation 
(10.7). 

Now a brief summary. The construction of the Ein
stein-Smoluchowski equation in this section has been 
based on the kinetic Fokker-Planck equation (2.6) for 
the distribution function of Brownian particles/(r, v, t) in 
six-dimensional phase space of coordinates and velocities. 
The system of noninteracting Brownian particles is thus 
regarded as a continuous medium interacting with the 
thermostat. Interaction with the thermostat is character
ised by the coefficient of friction y and the coefficient of 
diffusion D. Both these coefficients in Eqn (2.6) are 
constant, which means that the Brownian motion is 
linear. The force of friction is also nonzero when the 
thermostat is regarded as a 'continuous medium'. The 
coefficient of diffusion is an integral characteristic of the 
atomic structure of the surrounding medium (the atomic 
structure of the thermostat). 

Transition to the Einstein-Smoluchowski equation has 
been carried out in two stages. First we made the transition 
to equations in hydrodynamic characteristics of Brownian 
particles. The resulting set of equations (11.1) — (11.3) is not 
closed, being obtained without any simplifying assump
tions. 

The closed diffusion equation (11.7) is obtained under 
several important constraints: smoothness of the potential 
(in particular, the condition y > co0), and smallness of the 
Knudsen number. These constraints, together with the 
assumption that y and D are constant (linear approxima
tion of Brownian motion), considerably restrict the 
applicability of the Einstein-Smoluchowski equation. 
Because of this, we are again faced with the problem of 
construction of the generalised kinetic equation for unified 
description of Brownian motion on the kinetic and hydro-
dynamic (diffusion) scales [28]. In the next section we shall 
apply the general results of thermodynamics of irreversible 
processes to the theory of Brownian motion. 

12. Evolution of free energy and entropy in 
Brownian motion. Lyapunov functionals A F , A s 

12.1 Master equation. H-theorem 
B y / 0 ( x , t) we denote the stationary solution of the master 
equation (5.9), and represent it as the canonical Gibbs 
distribution. The effective Hamilton function can be 
defined in a number of ways. 

The intensity of the Langevin source, which also defines 
the coefficient of diffusion, may act as the effective 
temperature. When the general form of the master equa
tion (5.9) is used, however, there is no explicit information 
about the structure of the stationary solution and the 
generally nonlinear coefficient of diffusion. As a result, a 
clear-cut definition of the effective temperature is not 
feasible. 

There are two possible definitions of the nonequilibrium 
free energy of the stationary state. 
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On the one hand, we may formally put the effective 
temperature equal to unity, and represent the stationary 
distribution as 

where we have used the notation 

o (x) = exp [ Feff - Heff (x)], F e f f = - J exp [-Heff (x)] dx A 
(12.1) 

This representation amounts to the inclusion of the 
effective temperature into the definition of free energy 
and temperature. 

On the other hand, we may define the effective 
Hamilton function by the following equation: 

fo(x) = e x p ( - H e f f ) ( r e f f = 1 , F e f f = 0) . (12.2) 

This representation is especially suitable when the 
information is derived directly from experiment — for 
instance, from time realisations of the process x(t, a). 
We have used this approach in the formulation of the 
criterion of the relative degree of order of states of open 
systems in the form of the S-theorem [17, 38]. 

Now we return to the master equation (5.9) and 
represent its stationary solution in the form (12.1), thus 
introducing the free energy of the nonequilibrium stationary 
state. A 'thermodynamic relation' links this quantity with 
the mean effective energy and the corresponding entropy: 

^eff — Heff(x)f0(x)dx - [ ln / 0 (x ) /o (* )d* . (12.3) 

In a similar way we define the nonequilibrium free energy 
for the process of time evolution 

F(t) = | i 7 e f f ( x ) / ( x , t)dx - Jln/(jc, t)f(x, t)dx . (12.4) 

The difference in the thus defined free energies is reduced 
to: 

AF = F(t) -F0= [\nf-^-f(x, t)dx>0. (12.5) 
J Jo{x) 

We see that the free energy is at a minimum in the 
stationary state. Now let us show that the free energy 
monotonically decreases in the course of time evolution 
towards equilibrium as described by the master equa
tion (5.9). This will prove that A¥ is a Lyapunov functional. 

We differentiate Eqn (12.5) with respect to time, and use 
the master equation (5.9). Taking the normalisation con
dition into account, we get 

dA¥ 

~dt~ 

I 

/o(*) 

Wxx'Mx') 
f(x ', t) ^ fjx^ fjx', t) lnf(x ', t) 
foi*') fo(x) /„(*') /„(*') 

(12.6) 

To determine the sign of the integrand we take advantage 
of the equation 

-f(x,t) f(x',t)] 
W„>Mx') dx dx' = 0 (12.7) 

' U ( . v ) ./i,(.V). 

where we have noted that foix) is the stationary solution, 
and therefore 

Wxx'Mx,)-Wx,xf0(x) = 0. (12.8) 
By virtue of Eqn (12.7), we may rewrite Eqn (12.6) as 

dA¥ 

~dt~ 
:^Wjalf0(x')^-a']n^-a + a'Sj ^ 0 , (12.9) 

A*, t) ./(*', t) (12.10) 

f(,) = f i n ^ ^ / ( x ^ ) d x ^ o , ^ ^ 0 , 
J fo(x) 

fo(x) 9 f0(xf) 

and the textbook inequality \n(a/af) > 1 — (a/a')~l . 
Inequalities (12.5) and (12.9) prove that the difference in 

nonequilibrium free energies A¥ is a Lyapunov functional. 
The process of evolution leads towards the stationary state 
which, according to this criterion, is stable. 

The same result was interpreted in Ref. [11] as an 
increase in entropy. In this connection we would like to 
observe the following: 

The difference in the free energies and the corresponding 
Lyapunov functional can serve as the measure of how far 
the current state is from equilibrium. This information, 
however, is not sufficient for concluding whether or not the 
evolution under consideration is a process of self-organisa
tion. To answer this question, we must introduce another 
Lyapunov functional in place of A¥, 

fix, t) ~, x , ^ d^ls 

dt 
(12.11) 

where f(x, t) is the renormalised distribution. Renormali-
sation is based on the assumption that the mean effective 
Hamilton function / / e f f remains constant in the course of 
evolution. The Lyapunov functional ^Ls can be used as the 
measure of the relative order of states in the course of 
evolution towards equilibrium. Inequalities (12.11) express 
Boltzmann's H-theorem for processes described by the 
master equation (5.9). 

12.2 The Fokker-Planck equation. The H-theorem 
Now we turn to the Fokker-Planck equation (6.9), which 
follows either from the master equation (5.9) or from the 
equivalent equation (6.2). The stationary solution is then 
given by Eqn (6.16) with v = 0, which can be represented in 
the form [cf. Eqn (12.1)] 

f0(x) = exp[Fe f f - Heff(x)}, Heff(x) = J* ̂ | dx ' . (12.12) 

Once again we introduce the Lyapunov functional A¥ by 
formula (12.5). Its time derivative is found with the aid of 
Eqn (6.9), 

\"|2 dA¥ 

~df 
D(x)f(x9 t) "9 lnA*,t) 

6x f0(x)_ 
d x ^ O . (12.13) 

We see that in case of the Fokker-Planck equation the free 
energy decreases monotonically in the course of time 
evolution towards the equilibrium distribution (12.12). 
Naturally, the Lyapunov functional A¥ in this case also 
shows how far the system is from equilibrium, but is not an 
indicator of self-organisation. In order to obtain a 
criterion of self- organisation, one must again carry out 
renormalisation to the specified value of mean effective 
energy. 

12.3 The Einstein-Smoluchowski equation. H-theorem 
We return to the Einstein-Smoluchowski equation (10.17). 
The nonlinear thermostat acts on a Brownian particle 
through the effective force. The stationary solution in the 
thermostat coincides with the equilibrium solution and is 
given by Eqn (10.14). When the coefficient of feedback af is 
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zero, the solution is the Boltzmann distribution for a 
harmonic oscillator. 

The Lyapunov functional A¥ is defined by an expression 
similar to Eqn (12.5): 

A¥ = F{t) -F0 = J l n ^ y f(T, t) dr ^ 0 . (12.14) 

The time derivative is found with the aid of Eqn (10.17), 

2 dA¥ 

~di 
D{r)f{r, t) 

pr f0(x) _ 
dr ^ 0 (12.15) 

The Lyapunov functional AF again indicates how far the 
system is from equilibrium. The criterion of self-organisa
tion must be based on a functional defined in terms of the 
entropy difference. 

So, we have demonstrated the feasibility of extending 
the thermodynamic concept of free energy to a large class of 
equations which describe Brownian motion in nonlinear 
media. Notwithstanding a certain artificiality of such a 
definition, Lyapunov functionals A¥ are very helpful in 
dealing with many problems, some of which will be 
discussed in the sections to follow. 

13. Brownian motion in self-oscillatory systems. 
The Van der Pol oscillator 
In the preceding sections we discussed methods used for 
describing nonlinear Brownian motion. Now we are going 
to illustrate the efficiency of the general theory with 
concrete examples. 

We have selected only those examples of nonlinear 
Brownian motion which are of interest from the standpoint 
of the general theory (this, of course, does not diminish 
their own importance). Many of these examples illustrate 
the difference between traditional and non-traditional 
approaches to the description of Brownian motion. 

Let us begin with the Brownian motion in the Van der 
Pol oscillator. 

The Van der Pol oscillator is a classic example of an 
electrical self-oscillatory system. It contains a linear elec
trical oscillatory circuit to which amplified feedback is 
applied. 

Neglecting the fluctuations, the process in the oscillator 
can be described by a set of nonlinear dynamic dissipative 
equations in charge and current. The 'electron structure' of 
the flow of electric charge is taken into account by inclusion 
of the source of random emf $ into the dynamic equations 
(the Langevin source). 

Consider an oscillator with soft excitation, when the 
linear component of the coefficient of friction changes its 
sign when the coefficient of feedback becomes sufficiently 
large. By electromechanical analogy, we obtain the follow
ing set of Langevin equations: 

dv , . 2 n 2 1 dD . , N — = v, — + ( - a + Pv2)v + co2

0x +-—=y/D(y)y(t) , 

(13.1) 

where a = a f — y, af is the coefficient of feedback, y and 
are the coefficients of linear and nonlinear friction. 

Equations (13.1) are similar to the Langevin equations 
(3.16) for a Brownian particle in the medium with nonlinear 
friction. This time, however, the steady component of 

friction may change its sign. Following the guidelines of 
Section 3, we go over from Eqns (13.1) to the correspond
ing Fokker-Planck equation in the kinetic form, 

9/ , 9/ 8/ 8 
D{v) + 8v 

(-* + pv2)vf 

(13.2) 

which is similar to Eqn (3.15). 
Exact solution of the equations for self-oscillations 

cannot be obtained even in the dynamic regime described 
by equations (13.1) without the Langevin source. It is far 
more difficult to solve the corresponding Langevin and 
Fokker-Planck equations. The equations can be consider
ably simplified, however, when the dissipative parameters 
are much smaller than the frequency of oscillations, 

\oc\,ocf,S{v2)<co0. (13.3) 

To put it differently, this means that all relaxation times 
are large compared with the period of oscillations. Then 
the equations under consideration can be made much 
simpler by carrying out averaging over the oscillation 
period 2K/CO0. Mathematical aspects of the perturbation 
theory have been worked out by A A Andronov, N M 
Krylov, and N N Bogolyubov. 

There are many papers that discuss the theory of 
fluctuations in oscillators (see, for example, [5-9 , 2 0 -
22]). As a rule, the fluctuations are calculated under the 
assumption that the coefficient of diffusion is constant. This 
constraint is too strong when the feedback is designed in 
such a way that only thermal fluctuations remain in the 
circuit when the feedback is switched off. 

Assume that the feedback is designed in exactly this 
way. Then the coefficient of nonlinear diffusion D(v) at 
a f = 0 can be determined as explained in Section 3. In the 
absence of feedback the equilibrium solution is the 
Maxwell-Boltzmann distribution 

f(x, v, a f = 0) = Cexp 
H(x, v) 

kT 

H(x, v) + 
Mco\ 

(13.4) 

where we have introduced the notation for the Hamilton 
function of a linear oscillatory circuit. By electromechan
ical analogy, the mass corresponds to the inductance L, the 
coordinate x to the charge, etc. 

To define D(y), we substitute this distribution into 
Eqn (13.2) and find that 

D(v) = (y + Pv2) 
kT 
~M 

• y(y) kT 
(13.5) 

We have once again come to the Einstein relation (3.4). 
Assume now that the coefficient of feedback is nonzero. 

Then, putting the 'collision integral' in Eqn (13.2) equal to 
zero, we obtain the corresponding stationary solution, 
which is again represented as the canonical Gibbs distribu
tion: 

f(x,v,Of) = exp I -
kT 

HeS = H(x,v)-J\z 1 + (13.6) 
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If a f = 0, the effective Hamilton function coincides with 
Eqn (13.4). 

Observe that this stationary solution does not, however, 
satisfy Eqn (13.2), since it does not bring the left-hand side 
to zero. This is yet another indication of the difficulty of 
definition of the stationary distribution for the non-
averaged Fokker-Planck equation, which can only be 
done in an approximate way. 

As mentioned above, one simplification is possible when 
condition (13.3) is satisfied. In the first approximation it 
reduces to averaging over the period of oscillations. Let us 
consider other possibilities which are based on the use of the 
simpler model equations for description of Brownian 
motion in the Van der Pol oscillator. 

One such model will be considered in the next section. 
At this point we shall go to a coarser description by 
redefining the velocity of a Brownian particle in a non-
equilibrium state at a f ^ 0: 

eff 
8Mv v — a f 

1 
(13.7) 

Then in place of Eqn (13.2) we come to the following 
equation: 

6/ | 6 / / e f f 6/ 
8̂  8mv dr 

2 Pf — - co0r— *~ ov 

_8_ 
: 8v 

D{v) + | ; [ ( - a + £ v V ] , (13.8 

whose stationary solution has the form of Eqn (13.6). 
Owing to the new definition of the velocity, Eqn (13.7), 

the level of description of Brownian motion in the oscillator 
is changed. The appearance of a limiting cycle is now not 
described in an explicit way; it is reflected, however, in the 
distribution (13.6). When the parameter of feedback is large 
enough, the distribution with respect to velocity becomes 
bistable, and the maxima of the distribution are linked with 
the energy of oscillations in the generation regime. 

This simplification is also efficient in the more general 
case when both dissipative and nondissipative nonlinearities 
are present simultaneously. Recall that the case of non
dissipative nonlinearity has been considered in Section 10 in 
connection with the description of Brownian motion in 
bistable elements. Combination of the two types of non-
linearities gives rise to many new regimes of Brownian 
motion, as such systems may host both equilibrium and 
nonequilibrium 'phase transitions'. 

In particular the equilibrium phase transitions may 
affect considerably the rates of chemical reactions. In 
this case one may speak of the new kind of chemical 
catalysis, when the rate of chemical reaction is controlled by 
the value of the coefficient of feedback af. 

Now we return to the solution (13.6) and apply the 
criterion of the S-theorem [19, 39, 40] for calculating the 
relative degree of order of different regimes of generation 
which correspond to different values of af. 

For the 'reference point' it would be natural to take the 
state of equilibrium with the distribution (13.4), which 
corresponds to a f > 0. Equation 

•*r(a f ) C 0 exp 
H(x, v)' 
kT(df) 

dx dv 

\Mv2 

Cexp 

is used for renormalising the equilibrium state to the 
preassigned value of the mean kinetic energy of oscillations 
in the state with a f > 0. This equation allows us to find the 
effective temperature as a function of af, 

f = f ( O f ) , 

at 'initial condition' 

f ( a f ) | a f = 0 = r . (13.10) 

Since the maximum entropy corresponds to the state of 
equilibrium, given that the values of mean energy are the 
same, the degree of order for all states with a f > 0 is higher 
than that for the equilibrium state with a f = 0. Equation 
(13.9) also allows one to check whether the degree of order 
increases monotonically with increasing af. 

Quantitative assessment of the relative degree of order 
of different states is based on the difference in the entropies 
of the renormalised equilibrium state and the state with 
a f > 0. We shall discuss this issue in Section 18. 

14. The Van der Pol oscillator. Symmetrised 
nonlinearity 
In some cases (for instance, in the theory of solid state 
lasers) the process of generation is described by equations 
in x and v which are symmetrical with respect to the 
dissipative nonlinearity [17, 21]: 

d x 1 / 
_ + - ( - « +/HO* 

where 

^ + ̂ (-a + PE)v + a^x = 0 , 

E = ^-(v2+co2

0x2) = H(x, v) 

(14.1) 

(14.2) 

is the energy of oscillations. 
An exact equation in E (without averaging over the 

period of oscillations) follows from Eqn (14.1): 

dE 
— = (a - fibE)E, a = a f - y . (14.3) 

The solution of these equations can be expressed in terms 
of fixed values of energy E0 and phase </>0 (we assume that 
M = 1): 

x(t) = CQ0

 1 y/2E(t) COs(cQ0t + </>0) 

v(t) = -y/2E(t) sm(co0t + 0 O ) , 

E(t)=E0ji E0-

at a = 0 

(14.4) 

E(t) 
1+E0pt 

(14.5) 

kT 

The character of time evolution depends on the sign of a. 
At a < 0 the system is at rest with E = 0; at a > 0 steady 
oscillations are established with frequency co and energy of 
the limiting cycle E = (x/fi. Thus, the value of a = 0 
corresponds to the bifurcation point. 

The same expression also defines the relaxation time as 
a function of the deviation from the bifurcation point. At a 
finite distance from the point of bifurcation, the system 
approaches either of the stationary states according to the 

dx dv , (13.9) exponential law with the relaxation time T R E L ~ |a| 
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Closer to the bifurcation point the exponential dependence 
is replaced by the power law. In the limit of a = 0, 
E(t) oc\/t and the dependence on E0 disappears. 

Fluctuations are taken into consideration by introduc
ing Langevin sources into these equations, and establishing 
the appropriate form of the Fokker-Planck equation. As 
before, we give preference to the K-form of the Fokker -
Planck equation. 

We shall use the same equations as those developed for 
describing Brownian motion with nonlinear friction. By 
analogy with Eqn (13.1), we write the Langevin equation 
for the energy as 

^ + ( -a + fiE)E ~ ~ [D(E)E] = y/DWEy(t) . (14.6) 

The moments of the Langevin source y(t) are given by 

(y(t)) = 0, (y(t)y(t'))=2S(t-t'). (14.7) 

The only difference is that in the definition of the 
coefficient of diffusion we factor out the quantity E, 
which comes up in the transition from x, v to polar 
coordinates and also remains there in the case of constant 
diffusion. 

Transition to the equation for the distribution function 
f(E, t) follows the guidelines set forth in Section 3, and 
results in 

9/(£, t) = 6 
8; dE 

D(E)E 
dE + dE 

[ ( - a + . (14.8 

We can also write the equation for the mean energy, 

(14.9) 
dt \ dE I ' 

which is obviously not closed. 
Function D{E) in Eqn (14.8) is defined from the 

condition that in the absence of feedback the solution 
should be the Boltzmann distribution. Hence 

D(E) = D( 1 + - £ D = ykT (14.10) 

The stationary solution of Eqn (14.8) is again represented 
as the canonical Gibbs distribution with the effective 
Hamilton function 

fo(E) = Cexp 
/ / e f f ( £ , a f ) ' 

a f 1 

kT 

PE 
(14.11) 

At a? this solution coincides with the Boltzmann distribu
tion. 

Diffusion D{E) reflects the 'atomicity' of charge trans
fer. Often employed is the approximation of predetermined 
noise: D(E)=D. In this approximation the Einstein 
relation D = ykT does not hold, and so the stationary 
solution is 

f(E, a) = exp 
F — H eff 

D/y 
HcS(E) = -aE + ^-PE2

9 (14.12) 

where F and D/y are, respectively, the effective free energy 
and the effective temperature. 

Let us compare the stationary distributions correspond
ing to the different definitions of the Langevin source (and 
hence to the different definitions of the coefficient of 
diffusion). 

When the coefficient of diffusion is a function of energy, 
the distribution function falls off more slowly at high 
energies. The 'tails' of distributions are therefore differ
ent. At the same time, the locations of maxima coincide: 

£ m a x = ^ i f a > 0 , 

£ ™ x = 0 if a < 0 . (14.13) 

It is interesting to compare the two distributions in the 
domain of the Gaussian approximation. For the region of 
well-developed generation we may rewrite Eqn (14.12) as 

/ (3 ) exp 
(E-oc/P)2 

2D/P 
DP 

< 1 , (14.14) 

where 8 is a dimensionless parameter which is small in the 
regime of well-developed generation. Then the expression 
for the relative dispersion of energy is 

{(t)E)2){E)-2 =Dpoc~2 = e < U . (14.15) 

To bring Eqn (14.11) to the form of the Gaussian 
distribution, we expand the exponent in E — Emax and 
retain the first two derivatives. As a result, we arrive at 
the distribution similar to that given by (14.14); the relative 
dispersion, however, is now given by 

{{SEY){E)^=DPor < 1 . (14.16) 

y j y 
Recall that for natural fluctuations we have D = ykT. 

We see that even in the Gaussian approximation the 
energy-dependent coefficient of diffusion alters the expres
sion for the relative dispersion. Expression (14.16) only 
coincides with Eqn (14.15) when a <̂  y. Accordingly, the 
applicability of expressions (14.14) and (14.15) is restricted 
by two inequalities: 

- 2 8 = Dpoc~z <| 1, a <| y . (14.17) 

This means that we are in the domain of well-developed 
generation, but not far from the threshold. 

A similar two-way inequality defines the limits of 
applicability of Landau's theory of phase transitions [41, 
42]. This theory only works under conditions similar to those 
given by inequalities (14.17). Later on we shall return to this 
problem. 

15. Combined action of natural and external 
noise 
Of special practical interest is the case when the system 
experiences the action of both natural noise [via the 
function D(E)] and external noise. The following example 
shows that it is necessary to take the natural noise into 
account even when the external noise is strong [18]. 

We return to the Langevin equation (14.6) and assume 
that the value of the coefficient of feedback fluctuates under 
the action of an external source, 

where c is the intensity of parametric noise. The moments 
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of random function y(t) are given by Eqn (14.7). Then the 
Langevin equation becomes 

dE 1 d 
^ + ( - a + fiE)E - - ^ [y/D(E)E + ^G)E] 

= [y/D(E)E + V^)E]y(t) . (15.2) 

Following the scheme of Section 3, we find the correspond
ing Fokker-Planck equation: 

WE, 

+ dE [(-a + PE)Ef\ (15.3) 

The stationary solution of this equation is 

a-PEf 

/ ( £ ) = Cexp ( T — 
[y/W^+V^E7] 

•dE'\ , 

D(E) =D[ 1+-E (15.4) 

and coincides with Eqn (14.12) if external noise is absent 
(cr = 0). If, on the contrary, the source of natural 
fluctuations is switched off (D = 0), the solution (15.4) 
becomes 

f(E) 
fa-PE' 

C exp dE 
Jo oE' 

I'OC 

f{E) 
Jo 

dE = 1. (15.5) 

We see that the integral in the exponent contains 
logarithmic divergence at small values of E. At the same 
time, in the general expression the denominator is finite 
even when E = 0 owing to the presence of natural noise, 
and the integral does not diverge. This proves that the 
inclusion of natural noise (even small) may dramatically 
alter the behaviour of the distribution and lead to a 
physically correct result. In this way, the known difficulty 
of calculation of fluctuations in an oscillator with fluctuat
ing parameters is overcome. 

16. The symmetrised oscillator. Distribution 
of coordinates and velocities 
Let us now establish the more general Fokker-Planck 
equation for distribution function f(x, v, t). For this 
purpose we introduce the appropriate Langevin sources 
into the dynamic equations (14.1). Recall that energy E is 
expressed in terms of x, v by the use of Eqn (14.2). Once 
again we use the method of Section 3, getting as a result 
the following Fokker-Planck equation: 

8/ 8/(x, v, t) , df 
— - + v— 

8̂  dx 
• colx 

dx 

= 2 { d - A D { E ) £ \ + ^ M D { E ) ^ \ \ 
+ H ^ [ ( - a + H + £ [ ( - a + ^ H } -

(16.1) 

To obtain from Eqn (16.1) our former Eqn (14.8) we must 
use the relationship between distribution functions f(E, t) 
and / (x , v, t). 

The nonlinear coefficient of diffusion is obtained from 
the condition of existence of the Gibbs distribution for the 
oscillator when a f = 0; the resulting expression is similar to 
Eqn (14.11): 

D(E) D[ 1 +^E 
1 

(vz+colx2) (16.2) 

The stationary solution of Eqn (16.1) is 

f0(x, v, af) = Cexp 
kT 

a f HeS = E—^hi[l+^E) , (16.3) 

and coincides with the canonical Gibbs distribution when 
a f = 0. 

17. H-theorem for the Van der Pol oscillator 
We represent the distribution (16.3) as 

" F e f f - H e f f ( x , v, af) f0(x, v, af) = exp 
kT 

(17.1) 

(this time we are dealing with the true temperature of the 
thermostat rather than with the effective temperature). 
Once again we introduce a functional defined as the 
difference between the free energy of the state at the time t 
and the free energy of the stationary state: 

f(x,v, t) A¥ (t) = F(t) - F e f f = kT In J) 9 9 \f(x, v, t) dx dv ^ 0 . 
J fo(x>v,af) 

(17.2) 

With the aid of the Fokker-Planck equation (16.1) we 
obtain the derivative of this functional, and find it to be 
similar to Eqn (12.13). Hence, A¥ is a Lyapunov 
functional. 

Let us quote the results for the simpler equation (14.8), 
which will be required shortly for evaluation of the 
maximum permissible discrete time step in the numerical 
solution of the Fokker-Planck equation. The Lyapunov 
functional satisfies two inequalities: 

f{E9t) A¥ = F(t) - F(T, a f) = kT In 
fo(E> af)' 

dA¥ 

~df 

I'OC 

= -kT D(E)Ef 
Jo pE U{E,a{) 

•f(E,t)>0, (17.3) 

dE = -<rF sg 0 , 

(17.4) 

where crF is the analogue of entropy production. The 
stationary solution for f0 is given by Eqn (14.11). 

In this way, the Lyapunov functional is defined as the 
difference in nonequilibrium free energies. As indicated 
elsewhere, the functional A¥ can serve as a measure of 
remote-ness from the stationary state. However, this 
information is in general not sufficient for deciding 
whether the evolution in question is a process of self-
organisation. This problem can only be solved with the aid 
of a functional based on the difference in the entropies of 
the stationary and the current nonequilibrium states. 

In order to define the Lyapunov functional A¥ in the 
case of evolution described in terms of the distribution 
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function f(E, t), we must go over to the renormalised 
distribution f(E, t). Renormalisation is carried out under 
the assumption that the mean effective Hamilton function 
(14.11) remains constant in the course of time evolution 
towards the stationary state. This condition may be 
expressed as 

# e f f ( £ , af) < / ( £ , t)dE Heff(E, <Xf)f0(E9 <*f)dE 

(17.5) 

Naturally this condition is not satisfied in the course of 
time evolution towards the stationary state according to the 
Fokker-Planck equation (14.8). In order to comply with 
this condition, we must introduce the new temperature T 
which is a functional of the distribution/(£, t): 

*(-a + PE)2E ~ 
T{f} y + fiE 

-a + 0E)E] /dE j . 

(17.6) 
The renormalised distribution satisfies the equation which 
is nonlinear in / : 

dt' dE 
D(E)E 

dE + dE [ ( - a + 

D(E)=kf{f}(y + PE) (17.7) 

The stationary solution of this equation coincides with 
Eqn (14.11), and the temperature T is the same as the 
thermostat temperature T. 

After renormalisation we may introduce the functional 
defined by the difference in the entropies, 

•5(0 : k In , 
Jo f0(E, af) 

f(E, t) dE ^ 0 . (17.8 

Using Eqns (17.7), one can prove that this functional 
decreases monotonically in the course of time evolution 
towards the stationary state: 

2 dAs 

dt 
-k 

I'OC 

D(E)Ef 
Jo 

-In 
m t) 

dE ME^y 
dE = -cr^0. (17.9) 

The last two inequalities indicate that # is a Lyapunov 
functional. They also prove that the stationary state is 
stable at any value of the feedback parameter. 

In this way we have proved the H-theorem for 
Eqn (17.7), which is similar to Boltzmann's H-theorem 
for rarefied gas. There is, however, one question. 

As a matter of fact, the Lyapunov functional As for the 
Boltzmann equation is a natural characteristic, since the 
mean energy is conserved in the course of evolution towards 
equilibrium. Currently, however, the situation is quite 
different: to make condition (17.5) hold, we had to change 
the structure of the initial equation and to replace 
Eqn (14.8) by Eqn (17.7). It follows that we have proved 
the H-theorem for a different system. Is it of any value for 
the original problem? Or should we put up with the results 
for the functional As7 Such questions are certainly not 
without reason. For the example under consideration, 
however, the Lyapunov functional As is actually relevant 
to the initial equation (14.1), since it includes, for instance, 
its stationary solution f0. Because of this, the analysis of the 
relative degree of order based on the H-theorem is useful. 
We shall illustrate this clearly in the next section with the 
example of the evolution of stationary states as the 
parameter of feedback is varied. 

18. Self-organisation in the Van der Pol 
oscillator. The S-theorem 
In Refs [17, 39, 40,] the criterion of the relative degree of 
order of the states of open systems was formulated as the 
S-theorem. Now we shall apply this criterion for the 
particular case of evolution of stationary states of the Van 
der Pol oscillator as the parameter of feedback (the 
controlling parameter) is varied. 

So, let us return to the stationary solution (14.11) and 
write it out for three selected states: 

1. Feedback parameter is zero, a f = 0. The stationary 
solution (14.11) is then the Boltzmann distribution: 

1 
kT f(i) = r ^ e x P l - (18.1) 

2. Generation threshold, a f = y. We also assume that the 
nonlinearity is small. Then we can expand Eqn (14.11) in 
kTP/y, and find that 

f(2) 
2p_ ( PE2\ 

nykT C X P V 2ykT J 
(18.2) 

3. Regime of well-developed generation. In this case we 
may use the Gaussian distribution 

/ (3 ) 
1 

2K <(5£)2) 
exp 

( z s - a / r 1 ) 2 . 

2((8£)2) 
(18.3) 

The relative dispersion of energy is given by Eqn (14.16). 
From the above distributions we find the mean energy 
values, 

< £ > ( i ) = * 7 \ (E){2) = ]Jl^, < £ > ( 3 ) = | , (18.4) 

and the corresponding entropy values (at #): 

(nykT^\l2 1 
>(i) 

>(3) 

In kT + 1 : >(2) 

In 
2nkT , x 1 

r ( r + «) + 2 - (18.5) 

Now let us analyse the implications of these results. 
First of all, we note that, under our assumption that 

PkT/y <̂  1, the entropy increases as the system moves 
towards the regime of well-developed generation: 

>(i) < S{2) < S (3) (18.6) 

This could be interpreted as a decrease in the orderliness of 
states as the generation develops. Intuitively it is clear, 
however, that the degree of order should increase. What is 
wrong? 

To clear up the situation we shall compare the values of 
mean energy for the three selected states. From Eqn (18.4) 
it follows that 

<£>(!)< (E)(2) < <£>(3) • (18-7) 
We see that the mean energy also increases as the 

generation develops. At the same time, we know that 
the S-theorem must be applied to the states whose mean 
energy is the same. Accordingly, we have to use an 
appropriate procedure of renormalisation. 

In our current example it would be natural to choose 
state ' 1 ' (the state of equilibrium) for the state of 'physical 
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chaos'. Since the distribution function is then given by 
Eqn (18.1), the effective Hamilton function coincides with 
the energy E: 

Heff(E, Of) = £ . (1* 
In this way the renormalisation is carried out at a 

preassigned value of the mean energy. 
In this connection we recall Eqn (13.9), used as the 

additional condition for renormalizing the velocity distribu
tion so as to comply with the criterion of the S-theorem. 
Now, taking into account Eqn (18.8), this equation takes on 
the form 

r 
Jo 

r 
Ef0(E, a f = 0) d£ = Ef(E, a f) dE 

Jo 
(18.9) 

and allows us to find the effective temperature as a 
function of the controlling parameter af: 

t = r ( o f ) , 

at 'initial condition' 

f(af)|af=0 = r . (18.10) 

Taking advantage of this result, we now compare state 
' 1 ' with state '2 ' at = (£ ) (2)> a n < ^ t n e n s t a t e ' 1 ' w ^ t n 

state '3 ' at = (E)^3y The renormalised values of 
temperature and difference in entropies are given by 

kT 
2 ykT\1/2 ~ 2 1 
_ Z _ j > k T i 5 ( 1 ) - 5 ( 2 ) = l n - + - > 0 , ( 1 8 . 1 1 ) 

for the first pair of states, and by 

- a RykT 
k T V = p - > V n T > k T ' 

, 1 7 + a 2 1 ^ 
^ ) - ^ ) = l n f e V > l n ^ + 2 > 0 ' 

pykT 
< 1 , 

(18.12) 

(18.13) 

for the second pair. Recall that 8 is a characteristic small 
parameter for the regime of well-developed generation. 

From these results for the three selected states it follows 
that the effective temperature given by Eqn (18.9) steadily 
grows, and the entropy steadily decreases as the feedback 
parameter a f is increased. Thus, the disorder added in state 
' 1 ' by 'heating' it to the temperature T, transforms in states 
'2' and ' 3 ' into the more ordered motion, as the entropy of 
these states is less, given that their mean energy is the same. 
This allows us to conclude that the evolution towards well-
developed generation is a process of self-organisation. What 
is more, these results confirm that our choice of the 
feedback parameter # for the controlling parameter is 
correct. 

Note that the S-theorem as a criterion of the relative 
degree of order was first formulated for the case of the Van 
der Pol oscillator [39]. 

18.1 Shannon entropy and ' S - information' 
Let us return to expressions (18.5) which define the values 
of Shannon entropy (or Shannon information) 

In f(E)f(E) dE, (18.14) 

for the three selected stationary states of the Van der Pol 
oscillator. To draw a comparison with the above results 
based on the criterion of the S-theorem, let us compare the 
values of Shannon entropy for states '3 ' and '2': 

>(3) >(2) = ' ( 3 ) 1 (2) l n [ 2 ^ > 0 , (18.15) 

which implies that the entropy and the information 
increase as the generation develops. If this result is to be 
interpreted as the increase in chaoticity, we challenge both 
our physical intuition and the criterion of the S-theorem. 

It is possible, however, to construe this result, in the 
spirit of information theory, as the information gain: the 
information about the system increases upon transition to 
the regime of well-developed generation. The state of well-
developed generation is thus regarded as more informative. 
It is difficult, however, to give a comprehensible physical 
explanation to this result. 

19. Oscillator with inertial nonlinearity 
Dynamic motion in the Van der Pol oscillator is two-
dimensional, being described by a set of two ordinary 
differential equations of the first order (13.1) without a 
Langevin source. In such systems only the simple attractors 
are possible: the state of rest and the limiting cycle. 

Three-dimensional systems may also have the so-called 
strange attractors. This term refers to such regions of phase 
space where all trajectories are dynamically unstable, and 
the divergence of trajectories is exponential. Because of this, 
the Kolmogorov — Krylov — Sinai entropy (K-entropy) is 
positive. 

Quite understandable is the desire to explore the more 
complicated oscillators, in which the dynamic processes are 
described by at least three differential equations of the first 
order. Such systems include, in particular, the so-called 
oscillators with inertial nonlinearity, first described by 
K F Teodorchik [23, 43]. 

The oscillatory circuit of Teodorchik's oscillator 
includes a thermistor, which gives rise to inertial non-
linearity and, as a consequence, to new regimes of 
oscillations. This oscillator, however, does not involve 
strange attractors. In order to produce complex motion, 
a modified oscillator with inertial nonlinearity was invented 
[44], in which the inertial converter is placed in the feedback 
circuit. The nature of motion in the oscillator depends 
considerably on the asymmetry of the nonlinear character
istic of the inertial element. The most 'universal' spectrum 
of bifurcations is observed in such an oscillator when a half-
wave detector is used. 

As a matter of fact, the strange attractor was discovered 
in the classic paper of E Lorenz in 1963 [45]. As a 
mathematical object, however, it was first analysed by 
D Ruelle and F Takens in 1971 [46]. 

In connection with the discovery of the strange attractor 
it would be interesting to mark the following. 'Strange' 
irregular solutions of nonlinear equations of the same type 
as Lorenz equations were independently discovered by 
A Grasyuk and A Oraevskii in 1964 [47] in their studies 
of oscillations in a molecular oscillator. At that time their 
discovery failed to draw much attention, since complex 
irregular motions in molecular generators did not seem to 
be too important. By contrast, for Lorenz the appearance of 
complex chaotic regimes explained why a long-term weather 
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forecast was practically impossible. The present-day status 
of the problem of predictability of complex behaviour is 
reported in Ref. [48]. 

The Anishchenko-Astakhov oscillator with inertial 
nonlinearity proved to be a very convenient device for 
experimental study of complex ('chaotic') behaviour in 
relatively simple dynamic systems. In particular, it was 
observed that as the feedback parameter increases (with 
fixed value of the inertial parameter), the limiting cycle is 
surpassed by a sequence of period-doubling bifurcations in 
accordance with Feigenbaum's scheme [49]. Beyond Feigen-
baum's critical point, the strange attractor appears with 
intricately interlaced regions of chaos and order. What is 
more, there was good agreement between the results of 
physical and numerical simulations. In recent years, the 
fluctuation processes ('Brownian motion') in such oscilla
tors, due to both natural and external noise, have been 
thoroughly investigated. 

Evaluation of the relative degree of order was based on 
the criterion of the S-theorem [50]; the entropy was 
calculated by the scheme described above. Renormalisation 
of the distribution function was carried out at the given 
intensity of oscillations [conditions similar to Eqn (18.9)]; 
the range of the feedback parameter extended up to 
Feigenbaum's critical point. 

Calculations indicate that the entropy (renormalised to 
the preassigned value of the intensity of oscillations) 
decreases as the system approaches the critical point of 
transition into the domain of the strange attractor, in the 
process of a period-doubling sequence. This points to the 
increasing degree of order. In other words, the sequence of 
period- doubling bifurcations may be regarded as a process 
of self-organisation. More detailed analysis shows that the 
decrease in entropy is nonmonotonic in the neighbourhood 
of bifurcation points. 

For our future discussion it is important that the 
sequence of period-doubling bifurcations and the main 
features of bifurcations in the domain of strange attractor 
can be described on the basis of the so-called logistic 
equation 

xn+l=a(\-xn)xn, 0 ^ a ^ 4 , O ^ x ^ l , (19.1) 

which describes a one-dimensional process in discrete time 
with a unit step. It is also referred to as the equation of 
sequence, because it may describe a sequence of locations of 
traces of trajectory (of the process in question) on the 
secant plane. 

In this way, the one-dimensional equation in discrete 
time emulates the important properties of the system of 
three differential equations. This becomes possible because 
the dimensionality of phase space filled up by the trajectory 
is two with a small fraction. 

Logistic equations were first introduced for describing 
the behaviour of biological objects. We shall see that 
equations of this kind offer the possibility of construction 
of two- and one-dimensional models of complex motion. 
This complex motion owes its existence not to the escape of 
trajectory from the plane into three dimensions, as in case 
of the oscillator with inertial nonlinearity, but to the more 
sophisticated nonlinearity. 

But let us return to the logistic equation. If a varies 
within the range of 3 ^ a ^ 4, the logistic equation 
describes a very complicated motion which corresponds 

to the state of the so-called dynamic chaos. This state may 
be characterised by appropriate distribution functions. The 
most chaotic state occurs when a = 4. In general, the 
distribution function f(x, a) can only be determined 
from numerical simulations. 

For the most chaotic state (a = 4) the distribution 
function was found analytically by Ulam and Neumann: 

1 f1 

f(x) = - Jx(\ -x), fix) dx = 1 . (19.2) 
n Jo 

This distribution can be obtained in the following way 
[17, 51, 52,]: it is possible to use equation Eqn (19.1) for 
simulating complex motion as described, for instance, by 
the dynamic equations of the oscillator with inertial 
nonlinearity. Naturally, one has to deal with the problem 
of the description of Brownian motion in such systems. As 
before, it is important to take into account not only the 
natural sources of noise, which reflect the 'atomic 
structure' of individual elements of the oscillator, but 
also the external noises, which can be used for controlling 
the sophisticated process of generation. 

Problems of this kind are very complicated because, as 
we have seen, the characteristics of natural noise in 
nonlinear systems depend on the nonlinear properties of 
the system. For this reason it will be worthwhile to start by 
tackling a simpler problem. Namely we shall discuss the 
structure of the Langevin equation which coincides with the 
logistic equation (19.1) if the noise is neglected. 

We shall see that this approach offers a new opportunity 
for constructing a hierarchy of mathematical models of 
oscillators displaying sequences of bifurcations of the 
energy of the limiting cycle. It is with this problem that 
we shall start our investigation of stochastic processes in 
systems with complex behaviour. 

20. Bifurcations of the energy of the limiting 
cycle. Oscillators with multistable stationary 
states 
As indicated above, the transition to 'dynamic chaos' in an 
oscillator with inertial nonlinearity can be qualitatively 
described on the basis of the logistic equation. 

Now we are going to show that the same equation can 
be used for constructing a model of the generalised 
Van der Pol oscillator, in which a cascade of bifurcations 
of limiting cycle energy is possible as the parameter of 
feedback increases. 

We start by introducing dimensionless variables. The 
choice of scales is, of course, not unambiguous. A natural 
time interval for an oscillator is its period of oscillations 
T = 2TZ/CO0. Accordingly, the dimensionless variables can be 
defined as follows: 

t' = co0t, a' = GCCQQ1 , E' = PECOQ1 , 

D' = pDcoo2 =y'kTf . (20.1a) 

In the second case, the time scale is based on the relaxation 
time l/y: 

t' = yt, a ' = ay~l, Ef = fiEy'1 , 

D' = Dpy~2 =kTpy~l = kT ' . (20. lb) 

The form of Eqn (14.3) for the energy E' does not depend 
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explicitly on the choice of scales used for transition to 
dimensionless variables (further on, the prime is dropped): 

dE 
dt 

= (a - E)E . (20.2) 

The distinction becomes important, however, when the 
differential equation is replaced by the equation in 
differences. The basic time scale will then define the 
discrete time step; the choice of time scale also affects the 
calculation of fluctuations. 

Let us generalise Eqn (20.2) in such a way as to obtain a 
sequence of bifurcations of limiting cycle energy with an 
increasing feedback parameter. With this purpose we 
replace Eqn (20.2) by an equation in discrete time with 
step A = 1, which corresponds to the period of oscillations 
in case of dimensionless variables (20.1a), and to the 
relaxation time l/y in the case of dimensionless variables 
(20.1b). As a result, we come to the logistic equation 

En+i = (a + 1 )En -E2

n = F(En), 0 ^ a + 1 ^ 4 , 

0 ^E^4, 

which after the kth iteration becomes 

En+k=F*\En). 

(20.3) 

(20.4) 

To return from Eqn (20.4) to the differential equation, 
we define the sequence of derivatives 

dE En+k En 1, 2,... (20.5) 
k dt 

As a result, we come to the sequence of differential 
equations 

dE 1 
(20.6) 

Let us consider a few first equations in this sequence. At 
k = 1 we return to the initial equation (20.2). At k = 2 we 
get a new equation 

dE 1 
~ d 7 ~ 2 ^ 

This equation admits four stationary states: 

E\ =0 at a ^ 0 ; E2 = a at 0 ^ a ^ 2 

- (a - E)E[E2 - (a + 2)E + a + 2] . (20.7) 

F - a + 2 + ( ^ T ^ ) 2 ~ ( a + 2 ) a t a ^ 2 • ( 2 0 - { 

We see that ramification of values of the limiting cycle 
energy occurs at a = 2, and we are dealing with a bistable 
state. In general, the number of stationary states in the 
range of values of a up to Feigenbaum's critical point is 2k. 
The possible values of the limiting cycle energy coincide 
with the values of energy at the stationary points of the 
logistic equation (20.3). 

Equations (14.1) for functions x(t) and v(t) are gener
alised in a similar way, by making the substitution 

1 F{k){E)-E 
(20.9) 

The solutions for x(t), v(t) are given, as before, by 
Eqn (14.4), whereas E(t) must be determined from 
Eqn (20.6). 

Now let us consider the relevant Langevin and Fokker -
Planck equations, which can be written by analogy with 
Eqns (14.6) and (14.8). The first of these is 

dE 
~dt 

^D{k)(E)Ey(t) . (20.10) 

The moments of the source y(t) are given by Eqn (14.7). 
The corresponding Fokker-Planck equation can be 
represented as 

dt dE 
D(k){E)E 

dE + dE 
| _ i [ F ( * ) ( £ ) _ £ ] / J . (20.11) 

The nonlinear coefficient of diffusion is again found under 
the assumption that in the absence of feedback (a f = 0) the 
system is at equilibrium, and the solution is the Boltzmann 
distribution (18.1): 

D{k){E)=\[E-F^(E)] 
<xf=0 

D{l)(E)=kT\y' + E) . 

(20.12) 

In dimensional variables [see Eqns (20.1a, b)] the expres
sion for coincides with Eqn (14.10). Accordingly, 
Eqn (20.11) with k = 1 coincides with the Fokker-Planck 
equation (14.8). The stationary solution of Eqn (20.11) is 

fo(E> a f ) = C e x P 
1 \EF{k){E')-E' 

dE' (20.13) 

Naturally, the structure of the distribution becomes more 
and more complicated as the number of iteration increases, 
because there are more and more maxima of the 
distribution. The locations of maxima are determined by 
the roots of the equation 

F —F^(E 
^ m a x

 1
 v IT 

0 > (20.14) 

and therefore coincide with the locations of stationary 
points of the logistic equation (20.4). 

Let us illustrate these results with a simple example, with 
k = 2 and = D = const. The constant coefficient of 
diffusion implies that the noise is external (predetermined). 
At the same time, the noise is not parametric, and so there 
are no such difficulties as those encountered in Section 15. 

Recall that in the dynamic regime at k = 2 the value of 
a = 2 is the point of bifurcation, associated with ramifica
tion of the energy of the limiting cycle [see Eqn (20.8)]. 

For the sake of clarity we single out three particular 
cases. 

1. The region below the bifurcation point (a < 2). In the 
Gaussian approximation the stationary solution (20.13) 
becomes 

fo(E)~-
1 2-

2nD 

1/2 

exp 
1 2 

2D 2 
:(E-a)2 

0 ^ a < 2. (20.15) 

Here and below the lower limit E = 0 in the normalisation 
conditions is replaced by E = —oo, which is justified if 
s = Dp/oc2 <| 1. F rom this distribution it follows that on 
approaching the critical point the dispersion of fluctuations 
increases as 2/(2 — a) — that is, according to Curie's law 
for the nonequilibrium phase transition. 
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2. The critical point (a = 2). The stationary solu
tion (20.13) is then 

ME) 1 / 2 \ 1 / 4 (E-a)4 

8Z) 
a = 2 . (20.16) 

The relative dispersion is proportional to s rather than to 

3. The region above the bifurcation point (a > 2). The 
distribution displays two maxima, and the partial Gaussian 
distributions are 

v l / 2 
/ l , 2 = 2nD exp 2D (E-Eh2y 
Eh2 = 2 ± a - (20.17) 

On approaching the critical point from above, the 
dispersion of fluctuations also increases according to 
Curie's law, but this time with a factor of l / (a —2) . 

To end this section, we shall demonstrate that the above 
transition across the critical point is, according to the 
criterion of the S-theorem, a process of self-organisation. 

There is an entropy jump for the states above and below 
the critical point in the Gaussian approximation. By S_ and 
S+ we denote the value of entropy below and above the 
critical point, respectively. Then the difference in entropies 
in the Gaussian approximation is 

S_ -S+ = lnv / 2 > 0 . (20.18) 

So, when the critical point is crossed as a f increases, the 
entropy decreases. Since in the neighbourhood of the 
critical point |a — 2| <̂  2 the mean energies have the same 
values above and below ((E)_ = (E)+) we may use the 
criterion of the S-theorem, which indicates in this case that 
the state above the critical point is more ordered. This 
means that the transition into the region of bistability is a 
process of self-organisation. 

The role of the parameter of order in this example of a 
nonequilibrium phase transition is played by the difference 
in the mean energies of the two branches, 

rj = (EX) - (E2) = 2 V a - 2 , a ^ a c r = 2 . (20.19) 

We see that at the critical point the parameter of order is 
zero. 

These results have been obtained in the Gaussian 
approximation. Because of this, they are quite similar to 
those obtained within the framework of Landau's theory of 
phase transitions of the second kind. 

21. Oscillators in discrete time. Bifurcations of 
the energy of the limiting cycle and of the 
period of oscillations 
Recall that the logistic equation (20.3) can be used for 
describing the transition to the state of dynamic chaos in 
discrete time through a sequence of period-doubling 
bifurcations. Alternatively the set of differential equa
tions (20.6) can be employed for the description of 
bifurcations of energy of the limiting cycle. For the 
stationary distribution (20.13), this sequence of bifurca
tions corresponds to the appearance of new maxima at 
those values of EMAX which coincide with the locations of 
stationary points of the logistic equation at the kth step of 
iteration. 

At large enough values of k one might expect to observe 
chaotic behaviour in the arrangement of maxima of the 
stationary distribution in that range of values of a f which, 
according to the logistic equation, corresponds to the 
domain of dynamic chaos. 

Now let us find a generalised logistic equation which 
would simultaneously describe a superposition of two 
cascades of bifurcations: bifurcations of energy of the 
limiting cycle and bifurcations of period doubling 
[17, 53, 54]. 

Making the substitution En+k we reduce the logistic 
equation (20.4) to the form 

FW(En), * = 1,2,. . . . (21.1) 

As a result, we get a family of logistic equations. At k = 1 
we return to the initial equation (20.3), the solution of 
which is well known. The sequence of bifurcations of 
period-doubling starts at a = 2 and ends at the critical 
point at a c r = 2.58. The edge of the broadest window of 
order appears at a = y/S. The value of a = 3 corresponds to 
the state of the most developed 'dynamic chaos'. 

With k = 2 the bifurcation pattern becomes very 
different. At a = 2 we now have the bifurcation of energy 
of the limiting cycle, and bistability occurs. Depending on 
the initial conditions, the system goes to either the upper or 
the lower branch. The process of period doubling now only 
starts at a = y/6, when for the logistic equation the period 
would already have quadrupled. A 'chaos-to- chaos' phase 
transition takes place at a = 2.6785, which results in the 
state of 'dynamic chaos' inherent in the logistic equation. 

Recall that the differential equation (20.6) at k = 2 
describes only the bifurcations of energy values; there 
are no bifurcations of period doubling. 

Finally, let us consider the case of k = 3. 
For the differential equation (20.6) the limiting cycle 

with E = a is now stable up to a = y/S9 where three 
stationary states with different energies are formed. The 
bifurcation diagram of the generalised logistic equa
tion (21.1) is also changed dramatically. 

The comparison of bifurcation diagrams at k = 1 and 
k = 3, respectively, reveals the difference between the states 
within the limits of the broadest window of order. At k = 1 
we discern the states which correspond to all three values of 
the energy, whereas at k = 3 there is only the state 
corresponding to the largest energy value. This implies 
that at k = 3 only one of the three states has the domain of 
attraction of trajectories which is large enough to be 
observable. 

It is possible to demonstrate the extent to which this 
distinction is detected by different criteria of order. The 
values of Shannon entropy differ considerably for the states 
within the window of order at k = 1 and k = 3, whereas the 
Lyapunov indices for these states are almost the same. 

Now let us show how the Lyapunov functional A¥ for 
Brownian motion in the Van der Pol oscillator can be used 
for exploring the possibility of transition from continuous 
to discrete time. 

22. Criterion of stability upon transition to 
discrete time based on the H-theorem [17] 
Let us return to the Fokker-Planck equation (14.8) for the 
distribution function of the energy of oscillations. In 
particular, this equation describes the process of time 
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evolution towards the stationary state. For numerical 
calculations this equation must be replaced by the 
appropriate equation in discrete time with step A. 
Denoting by f(E, n) the corresponding distribution func
tion, in place of Eqn (14.8) we get 

f(E, n + A) -f(E, n) _ 8 
A ~dE 

D(E)E^(E, n) 

+ QE[(-* + PE)Ef(E, /i)]. (22.1) 

Observe that formally the stationary solutions of 
equations (14.8) and (22.1) in continuous and discrete 
time are given by the same expression (14.11). The problem 
is, however, whether these stationary solutions are stable. 
To answer this question we must analyse the behaviour of 
small deviations from the stationary solution f0(E, a f): 

ME,t)=f(E9t)-f0(E)9 f1(E,n)=f(E9n)-f0(E). (22.2) 

First we shall do this for the equation in continuous 
time. We make use of the H-theorem, which for the theory 
of Brownian motion is expressed by two inequalities (17.3) 
and (17.4) in the Lyapunov functional A¥, defined in terms 
of the difference in nonequilibrium free energies of the 
current and stationary states. 

Substituting f = fo + / i into expression (17.3) for the 
difference of free energies, we carry out an expansion in fx 

and retain only the main term. Then for the Lyapunov 
functional A¥ we find that 

dt 
(F-F0) 

kT_ _d_ M 
ft dE ^ 0 (22.3) 

Hence it follows that fx decreases with time, and the 
stationary solution of the Fokker-Planck equation (14.8) 
is stable. 

Now let us consider the same problem in discrete time, 
when the Fokker-Planck equation has the form of Eqn 
(22.1). 

Introduce a factor q which links the values offx at two 
consecutive instants of discrete time with step A: 

fl(E9n + A)=qfl(E9 n) (22.4) 

Now we use definition (17.4) of 'entropy production' 
GF ^ 0, which for small fx can be represented as 

Gf = kT rDEf^A2 

Jo fo \pEj 
dE^O (22.5) 

The time derivative in Eqn (22.3) we replace by the finite 
difference, 

_d_ 
~dt 

J 
ME, n)ME,n + A)-f(E, n) . kj | . , 1 V , . , , v , d E 

fo A 
kT 

<«-"I 
ft (E9 n) 

fo 
dE = -a,, < 0 , (22.6) 

where q is as defined by Eqn (22.4). 
From the condition of stability, which requires that \fi\ 

should decrease as the discrete time passes, it follows that 

\q\ < 1. The necessary and sufficient condition of stability, 
which follows from Eqn (22.6), is then given by [17] 

\i\ = l-A-
kT\\f\dE 

Jo 

< 1 , (22.7) 

which can be written in a more concise form in terms of the 
Lyapunov functional A¥: 

2 A¥ 

^ 1, ' 2 J/o 
ffdE. (22.1 

We see that the criterion of stability of the stationary 
solution is expressed in terms of the general thermody
namic characteristics of the nonequilibrium process: the 
analogue of 'entropy production' crF and the Lyapunov 
functional A¥. 

From Eqn (22.8) we find that the region of stability is 
delimited by the two-way inequality 

2 AF 

A =4 
GF 

(22.9) 

We see that it is always possible to make the step of 
discrete time small enough to ensure stability of the 
stationary distribution with respect to a small deviation of 
arbitrary form. 

To particularise this criterion of stability, let us specify 
the form of a nonequilibrium distribution. We assume that 
the nonequilibrium distribution can be obtained from the 
stationary distribution by varying the parameter of 
feedback (the controlling parameter). Then the effective 
Hamilton function in Eqn (14.11) must be replaced: 
Heff —> Heff + 8a f £. In the simplest case, when the coeffi
cient of diffusion is constant [see Eqn (14.12)], and the varia
tion 8af is small, the values of GF and A¥ can be defined as 

aF = y(?>a{)2(E), AF = (5«f) 2 ^ g ! > , ( 2 2 . 1 0 ) 

and are thus expressed in terms of the mean energy and the 
dispersion of energy for the stationary distribution. The 
condition of stability then becomes 

0^AykT(E)/((6E)-2) ^2 . (22.11) 

In particular, the value of the largest permissible time step 
is thus given by 

Amax = 2((6E)2)/(ykT(E)) . (22.12) 

Observe that # implicitly depends on the parameter of 
feedback via the mean energy and the dispersion. For the 
regime of well-developed generation these results can be 
reduced to a very simple form with the aid of Eqn (14.15): 

0 ^ a ^ 2 , An • 2a (22.13) 

These expressions do not contain either the temperature or 
the coefficient of diffusion, because they pertain to the 
region of well-developed generation, which corresponds to 
the limit of T —> 0 when the dynamic distribution holds 
good. In our present case the distribution follows from 
Eqn (14.14) and has the form 

/ 0 ( £ , o f ) = 8 ( £ - a i 8 - 1 ) , (E)=*F (22.14) 

These results can also be used in a different way. Namely 
if we define the value of the time step (for instance, by 
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setting it equal to one, A = 1), from Eqn (22.13) we find 
that the stationary solution is stable when 

0 ^ a < 2 , = 2 (22.15) 

This condition coincides with the condition of stability of 
the limiting cycle, when the evolution in discrete time is 
described by the logistic equation (20.3). This is natural 
because we started with the Fokker-Planck equation 
(14.8), from which we obtained Eqn (22.1) in discrete time. 

Now we can redo all our calculations, and consider the 
more general Fokker-Planck equation (20.11) for the next 
level with k = 2. It corresponds to the stationary solution 
(20.13) with k = 2, which describes the ramification of the 
energy of the limiting cycle. Bifurcation occurs exactly at 
a = 2, at the limit of stability as defined by Eqn (22.15). 

By way of generalisation, we may tackle the problem of 
stability of the most general stationary distribution (20.13) at 
arbitrary numbers k. The regions in which dynamic dis
tributions hold good will be narrowed as k increases; because 
of this, the analysis of the limits of stability of stationary 
states on the basis of the H-theorem becomes even more 
important. 

Recall that the final expressions (22.13)-(22.15) have 
been obtained for the region of well-developed generation. 
For comparison let us consider another distinct state, the 
threshold of generation. This will show us how strong the 
dependence of the limits of stability on the value of the 
controlling parameter can be. 

From distribution (18.2) it follows that the relative 
dispersion of energy is of the order of unity, and that 
(E) ~ y/D 1$. Given this, from Eqn (22.12) we find the 
maximum permissible time step at the generation threshold: 
( ^ m a x ) t h ~ T h e n 

( ^ m a x ) max , / t r i ^max (22.16) 

where s is the small parameter from the theory of well-
developed generation. 

We see that upon transition to discrete time the state of 
well-developed generation loses stability with much smaller 
values of Amax than does the state at the generation 
threshold. Comparing this conclusion with calculations 
of the relative degree of order of the same states on the 
basis of S-theorem, we find that the higher organised state is 
more vulnerable upon transition to discrete time. In other 
words, it has less 'stability margin' than the more chaotic 
state at the threshold of generation. One might ask whether 
this is good news or bad news. There is no categorical 
answer to this question. Sometimes the loss of stability may 
result in a higher organised state, which is good from the 
standpoint of self-organisation. Such was the case with the 
ramification of the values of energy of the limiting cycle, 
and with the period-doubling bifurcations. 

If, however, the loss of stability results in transition to a 
more chaotic state, this is bad as far as self-organisation is 
concerned. In this respect the higher organised state is more 
fragile. 

So far we have been considering examples based on 
various modifications of the Van der Pol oscillator. Now we 
shall give some examples from other areas. 

23. Brownian motion in chemically reacting 
systems. Partially ionised plasma 
Consider an example of Brownian motion when the 
'Brownian particles' are represented by the fluctuations 
of density of electrons, ions, and atoms in a partially 
ionised plasma. By 'chemical reactions' we refer to the 
processes of ionisation (for instance, electron impact 
ionisation), and the processes of recombination involving 
three charged particles. 

The theory of such fluctuations can be based on the set 
of kinetic equations for the distribution functions of 
electrons, ions and atoms [33, 55-57]. In particular, one 
may define the appropriate Langevin sources in the kinetic 
equations for the distributions of electrons, ions, and 
atoms. 

Relaxation towards the equilibrium or (in open systems) 
the stationary state proceeds, as a rule, in several stages. In 
many cases, local equilibrium with respect to translational 
degrees of freedom is achieved at the first stage, followed by 
the stage when local equilibrium with respect to internal 
degrees of freedom is established, and followed finally by 
the stage when chemical equilibrium sets in. 

Consider the state of the plasma after completion of the 
first two stages of relaxation. Neglecting fluctuations, the 
evolution towards chemical equilibrium can be described on 
the basis of equations for the mean densities of electrons n e , 
ions ri[9 and atoms na. Of all possible processes of 
conversion of particles in a plasma we select just one, 
the process of ionisation by electron impact. By a and ft we 
denote the coefficients of ionisation by electrons and 
recombination of an electron and an ion in the presence 
of an electron, respectively. Then the dynamic equations 
can be written as 

— = ctnena - pnQna nG = ri[9 ne + na = n . (23.1) 

The second equation states that the average numbers of 
electrons and ions are equal, and the third equation ensures 
that the total number of charged particles (for instance, 
electrons and atoms) is constant. At equilibrium, the so-
called Saha's formula holds: 

nQnx a f a X /nkT l 3 ^ 2 11 
(23.2) 

Next we define the Langevin sources in the kinetic 
equations so as to take the atomic structure of the 
'continuous medium' into account. This will also allow 
us to find the relevant Langevin sources in the equations in 
random functions nQ9 nl9 na. The intensity of the Langevin 
source, which acts as the coefficient of diffusion in the 
corresponding Fokker-Planck equation for the distribu
tion function f(n, t), is 

Dne = ̂  {ccnena + fining , (23.3) 

where V is the volume, and thus the particles are assumed 
to be uniformly distributed in space. Under this condition, 
two equations in Eqn (23.1) also remain valid when 
fluctuations are taken into account. Then Eqn (23.3) can 
be rewritten as 

(23.4) 
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The coefficient of nonlinear friction follows from the 
dynamic equation (23.1): 

AHe = -[ocne(n - nQ) - pn3

e] = rHe - gHe (23.5) 

To establish correspondence with the structure of the 
master equation for the one-step processes of Section 9, we 
have again introduced the coefficients of generation and 
recombination. Then, by analogy with Eqns (9.5) and 
(9.17), we may immediately write the Fokker-Planck 
equation for distribution function f(nG, t): 

I = i(D-£)+iM' K ' ) < K = 1. (23, 
The stationary solution of this equation is 

(23.7) 

Hence it follows that the maximum of the distribution is 
defined by the solution of the equation 

A (nmax) = -[ocnmax(n - nmax) - fin3

max] = 0 (23.8 

The location of the maximum of the distribution satisfies 
Sana's formula. 

In the Gaussian approximation the dispersion 
bne = n e - nmax is given by 

V (2n-ne) 
(23.9) 

The dispersion vanishes in two extreme cases: when the 
degree of ionisation is zero (the gas of neutral particles, 
ne = 0), and when the plasma is completely ionised (ne = n). 
This indicates that our source of fluctuations reflects the 
fact that the acts of chemical transformation are discrete; 
the dispersion is zero in the above two cases because 
chemical reactions do not take place. 

For small deviations from equilibrium, the fluctuation 
hn satisfies the linear Langevin equation with the coefficient 
of friction X = a(2n — ne). The expression for the diffusion 
coefficient can then be reduced to the standard form of the 
fluctuation-dissipation relation: 

D = m$ne)2), X = a(2n - ne) , 
(23.10) 

whence it follows that the coefficient of diffusion also 
vanishes in the two extreme cases specified above. 

Making use of the definitions (23.4), (23.5) for the 
coefficients of generation and recombination, we may 
write the appropriate master equation. In the context of 
statistical theory, of the two possible definitions of 
transition probabilities (9.2) and (9.11) the latter is more 
'natural'. It is only then that the K-form of the Fokke r -
Planck equation follows from the master equation. 

In the case of the master equation it is more natural to 
use the total numbers of particles rather than the densities: 

Ne = Vne, Ni = Vni9 Na = Vna, N = Vn . (23.11) 

In these variables the dynamic equation (23.1) becomes 

^ = avNeNa - pvNlN{, a v = £ , j8v = ^ . (23.12) 

In the presence of an external source (for instance, 
photoionisation in a given light field), it is possible to 
monitor the degree of order of a partially ionised plasma as 
a function of, for instance, the strength of the external field. 

24. The Malthus- Verhulst process 
The Malthus-Verhulst model was proposed many years 
ago for describing the survival of a population, for 
instance, of bacteria [11, 15]. Let N be the number of 
species in the population. If y and a are, respectively, the 
rates of death and of birth, and P(N — 1) is the rate of 
extinction because of competition between the species, then 
the process of time evolution at N 5> 1 can be described by 
the following differential equation: 

dN 
(24.1) 

Here we have factored out the common multiplier N in the 
definitions of coefficients gN, rN. Equation (24.1) is similar 
in structure to Eqn (14.3) for the energy of oscillations in 
the Van der Pol oscillator. Observe that the coefficient of 
feedback a f corresponds here to the birth rate a. 

In this connection let us recall that the nonlinear 
coefficient of diffusion, given by Eqn (14.10), in the 
Fokker-Planck equation (14.8) has been defined from 
the condition that the stationary distribution in the absence 
of feedback (a f = 0) should coincide with the Boltzmann 
distribution. Following the same hypothesis, we must now 
define the nonlinear coefficient of diffusion as 

D(N) = (y + pN)T , (24.2) 

where T is the dimensionless counterpart of the tempera
ture, which, as we shall see, can be assumed to be unity. 

Alternatively one may define the coefficient of diffusion 
in terms of the coefficients of ionisation and recombination 
by formulas (9.5) and (23.4). In this case, for Eqn (24.1) we 
have 

gN = *N, rN = (y + PN), D = (y + fiN) • - l a (24.3) 

Thus defined, the coefficient of diffusion depends on the 
'feedback parameter'. As the feedback parameter increases, 
the system displays a phase transition which results in a 
stationary state with a nonzero number N. However, the 
sign of the coefficient of diffusion may change. To avoid 
this complication, we shall stick to the definition (24.2) 
with T = 1. As before, we give preference to the K-form of 
the Fokker-Planck equation: 

df(N, t) _ 8 
Ft ~ a / v (y + flN)N dN + 8Af 

[ ( - a + y + 0N)NF] . 

(24.4) 

If the birth rate a is zero, the stationary distribution takes 
on the form 

/ 0 ( A 0 = e x p ( - A 0 , J/odtf = 1 . (24.5) 

As this description holds for N 1, the exponential 
decrease means that the population is actually doomed 
to extinction. 

By analogy with Eqn (14.11), the general stationary 
solution can be represented as 

f0(N, a) = Cexp[-// e f f(Af, a ) ] , 

where 

Heff = N-^\n[ \+-N) , (24.6) 
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is the relevant Hamilton function. The maximum of the 
distribution is given by 

(24.7) ^ m a x = ( « - y ) r 1 , 

which expresses a quite natural requirement: birth rate 
must be high enough (a > y) to ensure viability of the 
population. 

If the relative dispersion of the number of species is 
small, we may go over from Eqn (24.6) to the Gaussian 
distribution by expanding in small deviation 
SN = N — Nmax. The condition of smallness of the relative 
dispersion is similar to that given by Eqn (14.16): 

<(5A02) 1 
N2 

1 ' TT 
oc-y Nn 

< 1 (24.8 

The appropriate master equation must be used for 
describing processes with a small number of species. In 
this case also, there are strong arguments which shift the 
balance in favour of the kinetic representation of the master 
equation. 

Practical applications of the nonlinear theory of 
Brownian motion are numerous; they are discussed in 
specialised literature. Our main task consisted of elucidat
ing the important new aspects which are necessary for 
further development of the theory. Of course, some 
important matters had to be left out — in particular, the 
feasibility of the unified kinetic description of dissipation 
and diffusion both in the space of velocities and in 
conventional space. This is briefly discussed in Refs [27, 28]. 

The use of appropriate generalised kinetic equations in 
the theory of Brownian motion allows one not to resort to 
the methods of perturbation theory used in Sections 10 and 
11 for transition from the Fokker-Planck equation to the 
Einstein-Smoluchowski equation. This opens the possibil
ity of describing Brownian motion in systems which display 
both dissipative and nondissipative nonlinearity. The 
simplest example of such a system is the Van der P o l -
Duffing oscillator, which involves at least two controlling 
parameters: the parameter of feedback in the Van der Pol 
oscillator, and the 'parameter of effective field' in the 
Duffing oscillator. By varying the second parameter it is 
possible to produce a transition similar to an equilibrium 
phase transition of the second kind. The potential may then 
change from parabolic to, for example, bistable. 

New phenomena, caused by the interplay of equilibrium 
and nonequilibrium phase transitions, may take place in 
such systems. For instance, in the well-known Kramers 
problem of surpassing a barrier, the characteristic time of 
transition can be controlled by varying the parameter of 
feedback in the Van der Pol oscillator. In systems with 
chemical reactions the nonequilibrium dissipative processes 
may affect the reaction rates through different channels. 
Accordingly, one may speak of the kinetic theory of 
catalysis, when the reaction rate is controlled by varying 
the parameter of feedback in the Van der Pol oscillator. 

Obviously, such problems are very complicated. The 
author may only hope that this paper will stimulate further 
development of the nonlinear theory of Brownian motion. 
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