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Abstract. A single functional app roach is used to t reat the 
p rob lem of the diffusion of a tracer in a r a n d o m velocity 
field, posed in a general form. A p p r o x i m a t e m e t h o d s 
leading to var ious app rox ima te solut ions and the condi ­
t ions of their validity are examined. P lane paral lel average 
flow is considered in detail and some features of statistical 
solut ions are discussed for the simplest case. 

1. Introduction 
The p rob lem of p ropaga t i on of a passive tracer in a 
r a n d o m velocity field is of major impor tance in ecological 
p rob lems of oceanology and a tmospher ic physics. It has 
been studied since the end of the fifties s tar t ing with the 
p ioneer ing paper s of Batchelor et al [1, 2]. Later , m a n y 
researchers derived a variety of equa t ions describing 
statistical characterist ics of the tracer field b o t h in 
Eulerian and in Lagrangian descript ion (e.g. Refs [ 3 -7 ] ) . 
The derivat ion of such equa t ions is still progress ing at full 
pace at the present t ime. Meanwhi le m a n y researchers are, 
in essence, often repeat ing each o the r ' s work , deriving 
equa t ions similar to ones obta ined long ago. The 
assumpt ions which under ly these der ivat ions also do no t 
differ in principle. It is quite easy to write down equa t ions 
describing the statistical characterist ics of a tracer field in 
the so called delta-correlated approach for a r a n d o m 
velocity field (see, e.g., Refs [ 8 - 1 0 ] in which in L a g r a n -
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gian representa t ion the part icles behave like o rd inary 
Brownian part icles. The mos t difficult p rob lem is to t ake 
into app rox ima te account the finiteness of the temporal 
correlation radius of the velocity field. Here , a single 
functional approach will be used to t reat the p rob lem of the 
diffusion of a t racer in a r a n d o m velocity field, posed in a 
general form. A p p r o x i m a t e m e t h o d s leading to var ious 
approx ima t ions and the condi t ions of their validity will be 
examined. The case of p lane paral lel average flow will be 
considered in detail and special features of statistical 
solut ions will be discussed for the simplest p rob lem used as 
an example. 

2. Formulation of the problem 
The pr incipal equa t ions governing the diffusion of a t racer 
in a r a n d o m velocity field are of the following two types: 

+ f / ( r > 0 ^ - W ( ^ , t) = K--,q{r, t), 
Qt 1 v ' J 8r 

q(r, 0) = q0(r), 

8 r 2 

(1) 

= Quk(r, t) 

p(r, 0) =p0(r). 

pk(r, t)+K-^Pi(r, t), 

(1 ' ) 

Equa t ion (1) describes a scalar field q(r,t) of such 
quant i t ies as t empera tu re , salinity, etc. of interest in 
geophysics, 
and equat ion describes its spatial gradient 
p(r,t) = dq(r,t)/dr. Let us no te also the addi t iona l 
equat ion 
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\dt 8r 

P(r, 0) =p0(r) 

8 r 2 

(2) 

for the 'mater ia l ' density of the passive tracer. The quant i ty 
K denotes here the molecular diffusion coefficient. 

The difference between equa t ions (1) and (2) is tha t the 
latter is conservative, while the former is not . The velocity 
field is assumed to be a r a n d o m field with the mean value 
V(r ,f) = (U(r,t)) (U(r,t) = V(r,t) +u(r,t))9 and a fluctu­
at ing componen t with an ensemble average (u(r,t)) = 0. 

The flowing fluid can be compressible or incompressible 
(yu(r,t) = 0); in the latter case equa t ions (1) and (2) are 
identical and the quant i ty Q = §drq(r,t) is conserved. In 
the one-dimensional case equa t ions and (2) are also 
identical. Let us no te tha t in this case the fluid is always 
compressible. 

A l though equa t ions (1), (2) are linear, solut ions 
q,p, and p depend in a complicated, implicit, nonl inear 
functional way on the velocity field U(r,t), i.e. 
q = #([£/] , r , t ) . The main p rob lem here is to find the 
statistics of solut ions such as the mean , correlat ion 
functions, probabi l i ty dis t r ibut ions, and so on: 

(q(r, t)), (q(ru t)q(r2, t)), (q(ru tx)q(r2, t2)), 

in t e rms of the statistics of U. 
Equa t ions (1), and (2) yield the Eulerian description 

of the system. W e cannot s tudy directly the probabi l i ty 
dis t r ibut ion of q(r,t) because equat ion (1) conta ins a 
second-order (diffusion) term in r. But we can write a 
variational (Hopf) equation for the characterist ic func­
t ional , which cor responds to a statistical analysis of 
solut ions of (1), (2) in the infinite-dimensional 
functional space [ 8 - 1 1 ] . 

Let us in t roduce an auxiliary field q(r,t) described by 
the stochastic equat ion 

t)^\q(r, t) = -a(t)^q(r, t), 

(3) 
q(r, 0) =q0(r), 

where a(t) is a del ta-correlated Gauss ian r a n d o m vector 
process ( independent of U) with pa rame te r s 

(a(t)) = 0, (ai(t)(xj(tf)) = 2Kdijd(t -t'), ij = 1, 2, 3. 

In tha t case solut ion of equat ion (1) cor responds to 
ensemble averaging of equat ion (3) relative to the a-
process, so tha t 

(4) 

F o r m u l a (4) gives a path-integral representation of solu­
t ion (1). 

Let us no te tha t the first-order s tochast ic par t ia l 
differential equat ion (3) can be solved by the method of 
characteristics: 

r(t) = U(r(t), t)+a(t), r ( 0 ) = « , 

q(t)=0, ? (0 )=?o (0 -
(5) 

Solution of equa t ions (5) depends on the initial pa ramete r 
«: 

r(f)=r(f|5), q{t)=q(t\Q-

This is the Lagrangian description. El iminat ing the p a r a m ­
eter § from the solution of the set of equa t ions (5) we get 
the Eulerian description of the tracer concent ra t ion field: 

S = S{t\r), q(r,t)=q{t\H{t\r)). 

To find the statistics of solution (5) we shall in t roduce 
the function 

$(r, t)=5(r(t)-r), 

which satisfies Liouville's equation with the initial condi t ion 
[ 8 - 1 0 ] 

-a{t)-${r, t), 

Once again ensemble averaging relative to a^yields a 
s tochast ic equat ion for the mean field <j>(r,t) = (&(r,t))a: 

n2 
+ - t / ( r , t)U{r, t) = K—,(j>{r, t) 

Qt 9r 

<Kr, 0 ) = a ( r - $ ) . 

8 r 2 

(6) 

Of course, expression (6) is still a stochastic equat ion 
relative to the r a n d o m field U. D y n a m i c equat ion (6) 
coincides with equat ion (2), bu t has a poin t -source initial 
condi t ion. So the probabi l i ty density (6) behaves like the 
part icle density (2), localised initially at a poin t source. 

The t rans i t ion from the Lagrang ian to the Euler ian 
statistical descript ion, i.e. from equat ion (5) to equat ion (1) 
involves the Jacobian 

y ( f | f i ) = D e t , ,/(o|a = i-

The reciprocal of the Jacobian 

p(r, t)=J-\tW\r)) 

satisfies the s t andard cont inui ty equat ion in Euler ian 
coordina tes 

p(r, 0) = 1, 
(7) 

which after addi t iona l ensemble averaging yields an 
equat ion for the mean density (over a), p(r,t) = (p(r,t))a: 

dt + d~rU{r' t ) ) p { r ' ') = K 8 H ^ r ' (8) 

As ment ioned above, for incompressible fluids equat ion (8) 
coincides with equat ion (1). 

The basic equa t ions (1), (2) al low us to compu te the 
mean concent ra t ion {q(r,t)) or a one-part icle probabi l i ty 
density 4>(r,t). To compute correlat ion, higher momen t s , or 
t w o - part icle dis t r ibut ions, we mus t use the p roduc t of 
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fields r(ri,r2,t) = q(ri,t)q(r2,t), described by the linear 
equat ion 

,2 g2 

r(rur2, 0) =q0(r1)q0(r2), 
(9) 

with subsequent averaging. Let us no te tha t averaging 
p roduc t s q(r\,t)q(r2,t) from equat ion (3) over the a-
ensemble does no t yield solut ions of equat ion (9) since 

(q(ru t)q(r2, t))a ± (q(ru t))a(q(r2, t))a. 

So to interpret the solution of equat ion (9) as a probabi l i ty 
density we shall mode l the con t inuous field q by a system 
of particles. The k-ih part icle of the passive scalar will then 
be described by the stochastic differential equat ion 

d 
#•<*>(*) = U(r™(t), t) + aW(f), r w ( 0 ) = (10) 

dt 

where the sources c£-k\t) are assumed to be statistically 
independent r a n d o m processes. Next , let us in t roduce a 
measure valued ( r andom) function 

4(rur2,t) = 8{A1\t)-r1)8{A2'>{t)-r2) 

tha t describes t h e _ j o i n t probabi l i ty density for two 
particles. Func t i on </> satisfies the Liouville-type equat ion 

= - ( « ( 1 , « ^ + - ( 2 ) ( 0 ^ j ^ 1 , r 2 , r ) , 

which after averaging over ensembles for the function 

<t>(ru r2, t) = (<j)(ru r2, 0>«a>,«<2) 

assumes the form 

8 8 8 

^ , ^ , 0 = 5 ( ^ ( 0 - ^ ) ^ ( 0 - ^ ) . 
(11) 

For an incompressible fluid, the latter equation is identical to 
equation (9). For compressible fluids, equation (11) describes 
the product of two densities R(rx,r2,t) = p(r\,t)p(r2,t) 
satisfying the continuity equation (2). Equat ion (11) determi­
nes the two-point probability density for Lagrangian 
coordinates (10). 

Our goal n o w is to average the linear stochastic 
equa t ions (1), (2), (9) — (11) over the r a n d o m ensembles 
of velocity fields U(r,t), to get the effective evolut ion of 
mean fields (q(r,t))u, two-poin t correla t ions 

r(ru r2, t) = {f(ru r2, t)) = (q(ru t)q{r2, t))u, 

etc. 

3. Exact solutions 
Averaging equa t ions (1), (2) over the ensemble {u} yields 

an evolut ion equat ion for the mean field, where the r a n d o m 
velocity field u is coupled t h rough the fluctuation term 

<«£*> ( 1 2 ) 

to r andom solution q, itself a functional of w, i.e. 
q = q[u;...]. So to get effective mean field evolution it is 
necessary to decouple (split) the cross-correlation term (12). 
The decoupling methods depend on the nature of the random 
field u. In the Gaussian case the decoupling is carried out with 
the use of the so called Furutsu-Novikov formula [12, 13] (see 
also Refs [8-10]) 

5 r n * M V <M,-(r, 0 * [«]) = J d / J d f > , < r , t)uj(rf,tf)) 
buj{r'^t') 

(13) 

which holds for any functional R(u) of a r a n d o m Gauss ian 
field u. F o r m u l a (13) is essentially integrat ion by pa r t s in 
functional space [14]. The case of non-Gauss i an fluctu­
at ions of fluid flow velocity has been discussed by 
Samokhin and Chechetkin [15]. 

Apply ing formula (13) to the cross-correlat ion term (12) 
of the mean-field equat ion (2) we get the mean tracer 
concent ra t ion 

9, + y ( r , % ) < * ( r , 0 > 

+ i d t 1 d r ' B ^ t ; r ' ' t ' ) l l { ^ ( h ) q i r ' t) 

(14) 

where B^tr^t^r ,tf) = (ui(r,t)uj(/,t')) is the s p a c e - t i m e 
correlat ion function of field u. Equa t i on (14) is exact for 
any zero mean Gauss ian field w, bu t is no t closed since 
evolut ion of the mean field is coupled to the mean 
var ia t ional derivative of u. The latter, hq/hu, is described 
by a stochast ic differential equat ion , obta ined by varying 
equat ion (1) in u 

""Or2 &uj{r',t')q(r' f)' 
(15) 

= -8(r-r')£-q(r,t'). 

Let us no te tha t equat ion (15) is essentially equivalent to 
the Green function for the original p rob lem (1). Apply ing 
the ensemble average to equat ion (15) a long with the 
F u r u t s u - N o v i k o v formula leads to the appearance of 
higher-order derivatives (fiPq/bufiuj) etc. The result ing 
system of equa t ions requires a suitable closure, which 
can be implemented exactly in some special cases. Two 
of them will be discussed in detail: the del ta-correlated field 
in the t ime- var iable u(r,t) and the telegraph process . 
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3.1 Delta-correlated field 
Let u(r,t) be a Gauss ian del ta-correlated field with 
pa rame te r s 

(n(r, t)) = 0, 

Bij(r,t;r,,t,) = (ui(r,t)uj(r,,t')) (16) 

= 2 5 f ( r , r ' ; ^ " O -

Then for del ta-correlated fields u(r,t) given by equa­
t ion (16) we get 

+ 2 d r ' s f ( r , r\ t)b(t-t') 

and the var ia t ional derivative is expressed th rough 
hq(r,i)jhuj(r\t') at t—>t', i.e. t h rough the initial condi ­
t ions of equat ion (15). This yields 

9, + y ( r , % ) < * ( r , 0 > 

- 2 * At' \dr'Bf(r,r', t)5{t - t') 
o J 

xdVj3{r ~ r ' } 6 ^ ( < / ( r ' f ) ) = K 6 ^ { q { r ' t ) } -

In tegra t ion in t' and r' gives the closed-form equat ion 

with coefficients 

If the r a n d o m field w(r, f) is h o m o g e n e o u s and isotropic 
(or the original flow U(r,t) is tha t of an incompressible 
fluid), then coefficients A 7 (r , t) = 0. In this case 
Bf(ry,t)=Bij(r-r',t), and Bf(0,t) = dijB(t), where 

= A f ^ ^ ( 0 , t) and A f denotes the dimensional i ty of 
the space: N = 1; 2; 3. Hence we get 

{Wt + V { r ' t ) l ? } { q { r ' t ) } = (B(t) + K)^-2(q(r, t)). (17) 

In a similar way we obta in an equat ion for the 
correlat ion function r(rx,r2,t) = {q(r\,t)q(r2,t))u: 

g F + v ( r I > o 5 T + v ( r 2 > O ^ J r ( r 1 > r 2 > o 

+ l d f 1 d r t ^ ( r l ' f ; r ' ° ^ 

which for a h o m o g e n e o u s isotropic and delta-correlated 
field u(r,t) becomes 

(B(t)+K) Qrf 6r2

2 

+2Bf(r-r', t) 
_6__e_ 
d r u 9r2j 

r(rur2,t). (18) 

In the par t icular case when the mean flow velocity 
V(r, f) = 0 and q(r, 0) = q0 is constant , then the r a n d o m 
field q(r,t) will also be h o m o g e n e o u s and isotropic. Hence 

r(rur2, t) = T(r, - r 2 , f), 

and equat ion (18) simplifies to 

8; 
r(r, 0 = 2 ( 5 ( 0 + *) ^ " 2B f (r, 0 ^ - ^ ( i - , 0 , (19) 

where r = rx — r2. 
Let us no te tha t equa t ions (17), (19) for incompressible 

fluid flow have the form of the s tandard Fokker-Planck 
equation for one-point and two-poin t dis t r ibut ion densities 
of Lagrang ian coordinates ; fur thermore the Lagrang ian 
descript ion of p rob lem (10) is a Markov process. F o r the 
case of turbulent fluid flow, equat ion (19) has been 
analysed by Lu tov inov and Chechetkin [16]. 

3.2 The telegraph process 
Let us n o w assume tha t the r a n d o m velocity field has the 
form u(r,t) = g(r,t)z{t) with a determinist ic factor g(r,t), 
and the s tandard te legraph process z(t) (see, for example, 
Refs [9, 10]) is given by 

n(0,0 z{t)=a{-\) 

The r a n d o m variable a t akes on values =p2 0 with 
probabi l i ty \ and n(t\,t2) is a s tandard r a n d o m integer 
process of Poisson point-flux with mean value 
(n{t\,t2)) = v\t2 — ti\ and with the following proper t ies : 

1. n(ti;t3) = n(ti;t2) + n(t2\t3) for any t\ <t2 < t3; 
2. n(ti;t2) and n(t2;t3) are statistically independent for 

h < h < h\ 

3. the probabi l i ty of the existence of m events in the 
interval \t\,t2\ is 

P(n(tl; t2) = m) = fT e x p ( - ( / i ( f i ; t2))). 
ml 

T h u s z(t) is a s ta t ionary M a r k o v process with the 
correlat ion function 

(z(t)z(t'))=a§exp(-2v\tl-t2\) 

and correlat ion rad ius l0 = l /2v . 
As before, let us average solut ions of equa t ions (1), (2) 

over the ensemble z(t). This t ime we obta in 

8 \ 8 
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or 

f } t + v { r ' '>£)<«<r' t ) } ; + g { r ' f ) ^ ( r ' t ] 

= K^(q(r, t))z (20) 

with a new u n k n o w n cross-correlat ion function 

!P(r, t) = {z(t)q(r, t))z . 

It can be shown tha t the latter is described by the equat ion 

f( + 2v + V(r, t) - J «P(r, t) + a2

0 g(r, t) - (q(r, t))z 

= K^V{r, t), (21) 

which plays a role ana logous to tha t of the F u r u t s u -
N o v i k o v formula in the previous section (delta-correlated 
field). The derivat ion of expression (21) is based on the 
following differentiation rule for te legraph processes 

^ + 2 v ) < Z ( 0 i ? ( [ Z ( T ) ] > = ( Z ( 0 ^ / ? ( [ z ( T ) ] ) , 

valid for the cross-correlat ion of z(t) with an arb i t ra ry 
functional Rt[z(t)], defined for t ^ t (see, for example, 
Refs [9, 10, 17]). T h u s we get a closed system of equa ­
t ions (20), (21) for the u n k n o w n mean field (q(r,t)) and 
correlat ion W. 

Let us no te tha t in the limiting case v —> oo, al —> oo, 
al/2v —> const the te legraph process tu rns into the G a u s ­
sian del ta-correlated one. Since in this l imiting case 

9 8 
<F(r, t) = -a£g(r, t)-(q(r, t))z , 

we arrive at a single equat ion for the mean field {q(r,t))v 

which cor responds to the F o k k e r - P l a n c k equat ion for an 
incompressible fluid. 

The above p rocedure is app ropr i a t e for the te legraph 
process bu t the under ly ing me thod is in reality m o r e general 
in na ture . To il lustrate this, let us n o w examine the 
derivat ion of these equa t ions from a somewhat different 
viewpoint . Once again we apply ensemble averaging to 
equat ion (1) to get equat ion (20) 

= K^(q(r, t))z . 

To decouple the cross-correlat ion term {z(t)q(r,t)) we 
shall use the identi ty [9, 10] 

{z{t)R,{z{r)]) 

= a\ J* dt'exp[-2v(f - t')](^^Rt[t'; z ( t ) ] ) , (22) 

where the functional 

R,[t'; Z{T)]=R,{Z{XW - T ) ] 

and 

9(t) 
1, t > 0 

0, t < 0 

denotes the s t andard Heavyside step-function. The decoup ­
ling relat ion (22) closely resembles formula (13) for 
Gauss ian fields with exponent ia l correlat ion functions. 
The only difference is tha t the r igh t -hand_ side of 
expression (22) conta ins a t runca ted functional Rt extend­
ing over the interval [t',t] ra ther t han Rt[z(T)] extending 
over the entire range of t, namely 

W; z ( t ) ] = 
' * , [ z ( t ) ] , T<t', 

Rt[0], X > t . 

T h u s we get from expression (22) 

- + 
8 \ 8 f ̂  

V(r, O f r j M - . t))z + a%g(r, t ) ^ d t ' 

8 8 2 

x exp[-2v(^ - t')](^pjq[t'] z ( t ) ] ) = K-^(q(r, t))z . 

The functional q[tf;z(r)] is described by equat ion (1) with 
the r a n d o m componen t of velocity 

u(r, t)=g(r, t)z(t)0(t'-t). 

Hence for t > t' we obta in the equat ion 

9 \ ~ , ; + V(r, t) 
8r 

q(r, t) = K ^ q ( r , t) 

with the initial condi t ion 

Varying (24), (25) in z{t') we get for t > t' 

(24) 

(25) 

(l+y(r'4)4o^0="£47)?(r'°(26) 

with the initial condi t ion 

5 

8z(f) 
i.e. an equat ion of the type of equat ion (15) bu t wi thout the 
f luctuating componen t of velocity. If we n o w in t roduce the 
function 

W(r, t) = a 0

2 j V e x p [ - 2 v ( f - t ' ) ] ( ^ q [ t ' ; z ( t ) ] ) , 

then it is easily seen from expressions (24), (25) tha t W is a 
solut ion of equat ion (21). Thus in the case of te legraph-
type velocity f luctuat ions we are able to p roduce a closed-
form system of equa t ions (20), (21). 

N o t e tha t if we consider velocity f luctuat ions of the 
above type u(r,t) = g(r,t)z(t) with the Markov Gaussian 
process z(t), having the same pa rame te r s a0 and v, then the 
stochast ic equat ion for var ia t ional derivative bq/bz 
becomes 

9 2 5 . , 

This resembles expression (26) bu t has an addi t iona l 
r a n d o m advect ion term u(r,t)d/dr in the left-hand side. 
If we drop this extra te rm we get back to the stochast ic 
equat ion cor responding to the te legraph process . One can 
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therefore regard the telegraph equat ion as an app rox ima­
t ion of the Gauss ian M a r k o v process . Ano the r way to see 
this relat ion is to represent a Gauss ian M a r k o v process z(t) 
with the correlat ion function 

G2 exp[-2v(£ - t % 

as a limit of the sum of independent te legraph processes 
{zj(t)} 

z ( 0 = J im £ z * ( 0 
iV—>oo 

with correlat ion functions [9, 10] 

< ^ 0 ^ 0 > = 8 & ~ e x p ( - 2 v | ^ - ^ | ) . 

4. Approximate methods 
Let us n o w discuss app rox ima te m e t h o d s of analysis of 
p ropaga t i on of a tracer in a r a n d o m velocity field and their 
cont r ibut ion to solut ions of stochast ic equat ions , as in 
reality f luctuat ions of the velocity field are not likely to 
behave like del ta-correlated or te legraph processes. The 
latter can arise only as certain asymptot ic limits. In other 
words , asymptot ic expansions of exact solut ions should 
yield certain simplified field equa t ions statistically equiva­
lent to the del ta-correlated or te legraph models . 

4.1 Method of successive iterations 
Let u(r,t) be a Gauss ian field with the correlat ion function 
Bij(r,t;r ,tf). W e have then the exact equat ion (14) which 
conta ins the var ia t ional derivative bq/bu. The latter is in 
tu rn described by the stochast ic equat ion (15). Averaging 
expression (15) over the ensemble we get ano ther exact 
equat ion which conta ins the second var ia t ional derivative 
b2q/bubu etc. The m e t h o d of successive i terat ions requires 
the result ing system to be closed at the n-th level, i.e. for 
bnq/bu.. .bu. Usua l ly the closure is based on a suitable 
del ta-correlat ion assumpt ion (see, for example, Refs [ 8 - 1 0 , 
18]. The me thod consists of a step by step improvement of 
the functional dependence of q on u. In some cases one can 
argue on physical g rounds tha t the n-th order correct ions 
to q[u] give a negligible cont r ibut ion to the general 
solut ion, and therefore can be d ropped . Let us no te tha t 
in the case when there is no average flow (V = 0) and the 
correlat ion functions By(r,t) decrease sufficiently rapidly in 
s p a c e - t i m e variables, the del ta-correlat ion approx imat ion 
predicts the correct asymptot ics of solut ions as t —> oo. 
This was also confirmed by numer ica l s imulat ions [19]. If, 
however , correlat ion functions Btj(r,t) have a m o r e 
complicated s t ructure (for instance in tu rbulen t velocity 
fields [11]), or when there is an average flow, the del ta-
correlated approx ima t ion is clearly insufficient. 

F o r pract ical purposes it is often sufficient to close the 
averaged equat ion (15) at the second step, when using del ta-
correlat ion hypothesis . A l though such closures are widely 
used in the physics of p lasma and ionosphere , in par t icular 
in p rob lems related to magnet ic field generat ion by 
turbulent gas or fluid flows [20] there is no satisfactory 
ma themat i ca l justification for the closure and the validity of 
the result ing approx ima t ion of q (even for large n). 

4.2 Telegraph approximation 
Let the correlat ion function Btj(r,t;rf\tf), as a function of 
t ime difference t — t \ be characterised by the correlat ion 
rad ius t0, 

t - t B =B 

If account is t aken of the fact tha t equa t ion (14) conta ins 
an integral in t \ the pr incipal range of integrat ion of bq/bu 
is on the scale of t0. If we m a k e a physically justified 
assumpt ion tha t on such scales the r a n d o m velocity 
componen t u does no t enter into bq/bu (i.e. the latter 
remains functionally independent of w), then we m a y drop 
the f luctuating term in expression (15). T h u s we arrive at a 
closed-form descript ion tha t could be called the telegraph 
approx imat ion , as we have shown it earlier to be the exact 
descript ion of the telegraph process. N o w we get a system 
of coupled equa t ions for two means {q(r',t)) and (bq/bu), 

;+v(r, t)^){q{r, t)) + 
dt 'Or 

dt' dr'Byir, t;r',t') 

and 
9r ; \8uj(r', t') 

-^q(r, t)) = K^{q{r, t)), 

(27) 

6 r 2 \?>Uj(r',t') 

6uj(r', t') 

W e have a l ready ment ioned tha t the equat ion for the 
var ia t ional derivative is essentially equivalent to G r e e n ' s 
function of the original p rob lem (1) in the absence of the 
velocity f luctuat ions. Let us no te tha t system (27) is 
equivalent to the one obta ined by Lipscombe et al [21], 
a l though their me thod is entirely different. Ano the r well-
k n o w n equat ion follows from expressions (27) in the 
absence of average flow and molecular diffusion [6]. The 
system of equa t ions (27) is too complicated for direct 
analysis, so it needs to be further simplified. 

4.3 Diffusion approximation 
Let us m a k e an addi t iona l assumpt ion with respect to the 
fluctuating velocity componen t . Namely , let us assume tha t 
on the t ime scale of the correlat ion rad ius t0 velocity u has 
a negligible effect on the dynamics of q as well as on the 
functional dependence of q on u. On such a scale the 
dynamics of a passive scalar field can be approximate ly 
described by the equat ion 

' 8 8 \ 
'8r 

8 2 , N 

As a consequence we get an addi t iona l relat ion between 
quant i t ies q(r,t) and q(r,tf), which allows us to eliminate 
the second of the two equa t ions (27). Hence we obta in a 
closed first-order equat ion in t for the mean concent ra t ion 
{q(r,t)). F o r large t ime scales (t > t0) we no te tha t q(r,t) 
behaves like a M a r k o v r a n d o m field in t, which justifies the 
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n a m e of this approx ima t ion as the diffusion r a n d o m field 
approx ima t ion (diffusion approx ima t ion) [22]. 

5. The case of plane parallel average flow 
Let us apply the formalism developed above to the case of 
p lanar incompressible fluid flow with mean velocity 

V(r, 0 = v C y ) i , 

where r = (x, y), 1 = (1 ,0) . In this case equat ion (1) can be 
wri t ten in the form 

: + v(y) — + u(r, O j H t f f o t) = K-^q(r, t) (28) 

and the cor responding Lagrang ian equa t ions for a 
'par t ic le ' become 

x(t)=v(y)+u1(r, 0 + « i ( 0 > 

y(t) = +u2(r, 0 + 0 2 ( 0 , 
(29) 

where 0^(0 and a 2 ( 0 are statistically independent s tochas­
tic 'white noise ' processes. 

The r a n d o m field w(r, 0 is assumed to be an incompres ­
sible Gauss ian h o m o g e n e o u s and isotropic and s ta t ionary 
r a n d o m field with a s p a c e - t i m e correlat ion function 

B ^ r - r ' . t - t ' ) = (Ui(r, t)uj(r', t)), 

characterised by the following quanti t ies: var iance 
a\ = 5 i 7 ( 0 , 0 ) , and s p a c e - t i m e correlat ion radi i l0 and t0. 
Let us in t roduce instead of By its spectral space density 
Eij(k,t) according to the formula 

Btj(r, 0 — J" d& £(/(&, 0 exp(i£«r). 

F o r a h o m o g e n e o u s and isotropic ' tu rbulence ' 

Eij(k,t) = E(k,t)(Sij-kikjk-2) (30) 

and consequent ly 

B^r, t) = ^&kE(k, t){8tj - ktkjk~2) exp(i£•#•), 

and the variance of the field w(r, 0 is found from the 
formulae 

<rt = 2n 
0 POO 
dkkE(k,0); 5 ^ ( 0 , 0 = n dkkE{k,t)dij. 

Jo 
(31) 

W e shall consider equat ion (28) with the initial condi 
t ion cor responding to 'point d is t r ibut ion ' 

q(r, 0 ) = a ( r - r 0 ) . (32) 

In this case, the solut ion of p rob lem (28) is a function of 
the pa ramete r r 0 , i.e. q(r,t) = q(r,t\r0), and in the case of 
an a rb i t ra ry r a n d o m initial dis t r ibut ion of the tracer 

q(r, 0) =q0(r) 

the solution is determined by the convolut ion 

q(r, 0 6r0q(r, t\r0)q0(r0). 

As has been demons t ra ted earlier, under the initial 
condi t ion (32) the solution of p rob lem (28) for the mean 
value {q(r, t\r0)) coincides with 'one-par t ic le ' p robabi l i ty 
density for the Lagrang ian coord ina te of the part icle (29), 
and the quan t i ty ( g ( r l 5 t \ r ^ ) q ( r 2 , t \ r ^ ) ) coincides with 
' two-par t ic le ' p robabi l i ty density. 

Let us then consider p rob lem (28), (32). W e are inter­
ested in the mean concent ra t ion of the t racer {q(r,t)). 
Averaging equat ion (28) over the ensemble of the r a n d o m 
field u we get 

F o r the var ia t ional derivative 8g (r , t ) /hu j ( r r , t r ) we have 
the following stochast ic equat ion 

8 / x 9 / x 9 \ 8 , x ^ + v ( y ) - + „(r ) t ) - ) ^ - ^ ^ , t ) 

+S(r-r')8(t-t')^q(r,t') 

6 2 5 
(34) 

with 

(=0 

= -S(r-r')j-q(r,t') 
buj(r', t') 

or an equat ion with the initial condi t ion 

8 / x 9 / x 9 \ 8 , x 

3 2 5 
K ~ - t,Mr,t) (t>t'), 

6 r 2 5w7(r', t') 
(35) 

8w,(r', f') 
- 3 ( r - r ' ) J ^ ( r , 0 . 

In geophysical p rob lems , the quant i ty K — the coeffi­
cient of molecular diffusion — is usual ly ra ther small. 
Therefore the term conta in ing K m a y be left out from 
equa t ions (34), (35) (in any case we are interested in the 
limit K —> 0), i.e. for the var ia t ional derivative we can wri te 
down the equat ion 

/ 9 / x 9 , N 9 \ 8 / x ^ / /x 
[ h i + v { y ) e k + M ( r ' 5 ^ V 0 q ( r > ^ = ^ f > t ^ 

(36) 

8wy(r', f') 
^ - ^ r - r O ^ r . r ' ) . 

But let us keep the term conta in ing K in equat ion (33), 
because in some cases it can play the role of a 
regular isat ion factor. 

Let us n o w consider var ious approx imat ions . 
1. In the approx ima t ion of the del ta-correlated r a n d o m 

field w(r, t), the quant i ty bq/buj, which enters into expres-
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sion (33), is determined by the initial condi t ion (36) for 
t' = t, i.e. by the expression 9x Qt + v(y)aZmr> t)) = K-^(q{r, t)) 8 r 2 

buj(r', t') 
T^qir, t) = -S(r-r') — q(r, t) (37) 

+ | r f d T ^ . ( T v ( y ) l , t ) 
o r i Jo 

and equat ion (33) for t > t0, where t0 is the t empora l 
correlat ion rad ius of the field w, is t ransformed into 

a, + v ( % ) t e ( r , ' : {q{r, t)) 

9 \ 9 

x exp ( - T v ( y ) l - J — ^ ( r , f - t ) ) . (43) 

9r 

No t i ce tha t in equat ion (43) 

exp ( -Tv(y)l—j — (q(r, t - t)> 

which can be wri t ten in the form 

; + v ( y ) g H t e ( r , t))=D^(q(r, t)), 

where, according to equat ion (31), the quant i ty 

D = K-\-DT, 

with 
poo poo 

(38) 

(39) 

dr 

poo poo 
DT=Tz\ dt\ dkkE(k,t) 

Jo Jo Jo Jo 

is the coefficient of ' tu rbu len t ' diffusion. 
Equa t ion (39) n o w takes on the form of the F o k k e r -

Planck equat ion for the probabi l i ty density of a Lagrang ian 
part icle coord ina te (29). 

2. In the telegraph stochastic process approx imat ion we 
get the following equat ion for the mean value of the 
var ia t ional derivative 

3. In the diffusion approx ima t ion the quant i ty (q(r,t')) 
on the r igh t -hand side of equat ion (42) can be determined 
from the original dynamica l system (28) in the absence of 
the f luctuation term and the te rm conta in ing the pa ramete r 
K 

£ + v ( y ) i ! ) « ( r , 0 = o, 

<l(r,t)\ =q{r,t') 
\t=t' 

and, consequently, 

(q(r, t)) = exp <t-t')v(y)l 
9r 

d + ( m h ) 9 { r ' ° > = 0 { t > t ' 1 { q { r ' f , ) ) = e x p \ { t - t , ) v { y ) l i 
{q{r, t)). (44) 

8uj(r', t') 

(40) 

r - S ( r - r ' ) - ( q ( r , t ' ) ) . 

In this approx imat ion we have a closed system of 
equa t ions (33) and (40) which is of the second order 
with respect to t ime. F r o m equat ion (40) we can obta in the 
relat ionship between the quant i t ies (bq/bu) and (q) in the 
form 

Subst i tut ing expression (44) into equat ion (43) we obta in a 
closed equat ion of the first order in t ime 

buj(r', t') 
T-jzq(r, t)) = - exp <t-t')v(y)l 

dr 

X5(r-r')-(q(r,t')). (41) 

; + < y ) ^ ; J (q(r, t)) = K-^(q{r, t)) 

which can be rewri t ten in the form 

9 \ 9 2 

+ v(y)^){q(r, t)) = K^{q(r, t)) 
Subst i tut ing expression (41) into equat ion (33) we obta in 
an integro-differential equa t ion for (q(r,t)) 

8H 

; + v ( % j f o ( r , 0 > 

= (q(r, f)> + J* df' J dr 'Bv(r - r ' , t - t ' ) 

x^eXp^-(t-t'Xy)l^d(r-r')^-{q(r,t')), 

(42) 

which, on t ak ing into account the incompressibil i ty of the 
field w, after in tegrat ion with respect to r ' , can be wri t ten in 
a final form as 

+ ^ I o d T ( ^ ) ( r ' T ) ^ + D " ) ( r ' T ) ^ ) ( ^ f - T ) > -
(45) 

H e r e 

D[l\r, T ) = ^ . ( T v ( y ) l , t ) , 

Z)g}(r, T ) = T 5 a ( T v ( y ) l , t ) 
dv{y) 

are diffusion coefficients. Equa t ion (45) describes correctly 
the dynamics of the quant i ty (q(r, t)) also for t ime scales 
t ^ t0, t0 being the t empora l correlat ion rad ius of the 
r a n d o m fields u(r,t). However , in this case the statistical 
solut ion of equat ion (29) for the part icle does no t satisfy 
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the M a r k o v proper ty . If the p rob lem is simplified and one 
considers the behaviour of the system for t ime t > t0, then 
one can replace the upper limits of the integrals in 
equat ion (45) by infinity, and in this case, the solution 
of equat ion (29) in such a t ime scale will be a M a r k o v 
process . 

Above , we have considered app rox ima te m e t h o d s of 
descript ion of diffusion of a passive tracer in a p lane 
paral lel average fluid flow. The equa t ions we have 
obta ined are rel-atively complex. In the general case they 
cannot be solved analytically. However , in geophysical 
appl icat ions there are several simpler p rob lems of immedi ­
ate interest tha t admit a m o r e complete analysis. A m o n g 
these p rob lems let us ment ion the following: 

1. v(y) = ($y — linear shear flow; 
2. v(y) = v09(y — y0) — v09(y0 — y) — tangential shock 

detachment; 
3. v(y) = v 0 sin(/fy) —Kolmogorov flow; 
4. v(y) = 7(y)0(y0 -\y\) —jet flow. 

W e leave aside the quest ion abou t their stability (see e.g. 
Refs [11, 23, 24]). 

In some cases equat ion (38) can be easily solved for an 
initial poin t condi t ion (q(r, 0)) = 3(r — r0) and its solution 
cor responds to Gauss ian probabi l i ty dis t r ibut ion for the 
system of equa t ions (29), which is statistically equivalent to 
the system of equa t ions 

d-x(t) = v ( y ) + a i ( 0 , 

y(t)=ot2(t), 
(29') 

where (xt(t) are statistically independent stochastic 'white 
noise ' processes with correlat ion functions 

(ai(t)aj(tf))=2Dl/23(t-tf). 

It is easy to wri te the solution of system (29 r ) : 

y(t) =yo + W 2 ( 0 > 

x(f) = x 0 + wx(t) + [ dTv(v 0 + w 2 ( t ) ) , 
Jo 

(46) 

where 

Jo 

are independent Wiener processes with the characterist ics 

(wt(t)) = 0, <w,.(f)",•('')> = 2 D ^ . m i n O , t'}. 

It follows from equalities (46) tha t the y(t) coord ina te has a 
Gauss ian probabi l i ty density with the pa rame te r s 

<?(')>= Jo, <y2(t))=y2

0 + 2Dt, 

which cor responds to usua l Brownian motion with the 
turbulent diffusion coefficient D. 

N o w , from equalities (46) we can easily calculate any 
m o m e n t u m functions (xn(t)) and correla t ions (xn(t)ym(t)) 
for Lagrang ian part icles. F r o m the poin t of view of an 
Euler ian descript ion for average concent ra t ions these values 
character ise the divergence of the tracer ' c loud ' since the 
equa t ions for mean concent ra t ion (q(r,t)) and one-part icle 
probabi l i ty dis t r ibut ions are the same as has been repea t ­
edly demons t ra ted above. T h u s the value 

drr{q(r, t)) 
Qi 

defines the posi t ion of the 'centre of gravi ty ' of the tracer 
cloud in t ime, whereas higher m o m e n t a , such as 

(n(t)rj(t))=^ drrirj{q{r,t)) , 

character ise the deformat ion of this cloud. 
T h u s in the simplest example of shear flow the 

equalities (46) cor respond to the jo int Gauss ian probabi l i ty 
density with the pa rame te r s [25, 26] 

(x(t))=Py0t + x0, {y(t)) 

a2

xx =2Dt(\+pt + y 2 t 

••yo, 

where 
2 

2Dt, :2Dt(l+Pt), (46') 

((y-(y)f), 

°ly =(xy)- (x)(y). 

Solution (46r) is also well k n o w n in the absence of shear 
(/? = 0), and in this case cor responds to the usua l jo int 
Brownian mot ion in the (x,y) p lane with a turbulent 
diffusion coefficient. 

In the case of K o l m o g o r o v flow we have 

<?(')>= Jo, 

(46") (x(t))=x0+^m(fy0)[\-QxV(-p2Dt)]. 
P D 

If n o w t > \/D/32, then 

( * ( 0 ) * - K X ) = x o + ^ s i n ( # y 0 ) , 
P D 

tha t is the part icle is located on average in a finite pa r t of 
space. In this case the correla t ions x(t) and y(t) also do no t 
depend on t ime: 

4v 0 ((x(t)-x0)(y(t)-y0))t^ •x0-\--^cos(py0). 

But in this limit the quan t i ty x(t) behaves like a Brownian 
part icle with a turbulent diffusion coefficient Z), i.e. 
<& - 2Dt. 

Let us no te tha t after the loss of equil ibrium of the 
K o l m o g o r o v flow a quasiper iodical flow is established in 
p lane (x,y). Tracer diffusion in flows of this kind with 
V = (B co sv ,A s inx) has been examined by Crisant i and 
Vulpiani [27]. 

6. Special features of statistical solutions 
In order to identify special features of statistical solut ions 
we shall confine ourselves to the simplest p r o b l e m — w e 
shall consider a one-dimensional p rob lem with zero 
average flow and we shall neglect molecular diffusion. In 
this case we have the following equa t ions 

•Qt + u(x,t)-^)q(x,t) = 0, q(x,0)=q0(x), (47) 

^^u(x,t))p(x,t)=0, p(x,0)=p0(x) (48) 

instead of equa t ions (1), (2). 
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Let us recall tha t a one-dimensional p rob lem always 
describes compressible fluid flow and the quant i ty 

for the spatial concent ra t ion gradient is also described by 
equat ion (48). 

On solving equat ion (47) with the aid of the me thod of 
characterist ics we obta in , instead of equat ion (5), cor re ­
sponding equa t ions provid ing a Lagrang ian descript ion 

-x(t\Z) = u(x(t\Z),t), x(0\Z) = Z, 

(49) 

Hence q(t\£) = q0(€). As ment ioned above, divergence, 
described by the quant i ty j(t\£) = \dx(t\£)/d£\9 plays an 
impor t an t role in going over to Euler ian descript ion. The 
above quan t i ty satisfies the following equat ion derived 
from equat ion (49) 

(50) 

It has been often stated above tha t to describe statistical 
proper t ies of x(t\£) one should in t roduce the function 

<P,(x,M)=d(x(t\l;)-x)d(j(t\Z)-J), 

satisfying Liouville 's equa t ion 

dt 
8 . . 8 ,du(x, t)\ ^ , .. „ 

<P0(x,M)=8(x-Z)d(i-l)- (51) 

F o r the sake of simplicity we shall consider the r a n d o m 
field u(x,t) to be a Gauss ian h o m o g e n e o u s r a n d o m field, 
isotropic in space and s ta t ionary in t ime, with the p a r a ­
meters 

(u(x, t))=0, 

B{x —x \ t — t') = (u(x, t)u{xt')). 

In this case 

< ^ W . O > - £ » < . - . ' . . - 0 = 0. (52) 

F o r the sake of simplicity we shall use the approximat ion 
of the field u(x,t) delta-correlated in time, in which the 
correlation function B(x,t) may be approximated by the 
expression 

I'OC 

B(x,t)=2Beff(x)S(t), 2Beff(x)=\ d r 5 ( x , T ) . (53) 
J—oo 

On averaging equat ion (51) over the ensemble of the 
field u{x,t) us ing the F u r u t s u - N o v i k o v formula, we ob ta in 
an equat ion for jo in t offset p robabi l i ty density of the 
'par t ic le ' and its divergence Pt(xJ\£) = (&t(xJ\£)) 

Q-P,{x,M dt 

( , / / 8 eff, 9 dBeS(x-x') 
= \ d X \ d - x B ^ - ^ + d j J dx 

*,(xJ\Z)h 6u(xt) 

Taking into account tha t 

5 
6u(x', t) 

and using expression (52) we can rewrite the last equali ty as 
a F o k k e r - P l a n c k equat ion 

a ^ 2 

dt 
Pt(x,M)=D1^Pt(x,M) 

P0(xJ\Z)=8(x-Z)8(j-l), 

or in the form 

8 
dt 

P,(x, M) = Dx T - 2 m + D2 ^.^.jzPt(x, M) 
'dx 

P0(x,M)=8(x-i)8(j-l), 
(54) 

where the diffusion coefficients Dt are determined by the 
equalities 

*2 
Dl=B«t(0), D2 = -—2B«\x) (55) 

x=0 

Let us no te tha t the use of the diffusion approx imat ion 
instead of the del ta-correlated in t ime approx imat ion yields 
the same equat ion (54) bu t the diffusion coefficients depend 
n o w on t ime 

Dx(t) = J* d T £ ( 0 , T ) , D2{t) = -Jl d T ^ 5 ( x , T ) 

If t > t0, where t0 is the t empora l correlat ion radius , these 
equa t ions yield equalities (55). 

F r o m equat ion (54) it is clear tha t the diffusion of a 
'par t ic le ' does no t depend u p o n divergence statistics and is 
described by a Gauss ian probabi l i ty dis t r ibut ion with the 
pa rame te r s 

{x{t\i)) = c\(t) = ((x(t\0 - (x{t\£)))2) = 2Dxt , 

i.e. it cor responds to usua l Brownian mot ion . As regards 
the probabi l i ty dis t r ibut ion for the divergence, it is 
logari thmical ly n o r m a l and statistically equivalent to the 
representa t ion of divergence wi thout dependence on the 
pa ramete r { [28] 

j{t) =j(t\Z) = e x p ( - D 2 f + w(f)), (56) 

where w(t) is a Wiener process with the pa rame te r s 

<w(0) = 0, {w\t))=2D2t . 

F r o m formula (56) as well as from equat ion (54) it follows 
tha t 

(j(t)) = l, (jn(t))=QxV[D2n(n-\)t], (57) 

i.e. the mean value of divergence is cons tant and higher 
momen t s , s tar t ing from the second ones, g row exponen­
tially in t ime. Let us no te tha t for the quant i ty equal to the 
inverse of divergence, p(t) = l/j(t), which has the mean ing 
of part icle density and satisfies in Lagrang ian description 
the equat ion 
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: P ( 0 
8w(x, t) 

P(t), p(0) = l , 
dtrx"y dx 

one can also obta in a logari thmical ly n o r m a l probabi l i ty 
dis t r ibut ion, the m o m e n t u m functions of which are 
determined by the equali ty 

(pn(t)) = Qxp[D2n(n + l)t]. (58) 

T h u s the mean density of the passive tracer grows 
exponential ly in t ime and this applies also to its higher 
m o m e n t a . 

The paradox ica l behaviour of the statistical charac ter ­
istics of divergence and part icle density which consists in 
s imul taneous growth of the statistical characterist ics in t ime 
m a y be explained by the p rope r ty of logari thmical ly n o r m a l 
probabi l i ty dis t r ibut ion [29]. T h u s a typical expression for 
r a n d o m divergence j(t) is an exponential ly decaying curve 

j(t) = exv(-D2t), 

whilst there are top majoran t est imates for the expressions 
for the r a n d o m process j(t). In par t icular , with probabi l i ty 

P = \ 

j(t)<4Gxp(-±D2t) 

for any t ime per iod. Correspondingly , for density we have 
a typical expression and b o t t o m majoran t est imates as 
follows 

p(t) = exp (Z ty ) , p(t) > ±exp (\D2t). 

The est imates presented above show tha t the statistics of 
the r a n d o m values j(t) and p(t) are formed by j u m p s of their 
real isat ions with respect to their typical real isat ions. At the 
same t ime the part icles are being compressed, forming 
clusters located mainly in low-density zones. 

Let us consider n o w the Euler ian descript ion of our 
p rob lem. Let us in t roduce the functions 

satisfying Liouville 's equa t ions 

' 8 
8 r + « ( x > o ^ J ^ f e ) = ol 

9 / x 8 \ _ , x 8 8w(x, t) _ , x 

^ V ( P ) = 8{p0{x)-p). (59) 

On averaging n o w expressions (59) over the ensemble of 
r a n d o m field u(x,t) we obta in the following equa t ions for 
density probabi l i t ies Pt,x(q) = (<£^(<?)), Pt,x(p) = (®t,x(p)}'-

^tPtAq)=Dl—2PtAq), 

8 8 

PoAP) = $(Po(x)-p)-

(60) 

(61) 

The solution of equat ion (60) cor responds to spatial 
diffusion of the initial dis t r ibut ion. In the simplest case 
of a h o m o g e n e o u s initial condi t ion q$(x) = g 0 — const, the 

dis t r ibut ion of probabi l i t ies does no t depend on x and 
Pt(q) = S(q-q0). 

F o r h o m o g e n e o u s initial condi t ions for density (61) 
p0(x) = p0 — const, the dis t r ibut ion of probabi l i t ies also 
does no t depend on x and equat ion (61) can be simplified: 

^ 8 8 
-Pt(p)=D2——p2P,(p), 

dt 'dp dp' 

P0(p)=S(p0-p). 
(62) 

The solution of equat ion (62) cor responds to a logar i th­
mically n o r m a l dis t r ibut ion and then 

(p(x, t)) = p 0 , {Pn(x, 0 ) = pn

0eMD2n(n - l)t]. (63) 

F r o m expressions (62), (63) one can obta in a typical form 
of expression for the field p(z, t) at any fixed poin t in space 

p(x , t) = p0Qxp(-D2t) 

and Euler ian statistics reflect density f luctuat ions relative 
to this curve, which confirms the cluster na tu re of the 
density f luctuat ions of the med ium. 

As has been ment ioned earlier, the spatial concent ra t ion 
gradient of the tracer 

P(x, t) =-^q(x, 0 

is described by an equat ion which coincides with the 
equat ion for the density of the medium. In this case jo int 
probabi l i ty density for the quant i t ies q(x,t) and p(x,t) — 
Ptx(q,p) = (S(q(x,t) — q)d(p(x,t)—p)) is also described 
by equat ion (61), i.e. by the equat ion 

a ^ 2 a a 

• dp dpb 

(64) 

from which it follows tha t the jo int m o m e n t u m functions 
are 

{qn(x, t)pm(x, t)) - Qxp[D2m(m - l)t] . 

Hence , the statistics of the concent ra t ion gradients are 
formed by j u m p s with respect to a typical form of 
expression tha t exponential ly decays in t ime at a fixed 
poin t in space. 

It is clear from the above discussion tha t to describe 
tracer diffusion in detail it is no t enough to k n o w the 
behaviour of individual m o m e n t u m functions of tracer 
concent ra t ion and its gradient or density in space and 
t ime. One must also examine the probabi l i ty dis t r ibut ion for 
these quant i t ies . It was demons t ra ted above tha t in the 
general case of a th ree- d imensional p rob lem the term 
tak ing account of molecular diffusion makes this impos ­
sible, so approx ima te approaches mus t be used. Some of 
these approaches are n o w in the process of being developed 
[ 3 0 - 3 2 ] . 

As regards the one-dimensional p rob lem under con­
siderat ion here, if molecular diffusion is t aken into account 
we obta in the following equat ion instead of equat ion (47) 

q(x, 0) =q0(x) 

dx2 

(65) 
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and a cor responding equat ion for the spatial tracer 
concent ra t ion gradient 

8 t) )p(x, t) = K^p(x, t), 
dt dx 

P(x, 0) = — q0(x). 

dx2 

(66) 

In accordance with what has been said above, in the 
absence of molecular diffusion the behaviour of a typical 
expression for the spatial gradient of passive tracer 
concent ra t ion is characterised by exponent ia l decay in 
t ime at any poin t in space. Hence we can regard the 
diffusional te rm in the r igh t -hand side of equat ion (66) to 
be immater ia l . On leaving out this te rm we obta in the 
following system of first-order equat ions : 

d d \ d 
87 + M ( * ' % M * ' ' ) = * 8 7 ' ( * ' ' ) ' 

q(x, 0) = q0(x), 

d d 
^ + u(x, t)— \p(x, t) = -p(x, t)-^u(x, t), 

(67) 

P{x, 0) = — q0(x), 

i.e. a value described by a closed equat ion has been added 
as a source in the r igh t -hand side of the equat ion for 
q(x,t). However , it is clear tha t the quant i t ies q(x,t) and 
p(x,t) are statistically related. 

Let us consider the function 

QtAv* P) = 0 ~ < I ) 3 ( P ( X I t)-p)-
On differentiating it with respect to x we obta in 

Differentiat ing n o w with respect to t we obta in 

' 8 
Q t + u(x,t)^)*tAq,p) 

du(x, t) d ^ , v 8 dp(x, t) ^ , \ 
• }

 :*tAq,p)-KcrJ\J-J-*tA<i>p)- (69) 8x dp dq dx 

Averaging equa t ions (68), (69) over the ensemble of 
r a n d o m field u(x,t) we obta in for jo in t probabi l i ty density 

PtA^P) = (®tA<liP)) t h e e c l u a l i t i e s 

^ptA^ P) = - P ^ A ^ p^-^p ^tA^ P)> 

8 d2 8 8 
Q-t

ptA<!> P) = D i fa2Pt^q> P^ +D2fyfyp2Pt^q> P>} 

-K^-YtAi, p), 

where 

^ , p ) = ( ^ ^ < M < 7 , p ) ) -

On excluding the u n k n o w n function ^f

ttX(q,p) we obta in a 
closed equat ion for probabi l i ty density 

8; dp 
ptA<li P) 

: ^ 1 ^ 2 ^ P ) + D 2 ^ ^ ^ P t s P) dx2 dp 
d_d_d_ 

'dpdpdp" 

8 8 8^ 
+K^-QX-ptA<i>p) + KP-^ptA<i>p)' (70) 

In par t icular , if we mult iply expression (70) by p and 
integrate over p we ob ta in an equat ion for the probabi l i ty 
density of passive tracer concent ra t ion 

l p

t , ( « ) = 0 i ^ 2 P<*(«) " * | ^ <Pl«> " ^ < P 2 k ) . 

where 
/•OO 

(pn(x,t)\q)=\ dppnPtrX(q,p). 
J—OO 

Equa t ion (70) has no t yet been studied. 
Let us no te tha t equat ion (70) leads to a closed system 

of equa t ions for m o m e n t u m functions of the type 
(pn(x,t)qm(x,t)), which includes as a source the quant i t ies 
{pl(x,t)) described in a closed form by an independent 
equat ion of the k ind of equat ion (62). 

7. Conclusion 
A functional app roach has been used here for the detailed 
examinat ion of var ious approx ima te m e t h o d s of describing 
the statistical characterist ics of a scalar t racer field in a 
r a n d o m velocity field. Special features of statistical 
solut ions have been il lustrated by tak ing the simplest 
p rob lem as an example. The app roach outl ined above is 
based essentially on the condi t ions of finiteness of the 
t empora l correlat ion rad ius of the velocity field, while the 
condi t ions of applicabil i ty of this app roach are governed 
by var ious l imitat ions in relat ion to the correlat ion rad ius 
(the l imitat ions are different for different approximat ions) . 
The equa t ions obta ined are no t valid for an unl imited 
t empora l correlat ion rad ius (random stationary velocity 
field). In fact, this case has so far hard ly been investigated. 
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