
Abstract. The main results of investigations into the self-
avoiding walk problem are reviewed. Different approaches
to solving this problem are briefly discussed. Attention is
paid to the asymptotic solution of the exact equation
obtained for the distribution density W n(R), where R is the
vector connecting the end points of an N -step self-avoiding
walk. On the basis of the single-functional approach the
problem of the diffusion of tracers in a random-velocity
field is discussed in the general case. Also, approximate
methods allowing one to obtain approximation equations
together with the conditions for their validity are discussed.
The case of plane parallel average flow is considered in
detail and some peculiarities of statistical solutions are
discussed for the simplest problem.

Two fixed ideas can no more exist
together in the moral world than in the
physical world two bodies can occupy
the same place at the same time.
A S Pushkin The Queen of Spades

1. Introduction

The self-avoiding walk (SAW) problem arose in the
statistical physics of linear polymers (macromolecules) in
connection with the calculation of the mean spatial
dimensions of a polymer and is an important topic in

the modern science of polymers. Because of the extremely
large number of degrees of freedom in macromolecules they
can be looked upon as macroscopic systems and one can
use statistical methods to determine the mean values of
variables such as, for example, the spatial dimensions of a
macromolecule. The results of numerous experiments and
theoretical evaluations show that the small-scale structure
of molecules becomes less and less essential for the
explanation of macroscopic properties of such systems as
the length of the macromolecules increases. Herein the
leading role in the configuration statistics of macromole-
cules is played by both their chain structure and the
attendant excluded volume effect, according to which a
given volume element cannot contain more than one link
(or monomer) of the polymer chain at any given time. It is
precisely these factors that determine the typical features of
the behaviour of macromolecules. At the same time it is the
chain structure of the linear polymer and the path of a
random particle that brings about the analogy between
their descriptions. But to make the analogy complete one
has to take into account the excluded volume effect in the
theory of random walks. That is why the problem under
consideration is known as that of the self-avoiding walk
(SAW).

A little more than twenty years ago there came a new
fruitful stage in the development of polymer statistics,
brought about by the penetration of concepts and methods
from modern theoretical physics. The functional integration
and renormalization group methods, as well as efficient
numerical methods for studying the statistics of the lattice
polymer chain models proved to be highly useful for the
understanding of the process and its connection with the
physics of critical phenomena.
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Because of the equivalence between the polymer and
SAW problems, functional integration methods were
employed in the majority of theoretical approaches to
these problems. This is well reflected in review articles
and monographs (see, e.g. Refs [1, 2]), so here, in section 2,
only a brief description will be given. It should, however, be
remarked that the critical exponents for the SAW obtained
by this method are only meaningful if the spatial dimen-
sionality d is close to its formal value d = 4, and it is not as
yet clear how to get results for real space in this way.
Meanwhile there is another, less widely used, but not less
efficient method of studying this problem, namely one
based on the search for a solution to the exact equation
for the probability density of the end-to-end distance of the
random walk. Owing to the efficiency of this
method in studying the SAW problem as well as in other
fields of physics, it has gained a much wider recognition of
late.

In view of the above it is reasonable to describe this
approach in more detail than in the earlier review [3]. This
will be done in sections 3 – 5 of this paper, while the second
section contains a brief review of some other ways of
dealing with the problem.

2. Statement of the problem and a brief review
of results

2.1 Phenomenological approach
The main quantity in the SAW problem is usually taken to
be the probability density W N (R) of the vector R joining
the end points of the N -step random path (N4 1). Given
the function W N (R) one could immediately deduce the
mean square end-to-end distance hR 2

iN , which is an
important spatial characteristic of the path:

hR 2
iN =

�

R 2W N (R) ddR , (2.1)

where d is dimensionality of the space. In the ideal case
where there is no volume effect, the asymptotic form of
W N (R) as N !1 is

W (0)
N (R) �

�

d

2pNl 2

�d=2

exp

�

ÿ

dR 2

2Nl 2

�

, (2.2)

where l is the length of the displacement of the point
particle. Hence, the mean square end-to-end distance for
the N -step path is

hR 2
i
(0)
N = Nl 2 . (2.3)

The excluded volume problem in polymer chain stat-
istics first arose in the thermodynamic theory of polymer
solutions [4]. In this theory a model of the lattice liquid with
either one solvent molecule, or one macromolecular
monomer located at each cell was used. The change in
the free energy produced by mixing the macromolecule and
the solvent was determined and regarded as a function of
the polymer chain swelling coefficient

aN =

hR 2
iN

hR 2
i
(0)
N

 !1=2

, (2.4)

where hR 2
iN and hR 2

i
(0)
N are the mean square end-to-end

distances for the N -member chain obtained with and
without taking the excluded volume effect into account,
respectively. A subsequent minimization of the free-energy

with respect to the parameter aN yields the following
equation for the equilibrium value:

a
5
N ÿ a

3
N =

3
���

3
p

2
v1N 1=2 , (2.5)

here v1 = (3=2pl2
)

3=2v0, v0 is the excluded volume of the
monomer, and l now stands for the distance between two
neighbouring monomers in the chain. For sufficiently large
N , Eqn (2.5) implies the classical result by Flory

hR 2
iN � const� (v0lÿ3

)

2=5N 6=5l 2 . (2.6)

More recently a number of different closed expressions for
aN similar to Eqn (2.5) have been suggested. They are
generally based either upon computer processing experi-
mental data, or upon a simulation of the problem by a self-
avoiding walk on some spatial lattice.

A generalisation of Flory’s formula (2.6) to arbitrary
dimensionality d was first made by Fisher [5] in the form

hR 2
iN � const� (v0lÿd

)

2nF=3N 2nF l 2 , (2.7)

where the critical exponent nF is given by

nF =

3(d + 2)ÿ1, d < 4 ,
1
2 , d > 4 :

(

(2.8)

It follows from (2.8) that the value d = 4 is special, because
when d > 4, the asymptotic behaviour of hR 2

iN in N is just
the same as that in the absence of the volume effect, i.e.

hR 2
iN � O(Nl 2

) .

Numerous experimental data and the results of computer
calculations of hR 2

iN are well described by formula (2.7).
The excluded volume effect is essentially a long-range

order phenomenon, since the spatial configuration of the
macromolecule is mostly determined by the volume inter-
action between its monomers widely separated in the
polymer chain. The interaction between any two mono-
mers joined to each other by more than one link can be
described in a simplified form by a short-range repulsive
potential U(R) with range r0, where r0 < l.

The quantity

v0 =

�

�

1 ÿ exp(ÿU(R)Tÿ1
)

�

ddR

is then the excluded volume in the d-dimensional Euclidean
space rd and T is the absolute temperature expressed in
terms of energy. In the simplest model, the monomer can
be considered as a perfectly hard sphere of diameter r0 and
the polymer is a chain of N + 1 monomers freely joined
one to another by N identical links of length l. Let us
denote by

UN =

XX

14 i<j4N

U(Lij)

the potential energy of the polymer chain, where the vector

Lij =
X

i4m4 j

Im

joins the geometric centres of the i – 1st and jth monomers;
the vector Im (jIm j = l;m = 1; 2; . . . ;N) is drawn from the
m – 1st monomer to the mth monomer, and the 0th
monomer coincides with the origin of the coordinate
system in rd. It is easy to see that the volume interaction
between the monomers of the polymer chain gives rise to a
correlation between the spatial orientations of its links.
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A convenient measure of this correlation is the mean cosine
of the link-to-link angle:

hcos ymni = Qÿ1
N

�

(em
.en) exp(ÿUN Tÿ1

)

Y

N

k=1

dOk , (2.9)

where QN is the normalising factor given by

QN =

�

exp(ÿUN Tÿ1
)

Y

N

k=1

dOk ,

ymn is the angle between the vectors em = lm=l and en = ln=l
whose scalar product is denoted by (em

.en), dO = o
ÿ1do,

where do is the area element on a unit sphere in rd,

o =

2pd=2

G(d=2)

is the total surface area of the sphere, and G(x) is the Euler
gamma function. Clearly, when U(R) � 0 so that v0 = 0 we
have hcos ymni = 0. It is natural to expect that hcos ymni > 0
when v0 > 0. The obvious equality

hL 2
iji = ( jÿ i + 1)l 2

+ 2l 2
XX

i4m<n4 j

hcos ymni (2.10)

then shows that the excluded volume effect produces an
increase in the mean square distance between the
monomers in the polymer chain compared with the
nonperturbed case. We shall now use relation (2.10) to
construct the difference relation

hL 2
iji ÿ hL

2
i+1ji ÿ hL

2
ijÿ1i+ hL 2

i+1jÿ1i = 2l 2
hcos yiji (2.11)

and then approximate it by a differential equation for large
t � jÿ i + 1. As a result we see that the function
y(t) � hL 2

iji=l2 satisfies

d2y

dt2 = e(t) , (2.12)

where e(t) � 2hcos yiji. Taking into account the identity
hL 2

1N i � hR 2
iN we let t tend to N and substitute relation

(2.7) into the left-hand side of Eqn (2.12). We arrive at the
asymptotic relation

hcos y1N i � O(Nÿ(dÿ2)=2
) , (2.13)

which shows that the excluded volume effect determines the
power of the decrease in the correlation coefficient between
the directions of the chain links l1 and lN as N increases.
The exponent s = (dÿ 2)=2 in relation (2.13) turns out to
be less than one when d < 4 and greater than one when
d > 4.

The self-consistent field method was used in the earliest
attempts to solve this problem [6 – 11]. It involves the
replacement of an individual macromolecule by an ideal
polymer chain located in the so-called self-consistent field
j(R). The effect of the latter on the ideal chain should in
some sense be equivalent to the excluded volume effect in
the real macromolecule. If it were possible to proceed along
this line, i.e. to define the self-consistent field explicitly, the
density W N (R) could be found with the help of the
Fokker – Planck equation

qW N (R)

qN
=

l 2

2d
DW N (R)ÿ

j(R)

T
W N (R) (2.14)

combined with the initial condition

W 0(R) = d(R) , (2.15)

where D is the Laplacian in rd and d(R) the Dirac delta-
function [12 – 13].

One of the ways previously suggested of implementing
the self-consisting field method in this problem is to apply
the Kirkwood variational principle to the free energy of the
polymer chain [8]. By this principle, in the macromolecular
Gibbs distribution

DN = Qÿ1
N exp(ÿUN Tÿ1

)

Y

Nÿ1

k=0

d(R k ; k+1 ÿ l) , (2.16)

where R ij = jRi ÿ Rjj is the distance between the ith and jth
monomers, the polymer chain potential energy,

UN =

XX

04 i<j4N

U(R ij) (2.17)

is replaced by the sum
X

N

k=0

j(Rk) , (2.18)

where the function j(Rk) to be defined is the potential
energy of the kth monomer in the self-consistent field. We
then write down the expression

F = U ÿ TS =

�

(UN + T lnDN )DN

Y

N

k=0

ddR k (2.19)

for the chain free energy and equate to zero its variations
with respect to each variable j(Rk ). The solution of the
equation for j(R) thus obtained must give the ‘best’
possible approximation for the self-consistent field. But this
solution contains both the single-particle and the two-
particle coordinate distribution functions for the monomers
forming the chain. The quantity W N (R) may be regarded as
the single-particle distribution function for the N th
monomer, since the position of the 0th monomer is
fixed at R = 0. We are faced here with a situation
analogous in a sense to that in the theory of dense gases
and liquids: there is hierarchy of n-particle distribution
functions connected by a system of integral equations. To
obtain a closed equation for W N (R) one has to make some
approximation to the
n-particle distribution function, usually to factorise it. For
example, the approximation of the two-particle distribution
function which is equivalent to the Edwards approximation
[6], yields the following equations for the self-consistent
field

j(R) = Tv 0c(R) , (2.20)

where

c(R) =

X

N 5 0

W N (R)

determines the density of monomers at the point R.
Analysing the consistency condition of Eqns (2.14) and
(2.20), we can see that for d = 3 the field j(R) must depend
on R in such a way that

j(R) � O(Rÿ4=3
) , (2.21)

when R 2
< hR 2

iN . It follows that the chain mean square
end-to-end distance hR 2

iN behaves as O(N 6=5
) when N is

large enough.
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A generalisation of the Edwards results to the d-
dimensional case was provided by Gillis and Freed [14]
who showed that the field j(R) satisfies

j(R) � O(Rÿ2(dÿ1)=3
) , (2.22)

when d < 4 and decreases faster than O(Rÿ2
) when d > 4.

Hence the critical exponent n in the asymptotic formula
hR 2

iN=l2
� O(N 2n

), where N !1, is equal to n = nF.
In conclusion it should be noted that the approach

discussed above has not led to any important results for the
density W N (R). It is likely that the inefficacy of the self-
consistent field method in determining W N (R) lies primarily
in the replacement of the substantially non-Markovian
SAW process by a Markovian model. This method is
described in more detail in monographs [15 – 17].

2.2 Self-avoiding walks on lattices
The excluded volume problem elicited numerous studies of
the SAW for lattice models. The statement of the problem
is straightforward and can be formulated as follows.

On the integral lattice

z
d
=

�

(z1; z2; . . . ; zd) : zi 2 z
	

we consider self-avoiding paths each consisting of a point
sequence (R0;R1;R2; . . . ;RN ) in z

d such that R0 = 0,
jRi ÿ Riÿ1j = 1 for i = 1; 2; . . . ;N and Ri 6= Rj when i 6= j.
We shall denote by N (N) the number of all self-avoiding
paths of length N .

The objective then is to obtain the asymptotic depend-
ence of N (N) and hR 2

N i on N for N !1. Both computer
calculations and analytic approaches have been used for
this purpose. There are two kinds of numerical methods:
some give ways for the direct sorting of all self-avoiding
paths on some lattice, others involve different versions of
the Monte-Carlo method. But owing to the limited
capability of methods of the first kind they are so far
restricted to self-avoiding paths whose lengths do not
exceed 102, and the question arises to what extent the
dependence of N (N) and hR 2

N i on N thus obtained can be
viewed as asymptotic. As for the Monte-Carlo method, it
gives results whose degree of reliability is certainly deter-
mined by both the statistical nature of the method and the
quality of the algorithm chosen to generate the self-avoiding
paths.

The above statement of the SAW problem was first
given by Hammersley [18, 19] who proved the inequality

N (N 1 + N 2)4N (N 1)N (N 2) ,

which implies the existence of a nonnegative constant k
(called the connection constant) such that

04 k = lim
N!1

Nÿ1 log N (N) <1

(see also Refs [20 – 21]). It follows that when N !1 the
value of N (N) behaves as O(~zN

), where ~z is the effective
coordination number for the SAW. The number ~z depends
on the choice of lattice. For example, for the plane square
lattice we have ~z ' 2:64 while for the simple cubic lattice we
have ~z ' 4:68:

On the basis of an analysis of the results of numerical
calculations for various lattice models, Fisher and Sykes
[22] suggested a more precise asymptotic formula

N (N) � const� N gÿ1
~z N

; N !1 , (2.23)

where the exponent g is no longer dependent on the lattice
type and depends only on the spatial dimensionality d.
According to the numerical results presented in Ref. [23], we
have the approximate formula g � 1 +

1
6 (4 ÿ d) when

24 d4 4.
As mentioned above, the result of repeated calculations

of the mean square end-to-end distance for self-avoiding
paths of length N can be described by hR 2

N i � N 2n as
N !1; here n � 3=(d + 2) for d < 4 [24 – 26]. A more
difficult problem is to find the asymptotic form of the
distribution function W N (R) for the distance R = RN as
N !1.

Nevertheless, with the help of the scaling conjecture
according to which the statistical properties of the SAW
when N !1 are determined only by the characteristic
length

�R N = hR 2
N i

1=2
� N n , (2.24)

the following asymptotic form of the distribution function
is established:

W N (R) �
�Rÿd

N C(R �Rÿ1
N ) , 15R N 5N , (2.25)

where the function C(t) is approximated by the expression

C(t) = c(t) exp(ÿt d) , (2.26)

based upon numerical calculations of W N (R), c(t) is a
power function in t, possibly different for the cases t ! 0
and t !1 and d is defined by d = 1=(1 ÿ n) [27 – 33].
Cloizeaux [34] showed that if

c(t) � O(t g
) , (2.27)

when t ! 0, the exponents g and g are related by

g = 1 + ng . (2.28)

From this and the above expressions for g and n we obtain
g � 1

18 (4 ÿ d)(d + 2) when 24 d4 4.
Thanks to the improvements both in computers, and

in numerical methods for calculating N (N) (see
Refs [35 – 48]) the following values of g and n have become
accepted:

g = 1:343 . . . , n = 0:749 . . . , when d = 2 ,

g = 1:166 . . . , n = 0:592 . . . , when d = 3 .

For the case of spatial dimension d = 4, the relation

�R N � N 1=2
(ln N)

1=8, N !1 . (2.29)

was obtained by Havlin and Ben-Avraham [49].
Finally, for d > 4, Bridges and Spencer [50] showed

rigorously that the asymptotic form of the end-to-end
distance distribution function for self-avoiding paths of
length N is Gaussian, and that therefore in this case we have
g = 1 and n =

1
2 [51].

The so-called n-vector model [52, 53] is of great
importance for the analytic investigation of self-avoiding
walks on lattices. In this model a spin-vector rz with n
components

sz1, sz2, . . . ,szn ,

normalised by

r
2
z =

X

n

i=1

s
2
zi = n, 8z 2zd . (2.30)

is located at each node of the lattice zd.
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Only nearest neighbour spins interact in this model and
the interaction energy is minimal when the spins are
parallel. Hence the Hamiltonian H(r) of the module takes
the form

H(r) = ÿJ
X

(z;z0)

r z
.r z0 , (2.31)

where J > 0, and the summation is taken over all pairs
(z; z0) of neighbouring nodes of the lattice zd. The
partition function of the system is

Qn =

�

exp(ÿH(r)Tÿ1
)

Y

z2zd

dOz ; (2.32)

where dO = o
ÿ1 do, do is the area element on a unit

sphere in zd, and o = 2pn=2
=G(n=2) is the total surface of

the sphere.
A very important quantity in this model is its spin-to-

spin correlation function

hszisz0iin = Qÿ1
n

�

szisz 0 i exp(ÿH(r)Tÿ1
)

Y

z2zd

dOz , (2.33)

which is proportional to the magnetisation correlation
function hM (0)M (R)in in the corresponding magnetic
model, i = 1; 2; . . . ; n, where M (R) is the local magnetisa-
tion at the point R = Rz 0 ÿ Rz . The knowledge of the
correlation function hszisz 0iin allows us to describe
many properties of magnetic materials among them the
susceptibility

w =

1
T

X

z 02zd

hszisz 0iin . (2.34)

De Gennes [54] was the first to point out that the n-
vector model can be used for solving the SAW problem. But
for that one needs to let n tend to zero. As n is in fact a
natural number, the above procedure should be looked
upon as only a mathematical device. Its essence is the
following.

Using the formula

exp(ÿH(r )Tÿ1
) =

Y

(z;z0)

�

1 +

X

1

m=1

(J=T )

m

m!

�

X

n

i=1

szisz0i

�m�

;

(2.35)
where the product is only defined for pairs of neighbouring
nodes of the lattice z

d we expand the exponential
functions in (2.32) and (2.33) as power series and thus
obtain for Qn the expansion in powers of the interaction
constant J=T whose coefficients are products of integrals of
the form
�

sziszj . . .szk dOz , z 2zd . (2.36)

By symmetry, the integrals in (2.36) vanish when the
integrand consists of an odd number of spin factors.
Moreover, if we formally let n tend to zero, then, by the
moment theorem (see, for example, Ref. [16]), all the
integrals in (2.36) with more than two spin factors will
vanish, whereas the integrals with two spin factors will be
equal to
�

sziszj dOz = dij , (2.37)

where dij is the Kronecker symbol. It follows that for the
zero-component spin model one can use

Y

(z;z 0)

[1 + JT ÿ1
r z

.r z 0 +
1
2 (JT ÿ1

)

2
(r z

.r z 0)
2
] . (2.38)

instead of exp(ÿH(r)=T) in expressions (2.32) and (2.33).
We next expand expression (2.38) as a series and integrate
it over all orientations of the spins r z , z 2 zd. According
to the moment theorem, only those integrals of products

(JT ÿ1
)

N
s

2
zis

2
z 0is

2
z 00i . . . s

2
z 000i , (2.39)

do not vanish in which the sequence z; z 0; z 00; . . . ; z 000

describes a closed chain consisting of N pairs of
neighbouring nodes (z; z 0); (z 0; z 00); . . . ; (z 000; z) of the
lattice zd. If with each pair of neighbouring nodes we
associate the line segment joining them, then expression
(2.39) can be represented graphically as a closed self-
avoiding path usually termed a loop. Performing the
appropriate summation over all values of the spin
components and taking integrals (2.37) into considera-
tion, we see that the contribution of a single loop is equal
to n(JT ÿ1

)

N , where N is the length of the loop. It follows
that for n = 0 the contribution of all the loops to the
partition function Q0 vanishes, and we arrive at the trivial
result

Q0 = 1 . (2.40)

We now substitute expression (2.38) for the exponential
function in Eqn (2.33) and expand the product contained
therein as a series as in the previous case, but we now have
two external spin factors, szi and sz 0i, in the integrand in
(2.33), as a result of which the products with nonvanishing
integrals are

(JT ÿ1
)

N
szi(szisz 00i . . . sz 000isz 0i)sz 0i . (2.41)

If we set n = 0 in this case, the self-avoiding paths joining
the nodes z and z 0 will be the only paths to provide a
nonzero contribution to the correlation function. As the
index i in expression (2.41) is fixed we need only perform
the summation over all self-avoiding paths joining the
nodes z and z 0. As a result we obtain the important
formula

hszisz 0ii0 =

X

N

N zz 0(N)(JT ÿ1
)

N , (2.42)

where N zz 0(N) is the number of all self-avoiding paths of
length N joining the nodes z and z 0 on the lattice zd.
Formula (2.42) serves as the basis for the use of the zero-
component spin model in the investigation of the SAW
problem.

As an example, let us apply formula (2.42) to expression
(2.34). We obtain

w =

1
T

X

N

N (N)(JT ÿ1
)

N , (2.43)

where

N (N) =

X

z 02zd

N zz 0(N)

is the total number of self-avoiding paths of length N which
start from the node z 2zd.
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Replacing the quantity N (N) in Eqn (2.43) by its
asymptotic value (2.23) we obtain the approximate relation

w �
const

T
F

�

T c

T
, 1 ÿ g

�

, (2.44)

in which T c = ~zJ is the critical temperature and

F(t; 1 ÿ g) =

X

1

N=1

N gÿ1tN , jtj < 1 .

With the help of the relation

lim
t!1

(1 ÿ t)gF(t; 1 ÿ g) = G(g), g > 0

(see Ref. [55]) we obtain from relation (2.44) the following
asymptotic expression for susceptibility:

w �
const

T c
t
ÿg , (2.45)

when the quantity t = (T ÿ T c)=T c is positive and tends to
zero. Thus, the parameter g determines the degree of
singularity of w as T ! T c, because of which g is called the
critical index of susceptibility.

Let us come back to formula (2.42) and clarify the
behaviour of the correlation function when T ! T c. For
this purpose we use the definition

W N (R) =

N zz 0(N)

N (N)

, (2.46)

where R = jRz 0 ÿ Rz j, and the asymptotic relations (2.23)
and (2.25).

For sufficiently small t we then have

hszisz0ii0 �
X

N

exp(ÿtN)N gÿ1ÿnd
C(RN ÿn

) , (2.47)

which implies that t and N are interrelated so that small
values of t are associated with large values of N . If we
change summation in expression (2.47) for integration with
respect to N , we obtain

hszisz 0ii0 � R 2ÿdÿZG(Rtn) , (2.48)

where t is close to the critical value t = 0, Z is the new
critical exponent given by

g = (2 ÿ Z)n , (2.49)

and G(x) is a dimensionless function that satisfies

G(x) �
1, x ! 0 ,
x Z exp(ÿx), x !1 :

�

(2.50)

From relations (2.48) and (2.50) we conclude that
according to this model

�R � t
ÿn (2.51)

plays the role of the correlation length that determines the
mean size of the region in rd filled with self-avoiding
paths. That is why the index n is called the critical
correlation length exponent. Thus it is sufficient to know
only two independent critical exponents, e.g. Z and n,
because all the other exponents can be expressed in terms
of them.

2.3 Connection with the theory of critical phenomena
The early 1970s were marked by a significant achievement
in the physics of critical phenomena which in turn had a
powerful influence on the development of the statistical
physics of polymers, in particular, on the investigation of
the excluded volume problem. Wilson [56, 57] and others
[58 – 60] developed the renormalization group method for
calculating the critical exponents that determine the degree
of singularity of different thermodynamic variables at the
phase transition point. The conceptual basis for Wilson’s
method was provided by so-called universality hypothesis
of Kadanoff [61, 62], according to which the critical
exponents should be insensitive to the detailed behaviour
of the interaction potential and should be determined
mainly by large-scale properties such as the dimensionality
of the system and the symmetry of its Hamiltonian.

For this hypothesis to be employed, Kadanoff suggested
that identical cells of linear size L each should be formed
from the nodes of the lattice zd, to yield a new lattice with
the same symmetry and with lattice constant now equal to
L . The cells each contain L d nodes of the initial lattice and
their centres become the nodes of the new lattice. Since the
correlation length �R tends to infinity when t! 0, as follows
from the asymptotic formula (2.51), for sufficiently small
values of t there exists a number L such that

15 L5 �R . (2.52)

Therefore, each cell contains L d spins which are strongly
correlated, since, by condition (2.52), they are situated
within the correlation range. It follows that the majority of
spins in any cell must have the same direction, owing to
which the spin cell behaves as a single effective spin.
Moreover, as the spins on the initial lattice interact with
nearest neighbouring spins only, the spin cells will also
interact with nearest cells. So we can construct a cell
Hamiltonian similar to expression (2.31) but describing
only the interaction between nearest spin cells. We define
the cell spin by

r
�z = Lÿd

X

z2b(�z)

r z ,

where the summation is carried out over the nodes z within
the cell b(�z) centred at the node �z of the new lattice z d.
The cell Hamiltonian

H 0

(r) = ÿJ 0

X

(�z;�z 0)2 �z
d

r
�z
.r

�z 0 (2.53)

with J 0 as the new parameter depending, of course, on J
can be defined by

exp(ÿH 0

(r)Tÿ1
)

=

�

exp(ÿH(r)Tÿ1
)

Y

�z

d

�

r
�z ÿ Lÿd

X

z2b(�z)

r z

�

Y

z

dOz
,

(2.54)

where the variables z and �z run through the nodes of the
lattices zd and z d, respectively. It is readily seen that the
partition function defined in (2.32) now takes the form

Qn =

�

exp(ÿH 0

(r)Tÿ1
)

Y

�z2 �z
d

dO
�z .

By the universality hypothesis, the correlation between the
cell spins rz and r

�z
0 must have the same structure as that

between the spins rz and rz 0 in the initial model, and
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thereby the scale parameter L turns out to be inessential.
The construction of the cell Hamiltonian H 0

(r) in (2.54)
from the initial lattice Hamiltonian H(r) is called the
Kadanoff transformation and is denoted by

H 0

(r)Tÿ1
=

^KL H(r)Tÿ1 . (2.55)

By means of H 0

(r) we can clearly construct another cell
Hamiltonian H 00

(r) whose cell spins are defined on still
bigger cells. In fact, as above, we construct a supercell from
(L 0

)

d, then define the corresponding cell spin, and finally
define the cell Hamiltonian H 00

(r). The last procedure is
described by the transformation

H 00

(r)Tÿ1
=

^KL 0H
0

(r)Tÿ1 . (2.56)

Combining expressions (2.55) and (2.56) and using the fact
that the operators ^KL and ^KL 0 commute, we obtain

^KL
^KL 0 =

^KLL 0 . (2.57)

The set of operators ^KL is a commutative semigroup, which
is not a group, because the inverse operation is not defined.
Eqn (2.57) means that if we construct a cell of L d nodes of
the lattice zd and then construct a supercell consisting of
(L 0

)

d cells, the result will be the same as if we had
constructed a large cell from (LL 0

)

d nodes of the initial
lattice immediately. The Kadanoff transformation played a
significant role in Wilson’s formulation of the renormaliza-
tion group method in the theory of critical phenomena.

The transformation (2.55) implies a relation K 0

= fL (K)

between the interaction constants K = J=T and K 0

= J 0

=T .
According to Kadanoff’s hypothesis all the model systems
obtained by successive partitioning of the initial lattice zd

into cells behave similarly near the critical value. Hence we
can write

�R(K) = L �R( fL (K)) , (2.58)

That is, an L -fold increase in the cell dimension gives rise
to an L -fold decrease in the correlation length. For
convenience, we shall now assume the scale parameter L
to be a positive real number and write KL = fL (K). Further,
we take into account Wilson’s assumption that the relative
change, for example in KL , caused by the transition L ! L 0

depends only on KL , but cannot depend explicitly on L .
Then the change in KL corresponding to the infinitesimal
change in the parameter L ;L 0

ÿ L = dL , is

KL+dL ÿ KL �

�

dKL

dL

�

dL � dh ,

where h depends explicitly on KL but not on L . As a result
we obtain the differential equation

dKL

dL
=

1
L

h(KL ) , (2.59)

which is called the renormalization group equation (or
RG-equation). A crucial feature of this approach is the
assumption that the function h(K) is analytic even at the
critical point K = Kc, where, by definition,

�R(Kc) = 1 .

By virtue of Eqn (2.58), at this point we also have
�R(KL ) = 1 for all finite L . Hence the solution of the

RG-equation (2.59) with the initial condition K = Kc must
take the form KL = Kc for all L , which implies that

h(Kc) = 0 . (2.60)

A straightforward analysis of Eqns (2.58) and (2.59) shows
that the critical point Kc is an unstable fixed point of the
RG-equation. If we now linearize the function h(KL ) in the
neighbourhood of the critical point, then expression (2.60)
enables us to replace the RG- equation by its approxima-
tion

dKL

dL
=

y
L

(KL ÿ Kc) , (2.61)

where

y =

dh(K)

dK

�

�

�

�

K=Kc

. (2.62)

The solution of Eqn (2.61) with the initial condition
KL = K for L = 1 has the following form:

(Kc ÿ KL ) = (Kc ÿ K)L y . (2.63)

Let us choose an arbitrary number of the form KL = aKc,
0 < a < 1, and denote by L a the value of L for which
KL = aKc. From Eqn (2.63) we get

L a =

�

(1 ÿ a)Kc

Kc ÿ K

�1=y

.

Finally, we substitute the last expression for L in
Eqn (2.58) and use the fact that Kc ÿ K � tKc near the
critical point to show that

�R(K) �

�

1 ÿ a

t

�1=y
�R(aKc) , (2.64)

for all sufficiently small t. The indices y and n are therefore
connected by y = 1=n.

For this scheme ultimately to yield numerical values for
the critical exponents it turns out to be more efficient to use a
continuous analogue of the n-vector model in which a spin
vector r(x) taking arbitrary values is assigned to each point x
of the space rd. So, instead of the discrete set of the variables
rz , we now have a set of continuous spin variables, i.e. a spin
field r(x). In the new model the cell spin rx similar to the
average cell spin r

�z of the lattice z d is conveniently defined
by

r x =

�

k<L
exp(ÿix.k)r k

ddk

(2p)d
. (2.65)

It follows that rx is the smoothed variable describing the spin
distribution on a scale of L up to L � L

ÿ1. When choosing
the Hamiltonian to represent the interaction between the cell
spins rx one is usually guided by considerations of simplicity
and convenience. In this respect the most suitable
Hamiltonian suggested by Ginsburg and Landau is in the
form

H[r ] =

�

[ar 2
x + br 4

x + c(Hr x)
2
] ddx , (2.66)

where H[r] = H [r]Tÿ1, the coefficients a; b; c are analytic
functions of T and possibly of other variables, and

r
2
x =

X

n

j=1

(sxj )
2, r

4
x = (r

2
x)

2 ,

(Hr x)
2
=

X

d

r=1

X

n

j=1

�

qsxj

qx r

�2

,
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It is just the last expression that describes the interaction
between the neighbouring cell spins rx . From Eqns (2.65)
and (2.66) we obtain

H[r ] =

�

k<L
(a + ck2

)r k
.r
ÿk

ddk

(2p)d

+

b

(2p)3d

�

(ki<L)

(r k1
.r k2

)(r k3
.r k4

)d

�

X

4

i=1

ki

�

Y

4

i=1

ddk i

(2.67)

where the integration is performed over the vectors k; ki

whose length does not exceed L.
The set of parameters

m = (a, b, c) (2.68)

can be used to characterise the distribution function

W [r ] =

1
Q

exp(ÿH[r ]) . (2.69)

These parameters form a three-dimensional parametric space
every point m of which is associated with a specific
distribution function W . Then the transition from W to
another distribution function W 0 corresponds to a trans-
formation that maps the point m into the point m

0. To
discover this correspondence we examine the transition from
W to W 0.

Let us first integrate the function W [r] over all possible
values of sk such that L0 < k < L where L0 = L=L , L > 1,
and express the result in the form

W 0

[r ] = (Q0

)

ÿ1 exp(ÿH0

[r ])

= Qÿ1
�

exp(ÿH[r ])

Y

L
0
<k<L

dn
sk :

(2.70)

This smoothing operation transforms the original
Hamiltonian H depending on the cut-off parameter L

into a new Hamiltonian H
0 which will depend on the

parameter L0. Next we subject the variable k to the scaling
transformation

k ! k0 = Lk (2.71)

and at the same time renormalise the spin fields by

sk ! s
0

k 0 = l
ÿ1
L sk . (2.72)

The smoothing operation (2.70) reduces the domain of
definition of the field sk from the interval 0 < k < L to
0 < k < L

0, while the scale transformation (2.71) expands
the reduced interval up to the initial size. As a result of the
transformations (2.71) and (2.72) the Hamiltonian H

0

[r
0

]

now describes the new field s
0

k in the initial domain of the
variable k, but the coefficients a 0

; b 0

; c 0 in the expression
for H 0

[r
0

] form a new set of parameters

m
0

= (a 0, b0, c0) . (2.73)

Thus the transition from W to W 0 can be formally looked
upon as a transformation of the parameter set (2.68) into
the parameter set (2.73):

^R Lm = m
0 , (2.74)

where the operators ^R L as well as Kadanoff’s transforma-
tions constitute a continuous semigroup of renormalization
transformations. Hence the following condition applies

^R L
^R L 0m =

^R LL 0m , (2.75)

so that lLlL 0 = lLL 0 . But the last equality is true only when
lL = L a, where the exponent a does not depend on L . The
use of the distribution W [r] is equivalent in a sense to the
use of the distribution W 0

[r
0

]. For example, for the Fourier
transform of the spin – spin correlation function

D(k;m)=
�

exp(ÿik.R)hr x
.r x+R iW ddR = hjsk j

2
iW (2.76)

we have

D(k; m) = l
2
L D(Lk; R Lm) . (2.77)

This shows that averaging a quantity which is a product of
the transformed spin field components with respect to the
distribtuion function W 0 gives the same result as averaging
this quantity in its original form with respect to the original
distribution function W .

The starting point for the use of the renormalization
group in the study of critical phenomena is the fact that the
Hamiltonian of the system under consideration is
RG-invariant. In this connection we define a fixed point m�

of the transformation ^R L by

^R Lm
�

= m
� (2.78)

for all L > 1. Eqn (2.78) will clearly hold in the limit as
L !1. Suppose that there exists at least one fixed point
m
� and define its critical surface to be the set of points m of

the parametric space that satisfy the condition

lim
L!1

^R Lm = m
� . (2.79)

We next suppose that Eqn (2.74) in which the points m and
m
0 are located near m� can be approximated by

^R l
Ldm = dm

0 , (2.80)

where dm = mÿ m
�, dm

0

= m
0

ÿ u�, and ^R l
L is a linear

operator obtained by the linearisation of the operator
^R L . If we now denote by rj(L) and ej the eigenvalues and
the corresponding eigenvectors of the operator ^R l

L , then
owing to the equalities

^Rl
L
^R l

L 0ej =
^R l

LL 0ej ,

rj(L)rj(L
0

) = rj(LL 0

) ,

we have

rj(L) = L yj , (2.81)

where the exponent yj does not depend on L . Further,
having in mind that m depends on T [or on
t = (T ÿ T c)=T c] we expand the variation dm(t) in terms
of the eigenvectors ej of the operator ^R l

L

dm(t) = m(t)ÿ m
�

=

X

j

tj(t)ej . (2.82)

From Eqns (2.80) – (2.82) we obtain

dm
0

(t) =

X

j

tj(t)L
yj ej . (2.83)

By the basic hypothesis of the theory of critical phenomena
the value m(0) belongs to the critical surface of the fixed
point m� and therefore

lim
L!1

^R Lm(0) = m
� ,

but m(t) does not belong to this surface when t 6= 0. As
m(t) is an analytic function, the point m(t) is clearly located
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near the critical surface when t is small. Then the point
^R Lm(t) might possibly be found within a small neighbour-
hood of the fixed point m� if L is large enough, but will
start receding from m

� with further increase in L . Certainly,
the behaviour of the point ^RLm(t) depends on the
exponents yj in expression (2.83). Let us suppose that
one of these exponents, for example y1, is positive while the
others are negative. In that case for L4 1 we have

^R Lm(t) � m
�

+

^R l
Ldm(t) = m

�

+ t1(t)L
y1 e1 + O(L y2

) ,
(2.84)

where y2 < 0 is the maximal negative exponent. Using the
equality t1(0) = 0 and the analyticity of the function t1(t)

we expand the latter as the series

t1(t) = A 1t+ A 2t
2
+ . . . , A 1 > 0 . (2.85)

From formulas (2.84) and (2.85) it follows that for small
values of t

^RLm(t) � m
�

+ A 1tL
y1 e1 + O(L y2

)

= m
�

+ (L �Rÿ1
)

1=ne1 + O(L y2
) ,

(2.86)

where by definition

n
ÿ1

= y1, �R = jA 1tj
ÿn .

To determine the dependence of the function D(k;m(t)) on
t and the vector k we apply the expressions (2.86) and
lL = L a to Eqn (2.77). As a result we have

D(k;m(t))=L 2aD(Lk;m� + (L �Rÿ1
)

1=ne1 + O(L y2
)) .(2.87)

which takes the form

D(k; m(t)) =

�R 2aD(

�Rk; m� + e1 + O(

�Ry2
)) . (2.88)

when L =

�R . If we now neglect the term O(

�R y2
) when

t! 0 in the last equality, the correlation function
D(k;m(t)) will become a product of �R 2a and the function
of �Rk, which confirms the similarity hypothesis. We next
set t = 0 (

�R !1) and L = 1=k in Eqn (2.87) to obtain

D(k, m(0)) � kÿ2a , (2.89)

By the definition of the critical exponent Z we then have

2a = 2 ÿ Z .

Finally, we put k = 0 in expression (2.88) and for t small
enough obtain

D(0, m(t)) � �R 2ÿZ
� t

ÿ(2ÿZ)n (2.90)

Thus, by the definition of the critical exponent g we arrive
at the similarity rule g = (2 ÿ Z)n mentioned previously.

Wilson and Fisher introduced the e-expansion method
of evaluating the critical exponents, where e is the deviation
of the spatial dimensionality d from d = 4. The latter
occupies a special position in the sense that standard
perturbation theory can be used in this model when
d > 4. The case d = 4 has been investigated in detail by
Larkin and Khmel’nitskii [63]. The e-expansion procedure
allows the determination of the critical exponent in the form
of a power series in e. Calculations show that the
coefficients of the e-series initially decrease, but then begin
to increase rapidly with their ordinal number, which
suggests that these series are asymptotic in character.
Thus, the method can be effective only for spatial
dimensionalities close to d = 4, although it is clear that
only integer values of d are physically meaningful. Calcula-
tion of the critical exponents by means of

e-expansions are given in Refs [64] and [65] (see also
Refs [59, 60], and [66]). Up to terms of O(e

3
) the

expressions for the critical exponents Z, n, and g are

Z =

n + 2

2(n + 8)2 e
2
+ O(e

3
) , (2.91)

n =

1
2
+

n + 2
4(n + 8)

e+
n + 2

8(n + 8)3 (n2
+ 23n + 60)e2

+ . . . ,
(2.92)

g = 1 +

n + 2
2(n + 8)

e+
n + 2

4(n + 8)3 (n2
+ 22n + 52)e2

+ . . .

(2.93)

Analysis of the structure of the e-series shows that the
factor (n + 2) appearing in expansions (2.91) – (2.93) is also
present in all subsequent terms of the series. Because of this
the
n-model under consideration can also describe the
Gaussian case in which Z = 0, n =

1
2 , g = 1, if we formally

let the number of components equal n = 2 [67, 68].
Let us now return to our problem and make use of the

fact that the self-avoiding walk model is equivalent to a
zero-component magnetic material. Letting n = 0 in expres-
sions (2.91) – (2.93) we obtain the following values for the
critical exponents of the SAW problem in the framework of
e-expansions:

Z =

e
2

64
+ O(e

3
) , (2.94)

n =

1
2
+

1
16
e+

15
512

e
2
+ . . . , (2.95)

g = 1 +

1
8
e+

13
256

e
2
+ . . . (2.96)

If we retain only the terms appearing explicitly in
expressions (2.94) – (2.96), and let e = 1, then for d = 3
the critical exponents will assume the following approx-
imate values: Z � 0:016, n � 0:592, g � 1:176, which is in
quite good agreement with the results of numerical
calculations. However, the agreement gets substantially
worse on taking into account subsequent terms in the
above formulas so this might be no more than a
coincidence.

The Kadanoff – Wilson method can be applied to the
SAW problem directly in the form of the so-called
decimation procedure [69] (see also Refs [16, 17]), in which
the polymer chain consisting of N links is divided into
N 1 = N=g identical segments that contain g links each
joined consecutively. Every such segment is looked upon
as a new effective link with new length l1 and new excluded
volume parameter v1. To determine l1 we must take into
account the interaction between all the monomers belong-
ing to a given segment, and to find v1 we must include both
the interactions between two segments that are far enough
from each other and the interactions within each of them.
The result is a polymer chain with new parameters N 1; l1; v1

that certainly depend on the original values of N ; l; and v.
This procedure of arranging the links into segments is then
performed repeatedly, and for each kth stage we must
determine the renormalised quantities lk and vk . The
relationship between two successive steps in this process
is described by recurrence relations for lk and vk or for the
dimensionless quantity uk = vk=l d

k where uk = f(ukÿ1). As
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k !1, the sequence of numbers uk converges to a limit u�,
which is a root of the equation u� = f(u�). This fact is a
reflection of the universality conjecture. The approach
described here has been implemented quantitatively only
for e5 1, and the result for n agrees to the first order in e with
expression (2.95).

For real systems (d = 2; 3), the Wilson method gives
only approximate values of the critical exponents, but at
present its range of accuracy cannot be established.

The majority of exact results in the physics of critical
phenomena has been obtained for two-dimensional lattice
models. An example is the outstanding result of Nienhuis
[70] concerning the critical exponents for the two-dimen-
sional vector model [in other words, for the O(n)-model on
the hexagonal lattice]. The partition function for this system
is conveniently expressed by

QO(n) =

�

Y

(z;z0)

(1 + xr z
.r z 0)

Y

z

W (r z) dn
r z , (2.97)

where the first product under the integral sign is over all
pairs of nearest neighbour nodes belonging to the
hexagonal lattice. The spin distribution function W (r) in
the partition function (2.97) is either isotropic in n-
dimensional spin space, i.e. invariant under all rotations
of the spin-vector, or invariant under cubic transforma-
tions, i.e. permutations and inversions of the spin
components. In this case the function W (r) and the
length of the spin-vector are normalised so that
�

W (r) dn
r = 1,

�

W (r)(r .r) dn
r = n .

It is easy to show (see Ref. [71]) that the partition function
(2.97) can be expanded in terms of diagrams that contain
loops on the hexagonal lattice:

QO(n) =

X

D

x L nc ; (2.98)

here D is the set of such diagrams, c is the number of loops
in a diagram, and L is the total length of these loops. A
remarkable feature of the O(n)-model is its universality. In
fact, suppose the parameter n in this model can take any
real values; by giving it specific values we obtain certain
well-known particular cases. For example, setting n = ÿ2,
n = 0, n = 1, n = 2, we arrive respectively at the Gaussian
model, the self-avoiding walk model, the Ising model, and
the
XY -model. Moreover, by means of transformations
preserving the expression (2.98) for the partition func-
tion, it can be shown that the O(n)-model is equivalent to
the two-dimensional Coulomb gas model, which makes it
possible to obtain the main results. A detailed description
of the Coulomb gas model and its application to the theory
of phase transitions for d = 2 was given in the review by
Nienhuis [72]. The basic relations taken from Nienhuis [70]
that connect the quantity n, ÿ24 n4 2, with the critical
exponents for the
O(n)-model have the following form:

n = ÿ2 cos
2p
t

, (2.99)

1
n
= 4 ÿ 2t , (2.100)

2 ÿ
Z

2
= 1 +

3
4t

+

t
4

, (2.101)

where 14 t 4 2. In order to apply these results to a zero-
component O(n)-model we must let t =

4
3 in expressions

(2.99) – (2.101). The result is Z =

5
24 , n =

3
4 , g =

43
32 , which is

in good agreement with the corresponding numerical
calculations. Unfortunately, there are no exact results so
far for three-dimensional lattice models.

2.4. Functional integration method
The RG method occupies a central place among
approaches to the SAW problem. There are several
renormalization group schemes, one of which is connected
with Wilson’s method described above. However, as
already noted, the Wilson transformations actually form
a semigroup. At the same time, for the direct investigation
of polymer statistics or self-avoiding walks, there also exist
renormalization schemes related to a true group, also called
a renormalization group. Such a group was first discovered
in quantum field theory by Stueckelberg and Peterman [73]
and then actually used by Gell-Mann and Low [74] for
obtaining the ultraviolet asymptotics of the photon Green
function. More recently the RG method was developed by
Bogolyubov and Shirkov [75, 76]. In order to distinguish
this (true) group of renormalising transformations from the
Wilson renormalization group the former is usually called
the field renormalization group. Being a continuous group,
it can be described by Lie differential equations, which are
especially useful in practice. It turns out that the field RG
method can also be used in various procedures for treating
the SAW problem.

In this and subsequent sections I consider the contin-
uous SAW models and use extensively both statistical
analysis and the field RG method.

Here I shall briefly outline the continuous approach to
our problem, a full coverage being given in the monograph
by Freed [1]. The excluded volume problem was first
formulated in terms of the functional integration method
in the well-known work by Edwards [6], which stimulated
an extensive development of this approach [77 – 90].

The continuous model of a polymer chain involves a
passage to the limit as the number of links tends to infinity
while the effective length of each link tends to zero in such a
way that the entire length L of the chain remains finite. Any
admissible spatial configuration of the polymer will then be
described by the continuous-curve equation r = r(t), where
the coordinate t of a point on the curve varies from 0 to L .
In this model the distribution density of the vector R joining
the ends of the curve r(t) can be defined by

W (R, L) = Z ÿ1
(L)G(R; L) , (2.102)

where

Z (L) =

�

G(R, L) ddR , (2.103)

G(R, L) =

�

�r(L)=R

r(0)=0
D[r(t)] exp(ÿH 0(r))

�ÿ1

�

�r(L)=R

r(0)=0
D[r(t)] exp(ÿH(r)) , (2.104)

the expressions

H 0(r) =

d
2

�L

0

�

dr(t)
dt

�2

dt , (2.105)
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and

H(r) = H 0(r) +
v0

2

�L

dt
�L

jtÿt 0 j>l
dt 0d(r(t)ÿ r(t 0)) ,

(2.106)

are the Hamiltonians of the continuous model in which the
volume effect is neglected and included respectively. D[r(t)]
is the measure on the configuration manifold of the
continuous curve r(t), 04 t 4 L , with end-points r(0) = 0
and r(L) = R, and finally, the parameter l in expression
(2.106) is of the order of 1 on the chosen length scale. It is
readily seen from the definition of the model that it ceases
to be physically meaningful for distances of the order of l,
so it is reasonable to proceed to its macroscopic
description, i.e. to distances much bigger than l. With
this in mind, a new scaling length parameter L, l5L, is
introduced. But it makes the macroscopic chain length ~L
on the new scale unequal to the microscopic length L . This
fact enables us to employ the universality hypothesis when
L !1. For example, if we double L , the result will, of
course, be a doubling of ~L , which means that there must be
a linear relationship between L and ~L , i.e.,

~L = XL , (2.107)

where the factor X depends on the excluded volume v0

(more precisely, on v0=l d; but for simplicity we assume that
l = 1) and on the ratio l=L. On the new length scale, the
quantity describing the excluded volume effect must reflect
the collective character of volume interactions over
distances of the order of L. It follows that the macroscopic
excluded volume is now the renormalised quantity v
depending on v0 and l=L. However, it is more convenient
to use the quantities u0 =v0L

e=2 and u =vLe=2, so that, in
view of the foregoing, we can write

u = u(u0, lLÿ1
) . (2.108)

Let us now denote by G0(R; L , v0; l) and G(R;

~L ; u;L) the
nonrenormalised distribution densities of the vector R in
the microscopic and macroscopic approaches to the
problem, respectively. Since the renormalization of the
functions G0 and G must lead to the same distribution
density of the vector R, these two functions are propor-
tional, i.e.

G(R, ~L , u;L) = Y ÿ1
(u, lLÿ1

)G0(R, L , v0; l) . (2.109)

The relations (2.107) – (2.109) provide us with the basis
for the application of the RG method to the continuous
SAW model. In fact, if we rewrite expression (2.109) in the
form

G0(R, L , v0; l) = Y (u, lLÿ1
)

�G(R, LX (u, lLÿ1
), u(u0, lLÿ1

);L) , (2.110)

and recall that the left-hand side of Eqn (2.110) is
independent of L, i.e.,

L
q

qL
G0(R, L , v0; l)

�

�

�

�

L ;v0 ;l

= 0 .

we obtain a differential equation for the function G:
�

L
q

qL
+ b(u)

q

qu
+ gY (u) + gX (u) ~L

q

q ~L

�

�G(R, ~L , u;L) = 0 , (2.111)

in which

gX (u) =

�

L
q ln X(u; lLÿ1

)

qL

�

L ;v0 ;l

, (2.112)

gY (u) =

�

L
q ln Y (u; lLÿ1

)

qL

�

L ;v0 ;l

, (2.113)

and the quantity

b(u) =

�

L
qu
qL

�

L ;v0 ;l

(2.114)

is known as the Gell-Mann – Low function. For simplicity
we did not indicate here the dependence of the functions
gX ; gY , and b on l=L. Equation (2.111), called the RG
equation, contains information on the functional depend-
ence of the required function G on the macroscopic
parameters of the model.

A solution of Equation (2.111) can be written in the
most general form as

G(R, ~L , u;L) = exp ÿ

�u
gY (t)
b(t)

dt

� �

�F R, ~L exp ÿ

�u
gX (t)
b(t)

dt

� �

, L exp ÿ

�u dt
b(t)

� �� �

,

(2.115)

in which the function F, to be defined, is differentiable with
respect to its two last arguments. A simple analysis leads to
the relation

G(R, ~L , u;L) = rÿd=2G(Rrÿ1=2, ~Lrÿ1, u;Lrÿ1
) , (2.116)

where r is a nonzero length parameter. If we now
substitute Eqn (2.115) into relation (2.116) and then choose
r to be

r =

~L exp ÿ

�u
gX (t)
b(t)

dt

� �

,

the function G in the new variables

g(u) = exp ÿ

1
2

�u
gX (t)
b(t)

dt

� �

,

h(u) =

~Lÿd=2 exp ÿ

�u
gY (t)ÿ (d=2)gX (t)

b(t)
dt

� �

,

z =

2p ~L
L

� �e=2

exp ÿ

e

2

�u
gX (t)ÿ 1
b(t)

dt

� �

will assume the form

G(R, ~L , u;L) = h(u)F(g(u)R ~Lÿ1=2, z) . (2.117)

Using expression (2.104) and the definition of the mean
square end-to-end distance hR 2

i we get

hR 2
i = l ~Lg 2

(u)j(z) , (2.118)

which leads to the following expression for the distribution
density of the vector R:

W (R, ~L , u;L) = C(RhR 2
i
ÿ1=2, z) . (2.119)

In the formula we focus our attention on the dependence of
the probability density W on both R=hR 2

i
1=2 and the

parameter z. The scaling theories are usually free of the
latter dependence.
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If u depends more and more weakly on L as the
parameter L increases and if this dependence vanishes in
the limit when L!1, i.e. if the model is asymptotically
scale-invariant, the scaling concept can be put into practice.
The limiting value u� of u is called a fixed point and is
determined by

b(u)
�

�

�

u=u�
= 0 . (2.120)

The existence of the fixed point u� enables us to simplify
the calculation of the critical exponents. In fact, using the
fixed point (2.120) we can transform Eqn (2.111) into the
form
�

L
q

qL
+ B + A ~L

q

q ~L

�

G(R, ~L , u�;L) = 0 , (2.121)

where

A =

�

L
q ln X
qL

�

v0 ;l;L ju=u�

,

B =

�

L
q ln Y
qL

�

v0 ;l;L ju=u�

,

and represent its general solution as

G(R, ~L , u�;L) = L
ÿBF(R,L ~Lÿ1=A

) . (2.122)

The scaling properties of the function G together with the
asymptotic relations

hR 2
i �

~L 2n, ~L !1 ,

Q
~L =

�

G ddR �
~L gÿ1

m
~L , ~L !1 ,

imply the following relationship between the parameters
A , B and the critical exponents n,g:

2n = (1 ÿ A)

ÿ1 ,

(gÿ 1)(2n)ÿ1
= B .

Thus, dimensional analysis of the RG equation (2.121)
under the scaling conditions yields

G(R, ~L , u�;L) =

~L gÿndÿ1
L
nd+1ÿgÿ(d=2)f(RhR 2

i
ÿ1

) , (2.123)

where

hR2
i � l ~L 2n

L
1ÿ2n . (2.124)

It can be shown [1] that all the scaling functions depend on L
only through the ratio ~L=L, which measures the intensity of
the volume interaction. To calculate the values of n and g as
well as the scaling function f(R=hR 2

i) in Eqn (2.123), we
need to know the quantities X ;Y , and u. Standard
perturbation theory is used here to expand G in the
Hamiltonian (2.106) as a power series in the parameter e,
i.e. close to d = 4. In doing so, to avoid divergence of the
integrals that determine the coefficients of this series, one has
to apply regularisation procedures. The values of n and g

obtained in this way coincide to the second order in e with
those in expressions (2.95) and (2.96). Thus, the functional
integration scheme in combination with the RG method are
only applicable for very small e and hence do not allow
extension of the results beyond a small neighbourhood of the
spatial dimensionality d = 4.

3. Basic equation
A method is necessary for cognition of the truth.

R Descartes Rules for the Guidance of the M ind, Rule 4.

3.1 Derivation of the equation
In the subsequent sections I shall describe the approach
based on the renormalization group method to solve the
exact equation for the probability density W N (R).

Consider a spherical particle of diameter r0 which begins
walking from the origin in rd and assume that each step rk

of its geometric centre has a constant length jrk j = l, k 5 1,
and a random direction. Then the probability density of the
step rk can be written in the form

t(rk) = 2(ol 2s
)

ÿ1
d(r2

k ÿ l 2
) , (3.1)

where

s =

1
2 (dÿ 2) .

We now require that, after each step rk , k 5 1, the walking
particle avoids all regions of space it visited previously. It
follows that r0 < l and that the probability density of the
kth step rk is proportional to

t(rk)
Y

kÿ1

j=1

(1 + fjk) , (3.2)

where

fjk = f

 

�

�

�

�

X

k

i=j

ri

�

�

�

�

!

,

(3.3)

f(r) =

ÿ1, if r < r0,
0, if r > r0:

�

In accordance with the general statement of the problem,
we seek the probability that, after N steps —
r1; r2; . . . ; rN — the centre of the particle gets to the volume
element ddR in the neighbourhood of the point with
radius-vector R. We use the Markov method [91] to express
the required probability density W N (R) for the end-to-end
vector R of the N -step path by the following equations:

W N (R) = Qÿ1
N wN (R) , (3.4)

wN (R) =

�

d

�

R ÿ

X

N

k=1

rk

�

P1N

Y

N

k=1

t(rk) ddrk , (3.5)

P1N =

Y Y

14 j<k 4N

(1 + fjk) , (3.6)

where the normalising factor QN is given by

QN =

�

P1N

Y

N

k=1

t(rk) ddrk . (3.7)

Next, in formula (3.5) we use the Fourier representation of
the Dirac d-function

d(R) =

�

exp(ÿiR.q )

dd
r

(2p)d
,

to express wN (R) as the Fourier integral

wN (R) =

�

exp(ÿiR.q )aN (q)

dd
r

(2p)d
, (3.8)
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where the Fourier transform aN (q) of the function wN (R) is
given by

aN (q) =

�

P1N

Y

N

k=1

exp(iq .rk )t(rk ) ddrk . (3.9)

If we write the probability density W N (R) as the Fourier
integral

W N (R) =

�

exp(ÿiR.q)A N (q)

dd
r

(2p)d
, (3.10)

then by Eqns (3.4) and (3.8) its Fourier transform AN (q),
usually called the characteristic function, is related to aN (q)
by

A N (q) = Qÿ1
N aN (q) . (3.11)

Because of the spatial isotropy in the problem under
consideration, the probability density W N (R) does not
depend on the direction of the vector R and hence the
functions A N (q) and aN (q) do not depend on the direction
of the vector q. Let us note finally that in the limiting case
where r0 = 0, the definition (3.3) implies the identity
fjk � 0, which together with Eqns (3.6) and (3.7) in turn
implies that P1N � 1 and QN � 1.

We now pass to formula (3.9) and expand the product
P1N in the variables fjk :

P1N = 1 +

X

j<k

fjk +

X

j<k

X

l<m

fjk flm + . . . (3.12)

By the definitions of fjk and P1N in Eqns (3.3) and (3.6) the
expansion (3.12) is in essence an inversion formula, which
is sometimes referred to as the inclusion and exclusion
principle [92]. For simplicity we pass to a graphical
representation of the series (3.12) and introduce the
notation depicted in Fig. 1. Then the series (3.12) can be
displayed as shown in Fig. 2. We call the factors fjk and flm

with j < k , l < m, and j4 l connected if j4 l < m4 k or
j < l4 k < m, and disconnected if j < k < l < m. In Fig. 2
the first and second diagrams in square brackets
correspond to connected factors while the third diagram
corresponds to disconnected factors. Any diagram that
represents a chain of connected factors is called a
connected diagram. As is readily seen, the diagram
corresponding to any term of the series (3.12) is either a
connected diagram, or a product of connected diagrams.
Therefore, it is natural to select all the connected diagrams
and to add them together as shown in Fig. 3. We shall refer
to the first diagrams in each row (with the minimal number
of dotted lines) as simple connected diagrams. All the
subsequent connected diagrams can clearly be obtained
from the simple connected diagrams by inserting all
possible diagrams into them. If we now take the sum of
the diagrams in each individual row and then sum the
results we obtain the series shown in Fig. 4, every term of
which is the sum of connected diagrams in the correspond-
ing row. It follows that

bjk = fjk P 0

jk +

X

l<m

fjm flk PjlPlmPmk

+

XX

l<m<p<q

( fjp flq fmk + fjm flq fpk

�

PjlPlmPmpPpqPqk + . . . ,

(3.13)

where P 0

jk denotes the product

Pjk =

Y Y

j4 l<m4 k

(1 + flm) ,

in which the factor (1 + fjk) is omitted, i.e.

Pjk = (1 + fjk)P
0

jk . (3.14)

Next, we select and sum successively all the diagrams that
can be represented as a product of two, three, etc.
connected diagrams. The series in Fig. 2 will then take
the form which can be written as

P1N = 1 +

X

j<k

bjk +

XX

j<k<l<m

bjk blm + . . . (3.15)

Thus, the partial summation of the original series trans-
forms it into a new series every terms of which is factorised.

Let us now substitute P1N given by the series (3.15) into
(3.9) and perform the integration in each term of the series
thus obtained. Moreover, for all n5 2 define the function
bn(q) by

bn(q) =

�

b1n

Y

n

k=1

exp(iq .rk)t(rk) ddrk , (3.16)

1= ————, fjk = jÿÿÿÿÿ k ; Pjk = j k

Figure 1.

1 N = ————— +

X

j<k

j k +

+

X
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X
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"
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bjk � j k = j k +

X

j k + . . .

l m

Figure 4.

1 N = —— +

X

j<k

j k +

XX

j<k<l<m

j k � l m + . . .

Figure 5.
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where b1n describes, as follows from expression (3.13), the
family of all connected n-link diagrams. In this way we
obtain the series

aN (q) = L
N
s (rl) +

X

n5 2

(N ÿ n + 1)LNÿn
s (rl)bn(q)

+

X

n5 4

�

1
2 (N ÿ n + 1)(N ÿ n + 2)LNÿn

s (rl)

�

XX

n1+n2=n

bn1
(q)bn2

(q)

�

+ . . . , (3.17)

which can be written in the more compact form

aN (q) =

X

m 5 0

X

N

n=0

(N ÿ n + m)!

(N ÿ n)! m!

L
Nÿn
s (rl)B(m)

n (q) , (3.18)

where

Ls(x) = G(s + 1)

�

2
x

�s

Js(x) , (3.19)

B(m)

n (q) =

X

. . .

X

n1+...+nm=n

bn1
(q) . . . bnm

(q) . (3.20)

Js(x) is the Bessel function, and

(N ÿ n + m)!

(N ÿ n)! m!

; m5 1 ,

is the number of ways of arranging m segments consisting
of n1; n2; . . . ; nm links, respectively, with
n1 + n2 + . . . + nm = n, within a segment consisting of N
(n4N) links, in such a way that the order of the segments
is preserved. By the well-known Cauchy theorem we have

1
2pi

�

G

dz zn1+...+nmÿnÿ1
=

1, if
P

m

k=1
nk = n ,

0, if
P

m

k=1
nk 6= n ,

8

>

>

<

>

>

:

(3.21)

where the closed contour G encloses the origin of the
coordinates on the complex z-plane. Using Eqn (3.21), one
can easily reduce formula (3.20) to the form

B(m)

n (q) =

1
2pi

�

G

dz

zn+1 bm
(z, q) , (3.22)

where

b(z, q) �
X

n5 0

znbn(q) (3.23)

is the generating function and the coefficients b0(q) and
b1(q) of the last series are identically zero. By Eqns (3.22)
and (3.18) we get the relation

aN (q) =

1
2pi

�

G

dz

zN+1

X

m 5 0

X

N

n=0

(N ÿ n + m)!

(N ÿ n)! m!

�[zLs(rl)]Nÿnbm
(z, q) , (3.24)

in which the summation can be formally extended to all m
from 0 to 1 and all n from ÿ1 to N without any effect on
the final result. Applying this remark, together with
formula

(1 ÿ x ÿ y)ÿ1
=

X

1

m=0

X

1

n=0

(m + n)!
m! n!

x myn, jx + yj< 1 , (3.25)

(see Ref. [93]) to relation (3.24), we get

aN (q) =

1
2pi

�

G

dz

zN+1 [1 ÿ zLs(rl)ÿ b(z, q)]ÿ1 , (3.26)

where the closed contour G encloses the origin z = 0 and is
chosen so that it satisfies
�

�zLs(rl) + b(z, q)
�

�

< 1 .

Finally, if we define the generating function a(z; q) by

a(z, q) =

X

N 5 0

zN aN (q) , (3.27)

Eqn (3.26) will imply that [94]

aÿ1
(z, q) = aÿ1

0 (z, q)ÿ b(z, q) , (3.28)

where

aÿ1
0 (z, q) = 1 ÿ zLs(rl) . (3.29)

Eqn (3.28) is analogous to the well-known Dyson equation [95]
and plays a fundamental role in our problem. For this reason
we shall refer to it as the basic equation. To make Eqn (3.28)
closed, we have to establish a relationship between the
generating functions b(z; q) and a(z; q). For this purpose,
we find b1n from Eqn (3.13), substitute it into Eqn (3.16), and
use the latter in Eqn (3.23). In addition, we represent the
function fjk in the form

fjk = ÿ

�

v(j) exp

�

ÿij .
X

k

m=j

rm

�

dd
k

(2p)d
, (3.30)

where the Fourier transform v(j) of the function ÿf(r) [see
equalities (3.3)] is given by

v(j) = ÿ

�

exp(ij .r)f(r) ddr = v0Ls+1(r0k) , (3.31)

and where the quantity

v0 =

(pr2
0)

s+1

G(s + 2)
, (3.32)

is, as before, called the excluded volume. Using Eqn (3.30),
we obtain

bn(q) = ÿ

�

v(j)a 0

n(qÿ j)

dd
k

(2p)d

+

XX

1<l<m<n

�

v(j)v(j 0)al(qÿ j)amÿl(qÿ jÿ j
0

)

� anÿm(qÿ j
0

)

dd
k dd

k
0

(2p)2d

ÿ

X

. . .

X

1<l<m<p<q<n

�

v(j)v(j 0)v(j 00)

� [al(qÿ j)amÿl(qÿ jÿ j
0

)apÿm(qÿ jÿ j
0

ÿ j
00

)

� aqÿp(qÿ j
0

ÿ j
00

)anÿq(q ÿ j
00

)

+ al(qÿ j)amÿl(qÿ jÿ j
0

)apÿm(qÿ j
0

)

� aqÿp(qÿ j
0

ÿ j
00

)anÿq(qÿ j
00

)]

�

dd
k dd

k
0 dd

k
00

(2p)3d
+ . . . , (3.33)
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where the function a 0

N (q) is defined by expression (3.9), in
which the product P1N must be replaced by P 0

1N . Since P 0

1N

differs from P1N only over the region

�

�

�

�

X

N

j=1

rj

�

�

�

�

< r0 ,

the functions a 0

N (q) and aN (q) can behave differently only
when r is large enough (r0rÿ1

0 ). But the latter region is
inessential for the asymptotic behaviour of the probability
density W N (R) as N !1 and R4 l. So henceforth we
shall assume that the functions a 0

N (q) and aN (q) coincide
everywhere. If we now substitute Eqn (3.33) into
Eqn (3.23) and carry out the appropriate summation, we
shall obtain the required relation

b(z, q) = ÿ

�

v(j)a(z, qÿ j)

dd
k

(2p)d

+

�

v(j)v(j 0)a(z, qÿ j)a(z, qÿ jÿ j
0

)

� a(z, qÿ j
0

)

dd
k dd

k
0

(2p)2d

ÿ

�

v(j)v(j 0)v(j 00)[a(z, qÿ j)a(z, qÿ jÿ j
0

)

� a(z, qÿ jÿ j
0

ÿ j
00

)a(z, qÿ j
0

ÿ j
00

)a(z, qÿ j
00

)

+ a(z, qÿ j)a(z, qÿ jÿ j
0

)a(z, qÿ j
0

)

� a(z, qÿ j
0

ÿ j
00

)a(z, qÿ j
00

)]

�

dd
k dd

k
0 dd

k
00

(2p)3d
+ . . . (3.34)

The last equality and the basic equation (3.28) constitute a
closed system of equations for the unknown function
a(z; q).

The infinite series (3.34) for the function b(z; q) is
conveniently represented graphically. This is done by
assigning to each term of the series a diagram consisting
of a certain number of vertices and a set of solid and wavy
lines joining these vertices. In addition, each diagram
contains two further external solid lines, one of which is
ingoing and the other outgoing. Each line is assigned a
particular vector (‘momentum’), which must be conserved
at every vertex where two solid lines and one wavy line
converge. Finally, the quantity a(z; qÿj) is assigned to each
internal solid line and ÿv(j)=(2p)d is assigned to each wavy
line. The integration is then carried out over all the wavy-
line vectors. According to these rules, the series in (3.34) can
be displayed as shown in Fig. 6.

Analysis of the individual terms in this series shows that
the problem associated with the divergence of the integrals
does not arise here. In fact, if in all the integrals we change
to the configuration variables frg, we readily see that the

integration with respect to frg is carried out over the region
with the lower limit jrj = r0, which is, or course, a reflection
of the excluded volume effect, whereas at the upper limit
(when jrj ! 1) the integrands tend exponentially to zero
because of the number of steps that constitute the trajectory
of the walking particle is finite. However, we still have a
convergence problem for the series as a whole. To solve this
problem we direct our attention to equalities (3.23), (3.16),
and (3.13). Since the function fjk , as defined in Eqns (3.3),
assumes only the values ÿ1 and 0, and since the product Pjk

can be equal to 0 or 1 [see expression (3.6)], we conclude
from equality (3.13) that b1n has only three possible values,
ÿ1; 0, and 1. Together with Eqn (3.16) this implies that

�

�bn(q)
�

�4

�

jb1nj
Y

n

k=1

�

� exp(iq .rk)
�

�t(rk) ddrk 4 1

for n5 2 and all real values of r. Combining this inequality
with the identity (3.33), we get

�

�b(z, q)
�

�4

X

n5 0

jzjn
�

�bn(q)
�

�4 jzj2(1 ÿ jzj)ÿ1 ,

provided that jzj < 1 and Im r = 0. Thus, for all real r, the
series in (3.34) which represents the function b(z; q)
converges absolutely at least within the region jzj < 1.

An analogous assertion holds for the function a(z; q).
Indeed, by the definition of aN (q) in (3.9) we have

�

�aN (q)

�

�4

�

�

�P1N

�

�

Y

N

k=1

j exp(iq .rk)
�

�t(rk) ddrk 4 1

for all real r. These inequalities together with Eqn (3.27)
imply that

�

�a(z, q)
�

�4

X

N 5 0

jzjN
�

�aN (q)

�

�4 (1 ÿ jzj)ÿ1 ,

whenever jzj < 1 and Im r = 0.
The above assertions can be regarded as proof of the

closure of the basic equation. If a solution of this equation
were known, we could use the Fourier transformation

w(z, R) =

�

exp(ÿiR.q)a(z, q)
dd
r

(2p)d
(3.35)

to find the generating function

w(z, R) �

X

N 5 0

zN wN (R) , (3.36)

and then use the inversion formula

wN (R) =

1
2pi

�

dz

zN+1 w(z, R) , (3.37)

to determine wN (R). Finally, by Eqn (3.4) combined with
the normalization condition

QN =

�

wN (R) ddR , (3.38)

we would obtain the required probability density W N (R).
However, the problem of solving the basic equation and
subsequently determining the function W N (R) is very
difficult. Here we are concerned with a more realistic
problem, namely discovering the asymptotic behaviour of
W N (R) as N !1 and R4 l.

b(z; r) = + +

+ + + . . .

Figure 6.
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3.2 Properties of the basic equation
We now apply formulae (3.37) and (3.35) in succession to
Eqn (3.38) and integrate the result with respect to R to
obtain

QN =

1
2pi

�

dz

zN+1 a(z, 0) , (3.39)

wherefrom it follows that

a(z, 0) = Q(z) �
X

N 5 0

z N QN . (3.40)

Combining Eqn (3.40) with Eqn (3.28), we arrive at the
relation

Qÿ1
(z) = 1 ÿ z ÿ b(z, 0) . (3.41)

Suppose z0 to be the singular point of the function Q(z)
closest to the origin. We then have by definition

1 ÿ z0 ÿ b(z0, 0) � 0 . (3.42)

Hence it is readily seen that z0 = z0(v0=l d
), i.e. z0 depends

only on the dimensionless quantity v0=l d; moreover,
z0(0) = 1. The inclusion of the excluded volume effect thus
leads to a shift of the singular point z0 from its undisturbed
position z0(0) = 1. We know from the theory of analytic
functions that any power series has the property that the
boundary of its circle of convergence contains the singular
point of its sum closest to the origin [96]. Moreover, the
asymptotic behaviour of the function represented by a power
series as the variable z approaches the boundary of its circle
of convergence can be related to the asymptotic behaviour of
its coefficient as their order numbers tend to infinity. Indeed,
the well-known Tauberian theorem applied to the power
series in expression (3.40) states that if the coefficients
QN z N

0 of the series constitute a monotonic sequence and if
0 < a <1, then the relations

Q(z) �

�

1 ÿ
z
z0

�

ÿa

L

�

z0

z0 ÿ z

�

,
z0

z
! 1 ÿ 0 ,

and

QN �
N aÿ1

G(a)zN
0

L(N), N !1 ,

are equivalent; here L(t) is a slowly varying positive
function (i.e. a function such that

L(xt )
L(t)

! 1, t !1 ,

for any fixed x > 0) [97]. The importance of the Tauberian
theorem lies in its close relation to the problem of
evaluating the asymptotic form of the probability density
W N (R) for N !1 and R4 l.

With this in mind, we introduce the generating function

A(z, q) =

X

N 5 0

zN AN (q) (3.43)

for all z such that jzj < R A (r), where R A (r) is the radius of
convergence of the series in (3.43), and hope to establish a
relationship between A(z; q) and a(z; q). To do this, we
find aN (q) from Eqn (3.11), substitute it into Eqn (3.27), to
obtain

a(z, q) =

X

N 5 0

zN QN A N (q) . (3.44)

If we now apply the inversion formula to the series in
Eqns (3.40) and (3.43), we arrive at the required relation

a(z, q) =

1
2pi

�

G

dz0

z0
Q

�

z
z0

�

A(z0, q) , (3.45)

in which the contour of integration G is chosen so that any
point z 0 on this contour satisfies the inequalities
jz 0j < R A (r) and jz=z 0j < R 0, where R 0 is the radius of
convergence of the series in (3.40). In a similar way we get
a formula that is inverse to (3.45). In fact, if we start from
definition (3.43), then use Eqn (3.11), and apply the
inversion formula to (3.27), we obtain

A(z, q) =

1
2pi

�

~G

dz0

z0
~Q

�

z
z0

�

a(z0; q) , (3.46)

where

~Q(z) �
X

N 5 0

Qÿ1
N zN , (3.47)

and the contour ~G in (3.46) is chosen so that z 0 satisfies
jz 0j < R a(r) and jz=z 0j < ~R 0; R a(r) and ~R 0 are the radii of
convergence of the series in (3.44) and (3.47), respectively.
The generating functions Q(z) and ~Q(z) are reciprocal in
the sense of the equation

1
2pi

�

dz
z

Q

�

z

z0

�

~Q

�

z
z

�

=

�

1 ÿ
z
z0

�

ÿ1

, (3.48)

which is a particular case of formula (3.46) and follows
from the latter if we put r = 0 and take into account that

A(z, 0) = (1 ÿ z)ÿ1, jzj < 1 . (3.49)

The inversion formulas show that, in order to find the
asymptotic form of the density W N (R) for N !1 and
R4 l, we have to know the asymptotic behaviour of the
function A(z; q) when z ! zA (r), jzj < R A (r) and r is
within a small neighbourhood of the point r = 0, where
zA (r) is the singular point of the function A(z; q) closest to
the origin. In particular, it follows from (3.49) that
zA (0) = 1. However, we cannot investigate the behaviour
of the function A(z; q) immediately, because the basic
equation deals with the function a(z; q). Our problem is
therefore reduced to determining the asymptotic form of the
function a(z; q) when r is small, z ! za(r), and jzj < R a(r),
where za(r) is the singular point of the function a(z; q)
closest to the origin. The relationship between the points
zA (r) and za(r) is described by the Hadamard multi-
plication theorem [96]: if z(1)

0 ,z(2)
0 , . . . are the singular

points of the function Q(z) and z(1)
A (r),z(2)

A (r), . . . are the
singular points of the function A(z; q), then every singular
point of the function a(z; q) has the form z(m)

0 z(n)
A (r). By this

theorem we have

za(r) = z0zA (r) , (3.50)

where z0 = za(0) [see the identity (3.42)]. In a similar
manner, formula (3.46) implies that

zA (r) = ~z0za(r) , (3.51)

where ~z0 is the singular point of ~Q(z) closest to the origin.
Combining Eqn (3.50) with (3.51), we see that z0~z0 = 1.
Therefore, za(r)=z0 behaves like zA (r) and hence it equals
unity when r = 0. It is then reasonable to go over from z to
another variable, for example, to z=z0 or, more conveni-
ently, to the variable z = z0=z.
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Now introduce the notation

A(z, r) = z
ÿ1a(z, q) , (3.52)

B(z, rl, ~v;A) = zb(z, q) , (3.53)

~v = z
2vlÿd, ~v0 = z

2v0lÿd . (3.54)

Using the identity (3.42) we can rewrite Eqn (3.28) as
follows:

A
ÿ1

= zÿ 1 + z0[1 ÿ Ls(rl)]

+ B(1, 0, ~v;A)ÿ B(z, rl, ~v;A) . (3.55)

Next, we denote by r1 � ix (Re x > 0) the root of the
equation A

ÿ1
(z, r) = 0 closest to the origin r = 0 and put

r = r1 in Eqn (3.55). We then get the identity

zÿ 1 + z0[1 ÿ Ls(ixl)]

+ B(1, 0, ~v;A)ÿ B(z, ixl, ~v;A) � 0 , (3.56)

connecting the variables z and x. Finally, with the help of
expressions (3.56) and (3.55) we arrive at the following
form of the basic equation:

A
ÿ1

= A
ÿ1
0 (x,r) + B(z,ixl,~v;A)ÿ B(z,rl,~v;A) , (3.57)

where

A
ÿ1
0 (x, r) = z0[Ls(ixl)ÿ Ls(rl)] . (3.58)

The method adopted here for investigating the SAW
problem is based on Eqn (3.57) combined with the identity
(3.56).

An important special aspect of this problem is the
evaluation of the momenta

hR 2m
iN =

�

R 2mW N (R) ddR , m5 1 , (3.59)

By the Carleman theorem [97] these momenta determine
the required probability density, provided that

X

m 5 1

hR 2m
i
ÿ1=2m
N = 1 ,

i.e. the series diverges. From expressions (3.4), (3.37),
(3.39), and (3.52) it follows that

W N (R) =

�

G

dz zN
~w(z, R)

�

G

dz zN
A(z, 0)

� �

ÿ1

, (3.60)

where

~w(z, R) =

�

exp(ÿiR.q)A(z, r)
dd
r

(2p)d
, (3.61)

and the closed contour of integration, G, is chosen so that
the origin z = 0 and all the singular points of the
integrand are situated inside G. We now substitute the
right-hand side of Eqn (3.60) into Eqn (3.59) and then use
the formula

A(z, r) = o

�

1

0
Ls(rR) ~w(z, R)R 2s+1 dR . (3.62)

which is the inverse of (3.61), in conjunction with the
equation
�

d

dx 2

�m

Ls(x) =

�

ÿ

1
4

�m
G(s + 1)

G(s + m + 1)
Ls+m(x) (3.63)

This yields

hR 2m
iN = (ÿ4)m G(s + m + 1)

G(s + 1)

�

�

dz zN

�

dz zN
A(z, 0)

h�

q

qr2

�m
A(z, r)

�

�

�

r=0

i

. (3.64)

In particular, from Eqn (3.64) and (3.57) we obtain

hR 2
iN = z0l 2

�

�

dz zN
A

2
(z, 0)

�

dz zN
A(z, 0)

�

1 ÿ
2 d
z0

qB(z, t, ~v;A)

qt 2

�

�

�

t=0

�

, (3.65)

where

A
ÿ1

(z, 0) = A
ÿ1
0 (x,0) + B(z, ixl, ~v;A)ÿ B(z, 0, ~v;A).

(3.66)

We now point out a very important property of
Eqn (3.57), namely its invariance with respect to the
multiplicative transformations

A ! A
0

= aA, A0 ! A
0

0 = aA 0 ,

v ! v0 = a
ÿ2v , (3.67)

where a is a nonzero continuously varying parameter [98].
These transformations constitute a continuous group,
which is usually called the renormalization transformation
group (RG). To understand the physical sense of the RG,
consider the asymptotic case where N !1 and R4 l. It
follows from Eqns (3.60) and (3.61) that in this case we
need to know the behaviour of the function A(z, r) within
small neighbourhoods of the points z = 1 and r = 0 to
determine the asymptotic form of the density W N (R). In
what follows we shall assume the values of z and r to
belong to the above neighbourhoods. Then, by the identity
(3.56) and

Ls(x) = 1 ÿ
x 2

2d
+ O(x 4

), x ! 0 , (3.68)

the values of x belong to the corresponding neighbourhood
of the point x = 0. If we now multiply the number of steps
N in Eqn (3.60) by a, i.e. put

N ! N 0

= aN , a > 0 , (3.69)

we obtain

W N (R) =

�

dz0 (z0)N 0

~w 0

(z
0, R)

h

�

dz0 (z0)N 0

A
0

(z
0, 0)

i

ÿ1
,

(3.70)

where

z
0

= z
1=a, ~w 0

= a~w, A
0

= aA . (3.71)

Since for the values of z and r under consideration,
Eqn (3.55) has the approximate form

A
ÿ1

= zÿ 1 + z0r
2l 2

(2d)ÿ1

+ B(1, 0, ~v;A)ÿ B(z, rl, ~v;A) , (3.72)
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the definitions (3.71) and the RG-properties of the above
equation enable us to rewrite it in the following equivalent
form:

(A
0

)

ÿ1
= z

0

ÿ 1 + z0r
2l 2

1 (2d)ÿ1

+ B(1, 0, ~v0;A0

)ÿ B(z
0, rl1, ~v0;A0

) , (3.73)

where

l1 = laÿ1=2 , (3.74)

~v0 = a
sÿ1

~v . (3.75)

On comparing Eqn (3.60) with (3.70) and then Eqn (3.72)
with (3.73), we conclude that the change in the number of
steps N according to Eqn (3.69) is equivalent both to the
change in the length l of the individual step according to
Eqn (3.74), and to the change in the excluded volume v0

according to Eqn (3.75). However, it should be stressed
that this statement is true only for the asymptotic case
(N !1, R4 l) and appears symbolically as

W N (Rl ÿ1, v0lÿd
) = W aN (a

1=2Rl ÿ1, asÿ1v0lÿd
) .

From this one can easily obtain the asymptotic form of the
mean square end-to-end distance for the random walk:

hR 2
iN � Nl 2

w(N 1ÿsv0l ÿd
) , (3.76)

where w(x) is a universal function still to be determined.
The last formula shows that the dimensionality d = 4
(s = 1) is special, because the excluded volume effect
becomes weak when d > 4 (s > 1), and in this case one can
use perturbation theory to calculate hR 2

iN .

3.3 Renormalization group method
The renormalization group method of solving the basic
equation relies on the properties of this equation, which
have been mentioned earlier. To develop this method,
consider Eqns (3.56) and (3.57). The first establishes a
relationship between z and x, which makes it possible to
find the critical exponent n, whereas the second determines
the type of the singular point r1 � ix of the function
A(z, r), which enables us to evaluate the other critical
exponent Z. Clearly, we have to determine at the outset the
character of the singularity of A(z, r) at r = r1. With this
in mind we write A(z, r) in the form

A = A 0G . (3.77)

For the new unknown quantity G we obtain from
Eqn (3.57) the equation

Gÿ1
= 1 + F(x

2l 2, r2l 2, ~v; G) , (3.78)

in which

F(x
2l 2, r2l 2, ~v; G) = A0(x, r)

�[B(z, ixl, ~v;A0G)ÿ B(z, rl, ~v;A0G)] , (3.79)

and the function A0(x, r) displays the following behaviour
for small values of x and r:

A0(x, r) = 2d
�

z0(x
2
+ r

2
)l 2�ÿ1

. (3.80)

If we put r = 0 in Eqn (3.78) and introduce the notation

G0 = G
�

�

�

r=0
,

we can use the resulting equation for G0 to rewrite
Eqn (3.56) in the form

Eÿ1
= Gÿ1

0 +A0(x, 0)[B(z, 0; ~v;A0G)ÿ B(1, 0, ~v;A0G)] ,
(3.81)

where

Eÿ1
= (zÿ 1)A0(x, 0) (3.82)

is proportional to the ratio (zÿ 1)=x2l2 for small values of
x. It is easily seen that Eqn (3.81) can be used for the direct
evaluation of the critical exponent n, once the function G
has been determined.

Let us now return to Eqn (3.78) and postulate that

G
�

�

�

r2
=l

= 1 , (3.83)

or, equivalently, that

F(x
2l 2, ll 2, ~v; G) = 0 .

Let us now multiply both sides of Eqn (3.78) by aÿ1 and
use the RG-properties of this equation to write it down in
the equivalent form

(G 0

)

ÿ1
= 1 + F(x

2l 2, r2l 2, ~v0; G 0

)ÿ (1 ÿ a
ÿ1

) , (3.84)

where

G 0

= aG, ~v0 = a
ÿ2

~v .

Next, choose the value of r2
= l

0 such that

G 0

�

�

�

r2
=l

0

= 1 , (3.85)

i.e. [see Eqn (3.84)]

F(x
2l 2, l0l 2, ~v0; G 0

) = 1 ÿ a
ÿ1 .

It is clear that, in general, l0 depends on x
2, l 2, ~v, and a.

Hence the equation for G can be represented in the form

Gÿ1
= 1 + F(x

2l 2, r2l 2, ~v; G)ÿ F(x
2l 2, ll 2, ~v; G) , (3.86)

invariant under the transformation

G ! G 0, ~v ! ~v0, l! l
0 . (3.87)

It follows that it is proper to consider the dimensionless
quantity G as a function of dimensionless variables:

G = G(x
2
l
ÿ1, r2

l
ÿ1, ~v) ,

Eqn (3.83) written in the form

G(x
2
l
ÿ1, 1, ~v) = 1 , (3.88)

is called the normalization condition. The RG-property of
Eqn (3.78) can now be expressed as

aG(x
2
l
ÿ1, r2

l
ÿ1, ~v) = G(x

2
(l
0

)

ÿ1, r2
(l
0

)

ÿ1, ~v0) , (3.89)

which means that the multiplication of the function G by a
nonzero number a is equivalent both to a change of the
normalization point l and to a renormalization of the
excluded volume ~v. Setting r

2
= l

0 in Eqn (3.89) and using
the normalization condition

G(x
2
(l
0

)

ÿ1, 1, ~v0) = 1 ,

which corresponds to Eqn (3.85), we obtain

a
ÿ1

= G(x
2
l
ÿ1, l0lÿ1, ~v) ,
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so that in terms of the new variables

x =

x
2

l
, y =

r
2

l
, t =

l
0

l

Eqn (3.89) assumes the form

G(x , y, ~v) = G(x , t, ~v)G

�

x
t

,
y
t

, ~vG2
(x , t, ~v)

�

. (3.90)

Squaring both sides of Eqn (3.90) and then multiplying the
result by ~v, we finally obtain for the RG-invariant quantity

V(x , y, ~v) = ~vG2
(x , y, ~v) (3.91)

the functional equation

V(x , y, ~v) = V
ÿ

xt ÿ1, ytÿ1, V(x , t, ~v)
�

(3.92)

with the normalization condition

V(x , 1, ~v) = ~v . (3.93)

Eqn (3.92) is closed and can be solved in general form [76].
However, for practical purposes, it is more convenient to
deal with the Lie differential equations corresponding to
the continuous renormalization group. For example, to
obtain the Lie equation for the function V(x , y, ~v), we
differentiate both sides of Eqn (3.92) with respect to y and
then put t = y. This gives

y
qV(x , y, ~v)

qy
= b

�

x
y

, V(x , y, ~v)

�

, (3.94)

where

b(x , ~v) =

qV(x , y, ~v)
qy

�

�

�

�

y=1

, (3.95)

and the normalization condition (3.93) serves as the
boundary condition for Eqn (3.94). On the other hand,
if we differentiate Eqn (3.92) with respect to t and then put
t = 1, we arrive at another form of the Lie equation:

�

x
q

qx
+ y

q

qy
ÿ b(x , ~v)

q

q~v

�

V(x , y, ~v) = 0.

In a similar way we can obtain differential equations for
the function G(x ; y; ~v) directly. In fact, if we differentiate
both sides of expression (3.90) with respect to y and put
t = y we obtain

q ln G(x , y, ~v)
q ln y

= g

�

x
y

, V(x , y, ~v)

�

, (3.96)

where

g(x , ~v) =

qG(x , y, ~v)
qy

�

�

�

�

y=1

, (3.97)

and relation (3.88) serves as the boundary condition for
Eqn (3.96). However, if we differentiate Eqn (3.90) with
respect to t and then put t = 1, we obtain

�

x
q

qx
+ y

q

qy
ÿ b(x , ~v)

q

q~v

�

ln G(x , y, ~v) = g(x , ~v) .

From expressions (3.95) and (3.97) we get the following
relation between the functions b(x ; ~v) and g(x ; ~v):

b(x , ~v) = 2~vg(x , ~v) .

The above RG-equations are particularly useful when
investigating the asymptotic properties of the function
G(x , y, ~v). For example, to discover the behaviour of
G(x , y, ~v) when x5 y and y ! 0, we choose a normal-
ization point l satisfying

x
2
5 r

2
9l

and proceed to the limit as x2
! 0 in Eqn (3.94). Putting

V(y, ~v) = lim
x!0

V(x , y, ~v) , (3.98)

b(~v) =

qV(y, ~v)
qy

�

�

�

�

y=1

, (3.99)

we arrive at the equation

y
qV(y, ~v)

qy
= b(V(y, ~v)) , (3.100)

subject to the boundary condition

V(1, ~v) = ~v . (3.101)

Eqn (3.100) and the boundary condition (3.101) can also be
written in the Gell-Mann – Low form

�V(y; ~v)

~v
b
ÿ1

(t) dt = ln y , (3.102)

which is exceedingly convenient in analyzing the behaviour
of the invariant excluded volume V( y; ~v) for small values of
y or for r2

5 l.
Following the above derivation scheme for RG-equa-

tions and interchanging the roles of x2 and r
2, i.e. looking

upon x
2 as the leading variable, we obtain RG-equations

which are analogous in form to the previous ones.
Thus, according to the RG-equations, the invariant

excluded volume is an effective parameter characterizing
the strength of the volume interaction in a small neighbour-
hood of the points x = 0 and r = 0. Hence, to determine the
asymptotic behaviour of, for example, the function G( y, ~v)
as y ! 0, we must know the associated behaviour of
V( y, ~v). However, this behaviour is determined by the
properties of the functions b(V) given in Eqn (3.100).

In fact, if b(V) is positive, the excluded invariant volume
V( y; ~v) decreases as y ! 0. If for some V = ~v

�
< ~v, the

function b(V ) vanishes and the integral on the left-hand
side of Eqn (3.102) diverges, then its right-hand side is also
equal to infinity. In other words, we have V( y; ~v)! ~v

�
as

y ! 0, where b(V ) satisfies b(~v
�
) = 0. Note that ~v

�
= 0 is

necessarily a zero of the function b(V ).
On the other hand, if b(V ) is negative, the opposite

applies. In fact, the function V( y,~v) increases as y ! 0. If
now b(V ) vanishes at the point V = ~v

�
> ~v and if the

integral in Eqn (3.102) diverges, then V( y, ~v)! ~v
�

as y ! 0.
If, however, the function b(V ) has no zeros when V > ~v, we
have V( y, ~v) !1 as y ! 0.

It follows that there can be stable and unstable zeros of
the function b(V ). When V is close to a stable zero ~v

�
, the

invariant excluded volume V( y, ~v) tends to ~v
�

as y ! 0. If ~v
�

is an unstable zero, the quantity V( y; ~v) moves away from
~v
�

and tends to zero or to infinity as y ! 0.
Since perturbation theory is commonly used for comput-

ing the function b(V ), we get real information on its
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behaviour only in a small neighbourhood of the point V = 0,
where b(0) = 0. Actually, if b(V ) is positive in this
neighbourhood, the invariant excluded volume tends to
zero as y ! 0. If, on the other hand, the function b(V )

is negative near the origin, then V( y, ~v) increases as y ! 0,
and this takes us outside the range of validity of perturbation
theory.

3.4 Diagrammatic description of the excluded volume effect
As already noted, in order to determine the asymptotic
behaviour of the probability density W N (R) as N !1 for
R4 l, we must know the behaviour of the function A(z, r)
near the points z = 1 and r = 0 or, equivalently, the
behaviour of the function G(x , y, ~v) near x = 0 and y = 0.
The most significant ranges of integration in all terms of
the series (3.34) will then be the regions in which the
absolute values of the arguments of all the integrands are
small, i.e., when kl5 1 for every integration variable k. For
such values of k we also have kr05 1, since r0 < l, and this
enables us to use the approximation

f(r) = ÿv0d(r) , (3.103)

which is well known in the theory of polymers and is
equivalent to the equality ~v = ~v0, as can be seen from
definitions (3.3) and (3.31).

On the other hand, as k increases and attains values
such that k0l ÿ1 (so that R decreases to R9l ), the volume
accessible to the walking particle decreases because of the
increasing role of the excluded volume effect. Hence, the
probability density W N (R) for R9l and, correspondingly,
the function A(z;k) for k0lÿ1, should assume their low
limiting values. The range of integration k0lÿ1 in all terms
of the series (3.34) will then provide a negligible contribu-
tion, and we are entitled to use the approximation ~v(k) = ~v0

in Eqn (3.34) for all k.
Thus, substituting ~v(j)= ~v0 and using the notation

(3.52) – (3.54), we can write the series (3.34) in the form

B(z, rl, ~v0;A) = ÿv1 ~w(z, 0)

+ v2
1

�

A(z, qÿ j)M (z, k)
dd
k

(2p)d

ÿ 2v3
1

�

A(z, qÿ j)M 2
(z, k)

dd
k

(2p)d
+ . . . ,

(3.104)

where

v1 = z
2v0 = ~v0l d ,

and the functions ~w(z,0) and M (z,k) are given by

~w(z, 0) =

�

A(z, k)
dd
k

(2p)d
, (3.105)

M (z, k) =

�

A(z, jÿ j
0

)A(z, k0)
dd
k
0

(2p)d

= o

�

1

0
Ls(kR) ~w2

(z, R)R 2s+1 dR . (3.106)

in accordance with Eqn (3.61). As a result of the above
approximation, some of the terms of the series (3.34), for

example those corresponding to the third and fourth
diagrams in Fig. 6, are now described in exactly the same
way. Next, the integration with respect to the angles in all
terms of the series (3.104) reduces the latter to the new
form

B(z, rl, ~v0;A) = ÿv1 ~w(z, 0)

+ov2
1

�

1

0
Ls(rR) ~w3

(z, R)R 2s+1 dR

ÿ 2o2v3
1

�

1

0
dR R 2s+1

Ls(rR) ~w(z, R)

�

�

1

0
Ls(Rk)M

2
(z, k)k2s+1 dk

(2p)d
+ . . .

(3.107)

A diagrammatic representation of the series (3.107) can
be deduced from the corresponding representation of the
series (3.34) in Fig. 6 by ‘shrinking’ the wavy line to a point
and assigning the factor ÿ~v0=(2p)

d to such points that the
conservation of momentum is satisfied at it as before. The
final result is the diagrammatic representation of the series
shown in Fig. 7 where the square in the diagram

P

( )

represents the set of diagrams of Fig. 8, usually called the
vertex part or the complete four-point vertex. It is very
important here that a closed equation can be established
[66] for the vertex part Y , and this equation, together with
the basic equation, constitute a closed system.

For this purpose we denote by the diagram in Fig. 9 the
sum of those diagrams in the complete four-point vertex Y
that cannot be separated into two parts by a vertical
straight line such that these parts are joined by only two
lines. A connection between the four-point vertices X and Y
can readily be established by means of the Bethe – Salpeter
equation (Fig. 10). This equation can be inverted, i.e. the
four-point vertex X can be formally found from it. In fact,
using the iteration method we obtain the equation shown in
Fig. 11, according to which the four-point vertex X can be
expressed in terms of the complete four-point vertex Y . Let
us now denote by K1234 (Fig. 12) the sum of those diagrams
in the vertex part Y that satisfy the following condition: no
vertical and no horizontal straight line cuts such a diagram
into two parts joined by only two lines. We call the four-
point vertex K compact if it has this property. The Bethe –
Salpeter equation represented in Fig. 10 can be now rewritten
diagrammatically as shown in Fig. 13 where the compact
four-point vertex K can also be expressed in terms of the
complete four-point vertex Y shown in Fig. 14. The only
exception here is the first term, i.e. the point that represents
the quantity ÿ~v=(2p)d. The relationship between X and K is
clearly that shown in Fig. 15. It follows that the equation in
Fig. 13 is equivalent to the equation in Fig. 16. Finally, if we
substitute the equations shown in Figs 11 and 14 into the
equation shown in Fig. 16, we obtain for the vertex part of Y
the closed equation shown in Fig. 17. At this point we
conclude the presentation of general concepts and turn to the
solution of the main problem.
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4. Self-avoiding walks in a space of
dimensionality d 4 4

4.1 Small excluded volume. Perturbation theory
First we briefly consider a simpler case where the excluded
volume ~v0 for the random walk is so small that

~v0N 1ÿs
5 1 (4.1)

for d < 4 (s < 1). The four-dimensional case will be treated
subsequently in a different context. Condition (4.1) enables
us to use the perturbation theory with the quantity ~v0N 1ÿs

acting as the small parameter. Whenever we calculate the
approximation for the function A(z, k) in Eqn (3.57) by
taking a finite number of terms in Eqn (3.107), we suppose
this approximation has simple poles at the singular points
r1;2 = �ix (Re x > 0) closest to the origin. We use this
remark to obtain from Eqn (3.61) the following relation for
large values of R (R4 l ):

~w(z, R) � 2d[(2p)d=2l 2
a(x)]

ÿ1
(xRÿ1

)

sKs(xR) , (4.2)

b(z; r) = + =

(

P

)(a)
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= + + 2 � + . . .
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where

a(x) = z0Ls+1(ixl)ÿ 2d
q

qt 2 B(z, t, ~v0;A)

�

�

�

�

t=ixl

(4.3)

and Ks(z) is the MacDonald function [99]. If we substitute
the expansion (3.107) into Eqn (4.3), we obtain

a(x) = z0Ls+1(ixl)

+ ov2
1lÿ2

�

1

0
Ls+1(ixR) ~w3

(z, R)R 2s+3 dR

ÿ 2o2v3
1lÿ2

�

1

0
dR R 2s+3

Ls+1(ixR) ~w(z, R)

�

�

1

0
Ls(Rk)M

2
(z, k)k2s+1 dk

(2p)d
+ . . . , (4.4)

which can be made a closed equation for a(x) by using
relation (4.2).

To find the asymptotic form of the probability density
W N (R) as N !1 and R4 l, we substitute expression (4.2)
into Eqn (3.60) and then use identity (3.56) in the integral
on the right-hand side of Eqn (3.60) to change from the
variable z in the numerator to the variable x. If we also take
into consideration that

Ks(z) �

�

p

2z

�1=2

exp(ÿz), z4 1 , (4.5)

we arrive at the asymptotic formula
�

dz zN
~w(z, R) � const� Rÿsÿ(1=2)

�

�

dx xs+(1=2)
~a(x)a

ÿ1
(x) exp(NH (x, RN ÿ1

)) , (4.6)

in which

~a(x) = z0Ls+1(ixl) + 2d
qB(z, ixl, ~v0;A)

q(xl)2

and

H(x, t) = z0D(xl) + B(z, ixl, ~v0;A)ÿ B(1, 0, ~v0;A)ÿ xt ,

D(x) = Ls(ix)ÿ 1 .

If N !1, with the ratio R=Nl fixed and (R=Nl )5 1,
the integral in Eqn (4.6) can be estimated by the method of
steepest descent. It enables us to represent the leading term
in the asymptotic expansion of this integral in the form
�

dz zN
~w(z, R) � const� (Nl 2

)

ÿ3=2
a
ÿ1

(x0)

�(x0Rÿ1
)

sÿ(1=2)hÿ1=2
(RN ÿ1

) exp(NH (x0, RN ÿ1
)) ,(4.7)

where

h(RN ÿ1
) =

�

�

�

�

q
2H(x; RN ÿ1

)

q(xl)2

�

�

�

�

x=x0

and the stationary point x = x0 is determined by

x0~a(x0) = dR(Nl 2
)

ÿ1 .

In view of expressions (3.60) and (4.7), the asymptotic
form of the probability density W N (R) can be found from
the normalization condition. For the cases d = 3 (s =

1
2 )

and d = 4 (s = 1) the asymptotic expressions for W N (R) to
the second order in the small parameter ~v0N 1ÿs are reported
in Ref. [100].

In conclusion, we evaluate hR 2
iN to the first order with

respect to ~v0N 1ÿs when N !1, ~v0 ! 0, and ~v0N 1ÿs
5 1.

For this purpose we use formula (3.65) and the fact that the
function B(z, rl, ~v0;A) given by the series (3.107) is
independent of r to the first order with respect to
~v0N 1ÿs. Then the adopted degree of approximation, to
formula (3.65) can be written as

hR 2
iN = l 2

�

dz zN
D
ÿ2

(xl )
h

�

dz zN
D
ÿ1

(xl )
i

ÿ1
, (4.8)

where

zÿ 1 = z0D(xl ) + v0( ~w(1, 0)ÿ ~w(z, 0)) . (4.9)

Since N !1, the biggest contribution to the integrals in
Eqn (4.8) is provided by the neighbourhood of the point
z = 1 (or x = 0), and hence we can use the approximation

z
N
� exp[N(zÿ 1)] ,

D(xl ) � (xl )2
(2d )

ÿ1
+ O(x

4l 4
) .

To determine the right-hand side of (4.9) in the
neighbourhood of z = 1 we apply the formula

Ks(x) � 21ÿs
G
ÿ1

(s)x sKs(x)

= 1 ÿ
G(1 ÿ s)
G(1 + s)

�

x
2

�2s

+ O(x 2
), x ! 0 , (4.10)

where 0 < s < 1. From Eqns (4.2) and (4.10) it follows that

~w(z, R) � 2sdG(s)zÿ1
0 (2pl 2

)

ÿd=2

�

��

l
R

�2s

ÿ

G(1 ÿ s)
G(1 + s)

�

xl
2

�2s

+ O

�

(xl)2
�

R
l

�2(1ÿs)��

(4.11)

as z! 1 (x! 0). Introducing the notation

~w(1, R) = lim
z!1

~w(z, R)

we readily see that the difference

~w(1, R)ÿ ~w(z, R) (4.12)

for sufficiently small values of zÿ 1 (or xl ) is almost
independent of R . Therefore we equate the leading term in
the expansion of the function (4.12) to the difference

~w(1, 0)ÿ ~w(z, 0) ,

for which the relation (4.11) yields

~w(1, 0)ÿ ~w(z, 0) �
dG(s)G(1 ÿ s)

z0(2pl 2
)

d=2
G(1 + s)

�

x
2l 2

2

�s

.

We now introduce the notation

g = [d(2pz0l 2
)

ÿ1
]

d=2v0N 1ÿs ,

l = z0N(xl )2
(2d)ÿ1

and go over to the new integration variable l in Eqn (4.8)
given by

N(zÿ 1) = l+ G(1 ÿ s)glssÿ1 .
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Then the first approximation for hR 2
iN in terms of g can be

represented in the form

hR 2
iN = z0Nl 2

�

dl(exp l)lÿ2
F(l)

�

h

�

dl(exp l)lÿ1
F(l)

i

ÿ1
, (4.13)

where

F(l) = 1 + G(1 ÿ s)g(lsÿ1
+ l

ssÿ1
) .

Applying the identity

1
2pi

�c+i1

cÿi1
dl exp(ÿtl)lÿn =

tnÿ1

G(n)

to the evaluation of the integral in (4.13), and replacing
z0 = z0(~v0) by its limiting value z0(0) = 1, we finally obtain

hR 2
iN = Nl 2�1 + g

�

(1 ÿ s)(2 ÿ s)
�

ÿ1
+ . . .

	

, (4.14)

which is used for calculating hR 2
iN in the phenomenolog-

ical approach to our problem [3].

4.2 Dimensionality d = 4
Before proceeding to the four-dimensional case I shall
make some general remarks essential to the investigation of
the SAW problem for all d4 4.

To determine the value of F in Eqn (3.78), we use
expression (3.79) and the approximation (3.107). Recall
that this approximation for the function B(z, rl, ~v;A) was
obtained under the condition that ~v(k) = ~v0 for all values of
k, owing to which the upper limit of integration with respect
to this variable is now removed. Therefore, in order to avoid
a possible divergence of the integral near the upper limit, we
have to introduce a cut-off parameter into the theory. But,
owing to the RG-properties of the basic equation, the final
result cannot depend on the specific choice of this parameter.
There are several ways to regularize divergent expressions
(see, for example, Ref. [101]), but in our problem it turns out
to be more convenient to employ a method which is
essentially novel. Namely, when choosing the initial approx-
imation for the function A(z, k) on the right-hand side of
Eqn (3.78), we use the properties of the MacDonald function
Km(z). First, we must take into account the asymptotic form
of this function for small and large values of the argument z:

Km(z) �
2mÿ1

G(m)zÿm, 0 < z5 1,
m > 0,

���

p
p

(2z)ÿ1=2 exp(ÿz), z4 1 :

8

<

:

(4.15)

Next, it is important to note that Km(z) is an integral
function of the index m for every fixed z (z 6= 0). As will be
shown here, m is directly related to the dimensionality of
the space and, in addition, we have K

ÿm(z) = Km(z).
For example, instead of using A0(x, k), the ‘unper-

turbed’ function for A(z;k) can be given by the function

A1(x; k) = 2dL

�

z0l 2
���������������

x
2
+ k2

q

�

ÿ1

K1

�

L
���������������

x
2
+ k2

q

�

,

(4.16)
where the cut-off parameter Lÿ1 is such that L0l. In fact,
from expressions (4.15) and (4.16) it follows that for
small values of k A1(x, k) behaves like A0(x, k), and for
large values of k (k4 Lÿ1

) A1(x, k) tends exponentially to
zero.

Further, to simplify notation, we shall denote by C
positive constants which may depend on the dimensionality

of the space, i.e. C may assume different values in different
formulas, but, if necessary, these values may be written in
an explicit form.

We now turn to the SAW problem for space of
dimensionality d = 4.

As the initial approximation for A in Eqn (3.78) we take
the function

A1(x, k)=8L

�

z0l 2
���������������

x
2
+ k2

q

�

ÿ1

K1

�

L
��������������

x
2
+ k2

q

�

.(4.17)

Since the functions A0(x;k) and A1(x;k) are practically
equal to each other on the most essential part of their
domain of definition, Eqn (3.77) shows that the initial
approximation for G can be taken to be unity. Substituting
expression (4.17) for (z, k) in formula (3.61) and using the
Sonine – Gegenbauer formula (see Ref. [99])
�

1

0
Js(ax)Km

�

b

���������������

x 2
+ y2

q

�

(x 2
+ y2

)

ÿm=2x s+1 dx

= a
s
b
ÿmysÿm+1

(a
2
+ b

2
)

(mÿsÿ1)=2Kmÿsÿ1

�

y
���������������

a2
+ b

2
q

�

,

(4.18)

where Re y > 0, we obtain

~w1(x, R) = 2x
�

p
2z0l 2

�����������������

R 2
+ L 2

p

�

ÿ1
K1

�

x

�����������������

R 2
+ L 2

p

�

.

(4.19)

In this approximation the quantity F(x
2l 2, r2l 2, ~v; G) can be

represented, according to expressions (3.79) and (3.107), in
the form

F(x
2l 2, r2l 2, ~v; G1)

= A0(x, r)
h

2p2v2
1

�

1

0
dR R 3ÿ

L1(ixR)ÿ L1(rR)

�

� ~w3
1(x, R)ÿ

1
2

v3
1

�

1

0
dR R 3ÿ

L1(ixR)ÿ L1(rR)

�

� ~w1(x, R)

�

1

0
dk k3

L1(Rk)M
2
1(x; k) + . . .

i

, (4.20)

where G1 = A1=A0 and

M 1(x, k) = 2p2
�

1

0
L1(kR) ~w2

1(x, R)R 3 dR .

In order to find the asymptotic form of G when z = 1 and
r! 0, we let x = 0 in the approximation (4.20) and use the
relation

~w1(0, R) = 2
�

p
2l 2

(R 2
+ L 2

)

�

ÿ1
,

that follows from Eqn (4.19). To calculate the integrals in
expression (4.20) we employ the formulas (see Ref. [99])

�

1

0

Rs+1Js(rR)

(R 2
+ L 2

)

m+1 dR = r
mL sÿm�2mG(m+ 1)

�

ÿ1
Ksÿm(rL) ,

ÿ1 < Re s < 2 Re m+

3
2 ,

(4.21)

�

1

0

R sÿm+1

R 2
+ L 2 Jm(kR)Js(rR) dR = L sÿmIm(kL)Ks(rL) ,

(4.22)

ÿ1 < Re s < Re m+ 2, k4r ,
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where Im(x) is the modified Bessel function of the first kind.
After straightforward evaluations (see Appendix 1) we
obtain

F(0, r2l 2, ~v; G1) = ÿ
1
2 ~v

2
1 ln(rL 1)

2

ÿ ~v3
1

�

ln2
(rL 1)

2
ÿ 3 ln(rL 1)

2�
+ . . . , (4.23)

where ~v1 = 4~v0=p
2, L 1 = CL . Finally, substitution of

expression (4.23) into Eqn (3.78) yields

Gÿ1
(0, y, ~v) = 1 ÿ 1

2 ~v
2
1 ln y ÿ ~v3

1(ln
2 y ÿ 3 ln y) + . . . (4.24)

Further, from Eqns (3.99) and (4.24) we get the function b~v
in the form

b(~v) = ~v3
+ O(~v4

)

On substituting into the Gell-Mann – Low equation (3.102)
and solving the latter we obtain the invariant excluded
volume

V(y, ~v1) = ~v1(1 ÿ 2~v2
1 ln y)ÿ1=2 . (4.25)

It follows that V( y; ~v1)! 0 as y ! 0, i.e. the function b(~v)
has a stable zero at the point ~v = 0. Hence, for z = 1 and
r! 0, from Eqn (4.25) and the definitions of G and V in
(3.77) and (3.91) we obtain

A
ÿ1

(1, r) � (rl )2
L(rl ) , (4.26)

where

L(x) = (4p)ÿ1
(4~v2

0 ln xÿ1
)

1=4 .

Let us now assume that z belongs to a small neighbour-
hood point z = 1. We now write the basic equation (3.55) in
the form

A
ÿ1

(z, r) = zÿ 1 +A
ÿ1

(1, r)

+ B(1, rl, ~v;A)ÿ B(z, rl, ~v;A) , (4.27)

where the function A
ÿ1

(1, r), according to its definition

A
ÿ1

(1, r) = z0

ÿ

1 ÿ L1(rl)
�

+ B(1, 0, ~v;A)ÿ B(1, rl, ~v;A) ,

exceeds in absolute value the difference

B(1, rl, ~v;A)ÿ B(z, rl, ~v;A)

for all sufficiently small values of jzÿ 1j. This difference
can then be neglected, and the approximate equation for
A(z, r) will assume the form

A
ÿ1

(z, r) = zÿ 1 +A
ÿ1

(1, r) . (4.28)

Using expression (4.26) in the right-hand side of this
equation, we get the expression for A(z, r) and substitute it
into the formula

~w(z, R) =

1

4p2R

�

1

0
J1(Rr)A(z, r)r2 dr . (4.29)

To evaluate the integral in (4.29) for R4 l, we take into
consideration only the contribution provided by the roots
of the equation A

ÿ1
(z, r) = 0 closest to the origin r = 0.

These have the form r1;2 � �ix (Re x > 0), i.e.

(xl )2
L(�ixl ) = zÿ 1 .

The result is

~w(z, R) � x[4p2l 2RL(ixl )]ÿ1K1(xR) (4.30)

for all R4 l. On substituting expression (4.30) into the
inversion formula (3.60) and using the asymptotic form of
the function K1(x) for large values of its argument, we
obtain the following expression for the probability density
W N (R):

W N (R) � CN l ÿ4

�

l
R

�3=2 �

dt t3=2 exp

�

NH

�

t,
R
Nl

��

,

(4.31)

where CN is the normalization factor and

H(t, x) = t 2
L(it)ÿ tx .

We can use the method of steepest descent to obtain the
asymptotic expression for the integral in (4.31), provided
that N !1, the ratio R=N is fixed, and (R=N)5 1.
A simple calculation [100] shows that

W N (R) � (pN 1l 2
)

ÿ2
[ln(N 1lRÿ1

)]

ÿ1=2

� exp[ÿR 2
fN 1l 2

[ln(N 1lRÿ1
)]

1=4
g
ÿ1

] , (4.32)

where N 1 = (~v1=2)1=2N . Hence, we can readily find the
corresponding asymptotic form of the mean square end-to-
end distance for the random particle:

hR 2
iN � N 1l 2

(8 ln N 1)
1=4 . (4.33)

The last result is in good agreement with the numerical
calculations of hR 2

iN when d = 4 [49].

4.3 Dimensionality d < 4
4.3.1 Asymptotic case: e ! 0. We first consider the SAW
problem for the space rd of dimensionality d = 4 ÿ e where
e! 0. The initial approximation for A(z, k) on the right-
hand side of Eqn (3.78) is taken to be the nonperturbed
function A1(z, k), given by Eqn (4.16). The presence or the
auxiliary parameter L is only a matter of convenience when
evaluating the integrals, and it can be eliminated from the
final formulas by proceeding to the limit as L ! 0.

Substituting expression (4.16) for A(z, k) in Eqn (3.61)
and using formula (4.18), we obtain

~w1(x, R) = 2 dx s�
(2p)s+1z0l 2

(R 2
+ L 2

)

s=2�ÿ1

� Ks

�

x
�����������������

R 2
+ L 2

p �

. (4.34)

If we now substitute the last expression for ~w(z, R) in
Eqn (3.107), then use the result in Eqn (3.79) and finally
proceed to the limit as z! 1 (x! 0), we get

F(0, r2l 2, ~v; G1)

= A0(0, r)
h

ov2
0

�

1

0

�

1 ÿ Ls(rR)

�

~w3
1(R)R 2s+1 dR

ÿ 2o2v3
0

�

1

0
dR R 2s+1ÿ1 ÿ Ls(rR)

�

~w1(R)

�

�

1

0
Ls(Rk)M

2
1(k)k

2s+1 dk

(2p)d
+ . . .

i

, (4.35)

where G1 = A1=A0, and

~w1(R) = lim
x!0

~w1(x, R) = 2s
G(s)d

�

(2p)s+1l 2
(R 2

+ L 2
)

s�ÿ1
;
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M 1(k) = lim
x!0

o

�

1

0
Ls(kR) ~w2

1(x, R)R 2s+1 dR
(4.36)

= C1L 1ÿs
(l 4
k

1ÿs
)

ÿ1K1ÿs(kL) ,

C1 = 2d 2
G

2
(s)
�

(2p)s+1
G(2s)

�

ÿ1
.

The value of the integral in Eqn (4.36) was found with the
help of formula (4.21), and the integrals in (4.35) are
calculated in Appendix 2. As a result we have

F(0, r2l 2, ~v; G1) =

1
2e

~v2
1(rl)ÿ2e

ÿ

8

3e2
~v3

1(rl)ÿ3e
+ . . . ,

(4.37)

where ~v1 = v0d=p2l d. From this it is readily seen that the
absolute value of F(0, r2l 2, ~v; G1) increases as r! 0,
whereas by Eqn (3.78), the function G(0, y, ~v) decreases.
In what follows ~v still denotes for brevity the renormalized
coupling constant, which is proportional to the excluded
volume, i.e. ~v = Cv0=l d. Defining the function G(0, y, ~v) by
Eqns (3.78) and (4.37), we obtain the expansion

Gÿ1
(0, y, ~v) = 1 ÿ

~v2

2
ln y +

4~v3

e
ln y ÿ . . . (4.38)

valid in a neighbourhood of the normalization point y = 1.
The calculation of b(~v) based on Eqns (3.99) and (3.38)
yields

b(~v) = ~v3

�

1 ÿ
8
e
~v

�

. (4.39)

It follows that for sufficiently small values of e the function
b(~v) can be negative. Because of this fact and the above
remark concerning the behaviour of the function G when
r! 0, it is convenient to use the Gell-Mann – Low
equation in the form
�

~v

V(y; ~v)

�

�b(t)
�

�

ÿ1
dt = ln yÿ1 . (4.40)

Since by Eqn (4.39) the function b(~v) vanishes linearly at
the point

~v = ~v
�
=

e

8
, (4.41)

the integral in Eqn (4.40) tends to infinity as V( y, ~v) ! ~v
�
.

Therefore, ~v
�

is the limiting value of the invariant excluded
volume:

V(0, ~v) = ~v
�

.

Finally, on performing the integration on the left-hand side
of Eqn (4.40), we obtain the following transcendental
equation for V( y, ~v):

1
2 [V

ÿ2
(y, ~v)ÿ ~vÿ2

] + ~vÿ1
�

[Vÿ1
(y, ~v)ÿ ~vÿ1

]

+~vÿ2
�

ln

�

~v
V(y, ~v)

V(y, ~v)ÿ ~v
�

~vÿ ~v
�

�

= ln y . (4.42)

The simplest way of analyzing the behaviour of the
function V( y, ~v) as y ! 0 in Eqn (4.42) is based on the
approximation

b(~v) �
e

2

64
(~v
�
ÿ ~v) . (4.43)

On solving this equation we arrive at the relation

V(y, ~v) � ~v
�
+ C(~vÿ ~v

�
)ye

2
=64 , (4.44)

which determines how V( y, ~v) converges to v
�

as y ! 0. It
follows that for e! 0 relation (4.44) transforms to

V(y, ~v) � C~vye
2
=64 , (4.45)

and hence for the critical exponent Z in the relation

A(1, r) � O
ÿ

(rl)Zÿ2�, r! 0 ,

we have

Z �
e

2

64
, (4.46)

which is in good agreement with the corresponding result
obtained by De Gennes [54].

We now turn to the critical exponent n that determines
the asymptotic dependence

xl � O
ÿ

jzÿ 1jn
�

, z! 1 .

To find this exponent we evaluate the right-hand side of
Eqn (3.81) to terms of the second order in ~v0. In the
approximation adopted, this equation can be written as

Eÿ1
= 1 + 2d(x2l 2

)

ÿ1
�

ÿv1

�

~w1(x, 0)ÿ ~w1(0, 0)
�

+ov2
1

�

1

0

�

~w3
1(x, R)ÿ ~w3

1(0, R)

�

]R 2s+1 dR ÿ . . .

�

,

(4.47)

where ~w1(x, R) is given by Eqn (4.34). Since the function
~w1(x, R) contains the auxiliary parameter L , it is necessary,
as previously mentioned, to proceed to the limit as L ! 0
in all terms of the series (4.47). We then obtain the
following asymptotic relations:

~w1(0, 0)ÿ ~w1(x, 0) � (p
2l 2
e)
ÿ1
x

2ÿe , (4.48)
�

1

0

�

~w3
1(0, R)ÿ ~w3

1(x, R)

�

R 2s+1 dR

� 6x2ÿ2e�
(pl )6

e
2�ÿ1

, x! 0 . (4.49)

The last integral is estimated in Appendix 2. Using
relations (4.48) and (4.49) in Eqn (4.47) we obtain for
the quantity

E = x
2l 2�2d(zÿ 1)

�

ÿ1

the equation

Eÿ1
= 1 +

2
e
~vxÿe=2

ÿ

6

e2
~v2xÿe + . . . , (4.50)

in which x = Cx2l 2 is the independent variable. Let us note
that by Eqn (4.50) the absolute value of the function
E = E(x , v) decreases as x ! 0.

Let us now return to the initial equation (3.81) and use
the RG-properties of Eqn (3.78). It is readily seen that the
quantity

�v(x , ~v) = ~vE e=2
(x , ~v) (4.51)

is invariant under the RG-transformations. Hence the
function �v(x , ~v) must obey the Gell-Mann – Low equation,
which is conveniently written in the form
�

~v

�v(x ; ~v)

�

��b(t)
�

�

ÿ1
dt = ln xÿ1 , (4.52)
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where

�b(~v) =

q�v(x ; ~v)
qx

�

�

�

�

x=1

, (4.53)

and the behaviour of the �v(x , ~v) in a neighbourhood of its
normalization point x = 1 is determined by the expansion

�v(x , ~v) = ~v

�

1 +

e

2
~v ln x ÿ 4~v2 ln x + . . .

�

, (4.54)

obtained by Eqns (4.51) and (4.50). Substituting Eqn (4.54)
into Eqn (4.53) we find

�b(~v) = 4~v2
(~v
�
ÿ ~v) , (4.55)

which, like b(~v) in the previous case, vanishes linearly at
the point ~v

�
= e=8. After substituting Eqn (4.55) into

Eqn (4.52) and performing the necessary integration we
obtain

~v
�
[�vÿ1

(x , ~v)ÿ ~vÿ1
] + ln

�

~v
�v(x , ~v)

�v(x , ~v)ÿ ~v
�

~vÿ~v
�

�

= 4~v2
�

ln x , (4.56)

which is a transcendental equation for �v(x , ~v). However, to
find the asymptotic form of the function �v(x , ~v) as x ! 0
we apply the approximation

�b(~v) �
e

2

16
(~v
�
ÿ ~v) . (4.57)

to Eqn (4.52) and obtain

�v(x , ~v) � ~v
�
+ C(~vÿ ~v

�
)x e

2
=16 , (4.58)

which can be represented as

�v(x , ~v) � C~vx e
2
=16 . (4.59)

when e! 0. Using the definition (4.51) in the last formula
to find the critical exponent n, we obtain

n �
1
2
+

e

16
, (4.60)

which is also in agreement with the corresponding result
(2.95) by De Gennes.

Since the above expressions for Z and n are obtained
asymptotically as d ! 4, they cannot be used for real space.
In the next section I shall present a method which permits
calculation of the critical exponents for d < 4.

4.3.2 The general case. The fact, previously referred to, that
formulas (4.46) and (4.60) have a restricted range of
application is clearly connected with the use of the initial
approximation A1(z, r) for A(z, r). At the same time, the
fact that the critical exponent Z is not equal to zero shows
that the singular points of the function A(z, r) do not need
to be poles. To extend the range of validity of the formulas
for the critical exponents we must therefore start by
choosing an approximation for A(z, r) which contains
singular points that are not poles.

We now note that when the variables x and r are
sufficiently small, they appear in Eqn (3.57) only in the
form of the combination x

2
+ r

2, in accordance with
Eqn (3.80). Moreover, the function A(z, r) is even in r,
and its singular points closest to the origin r = 0 are

r1;2 = �ix. Hence we take the initial approximation for
A(z, r) to be the expression (see Ref. [102])

~

A(x, r)=Czÿ1
0 l ÿ2u2m

�

L 2

x
2
+ r2

�

(1ÿm)=2

K1ÿm

�

L
���������������

x
2
+ r2

q

�

,

(4.61)

in which the parameters u = u(~v0), m = m(d ) (0 < m < 1)
and L0l are to be determined. Since by assumption we
have z! 1 (x! 0), it follows from Eqn (4.61) and the
properties of the function Kl(t) that the quantity ~

A(x, r)
behaves as

O
ÿ

u2m
(x

2
+ r

2
)

mÿ1�

when rL5 1, and is exponentially small when rL4 1. In
accordance with the definition (3.77), the initial approx-
imation for G will then be taken to be the function
~G =

~

A=A0, whose asymptotic behaviour as x! 0 and
r! 0 can be described by:

~G(x, r) � Cu2m
(x

2
+ r

2
)

m . (4.62)

It is important to emphasize here that the choice of a
specific form for the initial approximation to the function
A(z, r) is of course, not unique if our main interest lies in
the asymptotic form of this approximation as x! 0 and
r! 0. Since the latter contains the desired information on
the critical exponents in the SAW problem, the choice of
the initial approximation in the form of expression (4.61) is
prompted only by computational convenience. Our prob-
lem is now reduced to the evaluation of the parameters u, m,
and L for which the trial function ~

A(x, r) is in a certain
definite sense a solution of the basic equation.

Let us suppose that the values of u, m, and L have been
determined. Substituting the value of ~

A(x, r) from expres-
sion (4.61) into formula (3.61) and using Eqn (4.18) we
obtain

~w(x, R)=Czÿ1
0 lÿ2u2m

�

x
2

R 2
+ L 2

�

(m+s)=2

Km+s

ÿ

x

�����������������

R 2
+ L 2

p

�

,

(4.63)

which will be used later in the inversion formula

~wN (R) =

i

2pzN
0

�

dz exp(N ln z) ~w(x, R) . (4.64)

To find the asymptotic estimate for the integral in
Eqn (4.64) when N and R tend to infinity, but their
ratio R=N remains fixed and is much less than one, it is
convenient to transform from z to the new integration
variable x with the help of Eqn (3.56). Moreover, if we take
the asymptotic properties of Kl(t) as t !1 into account in
expression (4.63), we can reduce formula (4.64) to the form

~wN (R) � Cu2m�zN+1
0 l 2Rm+s+(

1
2 )
�

ÿ1

�

�

dx
dz
dx

x
m+sÿ(

1
2 ) exp

�

ND

�

x,
R
N

��

, (4.65)

where

D(x, t) = B(z, ixl, ~v; ~

A)ÿ B(1, 0, ~v; ~

A)ÿ tx+ O(x
2l 2

) .
(4.66)

Finally, using the method of steepest descent for the
asymptotic evaluation of the integral in expression (4.65)
as N !1, we obtain the required asymptotic form of the
function ~wN (R).
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We now proceed to evaluating u, ;m, and L where m is a
dimensionless parameter connected with the critical expo-
nent Z by Z = 2m, and where the parameters u and L have
the dimension of length. As the exponent m is the parameter
that determines the degree of singularity of the function
~

A(x, r), we should begin the solution of the problem with
the evaluation of this parameter. Since the required para-
meters are independent of x and r we set x = 0 in
Eqn (3.78) and, for simplicity, will not indicate the depend-
ence of all the quantities on x = 0. In this case the function
~G(r) =

~

A(r)=A0(r) has the following form near the point
r = 0:

~G(r) � C(u 2
r

2
)

m , (4.67)

and this can be taken as the asymptotic solution of
Eqn (3.78) for x = 0 and r! 0, provided that

Ff ~Gg = A0(r)
�

B(1, 0, ~v; ~

A)ÿ B(1, rl, ~v; ~

A)

�

�

X

m5 1

�

ÿm ln(u2
r

2
)

�m
(m!)

ÿ1 . (4.68)

However, in accordance with the RG-method, to determine
the asymptotic form of G(r) when r! 0 we only need to
know the coefficient of the linear logarithmic term in the
expansion for F

Ff ~Gg=2d(z0r
2l 2

)

ÿ1
�

ov2
1

�

1

0
[1ÿ Ls(rR)] ~w3

(R)R 2s+1 dR

ÿ2ov3
1

�

1

0
dR R 2s+1�1 ÿ Ls(rR)

�

~w(R)

�

�

~w2
(R ÿ r) ~w2

(r) ddr + . . .

�

(4.69)

in powers of ln(r2L 2
), where

~w(R) = Cu2m�z0l 2
(R 2

+ L 2
)

m+s�ÿ1
. (4.70)

The first term in the series (4.69) determining the
contribution of diagram (b) in Fig. 7 to Ff ~Gg will be
written in the form

Fb(r) = A0(r)[Bb(0)ÿ Bb(r)] , (4.71)

where

Bb(r) = ov2
1

�

1

0
Ls(rR) ~w3

(R)R 2s+1 dR

= Czÿ3
0 v2

1l ÿ6u6m
(rLÿ1

)

3m+2sÿ1K3m+2sÿ1(rL) (4.72)

represents the contribution of this diagram to B(1, rl, ~v; ~A).
if we now substitute expression (4.72) into the right-hand
side of Eqn (4.71) and take into account the formula

tK 1(t) = 1 +

t2

2
ln t + O(t2

), t ! 0 , (4.73)

we can readily see that the logarithmic behaviour of the
function Fb(r) for r! 0 can be assured by putting
3m+ 2sÿ 2 = 0, i.e.

m =

1
3 (4 ÿ d) . (4.74)

In fact, it follows from Eqns (4.71) – (4.74) that

Fb(r) � ÿC(~v0zÿ2
0 )

2
(ulÿ1

)

6m ln r2L 2 . (4.75)

It must be noted that when establishing the asymptotic
formula (4.75) we have made no assumptions as yet about the

value of e = 4 ÿ d. However, owing to the difficulties in
evaluating the subsequent terms of the series, we have to use a
small parameter in powers of which the function Ff ~Gg may
be expanded. In view of expression (4.68) it is natural to take
m = e=3 as such a parameter. In this connection we shall
denote by C any positive number that may depend on the
dimensionality d but does not tend to zero or to infinity as
d ! 4.

We now turn to the second term in the series (4.69)
which defines the contribution of diagram (c) in Fig. 7 to
Ff ~Gg. The difference between diagrams (b) and (c) is that
the latter contains an additional vertex and two lines that
form a loop subdiagram. As a result the expressions

Bb(r) = v2
1

�

~

A(qÿ j)M (k)
dd
k

(2p)d
, (4.76)

and

Bc(r) = ÿ2v3
1

�

~

A(qÿ j)M 2
(k)

dd
k

(2p)d
, (4.77)

corresponding to diagrams (b) and (c) in Fig. 7 differ in
that expression (4.77) contains the symmetry coefficient 2
and the additional integrand factor ÿv1M (k) in which

M (k) =

�

~

A(jÿ j
0

)

~

A(k
0

)

dd
k
0

(2p)d

= Cu4m
(z2

0l 4L m
)

ÿ1
(kL)

m=2Km=2(kL) . (4.78)

By formula (4.15), for small values of k (k5 Lÿ1
), the

function M (k) is almost independent of k, and can be
replaced by

M (0) = CG

�

m

2

�

u4m

z2
0l 4L m

, (4.79)

whereas for large values of k (k4 Lÿ1
) it becomes

negligible. The expression

ÿv1M (k) = ÿv1M (0)Km=2(kL) (4.80)

in which the function Km=2(x) as defined by Eqn (4.10) can
also serve as an estimate for the contribution to Ff ~Gg due
to a transition from an arbitrarily chosen diagram to a
diagram containing the subsequent vertex, since any such
transition is always accompanied by the addition of one
vertex and two lines. It should be noted here that for small
values of m and for k5 Lÿ1, the function Km=2(kL ) [see
Eqn (4.10)] behaves as follows:

Km=2(kL ) = ÿ

m

2
ln k2L 2

+ O
ÿ

[m ln(k2L 2
)]

2� . (4.81)

To estimate the quantity

Fc(r) = A0(r)
�

Bc(0)ÿ Bc(r)
�

(4.82)

we represent it in the form

Fc(r) = 2v3
1M 2

(0)A0(r)

�

�

[

~

A(qÿ j)ÿ
~

A(k)][K
2
m=2(kL)ÿ 1]

dd
k

(2p)d
, (4.83)

where we have used the identity
�

~

A(qÿ j) dd
k =

�

~

A(k) dd
k
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combined with Eqns (4.77) and (4.78). By the estimate of
the integral on the right-hand side of Eqn (4.83) given in
Appendix III, we have for sufficiently small m

Fc(r) = Cmÿ2
(~v0zÿ2

0 )

3
(ulÿ1

)

9m
(uLÿ1

)

m

�

�

m ln(rL)

2
X

k 5 0

Ck(ÿm ln r2L 2
)

k
+ O(1)

�

, (4.84)

where Ck , k 5 0 are fully defined coefficients. Comparing
expression (4.68) with (4.75) and taking into account the
above remarks concerning Eqns (4.80) and (4.81), we come
to the idea of defining u and L in such a way that

(~v0zÿ2
0 )

2
(ulÿ1

)

6m
= Cm, (uLÿ1

)

2m
= Cm . (4.85)

In this case the contributions of diagrams (b) and (c) to the
asymptotic expression for Ff ~Gg assume the form

Fb(r) � ÿCm ln(ur)2 , (4.86)

Fc(r) � m ln(ur)2
X

k 5 0

Ck

�

ÿm ln(ur)2�k , (4.87)

where the coefficients of the last series are, for simplicity,
denoted by the same symbols as those in the series (4.84). It
is clear that the contributions to the asymptotic expression
for Ff ~Gg provided by diagram (d1) and the subsequent
diagrams that are similar to it and contain loop chains can
also be represented as power series in [ÿm ln(u2

r
2
)]. But

there are diagrams subsequent to (d1) in which the loops
are arranged differently, for example diagrams (d2) and
(d3). To estimate the contributions of (d2) and (d3), the
exact calculation of which is very difficult, we use the
approximation M (k) � M (0) in the expressions represent-
ing these contributions. To display this approximation
graphically we replace a loop by a point and assign to the
latter factor ÿv1M (0). In this case diagrams (d2) and (d3)

reduce to diagrams (c) and (b) whose contributions must be
multiplied by ÿv1M (0) and [ÿv1M (0)]2 respectively. If we
now add together the contributions of those diagrams that
reduce to diagram (b) we obtain

(~v0zÿ2
0 )

2
(ulÿ1

)

6m

"

X

k 5 0

(ÿ1)k+1Ck (v1M (0))k

#

ln(rL)

2 .

(4.88)

Because of relations (4.79) and (4.85) this expression is
asymptotically proportional to ÿm ln(u2

r
2
).

Next, on examining the structure of the terms of the
series in the diagram in Fig. 7, one can readily notice that
the above loop is the simplest of all possible loop subdia-
grams. We call the set of these diagrams a complete loop and
represent it in the graphic form as shown in Fig. 18, where
the square represents, as usual, the complete four-point
vertex. If, in addition, we define a generalized loop as shown
in Fig. 19, then the series in the diagram in Fig. 7 can be
transformed to the form shown in Fig. 20, resembling the
initial series (Fig. 6) in which the wavy line is now replaced
by a generalized loop. The coefficients a, b, g, . . . of the
series in Fig. 20 are defined in such a way that after the
replacement of every greneralized loop by the correspond-
ing set of its subdiagrams we obtain the correct numbers of
the diagrams represented in Fig. 7. Using the definition of
the generalized loop

V = V(z, rl, ~v0;A)

we write the equality condition for the series in diagrams in
Fig. 7 and Fig. 20 in the form

B(z, rl, ~v0;A) = B(z, rl,V;A) .

By the last relation, the RG-property

a
ÿ1B(z, rl, ~v0;A) = B(z, rl, aÿ2

~v0; aA)

of the quantity B can be extended to B, namely,

a
ÿ1
B(z, rl,V;A) = B(z, rl, aÿ2

V; aA)

and, moreover,

a
ÿ2
V(z, rl, ~v0;A) = V(z, rl, aÿ2

~v0; aA) .

If the function V displays weak dependence on r for
r5 Lÿ1 and if it is close to zero for r4 Lÿ1, we can
continue the reduction of the series in the diagram in Fig. 7
to that in Fig. 20, taking the latter as the starting point for
the next step. In this case a generalized loop is approximately
replaced by a point and the quantity ÿV0=(2p)

d, where
V0 � Vj

r=0 denotes the renormalized excluded volume, is
assigned to this point. By repeated reduction we come to a
diagrammatically represented series that differs from the
previous one only by the factors a 0, b 0, g 0, . . . preceding its
terms, where a

0

4a, b04b, g 04g, . . . . A decrease in the
value of these factors after the reduction is caused by the fact
that every generalized loop consists of an infinite number of
loop subdiagrams taken from the corresponding terms of the
series. Hence the reduction procedure leads to a gradual
disappearance of certain terms from this series. The only
exceptions here are the so-called irreducible diagrams whose
vertices are connected by no more than one line. The simplest
irreducible diagrams are represented in Fig. 21.

To estimate the quantity V we return to the
Bethe – Salpeter equation in Fig. 10 and deduce from it
the equality shown in Fig. 23 which has the analytic form
�

M(qÿ j, j)Y (qÿ j, j; qÿ j
0, j 0)M(qÿ j

0, j 0)
dd
k dd

k
0

(2p)2d

=

�

M(qÿ j, j)X(qÿ j, j; qÿ j
0, j 0)

�M(qÿ j
0, j 0)

dd
k dd

k
0

(2p)2d

+

�

M(qÿ j, j)X(qÿ j, j; qÿ j
0, j 0)M(qÿ j

0, j 0)

�Y (qÿ j
0, j 0; qÿ j

00, j 00)M(qÿ j
00, j 00)

dd
k dd

k
0 dd

k
00

(2p)3d
,

(4.89)

� +

Figure 18.

V � = �� +

Figure 19.

B � a� + b � + . . .

Figure 20.
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where

M(x; qÿ j, j) =

~

A(x, qÿ j)
~

A(x, k) (4.90)

and (for the sake of simplicity) the dependence of all
functions on x (or z) is not indicated. We now take the
quantity shown in Fig. 23 to be the initial approximation
for the four-point vertex X that cannot be cut. This
approximation can be viewed as a version of the so-called
parquet diagram summation method. Suppose that the
function V(x, r) depends weakly on r. Substituting the
approximation X � V0 = V(x, 0) for X in Eqn (4.89) we
then obtain the function

Y(x, r) =

�

M(x; qÿ j, j)Y (x; qÿ j, j; qÿ j
0, j 0)

�M(x; qÿ j
0, j 0)

dd
k dd

k
0

(2p)2d
(4.91)

in the form

Y(x, r) = V0M 2
(x, r)[1 ÿ V0M (x, r)]ÿ1 , (4.92)

where

M (x, r) =

�

M(x; qÿ j, j)
dd
k

(2p)d

= o

�

1

0
Ls(rR) ~w2

(x, R)R 2s+1 dR . (4.93)

Using Eqn (4.63) together with the Nicolson and Sonine –
Gegenbauer formulas [99] we can rewrite Eqn (4.93) as
follows

M (x, r) = CG

�

m

2

�

u4m
(z2

0l 4Lm
)

ÿ1

�

�

1

0
dt(1 + t2

)

(mÿ3)=2
Km=2

h

L
���������������������������������

r2
+ 4x2

(1 + t2
)

q

i

.

(4.94)

Since Km=2(x) is a positive function decreasing when x 5 0
and since Km=2(0) = 1, the integral in (4.94) does not exceed
the value of the integral
�

1

0
(1 + t2

)

(mÿ3)=2 dt =

���

p
p

G

�

1 ÿ
m

2

��

2G

�

3
2
ÿ

m

2

��

ÿ1

,

which is close to unity for m5 1. Substituting expression
(4.92) into the equation

V(x, r) = ÿv1 + v2
1M (x, r) + v2

1Y(x, r) , (4.95)

which is a consequence of the diagram equations in Fig. 18
and Fig. 19, and introducing the new notation

V(x, r) = ÿv1l(x, r) , (4.96)

m(x, r) = v1M (x, r) , (4.97)

we find, from formula (4.95) that

l(x, r) = 1 ÿ m(x, r)[1 + l0(x)m(x, r)]ÿ1 , (4.98)

where l0(x) = l(x, 0). Letting r = 0 in Eqn (4.98) and
writing

m0(x) = m(x, 0) , (4.99)

we obtain for l0(x) the equation

l0 = 1 ÿ m0(1 + m0l0)
ÿ1 ,

whose nonnegative solution for m0 4 1 is of the form

l0 = (2m0)
ÿ1�m0 ÿ 1 + (1 + 2m0 ÿ 3m2

0)
1=2� . (4.100)

By definitions (4.97) and (4.99) the inequality m0(0)4 1
implies that

m(x, r)4m0(x)4 1 .

Since the quantity

m0(0) = v0M (0, 0) = C

is determined by the constants appearing in Eqns (4.85),
the condition m0(0)4 1 clearly imposes some restriction on
the choice of these constants. Thus, the assessment of
V(x, r) in Eqns (4.96) and (4.98) is in good agreement with
the above assumption about the behaviour of the function
V(x, r).

We now continue the above reduction of the diagram
series until we get a series consisting of irreducible diagrams
whose vertices are occupied by generalized loops. These
loops, obtained as a result of repeated reductions, will be
denoted by the renormalized quantity

~

V(x, r) = ÿCv1
~l(x, r) ,

where the function ~l(x, r) is defined by

~l(x, r) = 1 ÿ ~m(x, r)[1 +

~l0(x) ~m(x, r)]ÿ1 ,

in which

~m(x, r) = Cm(x, r) ,

~l0(x) =

~l(x, 0) .

Then the first (simplest) term of the series obtained has the
form shown in Fig. 24, and the diagram next in order
consists of five generalized loops and nine lines.

Ba � =

�

~

V(x, j) ~

A(x, qÿ j)dd
k(2p)ÿd

Figure 24.

+ + + . . .

Figure 21.

� +

Figure 22.

j
0

j

qÿ j qÿ j
0

~X(x; qÿ j, j; qÿ j
0, j 0) = = V(x, jjÿ j

0

j)

Figure 23.
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The contribution to Ff ~Gg of the diagram corresponding to
the expression in Fig. 24 is equal to

A0(r)
�

Ba(1, 0, V; ~

A)ÿ Ba(1, rl,V; ~

A)

�

= Cv1A0(r)

�

n(k)
�

~

A(k)ÿ ~

A(qÿ j)

�

dd
k , (4.101)

where

n(k) = ~m0(0)Km=2(kL)[1 +

~l0(0) ~m0(0)Km=2(kL)]

ÿ1 .

As noted above, the condition ~l0(0) ~m0(0) < 1 can be
satisfied if we choose the constants in Eqns (4.85) appro-
priately. This enables us to expand the integrand n(k) in
Eqn (4.101) in powers of Km=2(kL), as a result of which we
again arrive at the situation described earlier. Hence, letting
m5 1 and integrating in Eqn (4.101) we finally obtain the
representation of the required quantity as a series in powers
of ÿm ln(rL).

Consider now the subsequent terms of the series in the
diagram in Fig. 21 whose vertices are occupied by gen-
eralized loops. Let us write the contribution of each such
term to Ff ~Gg in the symbolic form

A0(r)

�

�

~

V(0, k)
�m��

~

A(0, k)
�2mÿ1

ÿ

�

~

A(0; qÿ j)

�2mÿ1	�
dd
k(2p)ÿd�m , (4.102)

where we assume that m5 5. By the definition of the
functions ~

A and ~

V the integration with respect to each
variable {j} in the integral
�

�

~

V(0, k)
�m�

~

A(0, k)
�2mÿ1�

dd
k
�m

is in essence bounded above in absolute value by Lÿ1, and
at the lower limit fjjjg5k0 the integral behaves as O(k

t

0),
where k0 ! 0 and

t = (2m ÿ 1)(2mÿ 2) + md = 2 + (m ÿ 2)m .

It follows that the asymptotic form of the expression
(4.102) as r! 0 can be represented as a power series in
(rL)

m or m ln(rL).
In consequence, this approach allows us to conclude that

the asymptotic form of the function Ff ~Gg as r! 0 is a series
in powers of ÿm ln(rL). Using the remaining arbitrariness in
the choice of constants in Eqns (4.85), we can ensure the
coincidence of the terms in expressions (4.68) and (4.69) that
are linear in ln(u2

r
2
). Substituting the required expansion of

the function Ff ~Gg into the RG-equation (3.102), we readily
obtain

G(r) � ~G(r), r! 0 . (4.103)

It is precisely this result that justifies the choice of the
function ~G =

~

A=A0 as the asymptotic solution of
Eqn (3.78).

Since the values of the parameters m, u, and L are now
determined and consequently also the functions in
Eqns (4.61) and (4.63), we can use formula (4.65) to find
the asymptotic form of the function ~wN (R) for N !1 and
R4 l.

Next, we take into account the connection between B
and B and use the representation of the function
B(z, rl, ~

V; ~

A) as the series in Fig. 21 consisting of irredu-

cible diagrams whose vertices are identified with generalized
loops. B(z, ixl, ~v0; ~

A) then has the asymptotic form:

B(z, ixl, ~v0; ~

A) =

�

~

V(x, k) ~

A(x, ixk ÿ j)

dd
k

(2p)d

+

X

m5 5

�

�

~

V(x, k)
�m�

~

A(x, ixk ÿ j)

�2mÿ1

"

dd
k

(2p)d

#m

,

jkj = 1 . (4.104)

It was noted above that in all the integrals in (4.104) the
function ~

V(x, k) varies weakly over the most essential part
k9Lÿ1 of the region of integration. Hence we may use the
approximation ~

V = ÿCv1 in evaluation of these integrals.
In this case the first summand on the right-hand side of
Eqn (4.104) takes the form

Ba(z, ixl, ~

V; ~

A) =

�

~

V(x, k) ~

A(x, ixk ÿ j)

dd
k

(2p)d

� ÿC1 ~w(x, 0) ,

where

~w(x, 0) =

�

Cu2m

z0l d+2m

���

l
L

�2ÿm

ÿG

�

m

2

��

G

�

2 ÿ
m

2

��

ÿ1�
xl
2

�2ÿm

+ O

�

(xl)2
�

L
l

�m��

in accordance with expressions (4.63) and (4.10). It follows
that

Ba(z, ixl, ~

V; ~

A)ÿ Ba(1, 0, ~

V; ~

A)

= C ~v0(mz0)
ÿ1

(ulÿ1
)

2m
(xl)2ÿm

+ O
ÿ

(xl)2� . (4.105)

Estimating each term of the series
X

m 5 5

�

ÿCv1

	m
�

n

�

~

A(x, ixk ÿ j)

�2mÿ1

ÿ

�

~

A(0, k)
�2mÿ1

o

ÿ

dd
k
�m

we get values of order O((xl )t), where t = 2 + (m ÿ 2)m, as
shown above. Finally, with the help of Eqns (4.85) we
obtain

B(z, ixl, ~v0; ~

A)ÿ B(1, 0, ~v0; ~

A)

= C(z0~v0m
ÿ2

)

1=3
(xl)2ÿm

+ O
ÿ

(xl)2� . (4.106)

The difference on the left-hand side of Eqn (4.106) appears
in the definition (4.66) of the function D. Using the
notation

~v1 = z0~v0(1 ÿ s)ÿ2 (4.107)

and the formulas

2 ÿ m =

d + 2
3

= n
ÿ1
F , (4.108)

(4.66) and (4.106), we find that

D(x, RN ÿ1
) = C~v1=3

1 (xl)1=nF
ÿ RxNÿ1

+ O
ÿ

(xl)2� . (4.109)

Since the integrand in formula (4.65) has been determined, we
can use the method of steepest descent to estimate the integral
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in (4.65) as N !1 and R4 l. As a result we obtain the
required asymptotic form of the probability density W N (R)

[103]:

W N (R) �

R ÿ1
F d(t ÿ 1), d = 1 ,

CR ÿd
F t p exp(ÿt q

), 1 < d < 4 ,

(

(4.110)

where

t = RR ÿ1
F , R Flÿ1

= C(~v1=3
1 N)

nF ,

p =

(4 ÿ d)(d + 2)
6(dÿ 1)

, q =

d + 2
dÿ 1

.
(4.111)

For the mean-square end-to-end distance of the random
walk we then have

hR 2
iN � G

�

d + p + 2
q

�

G
ÿ1

�

d + p
q

�

R 2
F , (4.112)

which is, as was noted above, a generalization of the well-
known Flory formula for d-dimensional space (d < 4).
When e = 4 ÿ d is small enough, we find from (4.108) that
the critical exponent nF is given by

nF =

1
2
+

e

12
+ O(e

2
)

which is not identical with the corresponding result
obtained by De Gennes. The above method of solving
the SAW problem is thus fundamentally different from the
De Gennes approach and leads to a new e-expansion,
which now is found to be convergent.

From expression (4.110) it follows immediately that the
asymptotic form of W N (R) has a pit for R < R F owing to the
excluded volume effect and that it is convex downward
( p =

4
3 ) and convex upward ( p =

5
12 ) for d = 2 and d = 3,

respectively. When the density W N (R) is evaluated for
R < R F, it is usual to replace p by a different critical
exponent g in calculations of the probability that the particle
will return to the initial point. The relationship between g and
p is given by the Cloizeaux formula [34] g = 1 + np. If we
replace n in this formula by the expression for nF given by
Eqn (4.108) and take into account the value of p from
(4.111), we obtain g = 2 for d = 2 and g =

5
4 for d = 3. We

note, for comparison, that the values of g obtained in some
investigations (see, for example Refs [35 – 48]) by both
analytic and computational methods are found to be
somewhat lower than the above values. However, we
must remember that expression (4.110) is an asymptotic
formula obtained for R4 l.

In terms of the notation commonly employed in the
theory of critical phenomena we may write

A(1; r) � O((rl )Zÿ2
) when r! 0

and

A(z; 0) � O((zÿ 1)ÿg) when z! 1.

Taking expression (4.61) as the asymptotic solution of the
basic equation when z! 1 and r! 0, we find that
Z = 2e=3 and the critical exponents g, Z, nF are related by
the usual formula g = (2 ÿ Z)nF. As to the critical exponent
q, this is given by the well-known formula (4.111).

5. Basic equation with account taken of short-
range correlations

In conclusion we shall consider the random walk for a
more general case where the direction of each step of the
particle depends on the direction of its previous step.
Moreover, the length of an individual step is not fixed and
has an arbitrary distribution.

Let the probability density of the kth step rk be
proportional to

t(rk)s(nk , nkÿ1)
Y

kÿ1

j=1

(1 + fjk), nk = rk rÿ1
k ,

where t(r) is the probability density of a single step r and
s(nk , nkÿ1) = s(cos yk) is the probability density of the
angle yk between the directions of the kth and (k ÿ 1)th
steps.
The normalization conditions for t(r) and s(nk , nkÿ1) will
then be
�

t(r) ddr = 1 ,

G(s + 1)

�

���

p
p

G

�

s +

1
2

��

ÿ1 �p

0
s(cos y) sin2s

y dy = 1 .

If we represent the required density W N (R) by (3.4), we
obtain for the function wN (R) the equation

wN (R) =

�

d

�

R ÿ

X

N

k=1

rk

�

P1N dm1N (0) ,

where for brevity we use the notation

dmlm(q) =

Y

m

k=l+1

s(nk ; nkÿ1)
Y

m

k=l

exp(iq .rk )t(rk ) ddrk ,

and P1N is given by (3.6). Writing the function wN (R) as
the Fourier integral (3.8), we have for its Fourier transform
aN (q) the representation

aN (q) =

�

P1N dm1N (q) , (5.1)

in which we first replace the product P1N by its expansion
(3.15), then expand the density s(nk , nkÿ1) = s(cos yk ) as a
series in the Gegenbauer polynomials, and finally apply the
addition theorem [99]

C s
l (nk , nkÿ1) = ohÿ1C s

l (1)
X

h

m=1

S m
l (nk)S

m
l (nkÿ1) ,

where the functions S m
l (n), m = 1, 2, . . . , h constitute an

orthogonal system of h = 2(s + l )(2s + lÿ 1)!=(2s)! l ! real-
valued spherical harmonics of degree l defined on the unit
hypersphere. The expansion of the density s(nk , nkÿ1) has
the form

s(nk , nkÿ1) =

X

l5 0

X

h

m=1

slS
m
l (nk)S

m
l (nkÿ1) , (5.2)

where

sl =
(4p)s

G(s)l!
G(2s + l)

�1

ÿ1
s(t)C s

l (t)(1 ÿ t 2
)

sÿ(1=2) dt .

Next, define the operators T(q) and Bq(q) whose matrix
elements are

hlmjT(q)jl 0m0

i=(slsl 0)
1=2
�

exp(iq .r)t(r)S m
l (n)S m0

l 0 (n) ddr

Excluded volume effect in statistics of self-avoiding walks 557



and

hlmjBq(q)jl
0m0

i = (slsl 0)
1=2
�

b1qS m
l (n1)S

m0

l 0 (nq) dm1q(q)

respectively, and take into account that s0 = o and
S 1

0(n) = 1=o1=2. Then the initial terms of the series
obtained by substituting Eqns (3.15) and (5.2) into
formula (5.1) can be written as follows. The first term is
�

dm1N (q) = h01jT(q)jl1m1ihl1m1jT(q)jl2m2i . . .

�hlN mN jT(q)j01i = h01jT N
(q)j01i ,

where we assume the summation to be carried out with
respect to repeated indices, the values of l and m running
from 0 to 1 and from 1 to h respectively. Before writing
the operator form of the next term, we consider the chain
of equations
�

bj+1k dm1N (q) = h01jT j
(q)jljmji

�hljmjjBkÿj(q)jlk+1mk+1ihlk+1mk+1jT
Nÿk

(q)j01i

= h01jT N+jÿk
(q)Bkÿj(q)j01i ,

in which we have used the fact that the operators T(q) and
Bq(q) commute. Hence, for the second term of our series we
have

X

14 j<k 4N

�

bjk dm1N (q)

=

X

q5 2

(N ÿ q + 1)h01jT Nÿq
(q)Bq(q)j01i .

In a similar way we can obtain the operator form of any
term of the series that represents the function aN (q). We
then arrive at the formula

aN (q) = h01jA N (q)j01i , (5.3)

in which the operator A N (q) is given by the series

A N (q) =

X

p5 0

X

q5 0

(N ÿ q + p)!
(N ÿ q)! p!

T Nÿq
(q)

�

X

. . .

X

(q1+...+qp=q)

Bq1
(q) . . . Bqp

(q) , (5.4)

where the factor (N ÿ q + p)!=(N ÿ q)! p! is the number of
ways of choosing p places for the operators Bq1

(q),
Bq2

(q), . . . , Bqp
(q) (with q1 + q2 + . . . + qp = q) out of

N ÿ q + p free places so that the operators preserve their
order. The last sum in Eqn (5.4) can be transformed, as in
Eqn (3.22), into the form
X

. . .

X

(q1+...+qp=q)

Bq1
(q) . . .Bqp

(q) =

1
2pi

�

G

B p
(z, q)

dz

z1+q ,

where B(z, q) is the generating operator defined by

B(z, q) =

X

q5 0

zqBq(q) . (5.5)

Eqn (5.4) will then take the form

A N (q) =

1
2pi

�

G

dz

z1+q

"

X

p5 0

X

q5 0

(N ÿ q + p)!
(N ÿ q)! p!

�

�

zT (q)

�Nÿq
B p

(z, q)

#

, (5.6)

where the summation can be extended to all p from 0 to 1
and all q from ÿ1 to N with no influence on the result. If
we now define the generating operator A(z, q) by

A(z, q) =

X

N 5 0

zN AN (q) , (5.7)

we deduce from (5.6) the important formula

A(z, q) =

X

1

p=0

X

1

q=0

(p + q)!
p! q!

�

zT (q)

�q
B p

(z, q) . (5.8)

Using the identity

(p + q)! =
X

1

n=0

n!
2pi

�

G

t p+qÿnÿ1 dt

and commutativity of the operators T(q) and B(z, q), we
express Eqn (5.8) in the form

A(z, q) =

X

1

n=0

dn

dt n exp
�

t
�

zT (q) + B(z; q)
�

�

�

�

�

�

t=0

.

It follows that the operator

Aÿ1
(z, q) = 1 ÿ zT (q)ÿ B(z, q) (5.9)

is the inverse of A(z, q). If we define the nonperturbed
operator A 0(z, q) by

A 0(z, q) =

�

1 ÿ zT (q)

�

ÿ1
,

then Eqn (5.9) will assume the form of the basic equation

Aÿ1
(z, q) = Aÿ1

0 (z, q)ÿ B(z, q) . (5.10)

We shall establish a relationship between the operators
B(z, q) and A(z, q) in order to close Eqn (5.10) with respect
to the desired operator A(z, q). For this purpose we use
Eqns (3.13), (3.30), and the definition of the matrix
elements of the operator Bq(q). Taking into account the
definition

hlmjA q(q)jl
0m0

i = (sl sl 0)
1=2
�

P1qS m
l (n1)S

m 0

l 0 (nq) dm1q(q)

we obtain the relation

hlmjBq(q)jl
0m0

i = ÿ

�

v(k)hlmjA q(qÿ j)jl 0m0

i

dd
k

(2p)d

+

X

. . .

X

(q1+q2+q3=q)

�

v(k)v(k0)

�hlmjAq1
(qÿ j)A q2

(qÿ jÿ j
0

)A q3
(qÿ j

0

)jl 0m0

i

�

dd
k dd

k
0

(2p)2d
+ . . . , (5.11)

which is analogous to Eqn (3.33). Substituting expression
(5.11) into Eqn (5.5) and using the definition (5.7) of the
operator A(z, q), we find the desired connection:

B(z, q) = ÿ

�

v(k)A(z, qÿ j)

dd
k

(2p)d

+

�

v(k)v(k0)A(z, qÿ j)A(z, qÿ jÿ j
0

)

�A(z, qÿ j
0

)

dd
k dd

k
0

(2p)2d
+ . . . (5.12)

The last formula is similar in appearance to formula (3.34).
Hence the series (5.12) can also be represented by the
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diagrams in Fig. 6, but the continuous lines are now
associated with the operators A(z, qÿj).

Thus, the inclusion of the correlation between the
directions of neighbouring steps of the walking particle
leads us to the operator form of the basic equation in the
SAW problem. Choosing the probability densities t(r) and
s(cos y) appropriately, we can in principle produce any
lattice model for this problem when d = 2.

In conclusion, we should note an important property of
Eqn (5.10), namely its invariance under the group of
multiplicative transformations

A ! A 0

= aA , A 0 ! A 0

0 = aA 0 ,

v ! v0 = a
ÿ2v ,

which serves as the basis for the RG-method of solving this
equation.

6. Conclusions

Among the methods of solving the SAW problem that have
been considered here, the one presented in Sections 3 – 5 is
based on the exact equation for the required probability
density W N (R). This equation describing a non-Markovian
process is an integral equation invariant under a
continuous group of renormalizing transformations and
hence the
RG-method can be applied to it. The asymptotic
expression for the density W N (R) when N !1 and
R4 l found by this method [see formula (4.110)] is
similar to that established previously on the basis of
scaling considerations. Thus, the problem is reduced to the
determination of the critical exponents only. The calcula-
tions enable us to argue that it has now become clear how
to obtain the generalized Flory formula for hR 2

iN from the
microscopic theory. An essential fact here is that the
expression for the exponent nF is continuous in the spatial
dimensionality d when 14 d < 4, and moreover, this
expression gives exact values when d = 1; d = 2, and
provides at least a very good approximation when d = 3.
As to the critical exponent p (or g) which determines the
behaviour of W N (R) for R5R F, its values, depending on
d, were found under the additional assumption R4 l. It is
quite possible that the power dependence of W N (R) on R
for R0l is completely different from that for l5R5R F,
i.e. the value of p given by expression (4.111) can differ
from that obtained by numerical methods.

Appendices

I. The values of some integrals in Section 4.2

1: S 1(r) =

�

1

0

�

1 ÿ L1(rR)

�

~w3
1(0; R)R 3 dR

=

8

p6l 6z3
0

�

1

0

�

1 ÿ
2
rR

J1(rR)

�

R 3

(R 2
+ L 2

)

3 dR

= 2
ÿ

p
6l 6L 2z3

0

�

ÿ1�
1 ÿ rLK 1(rL)

�

.

2: S 2(r) =

�

1

0
dR R 3�1 ÿ L1(rR)

�

~w1(0, R)

�

�

1

0
L1(Rk)M

2
1(0, k)k3 dk

=

�

1

0
s(r; k)M 2

1(0, k)k3 dk ,

where

M 1(0, k) = 2p2
�

1

0
L1(kR) ~w2

1(0, R)R 3 dR

= 8
ÿ

p
2l 4z2

0

�

ÿ1
K0(kL ) ,

s(r, k) =

�

1

0

�

1 ÿ L1(rR)

�

L1(kR) ~w1(0, R)R 3 dR

=

4

p2l 2z0k

h

�

1

0
J1(kR)

R 2

R 2
+ L 2 dR

ÿ

2
r

�

1

0
J1(rR)J1(kR)

R

R 2
+ L 2 dR

i

=

4

p2l 2z0k
2

�

kLK 1(kL )ÿ

2k
r

�

I1(kL )K1(rL), k < r

I1(rL )K1(kL), r < k

� �

:

Then

S 2(r) = 256
ÿ

p
6l 10L 2z5

0

�

ÿ1
��

1 ÿ
2
rL

I1(rL)

�

�

�

1

0
K2

0(t)K1(t)t
2 dt

+

2
rL

�

rL

0
K2

0(t)
�

I1(rL)K1(t)ÿ K1(rL)I1(t)
�

t2 dt

�

.

Substituting the expansions

I1(t) =

t
2
+

t3

16
+ O(t5

) ,

K0(t) = ÿ ln t + O(1) ,

K1(t) = t ÿ1
+

1
2

t ln t + O(t) ,

and letting t ! 0 we obtain

S 2(r)=16(p6l10z5
0)
ÿ1
r

2
f[ln(L 2

1r
2
)]

2
ÿ3 ln(L 2

1r
2
)+ O(1)g

,

II. The values of some integrals in Section 4.3

1: S 1(r) =

�

1

0
Ls(rR) ~w3

1(R)R 2s+1 dR

= G(s + 1)

"

G(s)d

(2p)s+1l 2z0

#3
�

16
r

�s

�

�

1

0
Js(rR)

R s+1

(R 2
+ L 2

)

3s dR

=

2s+1d 3
G

3
(s)G(s + 1)

(2p)3(s+1)
G(3s)l 6z3

0

�

r

L

�2sÿ1

K2sÿ1(rL) .

It follows that

S 1(0) = lim
r!0

S 1(r) =

23sÿ1d 3
G

3
(s)G(s + 1)G(2sÿ 1)

(2p)3(s+1)
G(3s)l 6L 2(2sÿ1)z3

0

.

We now form the difference S 1(0)ÿ S 1(r) and proceed to
the limit as L ! 0. The result is

lim
L!0

�

S 1(0)ÿ S 1(r)
�

=

21ÿsd 3
G

3
(s)G(s + 1)G(2sÿ 1)G(2 ÿ 2s)

(2p)3(s+1)
G(2s)G(3s)l 6z3

0r
2ÿ4s

.
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The last expression is taken as the value of the first integral
on the right-hand side of Eqn (4.35), so that for small e we
have
�

1

0

�

1 ÿ Ls(rR)

�

~w3
1(R)R 2s+1 dR � r

2ÿ2eÿ2p6l 6z3
0e
�

ÿ1
.

2: S 2(r) =

�

1

0
dR R 2s+1

Ls(rR) ~w1(R)

�

�

1

0
Ls(Rk)M

2
1(k)k

2s+1 dk

= 2s
G(s)G(s + 2)C 2

1 L 2(1ÿs)ÿ
p

s+1l 10z5
0

�

ÿ1

�

�

1

0
dR Ls(rR)

R s+1

(R 2
+ L 2

)

s

�

�

1

0
Js(kR)K 2

1ÿs(kL )k
3sÿ1 dk .

Using the formula

K 2
l (x) = 2

�

1

0
K2l(2x cosh t) dt

we can represent the last integral in the form
�

1

0
Js(kR)K 2

1ÿs(kL)k
3sÿ1 dk

= 2
�

1

0
dt
�

1

0
dk k3sÿ1Js(kR)K2(1ÿs)(2kL cosh t)

= 25sÿ3
G(3sÿ 1)L 2(sÿ1)R s

�

�

1

0
(cosh t)2(sÿ1)ÿR 2

+ 4L 2 cosh2 t
�1ÿ3s

dt :

Further, letting

S 2(0) = lim
r!0

S 2(r) ,

we take the difference S 2(0)ÿ S 2(r) and proceed to the
limit as L ! 0. By means of the equation
�

1

0
(cosh t)ÿe dt =

���

p
p

G

�

e

2

��

2G

�

1
2
+

e

2

��

ÿ1

,

we then obtain

lim
L!0

�

S 2(0)ÿ S 2(r)
�

=

26sÿ4
G
ÿ

1
2 e
�

G(s)G(s + 2)G(3sÿ 1)C 2
1

ps+(

1
2)G
ÿ

1
2 +

1
2 e
�

l 10z5
0

�

�

1

0

�

1 ÿ Ls(rR)

�

R 3ÿ6s dR ,

where
�

1

0
[1 ÿ Ls(rR)]R 3ÿ6s dR =

23ÿ6s
G(s + 1)G(3 ÿ 3s)

(3sÿ 2)G(4sÿ 1)
r

2ÿ3e

.

Finally, for small e we have

�

1

0
dR R 2s+1

[1 ÿ Ls(rR)] ~w1(R)

�

1

0
Ls(Rk)M

2
1(k)k

2s+1 dk

� 128r2ÿ3eÿ3p6l 10z5
0e

2�ÿ1
.

3: S 3(x) =

�

1

0
~w3

1(x, R)R 2s+1 dR

=

�

21ÿs
(s + 1)

ps+1l 2z0

�3 �1

0

�K3
s

�

x

�����������������

R 2
+ L 2

p

� R 2s+1

(R 2
+ L 2

)

3s dR ,

where

�Ks(x) = x sKs(x) .

Let us now form the difference S 3(x)ÿ S3(0) and proceed
to the limit

lim
L!0

�

S 3(x)ÿ S 3(0)
�

=

�

21ÿs
(s + 1)

ps+1l 2z0

�3

C(x) ,

where

C(x) =

�

1

0

�

�K3
s (xR)ÿ

�K3
s (0)

�

R 1ÿ4s dR .

Using the formula

d
x dx

�Ks(x) = ÿx 2(sÿ1)
�K1ÿs(x) ,

we get

dC(x)

x dx
= ÿ3x4(sÿ1)

�

1

0

�K1ÿs(x) �K
2
s (x)x

1ÿ2s dx ,

where
�

1

0

�K1ÿs(x) �K
2
s (x)x

1ÿ2s dx = 2ÿ1
�K2

1ÿs(0) �Ks(0)

ÿ2ÿ1
�

1

0

�K 3
1ÿs(x)x

2sÿ1 dx = 2ÿsÿ2
G(s)G2

(1 ÿ s)ÿ Cs

and the absolute value of Cs is bounded for all s4 1. Thus,
for the function C(x) we have a first order differential
equation with the boundary condition C(0) = 0. The
solution of this equation for small e = 2(1 ÿ s) is

C(x) � ÿ3(4e2
)

ÿ1
x

2(1ÿe) .

From this we obtain

lim
L!0

�

S 3(0)ÿ S 3(x)
�

� 6
ÿ

p
6l 6z3

0e
2�ÿ1

x
2(1ÿe)

and then take the last expression as the value of the integral
in Eqn (4.49).

III. Consider the integral

S n(r) =

�

~

A(rÿ k)
�

K
n
m=2(kL)ÿ 1

�

dd
k , (III.1)

in which n is a positive integer. It is obvious that the
diagrams (b), (c), (d1), etc. in Fig. 7 correspond to n = 1,
n = 2, n = 3 etc. In terms of the new variables
p = Lr, q = Lk the integral (III.1) can be written as follows

Sn(r) = Czÿ1
0 lÿ2u2mL 2(1ÿm)ÿd

�

�

jpÿ qjmÿ1K1ÿm(jpÿ qj)
�

K
n
m=2(q)ÿ 1

�

ddq .

(III.2)

Next, we use the expansion

jpÿ qjmÿ1K1ÿm(jpÿ qj) = G(1 ÿ m)

�

2
pq

�1ÿm

�

X

1

m=0

(1 ÿ m+ m)C1ÿm
m (cos y)I1ÿm+m(p)K1ÿm+m(q), p < q ,
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where C 1ÿm
m (t) is the Gegenbauer polynomial, y is the angle

between the vectors corresponding to p and q, and where
the variables p and q must be interchanged when q < p.
Taking into account the last remark and integrating with
respect to the angles in (III.2), we get

Sn(r) = Czÿ1
0 lÿ2u2mL 2(1ÿm)ÿd p mÿ1

�

X

1

m=0

(1 ÿ m+ 2m)w2m

�

am(p)K1ÿm+2m(p)

+bm(p)I1ÿm+2m(p)
�

, (III.3)

where

w2m =

G(s + 1)G(1 ÿ m+ m)G(1 ÿ mÿ s + m)

m !G(1 + s + m)G(1 ÿ m)G(1 ÿ sÿ m)
,

w2m+1 = 0 ,

as follows from the equation

wk = o
ÿ1
�

C 1ÿm
k (cos y) do

=

G(s + 1)
���

p
p

G
ÿ

s +

1
2

�

�1

ÿ1
C 1ÿm

k (t)(1 ÿ t 2
)

sÿ1=2 dt

satisfied for all k 5 0 and from the relation

C 1ÿm
k (ÿt) = (ÿ1)k C 1ÿm

k (t) .

Finally,

am( p) =

�p

0

�

K
n
m=2(q)ÿ 1

�

I1ÿm+2m(q)q2s+m dq , (III.4)

bm( p) =

�

1

p

�

K
n
m=2(q)ÿ 1

�

K1ÿm+2m(q)q2s+m dq , (III.5)

where n > 1, since the case n = 1 has already been
considered. To determine the asymptotic form of the
integrals in (III.4) and (III.5) when p � 0 we use the
equations

�Il( p) � pÿlIl(p) = 2ÿlGÿ1
(l+ 1) + O( p2

) ,

�Kl( p) � plKl(p) = 2lÿ1
G(l)Kl( p) ,

K
n
m=2( p)ÿ 1 =

�

Km=2(p)ÿ 1
�

Sn( p) ,

where

Sn(p) = 1 +Km=2( p) +K
2
m=2(p) + . . . +K

nÿ1
m=2 ( p) . (III.6)

By the definition of Km=2( p) in Eqn (4.10), this function
can be represented as a power series in m ln p when m5 1.
From Eqn (III.6) we then obtain

Sn( p) =

X

k 5 0

l
(n)
k (ÿm ln p)k

+ O( p2
) , (III.7)

where l(n)k , k 5 0 are fully defined coefficients of the above
series.

Next, introduce the notation

Pm( p) =

�

1 ÿKm=2( p)
�

pÿm ,

so that

Pm( p) = C + O( p2ÿm
), p ! 0 .

From (III.4) we obtain

am( p) = ÿ

�p

0

�I1ÿm+2m(q)Pm(q)Sn(q)q
1+2s+m+2m dq

= ÿCp4ÿ2m+2m�1 + O( p m
)

�

. (III.8)

Now let us write expression (III.5) in the form

bm( p) = ÿ

�

1

p

�K1ÿm+2m(q)Pm(q)Sn(q)q
1ÿ2m dq .

It follows that

b0( p) = ÿ

�

1

0

�K1ÿm(q)Pm(q)Sn(q)q dq + O( p2
) . (III.9)

The expression for the next coefficient is

b1( p) = ÿ

�

�

1

1
+

�1

p

�

�K3ÿm(q)Pm(q)Sn(q)q
ÿ1 dq .

Here, in the integral form from p to 1 we replace the
function Sn(q) by its expansion (III.7) to obtain
�1

p

�K3ÿm(q)Pm(q)Sn(q)q
ÿ1 dq

=

X

k 5 0

l
(n)
k (ÿm)

k
�1

p

�K3ÿm(q)Pm(q)(ln q)k qÿ1 dq + O(1) .

Since
�1

p

�K3ÿm(q)Pm(q)(ln q)k qÿ1 dq

= ÿ(k + 1)ÿ1
�K3ÿm( p)Pm( p)(ln p)k+1

ÿ(k + 1)ÿ1
�1

p
(ln q)k+1 d

�

�K3ÿm(q)Pm(q)
�

,

where the last integral can be written as the difference of
the integrals over the intervals [0, 1] and [0, p], we have
�1

p

�K3ÿm(q)Pm(q)(ln q)k qÿ1 dq

= ÿ

8
k + 1

�

1 + O(m)
�

(ln p)k+1
+ O(1) .

It follows that

b1( p) = ln p
X

k 5 0

L
(n)
k (ÿ ln p)k

+ O(1) , (III.10)

where L
(n)
k , k 5 0 are coefficients of the series under

consideration. Estimating the other coefficients, i.e.
bm( p) for m5 2, we get

bm( p) = ÿC
�

1 + O(p m
)

�

p2ÿ2m , (III.11)

where the constant C depends on m5 2 and n5 1. Let us
now substitute expressions (III.8) – (III.11) into formula
(III.3) and take into account that all the coefficients
w2m , m5 1, contain the factor m. As a result we obtain

Sn(0)ÿ Sn(r) = Czÿ1
0 lÿ2u2mL 2(1ÿm)ÿd

�(rL)

2
�

X

k 5 0

L
(n)
k

�

ÿm ln(rL)

�k+1
+ O(1)

�

. (III.12)
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