
Abstract. The quantum chromodynamics (QCD) approach
to the problem of multiplicity distributions in high-energy
particle collisions is described. The solutions of QCD
equations for generating functions of the multiplicity
distributions in gluon and quark jets are presented both
for fixed and for running coupling constants. Character-
istics have been found which are very sensitive to
distribution shapes. The predictions are compared with
experimental data. Evolution of the multiplicity distribu-
tions with decreasing phase space windows is considered
and discussed in relation to the notions of intermittency
and fractality. Some other QCD effects are briefly
described.

1. Introduction

Quantum chromodynamics (QCD) has been treated for a
long time as the theory of strong interactions. Its numerous
successes in describing the static properties of hadrons
(especially those of heavy quarkonia), the symmetry
features of their interactions, and the sum rules are very
impressive. The discovery of the asymptotic freedom of

QCD has led to a theoretical foundation of the formerly
phenomenological parton model and has opened the way
for perturbation theory to be applied to hadron processes
with high transferred momenta where quarks and gluons
play the role of partons [1 – 5]. Certainly, the transition of
quarks and gluons to experimentally accessible hadrons at
the final stage of evolution should be considered, and we
are still unable to treat it in a unique way since the problem
of confinement has not been solved in the framework of
QCD even though lattice calculations tell us that it is an
inherent property of QCD. The simplified estimates show,
however, that either this stage does not drastically change
the final results, or its impact does not depend strongly on
energy and therefore can be estimated from other processes
at different energies. Phenomenologically, the distributions
of partons and hadrons seem remarkably similar somehow.
In such a situation, the study of the partonic stage of the
cascade becomes of uppermost importance because the
final properties of multiple production of hadrons at high
energies are determined to a great extent by the partonic
cascade.

The distribution of inelastic events according to the
number of produced particles (the multiplicity distribution,
for short) is one of the most important features revealing
the dynamics of the interaction. Phenomenological
approaches to its description usually originate from the
simplified ideas about particle emission by several sources
and exploit some distributions widely used in probability
theory (see e.g. Ref. [6]). Among them, the negative
binomial distribution is one of the most popular distribu-
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tions because it describes reasonably well the experimental
data for various reactions in wide energy intervals, when its
parameters are fitted, though there is some discrepancy at
the highest accessible energies. The attractive feature of the
negative binomial distribution is the Koba – Nielson –
Olesen (KNO) scaling at asymptotically high energies,
i.e. at average multiplicity tending to infinity. According
to the KNO hypothesis [7], the multiplicity distributions
depend on the ratio of the number of particles to the
average multiplicity only (this is explained in more detail
below). In its general features, this property has also been
confirmed to a reasonable extent by experiment (with the
possible exception of some data at the highest energies).

What does QCD tell us about multiplicity distributions?
Some attempts to find an answer to this question have been
made in the papers which constitute the main content of this
review paper. It appears that QCD, when treated in higher-
order approximations at the partonic level, has been able to
predict some very delicate features of multiplicity distribu-
tions which happen to be qualitatively valid for hadrons as
well. Before delving into the details of the conclusions, let us
point out some ‘underwater stones’ and describe in brief the
history of the problem.

First of all, one should always keep in mind that QCD
provides conclusions about parton (quark and gluon)
distributions but not about final hadrons, as has been
mentioned already. One has to use additional assumptions
to get from them the knowledge of experimentally accessible
values. One of them is the hypothesis about the local
parton – hadron duality [8], which claims that one should
just renormalise the parton distributions without changing
their shape to get hadron distributions. It originates from
ideas of ‘soft’ preconfinement [9], when partons group in
colourless clusters without disturbing the initial spectra.
Phenomenological models of hadronisation have been
attempted in Monte Carlo versions of inelastic processes
and, in most cases, they support the approximate property
of the local parton – hadron duality even though there exist
some quantitative differencies from that hypothesis, as is
described below.

Another problem, tightly connected to the first one, is
the limitations of the perturbation theory analysis in a
definite approximation. Formally speaking, one should
apply perturbation theory only when the coupling constant
is very small. That condition is fulfilled in QCD only for
extremely large transferred momenta. In each process,
however, the energy of cascading partons degrades during
their evolution and one has to take proper account of soft
partons, their recoil due to interaction, and energy –
momentum conservation laws. All these factors used to
be neglected in the lowest-order approximation when only
the processes with a high gradient of energies and of
emission angles at each stage of the evolution are
considered (the so-called double-logarithmic approxima-
tion). Account is taken of soft partons and of strict
angular ordering in the subsequent terms of the perturba-
tion series, such as the modified leading-logarithm
approximation and higher-order terms in the coupling
constant. The recoil effects and conservation laws are
also taken into account at that stage.

In most cases those corrections are well under control
and are of the order of ten percent of the main term. In spite
of their rather small total contribution, they are often very
important and change the picture qualitatively in the region

where the corresponding functions are small. For example,
they are crucial for proper description of the multiple
production processes. This manifests itself mathematically
as a new expansion parameter equal to the product of the
coupling constant (or, more precisely, of its square root)
and the rank of the moment of the distribution. Thus, it is
large at large ranks, i.e. at high multiplicity. These problems
will be described in more detail in Sections 3 – 5.

That is why the very first results on the multiplicity
distributions of partons in QCD were obtained by means of
the double-logarithmic approximation (see reviews in
Refs [5, 10]). They are both impressive and discouraging.
First, they provide the asymptotic KNO scaling of the
distributions, which does not depend on the value of the
coupling constant at all [11]. One is tempted to speculate on
a somewhat more general meaning of the result. However, it
fails to be valid in higher-order approximations. The energy
increase of the average multiplicity depends on the coupling
constant. It is faster than any logarithmic function and
slower than any power-like one (if the running coupling
constant is used), which agrees quite well with experimental
findings. At the same time, the shape of the KNO function
contradicts all experimental distributions because it is much
wider than any of them. Recently, it became possible to
resolve the problem [12, 13] by proper consideration of the
higher-order effects mentioned above. In any case, one can
now state that the agreement with experiment is achieved at
the qualitative level, at least. Moreover, some qualitative
predictions of the perturbative QCD are unexpectedly well
suited for ‘soft’ hadronic processes as well. On the other
hand, it is puzzling even though one recognises that higher-
order corrections should take into account ever softer
partons in a consistent way. On the one hand, it probably
implies the more general nature of soft and hard processes
than has been imposed on various theoretical schemes and
persuades us to reconsider our approaches to the origin of
the effects under consideration (leading, for example, to the
experimentally observed multiplicity distributions). In
addition, the newly found characteristics prompted by
solutions of the QCD equations are extremely sensitive
to tiny details of the multiplicity distributions. The current
state of affairs for the multiplicity distributions in quark
and gluon jets described by QCD is the main concern of this
article (see Sections 5 – 8).

Many discussions are devoted to the value of the ratio of
average multiplicities in gluon and quark jets. The initial
value obtained in the double-logarithmic approximation is
9=4. This strongly exceeds all experimental estimates. The
simplest corrections reduce that value by about ten percent.
An even larger decrease of this ratio has been predicted by
the exact solution of the equations for the generating
functions in the case of fixed coupling and by the
higher-order approximations with a running coupling
constant. Its derivation and correspondence to experimen-
tal data is discussed in Sections 6 and 7. The energy
dependence of the average multiplicity is considered there
also.

For the sake of completeness, one should mention other
interesting facts concerning inelastic interactions of high-
energy particles which are successfully described (and
someTimes predicted) by QCD. Effects predicted by
QCD are very exquisite, someTimes unexpected, and
always extremely instructive. When studying the multi-
plicity distributions, one is eager to ask about their
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behaviour not only in the total phase space but also in its
smaller subregions. It is well known that these studies are
very popular nowadays. They are related to the inter-
mittency phenomenon and to the fractality of particle
distributions within the small phase-space volume. This
fractality results from wider fluctuations in such phase-
space regions (for the latest review see [14]). Those features
are caused by the relative widening of the multiplicity
distributions in smaller phase-space volumes. It gives rise
to the increase of their moments in a power-like manner
directly revealing properties of intermittency and fractality.
Such tendencies have been experimentally observed. QCD
describes the increase of the moments, relates the inter-
mittency exponents (or fractal dimensions) directly to the
anomalous dimension and clearly depicts the region of
applicability of those regularities indicating the scales at
which one should take into account the running coupling
constant or consider it as a fixed one. These results are
described briefly in Section 8.

The quantum-mechanical origin of the interacting
partons reveals itself in various interference effects. They
lead to the hump-backed plateau of rapidity distributions,
to the correlations of partons in energies and azimuthal
angles, to the string (or drag) effect in the three-jet events
and in the production of heavy bosons and lepton pairs at
large transverse momenta, and to the suppression of the
forward production of accompanying particles in processes
with heavy quarks. These are described briefly in Section 9.
Unfortunately, the details of interactions with nuclei as well
as interactions of polarised quarks are not mentioned in this
paper to keep it to a reasonable size. They deserve a
separate article.

My main concerns here are the multiplicity distributions
and related characteristics. I apologise to the authors of
numerous papers on multiplicity distributions whose con-
tribution has not been mentioned. My only excuse stems
from the intention to describe just the QCD approach to the
subject. In addition, omissions can happen unintentionally,
unfortunately.

2. Definitions and notation

The distribution of the number of particles produced in
high-energy inelastic events is called the multiplicity
distribution and is given by the formula

Pn =

sn

X

1

n=0

sn

, (1)

where sn is the cross section of n-particle production
processes (the so-called topological cross section) and the
sum is over all possible values of n so that

X

1

n=0

Pn = 1 . (2)

SomeTimes it is more convenient to replace the multiplicity
distribution by its moments, i.e. by another set of numbers
obtained from it by a definite algorithm. All such sets can
be obtained from the so-called generating function defined
by the formula

G(z) =

X

1

n=0

Pn(1 + z)n , (3)

which substitutes an analytic function in place of the set of
numbers Pn.

In what follows, use will often be made of the
(normalised) factorial moments Fq and cumulants Kq

determined from the generating function G(z) by the
relations

Fq =

X

n

Pn n(nÿ 1):::(n ÿ q + 1)

�

X

n

Pn n

�q =

1
hniq

dqG(z)
dz q

�

�

�

�

z=0

, (4)

Kq =

1
hniq

dq ln G(z)
dz q

�

�

�

�

z=0

, (5)

where

hni =

X

1

n=0

Pn n (6)

is the average multiplicity. The expression for G(z) can be
rewritten as

G(z) =

X

1

q=0

z q

q!
hniqFq (F0 = F1 = 1) , (7)

ln G(z) =

X

1

q=1

z q

q!
hniqKq (K1 = 1) . (8)

The distribution Pn and its ordinary moments Cq are
derived from the generating function G(z) according to the
formulas

Pn =

1
n!

dnG(z)
dzn

�

�

�

�

z=ÿ1

, (9)

Cq =

X

1

n=0

Pn nq

hniq =

1
hniq

dqG(exp z ÿ 1)
dz q

�

�

�

�

z=0

. (10)

All the moments are connected by definite relations that
can easily be derived from their definitions in terms of the
generating function. For example, the factorial moments
and cumulants are related to each other by the identities

Fq =

X

qÿ1

m=0

C m
qÿ1KqÿmFm , (11)

which are nothing other than the relations between the
derivatives of a function and of its logarithm at the point
where the function itself equals 1. Here

C m
qÿ1 =

(q ÿ 1)!
m !(q ÿ m ÿ 1)!

=

G(q)
G(m + 1)G(q ÿ m)

=

1
mB(q, m)

(12)

are the binomial coefficients, and G and B denote the
gamma- and beta-functions, respectively. Thus there are
only numerical coefficients in the recurrence relations (11)
and the iterative solution (well-suited for computer
calculation) reproduces all cumulants if the factorial
moments have been given, and vice versa. In that sense,
cumulants and factorial moments are equally suitable. The
physical meaning of both of them is clearly seen from their
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definitions if they are presented in the form of integrals of
correlation functions. However I will not include them here
(for a review, see Ref. [14]) but shall instead refer to the
analogous relations in quantum field theory where
formulas similar to Eqns (4) and (5) define the complete
set of Feynman graphs (both connected and disconnected)
and the subset of connected diagrams, respectively (see e.g.
Ref. [1]). Thus, it is easy to recognise that the factorial
moments are the integral characteristics of any correlations
among the particles while the cumulants of qth rank
correspond to ‘genuine’ q-particle correlations not redu-
cible to the product of lower-order correlations{. To be
more precise, all q particles are connected to each other in
the qth cumulant and cannot be split into disconnected
groups. One can say that they form a q-particle cluster
which is not divided into smaller clusters, in analogy with
Mayer cluster decomposition in statistical mechanics.

It is a common feature of distributions in particle
physics that their factorial moments and cumulants
increase rapidly at large ranks q. That is why it is
convenient to consider their ratio

Hq =

Kq

Fq
, (13)

which behaves in a more ‘quiet’ way at high ranks q, at the
same time emphasising all the typical qualitative peculiar-
ities of cumulants as functions of their rank q.

Using the definition of factorial moments, Eqn (4), one
can easily derive their relation to the ordinary moments Cq

of the same and lower ranks. The coefficients depend on the
mean multiplicity so that, for example,

F2 =

hn(n ÿ 1)i

hni2 = C2 ÿ hniÿ1. (14)

This complicates the whole matter since one has to
recalculate them at any given energy if the F scaling
persists. That is why the ordinary moments are not used in
what follows. In the asymptotics, the ordinary and factorial
moments coincide, however.

One should keep in mind that the generating function
contains the same physical information as the multiplicity
distribution. This is true also for unnormalised moments
and for their ratio. For normalised moments, one should
define the average multiplicity at a given energy. Note that
the higher-rank moments lay emphasis on higher-multi-
plicity events. The multiplicities n5 q contribute to the
factorial moment of the (integer) rank q, as is seen from
Eqn (4). If the distribution is cut off at some n = nmax, all
factorial moments with the rank q > nmax are equal to zero,
while they are positive at smaller q. The cumulants may be
either positive or negative.

Up to now, without mentioning it, it has been assumed
that the rank of the moment is a positive integer. However,
the definitions (4), (5), and (10) can be generalised to
include noninteger moments [15]. This is easily done by
rewriting the factorial moments as

Fq =

1
hniq

X

1

n=0

Pn
G(n + 1)

G(nÿ q + 1)
, (15)

which is valid at any real value of the rank q. One can
obtain the same formula by forming the derivative of real
order q (i.e. by using fractional calculus) of the generating
function.

According to the generalised differentiation rule one
gets a fractional derivative of any (real) order if the
complete set of ordinary derivatives of integer order is
known [16]:

Dq
z G(z) =

X

1

m=0

(1 + z)mÿqG(m)

(ÿ1)
G(m ÿ q + 1)

, (16)

where G(m)

(ÿ1) is the derivative of the (positive) integer
order m of the function G(z), defined by Eqn (3), at
z = ÿ1. The generalised definition of factorial moments for
any real (positive and negative) noninteger and integer q
can be written as:

Fq =

1
hniq Dq

z G(z)

�

�

�

�

z=0

=

1
hniq

X

1

m=0

G(m)

(ÿ1)
G(m ÿ q + 1)

. (17)

Eqns (9), (15), and (17) correspond to each other, i.e. the
experimental definition of factorial moments given by
Eqn (15) is equivalent to its theoretical definition given by
Eqn (17) as the fractional derivatives of the generating
function. At integer ranks one gets the previously used
formulas. That is why the generalised (to noninteger ranks)
moments are known as fractional moments. Their use
could help distinguish various distributions, as discussed
later.

The situation with cumulants is more complicated. It is
straightforward to define [17] them theoretically as

Kq =

1
hniq Dq

z lnG(z)

�

�

�

�

z=0

=

1
hniq

X

1

m=0

(ln G(z))(m)

jz=ÿ1

G(m ÿ q + 1)
. (18)

However, the relation between factorial moments and
cumulants becomes much more complicated than formula
(11) and impractical to use. We should keep in mind that
the aim here is not to calculate the cumulants themselves
but to find the characteristics of multiplicity distributions
which are most sensitive to their shape. Therefore, it has
been proposed to use the so-called ‘analytically continued’
cumulants denoted by K(a)

q and defined by the following
recursion relations at any real rank q :

Fq =

X

[qÿ1]

m=0

k (a)
qÿmFM

mB(q, m)

. (19)

The sum is up to the integer part of qÿ 1. As is easily seen
from formulas (11) and (12), it can be used for any value of
q, integers included. It is convenient both for experimen-
talists and for theorists, after some additional convention.
The relation to the ‘true’ cumulants defined by Eqn (18)
has been lost, however.

3. Phenomenology

3.1 KNO scaling and F scaling
One of the most successful assumptions about the shape of
the multiplicity distributions at high energies is the
hypothesis that the energy dependence is determined
completely by the behaviour of the average multiplicity
in such a way that the distribution Pn may be represented
as:

Pn =

1
hni

f
n
hni

� �

. (20)

{This interpretation is valid, however, only for moments with rank
smaller than the average multiplicity at a given energy (for more
details, see the review paper Ref. [14]).
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This property has been called KNO scaling after the names
of its authors [7] who proposed it on the basis of the
Feynman plateau of rapidity distributions. The normalisation
condition (2) leads to
�

1

0
f(x) dx = 1 . (21)

It is clear that the ordinary moments of the KNO
distribution (20) do not depend on energy and are just
functions of their rank q :

Cq =

�

1

0
x qf(x) dx = const(E) . (22)

The factorial moments of the distribution are energy
dependent and tend to constant values at asymptotically
high energies because they differ from the ordinary
moments by lower-order correlation terms suppressed by
the inverse of the average multiplicity to the corresponding
power. Constancy of the factorial moments will be called F
scaling. It coincides with KNO scaling in asymptotics. As is
clear from definitions (3), (7), and (8), the generating
function depends only on the average multiplicity in both
cases.

In QCD with a fixed coupling constant (see Section 7), F
scaling is preferred. However, the difference from KNO
scaling is usually neglected since the theoretical calculations
are often performed for asymptotically high energies. The
preasymptotic correction terms in the second moment have
been considered in Ref. [18].

In the double-logarithmic approximation the equations
for factorial moments are independent of both energy and
coupling constant. The corresponding function f(x)
decreases exponentially [5] at large values of x :

f(x) � 2C

�

Cx ÿ 1 +

1
3Cx

+ :::

�

exp(ÿCx) , Cx4 1 , (23)

where C � 2:553. At low low values of x it behaves as

f(x) � xÿ1 exp

�

ÿ

1
2

ln2x

�

. (24)

Though the very appearance of KNO scaling and its
independence of the coupling constant in the lowest
approximation are by themselves a great success of
perturbative QCD [11], the shape of the scaling function
(23) does not fit experimentally obtained shapes. Experi-
ment favours the shapes which are much narrower than is
prescribed by Eqns (23) and (24). The corrections of the
modified leading-logarithmic approximation indicate that
the resulting form should become less wide [19]. It happens
that the higher-order terms reduce the width of f(x) but it
now depends on the coupling constant. Those problems are
treated in Sections 5 – 7.

Up to now, it has been implicitly assumed that the
multiplicity distributions are being treated in the total phase
space. It is reasonable to consider the question of their
evolution if some restrictions are imposed on the region of
the phase space under investigation. In particular, one can
study such distributions in ever smaller rapidity intervals
contained within the total interval. In that case, the
moments of the distribution become, in general, functions
of the size of the interval as well as of their ranks (for a
review, see Ref. [14]). Their behaviour is often related to the
notions of intermittency and fractality discussed briefly in
Section 9.

3.2 Conventional distributions
We shall consider three distributions in which analytic
expressions for generating functions and all moments can
be derived [20, 21]. They will serve as the ‘starting points’
for further discussion of QCD distributions. First, we shall
describe the moments of integer rank, and then show what
happens with arbitrary (fractional, negative, complex rank)
moments.
3.2.1 Poisson distribution. The presence of correlations in a
process is conventionally described by the difference
between its typical distribution and the Poisson distribu-
tion, which is written as

Pn =

hnin

n!
exp(ÿhni) . (25)

The generating function is [see Eqn (3)]

G(z) = exp(hniz) , (26)

and, according to Eqns (4) and (5), one gets

Fq = 1 , Kq = Hq = dq1 . (27)

Therefore the measure of correlations could be defined as
the difference between Fq and 1, or between Kq (Hq) and 0.
There is exact F scaling and asymptotic KNO scaling.

The fractional (in general, complex rank) factorial
moments of the Poisson distribution [15] are

Fq =

exp(ÿhni)
hniq

G(1 ÿ q)
F(1, 1 ÿ q ; hni) , (28)

where F is the degenerate confluent hypergeometric
function. At positive integer values of q they are equal
to 1, as they should be, and oscillate with an amplitude
depending on q and hni in the intervals between the integer
ranks, as it is shown in Fig. 1 (curve 5 ).

The cumulants [17] are

Kq =

q

hniqÿ1
G(2 ÿ q)

, (29)

and the ratios are

Hq =

q
1 ÿ q

hni exp(hni)
F(1; 1 ÿ q; hni)

. (30)

1 2

3

4

5

Fq

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

(Real) Order q

1.07

1.06

1.05

1.04

1.03

1.02

1.01

1.00

0.99

(1 ) N.B.k=50
(2 ) N.B.k=100
(3 ) N.B.k=200
(4 ) N.B.k=400
(5 ) Poisson

Figure 1. Fractional factorial moments [15] of Poisson (5 ) and
negative binomial distributions (1 – 4, correspond to various values of
k) with the average multiplicity hni = 2. The amplitude of oscillations
decreases strongly at larger hni and smaller k .
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One gets Eqn (27) from Eqns (28), (29), and (30) at positive
integer q. The amplitude of oscillation of the moments
decreases rapidly with increasing average multiplicity. In
fact, they originate from quite simple properties of the
gamma-function in the denominator.

At large average multiplicity all factorial moments tend
to 1 in the whole complex plane q. However, the cumulants
tend to zero only at Re q > 1 and increase in absolute value
at Re q < 1 with the increase of mean multiplicity, which
can be used for analysis of distributions in the total phase
space at high energies. Qualitative features of that kind are
typical for other distributions considered below.

3.2.2 The negative binomial distribution. The negative
binomial distribution (NBD) deserves special attention
because it has been actively used for the last several years
to fit the experimental multiplicity distributions and has
been rather successful. In particular, there is a widely
spread opinion that it describes almost all inelastic
processes at high energies (except for data at the highest
available energies, i.e. for e+eÿ at 91 GeV — DELPHI [22],
OPAL [23] — and for proton – antiproton interactions at
energies from 200 to 900 GeV — UA5 [24]). For NBD we
have

Pn =

G(n + k)
G(n + 1)G(k)

hni
k

� �n

1 +

hni
k

� �

ÿnÿk

, (31)

where k is an adjustable parameter with the physical
meaning of the number of independent sources. The Bose –
Einstein distribution is a special case of NBD with k = 1.
The Poisson distribution is obtained from Eqn (31) in the
limit k !1. The generating function is

G(z) = 1 ÿ
zhni

k

� �

ÿk

, (32)

and the (integer rank) moments are

Fq =

G(k + q)
G(k)k q , (33)

Kq =

G(q)

k qÿ1 , (34)

Hq =

G(q)G(k + 1)
G(k + q)

= kB (q, k) . (35)

At a fixed value of k , the rate of increase with q of the
factorial moments is greater than that of the exponents.
The cumulants are steeply decreasing at small q until they
reach a minimum at q � k and start increasing at larger q.
They always stay positive. Note that the product of several
generating functions of negative binomial distributions
with different parameters also leads to positive cumulants
since the unnormalised total cumulant is just the sum of
unnormalised individual cumulants. The ratio H q is also
positive and decreases monotonically (as qÿk at large q).

Fig. 2 shows the behaviour of ln Fq , ln Kq , and ln Hq as
functions of q for k = 5 and 10. Since Pn is narrower at
higher k , the slower rise of Fq for k = 10 compared with
that for k = 5 is expected. The dependence of Kq on k is
more pronounced than that of Hq. These properties are
more characteristic of NBD than general and do not reveal
themselves in QCD.

It should be noted that the NBD with fixed parameter k
possesses F scaling (the moments do not depend on energy)
and the asymptotic KNO scaling. The KNO function at

large n and fixed values of k behaves as

f(x) =

k k

(k ÿ 1)!
x kÿ1 exp(ÿkx ) . (36)

The generating function (91) is singular at the point
z = k=hni ! 0 for hni ! 0 and k = const. Therefore, we
have to work in the vicinity of the singularity when
calculating its derivatives at z = 0 (factorial moments). The
singularity moves closer to z = 0 at higher energies.

The general expressions for the moments valid for any
rank q in the entire complex plane are

Fq =

(kv)k

hniq+k

F(1, k ; 1 ÿ q ; v)
G(1 ÿ q)

=

F(k , ÿ q; 1 ÿ q; ÿ hni=k)
hniq

G(1 ÿ q)
,

(37)

Kq =

k
hniq

G(1 ÿ q)
v

1 ÿ q
F(1, 1; 2 ÿ q; v) + ln

kv
hni

� �

, (38)

Hq = k
hni
kv

� �k v(1 ÿ q)ÿ1F(1, 1; 2 ÿ q; v) + ln(kv=hni)
F(1, k ; 1 ÿ q; v)

, (39)

where v = hni=(hni+ k).
The oscillations of moments between integer values of q

diminish at higher average multiplicities (i.e. at higher
energies) and at lower values of k . This is shown in
Fig. 1 (curves 1 – 4 ) for Fq. They are really very small at
high energies. The oscillations are imposed on the rapid
increase of Fq with q.
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Figure 2. Moments of the negative binomial distribution [21] for k = 5
and 10 calculated for integer values of q. The curves are drawn to
guide the eye. (a) ln Fq , (b) ln Kq , (c) ln Hq .
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At negative values of q the moments increase with aver-
age multiplicity. In the complex plane, their oscillations are
noticeable (for example, along lines parallel to the real axis).

3.2.3 Fixed multiplicity distribution. The case of fixed
multiplicity is considered just to show that the behaviour
of moments (even for integer ranks) can drastically differ
from the examples treated above. In addition, it demon-
strates how important the role of the selection procedure in
experiments could be. In fact events with a given
multiplicity are often chosen for analysis (so called semi-
inclusive events), i.e. one deals with the distribution

Pn = dnn0
(n0 = const) . (40)

Then one gets

G(z) = (1 + z)n0 . (41)

Since hni = n0, one obtains

Fq =

n0!

nq
0(n0 ÿ q)!

=

G(n0)n
1ÿq
0

G(n0 ÿ q + 1)
, 1 < q4 n0 , (42)

Fq = 0 , q > n0 , (43)

Kq = (ÿn0)
1ÿq

(qÿ 1)! = (ÿn0)
1ÿq

G(q) , (44)

Hq = (ÿ1)1ÿqn0B(q, n0 ÿ q + 1) . (45)

All factorial moments of rank higher than n0 are identically
zero and one can calculate H q at q4 n0 only. The typical
feature of that distribution is the alternating signs of
integer-order cumulants, which are positive at odd values
of q and negative at even values. The amplitude of
oscillations decreases when q increases from 1 to n0 and
then increases monotonically. A change of sign (but with a
different periodicity) will be seen in QCD as well. Factorial
moments, however, behave differently in the two cases.
They decrease monotonically with q until n0 for fixed
multiplicity and increase rapidly in QCD.

Fig. 3 shows Fq;Kq;Hq for n0 = 10, and (in the insets)
ln jKqj and ln jHqj for integer values of q. Straight lines
connect just the points at integer values of q and are shown
to guide the eye.

It should be stressed that the very existence of the
oscillations can be related just to the selection procedure of
the events and, in the case of fixed multiplicity, has nothing
to do with the dynamics of the interaction. It is easy to
recognise when one chooses e.g. 10-particle events from the
set of those with Poisson distribution (or any other). Then
we obtain alternating-sign cumulants at integer ranks
instead identically equal to zero. Their amplitude can
preserve the information on the original distribution if
its normalisation has been kept untouched.

The fractional moments calculated according to their
definitions at any rank q are

Fq = n1ÿq
0

B(n0; 1 ÿ q)
G(1 ÿ q)

, (46)

Kq = n1ÿq
0

c(1)ÿ c(1 ÿ q)
G(1 ÿ q)

, (47)

Hq =

c(1)ÿ c(1 ÿ q)
B(n0; 1 ÿ q)

. (48)

For fixed q and n0 !1 one gets Fq ! 1;Kq ! 0;Hq ! 0.

Let us stress that in all the cases considered the
noninteger-rank moments are not obtained by the sim-
ple-minded ‘analytic continuation’ according the formula
(19) but are given by the various expressions [compare
Eqn (27) with Eqns (28) – (30), Eqns (33) – (35) with
Eqns (37) – (39), or Eqns (42) – (45) with Eqns (46) – (48)]
which are derived from the proper definitions (17) and (18).

The common property of oscillations between the
integer ranks is the change from maximum to minimum
at each subsequent rank. At the integer points, there are
knots for Poisson and negative binomial distributions and
just maxima or minima for fixed multiplicity.

Unfortunately, the oscillations between the integer
ranks are small at high multiplicity and can be useful
for distributions with low average multiplicity like those in
the small phase-space volumes considered in Section 9. At
high multiplicity they impose low-amplitude harmonics on
the main dependence, and may be neglected in the first
approximation.

Also, the increase of the negative moments with average
multiplicity can be useful for analysis of distributions within
the total phase space.

3.3 Some models
At first sight, the graph-theoretic description of multi-
particle production looks completely different in e+eÿ and
hadron – hadron processes. In the former case, main graphs
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Figure 3. Moments of fixed multiplicity distribution [21] for n0=10
calculated for integer values of q. The curves are drawn to guide the
eye. (a) Fq , (b) Kq , ln jKqj, (c) Hq , ln jHqj.
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are of the tree-like type with a highly virtual initial parton.
In the latter case, one used to consider a sequence of
multiperipheral-type graphs with low virtualities and rather
complicated topology. A more general (and unifying)
picture emerges from consideration of strings between
the colour charges in the process of their interaction (Lund
model [22, 23], dual topological model [24, 25], quark –
gluon string model [26, 27]) and of final particles
clusterisation (multiperipheral cluster model [28], clans
[6, 29] etc.). The multiplicity distributions in the models are
not usually described by a single analytic formula but are
formed from a combination of several distributions. For
example, the multiperipheral model with a single ladder
gives rise to the Poisson distribution of the particle
emission centres (resonances, fireballs, clusters, clans,
etc.). In general, the resulting distribution is obtained by
convolution of the Poisson distribution of the number of
sources with the decay distribution which describes
experimental data quite well enough for educated guesses
about decay properties to be made. If one chooses the
logarithmic distribution of cluster decay multiplicity then
its convolution with the Poisson distribution of clusters
produces a negative binomial distribution of final particles
multiplicities. The simultaneous creation of several ladders
(or strings) gives rise to a more complicated shape of the
distribution. SomeTimes this distribution may be approxi-
mated by a sum of negative binomial distributions with
distinct parameters. As a result, distributions with
‘shoulders’ or ‘quasi-oscillations’ imposed on smooth
curves can be observed. The possible relation between
such oscillations and those of Hq discussed here has been
considered in Ref. [30]. Similarly, a single jet in e+eÿ

annihilation can give rise to a negative binomial
distribution while the superposition of several jets differs
from it in the resulting distribution [31]. The detailed study
of those semiphenomenological models is usually per-
formed with Monte Carlo computations.

4. Equations of quantum chromodynamics

Multiparticle production processes are described in QCD
as a result of the interaction of quarks and gluons, which
leads to the creation of additional quarks and gluons
forming the observed hadrons at the final stage. The most
typical features of the processes are determined by the
vector nature of gluons and by the dimensionless coupling
constant. Gluons are colour charged in distinction to
photons, which have no electric charge. Therefore, they can
emit gluons in addition to quark – antiquark pairs. That is
why both quark and gluon jets are considered in QCD as
main objectives. Their development is described by the
evolution equations. The main parameter of the evolution
is the angle of divergence of the jet or its transverse
momentum. The subsequent emission of gluons and quarks
fills in the internal regions of the previously developed
cones so that they do not overlap (angular ordering). This
remarkable property can be exploited to formulate a
probabilistic scheme for the development of the jet as a
whole. Then its evolution equations are reminiscent of the
well-known classical Markovian equations for the ‘birth –
death’ (or ‘mother – daughter’) processes. (For a detailed
discussion of that approach, based on the coherence
phenomenon, see Ref. [5]).

The system of two equations for the generating
functions GF and GG of the quark and gluon jets,
respectively, are (with A ; B; C = F, G) [1, 5]

GA (y; z) = exp[ÿwA (y)]z

+

1
2

X

B;C

�y

dy 0
�1

0
dx exp[ÿwA ( y) + wA ( y 0 )]

�

a
S

2p
KBC

A (x)GB(x , y 0 )GC [(1 ÿ x), y 0 ] , (49)

where y = ln( pY=Q0), p is an initial momentum, Y is the
angle of divergence of the jet, Q0 = const, and aS is the
coupling constant. The first term on the right-hand side
corresponds to the propagation of the primary parton
without any evolution and is described by the form factor
exp[ÿwA ( y)]. The second term shows the creation of two
jets B and C with proportions of the primary energy x and
1 ÿ x , respectively, after their production at the vertex KBC

A

with the evolution parameter y 0, which has been reached by
the primary parton without splitting as is dictated by the
factor exp[ÿwA ( y) + wA ( y 0 )].

Multiplying both sides of the equation by exp[wA (y)]
and differentiating over y, we get rid of all form factors and
obtain the final system of equations [1, 5]:

G 0

G =

�1

0
dx K G

G (x)g2
0fGG(y + ln x)GG[y + ln(1 ÿ x)]ÿGG(y)g

+ nf

�1

0
dx KF

G(x)g2
0fGF(y + ln x)GF[y + ln(1 ÿ x)]ÿGG(y)]g ,

(50)

G 0

F =

�1

0
dxK G

F (x)g2
0fGG(y + ln x)GF[y + ln(1 ÿ x)]ÿGF(y)g,

(51)
where G 0

(y) = dG=dy, and nf is the number of active
flavours,

g
2
0 =

6a
S

p
, (52)

and the kernels of the equations are

K G
G (x) =

1
x
ÿ (1 ÿ x)[2 ÿ x(1 ÿ x)] , (53)

K F
G(x) =

1
4N

c

[x 2
+ (1 ÿ x)2

] , (54)

K G
F (x) =

C
F

N
c

1
x
ÿ 1 +

x
2

� �

, (55)

where N c = 3 is the number of colours, and
CF =

1
2 N c(1 ÿ Nÿ2

c ) =

4
3 in QCD.

The variable z has been omitted in the generating
functions. One should keep in mind, however, that the
deriva-tion of the equations for the moments relies
completely on the expansions (7) and (8) when they are
inserted into the above equations and the coefficients in
front of terms z q are compared.

A typical feature of any field theory with a dimension-
less coupling constant (QCD in particular) is the presence of
the singular terms at x ! 0 in the kernels of the equations.
They imply the uneven sharing of energy between newly
created jets and play an important role in jet evolution.
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Even though the system of equations (50) and (51) is
physically appealing, it is not absolutely exact; i.e. it is not
derived from first principles of QCD. One immediately
notices this since, for example, there is no four-gluon
interaction term contained in the Lagrangian of QCD.
Such a term would not lead to a singular contribution to the
kernels and its omission is justified in the lowest orders.
Nevertheless, the modified series of the perturbation theory
(with three-parton vertices) is well reproduced by such
equations up to the terms involving two-loop and three-
loop corrections. As shown in Ref. [5], the neglected terms
would contribute at the level of the product of, at least, five
generating functions. Physical interpretation of the corre-
sponding graphs would lead to treatment of the ‘colour
polarisability’ of jets. There are some problems with the
definition of the evolution parameter, with preasymptotic
corrections etc. (see, e.g., [32]). The above arguments do not
prevent from further detailed studies of higher order
corrections to these equations, and it seems reasonable to
learn more about the solutions of the equations with higher
accuracy since there are indications that neglected terms are
not very important.

5. Gluodynamics

It is natural to start our studies with the simplest case of
gluodynamics, in which there are no quarks and inter-
actions of only gluons are considered. The system of
equations (50) and (51) degenerates to the single equation

G 0

(y)=
�1

0
dx K(x)g 2

0 fG(y + ln x)G[y + ln(1 ÿ x)]ÿ G(y)g ,

(56)

where G(y) � GG(y), K(x) � K G
G (x). This is a nonlinear

integrodifferential equation with shifted arguments in the
nonlinear term which take into account the energy
conservation. In the lowest-order double-logarithmic
approximation, one considers the most singular terms in
the kernel K(x) and within the curly brackets, i.e. 1=x in K
and ln(1 ÿ x)! 0, while g

2
0 is chosen to be constant{.

5.1 Approximate solutions of equations with fixed
coupling constant and the shape of the KNO function
Formally, the assumptions of the double-logarithmic
approximation for each of the three terms under the
integral sign in Eqn (56) are equivalent because one neglects
nonleading contributions. A detailed analysis of these terms
has been performed in many papers [9 – 13, 21, 32 – 37],
individually or in combination. In most papers only the
lower moments have been treated, i.e. the average multi-
plicity and the dispersion. It has been noticed that the role
of the conservation laws displayed in the shifted arguments
of the generating functions is the most important one. They
provide larger corrections. It was shown recently [12] that
they could be precisely taken into account. However, the
running property of the coupling constant was disregarded,
the nonsingular terms in the kernel were neglected (as well
as some other terms) and the difference between the
coupling constant g0 (52) and the QCD anomalous
dimension g, defined as

hni = exp
�y

g(y0 ) dy 0 , (57)

was neglected also. In Section 7, it is shown that Eqns (50)
and (51) possess the exact solutions for fixed coupling
constant without any additional assumptions. Nevertheless,
it is instructive to consider this case because one gets the
analytic expression for the KNO function which clearly
reveals the importance of the conservation laws and differs
from formula (23) for the double-logarithmic approxima-
tion by a narrower width, thus getting much closer to
experimental values.

First, one obtains a recurrence relation for the factorial
moments when relations (7) are substituted in Eqn (56) and
the coefficients of z q are equated on both sides:

(qÿ qÿ1
)Fq = g

X

qÿ1

l=1

C l
qB[gl, g(q ÿ l) + 1]FqÿlFl . (58)

This system can be computed{ with the initial conditions
F0 = F1 = 1. The inset of Fig. 4a shows the ratio of these
moments to the asymptotic solution [12] of Eqns (58):

F as
q =

[G(1 + g)]
q

G(1 + gq)
2qG(q + 1)

Cq . (59)

{Somewhat inconsistently, the running coupling constant is someTimes
considered in that approximation also (see e.g. [1, 5]).

{The exact solution of the system of equations for quark and gluon
jets is given in Section 7.2.

RR

1 3 5 7 9 11 13 q

2.0 4.0 6.0 8.0 10.0
q

12.0

1.088

1.066

1.044

1.022

1.00

0.80

0.60

0.40

a

2 4 6 8 10 12 q

Hq

0.10

0.06

0.02

ÿ0.02

b

Figure 4. (a) The ratio of the factorial moments as derived from
Eqn (5) to the asymptotic values of Eqn (7) (inset) and the similar
ratio as derived from the KNO curve (see Fig. 5) and Eqn (7) (the
main part). (b) The ratio Hq obtained from the KNO curve (Fig. 5)
(solid line) as compared with its NBD counterpart for k = 7 (dashed
line). (I am indebted to B B Levtchenko, who provided this figure
especially for this review.)
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At large values of qg one obtains

Fq �
2mDÿq

��������

2pg
p G

3
2
+

q
m

� �

, (60)

where

m = (1 ÿ g)
ÿ1 , D =

Cg g(1 ÿ g)
1ÿg

G(1 + g)
.

The asymptotics of Fq determines the asymptotics of the
KNO function f(x):

f(x) �
2m2

(Dx )3m=2

x
��������

2pg
p exp[ÿ(Dx )m] , (mÿ 1)(Dx )m4 1 . (61)

Clearly, the tail of the distribution at large multiplicities is
suppressed far more strongly than in the double-logarith-
mic approximation. One gets an ‘almost Gaussian’
suppression instead of the exponent in Eqn (23) if one
considers the practically important values of g for which
m = (1 ÿ g)

ÿ1
� 1:6. Thus, we conclude that conservation

laws drastically reduce the width of the multiplicity
distribution. This is demonstrated in Fig. 5, where the
modified distribution (which takes into account the
behaviour at low multiplicities [12]) is compared with the
results of the lowest order QCD and with its fit by the
negative binomial distribution with the parameter k = 7.
Making use of the modified curve in Fig. 5, one is able to
compute the ‘genuine’ (with low-multiplicity correction)
factorial moments. Their ratio to the asymptotic solu-
tion (59) is shown in the main part of Fig. 4a. Comparison
of the two curves in that figure reveals the important
influence of corrections made at low multiplicities. From
‘genuine’ factorial moments, one can compute cumulants
and the ‘genuine’ ratio Hq (the latter is shown in Fig. 4b and
compared with the negative binomial distribution predic-
tion for k = 7 and hni = 30). One notices a visible depar-
ture from the negative binomial distribution in the ratios
Hq, while it is hard to see this in the distributions shown in
Fig. 5. The oscillations of ‘genuine’ H q are in contrast to its
smooth behaviour in the negative binomial distribution.
Here they are somewhat reminiscent of the fixed multi-
plicity toy-model considered above. Similar shapes with

oscillations of different (!) periodicity will be discussed in
what follows.

5.2 Higher-order approximations with running coupling
constant
The equation (56) for the generating function in gluody-
namics can be solved in a somewhat different approx-
imation by taking into account all (including nonsingular)
terms of the kernel K, by considering all running coupling
constant g0 distinct from the anomalous dimension g, and
by using the Taylor series expansion for the generating
functions in the nonlinear term at large y:

G(y + e) � G(y) + G0

(y)e+ 1
2 G 00

(y)e2
+ ::: . (62)

This approach clearly shows the distinction between the
various assumptions, and their importance and qualitative
effects due to the higher-order corrections.

Using expression (62) for the generating functions in the
nonlinear term of Eqn (56), dividing both sides of it by G(y)
and differentiating with respect to y, we obtain

[ln G(y)] 00 = g
2
0

�

G(y)ÿ 1 ÿ 2h1G 0

(y)+
X

1

n=2

(ÿ1)nhnG(n)
(y)

+

X

1

m;n=1

(ÿ1)m+nhnm

�

G(m)G(n)

G

�

0

�

, (63)

where

h1 =

11
24

, hn = j2 ÿ 2ÿn
ÿ 3ÿn

ÿ z(n)j ,

z(n) =

X

1

m=1

mÿn , n5 2 , (64)

hmn =

�

�

�

�

1
m! n!

�1

0
dx K(x) lnn

(x) lnm
(1 ÿ x)

�

�

�

�

. (65)

Leaving two terms on the right-hand side, one gets the
well-known [5] equation of the double-logarithmic approx-
imation which takes into account the most singular
components. The next term, with h1, corresponds to the
modified leading-logarithm approximation, and the term
with h2 deals with higher-order corrections. Note that the
dependence of g0 on y in the integral term has been
neglected since it leads to terms of the order of g

2
0

compared with those written above.
The straightforward solution of Eqn (63) looks very

problematic even if the terms with h1 and h2 are included in
addition just to double-logarithmic ones. However, it is very
simple for the moments of the distributions [13] since G(z)
and ln G(z) are the generating functions for the factorial
moments and cumulants, respectively. Using formulas (7)
and (8) in the case of F scaling, one gets the product qg (and
its derivatives) at each differentiation of those functions
because the average multiplicity is the only y-dependent
term left. The coefficients of z q on both sides should be
equal. Hence, one obtains

Hq =

Kq

Fq
=

g
2
0 [1 ÿ 2h1qg+ h2(q

2
g

2
+ qg 0)]

q 2g 2
+ qg 0

. (66)

The anomalous dimension g is defined by Eqn (57). The
condition F1 = K1 = 1 determines the relation between g

and g0:

g � g0 ÿ
1
2

h1g
2
0 +

1
8
(4h2 ÿ h2

1)g
3
0 + O(g

4
0) , (67)
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Figure 5. The modified KNO function [12] (thick curve) for g = 0:4 is
much narrower than the lowest order distribution (thin line). The
negative binomial distribution with k = 7 is also shown for
comparison (dots).
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which shows that the increase of the average multiplicity
with energy is slower in the modified leading-logarithm
approximation as compared with the double-logarithmic
approximation because the term with h1 is negative [see
Eqn (57)]. However, the higher-order terms slightly enlarge
it again (4h2 ÿ h2

1 > 0) but those corrections are not large.
The running property of g0 has been taken into account in
expression (67):

g
0

0 � ÿh1g
3
0 + O(g

5
0) , (68)

which leads to

g
0

� ÿh1g
3
0(1 ÿ h1g0) + O(g

5
0) . (69)

The lesson we learn from Eqn (66) is that in all ‘correction’
terms (which contain h1, h2, :::) the expansion parameter g
appears in the product of rank qg, which becomes large at
high ranks, i.e. at high multiplicities. Therefore, for high
multiplicity events one should take into account the ever-
higher-order terms in g. This problem was mentioned a
long time ago [5] and discussed in some detail in Ref. [38],
but has only recently been analysed.

As was mentioned, the double-logarithmic formulas are
obtained from Eqn (63) for h1 = h2 = 0, g = g0, and
g
0

= 0. In this case,

Hq � qÿ2 , (70)

which is similar to the asymptotics of the negative binomial
distribution with a rather small value of the parameter
k � 2 and corresponds to an extremely wide multiplicity
distribution [see expression (23)] while experimental data
provide values of k ranging from 3.5 to �100.

Perhaps a more interesting feature is the evolution of the
qualitative behaviour of the ratio Hq at higher orders. In the
modified leading-logarithm approximation in which the h1

term has been kept but the h2 term (as well as higher-order
terms) neglected in Eqn (63), we observe that Hq crosses the
abscissa, acquires a minimum at

qmin �
1

h1g0
+

1
2
� 5 (71)

and tends to zero from below as � ÿqÿ1. If one includes
the term with h2 as well, the ratio Hq gets the second zero
and tends asymptotically to a positive constant h2g

2
0 . This

is similar to the situation of the expansion of, for example,
cos x in a Taylor series. That is why it is no surprise that
one gets an oscillating behaviour of Hq [39] when account
is taken of the higher-order terms with h3 and h11 in

formula (63). The very first minimum reveals just the first
oscillation, as shown in Fig. 6. However, it has been shifted
to q � 4 in the approximation of Ref. [39], which shows a
high sensitivity of Hq to various assumptions. Let us
emphasise that the amplitudes of extrema and the
periodicity of ‘quasioscillations’ are different from all
those shown in Figs 1 – 4. The analogous behaviour of
Hq has been found as the exact solution of the QCD
equations for fixed coupling constant (see Section 7.2).

Thus, we have demonstrated in this section that the
conservation laws and other higher-order terms lead, in the
framework of gluodynamics, to a substantial reduction of
the width of the multiplicity distribution and to a qual-
itative change of the behaviour of the cumulant and
factorial moments.

6. Approximate solutions of QCD equations
with running coupling constant

The transition from gluodynamics to QCD, in which
quarks are created beside gluons, leads back to the system
of the two coupled equations (50) and (51) for the
generating functions of quarks and gluons instead of to
the single equation (56). Their structure, however, does not
differ, in principle, from the gluodynamics equation
described in detail above. That is why I shall not write
down all the relations (see e.g. [32, 40, 41]), and describe
just the results obtained.

In complete analogy to gluodynamics, one gets the
system of the coupled recurrent equations for factorial
moments and cumulants when the Taylor series expansion
is used. This has been solved numerically [40]. The proper-
ties of gluon jets do not change noticeably, i.e. their
cumulants and factorial moments are very close to those
calculated in gluodynamics. The gluon ratio Hq has its
minimum at the same value q � 4 or 5. The quark factorial
moments are larger than those of gluon jets, i.e. the parton
multiplicity distribution for quark jets is wider than that for
gluon jets even though the average multiplicity is smaller
there. The first minimum of quark cumulants and of their
ratio to factorial moments is located at q � 8.

To apply these results to the real process of the
electron – positron annihilation, one should relate its gen-
erating function to those for quark and gluon jets. Bearing
in mind the Feynman diagram for the production of two
quark jets at the very early stage, one would write down

Ge+eÿ � G2
F , (72)

with further corrections (see e.g. Ref. [32]). In that case the
zeros of the quark jet cumulants and of e+eÿ processes
coincide because the logarithms of the generating functions
which determine corresponding cumulants [see Eqn (5)] are
proportional to one another. It means that the first
minimum for e+eÿ would lie at q5 6 since the first zero
for quark jets is positioned at q > 5. The analysis of
experimental data described below (see Section 8) points
out that this is not the case and either relation (72) should
be revised or the higher-order terms in the Taylor series
expansion become crucial. The latter possibility appears
less probable because the similar shift of the zeros of the
quark cumulants has been observed in the case of the exact
solution with fixed coupling, as described in the next
section. Independently of this, it seems that the most
important conclusion drawn from the theoretical studies is

Hq
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0.3

0.2

0.1

0

ÿ0.1

ÿ0.2

ÿ0.3

q

Figure 6. The ratio Hq as a function of q [39] reveals ‘quasi-
oscillations’ in higher-order perturbative QCD (the curve is drawn for
energies of Z0). The first minimum is slightly shifted (compared with
gluodynamics) to q = 4.

Quantum chromodynamics and multiplicity distributions 725



the presence of maxima and minima of the ratio Hq which
replace each other with some periodicity (but not at
neighbouring values of q as happens for fixed multiplicity).

It is interesting to note that the equations for the low-
order moments give rise to conclusions about the anom-
alous dimension g and about the ratio r = hnGi=hnFi of the
average multiplicities in gluon and quark jets [41]. They
have been represented by the perturbative expansion as

g = g0(1 ÿ a1g0 ÿ a2g
2
0 ) , (73)

r =

N c

CF
(1 ÿ r1g0 ÿ r2g

2
0 ) . (74)

The coefficients ai; ri have been calculated [41] and are
shown in Table 1 together with values of r and g0 for
various numbers of flavours. Fig. 7 demonstrates the Q-
dependence of g resulting from the solution of the
equations in the higher-order approximation discussed
above. The corresponding behaviour of the average
multiplicity is shown in Fig. 8. For comparison, the
energy (y) dependence of the mean multiplicity for fixed
coupling constant is indicated by dotted lines. To begin
with it increases rather slowly but at higher energies its
asymptotic increase exceeds that of the running coupling
case. This is reliable since the constant has been chosen at
rather high energy (mass of Z 0) at yZ 0 = 6:67, i.e. its value
is quite small. In the real situation, it should increase
during the evolution of the jet, but the number of active
flavours must decrease. Let us note that these two trends
somewhat compensate one another in the energy depend-
ence of the mean multiplicity. The ratio r of the mean
multiplicities in gluon and quark jets is much smaller [41]
than its value in the double-logarithmic approximation
where it is equal to 9

4. On average, it is lower by about 20%.
The analogous situation is for exact solutions of equations

with fixed coupling constant. Therefore, that ratio is
considered in more detail in the next section.

7. Exact solutions of QCD equations with fixed
coupling constant

The above experience with QCD equations treated in
various approximations suggests that the conservation laws
and nonsingular terms of the kernels play a more
important role than the dependence of the coupling
constant on the evolution parameter. It can be shown
[21, 42] that the equations (50) and (51) can be solved
exactly if the coupling constant is fixed. No other
assumptions are necessary. One obtains the general
solution for the moments of any rank but we start with
the lowest ranks for pedagogical reasons.

7.1 First moments and the ratio of average multiplicities
in gluon jets to those in quark jets
The equations for average multiplicities (unnormalised
moments of first order) are derived from the system of
equations (50) and (51) if one substitutes the generating
functions as series (7) and equates the terms linear in z with
the conditions F0 = F1 = F0 = F1 = 1. (The factorial
moments of quark jets are denoted by Fq and their
cumulants are denoted by Cq .) If the coupling constant is
kept fixed, the average multiplicities behave [5] as

hnG(y)i = exp(gy) , hnF(y)i = exp(gy) rÿ1 , (75)

where the anomalous dimension g and the ratio r are
constant. These properties are inherited in equations (50)
and (51) as one notices from the relations

hnG;F(y + ln x)i

hnG;F(y)i
= x g , (76)

hnG;F(y)i
0

= ghnG;F(y)i . (77)

Then the equations are rewritten as a system of two
algebraic equations for two variables g and r:

g = g
2
0[M

G
1 + nfr(M

F
1 ÿM F

0 )] , (78)

g = g
2
0(L 2 ÿ L 0 + rL 1) , (79)

Table 1.

nf r r1 r2 g0 a1 a2

3 1.84 0.185 0.426 0.473 0.280 ÿ0.379

4 1.80 0.191 0.468 0.481 0.297 ÿ0.339

5 1.77 0.198 0.510 0.484 0.314 ÿ0.301
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Figure 7. q dependence of the anomalous dimension g [41] (solid lines)
in the case of the running coupling g0 (dashed lines) for different
numbers (indicated near the lines) of active flavours.
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Figure 8. y dependence of the average multiplicity for running (solid
lines) and fixed (dashed lines) coupling [41] with the number of active
flavours nf = 3, 4, 5. The arrow marks the yZ0 location.
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where

M G
1 =

�1

0
dx K G

G [x g + (1 ÿ x)g ÿ 1] ,

M F
1 =

�1

0
dx K F

G[x g + (1 ÿ x)g] ,

M F
0 =

�1

0
dx K F

G =

1
2

M F
1 (g = 0) ,

L 1 =

�1

0
dx K G

F x g ,

L 2 =

�1

0
dx K G

F (1 ÿ x)g ,

L 0 =

�1

0
dx K G

F = L 1(g = 0) .

Coefficients M i and L i can be expressed in terms of Euler
beta-functions and psi-functions and depend on g only. At
fixed g0, both g and r are constant. It should be stressed
that g is not equal to g0 even in gluodynamics at nf = 0
because M G

1 differs from g
ÿ1. The approximate equality is

valid for g05 1 but the perturbative expansion for g differs
from the corresponding formula (67) for the running
coupling constant

g � g0 ÿ h1g
2
0 +

1
2 (h

2
1 + h2)g

3
0 + O(g

4
0) , (80)

from which one sees that the first correction is twice as
large.

The ratio r appears in equations (78) and (79) linearly,
and one is tempted to rewrite them as

r(g) = b(g)
g

g 2
0

ÿ a(g)

� �

ÿ1

, (81)

r(g) =

g

g 2
0

ÿ d(g)

� �

1
c(g)

, (82)

where

a = c(1)ÿ c(g+ 1) + B(g, 1)ÿ 2B(g+ 1, 2)ÿ 2B(g+ 2, 1)

+B(g+ 2; 3) + B(g+ 3, 2) +
11
12
ÿ

nf

6N c
,

b =

n
f

2N
c

[B(g+ 3, 1) + B(g+ 1, 3)] ,

c =

C
F

N
c

[B(g, 1)ÿ B(g+ 1, 1) +
1
2

B(g+ 2, 1)] ,

d =

C
F

N
c

c(1)ÿ c(g+ 1)ÿB(g+ 1, 1) +
1
2

B(g+ 1, 2)+
3
4

� �

.

All beta-functions are just the inverse polynomials of g but
the above notation is less cumbersome. The solution of the
algebraic relations (81) and (82) yields g and r as functions
of g0 and nf. Fig. 9 shows the dependence of g on g0 for
nf = 3, 4, 5. The differences for the various values of nf are
hardly discernable, being less than the thickness of the
visible line. Note that g is significantly different from g0.
They can be related by the simple fitted formula

g = 0:077 + 0:62g0 , (83)

or by the more theoretically motivated formula (80)
starting from the linear terms in g0,

g = 0:97g0 ÿ 0:48g 2
0 + 0:2g3

0 , (84)

fitted by computer in the range of g0 from 0.48 to 0.6. Let
us note that g changes very slowly with g0. In itself, the
value of g is not of much interest even though it is related
to the energy dependence of the average multiplicity.
However, it is known that the power increase of the mean
multiplicity for fixed coupling is replaced by a slower
dependence for running coupling [see Fig. 8]. Somehow the
reduced value of g compared with g0 respects that tendency
but the dependence (75) cannot be used in asymptotics. The
more realistic behaviour provided by the running coupling
was discussed in the previous section (see Fig. 8).

The corresponding ratio r is of more interest since the
energy dependences of the average multiplicities in gluon
and quark jets cancel. That is why its prediction for fixed
coupling could be more general. The corresponding result
on the ratio r is shown in Fig. 10. Again the dependence on
nf is very mild, and is exhibited in the expanded scale in
Fig. 10. More important, the dependence of r on g0 is even
weaker than that of g, and the average effective value is
given by

r = 1:84 � 0:02 . (85)

Such a low value of the ratio r should arouse interest since,
in the double-logarithmic approximation, it is much
larger [5] and equal to N C=CF =

9
4. It has been reduced

to 2.05 in the modified leading-logarithm approximation
[43, 44]. The above value shows that the conservation laws
diminish the ratio further. Even lower values of r have been
obtained for running coupling (see [41] and Table 1).

In a realistic process, the virtuality in a jet degrades as
partons evolve toward hadrons, presumably with an
associated change in the number of active quark fla-
vours. In the framework of our calculations with fixed

0.5
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g

0.45 0.50 0.55 0.60 0.65 g0

Figure 9. g plotted as a function of g0 for nf = 3, 4, 5 [42].

2.2

2.0

1.8

1.6

r
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Figure 10. r plotted as a function of g0 for nf = 3, 4, 5 [42].
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coupling, this dependence can be considered with the aid of
the formulas

g
2
0 =

12
b0y

, b0 = 11 ÿ
2n

f

3
, (86)

for y = ln Q=Q0;Q0 = 0:65=LMS , where the dependence of
LMS on nf is included according to the proportions
63 : 100 : 130 for nf = 5 : 4 : 3, respectively [45], and the
value LMS is set at 175 MeV for nf = 5. The values of Q are
considered at M Z=m (M Z being the mass of Z 0) for m = 1 ,
2, 4, and 8. The result on g is shown as a function of ln Q in
Fig. 11. The dependence on nf is so small that connection
of the different points with different nf for the same Q
results in only short line segments as shown. Thus, we learn
that as a jet of partons evolves toward lower Q, we need
not be concerned with the change of the active flavour, and
that the parton multiplicity will depend on the evolving
virtuality through a mild variation of g, but not enough to
invalidate fixed coupling approximation. Certainly, in the
ratio of the multiplicities, such dependences are cancelled,
yielding a stable value of r. This conclusion has been
supported by the approximate solutions of the equations
with the running coupling [41], as has already been
discussed already (see Table 1).

7.2 Higher-order moments and widths of distributions in
gluon and quark jets
The dispersion of the multiplicity distribution is determined
by the second moment. Therefore, to get it one should
solve the system of equations (50) and (51) for q = 2.
However, relations (76) and (77) prompt us to obtain the
solution for any q. In fact, one can obtain a system of
coupled recurrent equations [21] for moments if one
substitutes in Eqns (50) and (51) the generating functions
according to Eqn (7) and compares the coefficients of z q on
both sides. Those equations are solved by iteration, which
is well suited for computer calculations. They will not be
written down here (see [21]); just the final analytic
expressions for the moments of rank q as related to the
lower rank moments will be given. For that purpose, let us
introduce

fq =

Fq

q!
, ^fq =

Fq

rqq !

. (87)

The solution of the equation is [21]

fq = [aqSq( f, ^f) + bqT q( f, ^f)]Dÿ1
q , (88)

^fq = [cqS q( f, ^f) + dqT q( f, ^f)]Dÿ1
q , (89)

where

Sq =

X

qÿ1

l=1

N G
q; l fl fqÿl + nfN

F
q; l

^fl
^fqÿl

� �

, (90)

T q =

X

qÿ1

l=1

L q; l
^fl fqÿl , (91)

aq =

qg

g2
0

+ L 0;0 ÿ L q;q , (92)

bq = nfM
F
q , (93)

cq = L q;0 , (94)

dq =

qg

g2
0

ÿ M G
q + nfN

F
0;0 , (95)

Dq = aqdq ÿ bqcq , (96)

M G
q = c(1)ÿ c(qg+ 1) + B(qg, 1)ÿ 2B(qg+ 1, 2)

ÿ2B(qg+ 2; 1) + B(qg+ 2; 3) + B(qg+ 3; 2) +
11
12

,

M F
q =

1
2N

c

[B(qg+ 3, 1) + B(qg+ 1, 3)] ,

N G
q;l = B[lg, (qÿ l)g+ 1]ÿ 2B[lg+ 1, (q ÿ l)g+ 2]

+ B[lg+ 2, (qÿ l)g+ 3] ,

NF
q;l =

1
4N

c

fB[lg+ 3, (qÿ l)g+ 1]+B[lg+ 1, (qÿ l)g+ 3]g ,

L q;l =
C

F

N
c

fB[lg+ 1, (qÿ l)g]ÿ B[lg+ 1, (qÿ l)g+ 1]

+

1
2

B[lg+ 1, (qÿ l)g+ 2]g .

The above expressions look cumbersome{ but their struc-
ture is very simple and clear. They generalise the formulas
of the preceding section to any q. The formulas of
gluodynamics follow from those for nf = CF = 0 if one
leaves in M G

q and NG
q;l , the leading terms B(qg, 1) � 1=qg,

and B[lg, (qÿ l)g+ 1]. Using the values of g and r from the
preceding section at given g0 and nf, one obtains first F2

and F2, and then increases q by 1.
The evolution parameter y disappears from the for-

mulas. A posteriori, it means that our assumption about F
scaling with all dependence on y hidden in the average
multiplicities hnG;Fi(y) is correct for fixed coupling. It leads
to the self-consistent system of algebraic equations where all
quantities, including Fq and Fq, are independent of energy.
It should be stressed that F scaling is as precise as the main
equations at fixed coupling. In fact, one should speak about
asymptotic F scaling because the limits of x -integration in
Eqns (50) and (51) are asymptotic. More precise treatment
of them would correspond to considering the higher twist
effects.

M Z
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Figure 11. g plotted as a function of ln Q for nf = 3, 4, 5 and
Q = M Z=m [42] (m = 1, 2, 4, 8).

{The gluodynamics formulas are obtained from them in the limit
nf = CF = 0 when only the leading terms of M q and of N G

q;l are
considered, i.e. B(qg, 1) � 1=qg and B[lg, (q ÿ l)g+ 1].
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The results of calculation, when expressed in terms of Fq

and Fq, are shown in Fig. 12 for g0 = 0:48 and nf = 5.
Evidently, they increase rapidly with q, more so for Fq than
for Fq. Since these are normalised factorial moments, they
imply that the multiplicity distribution for the quark jet is
wider than that for the gluon jet, although the average
multiplicity in quark jets is lower than in gluon jets. These
results are very insensitive to the number of active flavours
nf. The dependence on the coupling constant is very mild
and the results are rather insensitive to the coupling
constant being fixed or running.

Let us compare the QCD results to those of the
phenomenological distributions. By comparison of
Fig. 12 with Fig. 2 and Fig. 3, the QCD results are clearly
of the NBD type rather than the fixed multiplicity type. In
fact, Fq in Fig. 12 can be approximated by a negative
binomial distribution with k = 5. However, this is an
apparent coincidence. While the characterisation of Fq

by the NBD parameter k is convenient, the fits by the
negative binomial distribution are inappropriate. Let us
recall that the cumulants of the negative binomial distribu-
tion decrease at low q and then increase. The ratio Hq

decreases monotonically with q.
The corresponding ratios for gluon and quark jets are

defined here as:

Hq =

Kq

Fq
, (97)

Zq =

Cq

Fq
, (98)

where Kq(Cq) are related to Fq(Fq) by formula (11). The
results of calculations in fixed-coupling QCD are shown in
Figs 13 and 14.

The distinctive feature of the behaviour of Hq is clearly
its oscillations. There are no oscillations for the negative
binomial distribution even if it fits the second and third
moments quite well. One sees that the fixed multiplicity

distribution, which gives rise to oscillations of H q changing
sign at each subsequent integer value of q, does not suit us
because of the wrong values of moments and the improper
period of oscillations (see the discussion of experimental
results in the following section).

The sensitivity of Hq to the shapes of the distributions
obtained in QCD with different assumptions is clearly
demonstrated by its various qualitative forms. It is positive
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Figure 13. Ratio Hq of gluon-jet distribution in fixed-coupling QCD
for g0 = 0:48, nf = 5 [21]. (a) Hq , (b) ln jHqj .
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Figure 14. Ratio Zq of quark-jet distribution in fixed-coupling QCD
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and decreases monotonically as �qÿ2 in the double-
logarithmic approximation, acquires a zero and a mini-
mum in the modified leading-logarithm approximation
tending asymptotically to zero from below like �ÿqÿ1,
acquires a second zero and constant positive asymptotics
because of the next term, and starts oscillating in the higher-
order approximations.

The behaviour of Hq depends strongly on slight
variations of the particular shape of factorial moments
at low values of q. One can demonstrate how easy it is to
obtain oscillations of the fixed multiplicity type imposed on
the double-logarithmic behaviour by doing the following
exercise. It is known [19, 46] that the large q behaviour of Fq

of the factorial moments in the double-logarithmic approx-
imation [see Eqn (23)] is

Fq =

2qG(q + 1)
Cq . (99)

If one adds a preasymptotic term by replacing the factor 2q
by 2q + 1 in the numerator (which restores the condition
F0 = 1 but not F1 = 1), one gets an additional term in Hq

which imposes oscillations of the fixed multiplicity type on
the monotonic decrease of the form qÿ2, and the ratio Hq

becomes

Hq =

2 + (ÿ1)qÿ1

q(2q + 1)
, (100)

where the second term in the numerator appears because of
the newly added preasymptotic term.

The above examples show how sensitive Hq is to vari-
ous approximations made in solving the set of equations for
the generating functions. Their distinction has been
demonstrated in Figs 4, 6, 13, and 14, and they strongly
differ from the phenomenological distributions shown in
Figs 2 and 3. Unfortunately, there is still no clear under-
standing of the physical origin of the oscillations, i.e. of
their periodicity, amplitude, and dependence on the rank q
(it seems that the amplitude increases and the period
decreases with q). Nevertheless, the exact solution of
fixed-coupling QCD equations provides a clear guide to
the realistic behaviour of H q. Perhaps the behaviour of Hq

will show us ways to generalise the equations for the
generating functions, including the fine effects of the
interaction of ‘colour monsters’ [5, 19, 46].

Note that the above oscillations proceed at integer
values of q and are not related to the oscillation of the
fractional moments. The latter would impose the lower-
period harmonics on those oscillations.

8. Experiment

Thus, we have obtained the results for the KNO function
f(x), for the moments of the multiplicity distribution Kq

and Fq , and for their ratio Hq , as well as for the energy
behaviour of mean multiplicities (the anomalous QCD
dimension g) and for the ratio r of the average multiplicities
in gluon and quark jets. Before comparing them with
experiment one should remember that all the above results
have been obtained for the multiplicity distributions of
partons (gluons and quarks) while experimentalists have to
deal with hadrons. To translate theoretical predictions to
experimentally measured values, one must construct a
hadronisation model describing the transition from partons
to hadrons. Then, one can obtain quantitative results using

Monte Carlo calculations. SomeTimes, one relies on the
hypothesis of the local parton – hadron duality. This
assumes that the distributions of partons and hadrons
differ by only a numerical coefficient which is determined
by the number of partons recombined in a single hadron.
Therefore, this is of less importance for the normalised
variables, and the normalised moments of gluon and quark
jets should simply be related to the moments of observed
processes, e.g. to electron – positron annihilation. On the
other hand, such values as the average multiplicities in
gluon and quark jets are changed in a different way that
can vary their ratio also. In this case one could use various
Monte Carlo versions of hadronisation. One of them, the
Herwig method [47], has been discussed in Ref. [48] in
relation to the ratio of the average multiplicities r
[Eqn (75)] both on parton and on hadron levels (see
Fig. 15). The method supports the asymptotic local
parton – hadron duality but does not respect it at inter-
mediate energies in an exact way. The partonic ratio is
given by to rMC

parton � 1:9. It shows that the higher-order
corrections play an important role in the Herwig approach
because this value is smaller than those of the lowest-order
approximations as discussed above. The hadronic ratio is
slightly lower in asymptotics. However, it is still much
lower at energies of Z0 (equal to 1.44) and increases with
energy. This indicates that the local parton – hadron duality
is not yet very accurate. The model describes the bulk of
experimental data even though it admits slight revisions. In
particular, if one modifies the partonic cascade so that it
gives rise to a value of the partonic ratio obtained above
rtheor = 1:84 � 0:02 [Eqn (85)] and considers the same
hadronisation model to deal with the same ratio of
hadrons to partons rMC

hadron=rMC
parton = 1:44=1:92 (see

Fig. 15), i.e. applies the formula

rexp = rtheor
rMC

hadron

rMC
parton

 !

, (101)

one obtains

rexp � 1:38 � 0:02 , (102)

which agrees quite well with the recently measured [49]
value 1:27 � 0:04 � 0:06 (see also Ref. [50]). Therefore, we
can state that there is no longer a disagreement between
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Figure 15. Ratio r of average multiplicities in gluon and quark jets
[48]. Analytic results are shown by the upper curves. Results obtained
from the Herwig Monte Carlo method at the parton and hadron levels
are also shown.
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theoretical and experimental values of the ratio of average
multiplicities in gluon and quark jets. Still, one should keep
in mind that the phenomenologically described hadronisa-
tion plays an important role in reducing this value by 40%
when going from partonic to hadronic levels.

The KNO function f(x) becomes narrower when energy
conservation is taken into account in a proper way, in
contrast to the double-logarithmic approximation, as was
discussed in Section 5.1. The negative binomial distribution
fits it rather well with k � 7, as is seen from Fig. 5. The
Monte Carlo calculations fit experiment as well. However,
it should be stressed once again that some tiny features
escape such a comparison, as revealed when studying the
behaviour of the ratio of cumulant to factorial moments H q.

These ratios differ for gluon and quark jets as shown in
Figs 13 and 14. Therefore, they may be used either for
selection of those jets, or for the control of the validity of
their separation performed according to other criteria (see
e.g. Refs [49, 50]). The qualitative characteristics of the
curves are hardly changed by hadronisation Monte Carlo
calculations, but this is yet to be confirmed.

The transition from generating functions of jets to real
processes of hadroproduction is nontrivial even for e+eÿ

annihilation as has been discussed above, and much more
complicated for other processes. Hopefully the qualitative
features of jet moments are more general. Then it would be
reasonable to compare them with the corresponding
characteristics of multiparticle production processes in an
attempt to reveal their interrelation and, in particular, the
role of hadronisation.

Such an analysis has been performed [51] both for e+eÿ

annihilation and for pp (and p�p) interactions in a wide
energy interval to get some idea of the difference between
the processes initiated by leptons and by hadrons. A list of
the samples of experimental data [52 – 56] considered is
given in Table 2. Small statistical samples, yielding large
error bars, have been disregarded, and only papers
reporting a detailed separation between elastic and inelastic

data for low multiplicities have been taken into account.
For all the considered experimental multiplicity distribu-
tions of secondary hadrons the ratio Hq has been computed
up to the 16th order. In fact, the qualitative features of the
behaviour of Hq are very similar in all processes, though the
detailed structure depends on the type of interaction, on the
energy, and even on the experimental sampling of events.

As a first example one may consider the outcomes of the
e+eÿ 91 GeV DELPHI multiplicity distribution [55] plotted
in Fig. 16. Owing to the different order of magnitude

Table 2. Investigated data.

Inter- Experiment, spec- CMS energy or beam No. of
action trometer, or colla- moment events

boration name

e+eÿ TASSO [52] 22 GeV 1913

HRS [53] 29 29649

TASSO [52] 34.8 52832

TASSO [52] 43.6 8620

ALEPH [54] 91 90000

DELPHI [55] 91 47400

L3 [56] 91 169700

OPAL [57] 91 82941

pp FNAL [61] 300 GeV/c,
��

s
p

= 23:8 GeV 8477

SMF detector at

CERN [63] 30.4 37069

E743 FNAL [62] 800 GeV/c ,
��

s
p

= 38:8 10217

SMF detector at

CERN [63] 52.6 26842

SMF detector at

CERN [63] 62.2 58196

UA5 [64] 200 4156

UA5 [65] 546 7775

UA5 [64] 900 6839
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Figure 16. Hq plotted as a function of q in the e+eÿ data of DELPHI
collaboration at 91 GeV [51].
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Figure 17. Hq plotted as a function of q in the p�p data of UA5
collaboration at 546 GeV [51].
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involved here, the low-q and high-q regions are plotted on
different scales. The lines connecting the points in the inset
displays, up to the 4th order, the abrupt descent of Hq (the
scale is logarithmic). In the main reference frame, two
negative minima (at q � 5 and 12) and two positive maxima
(at q � 8 and 15) are shown. The predictions of the negative
binomial distribution are given by the dashed curve shown
in Fig. 16. The value of the parameter k has been taken
from Ref. [55] (kÿ1

= 0:0411 � 0:0012). No minima or
maxima appear, of course, and it is tempting to conclude
that the negative binomial distribution is able to reproduce
the main details of experimental data at low q but not its
tiny details revealed by oscillations at higher q.

Fig. 17 refers to the pp 546 GeV interaction outcomes
from the UA5 collaboration [65]. The main difference from
the previous case is the order of magnitude of the maxima
and minima, whose absolute value is more than ten Times
larger. Nonetheless, the same main characteristics found for
e+eÿ annihilation, i.e. the abrupt descent and the subse-
quent oscillations, can be observed (here the minima are at
q � 5 and 12 while the maxima are at q � 8 and 15). Again
superimposed (dashed curve) are the negative bimomial
yields, here corresponding to the k parameter given in
Ref. [65] (k = 3:69 � 0:09).

Similar qualitative features have been observed at
various energies, as shown in Figs 18 and 19. Note that
there is a quantitative distinction between the experimental

data of different collaborations for the same e+eÿ process at
the same energy 91 GeV (see the four lower graphs in
Fig. 18). Perhaps this is related to the selection procedures
adopted by various collaborations and to systematic errors.
The high sensitivity of the ratio Hq could be exploited, e.g.
for optimisa-tion of the selection criteria. To check their
influence, the various Monte Carlo schemes have been
compared with the data on Hq. ARIADNE, which includes
the selection criteria of OPAL, has its data given in Fig. 18g
while JETSET, suited for DELPHI, has its data shown in
Fig. 18f. Since there is a quantitative difference between
those data, one concludes that it stems from the particular
details of experiments but not from the general dynamics of
the process at the parton level. The general trend survives
various systematics.

Note that the distinction between experimental and
negative binomial distributions has been observed in
papers of UA5 [65], DELPHI [55], and OPAL [57]. The
latter collaboration has shown that the difference between
the two distributions oscillates. Perhaps this lies at the
origin of the oscillations of Hq, as well. Their physical
interpretation could be related to the varying number of
subjets in e+eÿ annihilation (see e.g. Ref. [31]) or to the
number of ‘ladder-strings’ in hadronic processes (see e.g.
Ref. [27]). Oscillation of the cumulants due to dynamical
origin imply immediately that the models with Poisson

1
10ÿ1

10ÿ2

10ÿ3

10ÿ4

1
10ÿ1

10ÿ2

10ÿ3

10ÿ4

1
10ÿ1

10ÿ2

10ÿ3

10ÿ4

1
10ÿ1

10ÿ2

10ÿ3

10ÿ4

1
10ÿ1

10ÿ2

10ÿ3

10ÿ4

1
10ÿ1

10ÿ2

10ÿ3

10ÿ4

1
10ÿ1

10ÿ2

10ÿ3

10ÿ4

1
10ÿ1

10ÿ2

10ÿ3

10ÿ4

a

b

c

d

e

f

g

h

5 � 10ÿ4

0

ÿ5 � 10ÿ4

0

ÿ10ÿ3

ÿ2 � 10ÿ2

5 � 10ÿ4

0

ÿ5 � 10ÿ4

5 � 10ÿ4

0
ÿ5 � 10ÿ4

5 � 10ÿ4

0
ÿ5 � 10ÿ4

5 � 10ÿ4

0
ÿ5 � 10ÿ4

5 � 10ÿ4

0
ÿ5 � 10ÿ4

5 � 10ÿ4

0
ÿ5 � 10ÿ4

0 1 2 3 4 5 q 4 6 8 10 12 14 16 q

Hq(q)

Figure 18. Hq plotted as a function of q in e+eÿ data in a wide energy
interval [51] (experimental groups are ordered as in Table 2, i.e. the
energy increases from top to bottom). On the left the lowest orders are
shown in the log scale, on the right the higher orders in the linear
scale.

1
10ÿ1

10ÿ2

10ÿ3

10ÿ4

1
10ÿ1

10ÿ2

10ÿ3

10ÿ4

1
10ÿ1

10ÿ2

10ÿ3

10ÿ4

1
10ÿ1

10ÿ2

10ÿ3

10ÿ4

1
10ÿ1

10ÿ2

10ÿ3

10ÿ4

1
10ÿ1

10ÿ2

10ÿ3

10ÿ4

1
10ÿ1

10ÿ2

10ÿ3

10ÿ4

1
10ÿ1

10ÿ2

10ÿ3

10ÿ4

a

b

c

d

e

f

g

h

10ÿ2

0

ÿ10ÿ2

10ÿ2

0

ÿ10ÿ2

10ÿ2

0

ÿ10ÿ2

10ÿ2

0
ÿ10ÿ2

10ÿ2

0
ÿ10ÿ2

10ÿ2

0
ÿ10ÿ2

10ÿ2

0
ÿ10ÿ2

10ÿ2

0
ÿ10ÿ2

0 1 2 3 4 5 q 4 6 8 10 12 14 16 q

Hq(q)

Figure 19. Hq plotted as a function of q in pp (and �pp) data in a wide
energy interval [51] (the comments are the same as in Fig. 18).

732 I M Dremin



distributed clusters [28, 84] are inappropriate for the precise
description of experimental data.

The more trivial effect of the cut-off of the experimental
distributions at large multiplicities could be of importance
since it produces some oscillations of Hq also. In distinction
to dynamical oscillation of QCD, this effect should,
however, vanish at asymptotically high energies. Never-
theless, further study needs to be done.

To conclude, one can say that the QCD predictions have
become more reliable at the qualitative level in recent years
and have gained support from experimental data on
multiplicity distributions. There now exist both the proper
approach to the treatment of various theoretical approx-
imations and some proposals for the selection of
experimental data for quantitative comparison with theo-
retical predictions. Therefore, a solid foundation has been
laid for the precise description of the problem as a whole.

9. Evolution of distributions with decreasing
phase-space volume — intermittency and
fractality

The multiplicity distributions can be measured not only in
the total phase-space (as has been discussed above for very
large phase-space volumes) but in any part of it. For the
homogeneous distribution of particles within the volume,
the average multiplicity is proportional to the volume and
decreases for small volumes but the fluctuations increase.
The most interesting problem here is the law governing the
growth of the fluctuations, and its possible departure from
a purely statistical law related to the decrease of the
average multiplicity. Such a variation has to be connected
with the dynamics of interactions. In particular, it has been
proposed [66] to look for the power-law behaviour of the
factorial moments for small rapidity intervals dy

Fq � (dy)ÿf(q) (dy ! 0) , (103)

where f(q) > 0. This assumption has been motivated by
the analogy to turbulence in hydrodynamics, where the
similar property is known as intermittency and f(q) are
called the intermittency exponents. It originates from the
state of the fluid in which the ‘quiet’ regions alternate with
the volumes of high fluctuations, and becomes even more
noticeable at smaller sizes. From the point of view of
distributions it implies a rather strong increase of their
width with slower decline at high multiplicities.

Experimental data on various processes in a wide energy
range support the idea by revealing the power-law depend-
ence (103). Immediately, several theoretical approaches
were developed to explain that phenomenon. The present
state of affairs has been described recently in a review paper
[14]. Here, it is just shown how QCD reproduces inter-
mittency [38, 67 – 71].

Let us stress once again that QCD deals with partons
(quarks and gluons) while experimental results provide the
moments of distributions of hadrons. The local parton –
hadron duality hypothesis implies proportionality of
inclusive distributions but is not so obvious for correla-
tions and is not fulfilled someTimes in the proposed Monte
Carlo schemes. Therefore, one can pretend to get a
qualitative description on the parton level but not attempt
a quantitative comparison with experiment.

In contrast to the previous sections, here the diagram-
matic approach is relied on instead of the equations for the

generating functions. This is because, considering the
multiplicity distributions in small phase-space volumes,
one has to deal with a minor part of the whole parton
content of a well-developed jet; namely, with those partons
which fill in the chosen volume. It should be stressed that
the prehistory of a jet as a whole is important for the subjet
under consideration, as is shown in Fig. 20. Here
(1) the primary quark (solid line) emits a hard gluon with

energy E in the direction of the angular interval y, but
not necessarily hitting the window;

(2) the emitted gluon produces a jet of partons with parton
splitting angles larger than the window size;

(3) among those partons there exists a parton with energy k
which hits the window;

(4) all decay products of the subjet exactly cover the angle
y.
This picture dictates the rules of calculation of the qth

correlator of the whole jet. One should average the qth
correlator of the subjet DN (q)

(ky) over all possible ways of
its production, i.e. convolute it with the inclusive spectra of
such partons Dy in the whole jet and with the probability of
creation of the jet (aS K G

F ). Analytically, this is represented
by

DN (q) Qy0 ,
y0

y

� �

/

�Q dE
E
a
S

2p
K G

F
E
Q

� �

�

�E dk
k

Dy E
k

; Ey0 , ky

� �

DN (q)
(ky) , (104)

where DN (q)
� Fqhni

q is the unnormalised factorial
moment (on the left-hand side for the whole jet, and on
the right- hand side for the parton subjet with momentum k
within the angle integral y). Since the unnormalised
moments increase with energy while the parton spectrum
decreases, the product Dy

DN (q)
(ky) has a maximum at

some energy, and the integral over momenta may be
calculated by the steepest-descent method. Leaving aside
the details of calculations (see Ref. [38]), we describe the
general structure of the correlator for the fixed coupling
constant g0 = const:

DN (q)
/ DO

y0

y

� �g0=q Ey
c

� �qg0

(c = const) , (105)

y

yik 5 y

yik 4 y

y0

N (q)

Dy

k

E

Figure 20. Emission of the gluon (wavy lines) jet by the quark (the
solid line) [38].
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where the three factors represent the phase space, the
energy spectrum factor, and the qth power of the average
multiplicity. To get the normalised moment, one must
divide expression (105) by the qth power of that part of the
mean multiplicity of the whole jet that appears inside the
window y, i.e. by the proportion of the total average
multiplicity corresponding to the phase-space volume DO:

DN(y) / DODN(y0) . (106)

If the analysis has been done in the D-dimensional space,
the phase-space volume obeys:

DO / y
D , (107)

where y corresponds to the minimum linear size on the
D-dimensional window that stems from the singular
behaviour of parton propagators in QCD (see Ref. [38]).
That is why the factorial moments may be represented as
products of a purely kinematical factor depending on the
dimension of the analysed space, and of the dynamical
factor, which is not related to the dimension and defined by
the coupling constant

Fq / y
ÿD(qÿ1)

y
(q 2

ÿ1=q)g0 . (108)

At small angular windows one gets y � dy and the
intermittency indices defined by Eqn (103) are given by

f(q) = D(q ÿ 1)ÿ
q2
ÿ 1
q

g0 . (109)

The formula (109) is valid for moderately small windows,
in which the condition aS ln y0=y < 1 is fulfilled. For
extremely small windows, one should take into account
that the coupling constant is running. Then the constant g0

should be replaced by the effective value hgi, which depends
logarithmically on the width of the window y and may be
approximated by [38]

hgi = g0 1 +

e

4

� �

, (110)

where

e =

q2
+ 1

q2

ln(y0=y)

ln(Ey0=m)
4 1 . (111)

As a result, numerical values of the intermittency indices
for very small windows become noticeably smaller than in
the fixed-coupling regime, especially for the low-rank
moments. Moreover, the simple power-law behaviour
(103) becomes modified by the logarithmic correction
terms and the intermittency indices depend on the value of
the chosen interval. The resulting curve of ln Fq as a
function of ÿ ln y has two branches. The rather steep linear
increase at the moderately small windows y with the slope
(109) is replaced at smaller window sizes by the much
slower quasilinear increase given by Eqns (110) and (111).
It is easy to calculate the position of the transition point to
another regime and show that, at higher values of q, point
shifts to smaller window sizes. Still, the factorial moments
of any rank increase at smaller intervals. This demonstrates
that the corresponding fluctuations of the multiplicity
distributions become stronger than those in larger intervals
and, more importantly, noticeably exceed the Poisson
fluctuations.

The results of the double-logarithmic approximation
have been described. The corrections due to the modified

leading-logarithm terms are comparatively small numer-
ically (about 10%). For example, they move the transition
point (from power-law to quasipower regime) to slightly
smaller windows for any moment except the second one,
where it moves to somewhat larger angles. This tendency
can be easily prescribed to the mutual influence of the
energy spectrum and the average multiplicity. Of more
importance are the qualitative effects of new functional
dependence on the rank q due to the terms proportional to
qg. For example, the attempt to exploit the analogy to
statistical mechanics [38], where the quantity

1 ÿ
f(q) + 1

q

is interpreted as ‘free energy’ and the rank q as an inverse
temperature b = 1=kT , has led to the unexpected result
about the ‘phase transition’. It shows up because the ‘free
energy’ increases monotonically with q in the lowest-order
approximation while higher-order corrections give rise to
the maximum just at those q values where Hq has a
minimum (71) described above, i.e. at

qcr �
1

h1g0
� 5 . (112)

In statistical mechanics, this would correspond to zero
entropy, i.e. to the phase transition. Here, it just indicates
the role of the new parameter qg in QCD as discussed
above.

The above results may be restated in terms of fractals.
The power-like behaviour of factorial moments suggests
fractal properties of particle (parton) distributions in the
phase space. According to the general theory of fractals (see
Ref. [14] and references therein), the intermittency indices
are related to fractal (Renyi) dimensions Dq by the formula

f(q) = (qÿ 1)(D ÿ Dq) , (113)

from which one gets, in the double-logarithmic approx-
imation taking into account Eqn (109),

Dq =

q + 1
q

g0 = g0 +

g0

q
. (114)

The first term corresponds to monofractal behaviour and is
due to the average multiplicity increase. The second term
provides multifractal properties and is related to the
descent of the energy spectrum as discussed above. One
can easily obtain the multifractal spectral function in that
case (see Ref. [38]). It is clearly seen that the fractality in
QCD has a purely dynamical origin (Dq � g0) related to the
cascade nature of the process, while the kinematical factor
in relation (108) has an integer dimension.

The fractality of the particle distributions in the phase-
space volume could suggest the fractal properties of
colliding objects in ordinary space – time. Surely, owing
to its dynamical origin, such a structure would itself be
dynamical, i.e. rapidly evolving in space and time. There are
two reasons to favour this possibility. First, the cascade
process of the evolution of the parton shower in ordinary
space must give rise to the ‘tree-like’ structure of the fractal
type which should evolve due to the cascade evolution.
Second, the lattice computation in SU(2) gluodynamics [72]
has shown that the system of gluons in the vicinity of the
phase transition is fractal in the sense that it fills the volume
V bounded by the surface S which are related by the
formula V / S 1:12. This is typical of fractal objects; the
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exponent would be equal to 1.5 for ordinary three-
dimensional objects.

The geometric fractality of macroscopic bodies has been
revealed by measurements of the power-like shape of the
structure functions when some point-like particles (photons,
electrons, neutrons, etc) are scattered by them. Using this
example, one might try to measure [73] the structure
functions in the deep-inelastic processes aiming at the
fractal dimensions of the scattered partners. However,
this has been done theoretically on the model level only,
and experimental difficulties prevent direct comparison.
Therefore, the problem of the fractal geometry of particles
in ordinary space – time is still waiting to be solved.

Finally, it should be mentioned that no experimental
analysis of the noninteger rank moments yet has been
performed, and their discussion in Sections 2 and 3 should
be interpreted as a rifle in a Chekhov play which is still far
from over.

10. Brief discussion of other QCD effects

The theoretical foundation of QCD as a non-Abelian
gauge theory describing the interaction of quarks and
gluons has been firmly established, though the confinement
problem has not yet been resolved. The prediction of
asymptotic freedom, i.e. of weaker interaction at small
distances, allows one to apply the well-developed methods
of perturbation theory. In parallel, there are lattice
calculations, some symmetry properties are considered,
the potential model approach is developed. The hadronisa-
tion of quarks and gluons is described in some models
which are compared to experiment if the Monte Carlo
calculations are done. The whole arsenal of theoretical
methods provides many predictions and describes a lot of
effects observed experimentally. Among them there are
such successes of QCD as the ratio of the total cross
sections of e+eÿ annihilation to hadrons and to the muon
pair; predictions of the sum rules, which interrelate quarks
of various species; detailed description of the properties of
heavy quarkonia; some relations for polarised particles; etc.

The achievements of the perturbative methods have
been connected, first, with the hard processes of particle
interactions where the transferred momenta are high. Those
are the e+eÿ annihilation at high energies, deep-inelastic
scattering of leptons and neutrino on hadrons, hadronic
processes with large transverse momenta, heavy quark
production, and the Drell – Yan process (production of
muon pairs with large invariant mass). The universality
of the structure functions as applied in various reactions,
the correspondence of the lowest approximation of QCD to
the parton model results including the scaling property and
subsequent violation of it in the higher-order terms due to
the running coupling constant were notable landmarks in
the evolution of the theory and its comparison to experi-
ment.

The interference effects were studied somewhat later and
will be mentioned at some length. The notion of coherence
plays a predominant role in many outcomes of theoretical
calculations [74, 75]. It is a coherence which allows one to
apply the evolution equations for the generating functions
considered above on the probabilistic level to the descrip-
tion of jets. One of the most remarkable predictions is the
so-called ‘hump-backed’ plateau [76]. The coherence is
especially important for various correlation characteristics

(energy flows, multiplicities etc. [10, 35, 71]). Recently, the
so-called string [77] or drag [78] effect has been studied
experimentally. The theory predicts that in three-jet e+eÿ

events there is a depletion of particles in the region between
two quarks because they are ‘dragged’ by the gluon jet while
there is no such effect if the photon is emitted in the same
direction. This is explained as destructive interference
between the two quarks. The analogous effects have
been predicted in reactions of creation of photons, muon
pairs, and heavy bosons with high transverse momenta.

Another effect of suppression of hadron multiplicity in
reactions with heavy quarks has been observed in Ref. [79].
If, compared with the analogous process with the produc-
tion of light quarks, the so-called companion multiplicity of
secondaries in heavy-quark production is several charged
particles smaller. By that one means the particles which
appear during the hadronisation of bremsstrahlung gluons
emitted by the initial quark. The origin of the effect lies in
the large masses of heavy quarks. In that case, as is known
from scattering theory [80], the radiation of vector particles
(in our case, gluons) in the direction of the heavy (or
rapidly-decaying) parent is suppressed and the total
intensity is reduced. Thus, this observation confirms the
vector nature of gluons once again. It would be interesting
to measure the angular distribution of such events, which
should reveal the ring-like structure of the angular dis-
tribution of ‘bremsstrahlung’ hadrons [81, 82] with a dead
cone inside [83].

In general, the idea of the angular ordering of quark –
gluon jets due to interference effects is very fruitful and
gives rise to the equations for the generating functions of
multiplicity distributions considered above.

11. Conclusions

There is a fundamental difference between the effects
described in the previous section and the results about
multiplicity distributions included in this review. The
former are somehow determined by the hardness of the
processes, while the multiplicity distributions are mostly
related to soft particles appearing at the latest stages of the
development of the cascade. Therefore, the success of this
approach substantially expands QCD’s claims to be able to
represent a wide scope. The higher-order approximations
for the running coupling constant and the exact solution
for the fixed coupling show qualitatively new features of
multiplicity distributions, compared with the double-
logarithmic approximation. From the physical point of
view they should take into account the softer stages of the
parton cascade. The qualitative features predicted for
partons happen to be valid for hadrons produced both
in e+eÿ and hh processes. It prompts speculation about the
similarity of the production mechanisms in both cases and
about the applicability of higher-order perturbative results
to the description of the soft stages.

Evolution of the attitude to extension of the validity
region of the perturbative approach can be traced in the
history of the problem as described in the introduction. The
initial excitement stimulated by predictions of the energy
increase of the average multiplicity and of the KNO scaling
independent of the coupling constant gave way to some
depression evoked by the extremely wide multiplicity
distribution predicted theoretically, though it was soon
stated that the correction terms were rather large. Now
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it becomes completely clear that terms of still higher-order
are also important and it is possible to take them into
account in a correct way. The results reveal approximate F
(or KNO) scaling with dependence on the coupling
constant. New features in the behaviour of the moments
of multiplicity distributions have been predicted and
confirmed by experiment. The evolution of distributions
in smaller phase-space regions has also been described. The
former discrepancy in the value of the ratio of the average
multiplicities in gluon and quark jets has been practically
solved. The influence of the higher-order corrections on the
energy increase of the average multiplicity has been shown.
All these improvements point in the direction of better
agreement with experiment.

In combination with predictions of the inclusive spectra
and various correlation functions, the above results on the
multiplicity distributions tell us that QCD may be success-
fully applied to predict quite special qualitative features of
soft processes when considered in higher orders. Of course,
one needs the hadronisation scheme and Monte Carlo
calculation to proceed to the quantitative comparison
with experiment (which is often substituted by the assump-
tion about the local parton – hadron duality).
Unfortunately, they suffer from an abundance of fitting
parameters, which are hard to control someTimes. That is
why the analytic predictions of new qualitative features and
effects are of utmost value. The progress in that direction,
described at some length above, gives some hope for further
success.
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