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Abstract. The problem of constructing explicitly covariant
representations for transitional currents of spin—; particles is
solved for both the nonrelativistic theory and the relativistic
theory with massive particles. In the massless case, such
representations exist only for transitional currents that are
nondiagonal in helicity. The diagonal currents have
algebraic representations that are not explicitly covariant.

1. Introduction

In nonrelativistic quantum mechanics, the cross section of
processes involving spin— particles are determined by
matrix  elements  containing  transitional  currents
1 €Nxa€) or (L Nax(), where o is the vector of Pauli
matrices, and x(¢') and x(¢) are spinors describing particles
with polarisations {’,{. The dependence of currents on the
vectors ¢’,¢ is implicit. In order to determine the depend-
ence of cross sections on particle polarisations the standard
method is used (see, for example, Ref. [1]): after the
absolute value of the amplitude has been squared, the
spinors are removed by means of the technique of
projection operators. As a result, an algebraic expres-
sion —which depends on the vectors ¢’,¢ in an explicitly
covariant way with respect to three-dimensional rota-
tions—is obtained for the cross section. The question
arises as to whether it is possible to substitute explicitly
covariant expressions, which do not contain any reference
to spinors, for transitional currents directly in amplitudes.

There exists an analogous problem in the relativistic
theory. Cross sections and decay probabilities contain
currents defined through the Dirac bispinors. The explicit
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dependence on momenta and on particle polarisation
vectors remains hidden in currents of this type, hence
certain problems in the asymptotics of the currents, the
analysis of polarisation effects and other cases are not so
transparent. Just as in nonrelativistic quantum mechanics,
bispinors are removed in a covariant way from the squares
of absolute values of the matrix elements (see, for example,
Refs [2] or [3]). It seems to be easier in the case of a
composite tensor structure to deal with explicitly covariant
expressions for amplitudes rather than with transition
probabilities. For example, the Compton effect amplitude
is a contraction of a rank-two tensor with the polarisation
vectors of two photons. The cross section of this process is
quadratic in the amplitude and is determined by a rank-four
tensor.

Explicitly covariant algebraic representations for transi-
tional currents can be used in applications. This paper is
devoted to the problem of the existence of such representa-
tions and the determination of their form (see also Refs [4—
6)).

We start with the discussion of the appropriate char-
acteristics of spinors in three-dimensional Euclidean space.
It is shown in the next section that the products ¥, (¢)xj (¢')
are expressed through the scalar product of the polarisation
vectors ¢ and ¢’ with Pauli matrices up to a phase factor.
This representation is then used to construct explicitly
covariant (with respect to the rotation group) algebraic
expressions for the currents y+(&)x(¢) and ¥ (¢ Nay(¢). An
analogous problem in the relativistic theory is considered in
Section 3 for the massive and massless cases. Representa-
tions in the form of covariant contractions of the momenta p
and p’, and the polarisation vectors s and s’ with Dirac
gamma-matrices were found for the tensor forms
ua(p,s)ﬁﬂ(p',s'), constructed from Dirac bispinors describ-
ing massive particles. These representations are then used to
construct the complete set of relativistic transitional currents
in explicitly covariant form with respect to the Lorentz
group. Thus the question of the possibility of constructing
explicitly covariant representations is solved affirmatively in
the nonrelativistic theory and in the relativistic theory with
massive particles. In the massless case, as we shall demon-


mailto:mikhail@vxitep.itep.msk.su

602

M 1 Krivoruchenko

UZ (C7 ez)

e

Ul (Cv ez)

[

e

{+
¢ Q _

C,

ey €y
Figurel. Figure2.
strate, such representations exist only for transitional It is possible to verify the correctness of the following

currents, nondiagonal in helicity. Diagonal currents have
algebraic representations that are not explicitly covariant.
Their form is established.

2. Transitional currents in nonrelativistic
quanfum mechanics

In nonrelativistic quantum mechanics the wave function of
a spin—; particle, polarised in the direction of {, is described
by a spinor satisfying

) =x@), 7O =1,

where { =¢-6 and |¢]> = 1.

In the particular case of a particle polarised in the
direction of the axis e, = (0,0,1), it is easy to find the
solution of Eqns (2.1). It has the following form:

x(e) = (é) -

The given spinor is defined up to a phase factor. Having
one solution, it is possible to construct a spinor with
arbitrary polarisation ¢ with the help of the rotation matrix

U(ge.),

Q.1

2.2)

X(C) = U(Ca e:)X(e:) . (2.3)
The rotation matrix U({,e.) has the following properties:
LU, e.) = UL, e)é., UL, e)UT (L e)=1. (4

Owing to these properties, spinor (2.3) satisfies Eqns (2.1)
identically.

The way in which the vector e, is transformed into the
vector £ is not unique. There exists an infinite set of matrices
U(¢,e.) that implement this transformation for every pair of
vectors e, and { (see Fig. 1). However, all matrices U({,e.)
satisfy Eqns (2.4) and hence define the same spinor up to a
phase factor. This is due to the fact that Eqns (2.1) define in
turn a spinor up to a phase factor.

We thus come to the conclusion that for two different
matrices U;(€,e.) and U,({,e.), transforming e, into ¢, the
following relation applies:

Ui (€, e)x(e.) = exp(id) U (¢,

e)xe:) 25

where ¢ is some phase.

equation directly:

wleiite) = (F55)

Notice that the right- hand side defines the projection
operator P()=1(1+{) for which P*()=P() if
g =1.

Eqn (2.6) is acted on from the left with the matrix
U(¢,e.) and from the right with the matrix U ({',e.). As a
result, we obtain

(2.6)

LOFE) = |0 ) 5E S U )]
[IHU@ &) +C’] . 2.7

where U(¢,¢) = U(¢,e,) Ut (L, e.) is the matrix transform-
ing the vector ¢’ into the vector ¢ through the vector e,.
According to Eqn (2.5), any other choice of matrices
U(L,e.), U e.) would affect only spinor phase factors,
so to find up to a phase factor an explicit form of the right-
hand side of Eqn (2.7) one can substitute any matrix for
U(¢,¢), transforming ¢ into &t Let U, &)=
exp(ienf/2) with n=(+¢&)/|l+¢| and 6 == This
matrix implements rotation around the vector n, as
shown in Fig. 2. It can be written in the form

PN

Ui, &)= IL,]/Q -
2+20-8)

Relations (2.4) with fixed vectors &, &'(=e,) can be
considered as equations, fixing the rotation matrix U(,¢’).
In the case of three-dimensional rotations, the explicit form
of the matrix can be found by means of the exponential
parametrisation U(¢,¢’) = exp(io-nd/2). Matrix (2.8),
obtained in the same way, satisfies relations (2.4). How-
ever, in the case of Lorentz transformations exponential
parametrisation is less effective. As will be shown in the next
section, the corresponding matrix of Lorentz transforma-

(2.8)

+1t is not necessary to demand that the vector £’ be transformed into £
through e,. To see this, first act on Eqn (2.6) with the matrix U(¢, e.) from
the left and with the same matrix, but Hermitian conjugated, from the
right. Asaresult, weobtain Xa(C)Xﬁ (§) = Pyp(£). Then act on the equation
from the right with an arbitrary matrix U*(¢’, {) = U(¢, ¢'). The result
takes the form of Eqn (2.7), since P({)U(L, ') =P)PE)UEK, L)
=P)U(L, ¢')P(L") because of Eqns (2.4).
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tions can be found by solving a set of equations analogous
to Eqns (2.4).
Substituting Eqn (2.8) into Eqn (2.7), we obtain

b2 (1+21+5’>
Xa(C)Xﬁ(C) (2+2C°C/)I/2 2 2 aﬂ'

The sign = is used to emphasise the fact that two values
(in this case, two matrices) are equal up to a phase factor.

We come to the conclusion that the explicitly non-
covariant definition of spinors with the help of Eqn (2.3),
the special role of the spinor y(e.), and the arbitrary choice of
the way in which the vector e, is transformed into the vector
{, affect only the unobservable phase factor (which is
independent of the indices a and f) on the right-hand
side of Eqn (2.9), while the nontrivial dependence on the
vectors /¢’ has explicitly covariant form with respect to the
rotation group OQ3).

The transitional currents can be represented as follows:

2.9)

PN 12
0 =1 @) = trx(C)x*(C’F(#) ,
(g0l ! ’-C+Cl+iCAC'
(2.10)

The complete set of two-dimensional Hermitian matrices
consists of matrices 1 (the unit matrix) and &, so the current
enumeration listed above is exhaustive in the nonrelativistic
theory.

[t is possible to verify with Eqn (2.10) that, for example,
the relation

1+f’
2 9

W O D) =tra,

(2.11)

which is usually used to get rid of spinors in the squares of
the absolute values of the matrix elements, is true.

Eqns (2.9) can be obtained in a shorter, but more formal
way: act on the spinors y({) with the projection operator
PY=(1+{")/2. As a result, we obtain an arbitrary
normalised spinor %(¢'). Having normalised x(¢') to
unity, we obtain
"o 2 1+
X(C) (2+2€.C/)1/2 2
Then we can reproduce relation (2.9) using Eqn (2.12) and
the relation y,(£)x5 (§) = Pup(C).

x(&) - (2.12)

3. Transitional currents in the relativistic theory

The above arguments allow quite evident relativistic
extension to the case of massive spinor particles. In the
massless case the extension is less trivial.

3.1. Massive case

To make the notation more compact, I shall define the

symbol ¢ = £1, with the help of which the bispinors u(p, s)

and v(p,s)—describing particle and antiparticle—are

written in the form u(p,s,e = +1) and u(p,s,e = —1).
Dirac bispinors with definite momentum p, and polar-

isation s, are constrained by the following equations:

ﬁu(py Sy 8) = emu(p, S, E)a
YSsu(p7 S, 8) = u(p, Sy S)a
E(p7 Sy E)I’t(p7 S5 8) =&

3.1

The first is the Dirac equation in momentum space, the
second is the equation for eigenvalue +1 of the spin
projection on the direction of unit vector s,; and the third is
the spinor covariant normalisation. The momentum and
polarisation vectors satisfy the relations p2 =m?, 5* = —1,
p+s=0. Here p = p,y*, § =s,y", and so on. The gamma-
matrices are defined as in Ref. [3].

First of all, as in the three-dimensional case, we
construct all the linear independent solutions of
Eqns (3.1) for some fixed momentum and polarisation,
e.g. in the rest frame of the particle, where
p=1n=(m,0,0,0). The polarisation vector is taken to be
s=e,=(0,0,0,1). There exist two linear independent
solutions of the form

1

u(”7 e:7+]) = (3.2)

0
0 0
ol u(”7 e:7_1)_ 0
0 1

The bispinor corresponding to the momentum p, and
polarisation s, can be obtained as a result of the action of
the Lorentz transformation matrix on bispinors:

u(p7 ‘8‘7 8) = U(p7 S; ’17 e:)“(’% 637 8) * (33)

The matrix U(p, s;#,e.) of Lorentz transformations has the
following properties [cf. Eqn (2.4)]:

pU(p, s; m, e.) = U(p, s; 0, e )i,
S:U(p, 3, e:) = U(p, S5 H, e:)é:a
U(p, s;n, e.)U(p, s; 1, e.) =1,

(3.4)

as a result of which the bispinors defined in Eqn (3.3)
satisfy relations (3.1) identically.
It is possible to verify the relation

n+em 1+ ysé,
2m 2 op

”a(ny €25 E)”_‘ﬁ(”a €2y E) = ( (3.5

by testing each component of the equality. Multiplying this

equation by U(p,s;n,e,) from the left and by U(p,s';n,e.)
from the right, we obtain

uoc(p7 S S)Eﬂ(p/7 Sl7 8,)

. [ﬁ +em 1 47958

U(p,s; ¢, s)

2m 2

P 4ém 1+ ysf’]
2m 2 aﬁ7

(3.6)

where U(p,s;p's’) = U(p,s;n,e.)U(p',s'sn,e.) is one of the
Lorentz transformation matrices transforming the vectors
p,s' into the vectors p,s; and e’ = +1. Ambiguity in the
choice of matrices U(p,s;n,e.), U(p',s';n,e.) affects only
the phase factors of bispinors defined by Eqn (3.3). The
arguments here are the same as for Pauli spinors: owing to
Eqns (3.4), bispinors (3.3) satisfy Eqns (3.1) identically. In
turn these equations define spinors up to a phase factor.
Therefore, if we are not interested in the phase factor, it is
possible to choose any matrix transforming the vectors p’, s’
into the vectors p,s. Such a matrix was found in Ref. [3] as
a particular solution of Eqns (3.4) with the substitution
VI, e: - p/’ S,:

U(p,sipys') = A (pys; Py )
x (m* 4 pp' — m*5§' + pss'p) . (3.7)
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It is possible to check that it satisfies the first two
Eqns (3.4). The third equation imposes constraints on the
form of U(p,s;p’,s') and allows one to fix the normalising
constant,

I _
Ap(prsipss) =5 [(m* +p-p/) (1 —s-5") +pes'pl-s] /2
(3.8)

Notice that the Lorentz transformation matrices
U = exp(wpyy, A7y) can be expanded over the matrices 1,
iys, and y, Ay, with real coefficients. The matrix (3.7) can
also be expanded over this basis.

Substituting Eqn (3.7) into
(e = +1)

Eqn (3.6), we obtain

uoc(p7 S S)Eﬁ(pl7 Sl7 8’)
Prem 1 +9s8p +ém 1 +y5§'>
af

=4A(p,s; P, b")(

2m 2 2m 2
3.9)
The bilinear forms of the type e = —1 can be con-
structed in the following way. In the rest frame of a particle,
ysu(n, e, &) = u(n, —e,, —¢) . (3.10)

The Lorentz transformation matrices commutate with the
matrix ys, so that the following equation is correct in any
reference frame:

'))514([)7 Sy 8) = Lt([), -5, _8) . (3]1)

We act on Eqn (3.9) from the left with the matrix y; and
perform the redesignations s — —s, ¢ — —¢. As a result,
one can obtain, for &g = -1,

uoc(p7 Sy E)Eﬂ(pla S/a 8)

54 em 1 4758
=44_(p,s; p',5) (p Tom 20t

P+eéml 498
2m 2 P om 2 )

(3.12)
where

1 _
A_(pysi o) =5 [0+ ppl) (1 s8) =pes/p'os] P

(3.13)

Explicit expressions for the transitional currents can be
constructed with the help of

a(p', s, Yru(p, s, &) =tr Tu(p, s, e)a(p', s, &) . (3.14)

For reference purposes | shall adduce the full list of
explicitly covariant expressions for the transitional currents
of massive spin—; particles in the relativistic theory:

g = +1:
1 _
Iz(pl7 S’7 S)M(p, Sy 8)£4_2A+(p7 S5 p’7 Sl) ] P
m
”_t(pla S,7 SI)YSM(pa S, 8)

=A L (p, 53 P, 8" (mep'ss — me pos’ 4 ieagunpusppusy)

’/_t(pl’ S’78)y‘uu(p7 S’ 8)
=AL(p, 50, )mEp+ep), (1 —s)
+ i&uupyPupp (s + 5), + mep'+ssy, + me pes’s),]

a(p'y s &) yuysulp, s, ¢)
=A 4 (py 5 Py ) +9),(m* +p-p') ,
— imeyp,sysp(ep’ +€'p), —p'espy — p-s'p)]
u(p',s, &)ouu(p, s, ¢
=AL(p, 83 P, )(Pupy — popu) (1 = s+5")
— (s — S5, (m” + pp') + (Plsy — Pvs,)s'p
— (Pusy = Pys)s+ ' — imeup(ep” + &) (s" + ),
(3.15)

g = —1:

’/_t(pl’ S,7 gl)u(p, S’ 8)
7

=A_(p, s, P, 5 ) (mep'-s — me'p-s’ — ieupunpushpus,),

_ L1 7
u(pl7 S,a EI)YSM(p7 Sy 8):4—mz A_(p, S5 p,7 S,) ]7

a(p, s’ &)yu(p, s, ¢
=A_(p, 5 75 (' = 9),(m* +p-p')
. ! / / / !/
- lmguaﬂysasﬂ(gp - gp)y +p *SPu _p'spuL

”_t(pla 5,73/)')’#')’5’4(‘0, Sy 8)

=A_(p, s; ', §)[m(Ep —ep’) (1 + 5-5)

+ i80pPurp (s’ — 5), + mep'+ss, — mepes's,],
a(p, s e)auu(p, s, €)

iA_(p, S, pla s,)g,uvocﬂ[p;pﬁ(l + S'S,)

+ hsp(m® + pp') — Pisps’*p + pushs-p’

i
+ 5 msaﬂw(sp’ - 8’[))1('8‘/ - S)a]' (3.16)
Notice that there are several symmetry relations. For

e¢ = +1 Eqn (3.14) can be written in the form

’Z(pl7 S’7 8’)Fu(p7 Sy 8)
A Al

prem 1 +9s8p +&m 147958
2m 2

=4A  (p, s; p', s el 5

3.17)

In the case & = —1 the analogous equation has the form
’/_[(pl7 S” 8/)I-‘M(I)7 S’ 8)

p—em 1 —ys§p +em 14958
£4A_(p,s;p',s')tr[’y5p &m VsS P +éem +'))5‘

2m 2 2m

>
(3.18)

In comparing these two equations, one should notice that
the scalar current e = —1 can be obtained from the
pseudoscalar current e =41 with the help of the
substitution £ — —¢, s — —S, A+(p,s;p',s') —
A_(p,s;p,s') =A (p,—s;p,s"). The same connection
exists between the vector and pseudovector currents. The
tensor current ¢ = —1 is connected with the tensor current
¢’ = +1 through the identity 2iy56,, = €450

These results can easily be extended for the case of
transitional currents occuring in weak interactions, e.g.
p — n and others with different particle masses in initial
and final states. The bispinors, and hence the currents
constructed from them, depend on velocities only; there-
fore, it is sufficient to make the substitution p’ — mp’/m’, in
obtained expressions, where m’ is the particle mass in the
final state (m' # m).
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Eqns (3.9) and (3.12) can also be obtained with the help
of the technique of projection operators. The bispinor
u(p',s' ') can be presented in two ways:

g6 = +1:
Al / N
gm 1 K
(P )AL sipl o) P S ),
g = —1:

P +ém1+yss
2m 2

“(Plaslagl)i“A—(Pas; P S,) ysu(p, s, €).

(3.19)

The matrix ys is introduced in the second expression to
make the normalising coefficient nonsingular in the
nonrelativistic limit. The bispinor u(p',s',€) satisfies
Eqns (3.1), if the bispinor u(p,s,¢) also satisfies them.
Then relations (3.9) and (3.12) are reproduced for the
tensor products u,(p,s,&)ig(p’,s’,¢).

3.2. Massless case
Dirac bispinors describing massless particles and antipar-
ticles with fixed helicity have algebraically the same form,
so from here on I shall drop the index ¢ = +1 used above to
distinguish particles from antiparticles.

The bispinors corresponding to particles with left-
handed (L) and right-handed (R) helicity are defined as
solutions of the following equations:

fuug (k) = oy (k) = 0,

1 - 1+
5 g (k) =2 w (k) = 0,

itg (k)y,ur (k) = i (k)y,u (k) =2k, .

(3.20)

Here k> = 0. The normalisation condition is chosen in this
form due to the fact that in the massless case the scalar
current  becomes  identically  zero:  ur(k)ug (k) =
EL(k)ML(k) = 0

Now, we do not have at hand projection operators on
the states with definite k. Unlike the massive case, the right-
hand sides of the equalities

g = (L5)

o -
L‘Ra(k)ﬁkﬂ(k) = (k 2?5) )
«p

being squared, vanish. Nevertheless, the relationships
u (K') = CK'ug (k)
ug (K') = Ck'uy (k),
exist, with the normalisation coefficient
c=_ b
(Zk’ . k)l/z B
which is singular in the limit k" — k. The bispinors on the
left-hand side of Eqns (3.22) obey Eqns (3.20) identically if
the bispinors on the right-hand side obey Eqns (3.20).

Coefficient (3.23) can be found by means of relations (3.21).
The tensor products of bispinors of different helicity take

(3.21)

(3.22)

(3.23)

the form
1 am 1l —7
— N ! 5
)= oy (kk 2 >aﬁ7 (3.24)
_ : 1 cry 1L+y '
gy (K )it g(K')= (kk’ 5) )
Roc( ) Lﬁ( ) (2k-k’)'/2 2 ”

With the help of these expressions, one can find explicitly
covariant representations for transitional currents that are
nondiagonal in helicity. First of all it is obvious that the
currents containing an odd number of gamma matrices are
identically equal to zero, since the right-hand sides of
Eqns (3.24) have an even number of gamma matrices,
whereas the trace of an odd number of gamma matrices
equals zero. Below, the expressions are listed for non-
vanishing currents:

it (k" Yup (k)= ity (k" ug (k)= (2k-k")'/?,

_ 2\ .
1233 (kl)auvuL (k): (m) (k;tkv - k(,k” + wuvwklrka)7

_ 2\ :
ur, (k,)auv“R (k): (W) (k;Akv - k('ku - lguvmk;ka)'

(3.25)

Consider now the currents that are diagonal in helicity.
In the nonrelativistic theory, in the relativistic theory of
massive particles, and in the massless case considered above,
the currents have explicitly covariant representations, so it
seems surprising that the currents diagonal in helicity do not
have such representations.

Eqns (3.2) relate bispinors of different helicity. The
only possibility to express, say, a left-handed bispinor
with momentum k' in terms of a left-handed bispinor with
momentum k is to introduce an auxiliary vector £ into the
right-hand side of Eqn (3.22). As a result we obtain

up (k') = C'khuy (k),
ug (K') = C'k'hug (k)
The normalisation coefficient is given by
C'= : .
[4k' hk-h — 2k -k h?]'/?

The tensor products of bispinors of different helicity can
now be written in the following form:

(3.26)

(3.27)

_ . 1 N
up o (k)i g(K")= (h ! 5)
Lo (k) Ll3( ) (4k’-hk°h—2k’°kh2)]/2 D) aﬁ,

1 ol =7
. ' s
e (k)i ()= (k' hkh — 2Kk 12) 2 (khk 2 )aﬁ

(3.28)

The right-hand side depends on 4, whereas the left-hand
side does not. The only explanation can be that on the right-
hand side the A-dependence is such that the A variation
affects only the phase factor. In this sense, the vector k
fixing a certain frame does not break the covariance.

Let us consider a well-known example. Average over
directions the product of two unit vectors n;n;. We have at
hand only one tensor that does not violate the rotational
symmetry —the Kronecker symbol—thus, the result can be
constructed unambiguously as follows:

It follows from Eqns (3.28) that for quantities defined up to
a phase factor, reasoning of this kind is not conclusive. In
general there exist auxiliary vectors—apart from those
already involved —by means of which the solution is
expressed. These vectors break the initial symmetry
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(rotational, for example). Their variation, however, affects
only the phase factor.

We are able now to construct explicit (in the algebraic
sense) expressions for the vector currents. They contain the
auxiliary vector h, so they are not explicitly covariant.
Multiplying relations (3.28) by y, and calculating the trace
we find

2(kly ek +k yhek' —hy k' <k +igyok vk h

(K, )= 2B I okl ),

(4k"-hk-h — 2k'-k h?)
2(khek 4k yhek’ —hyk' <k —ig g okiyk b
T (1 )= AL A )
(4k"-hk+h — 2k'-k h?)

(3.30)

We thus conclude that the tensor-algebra tools are not
sufficient to represent the left-hand side of Eqn (3.30) in
algebraic form through the vectors k' and k. Any explicit
expression which does not refer to some third vector is, in
principle, nonexistent.

There are no other currents with odd numbers of gamma
matrices. As for the currents with even numbers of
gamma matrices, they are identically equal to zero. It also
immediately follows that the right-hand sides of Eqns (3.28)
can be written as the convolutions of currents (3.30) with
the matrices y,(1 £ 75). That is why the phase factors on the
right-hand side of Eqns (3.28) and (3.30) change in the
same manner with respect to the A-vector variation.

One can verify [though it already follows from relations
(3.28)] that the right-hand sides of Eqns (3.30) are indeed
independent of & up to a phase factor. Consider the product
of two left-handed currents ji ,(k", k)ji,(k', k). Using the first
of the relations (3.30), we find after identical transforma-
tions that the vector A drops out from the final result.
Moreover,

. . o 1=
JualK's KV (K k) = trp ey =0

(3.31)

[cf relation (2.11)]. One can check identity (3.31) in the
frame of reference where & = (1,0,0,0). In this frame, the
space part of the left-handed current coincides within a
factor of two with the nonrelativistic spin current (2.10) if
one considers the vectors £,£’ as the unit vectors in the
direction k’,k. When the indices u,v take on the space
values, the right-hand side of Eqn (3.30) coincides with the
right-hand side of Eqn (2.11) up to a normalisation factor,
so for the values p,v=1,2,3, the identity (3.31) may be
thought of as being proved. Similar reasoning is valid for
mixed components.

From the lack of an hA-dependence of the product
Juu(k' k)it (k' k) at p=v, it follows that the absolute
value of each of the current components is independent
of h. From the absence of such dependence at pu#v it
follows that all the components have the same phase factor.
A similar line of reasoning is valid for the right-handed
currents. Thus, a specific choice of the vector & can affect
only a common vector-current phase factor. It depends
neither on the index p in Eqns (3.30) nor on the indices a,
in Eqns (3.28).

4. Concluding remarks

Thus, in the nonrelativistic theory and in the relativistic
theory with massive particles the possibility of constructing
explicitly covariant representations for the transition
currents has been confirmed. In both cases, the full set
of these currents has been listed [see Eqns (2.10), (3.15), and
(3.16)]. For massless particles, the explicitly covariant
representations exist only for the currents nondiagonal in
helicity [see Eqn (3.25)]. The diagonal currents have
algebraic representations that are not explicitly covariant
[see Eqn (3.30)] because of their dependence on an auxiliary
vector not entering the initial conditions. Its variation,
however, affects only an unobservable common phase
factor.

Considering massless particles as an example, we
observed the breakdown of the well-kknown principle
according to which the solution of a problem in the
presence of a symmetry should contain only those vectors
entering the statement of the problem. This principle does
not work if the required quantity is defined up to a phase
factor.
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