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Abstract. A single functional approach is used to treat the
problem of the diffusion of a tracer in a random velocity
field, posed in a general form. Approximate methods
leading to various approximate solutions and the condi-
tions of their validity are examined. Plane parallel average
flow is considered in detail and some features of statistical
solutions are discussed for the simplest case.

1. Introduction

The problem of propagation of a passive tracer in a
random velocity field is of major importance in ecological
problems of oceanology and atmospheric physics. It has
been studied since the end of the fifties starting with the
pioneering papers of Batchelor et al [1, 2]. Later, many
researchers derived a variety of equations describing
statistical characteristics of the tracer field both in
Eulerian and in Lagrangian description (e.g. Refs [3—7]).
The derivation of such equations is still progressing at full
pace at the present time. Meanwhile many researchers are,
in essence, often repeating each other’s work, deriving
equations similar to ones obtained long ago. The
assumptions which underly these derivations also do not
differ in principle. It is quite easy to write down equations
describing the statistical characteristics of a tracer field in
the so called delta-correlated approach for a random
velocity field (see, e.g., Refs [§—10] in which in Lagran-
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gian representation the particles behave like ordinary
Brownian particles. The most difficult problem is to take
into approximate account the finiteness of the femporal
correlation radius of the velocity field. Here, a single

functional approach will be used to treat the problem of the

diffusion of a tracer in a random velocity field, posed in a
general form. Approximate methods leading to various
approximations and the conditions of their validity will be
examined. The case of plane parallel average flow will be
considered in detail and special features of statistical
solutions will be discussed for the simplest problem used as
an example.

2. Formulation of the problem

The principal equations governing the diffusion of a tracer
in a random velocity field are of the following two types:

) 0 o
(55 U 05 ). ) = gzt ),

Q)
q(r, 0) = qo(r),
) )
(&"’_ U(ra t)a)l’i(r: t)
d o
=20 )+ x i), N

p(r, 0) = po(r).

Equation (1) describes a scalar field ¢g(r,f) of such
quantities as temperature, salinity, etc. of interest in
geophysics,

and  equation (1')  describes its
p(r,t) =0q(r,t)/Or. Let us
equation

spatial  gradient
note also the additional
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for the ‘material’ density of the passive tracer. The quantity
Kk denotes here the molecular diffusion coefficient.

The difference between equations (1) and (2) is that the
latter is conservative, while the former is not. The velocity
field is assumed to be a random field with the mean value
V(r,t) ={U(r,t)) (U(r,t) =V(r,t)+u(r,t)), and a fluctu-
ating component with an ensemble average (u(r,t)) = 0.

The flowing fluid can be compressible or incompressible
(VU(r,t) = 0); in the latter case equations (1) and (2) are
identical and the quantity Q = jdrq(r, t) is conserved. In
the one-dimensional case equations (1') and (2) are also
identical. Let us note that in this case the fluid is always
compressible.

Although equations (1), (1'), (2) are linear, solutions
q,p, and p depend in a complicated, implicit, nonlinear
functional way on the velocity field U(r,t), i.e.
g =q([U],r,t). The main problem here is to find the
statistics of solutions such as the mean, correlation
functions, probability distributions, and so on:

<Q(r7 t))a (fi(rl, t)q(rb t))a

in terms of the statistics of U.

Equations (1), (1'), and (2) yield the Eulerian description
of the system. We cannot study directly the probability
distribution of ¢(r,7) because equation (1) contains a
second-order (diffusion) term in r. But we can write a
variational (Hopf) equation for the characteristic func-
tional, which corresponds to a statistical analysis of
solutions of (1), (1'), (2) in the infinite-dimensional
functional space [8—11].

Let us introduce an auxiliary field g(r,s) described by
the stochastic equation

(66 +U(r, 1) 6> q(r, t)——a(t) 0 q(r, 1),

(q(rla tl)q(r27 t2)>a

) 3
q(r; 0) = qo(r),

where () is a delta-correlated Gaussian random vector

process (independent of U) with parameters

(@) =0, (oa(1)oy(t")) = 2u8;6(¢ — 1),

In that case solution of equation (1) corresponds to
ensemble averaging of equation (3) relative to the a-
process, so that

ih,j=1,2,3.

Q(ra t) :<a(ra t))a' 4
Formula (4) gives a path-integral representation of solu-
tion (1).

Let us note that the first-order stochastic partial
differential equation (3) can be solved by the method of
characteristics :

d

3,71 =U0(@), 1) +a(), r(0)=¢,

(5

San =0, 30)=4,@.

Solution of equations (5) depends on the initial parameter
&

r(t) =r(1&), 4(t) = q(().
This is the Lagrangian description. Eliminating the param-
eter £ from the solution of the set of equations (5) we get
the Eulerian description of the tracer concentration field:

&=&(tlr), qlr, 1) = q(r]&(tlr)).

To find the statistics of solution (5) we shall introduce
the function

&(r, 1) = 6(r(t) —r),

which satisfies Liouville’s equation with the initial condition
[8—10]

(5 50000 ) = —at 5.0 1),

&(r, 0) = 6(r — &).

Once again ensemble averaging relative to a_yields a
stochastic equation for the mean feld O(r,1) = (D(r,1)),:

(i?t += 0 U(r t)>¢(r t) = K ¢(r 1),
(6)
¢(r, 0) =6(r - 8).

Of course, expression (6) is still a stochastic equation
relative to the random field U. Dynamic equation (6)
coincides with equation (2), but has a point-source initial
condition. So the probability density (6) behaves like the
particle density (2), localised initially at a point source.

The transition from the Lagrangian to the Eulerian
statistical description, i.e. from equation (5) to equation (1)
involves the Jacobian

Jj(11€) = Det j(0jg) = 1.

0¢; H
The reciprocal of the Jacobian
plr, 1) =J 7" (1[&(tlr))

satisfies the standard continuity equation in Eulerian
coordinates

(5+ 5V 050 = =000 570,

) ™
p(r, 0) =1,
which after additional ensemble averaging yields an
equation for the mean density (over a), p(r,1) = (p(r,1)),:
o 9 o
(5500 )oles ) =gzt ), ®)

As mentioned above, for incompressible fluids equation (8)
coincides with equation (1).

The basic equations (1), (2) allow us to compute the
mean concentration {g(r,f)) or a one-particle probability
density ¢(r,t). To compute correlation, higher moments, or
two- particle distributions, we must use the product of



Statistical description of the diffusion of a passive tracer in a random velocity field 503

fields I~"(r],r2,t) =q(ry,1)q(ry,t), described by the linear
equation

0 0 0\~
(a +U(rl7 ) +U(r27 ) )F(r|7r27t)
t r2

o’ 62
<a 2+a )F(rl7r27 )7

~ )
I(ry, ry, 0) = qo(r1)qo(r2),

with subsequent averaging. Let us note that averaging
products g(ry,1)q(r,,t) from equation (3) over the a-
ensemble does not yield solutions of equation (9) since

(qlry, 1)q(r2; 1) # (a(r, 1))e(q(r2, 1)) -

So to interpret the solution of equation (9) as a probability
density we shall model the continuous field ¢ by a system
of particles. The k-th particle of the passive scalar will then
be described by the stochastic differential equation

d

70 =000, 0+ad0), PO =£Y, 0
where the sources a(k)(t) are assumed to be statistically
independent random processes. Next, let us introduce a
measure valued (random) function

b(ry, 12, 1) = 00D (e) — )3 (1) — 1)

that describes the joint probability density for two
particles. Function ¢ satisfies the Liouville-type equation

o 0 0 pt
(E—'_a_rlU(rh t)+a_r2U(r27 t))¢(r|7 ra, t)

(a0 5 + a0 ), 720,
Ory
which after averaging over ensembles a® for the function

oy, 1) = (J’("n ry, t)),,(m,,(z)

assumes the form

0 0 0
(E—FEU("I’ f) +a—r2U(r2a t))(b(rl’ ra, t)

?
+ ) (r ) r ) t)7
(ar] or2) V"2

(1
$r, 12, 1) = 3EV (1) —r)SED (@) 1),

For an incompressible fluid, the latter equation is identical to
equation (9). For compressible fluids, equation (11) describes
the product of two densities R(ri,ry,t) = p(ry,1)p(rs,t)
satisfying the continuity equation (2). Equation (11) determi-
nes the two-point probability density for Lagrangian
coordinates (10).

Our goal now is to average the linear stochastic
equations (1), (2), (9)—(11) over the random ensembles
of velocity fields U(r,t), to get the effective evolution of
mean fields (g(r,?)),, two-point correlations

F(r],r2,t):(f(rl,r2,t))z(q(r],t)q(r2,t))u,

etc.

3. Exact solutions

Averaging equations (1), (2) over the ensemble {u} yields
an evolution equation for the mean field, where the random
velocity field u is coupled through the fluctuation term

0

<u arq>
to random solution ¢, itself a functional of u, i.e.
q=qlu;...]. So to get effective mean field evolution it is
necessary to decouple (split) the cross—correlation term (12).
The decoupling methods depend on the nature of the random
field u. In the Gaussian case the decoupling is carried out with
the use of the so called Furutsu—Novikov formula [12, 13] (see
also Refs [§—10])

(e, ORla) = [ [, @', 1) <mR[u]>,
(3

(12)

which holds for any functional R () of a random Gaussian
field u. Formula (13) is essentially integration by parts in
functional space [14]. The case of non-Gaussian fluctu-
ations of fluid flow velocity has been discussed by
Samokhin and Chechetkin [15].

Applying formula (13) to the cross—correlation term (12)
of the mean-field equation (2) we get the mean tracer
concentration

(5 V05t )

! 0 )
’ ’ AR
+J0 dr Jdr By(r, t; r', t )_ar,. <45uj(r’, Py q(r, t)>
2

0
ka2l ), (14)

where Bj(r,t;¢,t") = (u;(r,)u;(r',1')) is the space—time
correlation function of field . Equation (14) is exact for
any zero mean Gaussian field u, but is not closed since
evolution of the mean field is coupled to the mean
variational derivative of u. The latter, 8¢/8u, is described
by a stochastic differential equation, obtained by varying
equation (1) in u

0 0 0 o
(at+V(r f) ‘H‘(" 1) )WQ(K 1)
62
=k52 Wq(n 1, s
! a li
=—0(r—r )afi(ﬂ t).

t—t'+0 J

W‘i(": 1)

Let us note that equation (15) is essentially equivalent to
the Green function for the original problem (1). Applying
the ensemble average to equation (15) along with the
Furutsu—Novikov formula leads to the appearance of
higher-order derivatives (52q/5ui5ui) etc. The resulting
system of equations requires a suitable closure, which
can be implemented exactly in some special cases. Two
of them will be discussed in detail: the delta-correlated field
in the time- variable u(r,f) and the telegraph process.
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3.1 Delta-correlated field
Let u(r,t) be a Gaussian delta-correlated field with
parameters

(u(r, 1)) =0,
By(r, t; v’ t") = (u(r, u;(r’, t'))
=2B"(r, r'; 1)3(t — ).

Then for deltacorrelated fields u(r,f) given by equa-
tion (16) we get

(16)

(5 V05t )

!
+2J dt'Jdr'B ! )3 — 1)
0
d 3 o’
xa<mﬁl(r t)> 5 ~7 (alr, 1)
i ‘j )

and the variational derivative is expressed through
dq(r,1)/8u;(r',t") at t — ', ie. through the initial condi-
tions of equation (15). This yields

(5 V05t )

1

—zJ dt'Jdr B, v, )8t — 1)
0

2

xié(r—r Kaar—z(q(r, 1)

or;

J

')a%w, ) =

Integration in ¢’ and r’ gives the closed-form equation

(G+ve ,)a><q(, )= A, ) 5 atr )

)c/(rt

(3 T, r, z)

with coefficients

Air, 1) = aiBCff(r r' 1)

If the random field u(r, ) is homogeneous and isotropic
(or the original flow U(r,t) is that of an incompressible

r'=r

fluid), then coefﬁcients Aj(r,r)=0. In this case
B (r,r’ t) By(r—r',t), and BCff(O 1) = 6;B(t), where
B(t) =N"'B"(0,1) and N denotes the dlmensmnallty of

the space: N = 1;2;3. Hence we get
2

(5 V0 055 ) Gl 1) = (B) ) 2 ot ). (19

In a similar way we obtain an equation for the
correlation function I'(ry,ry,t) = {q(ry,)q(rs,1)),:

0 0 0
(at—i-V(r], )E+V(r2, t)a>lﬂ(r],r2, t)

! 0
+Jodtljdr'<3ij(r|, t; r', t,)aT”

A o 6
+B'fi(r27 Br,t )arzi) <5uj(r', t') Q(rla t)‘/(rQa t)>

S
(a 2+a >F(rlar27 )7

which for a homogeneous isotropic and delta-correlated
field u(r,t) becomes

0 0 9
(E-FV('W, t)a-FV(rzy t)a—r2>l“(r|,r2, 1)

:[( ()+K)<aa22+aa2>

0 0

ZBcff
* (r )ar], ar2,

:|F(rl7r27t)' (]8)

In the particular case when the mean flow velocity
V(r,t) =0 and ¢(r,0) = g, is constant, then the random
field ¢(r,t) will also be homogeneous and isotropic. Hence

F(rh r, t) :F(I’] — I, t)7
and equation (18) simplifies to
2

2(B1) +#) ey — 285, 1) o 3 re,

)
a[‘(r7 ) a

1), (19)
where r=r; —r,.

Let us note that equations (17), (19) for incompressible
fluid flow have the form of the standard Fokker— Planck
equation for one-point and two-point distribution densities
of Lagrangian coordinates; furthermore the Lagrangian
description of problem (10) is a Markov process. For the
case of turbulent fluid flow, equation (19) has been
analysed by Lutovinov and Chechetkin [16].

3.2 The telegraph process

Let us now assume that the random velocity field has the
form u(r,t) = g(r,t)z(¢t) with a deterministic factor g(r,¢),
and the standard telegraph process z(¢) (see, for example,
Refs [9, 10]) is given by

2(t) = a(—1)"®",

The random variable « takes on values Fa, with
probability % and n(t;,t,) is a standard random integer
process of Poisson point-flux with mean value

(n(t1,t,)) = v|t — 11| and with the following properties:
]. Il(t];t3) = I’l(tl;tz) +I’l(t2;t3) for any t] < t2 < t3;
2. n(ty;t,) and n(t,;t3) are statistically independent for
H <ty <ts;
3. the probability of the existence of m events in the
interval [t),1,] is

P(n(t]; ) = m) :<”(f|’§n—§2)>m exp(—(n(t]; t2))).

Thus z(¢f) is a stationary Markov process with the
correlation function

(2(1)z(t") = ag exp(=2v|t) — 1))

and correlation radius Iy = 1/2v.
As before, let us average solutions of equations (1), (2)
over the ensemble z(¢). This time we obtain

(aat—kV(r ) a>< (r, ). +8(r, )5 0 - (2(Dalr, 1)),

2

ks, 1),
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or

(5 Vo0 %)t ). +8 0 5 000
= k23l ). o

with a new unknown cross-correlation function

Y(r, 1) = (z(t)q(r, 1)), .

It can be shown that the latter is described by the equation

(: +2v+V(r, 1) a)'l’(r 1) +ayg(r, t) 0 (q(r 1)),

2

6 =~ 21

which plays a role analogous to that of the Furutsu-—
Novikov formula in the previous section (delta—correlated
field). The derivation of expression (21) is based on the
following differentiation rule for telegraph processes

((;1 +2v> (z()R[z(2)]) = <z(t ,[2(1:)]>

valid for the cross-correlation of z(r) with an arbitrary
functional R,[z(t)], defined for t <t (see, for example,
Refs [9, 10, 17]). Thus we get a closed system of equa-
tions (20), (21) for the unknown mean field {g(r,)) and
correlation V.

Let us note that in the limiting case v — oo, ai — oo,
a§/2v — const the telegraph process turns into the Gaus-
sian delta-correlated one. Since in this limiting case

2 tatr ).

we arrive at a single equation for the mean field {(¢(r,1)).,
which corresponds to the Fokker—Planck equation for an
incompressible fluid.

The above procedure is appropriate for the telegraph
process but the underlying method is in reality more general
in nature. To illustrate this, let us now examine the
derivation of these equations from a somewhat different
viewpoint. Once again we apply ensemble averaging to
equation (1) to get equation (20)

Y(r, 1),

'P(r, t) = _“(%g(n t)

(57 V055 Gl ). + 506 ) 5 (ot )
= Kl 1)

To decouple the cross-correlation term (z(¢)q(r,t)) we
shall use the identity [9, 10]

(z(t)R,[z(7)])

2 ' / / 3
= dy JO dt eXp [—2V(t —t )] <W

LUEEON

(22)

where the functional

Ri[t'; 2(0)] = R z(2)6(t" — )]
and

o(s) — I, t>0

(t)_{o, 1<0

denotes the standard Heavyside step-function. The decoup-
ling relation (22) closely resembles formula (13) for
Gaussian fields with exponential correlation functions.
The only difference is that the right-hand_side of
expression (22) contains a truncated functional R, extend-
ing over the interval [t’,f] rather than R,[z(7)] extending
over the entire range of ¢, namely

R,[z(1)],
R,[0],

_ T<t!,
R [t"; z(v)] =
>t

Thus we get from expression (22)
!

(aa +V(r, 1) )(q(r 0.+ ag g(r, t)§J dr’

0

o l-2v0 = W g5 20) = K sl ),

The functional g[t’;z(t)] is described by equation (1) with
the random component of velocity

=g(r, Nz(1)0(t" —1).

Hence for t >t' we obtain the equation
2

u(r, 1)

0 0 o
(5 V055 )0 ) = 5570 0) e
with the initial condition
i, 1) |t=t,: qr, t'). 25)

Varying (24), (25) in z(t") we get for t > ¢’
) 0 5 8
(§+ V(r, 1) 5) W‘i("y 1) = K52 W‘i(": 1) (26)
with the initial condition

0
_g(r7 t’)§(1(r7 t’)7

& -
W@(”y 1)

i.e. an equation of the type of equation (15) but without the
fluctuating component of velocity. If we now introduce the
function

t=t’

t
Y(r t) = aozj dt" exp[—2v(t — t')]<Lc7[t'; z(r)]>,

0 dz(t")
then it is easily seen from expressions (24), (25) that ¥ is a
solution of equation (21). Thus in the case of telegraph-
type velocity fluctuations we are able to produce a closed-
form system of equations (20), (21).

Note that if we consider velocity fluctuations of the
above type u(r,t) = g(r,1)z(¢r) with the Markov Gaussian
process z(t), having the same parameters a, and v, then the

stochastic equation for variational derivative &¢/8z
becomes
0 0 0 )
(6 +V(r, t) +u(r ) >5 e )q(r 1)

62
=Kz 50 q(r, 1).

This resembles expression (26) but has an additional
random advection term u(r,t)0/0r in the left-hand side.
If we drop this extra term we get back to the stochastic
equation corresponding to the telegraph process. One can
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therefore regard the telegraph equation as an approxima-
tion of the Gaussian Markov process. Another way to see
this relation is to represent a Gaussian Markov process z(t)
with the correlation function

o exp[—=2v(t — )],
as a limit of the sum of independent telegraph processes

{z(0)}

z(t) = lim

N—oo

N

2(1)

with correlation functions [9, 10]
2

{210zt = 855 exp (=2vlt = 1']).

4. Approximate methods

Let us now discuss approximate methods of analysis of
propagation of a tracer in a random velocity field and their
contribution to solutions of stochastic equations, as in
reality fluctuations of the velocity field are not likely to
behave like delta-correlated or telegraph processes. The
latter can arise only as certain asymptotic limits. In other
words, asymptotic expansions of exact solutions should
yield certain simplified field equations statistically equiva-
lent to the delta-correlated or telegraph models.

4.1 Method of successive iterations

Let u(r,) be a Gaussian field with the correlation function
By(r,t;r',t"). We have then the exact equation (14) which
contains the variational derivative d¢g/du. The latter is in
turn described by the stochastic equation (15). Averaging
expression (15) over the ensemble we get another exact
equation which contains the second variational derivative
8%q/dudu etc. The method of successive iterations requires
the resulting system to be closed at the n-th level, i.e. for
8"q/du...8u. Usually the closure is based on a suitable
delta—correlation assumption (see, for example, Refs [8— 10,
18]. The method consists of a step by step improvement of
the functional dependence of ¢ on u. In some cases one can
argue on physical grounds that the n-th order corrections
to gqlu] give a negligible contribution to the general
solution, and therefore can be dropped. Let us note that
in the case when there is no average flow (V =0) and the
correlation functions By (r,t) decrease sufficiently rapidly in
space—time variables, the delta—correlation approximation
predicts the correct asymptotics of solutions as ¢ — oo.
This was also confirmed by numerical simulations [19]. If,
however, correlation functions By(r,r) have a more
complicated structure (for instance in turbulent velocity
fields [11]), or when there is an average flow, the delta-
correlated approximation is clearly insufficient.

For practical purposes it is often sufficient to close the
averaged equation (15) at the second step, when using delta-
correlation hypothesis. Although such closures are widely
used in the physics of plasma and ionosphere, in particular
in problems related to magnetic field generation by
turbulent gas or fluid flows [20] there is no satisfactory
mathematical justification for the closure and the validity of
the resulting approximation of ¢ (even for large n).

4.2 Telegraph approximation

Let the correlation function By(r,t;r',t"), as a function of
time difference ¢ — ¢’, be characterised by the correlation
radius f,

(")
B=B .
ty

If account is taken of the fact that equation (14) contains
an integral in ¢’, the principal range of integration of 8¢ /3u
is on the scale of fy,. If we make a physically justified
assumption that on such scales the random velocity
component u does not enter into 8¢/du (i.e. the latter
remains functionally independent of u), then we may drop
the fluctuating term in expression (15). Thus we arrive at a
closed-form description that could be called the telegraph
approximation, as we have shown it earlier to be the exact
description of the telegraph process. Now we get a system
of coupled equations for two means {g(r’,¢)) and (8q/3u),

a a ! ! ! . ! A
(55 V055 ) Gl )+ [ [y,

<o (gt 1) = v atr ),

and

(%* Vir, 1) %) <5uj(r6', 7y )
= K6672<W(1("7 t)> )

@7)

= () {glr, 1)

<%f1(ﬁ f)>

t—t’

We have already mentioned that the equation for the
variational derivative is essentially equivalent to Green’s
function of the original problem (1) in the absence of the
velocity fluctuations. Let us note that system (27) is
equivalent to the one obtained by Lipscombe et al [21],
although their method is entirely different. Another well-
known equation follows from expressions (27) in the
absence of average flow and molecular diffusion [6]. The
system of equations (27) is too complicated for direct
analysis, so it needs to be further simplified.

4.3 Diffusion approximation

Let us make an additional assumption with respect to the
fluctuating velocity component. Namely, let us assume that
on the time scale of the correlation radius ¢, velocity u has
a negligible effect on the dynamics of ¢ as well as on the
functional dependence of ¢ on u. On such a scale the
dynamics of a passive scalar field can be approximately
described by the equation

) ) o
(557 V05 )t 0 =zt ),

g, 0)| = alr, 1.

As a consequence we get an additional relation between
quantities ¢(r,t) and g(r,t'), which allows us to eliminate
the second of the two equations (27). Hence we obtain a
closed first-order equation in ¢ for the mean concentration
(q(r,1)). For large time scales (¢ > o) we note that g(r,t)
behaves like a Markov random field in ¢, which justifies the
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name of this approximation as the diffusion random field
approximation (diffusion approximation) [22].

5. The case of plane parallel average flow

Let us apply the formalism developed above to the case of
planar incompressible fluid flow with mean velocity

V(r7 t) = V(y)la

where r = (x,y),1 = (1,0). In this case equation (1) can be
written in the form

2

6
s q(r, 1) (28)

(st-i-v(y) C @, 1) a)q(r /) =

and the corresponding Lagrangian equations for a

‘particle’ become

L2 () =0) +anlr, )+ 1),

q (29)
ay(f) =

where o (¢) and a,(¢) are statistically independent stochas-
tic ‘white noise’ processes.

The random field u(r,t) is assumed to be an incompres-
sible Gaussian homogeneous and isotropic and stationary
random field with a space—time correlation function

= <“i(r7 t)“j(rla t))a

characterised by the following quantities: variance
o2 = B;(0,0), and space—time correlation radii f, and .
Let us introduce instead of By its spectral space density
E;(k,t) according to the formula

Fup(r, 1) + (1),

By(r—r',t—1t")

By(r, 1) = Jdk Ey(k, 1) exp ik -r).
For a homogeneous and isotropic ‘turbulence’

and consequently

(30)

By(r, 1) = Jdk E(k, 1)(3; — kikk~2) exp(ik -r),

and the variance of the field wu(r,t) is found from the
formulae

00 o0
af,:znj dk KE (k. 0); B,»j(O,t):nJ dkKE (K, 1)6;. (31)
0 0

We shall consider equation (28) with the initial condi-
tion corresponding to ‘point distribution’

q(r, 0) = 8(r — o). (32)

In this case, the solution of problem (28) is a function of
the parameter ry, i.e. g(r,t) = g(r,t|ry), and in the case of
an arbitrary random initial distribution of the tracer

q(r, 0) = qo(r)

the solution is determined by the convolution

alr, 1) = jdroq(r, tlro)do(ro)-

As has been demonstrated earlier, under the initial
condition (32) the solution of problem (28) for the mean
value (q(r,t|ry)) coincides with ‘one-particle’ probability
density for the Lagrangian coordinate of the particle (29),
and the quantity (q(rl,t|rf)))q(r2,t|r(()))) coincides with
‘two-particle’ probability density.

Let us then consider problem (28), (32). We are inter-
ested in the mean concentration of the tracer (g(r,?)).
Averaging equation (28) over the ensemble of the random
field u we get

(%Jr v(y)a%) (alr, 1) + J; ar’ Jdr'B,_-/-(r -

r' t—t')

X aar,- <8u (r5’ 7y 0)=

For the variational derivative 8¢(r, ) /8u;(r', ") we have
the following stochastic equation

62
Koz {ar, ). G3)

(50 5+ 400 055 sy o

+6(r —r")o(t —t') %q(r, t')

J

62
K ———— 4
Kar2 Suj(r/7 tl) Q(r7 t)7 (3 )
with
)
Suj(rl7 tl) q(r’ t) 1:0_ 0’
3 n O /
—q(r, t =—0(r—r)—q(r,t
Sur', 1) ( )H,+0 ( )arj (ry 1)
or an equation with the initial condition
0 0 0 )
( +V(y) ‘H‘(" t)6r> mf{('} 1)
—xa—z— (ryt) (t>1t")
o or? duy(r, t’)q ’ ’ (35)

8 _ n O '
W‘i(r, 1) t=t1— or—r )arjﬁl("y t').

In geophysical problems, the quantity k—the coeffi-
cient of molecular diffusion—is usually rather small.
Therefore the term containing k may be left out from
equations (34), (35) (in any case we are interested in the
limit & — 0), i.e. for the variational derivative we can write
down the equation

(a—i-v(y) 0 + u(r, );)MO5 t)q(r =0 (t>1t"),

5 (36)
=-6(r—r') aq(r, th.

t=t' J

)
Suj(rl7 tl) q(r7 t)
But let us keep the term containing x in equation (33),
because in some cases it can play the role of a
regularisation factor.

Let us now consider various approximations.

1. In the approximation of the delta-correlated random
field u(r,t), the quantity 8¢/du;, which enters into expres-
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sion (33), is determined by the initial condition (36) for
t' =t, i.e. by the expression

5
W‘i(r, 1) =—6(r—

and equation (33) for ¢ > t,, where ¢, is the temporal
correlation radius of the field u, is transformed into

(5005 ates ) = [ 0By 0,05 o, )

D
r )a_rjq(r’ 1) (37)

62
+K6r_2<q(r’ 1),

which can be written in the form

) 0 o
(505 ) e 10 =D latr ), G8)
where, according to equation (31), the quantity
D=x+D", (39)
with

00 00
D' = nj dtJ dk KE (k, t)
0 0
is the coefficient of ‘turbulent’ diffusion.

Equation (39) now takes on the form of the Fokker—
Planck equation for the probability density of a Lagrangian
particle coordinate (29).

2. In the telegraph stochastic process approximation we
get the following equation for the mean value of the
variational derivative

(5+0ng) G ) =0 >0,

<%f1(ﬁ f)>

In this approximation we have a closed system of
equations (33) and (40) which is of the second order
with respect to time. From equation (40) we can obtain the
relationship between the quantities (8¢/du) and (g) in the
form

(st ) = —ew |~ =g

a%<q<r, ).

(40)

= () (gl ).

t=t'

x8(r—r') 41)

Substituting expression (41) into equation (33) we obtain
an integro-differential equation for (g(r,?))

(505 ) ates )

2

!
= Ka—z(q(r, 1)) + J dt'Jdr'Bi,(r —r,
or 0 ’

t—t')

X a%iexp [—(t —t" i) %] S(r—r') air, {q(r, t"),
@

which, on taking into account the incompressibility of the
field u, after integration with respect to r’, can be written in
a final form as

(% () %) (q(r, 1)) = rcaar—z(q(r, 1)
+a%i.[; dtB;(tv(y)1, 1)
X exp (—w(y)1§> %(61(’3 t—1). (43)

Notice that in equation (43)
0\ 0
exp (<015 ) 57 e 1 =)

= (a% - dz(;) dp 1%) {glr —v(y)1, 1 —1)).

3. In the diffusion approximation the quantity {g(r,¢"))
on the right-hand side of equation (42) can be determined
from the original dynamical system (28) in the absence of
the fluctuation term and the term containing the parameter
K

(a+V(y) a)ci(r 1) =0,

ar,1)| =l

and, consequently,
(e, 1) = exp |~ = WO ] b, 1)

or

(e, 1) = exp | (6= 001 5.t ) @)

Substituting expression (44) into equation (43) we obtain a
closed equation of the first order in time

2
(5705 e 1) = s atr )

o d
+6_r,»J0 deB;(ev(y)1, 7) exp (—rv(y)l 5)

<o (0012 ) lalr =),

J

which can be rewritten in the form

(S +002) e =

ks alr, )
o 1), .0 p®
+a—ri,[0 d‘c(D,j] (r, 1:)5 2 5 (r, ) >(q(r 7)).

(45)

Here

Dl(jl)(n 7) = B;(wv(y)1, 1),

DY(r, 1) = By (vv(¥)1, 1) dv(y)

dy

are diffusion coefficients. Equation (45) describes correctly
the dynamics of the quantity (¢(r,f)) also for time scales
t <ty to being the temporal correlation radius of the
random fields u(r,t). However, in this case the statistical
solution of equation (29) for the particle does not satisfy
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the Markov property. If the problem is simplified and one
considers the behaviour of the system for time # > ¢,, then
one can replace the upper limits of the integrals in
equation (45) by infinity, and in this case, the solution
of equation (29) in such a time scale will be a Markov
process.

Above, we have considered approximate methods of
description of diffusion of a passive tracer in a plane
parallel average fluid flow. The equations we have
obtained are rel-atively complex. In the general case they
cannot be solved analytically. However, in geophysical
applications there are several simpler problems of immedi-
ate interest that admit a more complete analysis. Among
these problems let us mention the following:

1. v(y) = By—linear shear flow;

2. v(y) = veb(y — yo) —vob(yo — y) —tangential

detachment;

3. v(y) = vgsin(fy) — Kolmogorov flow;

4. v(y) =v(y)0(yo — | y[) —Jet flow.

We leave aside the question about their stability (see e.g.
Refs [11, 23, 24]).

In some cases equation (38) can be easily solved for an
initial point condition {g(r,0)) = é(r —ry) and its solution
corresponds to Gaussian probability distribution for the
system of equations (29), which is statistically equivalent to
the system of equations

shock

d ~
ax(f) =v(y) + (1),
d ~ (29
—yt) = o (¢

$y0 =m0,

where o;(f) are statistically independent stochastic ‘white
noise’ processes with correlation functions

(@ (1)a(¢")) = 2D'?6(t —t").
It is easy to write the solution of system (29'):
y(t) :y0+W2(t),

t

x(1) = xo +wi(1) + j dtv (30 +w2(1)),

(46)

where
!
w(e) = | ¢
0
are independent Wiener processes with the characteristics

(wi(2))y =0, (wi(t)wj(t')) = 2DJ;min{z, '}

It follows from equalities (46) that the y(¢) coordinate has a
Gaussian probability density with the parameters

o) =yo, (1)) =yi+2Dt,

which corresponds to usual Brownian motion with the
turbulent diffusion coefficient D.

Now, from equalities (46) we can easily calculate any
momentum functions (x"(#)) and correlations {(x"(¢)y" (¢))
for Lagrangian particles. From the point of view of an
Eulerian description for average concentrations these values
characterise the divergence of the tracer ‘cloud’ since the
equations for mean concentration {g(r,)) and one-particle
probability distributions are the same as has been repeat-
edly demonstrated above. Thus the value

() = éjdrr@(r, )

defines the position of the ‘centre of gravity’ of the tracer
cloud in time, whereas higher momenta, such as

1
(000 = 5 | arritate, )
characterise the deformation of this cloud.

Thus in the simplest example of shear flow the
equalities (46) correspond to the joint Gaussian probability
density with the parameters [25, 26]

(x(1)) = Byot +x0,  (¥(1)) = o,
o2, = 2Dt (1 + Bt +%ﬁ2t2>,
oy =2Dt, oy, =2Dt(1 + pr),
where
ot ={(x = (®)), o = (0= )),

ory = (1) — () ().

Solution (46') is also well known in the absence of shear
(=0), and in this case corresponds to the usual joint
Brownian motion in the (x,y) plane with a turbulent
diffusion coefficient.

In the case of Kolmogorov flow we have

(1) = o,

(x(0)) = xo + BZ—°Dsin<ﬁyo) [1 - exp(—5°D1)). (46")

If now ¢ > 1/Df?, then

(3 () me = 50+ 2 sin (B,
that is the particle is located on average in a finite part of
space. In this case the correlations x(¢) and y(¢) also do not
depend on time:

4vo

((e(®) = x0) (1) = ¥0)) 100 = X0 + E—Dcos(ﬁy‘))'

But in this limit the quantity x(¢) behaves like a Brownian
particle with a turbulent diffusion coefficient D, i.e.
0)2” ~ 2Dt.

Let us note that after the loss of equilibrium of the
Kolmogorov flow a quasiperiodical flow is established in
plane (x,y). Tracer diffusion in flows of this kind with
V = (Bcosy,Asinx) has been examined by Crisanti and
Vulpiani [27].

6. Special features of statistical solutions

In order to identify special features of statistical solutions
we shall confine ourselves to the simplest problem —we
shall consider a one-dimensional problem with zero
average flow and we shall neglect molecular diffusion. In
this case we have the following equations

(g‘i‘u(x, t)§>q(xa t) =0, q(x, 0) = L/o(x), @7

(%Jr%u(x, t)>P(x, =0, p(x,0)=pylx) (48

instead of equations (1), (2).
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Let us recall that a one-dimensional problem always Taking into account that
describes compressible fluid flow and the quantity 5
0 7 t(x7 /|C)
plx, 1) = =—q(x, 1), Bule's 1)
0 9 06(x —x") .
for the spatial concentration gradient is also described by = _<aé(x )+a— 7@){ >¢r(x7.l|f)7

equation (48).

On solving equation (47) with the aid of the method of
characteristics we obtain, instead of equation (5), corre-
sponding equations providing a Lagrangian description

d
GO = u(x (1), 1), x(0]¢) =

q (49)
Sa(18) =0, 4(018) = au(2).

Hence ¢(#|&) = go(&). As mentioned above, divergence,
described by the quantity j(¢|€) = [0x(¢|€)/0&|, plays an
important role in going over to Eulerian description. The
above quantity satisfies the following equation derived
from equation (49)

d . Ou .

L9 =21 i), jole = 1. (50)

It has been often stated above that to describe statistical
properties of x(#|&) one should introduce the function

P,(x, jI€) = 8(x (#[&) — x)d(j(]€) —J),
satisfying Liouville’s equation

0 g 0 0 Ou(x, 1)
&di,(x,ﬂé) = —(§u(x, f) —l—a—, o

JEXCSE]

Po(x, j|€) = (x — £)o(i —1). (1)

For the sake of simplicity we shall consider the random
field u(x,r) to be a Gaussian homogeneous random field,
isotropic in space and stationary in time, with the para-
meters

(u(x, 1)) =0,

B(x—x',t—1t")=

(u(x, Hu(x’, 11).

In this case
Ou(x, 1) 0 p
<Tu(x, t)> = aB(x —x

For the sake of simplicity we shall use the approximation
of the field u(x,r) delta-correlated in time, in which the
correlation function B(x,7) may be approximated by the
expression

=0.

x'=x

,t—1t)) (52)

B(x, 1) = 2B°"(x)3(r), 2B°"(x) = J: dtB(x, 7). (53)

On averaging equation (51) over the ensemble of the
field u(x,t) using the Furutsu —Novikov formula, we obtain
an equation for joint offset probability density of the

‘particle’ and its divergence P,(x,j|&) = (®,(x,j|E))
0 .
apt(xu/m)
B 0 ot 0 0B"(x —x")
B Jd (a B —x) o/

+
<5u( 1) ,(x,1|§>

and using expression (52) we can rewrite the last equality as
a Fokker—Planck equation
) , o’ ,
6Pr(x7.l|f) =D, ax—2Pr(xy.l|f)

0 0.0
+D, (a ’+a 5 >P(x,/|é‘)

Po(x, jl&) = 6(x = &)6(j — 1),

or in the form
2

o . 0 _ 00 ,
EP,(x,./Ié) =D ax—2Pr(xy.l|f) +Dzaa.l P.(x, jl&),

(54)
Po(x, jl&) = 6(x = &)6(j — 1),

where the diffusion coefficients D; are determined by the
equalities

o
—— B eff x

ox? ()

Let us note that the use of the diffusion approximation

instead of the delta-correlated in time approximation yields
the same equation (54) but the diffusion coefficients depend
now on time

D, =B(0), D,= (55)

x=0

t 62
_JO dfwB(x, 'L')

If t > to, where ¢, is the temporal correlation radius, these
equations yield equalities (55).

From equation (54) it is clear that the diffusion of a
‘particle’ does not depend upon divergence statistics and is
described by a Gaussian probability distribution with the
parameters

(x(t€) = ¢ ar(r) = ((x(118) — (x(118)))*) = 2Dy,
i.e. it corresponds to usual Brownian motion. As regards
the probability distribution for the divergence, it is
logarithmically normal and statistically equivalent to the
representation of divergence without dependence on the
parameter & [28]

J(1) = j(t18) = exp(=Dat + w(1)),
where w(t) is a Wiener process with the parameters
(w(1)) =0, (w'(r)) =2Dat .

From formula (56) as well as from equation (54) it follows
that

(D) =1, (j"()) = exp[Dan(n — 1)1, (57

i.e. the mean value of divergence is constant and higher
moments, starting from the second ones, grow exponen-
tially in time. Let us note that for the quantity equal to the
inverse of divergence, p(¢) = 1/j(¢), which has the meaning
of particle density and satisfies in Lagrangian description
the equation

Dy(r) = J; dtB(0, 7), Di(t) =

x=0

(56)
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d . Ou(x, 1) . ~
—o(t) = ————o(t 0)=1
3P o P, p(O) =1,
one can also obtain a logarithmically normal probability

distribution, the momentum functions of which are
determined by the equality

(0"(1)) = exp[Dan(n + 1)1]. (58)

Thus the mean density of the passive tracer grows
exponentially in time and this applies also to its higher
momenta.

The paradoxical behaviour of the statistical character-
istics of divergence and particle density which consists in
simultaneous growth of the statistical characteristics in time
may be explained by the property of logarithmically normal
probability distribution [29]. Thus a typical expression for
random divergence j(r) is an exponentially decaying curve

J(t) = exp(=Dt),

whilst there are top majorant estimates for the expressions
for the random process j(¢). In particular, with probability
P=73

j(t) < 4dexp (— %th)

for any time period. Correspondingly, for density we have
a typical expression and bottom majorant estimates as
follows

p(t) =exp (th), p(t) > Lexp (%DQt).

The estimates presented above show that the statistics of
the random values j(¢) and p(¢) are formed by jumps of their
realisations with respect to their typical realisations. At the
same time the particles are being compressed, forming
clusters located mainly in low-density zones.

Let us consider now the Eulerian description of our
problem. Let us introduce the functions

P (q) =0(q(x, 1) —q), Piu(p) =6(p(x, 1) —p),

satisfying Liouville’s equations
0 0
(5 + u(x, t) &) ¢t,’( ((1) =0,

Do, (q) = 0(qo(x) — q),

) 0 0 Ou(x, 1)
(§+Lt(x7 t)a)¢r,x(p) _gp ox

Do, (p) = 6(po(x) — p)-

On averaging now expressions (59) over the ensemble of

random field u(x,t) we obtain the following equations for

density probabilities P, . (q) = (®:,(q)), P:.(p) = (D1 (p)):
3 o’

&Pr,x(‘i) =D, ax_2P’“(q)’

D, , (),

(59)

(60)
Po.(q) = d(q0(x) — q),
0 o 00 ,
—P =D,—P Dy— —p*P
ot t,x(p) 1 ax2 t,x(p) + Zap app f,x(p)7
(61)
Py (p) = 6(po(x) — p)-
The solution of equation (60) corresponds to spatial

diffusion of the initial distribution. In the simplest case
of a homogeneous initial condition go(x) = gy — const, the

distribution of probabilities does not depend on x and
P.(q) = (¢ — qo).

For homogeneous initial conditions for density (61)
Po(x) = py — const, the distribution of probabilities also
does not depend on x and equation (61) can be simplified:

0 00 ,

—P,(p) =Dy— —p°P
or t(p) 26p app f(p)7

(62)
Po(p) = 6(po — p)-

The solution of equation (62) corresponds to a logarith-
mically normal distribution and then

(p(x; 1)) = po, (p"(x, 1)) = pexp[Dan(n — 1)1].

From expressions (62), (63) one can obtain a typical form
of expression for the field p(z,t) at any fixed point in space

(63)

p(x, t) = poexp(—D;t)

and Eulerian statistics reflect density fluctuations relative
to this curve, which confirms the cluster nature of the
density fluctuations of the medium.

As has been mentioned earlier, the spatial concentration
gradient of the tracer

plx, 1) = (e, 1)

is described by an equation which coincides with the
equation for the density of the medium. In this case joint
probability density for the quantities g(x,¢) and p(x,7)—
Py (q,p) = (6(a(x,t) — q)8(p(x,t) —p)) is also described
by equation (61), i.e. by the equation
2
%Pr,x((h p) = DI aax_zpr,x((h p) + D2%%p2pm‘(q7 P),

(64)
Poatar ) = Sanlo) = 3 5 an(r) = ),

from which it follows that the joint momentum functions
are

(q"(x, 0)p" (x, 1)) ~ exp[Dym(m — )] .

Hence, the statistics of the concentration gradients are
formed by jumps with respect to a typical form of
expression that exponentially decays in time at a fixed
point in space.

It is clear from the above discussion that to describe
tracer diffusion in detail it is not enough to know the
behaviour of individual momentum functions of tracer
concentration and its gradient or density in space and
time. One must also examine the probability distribution for
these quantities. It was demonstrated above that in the
general case of a three- dimensional problem the term
taking account of molecular diffusion makes this impos-
sible, so approximate approaches must be used. Some of
these approaches are now in the process of being developed
[30-32].

As regards the one-dimensional problem under con-
sideration here, if molecular diffusion is taken into account
we obtain the following equation instead of equation (47)

2

(5 10es 3 Yt ) = ezt ),

(65)

q(x, 0) = go(x)
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and a corresponding equation for the spatial tracer
concentration gradient
CIC o
(E—Fau(x, t))p(x, f) = K@p(x, 1),
(66)

p(x, 0) =§%(X)-

In accordance with what has been said above, in the
absence of molecular diffusion the behaviour of a typical
expression for the spatial gradient of passive tracer
concentration is characterised by exponential decay in
time at any point in space. Hence we can regard the
diffusional term in the right-hand side of equation (66) to
be immaterial. On leaving out this term we obtain the
following system of first-order equations:

0 0 0
(5 1000 0 s ) = e, ),

q(x, 0) = go(x), @

(%—l—u(x, l‘)%)p(x7 t) = —p(x, t)%u(x, 1,

p(x, 0) = o go(0),

i.e. a value described by a closed equation has been added
as a source in the right-hand side of the equation for
q(x,t). However, it is clear that the quantities g(x,¢) and
p(x,t) are statistically related.

Let us consider the function

?.. (9, p) = 6(q(x, 1) — q)3(p(x, 1) — p).
On differentiating it with respect to x we obtain

0 0 0 Op(x, 1)
3, Poe(@p)= P34 @, (9,p) > ox

?, . (q,p)- (68)

Differentiating now &, ,(g,p) with respect to ¢ we obtain
0 0
(5 10 05 ) @usta )

_ Ou(x, 1) © 0 Op(x, t)
T ox $¢f,’(((h p)_’ca ox

?,.(q,p). (69)

Averaging equations (68), (69) over the ensemble of
random field u(x,) we obtain for joint probability density

P (q4,p) = (®,(q,p)) the equalities
0 0 0
apr,x((h P) - _papf,x((h P) - a q’r,x(‘/a P),
2

d 3 39,
apf,x((h p) =D, ax—zpr,x(% p) +D2$$P P, (q,p)

0
_Ka qlt,x ((17 P),

where

qlt,x ((ia p) = <ap(a/\;’ t)

2, (g, p)>-

On excluding the unknown function ¥,,(g,p) we obtain a
closed equation for probability density

2 S Pularp)
at ap 1x q, P

-D 6_231) (¢, p)+D 333 2p (g, p)
- ]aX2 ap tx\4, P Zap ap app tx\q, P

2

0 0 0
—_p P .
+x g ax (g, p) +xp 1x (g, ). (70)

3
In particular, if we multiply expression (70) by p and
integrate over p we obtain an equation for the probability
density of passive tracer concentration

0 o o 0 @,
&Pt,x((n _D]@PI,X(Q)_K6_§<I7|(1) —K@Q’ l7),

q

where

(e, ) = |

00
dpp"P.. (4, p)-

—00

Equation (70) has not yet been studied.

Let us note that equation (70) leads to a closed system
of equations for momentum functions of the type
(p"(x,)qg" (x,t)), which includes as a source the quantities
(p'(x,1)) described in a closed form by an independent
equation of the kind of equation (62).

7. Conclusion

A functional approach has been used here for the detailed
examination of various approximate methods of describing
the statistical characteristics of a scalar tracer field in a
random velocity field. Special features of statistical
solutions have been illustrated by taking the simplest
problem as an example. The approach outlined above is
based essentially on the conditions of finiteness of the
temporal correlation radius of the velocity field, while the
conditions of applicability of this approach are governed
by various limitations in relation to the correlation radius
(the limitations are different for different approximations).
The equations obtained are not valid for an unlimited
temporal correlation radius (random stationary velocity

field). In fact, this case has so far hardly been investigated.

The author is grateful to D Gurarie and W Woyczynski
from the Center for Stochastic and Chaotic Processes in
Science and Technology, Case Western Reserve University,
for useful discussions of this problem.

The research described here was made possible in part
by Grant MBP0OO from the International Science Founda-
tion and by Project 94-05-16151 from the Russian
Foundation for Basic Research.

References

1. Batchelor G R J. Fluid M ech. 5113 (1959)

Batchelor G R, Howells L D, Townsend A A J. Fluid M ech. 5 134

(1959)

Roberts P H J. Fluid Me ch. 11 257 (1961)

Kraichnan R H Phys. Fluids 11 945 (1968)

Kraichnan R H Phys. Fluids 13 22 (1970)

Saffman P G Phys. Fluids 12 1786 (1969)

McLaughlin D W, Papanicolaou G C, Pironneau O R SIAM J.

Appl. Math. 45 780 (1985)

8. Klyatskin V I St atisticheskoe Opisanie Dinamicheskikh Sistem s
Fluktuiruyushchimi Parametrami (Statistical Description of
Dynamical Systems with Fluctuating Parameters) (Moscow:
Nauka, 1975)

N

NS0k W



Statistical description of the diffusion of a passive tracer in a random velocity ficld

513

12.
13.

20.

21.
22.
23.

24.

25.
26.
27.
28.
29.
30.

31.
32.

Klyatskin V I Ondes et Equations St ochastiques dans les M ilieux
Aleatoirement Non Homogenes (Besancon Cedex: Les Editions
de Physique, 1985)

Klyatskin V I St okhasticheskie Uravneniya i Volny v S luchaino
Neodnorodnoi Srede (Stochastic Equations and Waves in Ran-
domly Inhomogeneous Media) (Moscow: Nauka, 1980)

Monin A S, Yaglom A M Sta tisticheskaya Gidrodinamika (M os-
cow: Nauka, Vol. 1, 1965, Vol. 2, 1967) [English translation

St atistical Fluid Me chanics (Cambridge, MA: MIT Press, 1975)]
Furutsu K J. Res. Natl. Bur. Stand. D 667 303 (1963)

Novikov E A Zh. Exp. Teor. Fiz. 47 1919 (1964) [Sov. Phys. JETP
20 1290 (1965)]

Donsker M D Proceedings of the Conference on the Theory and

Ap plications of Analysis in Functional Space (New York: MIT Press,
1964)

Samokhin F F, Chechetkin VR Izv. Aka d. Nauk SS SR, Fiz. Atm os.
Okeana 27 621 (1991) [Izv. Acad. Sci. USS R, Atm os. Ocean. Phys.
27434 (1991)]

Lutovinov V S, Chechetkin V R Izv. Ak ad. Nauk SSS R, Fiz. Atm os.
Ok eana 25 266 (1989) [Izv. Acad. Sci. USS R, Atm os. Ocean. Phys.
27 195 (1989)]

Shapiro V E, Loginov VM Dinamicheskie Sistemy pri Sluchainyk h
Vozdeistviyak h (Dynamical Systems under Random Influences)
(Novosibirsk: Nauka, 1983)

Klyatskin V I, Tatarskii V I Izv. Vyssh. Uchebn. Zaved., Radiofiz.
14 1400 (1972)

Careta A, Sagues F, Ramirez-Piscina L, Sancho J V J. Stat. Phys.
71 235 (1993)

Vainshtein S I, Ruzmaikin F F, Zel’dovich Ya B Tu rbulentnoe
Dinamo v Ast rofizike (Turbulent Dynamo in Astrophysics) (Mos-
cow: Nauka, 1980)

Lipscombe J T, Frenkel A L, ter Har D J. Stat. Phys. 63 305 (1991)
Klyatskin VI Lect. Appl. M ath. 27 447 (1991)

Dolganskii F V, Klyatskin V I, Obukhov A M, ChusovM A
Nelineinye Sistemy Gidrodinamicheskogo Tipa (Nonlinear Systems
of the Hydrodynamic Type) (Moscow: Nauka, 1974)

Gledzer E V, Dolzhanskii F V, Obukhov A M Sistemy Gidrodina-
micheskogo Tipa i Ikh Primeneniya (Systems of the Hydrodynamic
Type and Their Applications) (Moscow: Nauka, 1981)

Csanady G T Turbulent Diffusion in the Environment (Dordrecht:
Reidel, 1980)

Zambianchi E, Griffa A, Preprint (Miami, FL: Rosenstiel School of
Marine and Atmospheric Science, University of Miami, 1993)
Crisanti A, Vulpiani A J. Stat. Phys. 70 197 (1993)

Saichev A I Dyn. Syst. 11 (1993)

Klyatskin VI, Saichev A I Usp. Fiz. Nauk 162 161 (1992) [Sov. Phys.
Usp. 35231 (1992)]

Sinai Ya G, Yakhot V Phys. Rev. Lett. 63 1962 (1989)

Chen H, Chen S, Kraichnan R H Phys. Rev. Lett. 63 265 (1989)
Kimura Y, Kraichnan R H Phys. Fluids A § 2264 (1993)



