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Abstract. The experimental results, band structure liquid theory and of the quasiparticle description) and a

calculations, and theoretical investigations carried out
within the framework of the many-electron models of
half-metallic ferromagnets (HMFs) are reviewed. These
materials have an energy gap for one of the spin
projections at the Fermi level and represent a separate
class of strong itinerant magnetic substances, which
includes some of the Heusler alloys (for example,
PtMnSb), CrO,, etc. Some HMFs and related systems
are promising magnetic materials which have, in particular,
unique magneto-optic properties. The theoretical interest in
HMFs arises from a striking manifestation of nonquasi-
particle (spin-polaron) effects; for example, in the spin
polarisation of charge carriers and in the nuclear magnetic
relaxation rate. Concepts developed in the theory of HMFs
are shown to be applicable also to ‘conventional’ strong
itinerant (band) magnetic materials, including the iron-
group metals.

1. Introduction

In spite of the major effort of a large number of
investigators, the problem of strong magnetism of the d-
metals, and of their alloys and compounds [1—3] is still far
from being finally solved. This situation has both a purely
theoretical physics aspect (in particular, the problems of
the origin of local moments and of the validity of the Fermi
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practical one. The theoretical limits on the Curie
temperature have not yet been established and the
record-high characteristics of soft magnetic materials
(such as Permendur) have not been improved significantly
for over 50 years [2].

The current status of the theory of the magnetism of
metals is such that a more or less consistent description can
be provided only for certain classes of magnetic materials.
Completely different physical pictures, those of a ferro-
magnetic Fermi liquid and a state with the Hubbard band
splitting and local moments, are used to deal with,
respectively, weak itinerant magnets such as ZrZn,,
ScsIn, NizAl [3] and with ferromagnets of the
Fe;_.Co,S, type characterised by a strong electron—
electron interaction [4]. In the seventies a fully satisfactory
(although semiphenomenological) theory was developed for
weak itinerant ferro-magnets [3, 5]. With some modifica-
tions this theory was subsequently extrapolated to strong
itinerant magnets (for example, metals belonging to the iron
group) [3], but in general this extrapolation has not been
particularly successful [6, 7]. In this situation it would seem
very desirable to consider the opposite case of extremely
strong magnets with a large spin splitting (compared with
the Fermi energy) and very different spin-up and spin-down
electron states. The old Stoner theory dealing with ‘strong’
magnets has implied specifically such a situation with a
completely filled lower spin subband or a completely empty
upper subband. This feature was regarded as applicable to,
for example, nickel. Modern calculations of the electron
band structure carried out by the spin-density functional
method [8] have disproved this picture: the density of the
spin-up states N,(Er) is low but finite.

Nevertheless, band calculations carried out from first
principles have led to the discovery of a class of real
compounds similar to ‘strong’ Stoner ferromagnets. These
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materials have the Fermi level inside the energy gap of the
partial density of states for one of the spin projections. They
have therefore been called ‘half-metallic ferromagnets’
(HMFs). De Groot et al. were the first to apply this
picture to the Heusler alloys NiMnSb [9] and PtMnSb
[9—11] with the C1, structure; subsequently, this picture
has been applied to CoMnSb [12] and FeMnSb (a half-
metallic ferrimagnet) [13]. The state of half-metallic anti-
ferro-magnetism was predicted for CrMnSb [11]. Band
structure calculations for a large group of ferromagnetic
and antiferromagnetic Heusler alloys belonging to a differ-
ent series with the formula T,MnZ (T = Co, Ni, Cu, Pd)
and the L2, structure have shown [14] that a state close to
an HMF with a near zero-density N (Ef) appears in
CooMnZ systems, where Z = Al, Sn (according to
Ref. [15], this is also true of the compounds with
Z = Ga, Si, Ge). Moreover, the half-metallic state is
predicted by calculations of the band structure of CrO,
(rutile structure) [16, 17], UNiSn (C1, structure) [18, 19],
Fe;0,4 [11, 20], KCrSe, (see Ref. [21]).

The interest in HMFs has been largely due to the
discovery of a giant Kerr rotation of the plane of
polarisation in PtMnSb [22] and the concurrent attribution
of this effect to the characteristics of the energy spectrum of
this HMF [10, 11]. Thus, HMFs are promising magneto-
optic recording materials. It is interesting to note that,
according to the calculations, the class of HMFs includes
such an important magnetic recording material as CrO, (its
practical advantages are due not to this aspect, but rather to
the good mech-anical adhesive properties of the powder of
this material).

It is intuitively clear that HMFs are of interest from the
point of view of achieving the maximum saturation
magnetisation M, (because a further increase in the spin
splitting in this state does not increase the magnetic
moment). Calculations of the band structure of Fe—Co
alloys with record-high values of M, for d-systems [23]—
which are the basic soft magnetic materials used in modern
technology—and of the R,Fe;; and R,Fe, systems [24—
26] (hard magnetic materials), have shown that in a sense
these substances resemble HMFs: the Fermi level lies in a
deep minimum for one of the spin projections. Such a
minimum is typical of systems with local moments and is
also exhibited by pure iron. A clear minimum in the density
of the spin-down states has also been discovered for the
RCos (R =Y, Sm, Gd) [27] and GdNis [28] systems. A
comparison of the magnetic properties of a large group of
Y,Co,, and Y,Fe, alloys with the results of calculations
carried out by the simple recursion method is made in
Ref. [29]: a state close to an HMF has been found for
YCos, YCo7, and Y,Coyj.

The density of states N1(Ef) in the ferrimagnet MnyN is
zero for the Mn(I) positions— which make the dominant
contribution to the magnetic moment—and has a deep
minimum at the Mn(II) positions [30—32], so that this
compound should have properties resembling a half-metal.
The materials with high values of M, which are of practical
importance, include the isostructural ferromagnetic com-
pound Fe4N, which recently has been the subject of
extensive investigations and for which the value of
N1(Ep) is practically zero at the Fe(I) positions [30, 33]
(see also the calculations reported for NiFe;N [34],
PdFesN [35]).

All this justifies identification of HMFs as a new class of
itinerant ferromagnets with promising practical applica-
tions.

Theoretically, the class of HMFs is distinguished
primarily by the presence of well-defined local moments
and also by the absence of the ‘Stoner continuum’ of the
electron—hole excitations and, consequently, by a weak
damping of the collective spin-wave throughout the
Brillouin zone. This makes them similar to the Heisenberg
magnets and also to degenerate ferromagnetic semicon-
ductors [36 —39]. The interaction of charge carriers at the
Fermi level with well-defined magnons leads to an energy
spectrum completely different from the spectrum for the
interaction with ‘loosely bound’ paramagnons in weak
itinerant magnetic materials [3, 5, 40]. In fact, if the
o =T subband is filled, the spin-up electrons cannot
move freely: they form a very exotic energy band of
almost current-free spin-polaron states [40, 41]. This is
related to a number of striking experimentally observed
anomalies in the spin polarisation of the conduction
electrons, in the rate of longitudinal nuclear magnetic
relaxation, etc. [36—41]. The spin-polaron effects, due to
the scattering of carriers by magnons, are essentially not of
the Fermi-liquid nature. They manifest themselves partic-
ularly strikingly in HMFs because in the conventional
itinerant magnets they are masked by the paramagnon
contributions.

This review deals with a whole range of experimental
and particularly theoretical problems related to HMFs and
also provides an analysis of the importance of these
problems in the general theory of itinerant-electron magnet-
ism.

2. Band structure and magneto-optic properties

As already pointed out, the most important members of the
HMF class are the Heusler alloys ToMnZ with the L2,
structure and TMnZ with the C1, structure (MgAgAs).
The cubic L2, structure corresponds to a specific way of
filling all four fcc sublattices with T, Mn, and Z atoms,
whereas the Cl1, structure differs because one of the
sublattices is empty and the crystal symmetry is lowered to
tetrahedral (the inversion centre is absent); see Fig. 1.
The formation of the half-metallic state can be generally
described as follows [9, 11, 14, 19]. If the hybridisation with
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Figure 1. Crystal structures of the Heusler alloys, considered as a result
of splitting of the fcc lattice into four sublattices. In the L2 structure the
positions of all three types are filled, whereas in the C1, structure the
positions identified by the black circles are vacant.
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the states of the T and Z atoms is ignored, the d-band of
manganese in these structures is characterised by a wide
energy gap between the bonding and antibonding states. A
strong intra-atomic (Hund) exchange of the manganese ions
significantly pushes apart the spin-up and spin-down
subbands. One of these spin subbands closely approaches
the p-band of the ligands, so that the gap in this subband is
smeared out partly or completely by the p—d hybridisation.
The gap is retained in the other subband and the Fermi
level may be inside it, which gives rise to the HMF state. For
example,the calculated band structure of NiMnSb and of a
hypothetical compound NiMnSn [42] (the NiMnSb;_,Sn,
system is stable up to x = 0.7) differ basically only in respect
of the Fermi level position relative to the gap of the ¢ =
states, which is related simply to the different numbers of the
p-electrons in Sb and Sn. On the other hand, the reduction in
the number of electrons by one in Co,MnZ (Z = Si, Ge)
alloys does no shift the gap [15]. However, in the case of the
L2, structure one should speak rather of a deep pseudogap,
whereas in the case of the C1, structure it is a real gap. This
is due to the considerable change in the nature of the p—d
hybridisation (particularly between the p and t,, states)
when the centre of inversion disappears [9]. The CI1,
structure is therefore more favourable for the appearance
of the HMF state.

It follows from Ref. [30] that similar factors are
responsible for the gap in the partial density of states at
Mn(I), which is one of the manganese positions in the
compound MnyN the structure of which can be derived
from the T,MnZ structure by removal of some atoms. A
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Figure 2. Density of states in PtMnSb [10]: (a) spin-up; (b) spin-down.

qualitatively similar mechanism, based on a strong Hund
exchange and on hybridisation of the d-states of chromium
with the p-states of oxygen has been discussed [16] for the
compound CrO, with the rutile structure. It is pointed out
in Ref. [14] that the very stability of the ferromagnetic state
is a consequence of the difference between the p-—d
hybridisation in the case of states with different spin
projections. The authors of Ref. [14] introduced the term
‘covalent magnetism’ to describe this situation and stressed
the difference from the picture of a spectrum in the simple
Stoner model, when the densities of states N1(E) and N |(E)
differ only by a shift equal to the constant spin splitting.
The results of the band structure calculations are presented
in Figs 2-5.

From the very earliest studies of the electron structure of
HMFs particular attention has been paid to the relationship
between the structure and the magneto-optic properties.
The first studies of HMFs [10, 11] revealed that the major
difference between the spin-down and spin-up states near the
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Figure 3. Total (a) and partial (b) densities of states in the Heusler alloy
Co,MnSn [14].
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Figure 4. Partial densities of states in MnyN [30].
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Figure 5. Partial densities of states in CrO, [16]. The continuous curves
represent the 3d-states of Cr, whercas the dotted and dashed lines are the
2s-and 2p-states of oxygen. (a) Spin-up; (b) spin-down.

Fermi level gives rise to an asymmetry of the optical
transitions and is responsible for the strong Kerr rota-
tion. We shall consider this aspect on the basis of later
investigations [19, 43].

Reflection of light of frequency w from a magnetic
medium with a complex refractive index 7 = n+ ik in an
off-diagonal conductivity

Oy = Oy =+ 102,y

alters its plane of polarisation by the Kerr angle
4n AO-ZK' +BG|XV

P = — —= 2.1

K P A2 +B2 ( )
where A =n’ —3nk’>—n, and B = —k’+3n’k —k.
Therefore, in the case of weak damping (k <n) the
angle O is governed primarily by the quantity o,,, and
the expression for this quantity was derived by
Argyres [44]. In the simplest case of a cubic structure
with the magnetisation vector parallel to the (001) plane,
we have [19]

Z {F;:');"’T(k)nk”7lT(] - nk’”T)s [(D - wmm’T(k)]

ky, m#m'
— F5 o )y (1= i )8 = 0 ()] } . (2
where atomic units are used; k is the quasimomentum, & is
the spin projection, m is the band index, w,,, /()=

&MG — &, 18 the frequency of the interband transitions,
Nems = f(€kme) 18 the Fermi distribution function
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L? is the z-projection of the orbital momentum operator,
& = (2/rc*)dVy/Or, and V. is the effective potential
acting on the conduction electrons.
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[t is evident from Eqn (2.2) that if the &,,, spectrum
depends weakly on ¢ in a layer of thickness w near Eg, the
first and second terms in the curly brackets practically
cancel out. On the other hand, in the case of HMFs when
o< A4, (4, is the gap for the spin projection o), the
corresponding term in Eqn (2.2) vanishes, so that large
values of g,, and of the Kerr rotation can be expected. It is
in fact found that the intensities of the peaks in the
frequency dependence of Oy for the NiMnSb,_,Sn, system
decrease rapidly when x is increased, i.e. when the Fermi
level leaves the gap [42].

The half-metallic ferromagnet Co,MnSn, belonging to
the Co,YZ Heusler alloy series, has the highest values of
02,y () at low frequencies [45] (Fig. 6). On the other hand,
the appearance of the energy gap for the spin-down states
(not necessarily located at Ef) is evidently typical of the
whole series. At w = 1.5 eV (which of the order of a typical
separation between the gap and the Fermi level) there are
no qualitative differences between Co,MnSn and other
members of this Heusler alloy series.
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Figure 6. Experimental dependences ” Ime,, (w) (curves labelled 1)
and —w’ Ree,, (o) (2) obtained for ToMnSn [45]. T = Co (a), Ni (b),
and Cu (c).

It follows from Eqn (2.3) that the angle 0 is propor-
tional to the spin—orbit coupling, i.e. it is larger for heavier
elements. We can therefore expect that HMFs containing
platinum have larger values of fg. A giant value g ~ 2.5°
(for red light), much higher than the value for NiMnSb, has
been reported for PtMnSb [11, 22] (the results of the
calculation are presented in Fig. 7). However, it should
be pointed out that, according to Ref. [21], the main

—Imo,, (w)/10" s~

-3
fiw/eV

Figure 7. Resultsofcalculation of the quantity —Ima,, (w) (frequency is
in electron volts), which governs the Kerr rotation in PtMnSb [19].

difference between the electron band structures of the
HMFs PtMnSb and NiMnSb, responsible for the smaller
value of O in the latter case, is related not so much to the
values of the spin —orbit matrix elements, as to the shift of
some of the energy levels because of ‘scalar’ relativistic
effects (velocity dependence of the mass and the Darwin
correction). Therefore, in this respect the simplest assump-
tion of a direct connection between the spin—orbit coupling
and the Kerr rotation is not quite adequate.

Record values of 6g might be expected for the
ferromagnetic phase of the compound UNiSn [19], but
experiments have shown that it is an antiferromag-
net [46, 47] (it is discussed in Section 9). Nevertheless, it
is interesting to consider the isostructural ferromagnets
containing actinides (for example, UCoSn and PdUSn).
A first-principles calculation of the magneto-optic proper-
ties of CrO, [43] gives very moderate values of g (0.15° for
visible light), which is due to the smallness of the relativistic
effects (light atoms) and, consequently, of the F*’ matrix
elements in Eqn (2.2). A comparison of the magneto-optic
properties with calculations of the band structure of Fe—Co
alloys can be found in Ref. [48].

It is worth considering the question of experimental
confirmation of the calculated electron band structure of
HMFs. The most direct check of the electron spectrum can
probably be provided by investigations of the de Haas—
van Alphen effect and a comparison of the experimentally
determined Fermi surface with that found by calculation.
Unfortunately, the relevant data are not yet available. The
results of experimental investigations of the optical proper-
ties of NiMnSb and PtMnSb [49], as well as of CrO, [50],
together with the angle-resolved data on the photoemission
from PtMnSb [51] are, according to the authors of these
papers, in good agreement with the results of an analysis of
the band calculations [9—11, 16] (in some cases it is
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necessary to make corrections for the spin—orbit coupling,
which is ignored in the calculations).

A paradoxical result follows from the experimental data
on the photoemission from CrO, [52]: there are no electron
states with both spin projections near Ey, whereas accord-
ing to all the properties of this compound it is undoubtedly
a metal (although with a high electric resistivity). The
results reported in Ref. [S2] can be explained by, for
example, surface effects. An alternative (and more inter-
esting) explana-tion involves allowance for the final-state
effects. The compound CrO, is known to be a system with
strong electron correlations [53], which is confirmed by, for
example, the observation of the ‘Hubbard’ absorption
peaks in the optical spectrum [54]. Therefore, the field of
a hole, which is formed as a result of the photoemission and
interacts strongly with the remaining electrons, may be
sufficient for the formation of a localised state. This
problem needs further investigation.

3. Transport properties and the problem of spin
polarisation

In conventional metallic ferromagnets the contribution of
the magnetic scattering to the low-temperature transport
properties is governed primarily by one-magnon scattering
processes. These processes dominate in the temperature
range

. . I’s
T <T<Tc, T NFTC’ (31)
F
where [ is the s—d exchange parameter. At lower

temperatures the contribution of one-magnon processes is
exponentially small because electron transitions across the
ferromagnetic gap 4 are impossible in the range of the
thermal magnon momenta. However, since |I| < Ep is
usually true, the condition (3.1) covers practically the whole
spin-wave temperature range.

Let us consider the contribution made to the resistivity,
which appears in the second order in /. This can be done
with the use of the Mori formula [55]. The reciprocal of the
transport relaxation time is

2= ), ar(E Had e 9) (5, 9)

where H;,, is the transverse part of the s—d Hamiltonian
describing spin-flip processes,
. 68,“,

R § 4.
V= Vke Cko Cko > Vke = ok
ko

is the velocity operator of the conduction electrons, and

(3.2)

1T
(A, B) = JO (A exp(—AH)B exp(AH)) -

Calculations yield

1 _ 2 > [(—Ong, B
= 8n/ S[kaa( ™ >]

k,o o

Z(VkT —_ Vk/l)2

k k'

X 1yp (1 — mgr) )N g _gr 88k — &y — @) (3.3)
s = f(&ko) and N, = Np(w,) are the Fermi and Bose
distribution functions, and w, is the magnon frequency],
which generalises the standard result [2] to the case of

arbitrary &, spectra. The temperature dependence of the
resistivity in the range defined by Eqn (3.1) is

P°(12NT(EF)N1(EF)(T—TC>2-

[t therefore follows that the contribution described by
Eqn (3.4) vanishes in the case of HMFs. Similarly, there is
no contribution of one-magnon processes to the anomalous
Hall effect R,(T) o (aT*> 4 bT*) in these materials [2, 56].

It follows that the magnetic scattering in HMFs should
be dominated by two-magnon processes. As a rule, these
processes give rise to higher power exponents in the
temperature dependence, because the resistivity is propor-
tional to 77/2 [2]. Moreover, the relevant contributions are
small in terms of formal parameters of the model (for
example, in terms of the quasiclassical parameter 1/25 ). We
can therefore expect significant singularities in the tem-
perature dependences of the transport properties of HMFs.

Experimental investigations of the dielectric resistivity
p(T ) and the spontancous Hall coefficient R((T) of  the
Heusler alloys TMnSb (T = Ni, Co, Pt, Cu, Au) and
PtMnSn are reported in Refs [57, 58]. The contribution of
one-magnon processes (which is of the order of T?) to the

(3.4)
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Figure 8. Temperature dependences of the electric resistivity (a) and of
the spontancous Hall cocfficient (b) of the Heusler alloys TMnSb

[T = Cu (1), Au (2), Co (3), Ni (4), Pt (5)] and PtMnSb (6) [58].
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resistivity of HMFs (T = Ni, Co, Pt) was indeed not
detected, whereas in the case of ‘conventional’ ferromag-
nets the dependences p(T ) are much steeper (Fig. 8).

On the other hand, in Refs [57, 58] the observation that
the spin polarisation of carriers

_m(T) —n(T)
P = np(T) +n(T)’

determined from R((T ) at moderately low temperatures, is
proportional to the magnetisation is considered a problem.
At first sight, this result seems to be strange, because the
value of n| should be independent of temperature right
down to T¢ in view of the presence of the energy gap.
In relation to this observation it is interesting to
consider the results of direct measurements of P(T ). The
method of spin-polarised photoemission from NiMnSb just
gave values of about 50%, instead of the expected 100%
polarisation [59]. We shall show later that this conflict can
be resolved if allowance is made for the correlation effects.

3.5)

4. Magnetic properties

Table 1 gives the main magnetic properties of some HMFs
and, for comparison, the properties of two ‘conventional’
ferromagnets Pd,MnSn and PtMnSn belonging to the
ToMnZ [60-62] and TMnZ [63] Heusler alloy series. All
these systems have high values of the saturation magne-
tisation and of the Curie temperature. The strong
magnetism of the Heusler alloys is mainly due to the
local moments of well-separated manganese atoms. For
example, the total magnetic moment of Co,MnZ, (4—5)ug
per formula unit, consists of the moment 3uz per Mn atom
and less than 1ug per Co atom [15]. The relative proximity
of the paramagnetic and ferromagnetic Curie temperatures
is evidence of the localised nature of the magnetic
moments. The values of the effective moments above
Tc, deduced from the Curie constant, decrease quite
rapidly when temperature is increased [61—-63]. The
experimentally determined Wohlfarth—Rhodes ratio p./p
is considerably less than unity. We recall that in the
Heisenberg model we have p./p, = 1 and for weak
itinerant ferromagnets the corresponding ratio is
Pe/ps > 1 [3]. In the case of ‘conventional’ strong itinerant
ferromagnets (for example, Fe and Ni) this ratio is
somewhat greater than unity. It therefore follows that

Table 1. Values of the magnetic moment pg in the ground state, deduced
from the saturation magnetisation (yy, = pspg), the ferromagnetic and
paramagnetic Curie temperatures 7¢ and 6, and the paramag-
netic moment p, deduced from the Curie constant [C = /3 =
pe(pe +2)us /3], for the Heusler alloys. The range of values of the last
two quantities corresponds to a change with increase in temperature.

Ps Tc/K 6/K Pe
Co,MnSi 5.10 1034 1044 2.03
Co,MnGe 4.66 905 890 2.61
Co,MnSn 5.37 826 870 3.35
Co,MnGa 4.09 695 770 3.28
CoMnSb 4.2 478 490 - 520 3.61-3.11
NiMnSb 4.2 728 780-910 3.31-2.06
PtMnSb 3.96 572 610670 3.96 -3.56
Pd,MnSn 4.22 189 201 4.05
PtMnSn 35 330 350 4.2

the inequality p, < ps is a striking property of HMFs,
which could be used in their preliminary identification.

Theoretically the temperature dependence of the mag-
netic moment is governed by the competition between two
opposite trends. The ‘temperature-induced’ moments [3] are
most important in the case of weak itinerant magnets, when
there are no localised moments in the ground state. In
ferromagnets with well-defined local moments another
factor comes into play: the moments decrease as a result
of misorientation [64, 65]. These calculations demonstrate
that the reduction in the moments is a consequence of a
change in the electron structure as a results of rotation of
the magnetic moments. One would expect such changes to
be particularly large in the case of HMFs and they should
be of qualitative nature (smearing out of the hybridised gap
because of spin disorder). The many-electron mechanism of
the suppression of magnetic moments is discussed in the
next section. The reduction in the moment with an increase
in temperature may also be related to other factors. For
example, the difference between p, = 3.4 and p, = 4.2 for
the Ni,MnGa Heusler alloy [66] is attrib- uted to the
splitting of the nickel states (owing to the Jahn-—Teller
band effect related to the transition from the high-
temperature cubic phase to the tetragonal phase).

The magnetic properties of CrO, have been investigated
less than those of the Heusler alloys. Nevertheless, the
saturation value of the magnetic moment is very close to the
atomic value g, = 2up (p, = 2) in the case of the Cr*¥ ion.
This is confirmed by the band structure calculations [16]
and is important for itinerant magnets.

As pointed out in the Introduction, an important feature
of HMF's is the weak damping of spin waves throughout the
Brillouin zone because of the absence of the Stoner
continuum. Experimental data are now available on the
scatter-ing of neutrons in the Heusler alloys Pd,MnSn,
Ni,MnSn [67], and Cu,MnAl [68]. Spin waves are well-
defined over the whole Brillouin zone and —according to
Ref. [3]—this is the criterion of validity of the model of
localised moments. According to the band theory, the weak
magnon damping can be explained by the fact that the
partial densities of the spin-up d-states of the Mn atoms are
low since the corresponding subband is almost filled [14].
The damping may be expected to be even weaker if the
Fermi level of one of the spin projections falls within a
hybridised gap. Thus, experimental investigation of the
damping of spin waves and a comparison with the results
for the various Heusler alloys belonging to the T,MnZ and
TMnZ series would be of great interest for the validation of
the theory.

Another physical property in which the distinctive
features of HMFs are apparent is the rate of longitudinal
nuclear magnetic relaxation 1/T,(T). The Korringa con-
tribution of the conduction electrons is the dominant
contribution for ‘conventional’ metallic ferromagnets and
is described by the Moriya formula [3, 69, 70]:

Ti] = ny,A’TFN +(Eg)N,(Ey) R
(v, is the gyromagnetic ratio, A is the hyperfine interaction
constant, and F is the exchange enhancement factor). Since
the contribution represented by Eqn (4.1) vanishes in
HMFs (which essentially follows also from the absence
of the decay of magnons into Stoner excitations),
significant anomalies in the temperature dependence
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1/T(T) can be expected. (The theoretical dependence,
which is T5/2, is discussed below.) On the other hand, the
transverse nuclear relaxation rate includes a contribution of
the longitudinal susceptibility and, therefore, of the
transitions inside the spin subbands (see Ref. [70]):

1 1 i

_:_+_

2 4 2 T2 2
A“TF (N7 (E NY(E
T, ~ ar, 5 T [N1(Ep) + Ni(Er)] ,

4.2)
i.e. the linear Korringa contribution is also present in
HMFs. For simplicity, let us ignore the dependences of the
matrix elements of the hyperfine interaction on the spin
and let us also neglect the exchange enhancement. We then
find that

1T,  IN1(EF) + N (Er))
1/T, 4N1(Ep)N | (EF)

>1. 43)

Major deviations from the linear Korringa law have
been found experimentally for 1/T; of the half-metallic
ferromagnet NiMnSb [7]. At moderately low temperatures
in the range T > 250 K (T¢ = 750 K) the dependence is
found to be

1 3.8
) al +bT"" .

Nuclear magnetic relaxation at the Mn(I) positions has
been studied in the ferrimagnet MnyN with T = 720 K,
discussed above (a narrow NMR line has been reported
only for this compound) [72]. At low temperatures
T <77 K the dependence 1/T(T) is linear, but at higher
temperatures it is approximately quadratic.

The mechanisms of nuclear magnetic relaxation in
magnetite Fe;O, [73], which exhibits the Verwey transition
with a strong reduction in the conductivity at 7 = 130 K, is
obviously quite complex. The ‘metallic’ behaviour of the
relaxation rates (increase with temperature) occurs above
200 K. The ratio (1/7,)/(1/T,) is approximately 2.

These anomalies of 1/T; have been reported before
the discovery of HMFs and have not been attributed to
the characteristics of the electron band structure (which
accounts for the attempt made in Ref. [71] to separate the
linear term). Therefore, a deliberate investigation of
nuclear magnetic relaxation in compounds for which the
HMF state is predicted, which would make it possible to
check the results of the band calculations, is highly
desirable. It follows from Eqns (4.1)—(4.3) that a signifi-
cant difference between the Korringa contributions to 1/T,
and 1/T, should also be observed in ‘conventional’
itinerant magnetic materials if near the Fermi level there
are density-of-state peaks leading to a large difference
between N|(Er) and N(Ep) for the ferromagnetic phase.
For example, the value of 1 /T, for iron and nickel is several
times greater than 1/T, [70]. Allowance for the exchange
enhancement produces a larger increase in the transverse
susceptibility, i.e. it predicts a trend opposite to that
observed experimentally.

5. Theoretical investigation of the energy
spectrum within the framework of the s—d
exchange and the Hubbard models:
nonquasiparticle states

As pointed out above, a realistic microscopic model of an
HMF should allow for the hybridisation of the s(p)- and
d-states. The Hamiltonian can then be written in the form

H = Z tkcl-c'—a-cko' + Ed Zdijy—dia'
ko io
D Vilclodio + diyers) + U Y ditdndidyy . (5.1)
ko i

The electron and magnon spectra in the spin-wave
temperature range have been investigated on the basis of
the generalised Anderson model of Eqn (5.1) [74]. How-
ever, in a detailed discussion of the correlation effects it is
convenient to use the simpler s—d exchange model and the
Hubbard model with a nondegenerate conduction band
and spin splitting independent of the wave vector. In
particular, these models can be derived from Eqn (5.1) by a
canonical transformation in the limiting cases when
Vi = const, E4 — —o0 and f; = const, respectively.
Calculation of the one-electron Green functions in the
spin-wave temperature range, carried out within the frame-
work of the s—d exchange model [2] and in the ‘parquet’
approximation in combination with the diagram technique
[75], and by the equation-of-motion method [36 —38] gives

Gio(E) = [E~ trg = Zio(E)) " . (52)
_ z _ 212<S:>Rka(E)
tho =tk —0I(S7),  Zio(E) = T4 0lR,,(E) ° (53)
_ Ng + Miiq)
Rt (E) z,,:E T @
(5.4)

1+ Ny — gt
RulE) = 2 o,
q —q7 q

These expressions are exact at 7 = 0 in the limit of zero
carrier density, in which the problem can be reduced to the
solution of the Schrodinger equation for one electron
interacting with localised spins [36, 76]. The half-metallic
state is described as a ‘saturated’ ferromagnetic state with a
large spin splitting |4 = 2|I|{S°) > Ef, ie. m = 0 (or
ngy = 0in the s—d exchange model with I < 0). In the s—d
model this situation corresponds in particular to degenerate
ferromagnetic semiconductors [37]. Similar results are
obtained in the Hubbard mode [40, 77] if I is replaced
with the intra-atomic Coulomb interaction parameter U. It
should be stressed that the Green function of Eqn (5.2),
like the Green function in the Hubbard-I approxima-
tion [78], gives the correct atomic limit. On the other hand,
at low values of U it correctly reproduces the Hartree—
Fock approximation.

Let us now consider the motion of carriers in the
Hubbard model with an almost half-filled conduction
band in the limit of strong correlations, when —according
to the Nagaoka theorem [79]—the ground state for simple
lattices is known to be a saturated ferromagnet. The
Hubbard Hamiltonian for U — oo and n < 1, when the
doubly occupied states (‘pairs’) are forbidden, has the
following form in the representation by many-electron X
operators X = |ia)(ip):

H ==Y t;X"x7 =" aXx%x{,
k,o

i J, @

(5.5)

where i) are singly occupied states with the spin
projection ¢ at a site i; |i0) are empty sites (holes), and
g = —t;. Let us consider the Green functions
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1 0y 0
Gro(E) = (XX )k - (5.6)
For ¢ =7 at T = 0 the carriers travel freely and the
temperature corrections to the spectrum are proportional
to T3, A more interesting situation is that of ¢ =, in
which case the calculation gives [40, 41]

~ ~ —15 -1

Gl (E) = {E—sk + [G,E‘?(E)] } , (5.7)
5 (0) _ Ny + Miiq

G (E) = ZE_SMJF% , (5.8)

q

and n, = (X°FX ) = £ (). The result given by Eqn (5.7)
is identical with Eqn (5.2) in the limit U — oo if we change
from electrons to holes.

Eqn (5.8) defined the Green function of the lowest order
in ¢ = 1—n, so that the electron states are described
formally by a branch cut and is of nonband (free of
poles) nature. This applies also to the complete Green
function (5.7), because at low values of ¢ it does not have
poles below Er on the real axis. The corresponding one-
particle distribution function depends weakly on k:
(XE;X,:O) =~ c. The states which have this property do
not carry an electric current, which follows from a general
analysis of the effect of an electric field on the many-
electron system [80] (see also an explicit estimate of the
mobility in Ref. [41]). These nonquasiparticle states make
no contribution to the density of states at Ex when T = 0.
However, we shall show later that they do contribute to the
linear term in the electronic specific heat. Similar properties
[apart from the condition 3N(Er) = 0] have been postu-
lated by Anderson for spinons, which are neutral Fermi
excitations in the resonating valence bond (RVB) state that
does not have a long-range magnetic order (in the zero-gap
variant of the RVB theory). According to Ref. [81], spinons
may be described by a Green function with zero residue. In
fact, we have demonstrated earlier the existence of such
states in a narrow-gap Hubbard ferromagnet.

As c increases, the Green function of Eqn (5.7) acquires
a real pole of the spin-polaron type below Ef, so that the
saturated ferromagnetism is destroyed [77]. The problem of
evolution of the magnetic state is fairly complex. In
particular, an analysis of higher orders in the gas approx-
imation and the diagram technique have been used [82] to
predict an antiferromagnetic instability. The interpolation
description, discussed in Section 7, predicts a transition to
an unsaturated ferromagnetic state and the nature of the
spin-down states changes: they are now described roughly
by the Hubbard-I approximation [78]

éka(E) = (ng + ng)[E — (ng + n,,)ek]’] s

i.e. they form quasiparticle-type bands of reduced width.
The temperature dependence of the magnetisation

(S5)=S=>_N,
p
and the neglect, for simplicity, of the ‘parquet’ denomi-

nators in Eqn (5.3) (more rigorous calculations are
reported in Refs [36, 37]) yield the correction to the

electron spectrum:
T \2
X | = .
Tc

ny = (X2 . (5.9)

t — 1
OE, = ol Y —+H K (5.10)

q
7 tk+q — Iy + o4

On the other hand, the residues of the one-electron Green
function

o -1
Zio = [1 ~35 ReZ,m(E)|E:%] (5.11)

exhibit the stronger dependence T3/ (exactly the same as
in the case of the magnetisation), which occurs in the
partial spin densities of states and in the occupation
numbers. Expansion of the Dyson equation (5.2) gives

No(E) =~ 1m 3 Guo(E) = po(E) — 2 8'(E — 11,)
k k

X ReZy, (E) - L 3 1M Zke(E)

s 5.12
[y (E_tka)2 ( )

where

pa(E) = ZS(E - tko’)
k

is the density of states in the Hartree—Fock—Slater
approximation. The third term in Eqn (5.12), which arises
from the branch cut of the self-energy, describes an
incoherent contribution of nonquasiparticle states 8N, (E)
owing to the electron —magnon scattering. We can easily see
that this contribution differs from zero in the range of
energies corresponding to the spin subband with the
opposite spin projection —o. It follows that the density
of states under discussion differs greatly from the Stoner
density. If only the magnon contributions are retained,
then —to within terms of the order of 7%/ in the leading
order in 1/2S —the electron occupation numbers [37] are
given by

S+(5%) L a5 (%)
2§ ke 28

(CHotho) = iy~ - (5.13)
We can see that in spite of the spin splitting, the electron
occupation numbers have a strong temperature dependence
T3/2, in contrast to the exponential dependence predicted
by the Stoner theory. Formally, contributions of the order
of T3/ appear both because of the temperature dependence
of the residues of the Green functions and because of the
appear-ance of nonquasiparticle states in the ‘foreign’
subband.

We can now solve the problem of the spin polarisation
in an HMF postulated above. The strong temperature
dependence of the residue of the Green function of the
lower spin subband and the increase (with temperature) of
the ‘tail’ of the nonquasiparticle states in the upper spin
subband (Fig. 9) gives rise to the dependence P(T ) o (S°)
in Eqn (3.5). In the usual Hubbard model this result is
trivial because the electrons responsible for the magnetic
moment simultaneously form the band structure near the
Fermi level. However, it applies also to the s—d(f) model
when the carriers and the magnetic moments belong to
different energy bands, which is true—for example—of
ferromagnetic semiconductors [37, 83, 84] for which such a
dependence P(T) has been observed in field emission
experiments [85].

The resistivity and the Hall effect data discussed
above [57, 58] demonstrate that the spin polarisation in
the Heusler alloys does indeed behave as the relative
magnetisation. It has therefore been concluded on the
basis of these data that the Heusler alloy should be
described by the strong coupling model (when carriers
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Figure 9. Density of states in the s—d model for an empty conduction
band (I > 0). At T = 0 (continuous curve) the spin-polaron tail of the
spin-down states extends to the bottom of the band. The dashed curve
corresponds to finite temperatures.

are coupled strongly to the local moments). It follows from
our analysis that this hypothesis is not essential.

The problem of possible depolarisation of the conduc-
tion electrons in half-metallic ferromagnets at 7 = 0 is
more difficult. Let us consider the behaviour of the spin
polarisation

_ INy(E) =N (E)|
INt(E) + N (E)|

on the basis of the s—d model. If the magnon frequencies
in the denominator of Eqn (5.4) are ignored, the presence
of the Fermi functions means that the partial density of
states with the ‘incorrect’ spin projection ¢ = —sgn /
should appear abruptly above (/> 0) or below (/ <0)
the Fermi level (Figs 10 and 11). Allowance for the magnon
frequencies @, = Dg? smears out this singularity in an
interval governed by the maximum magnon frequency. If
|E — Ey| is small compared with @ = D(67°/vo)*> (v is the
unit-cell volume), then [37, 77]
N_(E) 1|E—E[?

N(E) =55 | Ol(E — Er)], a=sgnl, (5.15)

P(E) (5.14)

where 6,y is the Heaviside step function. Away from Eg
the quantity given by Eqn (5.15) becomes a constant,
proportional to I° in the weak s—d exchange case (an
estimate  for  ferromagnetic semiconductors  gives
1 — P = 4% [84]). In the strong coupling limit, when
|I] — oo, we obtain

N_y(E)
No(E)

- %B[a(E—EF)], E—Ef|>®. (516)
It therefore follows that the spin polarisation P(E) changes
strongly near the Fermi level. In the case of the
antiferromagnetic s—d exchange there are occupied non-
quasiparticle states near Ey, so that the depolarisation may
be detected from the photoemission measurements. If
I > 0, nonquasiparticle states are empty and can be
observed in the inverse photoemission experiments.

In the ‘wide-band’ Hubbard model at T = 0 the
nonquasiparticles lie, as in the s—d model with 7 >0,

N1 (B)

Er %

O

Figure 10. Density of states in a half-metallic ferromagnet with 7 > 0.
The nonquasiparticle states with ¢ = | are absent below the Fermi level.

N;(B)
N, (B)

—-21IS

Figure 11. Density of states in a half-metallic ferromagnet with 7 < 0.
The non-quasiparticle states with ¢ =T appear below the Fermi level.

above the Fermi level, so that there is no depolarisation of
the occupied states. However, the situation changes in the
narrow-band limit (U — o). For clarity, let us consider a
band with the population n > 1 and the concentration of
‘pairs’ ¢ = n, = n—1 < 1. The charge carriers are then
zero-spin pairs and the spin-up and spin-down electrons
may be ‘extracted’ in the emission experiments with equal
probability. On the other hand, it follows from the Pauli
principle that the pair states above the Fermi level can be
filled only by spin-down electrons. These conclusions are
supported by direct calculations of one-particle Green
functions [41] [compare with Eqn (5.8) for the case when
0 <1—n<1]. The result is

NT(E) = Z.f(tkﬂl)s(E — g + wq)

k,q
N(E), Ex —E> @
— l > F s
_{ 0, E>Ep, G17)
which agrees with Eqn (5.15) for « = — and § = 1. We

can see that below Eg there is no spin polarisation, with the
exception of a narrow layer of width @, so that experiments
carried out with a moderately high energy resolution
should yield small values of P. The real values of the model
parameters are obviously intermediate between the broad-
band and narrow-band cases, so that significant deviations
of P(T = 0) from 100% are, more generally speaking, not
surprising. Inclusion of surface effects does not qualita-
tively alter the role of the nonquasiparticle contribution to
P(E) [124].

Calculation of the commutator magnon Green function
gives [40, 86]
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% tk+q_tk +A—(,O

-1
X (et — Mirqy) — Hff)(w)] : (5.18)

where the contribution of the two-magnon processes to
the polarisation operator is

2 2 tg—tk—o Y
H(;)(w) =1 ;(tkﬂ—qtk‘i‘é'—m)
x[Bkt,k+q—p1,w,—o)
+Bk+pl.k+q], 0, — )
—Bk+pl.kT, w,)
—Bk+ql.k+q-p1.w,)].

The damping of spin waves owing to one-magnon
processes is governed by the imaginary part of the second
term in square brackets in Eqn (5.18):

al’lkT
,y((ll)(w) ~ n]AwE(— Kﬂ) 5(60 - tk‘Hll + tkT)

(5.19)

= 2nI’SwN; (Ep )N | (Ep)8(0 —o_) , (5.20)

where o is the threshold frequency governed by the
condition of entry to the Stoner continuum. The damping
of magnons at 7 = 0 gives rise to a logarithmic
contribution to the magnon distribution function and,
consequently, to the ground-state magnetisation

a_ I [ % (©) do
5(5%) = —;;J_w (@- o) + [ )]

~ —2I°SN (E; )N | (Ey) 1n% , (5.21)
where W is of the order of the band width. It is shown in
detail in Refs [87—90] that this suppression of the moment
is similar to the Kondo compensation in the case of a single
impurity and that the spin dynamics results in the cutoff of
the logarithmic divergences at some characteristic magnon
energy @ rather than at some temperature. This moment-
suppression mechanism operates not only in Kondo
systems, but also in any magnetic materials with local
moments, including those described by the Hubbard model.

Eqn (5.20) for an HMF vanishes and the magnon
damping is governed by the imaginary part of
Eqn (5.19). Integration yields [86, 91]

)
-2, T<ow,,
@) . (14V%(k%T +k%1) 35 !
V@) =— =3 X\T/ T 5
481 (S ) (n=+2), T>o,.
4 w, 3 4
(5.22)

The damping of Eqn (5.22) is very weak, as shown both by
the numerical values and by the formal parameters. It can
be shown [39] that such damping does not alter the
magnetisation at 7 = 0 but simply renormalises the T3/?
Bloch term.

It follows that, in contrast to ‘conventional’ itinerant
ferromagnets, the ‘Kondo’ compensation of the moment in
an HMF does not occur in the ordered phase (more exactly,
the logarithms are cut off at the width of the energy gap).
One can expect the situation to apply also above T¢ if there

is a sufficiently strong short-range magnetic order and the
electron structure changes only slightly at 7. But, at
sufficiently high temperatures 7 the ‘local’ densities of
states N,(E) should become comparable and this should
result in a fairly major reduction in the magnetic moment of
the type described by Eqn (5.21). This mechanism may
contribute to a reduction in the effective moment with
tempera-ture, observed already for the Heusler alloys (see
Section 4).

The real part of Eqn (5.18) determines not only the
spin-wave contributions of the order of T5/2, but also the
nonanalytic many-electron correction to the spin-wave
stiffness constant [39, 40]. For the quadratic dispersion
law t, = k2/2m, we have

272
™o T ) ) T
oD = |———| — [ E N{(E ]l —
(tes) B {0 +mieen]nz:
T
_2NT(EF)N1(EF) lnM ,
Dy
5.23
Wy = D(kFT *kpl)Q . ( )
This correction predominates over the correction due to the
temperature dependences of the Fermi functions, of the
order of T2, and is particularly large for HMFs.
We now consider the longitudinal nuclear relaxation
rate [3]

1 A’T
— = — I 1S~
T I, m Eq ({Sq15ZNw

(w, < T is the NMR frequency). For HMFs we have to
consider the contribution of the two-magnon processes
(5.18). In the Hubbard model (I — U ), we obtain [40, 92]

(5.24)

L 2<S:)ZlmH(2)(q’ 60,,)

T 2
T, T, Wy

12vE (vo Y3\ /0 2 \TY?
TR (16n2)c(§> (kFT+kFl) DI

The temperature dependence T°? can be understood
qualitatively on the basis of the Moriya formula (4.1) if
N|(Ep) in this formula is replaced with the thermal value of
the density of nonquasiparticle states, which is of the order
of T3/2/D3/2EF. On the other hand, the coefficient in
Eqn (5.25) is significantly influenced not only by the values
of the density of states, but also by the exchange
enhancement factor F, which in this case is governed by
the contribution of the collective magnon mode (this
should be compared with the case of weak itinerant
magnetic materials, discussed in Ref. [3], when the para-
magnon enhance-ment also leads to F > 1). It follows that
the longitudinal nuclear relaxation rate in an HMF should
be regarded, together with the spin polarisation of the
emitted electrons, as one of the properties that are
governed essentially by nonquasiparticle states.

(5.25)

6. Nonquasiparticle contributions to electronic
specific heat and transport properties

In the phenomenological theory of a ferromagnetic Fermi
liquid [93] and in the standard Fermi liquid theory [94] it is
assumed that many-electron effects simply renormalise the
density of states N(Ep) and the Fermi liquid parameters.
Let us consider the contribution of spin fluctuations to the
specific heat of a ferromagnet. It follows from Eqns (5.11)



670

V Yu Irkhin, M 1 Katsnel’son

and (5.3) that renormalisation of the effective mass and,
consequently, of the specific heat in the Hubbard model is
described by [40]

my, 1

s
Mg kaa

N*U(EF) ]n
0. —w_  o_

=14U4 6.1)
[the notation is the same as in Eqn (5.23)]. In particular,
for a weak itinerant magnet, we have

[0}
In— =~ —2Ina,
[0}

0O<a=UN(Ep)—1<1, 6.2)

and Eqn (6.1) describes the paramagnon enhancement.

There is no such enhancement in the case of an HMF. It is

found that the electronic specific heat of conducting

ferromagnets includes contributions of a completely

different type, which are of nonquasiparticle origin [40].
It follows from the s—d model that

oH) B

‘== =&

J dE EAE)N(E)

2

- % N(EQ)T +J aeEfE) NET)

= 6.3)

The first term in Eqn (6.3) is the standard result for the
electronic specific heat; the second term is due to the
temperature dependence of the density of states. Substi-
tuting Eqn (5.3) into the last term of Eqn (5.12), we find
that

5C, (1) = 21*(s%) Y Dlhsaoce —00%) 8

= I .
23T k+q,—0
kq (tk+q,—a tka)

6.4)

(We recall that in the Hubbard model / — U > 0.) At low
temperatures we have

f(tk‘Hll - (,Oq) =1 s f(tk‘HlT +(1)q) =0.

It follows that the nonquasiparticle states with ¢ = | do not
contribute to the linear term in the specific heat, because
these states are empty at 7 = 0. For ¢ =T, we obtain

(6.5)

ot 1
8¢ = =1 (SHYNY(ERTY ——. (6.6)
k

(tkr — Eg)’

Note that the contribution described by Eqn (6.6) implies
that the Fermi liquid description is insufficient only in the
case of dynamic quasiparticles defined in terms of the
Green-function poles. On the other hand, the entropy of
fermions interacting at low temperatures 7 can be
rigorously described in terms of the distribution functions
of Landau quasiparticles with a spectrum defined as the
variational derivative of the total energy. The anomalous
term in the specific heat is governed by the difference
between the spectrum of statistical and dynamic quasi-
particles. For the paramagnetic phase this term occurs in
the third order in U [95].

The nonquasiparticle contributions can be separated
most readily for a saturated ferromagnet. In the s—d model
with 7 <0, when N;(Ep) = 0, Eqn (6.6) gives the sole
contribution of the spin-up states to the specific heat. In
the s—d model with />0 and in the Hubbard model
[N\ (Er) = 0] the nonquasiparticle contributions are
absent. It is more difficult to consider the unsaturated
case because the density of states with the spin projection

corresponding to the upper spin subband contains, below
Eg, contributions both from poles and branch cuts.

The situation in a Hubbard ferromagnet changes in the
case of an almost half-filled band with strong correlations
(U — 00). In this case it is necessary to adopt the hole
representation (or the ‘pair’ representation for n > 1) and
the Hubbard model has properties similar to those of the s—
d model with 7 < 0. Nonquasiparticle ‘hole’ states,
described by the creation operators X%, are occupied
and if the ferromagnetism is saturated, they are the only
states with ¢ = | that contribute to the linear specific heat,
since the corresponding one-particle Green function has no
poles inside the Fermi surface of holes.

Let us first consider the nonquasiparticle contribution
to C on the basis of perturbation theory in terms of 1/z
when the Hubbard-I Green functions of Eqn (5.9) are used
as the zeroth approximation. If the corrections to the Green
functions are found and (H ) is differentiated with respect to
T, then for U — oo and n < 1, we obtain [40]

m 4EF(SY)N(Ep)T 1

3 (o +n2) (no+ny)* 4 lewlng +n_) — Ee]*

6.7)
which resembles, in respect of its structure, the result given
by Eqn (6.6). For finite values of U the structure of the
spectrum becomes more complex in the presence of the
Hubbard subbands and then the nonquasiparticle con-
tributions to the Green functions appear even for the para-
magnetic phase. The Hubbard splitting (which, like the
spin splitting, is due to the interaction with the local
magnetic moments, is in conflict with the standard Fermi
liquid theory [6, 7]) may thus lead to the appearance of
unusual contributions to the specific heat.

We have seen earlier that the one-particle Green
function for the saturated ferromagnetic state can be
calculated more rigorously when the concentration of
holes ¢ is low. The contribution to the specific heat is
then obtained by expanding Eqn (5.7) in GO An estimate
yields [40]

C =

8C1(T)0(Tc_'/31n%, 8C,(T) > 3C,(T) x T . (6.8)

The increment in the specific heat described by Eqn (6.8) is
somewhat less than for the paramagnetic state when the
Gutzwiller method yields an increment of the order of 1/c
[96]. Nevertheless, in the limit of small values of ¢ the
contribution of low-mobility nonquasiparticle states to the
specific heat predominates. Here once again, we may recall
the analogy with the Anderson spinons [81], which do not
carry an electric charge, but are responsible (in the zero-
gap variant of the RVB theory) for the linear specific heat.

This mechanism of the increase in the specific heat
should be the dominant one in HMFs, and in the case of
‘conventional’ strong ferromagnets should exist alongside
the ‘paramagnon’ mechanism. It is worth mentioning the
data on MnyN: the experimental value of the electronic
specific heat of this compound is several times greater than
the theoretical value deduced from the band structure
calculations [31]. This is true also of the Heusler alloys
XoMnSn and X,Mnl [97] and the authors of this paper
directly attribute the observed specific heat increment to
spin fluctuations.

We shall now consider the nonquasiparticle contribu-
tions to the transport properties within perturbation theory.
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[t is shown in Section 3 that the contribution of the s—d
scattering to the electric resistivity, associated with the
nonquasiparticle states, is missing in the second order in
I. This contribution does however appear in the presence of
impurity scattering [98]. Let us expand the electron Green
function to second order in the impurity potential V:

<<ck0'|cl_('—’a>>E = 5kk ’Gka (E)

+ VG0 (E)Gyio(E) [(1 +VY Gy (E)] (6.9)
P

(the Gs are the exact Green functions for an ideal crystal).

The transport relaxation time, deduced without the vertex

corrections, is then found from the imaginary part of the T

matrix:

7, (E) = 2rnV>N,(E) . (6.10)

Allowance for the energy dependence of the nonquasipar-
ticle contribution to the density of states near Er [Eqn
(5.15)] yields the corrections to the electric conductivity

80 o —vzj dE[ af(E)] SN(E) oc —T3/% . (6.11)

Since the correction (5.15) contains a contribution which is
odd in terms of E — Ef, there are also contributions to the
thermoelectric power of the order of 732,

A detailed analysis of the nonquasiparticle contributions
to the transport properties is an interesting and difficult
task. As in the case of NMR considered in the preceding
section, the contribution of the two-magnon processes to
the resistivity of the order of T7/% can be attributed to the
scattering into nonquasiparticle states.

7. Ferromagnetism of systems with strong
correlations

One of the fundamental problems in the theory of strong
magnetism of itinerant electrons is the description of the
formation of local magnetic moments and the explanation
of the Curie—Weiss law. Although the spin-fluctuation
theories [3] and the band structure calculations [64] have
resulted in some progress, the local moments in such
theories are still introduced largely in an ad hoc manner
because the intial translation-invariant system is replaced
by a disordered system with random magnetic fields.

The most difficult case to treat by the spin-fluctuation
approach or by the standard band calculations is that of
itinerant magnetic materials with strong electron —electron
correlations (when the intra-atomic interaction parameter is
not small compared with the width of the conduction band).
In this case the correlations may induce a radical modifica-
tion of the electron spectrum: the Hubbard subbands may
form [78].

According to Mott [53], the Hubbard splitting occurs in
some antiferromagnetic oxides and sulfides, and in some
metallic ferromagnets such as CrO,, and in the Fe;_,Co, S,
system of solid solutions with the pyrite structure. Such
solid solutions represent an ideal model system for a
theoretical investigation of ferromagnetism in the state
with the Hubbard subbands. Its electron structure is fairly
simple: the electrons responsible for the metallic conduction
and for the magnetism belong to the same double-degen-
erate ¢, band, which is rather narrow (its width is of the

order of 1 eV) [99]. Recent band calculation of CoS, [127]
predicts a near-HMF state for this compound.

The experimental data on the magnetic properties of
Fe;_.Co,S, are reported in Ref. [100]. The most striking
observation is the appearance of ferromagnetism at a very
low electron concentration n = x < 0.05. This ferromag-
netism is unsaturated right up to n =~ 0.15 and in a wide
range 0.15 < n < 0.95 the magnetic moment corresponds to
one Bohr magneton per electron. However, in contrast to
weak itinerant ferromagnets such as the Ni—Rh alloys there
is no evidence of the exchange enhancement of the Pauli
susceptibility in the paramagnetic range of temperatures
and the Curie—Weiss law is satisfied at all electron
concentrations. Moreover, the Curie constant is propor-
tional to n. This behaviour cannot be explained by the ¢-
matrix approximation of Kanamori [101], which is a
modified variant of the Stoner theory: the ground ferro-
magnetic state at low values of n is obtained in this
approach if there is a sharp density-of-states peak near
the bottom of the band, but according to the band
calculations there is no such peak [99]. Moreover, the
Kanamori theory cannot explain the Curie—Weiss law.

In this section we shall consider, following Ref. [4], the
problem of formation of the saturated (half-metallic) and
unsaturated ferromagnetic states in a narrow energy band.

The local moments in systems with the Hubbard
subbands can naturally be described, in terms of the
narrow-band Hubbard model of Eqn (5.5), as singly
occupied sites where holes play the role of charge
carriers. A calculation of the spin Green function
(dynamic magnetic susceptibility) on the basis of this
model and in the presence of an external field & gives

_ (8k—q — & ("k — Ny q)
G"(w)_[ S>+Z Py Ef +E,_
(8k—g — &) (Ex—gMic —Ek”k) -
h— 4 g 7.1
[w e .(7.1)
where—according to Eqn (5.8)—we have
I+c¢ .
B = (ot = (354005 )
(7.2)

h
ng = (no +”a)f(E/f+0§> .

The magnetisation equation is obtained in a similar to
the Tyablikov approach for the Heisenberg model [102]:

¢ +%Jio doNg(w) zq:lm Gy(w) .

(s%) = (7.3)

Eqn (7.3) can be simplified if (S°) <1, ie. for the
paramagnetic phase when (S°) = yh, and also when the
electron concentration is low n = 1 — ¢ at any tempera-
ture. Expansion of the numerator and denominator in

Eqn (7.1) makes it possible to separate explicitly the
dependence on (S°) and h:

wA ,(w) + (S°)B,(0) + hC,(w)
= (5%)Dy(@) = hPy(@)

G,(w) = (7.4)

The quantity A, which governs the value of the effective
magnetic moment, is



672

V Yu Irkhin, M 1 Katsnel’son

Sf(Ex—q) — f(Ex)
A — JNTRTq) S NTRT
q(w) ; (U+Ek_q —E,
2 Er_of(Ex_g) — E f(E)]
X|:1+1+sz: ('O+Ek—q_Ek ’
. (7.5)
E, = 1 —2|-c &

If the condition (S°) # 0 is obeyed, Eqn (7.1) has a real
pole, which governs the spin-wave frequency o

If ¢ € 1 (almost half-filled band), then at 7 = 0 we have
(S*y = (1 —=¢)/2, i.e. the ground state is a saturated
ferromagnet in accordance with the Nagaoka theo-
rem [79]. At low temperatures the Bloch law applies:

(59 = 1253 Ny(oy) |

W, = zk:(skfp — &) flex) -

(7.6)

(7.7)

Eqn (7.7) differs from the exact result for the spin-wave
spectrum [39, 79] by corrections which are small in terms
of the reciprocal coordination number 1/z.

If the electron concentration is low, n < 1, the spin-wave
frequency is

w, = (S° )Zsk[

The structure of this expression resembles the correspond-
ing result of the RKKY indirect exchange theory, but in
contrast to this theory, Eqn (7.8) includes the spectrum g,
in place of the interaction parameters; this substitution is
typical of the narrow-band limit. The solution of this
equation for the magnetisation at 7 = 0 when n <€ 1 gives

no 1(° nn

f(ﬁk q) flex) CCY)

k
— & ask

(7.8)

7.9
n= 2z:(ﬁk—q—3/:)9("3/(—1,—ﬁk) (7.9)
kq f‘:k—q — & + Emax — 81] ’

and the positive quantity # < 1 is formally small in terms of
1/z. In the ‘Debye model’ with g = a + bk* (k < kp) we
find that n = %. In view of the smallness of 7, the
ferromagnetism is strongly unsaturated at low values of n.

If (S°) = yh(T > T¢) is substituted in Eqn (7.4), the
following equation is obtained for the paramagnetic
susceptibility y:

1 —c¢

+] Oodwcoth @ lmZA (o)
2 ), 2T Z a

_ XBq(O) + ClI(O)
=72 [xD,,(O) +P,(0)

A,,(O)] . (7.10)

The Curie temperature is determined by the condition
¥ (Tc) = 0. If n < 1, its value

_ SO —1 - _ SO gﬁlaxm*kF
=3 [ZD (0)] =5

is small compared with typical electron energies, so that at
T ~Tc the carriers are strongly degenerate. If
Tc KT < Ep, then

(7.11)

af(ﬁk) C
= . 7.12
42 aﬁk T — 0 ( )
The Curie constant C is half the saturation magnetisation

So (as in the case of localised spins, we have S = %). The
paramagnetic Curie temperature

= CZDq(O)

considered in the lowest order in the electron concentration
is identical with T'. If n is not too small, the dependence of
D on g becomes important and a large positive difference
0 — Tc appears. Therefore, in agreement with the exper-
imental data on Fe;_,Co0,S, the Curie—Weiss law has the
Curie constant proportional to n. It should be pointed out
that degeneracy of the conduction band of the ¢, type does
not play a major role in the range of high values of U and
low values of n, but is important when n = 1 —c¢ =~ 1 (for
example, this is true of the ferromagnetic metal CoS,,
which —strictly speaking—cannot be described by the
theory under consideration).

If ¢ €1, we have the local moment at each site and a
small number of carriers (holes). It is then found that the
conditions for strong degeneracy of carriers at T =~ T is no
longer satisfied. A calculation of the Curie temperature on
the assumption that carriers are nondegenerate gives

(7.14)

(7.13)

TC = |8minlcl/2 .

The susceptibility at 7 > T also obeys the Curie—Weiss
law.

The estimate (7.14) is valid if carriers are of their usual
band nature. The possibility of their self-trapping, demon-
strated in Ref. [103], may alter the results.

It follows that within the framework of the adopted
approximation the ferromagnetism is stable right down to
arbitrarily low electron concentrations. The concentration
of holes at which the saturated ferromagnetism is destroyed
is formally small in terms of 1/z [39]. Numerical estimates
of this hole concentration obtained by a direct variational
method for square and simple cubic lattices are given in
Ref. [104].

It is obvious that the fairly rough interpolation adopted
here overestimates the trend to ferromagnetism at low
values of n because of the neglect of fluctuations of the
hole occupation numbers and because there is a critical
concentration n, at which ferromagnetism disappears. The
approaches based on an expansion starting from a half-
filled band may give fairly high values of this concentration
(see, for example, Ref. [82]). However, the results given here
provide a satisfactory description of the magnetic properties
of the Fe;_,Co,S, system.

[t is interesting to compare the results reported here for
narrow-band Hubbard systems with the picture of ferro-
magnetism used for the Kondo lattices in Refs [88, 89, 92].
A specific mean-field approximation is used there for the
strong-coupling regime (at temperatures low compared with
the Kondo temperature T ), which makes it possible to
reduce the s—f exchange model to an effective hybridisation
model. The hybridisation parameter V, is governed by an
anomalous average of the product of the operators of the
conduction electrons and of the Abrikosov pseudofermions
describing the subsystems [105]. An investigation of the self-
consistency equations shows that for a constant ‘bare’
density of states there is always a solution corresponding
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to a Kondo HMF state with a lower energy than a
nonmagnetic state. In this state, as in the Hubbard model
with strong correlations [or in the equivalent s—d(f) model
with I — —oc], each conduction electron compensates one
localised spin, so that (S°) = (1 —n)/2. Therefore, the
similarity to a narrow-gap Hubbard ferromagnet is gov-
erned by an increase in the small ‘bare’ s—f exchange
parameter in the strong coupling range. An increase in the
interspin Heisenberg exchange parameter is accompanied
by a first-order transition to the conventional magnetic
state with the fully suppressed Kondo effect
(Vo = 0. () = ).

8. Microscopic model of transition-metal
magnetism: analogies with half-metallic
ferromagnets

Theoretical investigations of HMF's are interesting not only
in the case of specific applications to compounds of the
Heusler alloy type, but are also relevant to the general
problem of magnetism of metals. We shall now consider
the application of some of the ideas and concepts from the
physics of HMFs to ‘strong’ itinerant magnetic materials,
particularly Fe and Ni [6, 106].

In contrast to strongly correlated magnetic materials
such as Fe;_,Co,S, and CrO,, for which the Hubbard
splitting is large, there are no reasons to doubt that the
Stoner ferromagnetism criterion is qualitatively valid in the
case of itinerant magnetic materials with a fairly wide d-
band (of the order of 5 eV). This criterion is IN(E) > 1,
where [ is the effective interatomic exchange parameter
(possibly subject to the many-electron renormalisation).
Band calculations from first principles [8] show that the
Stoner parameter varies smoothly over the periodic table of
elements and the variation is not too strong, whereas the
values of N(Er) may differ by tens of times for the metals at
adjacent positions in this table owing to the strong
dependence N(E) and different positions of Ep. In the
final analysis the necessary condition for the Stoner
criterion is that in a nonmagnetic state the Fermi level
should coincide with a peak of N(E) (Fig. 12). Such peaks
appear because of merging of the Van Hove singularities
along a certain line in the k space [7, 107]. For example, in
the case of bee iron such merging occurs along the P—N line
and only the e, electrons participate in the formation of the
peak [6], exactly as in the Goodenough model [108]. An
analysis for Ni is reported in Ref. [109]. It follows that only
a small group of the d-electron states forming the N(E)
peak is responsible for ferromagnetism.

It has been proposed that electrons belonging to this
group are regarded as strongly localised and can be
described by the Hubbard model; the correlations of these
electrons are necessarily strong because the width of the
peak is small: I' ~ 0.1 eV. The remaining s-, p-, and d-
electrons form wide bands and are weakly hybridised with
the ‘magnetic’ electrons at the peak. In the ferromagnetic
phase the splitting between the spin-up and spin-down
peaks is A4~ 1-2¢eV >1TI'; in contrast to the Heusler
alloys, the profiles of both peaks are similar and the lower
peak is completely filled. Therefore, the behaviour of
‘magnetic’ electrons is similar to those in a saturated
ferromagnet, i.e. it is close to the HMF state in the usual
Hubbard model with large values of U (we recall that,
according to Section 4, in this situation the descriptions
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Figure 12. Density of states (cV’l, continuous curve /, ordinate on the
right) and integral density of states (points 2, ordinate on the left) of the
nonmagnetic bee iron [8]. The energy E (eV) is measured from Eg.

based on the Hubbard splitting and on the large spin
splitting are essentially equivalent). This model makes it
possible to account readily for the low values (compared
with the Fermi energy) of the Curie temperature, which —
as demonstrated by the results in the preceding sections —
should be of the order of I

Strong (even compared with the Heusler alloys) non-
quasiparticle effects can be expected in this case. These
effects may be important for the explanation of the
experimental data on the spin polarisation deduced from
the photoemission [110] and thermionic emission [111]
experiments, which are in strong conflict with the results
of the band calculations of Fe and Ni. The linear term in the
specific heat obtained for Ni (see Ref. [6]) is larger for the
ferromagnetic phase than for the paramagnetic phase [in
conflict with the Stoner theory in which the spin splitting
reduces N(Eg)], which may be related to the nonquasi-
particle contributions. These contributions to the impurity
resistivity, discussed above, are important in connection
with the problem of the electric resistivity of ferromagnetic
transition metals at very high temperatures (when contribu-
tions proportional to 73/ and T, which cannot be
explained by relativistic processes, are observed [2]).

We can see that comparison of the transition metals of
the iron group with HMFs is at least as useful as the
extrapolation from the direction of weak itinerant magnetic
materials [3]. Spin-fluctuation theories make it possible only
to develop a semiphenomenological theory of the tempera-
ture dependences of the magnetic and thermodynamic
properties, whereas the approach under discussion pro-
vides means for investigating nontrivial problems related to
the characteristics of the ground state.
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9. Half-metallic antiferromagnets

We have seen that HMFs have properties very different
from the properties of ‘conventional’ conducting ferro-
magnets. The question naturally arises as to whether these
properties also apply to antiferromagnets.

The antiferromagnetic ordering splits the electron
spectrum into Slater subbands [1]. In the simplest Hubbard
model (or in the s—d model) the electron spectrum is

EL?Y =0, FE,  Eo = (4 +USH),

S = Achiarol) »
k ©.1)

Ok = (terio/2) + tk-0/2)/2 »
T = (tkr(0)2) — ti—(0/2))/2 »

where Q is the wave vector of the antiferromagnetic
structure and the quantity 4 = 2US represents a direct
band gap. An increase in the electron —electron interaction
can split the whole energy band into two, giving rise to a
Slater gap. In particular, when the number of electrons
becomes equal to the number of sites (n = 1), a metal—
insulator transition takes place. If the occupancy of the
conduction band cannot be represented by an integer, the
Fermi level crosses only one Slater subband and a system
of this kind can be called a half-metallic antiferromagnet
(HMAF). The case of large values of 4 is hardly likely in
intermetallic systems of the Heusler alloy type. Therefore, a
more realistic situation is that in which the gap in the
electron spectrum exists in the paramagnetic state and is of
the hybridised origin, and the antiferromagnetic ordering
shifts the Fermi level to one of the hybridised subbands, so
that one of the Slater subbands is either completely empty
or completely filled.

The HM AF state was predicted by the band calculations
for CrMnSb with the C1, structure [11] (see also the
calculations reported in Ref. [128]). Experimental results
show that this compound (as well as the Li,Mn,_,Se, FeRh,
Cr,_ Mn,Sb, and Co,_,Mn,Sb systems [112]) undergo a
transition from the antiferromagnetic to the ferromagnetic
phase when temperature is increased. This instability can be
explained as follows [11]. In the AMnSb system the moment
of the A sites is antiparallel to the moment of Mn, which
results in a reduction in the band energy because of the
formation of the gap, but the exchange energy increases
because of the ferromagnetic superexchange. Passing from
A = Ni to A = Cr reduces the total magnetic moment,
since the moment of the A sites increases. The balance of
these contributions in CrMnSb may induce a semiconduc-
tor—metal transition in one of the spin subbands, which is
accompanied by a change in the nature of the magnetic
ordering.

It is of interest to compare this situation with the
behaviour of the compound UNiSn [46, 47, 113] which
has the C1, structure and in which an antiferromagnetic
metal—paramagnetic semiconductor transition takes place
when temperature is increased to 7 = 47 K (this is a
transition sequence opposite to the usual metal—insulator
transition in the transition-metal chalcogenides [53]). This
effect may also be related to ‘half-metallic’ features in the
band structure found for a hypothetical ferromagnetic
phase [18] and explained by a shift of the Fermi energy

on appearance of antiferromagnetism. An alternative
possibility for the many-electron (Kondo) origin of the
gap in UNiSn and its suppression by the antiferromagnetic
ordering is discussed in Ref. [88].

The problem of the nature of the energy gap amounting
to E, ~ 10 K in UNiSn has not yet been finally solved. The
isostructural compounds ZrNiSn, TiNiSn, and HfNiSn
have a large energy gap (E, ~ 10° K) of the band type
and it is evidently associated with a ‘vacancy’ sublattice in
their crystal structure [114] (this should be compared with
the discussion of the electron spectrum of the Huesler alloys
of the TMnSb type, which is given in Section 2). Any
investigation of the TMSn (T = Ti, Zr, Hf; M = Fe, Co,
Ni) compounds [115] has yielded very low values of the
electronic specific heat, apart from the case when M = Co.
Ferromagnetism of TiCoSn with T = 143 K has been
reported and, by analogy with NiMnSb, a hypothesis has
been put forward that the HMF state appears in this
compound.

The compound YbNiSn has a Kondo metallic lattice in
which ferromagnetic ordering with 7¢c =5 K and py, = 4up
appears at low temperatures, and the absence of the gap is
attributed to the weakness of the d—f hybridisation in
ytterbium compounds[116]. In the nonmagnetic Kondo
insulator lattice of CeNiSn the gap is very small
(Eg ~3 K) [114]. (It is interesting to note that static spin
correlations with local moments of the order of 107>y are
observed at ultralow temperatures in CeNiSn [117]; meas-
urements of the longitudinal nuclear relaxation rate [118]
give 1/T| o T?, which may indicate a nonzero density of
nonquasiparticle states in the gap.) The evolution of the
electronic properties of the Ce;_,La,NiSn [114] and
U;_,Th,NiSn [113] systems with increase in x is qualita-
tively similar. The temperature dependences of the magnetic
susceptibility [113] and of the nuclear relaxation rate [119]
in UNiSn indicate that localised moments or at least strong
spin fluctuations exist in this compound. All these results
tend to support the Kondo origin of the gap in UNiSn.

In contrast to ferromagnets, the processes of decay of
magnons with small momenta in Stoner excitations are not
forbidden in antiferromagnets and one-magnon processes
are effective right down to the lowest temperatures because
spin-flip transitions occur within the Slater subbands. This
has the effect that both in ‘conventional’ itinerant and in
half-metallic antiferromagnets the damping of magnons is
linear in ¢ and the spin-wave contribution to the electric
resistivity is proportional to 7T°, as in the case of the
scattering by phonons. (At temperatures 7 which are not
too low, the contribution of the interband transitions is a
quadratic function of 7.) The distinguishing features of
HMAFs may be deduced only from those physical proper-
ties in which the contribution of the interband transitions
occurs and which have a threshold in terms of ¢ for any
conducting antiferromagnet (or ferromagnet), but are
absent (at least up to energies of the order of the gap)
in the half-metallic case. If A4 is small, the interband
contribution to the integral thermodynamic characteristics
(for example, the thermal expansion, elastic moduli,
magnetoexchange effect) is generally more singular than
the contribution of the intraband transitions so that the
corresponding anomalies of HMAFs should be
weaker [120].

Let us consider the dynamic susceptibility of a con-
ducting antiferromagnet. In the local coordinate system we
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If we adopt the simplest approximation of free quasipar-
ticles with the spectrum of Eqn (9.1) (more complex
approximations, allowing for the spin-wave contribu-
tions, are not of great interest because they do not
apply specifically to HM AFs; the nonquasiparticle effects
in conducting antiferromagnets are discussed in Ref. [121]),
we find that
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We can see that the contribution of the intraband transi-
tions to the transverse susceptibility disappears (i.e. it
vanishes in the case of HMAFs) only for 4 — oo. If 4 is
small, the longitudinal susceptibility of HMAFs is low for
q — 0 and large for ¢ ~ Q. The difference from the case of
ferromagnets is due to the fact that the gap appears in the
electron spectrum of an antiferromagnet [Eqn (9.1)] in a
more complex manner.

10. Conclusions

In this review we have tried to demonstrate that the study
of HMFs, which started only ten years ago, has already
enriched our ideas of the magnetism of metals and alloys,
and much more can be expected from future specific
investigations.

The theoretically most interesting is the feasibility of
detecting the pure non-quasiparticle (spin-polaron) effects in
HMFs. There are not many cases in the physics of the solid
state when the standard Fermi liquid description is known
to be insufficient. The only example of such a situation is
probably the case of one-dimensional systems which are
described by the Luttinger liquid model [122]. The case of
two-dimensional (and, even more so, three-dimensional)
systems with strong Hubbard correlations is still the subject
of lively discussions [123], which are particularly topical in

connection with the problem of high-temperature super-
conductors. In this situation an important point is that
HMFs represent a simple and convincing example of the
failure of the universal validity of the theory of the Fermi
liquid in the case of three-dimensional systems. From the
point of view of the experimental investigations the data on
the spin polarisation of charge carriers are particularly
interesting; such investigations should definitely be con-
tinued. Another sensitive instrument for the study of non-
quasiparticle effects is nuclear magnetic relaxation.

As pointed out above, nonquasiparticle contributions
can also be observed in ‘conventional’ strong itinerant
magnetic materials. In this sense the HMFs, characterised
by strong intra-atomic correlations (for example, those
involving the Mn ions in the Heusler alloys), by well-
defined local moments, and sometimes also by a strong
Hubbard splitting (true, for example, of CrO,), complement
well the weak itinerant magnetic materials such as ZrZn,,
which have served as the prototype of ferromagnetic metals
right up to the early eighties [3].

As far as practical applications of HMFs are concerned,
we have already mentioned their possible use in magneto-
optic data retrieval and also in the development of new
magnetic materials with a high saturation magnetisation
and high Curie points. We shall mention here one other
attractive possibility. The interest in magnetic multilayers,
associated with the giant magnetoresistance effect [125], has
grown greatly in recent years. This effect becomes stronger
as the ratio of the partial static conductivity with different
spin projections deviates further from unity. By the very
definition of HMFs this ratio has a record value for these
ferromagnets. Therefore, these materials may be promising
for the fabrication of multilayers. At present, attempts have
been made to form multilayers from the PtMnSb/CuMnSb
system [126].
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