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Abstract. The p rob lem of construct ing explicitly covariant 
representat ions for t ransi t ional currents of spin-^ particles is 
solved for bo th the nonrelativist ic theory and the relativistic 
theory with massive particles. In the massless case, such 
representat ions exist only for t ransi t ional currents tha t are 
nond iagona l in helicity. The diagonal currents have 
algebraic representa t ions tha t are not explicitly covariant . 

1. Introduction 
In nonrelativistic q u a n t u m mechanics , the cross section of 
processes involving s p i n ^ particles are determined by 
mat r ix elements containing t ransi t ional currents 
X+(C')x(C) or X+(C')ffx(C)> where a is the vector of Paul i 
matrices, and x(C') a n d x(C) a r e spinors describing particles 
with polar isa t ions The dependence of currents on the 
vectors is implicit. In order to determine the depend
ence of cross sections on part icle polar isa t ions the s tandard 
me thod is used (see, for example, Ref. [1]): after the 
absolute value of the ampl i tude has been squared, the 
spinors are removed by means of the technique of 
projection opera tors . As a result, an algebraic expres
s i o n — w h i c h depends on the vectors in an explicitly 
covariant way with respect to three-dimensional ro t a 
t i o n s — is obta ined for the cross section. The quest ion 
arises as to whether it is possible to subst i tute explicitly 
covariant expressions, which do not contain any reference 
to spinors, for t ransi t ional currents directly in ampli tudes . 

There exists an ana logous p rob lem in the relativistic 
theory. Cross sections and decay probabil i t ies contain 
currents defined th rough the Di rac bispinors . The explicit 
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dependence on m o m e n t a and on part icle polar isa t ion 
vectors remains hidden in currents of this type, hence 
certain p rob lems in the asymptot ics of the currents , the 
analysis of polar isa t ion effects and other cases are not so 
t ransparen t . Just as in nonrelativist ic q u a n t u m mechanics , 
b ispinors are removed in a covariant way from the squares 
of absolute values of the mat r ix elements (see, for example, 
Refs [2] or [3]). It seems to be easier in the case of a 
composi te tensor s tructure to deal with explicitly covariant 
expressions for ampl i tudes ra ther than with t ransi t ion 
probabil i t ies . F o r example, the C o m p t o n effect ampl i tude 
is a contract ion of a rank- two tensor with the polar isa t ion 
vectors of two pho tons . The cross section of this process is 
quadra t ic in the ampl i tude and is determined by a rank-four 
tensor. 

Explicitly covariant algebraic representat ions for t rans i 
t ional currents can be used in applicat ions. This paper is 
devoted to the problem of the existence of such representa
t ions and the determinat ion of their form (see also Refs [ 4 -
6]). 

W e start with the discussion of the appropr ia te char
acteristics of spinors in three-dimensional Eucl idean space. 
It is shown in the next section tha t the p roduc t s XaiOxpiC') 
are expressed th rough the scalar p roduc t of the polar isa t ion 
vectors f and £' with Paul i matr ices up to a phase factor. 
This representat ion is then used to construct explicitly 
covariant (with respect to the ro ta t ion group) algebraic 
expressions for the currents X+(C')x(C) a n d X+(C')(Tx(0- A n 
ana logous problem in the relativistic theory is considered in 
Section 3 for the massive and massless cases. Represen ta 
t ions in the form of covariant contrac t ions of the m o m e n t a p 
and / / , and the polar isa t ion vectors s and s' with Di rac 
gamma-mat r ices were found for the tensor forms 
ua(p,s)up(p',s')9 constructed from Di rac bispinors describ
ing massive particles. These representat ions are then used to 
construct the complete set of relativistic t ransi t ional currents 
in explicitly covariant form with respect to the Loren tz 
g roup . Thus the quest ion of the possibility of construct ing 
explicitly covariant representa t ions is solved affirmatively in 
the nonrelativist ic theory and in the relativistic theory with 
massive particles. In the massless case, as we shall d e m o n -
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Figure 1. Figure 2. 

strate, such representa t ions exist only for t ransi t ional 
currents , nond iagona l in helicity. D iagona l currents have 
algebraic representa t ions that are not explicitly covariant . 
Their form is established. 

2. Transitional curraits in nonrelativistic 
quantum mechanics 
In nonrelativist ic q u a n t u m mechanics the wave function of 
a s p i n ^ particle, polarised in the direction of f, is described 
by a spinor satisfying 

h i t ) = x(C), x+(ZMZ) = i , (2.1) 

where £ = f«<7 and |f|2 = 1. 
In the par t icular case of a part icle polarised in the 

direction of the axis ez = ( 0 , 0 , 1 ) , it is easy to find the 
solution of Eqns (2.1). It has the following form: 

X(ez) = (2.2) 

The given spinor is defined up to a phase factor. Hav ing 
one solution, it is possible to construct a spinor with 
arb i t rary polar isa t ion f with the help of the ro ta t ion mat r ix 
U(C,ez), 

X{C) = U{H, ez)X(ez) • (2-3) 

The ro ta t ion mat r ix U(C,ez) has the following propert ies : 

W{H, ez) = U(C, ez)ez, £/(£, ez)U+{H, ez) = 1 . (2.4) 

Owing to these propert ies , spinor (2.3) satisfies Eqns (2.1) 
identically. 

The way in which the vector ez is t ransformed into the 
vector f is not unique . There exists an infinite set of matr ices 
U(C,ez) tha t implement this t ransformat ion for every pair of 
vectors ez and f (see Fig. 1). However , all matr ices U(C,ez) 
satisfy Eqns (2.4) and hence define the same spinor up to a 
phase factor. This is due to the fact tha t Eqns (2.1) define in 
tu rn a spinor up to a phase factor. 

W e thus come to the conclusion tha t for two different 
matr ices Ui(C,ez) and U2(C,ez), t ransforming ez into f, the 
following relat ion applies: 

UX(C, ez)X(ez) = exp(i0)tf2(C, ez)X{ez) , 

where </> is some phase . 

(2.5) 

It is possible to verify the correctness of the following 
equat ion directly: 

(2.6) 

Not ice tha t the r ight -hand side defines the projection 
opera tor = \ (1 + \) for which P 2 ( £ ) = if 

IC|2 = i . 
Eqn (2.6) is acted on from the left with the mat r ix 

U(C,ez) and from the right with the mat r ix U+(C',ez). As a 
result, we obta in 

U(C, ez) 
a/3 

(2.7) 

where £/(£,£') — U(Ciez)U+(£iez) * s t n e niatr ix t rans form
ing the vector £' into the vector £ th rough the vector ez. 
According to Eqn (2.5), any other choice of matr ices 
U{£,ez), U(C'\ez) would affect only spinor phase factors, 
so to find up to a phase factor an explicit form of the right-
hand side of Eqn (2.7) one can substitute any matrix for 
U(C,C), t ransforming £' into Ct Let £/(£,£') = 
exp(i<7-w0/2) with n = (C + CO/IC + C'I and 6 = n. This 
mat r ix implements ro ta t ion a round the vector n, as 
shown in Fig. 2. It can be wri t ten in the form 

" " • " - ' P ^ F - <2-8) 

Rela t ions (2.4) with fixed vectors f, £ ' ( = ez) can be 
considered as equat ions , fixing the ro ta t ion mat r ix £/(£,£ ' ) . 
In the case of three-dimensional ro ta t ions , the explicit form 
of the mat r ix can be found by means of the exponent ia l 
paramet r i sa t ion £/(£,£') = exp(i<7«fi0/2). Ma t r i x (2.8), 
obta ined in the same way, satisfies relat ions (2.4). H o w 
ever, in the case of Loren tz t ransformat ions exponent ia l 
paramet r i sa t ion is less effective. As will be shown in the next 
section, the cor responding mat r ix of Loren tz t r ans fo rma-

f It is not necessary to demand that the vector £' be transformed into f 
through ez. To see this, first act on Eqn (2.6) with the matrix £/(£, ez) from 
the left and with the same matrix, but Hermitian conjugated, from the 
right. As a result, we obtain Xoc(OXp{C) — P^piO- Then act on the equation 
from the right with an arbitrary matrix f) = £/(£, £'). The result 
takes the form of Eqn (2.7), since P(f)C/(f, f ) = P{£)P{£)U{£, f ) 
= P(£)U(£, C')P(C) because of Eqns (2.4). 
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t ions can be found by solving a set of equat ions ana logous 
to Eqns (2.4). 

Subst i tut ing Eqn (2.8) into Eqn (2.7), we obtain 

x«(C)tf(C')= 
(2+2f.f) /U/2 

i + c i + r (2.9) 
aj8 

The sign = is used to emphasise the fact tha t two values 
(in this case, two matrices) are equal up to a phase factor. 

W e come to the conclusion that the explicitly n o n -
covariant definition of spinors with the help of Eqn (2.3), 
the special role of the spinor x(e z ) , and the arbi t rary choice of 
the way in which the vector ez is t ransformed into the vector 
f, affect only the unobservable phase factor (which is 
independent of the indices a and fi) on the r ight-hand 
side of Eqn (2.9), while the nontrivial dependence on the 
vectors has explicitly covariant form with respect to the 
ro ta t ion group 0 (3 ) . 

The t ransi t ional currents can be represented as follows: 

XC',0 = x+(C'MC) = t r X ( C ) x + ( 0 = ^ V 2 

y(f',0 = z+(f')ffz(f) = trff Z ( fk+(C)= 
" (2 + 2 £ - £ ' ) 1 / 2 ' 

(2.10) 

The complete set of two-dimensional Hermi t ian matr ices 
consists of matr ices 1 (the unit matr ix) and <7, so the current 
enumera t ion listed above is exhaustive in the nonrelativistic 
theory. 

It is possible to verify with Eqn (2.10) tha t , for example, 
the relation 

(2.11) 

which is usually used to get rid of spinors in the squares of 
the absolute values of the mat r ix elements, is t rue. 

Eqns (2.9) can be obta ined in a shorter, bu t more formal 
way: act on the spinors x(C) with the projection opera tor 
P ( f ' ) = (1 + £ ' ) / 2 . As a result, we obta in an arbi t rary 
normal ised spinor x(0- Hav ing normalised x(C') t ° 
unity, we obta in 

x(C')=- Z(0 (2.12) 
(2 + 2 f - r ) 1 / 2 2 

Then we can reproduce relat ion (2.9) using Eqn (2.12) and 
the relation x«(f)x?(f) = M C )• 

3. Transitional curraits in the relativistic theory 
The above a rguments allow quite evident relativistic 
extension to the case of massive spinor particles. In the 
massless case the extension is less trivial. 

3.1. Mass ive case 
To m a k e the no ta t ion more compact , I shall define the 
symbol s = ± 1 , with the help of which the bispinors u(p,s) 
and v(p,s) — describing particle and antipart icle — are 
wri t ten in the form u(p,s,E = + 1 ) and u(p,s,E = —1). 

Di rac bispinors with definite m o m e n t u m p ^ and po la r 
isation Sp are constrained by the following equat ions: 

pu(p, s,s) = smu(pi s, e), 

y5su(p, s, s) = u(p, s, s), (3.1) 

The first is the Di rac equat ion in m o m e n t u m space, the 
second is the equat ion for eigenvalue + 1 of the spin 
projection on the direction of uni t vector s^; and the third is 
the spinor covariant normal isa t ion . The m o m e n t u m and 
polar isa t ion vectors satisfy the relat ions p2 = m 2 , s2 = — 1 , 
P's = 0. Here p = p^y1*, s = s^y1*, and so on. The g a m m a -
matr ices are defined as in Ref. [3]. 

Firs t of all, as in the three-dimensional case, we 
construct all the linear independent solutions of 
Eqns (3.1) for some fixed m o m e n t u m and polar isat ion, 
e.g. in the rest frame of the particle, where 
p = rj = (m, 0 , 0 , 0 ) . The polar isa t ion vector is taken to be 
s = ez = ( 0 , 0 , 0 , 1 ) . There exist two linear independent 
solutions of the form 

/ 1 \ 
0 
0 

w 

u(ri, -1) = 
0 
0 

W 

(3.2) 

The bispinor corresponding to the m o m e n t u m p^ and 
polar isa t ion can be obta ined as a result of the action of 
the Loren tz t ransformat ion mat r ix on bispinors: 

u(p, s, s) = U(p, s; 17, ez)u(ri, ez, s) (3.3) 

The mat r ix U(p,s;ri,ez) of Loren tz t ransformat ions has the 
following proper t ies [cf. Eqn (2.4)]: 

pU(p, s] 17, ez) = U(p, s] 17, ez)fj, 

sU(p, 5; 17, ez) = U(p, s; rj, ez)ez, 

U(p, s; 17, ez)U(p, s; rj, ez) = 1, 

(3.4) 

as a result of which the bispinors defined in Eqn (3.3) 
satisfy relat ions (3.1) identically. 

It is possible to verify the relation 

(r\ + sm 1 + y5ez\ ua(ri, ez, e)ufi(ri, ez, s) = 
2m 

(3.5) 

by testing each componen t of the equality. Mult ip lying this 
equat ion by U(p,sm,r\,ez) from the left and by U(p ,sm,r\,ez) 
from the right, we obta in 

ua(p, s, e)ufi(p, s, s) 

^p + sm 1 + y5s TT, , ,,p' + s'm 1 + y5sr 

-— U{p,s;p, s) 
2m 2m 

(3.6) 

where U(p,sm,ps) = U(p,sm,r\,ez)U(p,sm,r\,ez) is one of the 
Loren tz t ransformat ion matr ices t ransforming the vectors 
p ,s into the vectors p,s; and s s f = + 1 . Ambigui ty in the 
choice of matr ices U(p,s\Yi,ez), U(p ,s';ri,ez) affects only 
the phase factors of bispinors defined by Eqn (3.3). The 
a rguments here are the same as for Paul i spinors: owing to 
Eqns (3.4), b ispinors (3.3) satisfy Eqns (3.1) identically. In 
tu rn these equat ions define spinors up to a phase factor. 
Therefore, if we are not interested in the phase factor, it is 
possible to choose any mat r ix t ransforming the v e c t o r s p ,s 
into the vectors /?, s. Such a mat r ix was found in Ref. [3] as 
a par t icular solution of Eqns (3.4) with the subst i tut ion 
r\,ez -^p',s'\ 

U(p, s; p, s) = A + (p, s; p, s) 

X (m + pp — m ss + pss p ) . (3.7) 
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It is possible to check tha t it satisfies the first two 
Eqns (3.4). The third equat ion imposes constra ints on the 
form of U(p,s;p\sf) and allows one to fix the normal is ing 
constant , 

A + (p,s;p,s')=^[(m2 +p-p)(\ -s-s) +p-s'p-s]~l/2 

(3.8) 

Not ice tha t the Loren tz t ransformat ion matr ices 
U = e x p ^ ^ y ^ A yv) can be expanded over the matr ices 1, 
iy5, and y^Ayv with real coefficients. The mat r ix (3.7) can 
also be expanded over this basis. 

Subst i tut ing Eqn (3.7) into Eqn (3.6), we obta in 
(88r = + 1 ) 

ua(p, s, e)up(p', s, s') 

= 4A + (p,s; p, s) 
f ,N i p + sm 1 + y5s p + sm 1 + y5s 

2m 2 2m z, j ^ 

(3.9) 

The bilinear forms of the type ssr = — 1 can be con
structed in the following way. In the rest frame of a particle, 

y5u(r\, ez, s) = u(rj, -ez, -s) . (3.10) 

The Loren tz t ransformat ion matr ices commuta t e with the 
mat r ix y5, so tha t the following equat ion is correct in any 
reference frame: 

y5u(p, s, s) = u(p, -s, -s) . (3.11) 

W e act on Eqn (3.9) from the left with the mat r ix y5 and 
perform the redesignat ions s —> —s, s —> —s'. As a result, 
one can obta in , for ssf = — 1 , 

= 4A_(p,s; p ,s) i /x + e m 1 + 75$ P + 8 m 1 + y5s 
2m 2 -75- 2m 

(3.12) 
where 

A-{p,s',p,s)=^[(m2 +p-p)(l +s-sf)-p-sfp>s] 1 / 2 

(3.13) 

Explicit expressions for the t ransi t ional currents can be 
constructed with the help of 

u{p\ s\ sf)ru(p, s, s) = tr ru(p, s, s)u(p, sf, s') . (3.14) 

F o r reference purposes I shall adduce the full list of 
explicitly covariant expressions for the t ransi t ional currents 
of massive s p i n ^ particles in the relativistic theory: 

88' = + 1 : 

1 

4 m 2 

u(p',s', s')y5u(p,s,s) 
= A + (p, s; p, s)(msp-s - msf p-s + ie^pjpp^) 

u(p, s, s)u(p, s, e ) = 7 7 T A + (^ ' s''P'i s') ' 

" ( p . s,s)yfiu(p, s, s) 

= A + (p, s; p \ s')[m(sp + sp')^\ - s-s) 

+ '^laPyP'oPp^ + S)y + mSp'-SS^ + ms'p-SS^] 

= A + (p, s; p, s)[(s +s)^(m2 +p-p) 

- ™£^ysasp(£p + e'p)y -p'-spp -p-sfp'p)] 

u(p,s, s^a^p, s, s) 

= A + (p, s; p', 5 / )[(pJ ipv-p' vPp)(l - s-s) 

- ( V v - JvSp)(m2 +p-p) + (p^Sy-PvS^s'-p 

- ( v ' v -Pv&s-p' - ims^sp + e'p)a(s' + s)p], 

(3.15) 
88 = - 1 : 

u(p\ Sf, s')u{p, S, s) 

=A_(p, s, p', s')(msp-s - ms'p-s - ^p^p'JpP^), 

1 

4 m 2 s\ s')y5u(p, s, s)=^2 A-(P> s> Pi s') !' 

=A_(p, s; p , s)[(s - ^ ( m 2 +p-p') 

~ ™£^ySaSp(£p - Sfp)y +P'Spil -p-Sp^, 

Kp'I s'l^yflsuip,s,s) 
= A _ ( p , s; p , s,)[m{e,p-ep,)li(\ +s-s) 

+ teinPyP'aPptf S)y + mSp-SS^ ms'p-SS^], 
u(p, s,e)g^u(p, s , s ) 

= A _ ( p , s, p , s^^p'up^l+s-s) 

+ fep(}n2 +Pmp') -PoiSps'-p +pas'pS'p' 

+ \rns^a{sp'-^p\{s'-s)(J]. (3.16) 

Not ice tha t there are several symmetry relat ions. F o r 
ssf = + 1 Eqn (3.14) can be writ ten in the form 

u(p , sr, s')ru(p, s, s) 

=4A + (p, s; p', s')trr 
p + sm 1 + y5s p + dm 1 + y5s 

2m 2 2m 2 
(3.17) 

In the case ssf = — 1 the ana logous equat ion has the form 

u(p', s\ sf)ru(p, s, s) 

=4A_(p,s;p',s')trry5 

p — sm\ — y5s p + sm 1 + y5s 

2m 2 2m 2 
(3.18) 

In compar ing these two equat ions , one should notice tha t 
the scalar current ssf = — 1 can be obta ined from the 
pseudoscalar current ssf = + 1 with the help of the 
subst i tut ion s —> —8, s —> —s, A + (p,s;p\sf) —> 
A_(p,s;p\sf) = A + (p,—s;pf\s'). The same connect ion 
exists between the vector and pseudovector currents . The 
tensor current ssf = — 1 is connected with the tensor current 
ssf = + 1 th rough the identity 2iy5(TfiV = e ^ g c r ^ . 

These results can easily be extended for the case of 
t ransi t ional currents occuring in weak interact ions, e.g. 
p —> n and others with different part icle masses in initial 
and final states. The bispinors , and hence the currents 
constructed from them, depend on velocities only; there
fore, it is sufficient to m a k e the subst i tut ion p —> mp jm , in 
obta ined expressions, where m is the part icle mass in the 
final state [m ^ m). 
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Eqns (3.9) and (3.12) can also be obta ined with the help 
of the technique of projection opera tors . The bispinor 
u(p,s',sf) can be presented in two ways: 

as = + 1 : 

u{p ,s ,8)=4A + {p,s;p ,s)-
2m 

u(p,s,e), 

fx = - 1 : 

u{p ,s ,8)=4A_{p,s;p , s) y5u{p, s, 8). 

(3.19) 

The mat r ix y5 is in t roduced in the second expression to 
m a k e the normal is ing coefficient nonsingular in the 
nonrelativist ic limit. The bispinor u(p,s,8r) satisfies 
Eqns (3.1), if the bispinor u(p,s,e) also satisfies them. 
Then relat ions (3.9) and (3.12) are reproduced for the 
tensor p roduc t s ua(p,s,e)up(p\s\e'). 

3.2. Massless case 
Dirac bispinors describing massless particles and an t ipar -
ticles with fixed helicity have algebraically the same form, 
so from here on I shall d rop the index e = ± 1 used above to 
distinguish particles from antiparticles. 

The bispinors cor responding to particles with left-
handed (L) and r ight -handed (R) helicity are defined as 
solutions of the following equat ions: 

kuR(k) = kuL(k) = 0, 

^ « R W = ^ " L W = 0 , (3.20) 

Here k = 0. The normalisation condition is chosen in this 
form due to the fact that in the massless case the scalar 
current becomes identically zero: uR(k)uR(k) = 
uL(k)uL(k) = 0. 

N o w , we do not have at hand projection opera to rs on 
the states with definite k. Unl ike the massive case, the r ight-
hand sides of the equalities 

ULa(k)uLp(k) = ^k 

/ ^ 1 _ y 
ap 

txp 

(3.21) 

being squared, vanish. Nevertheless, the relat ionships 
uh(kf) — CkfuR(k), 
M R ( £ ' ) — Ck'uL(k), 

exist, with the normal isa t ion coefficient 

1 

(3.22) 

C= (3.23) 
(2k'-k)1/2 ' 

which is singular in the limit k! —> k. The bispinors on the 
left-hand side of Eqns (3.22) obey Eqns (3.20) identically if 
the bispinors on the r ight -hand side obey Eqns (3.20). 
Coefficient (3.23) can be found by means of relat ions (3.21). 
The tensor p roduc t s of b ispinors of different helicity t ake 
the form 

URa(k)uLfi(k')± 

1 

(2k-k')l/2 

1 

(2k-k') 1/2 

kk>1-^ 
ap 

txp 

(3.24) 

With the help of these expressions, one can find explicitly 
covariant representations for transitional currents that are 
nondiagonal in helicity. First of all it is obvious that the 
currents containing an odd number of gamma matrices are 
identically equal to zero, since the right-hand sides of 
Eqns (3.24) have an even number of g a m m a matrices, 
whereas the t race of an odd number of g a m m a matrices 
equals zero. Below, the expressions are listed for n o n -
vanishing currents: 

uR(kf)uL(k)= uL(kf)uR (k)= {2k'k')1^2 

/ 2 Y / 2 

uR(k )(y^vuL(k)= I -j—j-j J (k^kv — kvk^ -\-i£fiVT(Tki:k(T), 

/ 2 \ 1 / 2 

uh(k )(JfivuR(k)= ( , J (kpkv — kvk^ — lE^fjk^kJ). 
(3.25) 

Consider n o w the currents tha t are d iagonal in helicity. 
In the nonrelativist ic theory, in the relativistic theory of 
massive particles, and in the massless case considered above, 
the currents have explicitly covariant representat ions , so it 
seems surprising tha t the currents d iagonal in helicity do not 
have such representat ions . 

Eqns (3.2) relate bispinors of different helicity. The 
only possibility to express, say, a left-handed bispinor 
with m o m e n t u m k! in te rms of a left-handed bispinor with 
m o m e n t u m k is to in t roduce an auxiliary vector h into the 
r ight -hand side of Eqn (3.22). As a result we obta in 

uh(kf) — CfknuL(k), 
M R ( £ ' ) — Ck'huR(k) 

The normal isa t ion coefficient is given by 

C'= — . (3.27) 

(3.26) 

[4k'-hk-h-2k'-kh2]112 ' 

The tensor p roduc t s of bispinors of different helicity can 
n o w be wri t ten in the following form: 

^La(k)uLj3(kf)= 

WRa(£)wRjs(£') = 

1 

(4kf'hk'h-2kf'kh2)l/2 \ 
(kkk'l-±y; 

1 

(4k'-hk-h-2k'-kh2) .2\l/2 
khk / 1 - 7s 

(3.28) 

The r ight -hand side depends on h, whereas the left-hand 
side does not . The only explanat ion can be tha t on the r ight-
hand side the /z-dependence is such tha t the h var ia t ion 
affects only the phase factor. In this sense, the vector h 
fixing a certain frame does not break the covariance. 

Let us consider a well-known example. Average over 
directions the p roduc t of two uni t vectors ntnj. W e have at 
hand only one tensor that does not violate the ro ta t iona l 
symmetry — the Kronecker symbol — thus , the result can be 
constructed unambiguous ly as follows: 

dQ 1 
4% 1 J 3 l J 

(3.29) 

It follows from Eqns (3.28) tha t for quanti t ies defined up to 
a phase factor, reasoning of this kind is not conclusive. In 
general there exist auxiliary vectors — apar t from those 
already i n v o l v e d — b y means of which the solution is 
expressed. These vectors b reak the initial symmetry 
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( rotat ional , for example). Their var iat ion, however, affects 
only the phase factor. 

W e are able n o w to construct explicit (in the algebraic 
sense) expressions for the vector currents . They contain the 
auxiliary vector /z, so they are not explicitly covariant . 
Mul t ip lying relat ions (3.28) by y^ and calculating the t race 
we find 

2(k ^ h*k~\~k ̂ h*k h^k *k~\~\&^y^fjkyk^h(j^ 

(4k'-hk>h-2k'>kh2) 2\!/2~' 

_ , # 2{kuh'k-\-kuh'k huk *k ^uvT(rkvkTh(T^ 
" R ( ^ ) V R W = -

(4k'-hk-h-2kf-kh2)l/2 

(3.30) 

W e thus conclude tha t the tensor-algebra tools are no t 
sufficient to represent the left-hand side of Eqn (3.30) in 
algebraic form th rough the vectors k' and k. A n y explicit 
expression which does not refer to some third vector is, in 
principle, nonexistent . 

There are no other currents with odd number s of g a m m a 
matrices. As for the currents with even number s of 
g a m m a matrices, they are identically equal to zero. It also 
immediately follows tha t the r ight -hand sides of Eqns (3.28) 
can be writ ten as the convolut ions of currents (3.30) with 
the matr ices y^(l ± y5). Tha t is why the phase factors on the 
r ight -hand side of Eqns (3.28) and (3.30) change in the 
same manne r with respect to the /z-vector variat ion. 

One can verify [though it a l ready follows from relat ions 
(3.28)] tha t the r ight -hand sides of Eqns (3.30) are indeed 
independent of h up to a phase factor. Consider the p roduc t 
of two left-handed currents jLfl(k'k)jlv(kf, k). Us ing the first 
of the relat ions (3.30), we find after identical t r ans fo rma
t ions tha t the vector h d rops out from the final result. 
Moreover , 

hn(k', k)jtv(k', k) = try^kyvk / 1 - 75 (3.31) 

[cf relat ion (2.11)]. One can check identity (3.31) in the 
frame of reference where h = ( 1 , 0 , 0 , 0 ) . In this frame, the 
space par t of the left-handed current coincides within a 
factor of two with the nonrelativist ic spin current (2.10) if 
one considers the vectors as the unit vectors in the 
direction k\k. When the indices /i,v t ake on the space 
values, the r ight -hand side of Eqn (3.30) coincides with the 
r ight -hand side of Eqn (2.11) up to a normal isa t ion factor, 
so for the values /i,v = 1,2,3, the identity (3.31) m a y be 
though t of as being proved. Similar reasoning is valid for 
mixed componen ts . 

F r o m the lack of an /z-dependence of the p roduc t 
JLn(k'\k)fiv(k'\k) at fi = v, it follows tha t the absolute 
value of each of the current componen t s is independent 
of h. F r o m the absence of such dependence at \i ^ v it 
follows tha t all the componen t s have the same phase factor. 
A similar line of reasoning is valid for the r ight -handed 
currents . Thus , a specific choice of the vector h can affect 
only a c o m m o n vector-current phase factor. It depends 
neither on the index \i in Eqns (3.30) nor on the indices a, ft 
in Eqns (3.28). 

4. Conducing remaiks 
Thus , in the nonrelativistic theory and in the relativistic 
theory with massive particles the possibility of construct ing 
explicitly covariant representat ions for the t ransi t ion 
currents has been confirmed. In bo th cases, the full set 
of these currents has been listed [see Eqns (2.10), (3.15), and 
(3.16)]. F o r massless particles, the explicitly covariant 
representat ions exist only for the currents nond iagona l in 
helicity [see Eqn (3.25)]. The diagonal currents have 
algebraic representat ions tha t are not explicitly covariant 
[see Eqn (3.30)] because of their dependence on an auxiliary 
vector not entering the initial condit ions. Its variat ion, 
however, affects only an unobservable c o m m o n phase 
factor. 

Consider ing massless particles as an example, we 
observed the b r e a k d o w n of the well-known principle 
according to which the solution of a p rob lem in the 
presence of a symmetry should contain only those vectors 
entering the s ta tement of the problem. This principle does 
not work if the required quant i ty is defined up to a phase 
factor. 
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