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Details of the motion of charged

PACS number: 03.50.D¢

nonrelativistic particles in a variable field

B M Bolotovskii, A V Serov

Abstract. It is shown that a particle in an alternating field
of force does not in the general case oscillate around its
initial position but undergoes a systematic drift. The
velocity of the drift depends on initial the conditions.

Let us consider a varying electric field E(¢), which depends
on time ¢. Let the time-average value of the electric field be
equal to zero. The field of a monochromatic plane wave
satisfies such a condition. Let us place in a such field a
particle at rest with mass m and charge e, and consider the
character of its motion. It is natural to suppose that the
particle will oscillate around the rest point. Such a
statement can be found in some texts (see for example
Ref. [1]), but in general is not true. As it turns out, in an
alternating field the particle is not only oscillating but
undergoes a systematic drift. Let us consider a simple
example. Let the electric field £ depend on time according
to the harmonic law with frequency w:

E = Ejcos(wt + ¢) , )

where ¢ is the field phase at the intial time.
The equation of motion of the particle in this field has
the following form:

mx = eE cos(wt + @) . ?)
The general solution of this equation is
x(t) = —eEo(mw?)™" cos(wt + @) + At + B, 3)

where A and B are arbitrary constants, which do not
depend on time and are determined from initial conditions.
Let us require that the particle is initially at rest at the
origin, i.e.

x(t=0)=0, x(t=0)=0. “)
Then the constants A and B are easily found:
A = —eEo(mw)”" sin ¢, B =eEy(mw?)” cosg, (5)
and the solution (3) is written in the following form:
x(t) = —eEo(ma?)™" cos(wt + @)
—eEot(mw) " sin ¢ + eEg(mw?)™" cosp . (6)
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Formula (6) presents the law of motion of a charged
particle in the alternating field described by Eqn (1). We
shall not consider the magnetic field, though it is present in
every electromagnetic wave. If we consider that the particle
undergoes nonrelativistic motion, the magnetic field can be
neglected. From Eqn (6) it follows that in an alternating
field the particle undergoes systematic directed motion with
the velocity V, the value of which is equal to the constant
A:

V=A=—¢Ey(mw)" sing . (7)

We can see from Eqn (7) that systematic motion is absent
only for the case sin ¢ =0, i.e. for definite values of the
initial phase. For all other values of the phase ¢ the
particle moves systematically along the direction of the
electric field. It is evident that the drift will be directed in
the positive or negative directions along the x axis
depending on the value of the initial phase ¢. If all
values of the phase x have the same probability then the
drift velocity averaged over the phase ¢ is equal to zero. In
this case there are two groups of particles drifting in
opposite directions.

If the initial velocity of the particle is not equal to zero
then in the variable field of Eqn (1) the initial velocity will
be appended with the drift velocity. In fact, if we require the
fulfillment of the following conditions instead of Eqn (4):

x(t=0)=0, x(t=0)=V,, (8)
then for the constants A and B in solution (3) we have

A= —eEO(ma))q sing + Vg ,

B = eEy(mw?)™" cos ¢ . 9

Because the constant A has the meaning of drift velocity, as
seen in Eqn (3), we see that in this case the initial velocity is
appended by the drift velocity. With regard to Eqn (7) the
limitation of nonrelativistic velocities is given by the
condition

¢Eg(mw)™" < ¢, or eEgA2mmc?) ' <1,

(10)

where A =2mc/w is the wavelength corresponding to the
frequency w.

The fact that the particle experiences systematic drift in
an alternating field may seem strange at first. But a simple
consideration helps one to understand this fact. Let the
initial phase be ¢ = —%n in formula (1) for the field acting
on the particle. Then the force acting on the particle has the
following form:

F = ¢Ey sin(wt) . (11
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During the first half-period this force is positive, therefore
the particle acceleration is also positive and the velocity of
the particle is continuously increasing (we assume that
according to the initial conditions the particle was at rest at
the moment ¢ = 0). During the second half-period the force
is negative, hence the acceleration is negative too and the
velocity of the particle is decreasing. We can see that at the
end of the period the velocity is equal to zero, as it was at
the beginning. But during one period the particle has
moved a distance 2meEy/mw?. And for every successive
period the particle will move the same distance. Let us
consider the kinetic energy W of the particle moving in the
field of a wave. It is evident that

W= imi (12)
where the velocity of particle x determined by formula (6):
% = eEo(mw)”" sin(wr + @) — eEg(mw) ™ sing . (13)

Now substitute this expression for the velocity of the
particle in Eqn (12) for the kinetic energy and perform
averaging over the period of the wave. We obtain

W = EE2(4ma?) ™" + 2E2(2mw?) ™" sin’ ¢ , (12"

where the bar over the W means average over time. The
first term of this formula gives the average energy of the
oscillating particle in the wave field. The second term
describes the average energy of the systematic drift. One
can see that at ¢ = %n the energy of the systematic drift is
twice as large as the energy of the oscillations.

The presence of systematic drift of the particle in the
wave field changes the qualitative picture of the light
scattering by the free particles. Usually in the theory of
Thomson scattering it is supposed that the charged particle
in the wave field undergoes oscillations with the wave
frequency and has no systematic motion [2]. The presence
of systematic shift leads to a change of angular distribution
and yields a shift to the scattered frequency. These effects
are of the order of A /c and in most cases can be neglected.
But, for the case of the scattering of highly monochromatic
laser radiation on charged particles, the effect of frequency
shift can be detected and measured.

The considered phenomenon can influence the motion
of charged particles formed at the photoionisation of atoms
in a beam of laser radiation. The cause of the ionisation is
not necessarily the laser radiation. lonisation can occur
because of an additional source of radiation. The electrons
knocked out in the process of the ionisation interact with
the beam of laser radiation. Usually it is assumed that the
interaction is caused by the so-called Gaponov—Miller
force [3],

F=—(4mw?) 'VE? | (14)

We can see from Eqn (14) that the force in the laser beam
with axial symmetric distribution of field strength E pushes
the particles out of the strong-field region. And this force
depends only on the distance of the particle from the beam
axes and does not depend on field polarisation. It is evident
that such a consideration does not take into account the
systematic drift of the particle in the wave field. Taking the
drift into account yields the result that the azimuthal
distribution of particles pushed out from the light beam is
nonisotropic in contrast with the case when only the axially
symmetric Gaponov—Miller force is taken into account. In
addition, when we take into account the drift, the energy of

particles leaving the light beam will depend on the angle
between the velocity of the particle at the moment of
ejection and the direction of the beam polarisation.

It is evident that particle drift under the influence of
periodic forces occurs for all kinds of force and not only for
the electric force. Therefore, it may be mentioned that
Grishchuk [4] considered the drift of a massive particle
under the action of a gravitational wave. Braginskii and
Grishchuk [5] suggested that this phenomenon could be
used for detecting gravitational waves.

An alternating frictional force can also make bodies
drift systematically. If a conveyor belt performs alternating
translational movement then, under appropriate conditions,
bodies that are lying on it can be made to move in a desired
direction.
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