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Abstract. The dynamical and informational aspects of the
behaviour of complex physical systems are considered. In
classical physics the information coupling appears in the
interaction of nonlinear systems with stochastic behaviour
when a small external perturbation may greatly alter the
paths of a classical system in phase space. In quantum
systems the information coupling to the environment
appears in measurement processes when the coherence of
the wave function of a quantum object is destroyed and
corresponding information appears in the external
environment. These processes can be described in terms of
the collapse of wave functions. Numerous examples of the
collapse are considered, including those leading to the
classical behaviour of macroscopic bodies with the
information coupling to a nonequilibrium environment.
The Einstein—Podolsky—Rosen paradox is discussed in
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detail together with its possible role in the processes of
information transfer over a distance.

1. Introduction

It is generally accepted that the main branches of physics are
built on the principles of dynamics. The starting point is
always the mechanics of a material point and Newton’s laws,
which introduce the principal dynamical concepts: mass,
velocity, momentum, and force. Theoretical mechanics
simply casts the elementary laws of mechanics in a more
splendid form in terms of differential equations and varia-
tional principles. The simplest laws of motion of a material
point provide the basis for more complex equations of
motion of continuous media: gases, liquids, and elastic
solids. Here we meet for the first time the continuous
functions of the coordinates and time which play the role of
fields, although it is usual to regard fields in vacuum — for
example an electro-magnetic field —as the intrinsic fields.
The field equations are again the equations of dynamics.
Thermodynamics is a phenomenological science only at first
sight. In reality it can be constructed on the basis of statistical
physics, which is simply a special variety of dynamics. The
fact that physics is based on the principles of dynamics is
manifested also in the main units of measurements (for
example, the centimetre, the gramme, and the second)
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which are introduced initially in the mechanics of a material
point and then are applied to other more complex branches of
physics.

Something quite different from dynamics appears in
quantum theory when the square of the wave function is
interpreted as the corresponding probability. The probability
then comes forward as an essential element of the theory and
the discussion is still continuing about the meaning of the
wave function and of the evolution of the probabilities of
observation of one or another physical quantity described by
this function. Following Albert Einstein, one would like to
regard the quantum probability as representing an incom-
plete description of a microscopic object and assume that
there might exist a more rigorous theory which could account
for the randomness of the observed quantities on the basis of
the dynamics of some hidden variables. However, a con-
vincing proofhas been provided recently that there is no local
realism, no local hidden variables. Consequently, as stressed
by Niels Bohr, the quantum probability has a deeper meaning
and it imparts to the wave function certain characteristic
features which carry information.

A mathematically rigorous definition of the amount of
information had appeared together with the birth of
cybernetics, which is the science of control and automation
of dynamical processes. More specifically, if a physical
quantity can a priori assume several values, the observation
of one of these values immediately increases information
about this physical quantity. [fan automaton has a sufficient
energy, then after receiving information it can alter the value
of the physical quantity in the required direction.

The signal representing the value of a measured quantity
can be as small as we please. The control signal can also be
very small if it is applied to a sufficiently powerful amplifier.

It follows that the profile of a signal, i.e. its meaningful
content, and not its magnitude is important in control. We
can say that when automata interact with one another, the
important aspect is not so much the exchange of energy as the
exchange of symbols, i.e. signals.

However, this applies not only to deliberately built
automata, but also to natural physical systems at the margin
of their stability. Small signals acting on such systems can
have major consequences. We are in fact speaking here of
open physical systems through which large energy fluxes may
pass. Such systems are far from equilibrium and their
dynamical behaviour is complex. They are usually called
just that: complex physical systems.

Both aspects, dynamical and informational, may play an
equally important role in the description of complex physical
systems. We are then faced with the problem of the simultan-
eous action of forces and information on a system under
conditions far from thermodynamic equilibrium. The inter-
play of nonlinear dynamical processes in such systems very
frequently results in self-organisation when both dynamical
and informational aspects of the process are matched very
accurately and combine to form a single ‘organism’.

All these problems are topical in modern physics and they
provide its strong foundations. I would like to acquaint the
reader with the most interesting ideas and directions of
research in this field. The subject will be presented delib-
erately at a popular level and very frequently the rigour of
treatment will be sacrificed to a lively argument. The paper
therefore looks more like a set of thoughts based on the
physical ideas which themselves have been the subject of
serious books, but which would be difficult to combine in a

unified text without deliberate major simplification of the
presentation style. In addition to the many familiar facts and
their theoretical treatments, this paper puts forward some
new and currently unconventional ideas. The readers may
regard them as unconvincing and even simply incorrect.
However, they are asked not to make hasty judgements:
some of the topics are discussed again and even several times
from different points of view, and the relevant conclusions
become moreand more convincing. [t maybe that the readers
will not agree with some of my ideas, but I shall be satisfied if
this paper stimulates a desire to consider more deeply the
problems discussed here and to arrive at one’s own
conclusions.

Thereferences at the end ofthe paper are unfortunately in
no sense complete: they list only those papers and books
which have come up naturally in the course of this
presentation. My excuse is only the circumstance that the
presentation itself is not sufficiently fundamental.

2. Information

In our age, when we are flooded with information from all
sides it would seem there is no need to explain what
information is. However, this is not quite true. There is a
rigorous mathematical definition of the amount of
information and, for the benefit of those readers who have
not encountered the concept, | shall try to explain what this
concept means in an unhurried step-by-step manner.

The most usual form of information is the printed word.
For example, the text that you are reading gives you an
opportunity to acquire the information in this paper. This
information is carried by symbols arranged in a line-by-line
fashion: these symbols are letters, gaps between the words,
and punctuation marks. It is perfectly obvious that the
greater the number of text pages, the greater the amount of
information carried by the text. However, in order to
characterise the amount of information in the form of a
specific number, it is necessary to begin with a very simple
example. Let us assume that the text is transmitted by the
Morse alphabet, in which each letter corresponds to a certain
number of dots and dashes. Moreover, let us consider the
simple case when the text is continuous without any gaps
between letters and words. The result is one continuous
sequence of dots and dashes. At each position there can be
only one of two symbols: either a dot or a dash. When we are
dealing with just one of two symbols, it is usual to assume
that each cell carries one bit of information. The whole Morse
sequence with N symbols contains N bits of information. We
can say that such a sequence carries the ‘memory’ of a certain
text and that in each of its N ‘memory cells’ there is one bit of
information. The total number of different texts which can be
stored in a ribbon of N cells is obviously 2.

If we agree to measure the amount of information in bits,
then the quantity of information /g can be described by the
relationship [20]

I =N =log, My . (€))

Here, My = 2" is the total number of different texts.
According to Eqn (1) the amount of information is simply
equal to the minimum number of binary cells by means of
which this information can be written down.

The relationship (1) can be represented in a somewhat
different form as follows. If there is a set of M, different
texts, the probability Py that the text we are reading is
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identical with that selected at random from M, different
textsis obviously Py = 1/M y. Therefore, instead of Eqn (1)
we can use the expression

Iy =—log, Py . 2

The higher the value of N, the lower the probability Py
and the larger the amount of information /g contained in a
specific text.

Let usnow return to an ordinary letter text. Let us assume
that the number of letters in the alphabet is 32 (which is true,
for example, of the Russian alphabet apart from the letter ¢€).
The number can be represented as 32 = 25 so that it is
sufficient to have five binary cells in order to assign to each
letter a unique combination of, for example, dots and dashes.
If the lower-case letters are supplemented by the capitals, the
number of letters is doubled to 64 and we need another bit of
information, so that the amount of information per letter
(lower-case or capital) becomes Iz = 6. The addition of the
gaps between the words and of the punctuation marks
increases further the amount of information carried by one
text symbol.

However, such direct calculation of the amount of
information per symbol is not quite correct. This is because
the alphabet contains letters which are encountered very
rarely in text. In the Morse alphabet one can ‘expend’ more
dots and dashes on such letters but in the case of the
frequently encountered letters one can economise by
assigning shorter ribbon ‘sections’ of the sequence to these
letters. A rigorous definition of the ammount of information
has been provided by Shannon [21]. It appears as follows:

I= —prlnp,». 3)

The summation is carried out over all the symbols and p;
denotes the probability of the appearance of a symbol
labelled with the number i. The general expression given by
Eqn (3) applies both to the frequently employed letters and
to those which are very unlikely to appear in a text. The
natural logarithm is used in Eqn (3): it corresponds to a unit
of information called a ‘nat’.

It is known from probability theory that in the case of a
random quantity x; we can introduce the definition of its
average value or of the mathematical expectation in
accordance with the expression

)= pixi “

where the summation is carried out over all possible
values of a random quantity x; with a probability p; of the
ith value. We can see that Eqn (3) can also be written in the
form

I=—(Inp;) . ®

If we consider the text again and assign / to one cell of the
text, i.e. to one symbol, then p; is the probability of the
appearance of a symbol with the serial number i. For
example, if this is the letter ‘a’, then the relevant probability
can be found by calculating how many times the letter ‘a’
appearson onepage and dividing the number obtained by the
total number of symbols on one page.

If we know the amount of information (3) per symbol,
then in the case of a text with N symbols the amount of
information should be increased simply by the factor N.
Naturally, Eqn (3) can also be applied to the whole text.

Then the probabilities p; are much lower because the number
of possible combinations rises steeply and the result remains
the same: the information carried by one symbol should be
multiplied by N to obtain text information.

Logarithms with different bases are used in Eqns (2) and
(3): in Eqn (2) this is the logarithm to the base 2 and in
Eqn (3) the logarithm is natural. Since for any number N we
have N = 2°¢N — ™ ¥ it follows that

1

IB—ln2_1.441. 6)

In other words, the number of bits is almost 1.5 times
greater than the number of nats.

It will be shown later that in dealing with physics (and not
with computer technology) it is more convenient to use the
Shannon definition of information given by Eqn (3), i.e. to
measure it in nats. [fdesired, Eqn (6) can then be used to find
the number of bits corresponding to a given value of /. The
Shannon definition (3) can be used not only in the case of a
text, but also in the case of any other discrete (digital)
information. For example, a black-and-white image on a
television screen can be expanded into a set of discrete black-
and-white dots, as well as several intermediate grey shadings.
Then, Eqn (3) gives the amount of information provided by a
given instantaneous image on the screen. A similar definition
applies also to a colour image on a television screen or to the
paper output of a printer if we allow suitably for the
information carried by colour shading.

It will be shown later that the information defined by
Eqn (3) plays a major role in nonequilibrium physical
processes. It should be stressed this applies to the numerical
expression for the amount of information irrespective of its
intellectual content.

3. Entropy

The concept of entropy is one of the fundamental ideas in
physics. The reader obviously already knows what it means.
Nevertheless, the continuity and consistency of the presenta-
tion requires that some time be spent in making clear this
physical quantity. It is convenient to use the simplest physical
object, which is an ideal gas.

Let us assume that a monatomic ideal gas with a particle
density n kept at a temperature 7 occupies a volume V. The
temperature T is measured in energy units (for example, in
ergs if the cgs system of units is used). Consequently, the
Boltzmann constant will not appear in the relationship
considered below. Each atom of this gas has an average
kinetic energy of thermal motion amounting to 37/2.
Therefore, the total thermal energy of the gas is

E=3Tnv . ™

The gas presure is known to be p = nT. If the gas can
exchange heat with the external medium, the law of
conservation of the gas energy is

dE = —pdV +d0 . ®)

Therefore, the internal energy of the gas may change
both because of the work done by the gas and because of the
deposition of a certain amount of heat dQ from outside.
Eqn (8) is known to describe the first law of thermody-
namics, i.e. the law of energy conservation. The gas is
assumed to be in equilibrium, i.e. p = const throughout the
gas volume.
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If it is also assumed that the gas is in complete thermo-
dynamic equilibrium (7 = const), then the relationship given
by Eqn (8) can be considered to represent an elementary
process of variation of the gas parameters at a very low rate,
so that the thermodynamic equilibrium is not disturbed. It is
for these processes that the concept ofentropy S is introduced
by the relationship

_do
_%2,

ds ©)

In other words, an equilibrium gas not only has an
internal energy, but also another important internal
characteristic associated with the thermal motion of its
atoms. It follows from Eqns (8) and (9) that at a constant
volume, dV = 0, the change in energy is proportional to the
change in entropy and in general we have

dE = —pdV +T4dS . (10)

Since p = (N/V)T and E = 3NT, where N = nV =
const is the total number of atoms in the investigated gas,
we can write Eqn (10) in the form

3dT  dV
=N|z—+—]. 11
ds (2 T v) an
Hence, integration of Eqn (11) yields directly
S = N[In(VT *?) + const] = Ns . (12)

The constant of integration is retained so as to leave some
additional freedom in the subsequent discussion. The
entropy of the gas is proportional to the number of particles
and the expression in the brackets, equal to s, is the entropy
per particle.

If the volume and temperature of the gas vary in such a
way that VT3/? remains constant, the entropy S does not
change. According to Eqn (9) this means that the gas does
not exchange heat with the external medium, i.e. that the gas
is separated from this medium by reliable heat-insulating
walls. A process of this kind is known as adiabatic. In an
adiabatic process the following relationship is valid:

pV" = const ,

(13)

where y = 5/3 is known as the adiabatic exponent. This
relationship is obtained from the condition VT 32 = const
and from p = nT. In the adiabatic process the temperature
and pressure vary with the density as follows:

T =const xn'™', p=constxn.

(14)

4. Carnot cycle

In the subsequent discussion it will be necessary to make
recourse to what are known as the thought (gedanken)
experiments involving different types of ideal processes and
ideal devices. In thermodynamics one such ideal device is the
Carnot heat engine, in which work is done at the expense of
thermal energy.

Let us assume that there are two thermostats kept at
different temperatures Ty and T, such that Ty > T,. The first
thermostat may be called a heater and the second a cooler.
According to Carnot, an ideal gas can be used as the working
substance to produce work at the expense of the thermal
energy. Let us postulate that at the temperature T, the
volume of the gas is V; and its pressure is
p=p = (N/V)T,. Here, N is the total number of
particles. A reversible adiabatic process can cool the

working gas to the temperature T, because, according to
Eqn (14), the gas temperature falls as it expands in
accordance with T o V'™ For y =5/3 we have
T o V2. Therefore, for V,/V, = (T,/T,)"/* the
temperature of the gas in the first state is 7; and in the
second state is T,. The transition from the first to the second
state is adiabatic. The adiabatic expansion of the gas from the
initial volume V to the final volume V, performs the work
W = jpdV. Since according to Eqn (13) the pressure varies
proportionally to V7" = V=7 je.

CNT, (VP
p - V] V E}
this work is given by

3 vil o3
W =ZNT, [1 - (v_2> =N = T)) .

It follows from the law of conservation of energy that this
is exactly the amount by which the internal energy of the gas
is reduced.

[f the gas is compressed again from the volume V, to V,
this requires work equal to that given by Eqn (15) and the
energy of the gas is restored again. So far there is no cycle:
these are simply forward and reverse processes which do not
alter anything in the external world. A cycle appears when the
working substance receives heat from the heater and gives it
up to the cooler. At the heater this is an isothermal expansion
of the gas at the temperature 7'; from its initial volume V; to
some intermediate volume V. The gas then expands
adiabatically to the final volume V3 in such a way that the
final temperature is Ty, i.e. V5 /V{ = (T,/T, )73/2. The gas is
then compressed isothermally to the volume V, and
converted adiabatically to the initial state. The forward and
reverse work done in the adiabatic parts of the cycle balance
each other exactly so that, in accordance with Eqn (15), the
work W is governed solely by the difference between the
initial and final temperatures. It is in the isothermal parts of
the cycle that the amounts of work done are different. In fact,
if the heater supplies an amount of heat Q; to the body, then
0, = T1(S. —S), where S is the initial entropy of the gas
and S, is the value after heating. In the adiabatic parts of the
cycle the entropy does not change so that the entropy in the
cooler hasto bereduced from S, to S; by transfer to the gas of
a negative heat (i.e. by removal of heat) amounting to
0, = —T5(S,—S). Then, since in the isothermal parts the
internal energy does not change, the difference between the
amounts of work done W, and W, is W = W, —-W, =
(T, —T1)(S. — S ). Wecan now calculate the efficiency of the
cycle, which is the ratio of the work done W to the amount of
heat Q; obtained from the heater:

w T,
= =1-22 16
0, (16)

T,

The most important feature of the Carnot engine is its
reversibility: if the machine is reversed, it acts as a cooler
transferring heat from the hot to the cold body as a result of
work done from outside.

It is this circumstance together with the second law of
thermodynamics that leads to the conclusion the Eqn (16)
represents the maximum possible efficiency of a heat engine.

The second law of thermodynamics itself is formulated as
the impossibility of constructing a perpetual motion machine

as)

n
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of the second kind: it is not possible to realise a process in  the entropy flux considered as a function of x is

which work could be done at the expense of heat without any gL

change in the external world. qs (20)

Let us suppose for a moment that it is possible to
construct an engine with an efficiency greater than that
given by Eqn (16). Such an engine can then be brought into
contact with a Carnot engine operating in the cooling regime.
This combination of engines could simply pump out the heat
energy and convert it into work, which is forbidden by the
second law ofthermodynamics. Consequently, Eqn (16) does
represent the maximum possible efficiency of any heat
engine. It is interesting to ask what happens in the external
world during the Carnot cycle? In one cycle the Carnot engine
receives the energy O from the heater at the temperature T
and at the same time removes the entropy Q,/T; from the
external world. It then transfers the heat O, to the cooler at
the temperature T, and transfers the entropy Q,/T,.
Therefore, the total change in the entropy contributed by
the Carnot engine is

01 0y

AS=——-=—==0,

T, T, a7

provided we use the expressions for O and Q». As we can see,
the Carnot engine is fully reversible and does not alter the
entropy of the external world although it transforms part of
the heat into mechanical work. Heat nevertheless leaks from
the hot to the cold body.

5. Irreversible processes

The Carnot cycle is an ideal completely reversible thought
process. The operation of all real heat engines involves
irreversible processes and it is therefore desirable to under-
stand the meaning of such irreversibility. It is convenient to
start again with the Carnot engine.

The Carnot cycle has adiabatic and isothermal parts. The
adiabatic process of compression or expansion ofa gas can be
quite readily represented as very close to reversible. It is
sufficient to postulate the compression or expansion rates
much lower than the velocity of sound, and to create a
sufficiently good thermal insulation, which is automatically
ensured if the dimensions of the gas-occupied volume are
large. The situation is much more difficult in the case of the
isothermal parts of the cycle: it is in these parts that heat has
to be delivered or removed. If the isothermal process is
accelerated, the result may be a considerable reduction in
the efficiency because the gas can no longer reach the
temperature 7; during heating and the temperature 7,
during cooling. In the limit of very fast thermal oscillations
it is possible to lose all the work and simply accelerate the
flow of heat from the hot to the cold body.

Let us now consider in detail the irreversible process of
the transfer ofheat by conduction. Let us assume that there is
arod of length L and the temperatures at its ends are 7| and
T,. If the thermal conductivity of the rod is k, then the heat
flux along the rod is

Ty —T,
-

(18)

Therefore, across each transverse cross section of the rod
the entropy flux is gg = ¢/T. If the temperature is a linear
function of'the coordinate x, so that

(T, —Ty)x

T:TI_ L s

(19)

W=7, +Tox

This flux increases along the rod from the hot end where
T = T, to thecold end where T = T,. As we can see, at the
cold end the entropy flux is T, /T, times greater than at the
hot end. In other words, an excess entropy is produced inside
the rod and this entropy then flows out in the direction of the
cooler. In addition to the entropy flux ¢/T; entering the rod
per unit time, thereis an entropy created inside the rod so that
a larger flux ¢/T, is ejected outside.

We recall that the Carnot engine does the work
W = ng, = [1 — (T2/T1)]q:1, where ¢ is the flux entering
the engine. Consequently, the flux ¢, = ¢ —W =
(T,/T;)q; emerging from the Carnot engine corresponds to
the absence of internal entropy production. [fthe efficiency is
less, the heat engine creates an entropy

@ g1 9 _ 4
T, T, T, (1 — nqv) T, T, Ne —1) (21)
Here, . = 1 — (T,/T,) is the efficiency of the Carnot cycle

and # is the real efficiency. [f # = 0, then no work is done,
W =0, and ¢, = q; = ¢. In this case the pure heat flux
performs no work and simply thermally ‘contaminates’ the
medium where it generates entropy at the rate

11
1 T, T,)°

[t thus follows that the heat flux itselfincreases the entropy of
the medium and this process continues until the temperatures
of the hot and cold bodies become equal.

6. Entropy and information

In the spirit of ideal thought experiments let us now consider
the case when the whole of our ideal gas consists of just one
particle. It might seem that this is an absolutely absurd
approach but let us not be too hasty in our judgement. If
one particleis enclosed in a vessel of volume V with walls kept
at a temperature 7, then sooner or later this particle comes
into equilibrium with these walls. At each moment in time the
particle is naturally at one definite point in space and has a
very definite velocity. However, all the processes may be
assumed to be so slow that the particle not only has a chance
to fill on average the whole space of volume V, but it can
repeatedly change the magnitude and direction ofits velocity
by inelastic collisions with the vessel walls. In this case we can
speak of a particle which has a Maxwellian velocity distribu-
tion and on average fills the vessel containing it. A very
important condition is that we do not need to know anything
about the particle except that it collides with the walls and
exerts on them an average pressure, and that its velocity
distribution is Maxwellian with the temperature 7.

If this particle is now, for example, compressed
adiabatically, its average effect on the walls is exactly the
same as that of N particles, except that it is N times smaller.
The temperature of the particle can also be changed slowly by
suitably altering the temperature of the walls of the vessel and
thus allowing the particle to reach thermal equilibrium with
the walls.

The average pressure exerted by one particle on a wall
when N = 1is obviously equalto p = T/V and the average
density is then n = 1/V. For this particle we again can
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organise a Carnot cycle and thus create an ideal heat
microengine which is fully reversible and whose efficiency
isy = 1 —(T,/T,). Now with the aid of some ideal devices
and by application of the second law of thermodynamics we
shall try to establish a relationship between entropy and
information. We shall begin with the simplest case of
isothermal processes. We shall thus assume that 7 = const.
[t follows from the first law of thermodynamicsat 7 = const
and from the relationship p = T/V that

dv
TdS =pdV =T~

(22)
One should use here the lower-case symbol s for the specific
entropy, but S is retained so as to go over later to more
general relationships.
Hence, we find that the entropy change is independent of
the value of T, so that we can assume
%
S=In—.
Yo

(23)

Here, a small volume V, €V is introduced deliberately
simply for the sake of normalisation: the value of V{, should
be considerably greater than the size of the particle in order
not to violate the ideal-gas approximation.

The work done in an isothermal process is also described
by a fairly simple expression:

Vs
V] '

We can see that W = T(S, —S;), i.e. the work is
expressed simply in terms of the difference between the
corresponding entropies. We shall stress once again that we
are dealing with a very slow, fully reversible process.

Let us continue our ideal thought experiments. Let us
assume that there are ideal barriers which can be used to
divide a vessel into parts without loss of energy or creation of
new entropy. Let us divide the vessel into two equal parts
each of volume V/2. The particle then remains in one of the
halves, but we do not yet know which of them. Let us now
assume that there is some means or measuring instrument
which allows us to determine where the particle is located.
For example, it might be detected in one of the halves by
means of a spring balance in the gravitational field or simply
from the disappearance of the pressure on the barrier exerted
by the empty half-volume. [fthis is true, then out of the initial
symmetric distribution with a 50% chance of finding the
particle in either of the two halves, we now have the
probability of 100% for one of the halves. The distribution
of probabilities seems to ‘shrink’ or ‘collapse’. The new
entropy S, = In(V/2V,) is correspondingly less than the
initial entropy by an amount AS = In2. Because of a
reduction in the entropy, mechanical work can be done. It is
sufficient to move the barrier in the direction of the empty
part until it disappears completely so that the particle
occupies again the full volume. The corresponding work
done is W = TAS = TIn2. If nothing changes in the
external world, then repetition of these cycles should make
it possible to construct a perpetual motion machine of the
second kind. However, since the second law of thermo-
dynamics forbids the creation of work directly at the expense
ofheat, some event should occur in the external wall. What is
that event?

Detection of the particle in one of the halves alters the
information about the particle. Specifically, out of two

W:deV:TJdVV:Tln (24)

possible halves, there is now only one where the particle is
located. This knowledge corresponds exactly to one bit of
information. The process of measurement reduces the
entropy of the particle and increases by exactly the same
amount the information provided by the measuring device. If
the halves are divided again into quarters, eighths, etc., the
entropy gradually decreases and the information increases.
In other words, we have

S +1 =const . (25)

The more is known about the particle or, in the more
general case, about the physical system, the less its entropy.

However, we can now draw the conclusion that the
appearance of information in the external world (or in
external devices) is impossible without an increase in the
entropy of the external environment by an amount not less
than Al. Otherwise our reversible heat microengine could
produce work directly at the expense of heat. In other words,
information which is a definite portion of order, can be
acquired by external devices, automata, or simply by the
external world only at the expense of an additional disorder
(thermal motion) in the external environment. Information
production is accompanied by an increase in the entropy by
an amount no less than the information that has been gained.

An external device or environment which acquires
information and can utilise it in the subsequent events can
be called Maxwell’sdaemon. Maxwell postulated his daemon
for a precisely similar situation: if the daemon can distinguish
between hot and cold particles, then by closing an aperture
with a shutter it can transfer heat from the cold to the hot end.
The above discussion is analogous to the Maxwell’s daemon
concept. It is based on the universal second law of thermo-
dynamics. It is this second law that requires the daemon
himself'to increase the entropy in the process of ‘heavy work’
in recognition of the information /.

It follows from Eqn (25) that the sum of S and [ is
constant. [fin our model a particle is placed in an elementary
cellof volume V, then S = 0 and the information reaches its
maximum value [, = —Inp,,, = InV/V,, since the
probability p.;, of finding the particle in a given cell is
equal to the volume ratio p;, = V,/V. A particle can be
located in an elementary volume, i.e. the information
I =InV/Vy can be acquired, if at least this amount of
entropy is produced inside or outside it. [f subsequently the
particle begins to expand (on average) over a large volume,
information is gradually lost and the entropy of the particle
increases.

It should be stressed once again that one has to ‘pay’ for
information by an increase in the entropy S, of the external
systems and the increase is such that AS, > I. Indeed, if the
acquisition of one bit of information could increase the
entropy of the instrument by an amount AS, which is less
than one bit, a heat engine can be reversed. In the opposite
case, by expanding the half-volume occupied by the particle
we would increase its entropy by In 2 and thus do the work
T In 2, whereas the final total entropy of the particle and the
instrument would decrease. But this is forbidden by the
second law of thermodynamics.

We have considered so far the entropy associated with the
spatial localisation of a particle. In fact, this applies also to
the velocity measurement. It is convenient to consider the
case of just one dimension, for example, the motion only
along the x axis.
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Let us assume that we have an instrument which can be
used to measure the x component of the velocity v of particles
with an error Av. It is convenient to assume that Av is
proportional to v, which ensures a certain unity in the
subsequent estimates. A particle enters a tube of length L at
a velocity v along the tube axis x, and on entry its velocity is
measured with an error Av. After a time+ = L /v, a barrier is
introduced at a distance AL ~ LAv/v from the closed end and
imprisons the particle there. The measure of localisation is
AL /L, which is approximately the same for all the particles
with the Maxwellian distribution. Such localisation again
changes the entropy by In(L /AL) and, in accordance with the
second law of thermodynamics, must be accompanied by an
increase in the entropy of the instrument that measures the
particle velocity. In other words, any measurement that
increases the information about a particle must be
accompa-nied by an increase in the entropy of the
instrument or of the environment. This is the characteristic
cost of information (discussed in greater detail in Refs [22 -
25)).

7. Entropy encore!

The relationship of Eqn (25) suggests that the entropy of a
physical system is related in some way to the distribution of
velocities. This is indeed true, as described in detail in
monographs and text books on statistical physics. I shall
acquaint the reader briefly with this problem and once again
shall rely on the simplest example for an ideal gas.

The famous Boltzmann formula applies to statistical
physics: the entropy is equal to the logarithm of the number
of possible states I" of a given physical system:

S=InT. (26)

It must be pointed out once again that we are using energy
units to measure temperature and, therefore, the Boltzmann
constant does not occur in the above expression. Here, I is
the number of possible microscopic states which correspond
to the same macroscopic state. It is assumed that in the course
of thermal motion the system can assume all possible states
with approximately the same probability. Consequently, the
prob-ability p; of encountering a particular state is
approximately p; = 1/I". If the probabilities of individual
states are different, a more accurate definition of the entropy
is

S==> pilnp;=—(lnp). @7

1
The angular brackets here denote a
expectation, i.e. the average value.

For the ideal gas the probability is p; split into the
configuration and velocity parts, i.e. into the probabilities
of the distribution in space and over the velocities. The
number of possible states in space with a volume V and
N > 1 particles can be found by introducing an elementary
volume Vj. It seems that the number of such states is simply
equal to (V/V,)". However, this is not quite true: the atoms
in the gas are identical and, therefore, their transpositions do
not create a new state. Consequently, the above number
should be divided once again by N!a N, where only the
principal term is retained in the Stirling formula for N!. The
velocity part of I is simply equal to —N (In fy), where fj is the
Maxwellian func-tion for the distribution of the velocity of
one of the atoms:

mathematical

- m 3/2 m|V|2
fo(v) = (21t—T> exp <— T ) : (28)
Here, m is the mass of an atom and v is the velocity vector.

It therefore follows from Eqn (27) that the entropy of an
ideal gas is

14
S :N[]n (N—VO> —|—ln(c0T)3/2] ;

here, ¢y = 2me/m is simply a constant factor which appears
as a result of the averaging of Inf; e is the base of natural
logarithms. In contrast to the thermodynamic expression (12)
obtained earlier, Eqn (29) includes an explicit expression for
the integration constant, namely const = In(cy/NV) in
Eqn (12).

Formally the expressions (3) for information and (27) for
entropy are identical. However, their meaning is completely
different. Information of Eqn (3) corresponds to just one
sampling from an enormous (for example I') number of
possible states. The measure of this informationis/ = InT.
The entropy, however, corresponds to the possibility of
finding a system with a certain probability 1/I" in each of
the available states. The quantity S = In I corresponds to
the maximum ‘occupancy’ of all the states. The quantities /
and S are formally equal because I corresponds to the
maximum information for just one state and S is defined for
the set of all the states.

Let us assume that, for example, the amount of informa-
tion / represents the text of the present paper. The entropy of
this text is zero since there is only one fixed sequence of letters
and other typographical symbols. Consequently, I' = 1. Let
usnow assume that the whole text is set in ‘thermal motion’as
a result of which the letters begin to jump rapidly and become
transposed. Very soon all the information is totally lost, but
in the course of such thermal motion all possible states from
the total number I' are assumed, i.e. S = InI'. In an
intermediate variant when a part of the text is conserved
and another goes over to a completely chaotic ‘thermal
motion’, we have Eqn (25): S +1 = const. The entropy and
information of a closed system seem to have a mutual
relationship to one another: the ‘forgetting’ of information
automatically increases entropy.

According to the second law of thermodynamics the
entropy of a closed system cannot decrease with time. In the
example under discussion this means that the boundary
between the ‘thermal’ and ‘information’ parts of the text
can naturally move in just one direction, namely in the
direction of forgetting information. A new portion of
information, i.e. the deliberate ‘freezing’ of part of the text
which is in thermal motion, can occur only at the expense of
additional erasure of some part of the main text ifthis process
occurs without introducing additional information from
outside. Order can only appear because of the destruction
of a different order (in a closed system).

It follows from this discussion that the problems of
analysis of order and of creation of new information
require, as a rule, going beyond a certain isolated physical
system. Therefore, open nonequilibrium systems will be basic
to our discussion and we shall deal with them step by step
from simple to complex.

(29)
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8. Control

To continue our ideal thought experiments, we shall consider
a different formulation of the problem. Let us assume that
our particle executes Brownian motion in a plane (x, y). The
probability of finding it in this plane obeys the Fokker—
Planck equation, which in the simplest variant looks like the
diffusion equation:
op 2

i DV-p .
Here, p(x, y, t) is the probability density for the position of
the particle in the plane, V2 is the two-dimensional Laplacian,
and D is the diffusion coefficient. The solution in the form of
a point-source function yields

X2 +y2>

(30)

4Dt D

1
P= 47 P <_
This expression can be used to find the expression for the
specific entropy:

s = Jplnpdr = In(4neDx) .

Here, we are allowing for the fact that (x? +y*) = 4Dr.

We shall now select a certain value t = ¢, corresponding
to the localisation of a particle described by the average value
(x* +y?) = 4Dt. We shall now wait a certain time A such
that At = ¢ — ty. In this time the entropy rises by As = In 2.
We assume that there is a device which can automatically
move the cell where the Brownian particle is located. Such a
device could centre the position of the particle and restore its
previous localisation. However, thisrequires measurement of
the position of the particle with an error not exceeding such
localisation. Acquisition of this information and its
subsequent use in the movement of the cell requires an
increase in the entropy of the device by at least In 2.

Therefore, if this device is used in the controlled localisa-
tion of a particle, we can stop the rise in the entropy of the
particle itself, but only at the expense of constant creation of
the entropy inside or outside this device at the rate §, which is
at least In(2/ty). The dissipation and the corresponding
irreversibility seem to be transferred outside the cell
containing the Brownian particle.

They are transferred to the system of control of the
position of the particle. The particle itself is converted into
an open system from which an excess entropy ‘slag’, created
by dissipation, is continuously removed. The total entropy of
the particle and of the control device naturally increases, but
this increase occurs somewhere far from the object of interest
to us. This example demonstrates that entropy creation need
not occur strictly locally, but may proceed somewhere far
from the system in question.

9. Gas dynamics

At first sight it seems that dissipation should always and
inexorably bring a physical system close to thermodynamic
equilibrium. In some sense this is true, but the real processes
may be much more complex and this is clear from the
simplest example of gas dynamics.

In general, the behaviour of a low-density gas is described
well by the Boltzmann kinetic equation

of ety
&‘FV'Vf—St(f) :

(32
Here, f is the local function representing the distribution of
the particle velocities and St(f) is the collision term. It is
collisions that are responsible for the approach to local
equilibrium, ie. for dissipation. If the collisions are
sufficiently frequent, the distribution function becomes
Maxwellian:

3/2 2
f=n m_ exp _m|v—u
70 2nT 2T |

Here, n, T, and u are the local values of the density,
temperature, and average velocity. For the Maxwellian
distribution function the local equilibrium is complete, i.e.
St(f) = 0. However, if n, T, and u are functions of the
coordinates and time, the left-hand side of Eqn (32) does not
vanish automatically on substitution of f = f;;. This means
that a complete thermodynamic equilibrium is not achieved
although the collision term exerts a strong tendency towards
equilibrium. We can readily see that changes in the quantities
n, T, and u with time should obey certain constraints imposed
by the nature of Eqn (32) itself. This is because the collision
term is constructed in such a way that it conserves the number
ofparticles, their total momentum, and the their total energy.
Therefore, the left-hand side of Eqn (32) should also be
subject to these constraints.

Let us integrate Eqn (32) with respect to the velocities. If

(33)

fisassumed to be identical with f, the result is

on

ot

This equation of continuity automatically guarantees that
the collision term does not annihilate or create particles. [fwe
now multiply Eqn (32) by mv and integrate again with respect
to v allowing for f = f;, then the result is—subject to
Eqn (34)—the Euler equation

+ div(nu) =0 . (34)

du

mn
dt

+Vp=0, (3%)

where the operator is

d ©

G w-v),
and the quantity p = nT is the local gas pressure.

Similarly, multiplication of Eqn (33) by %mv and
integra-tion with respect to the velocities on the assumption
that f = fy,, subject to Eqns (34) and (35) gives the
relationship

2

d 5
—p+§pdivu:0 R

a (36)

wherep = nT.

Therefore, instead of the Boltzmann equation we now
have the system (34)—(36) for two scalar and one vector
quantity, and instead of a six-dimensional phase space we can
use the usual configuration space.

The equations ofideal gas dynamics become more precise
as St(f) increases, i.e. as the collisions between the atoms
become more frequent. Mathematically this means that the
equations of hydrodynamics represent an asymptotic form of
the Boltzmann equation in the limit St — oo. The collisions
themselves select a set of quantities n, 7, and u, which are
transformed into dynamical variables. They can be called the
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order parameters because they represent the main charac-
teristics of a local thermodynamic equilibrium.

The variables n, T, and u may be considered as smooth
functions of the coordinates. Their behaviour is governed by
the equations of gas dynamics. Naturally, against the back-
ground of this dynamics there are small thermodynamic
fluctuations due to the discrete structure of the atomic gas,
but at this stage they are of no interest to us. The equations of
gas dynamics, which are nonlinear in their structure, provide
natural means for the description of such processes when the
changes in space and time ofthe relevant dynamical variables
n, T, and u are much greater than the thermodynamic
background of the usual fluctuations. Consequently, we can
speak of states and processes which are very far from thermo-
dynamic equilibrium.

The equations of gas dynamics represent only the simplest
example of the description of physical systems far from
equilibrium. In other nonequilibrium physical systems one
frequently encounters a situation that certain order
parameters arise spontaneously and these begin to play the
role of dynamical variables. Our task will be to provide a
qualitative description of such dynamical systems subject to
the allowance for the role of informational processes.

Asdemonstrated earlier, informational processes are very
closely intertwined with irreversible dissipative processes in
systems far from thermodynamic equilibrium. As far as
possible, we shall consider these processes step by step
going from simple to complex.

10. Waves

Flow or oscillations of a gas at speeds much less than that of
sound represent a very wide class of gas-dynamic processes.
They include low-amplitude sound itself as well as incom-
pressible flow with dive = 0. Such flow will be discussed
later and here I shall deal with sound. I shall assume that the
amplitude of oscillations is small so that deviations of the
density n = n—ng and pressure p = p —p, from their
equilibrium values ny and p, are small. If the velocity u is
also assumed to be small, the equations of gas dynamics may
belinearised. The solutions of linear homogeneous equations
can always be regarded as composed of elementary solutions
of the plane-wave type exp(—w + ik - r), where k is the wave
vector. For a plane wave, Eqns (34)—(36) become

wp =ypok-u.  (37)

Here, y = 5/3 is the adiabatic exponent. It follows from the
last two equations in the system (37) that

o’ =P =0,

on=nyk-u, mnoou==kp,

(38)

where ¢, = (ypo/mno)'/2 is the speed of sound.

The relationship of Eqn (38) between the velocity and
wave number is known as the dispersion relation. According
to the second of'the equations in system (37) the displacement
of a medium occurs in the direction of the wave vector. A
comparison of the first and third equations in system (37)
shows that

p/po = %’7/”0 .
Since p = nT, it follows that the propagation of sound per-
turbs its temperature, so that T/T = 3ii/ng = (y — 1)it/ny.
This is to be expected because in the case of ideal acoustic
vibrations, the pressure varies in accordance with the
adiabatic law.

We shall now find the expression for the momentum
density P and the energy density ¢ in an acoustic wave. [f we
use the angular brackets for the averaging in space, in the
second approximation with respect to the amplitude of the
oscillations we obtain

- k )

P = (mnu) = (miu) = ano(u ) (39)
where u is the component of the velocity along k.

We shall use here the first equation from system (37) to
express 72 in terms of u. The energy of the oscillations consists
of the kinetic and potential components. The potential
energy is readily found if the last two equations in system
(37) are written as a simpler relationship,

E=—at,

wherea = k 2cs2 and £ is the displacement of the medium, i.e.
¢ = u, and u is the component of the velocity u along the
direction of the wave vector (this is the only component that
exhibits vibrations). For a wave with a given wave number we
simply have a harmonic oscillator and its average kinetic
energy is equal to the average potential energy. We then have
simply

(40)

(41)

A comparison of the expressions given by Eqns (39) and
(41) shows that we have the remarkable relationship
k k1

P=—g=—-—¢,
w kv

&= mny(u®) .

(42)

where v, = w/k is the phase velocity of the wave. This is an
important relationship. It is of much more general validity
and applies not only to an acoustic wave, but also to any
other small-amplitude waves in isotropic media. We shall
now consider what this relationship means.

Any longitudinal wave can be excited by a force applied
along the wave vector in resonance with the wave. Let us
assume that this force is F, calculated per unit volume of the
medium, and that it movesat the phase velocity v,. In the time
t the externally applied force supplies a momentum P = Fr.
In this time the force doeswork W = Fs, wheres = v,tisthe
path traversed by the point on a wave with same resonant
phase. However, it follows from the law of conservation of
energy that W = ¢, so thatg = v,P.

[t isinteresting to consider what happensto a wave during
the motion of a medium and, for example, at a velocity v,
along the z axis. In the expression exp(—iwt+ik-r),
describing the propagation of a wave in a medium at rest,
we should replace r with r + vyt and we then obtain a new
exponential function exp(—iw’t + ik - r), where

(43)

This is the well-known Doppler frequency shift. In
addition to this frequency shift, there is also a change in the
energy density

wl:w—ko'\/o:w_k:\/o .

/

o
§=¢—P-vyg=—P.

. (44)

Here, ¢ is the energy density in a wave in the coordinate
system moving with the medium and &’ is the energy density
in the laboratory coordinate system. According to Eqn (44)
the energy density ¢’ vanishes at @’ = 0. Such a wave can be
excited without energy loss. For an acoustic wave of



434

B B Kadomtsev

frequency @ = k¢, the condition @’ = 0 deduced from
Eqn (43) is
COSgEk—ZI&. (45)
o Vo
This is the well-known condition for the emission of
Cherenkov radiation. In the case of an acoustic wave,
condition (45) governs the vertex of the Mach cone.

When the velocity of the medium is sufficiently high, the
frequency @’ may prove negative. The energy of the wave in
the laboratory coordinate system also becomes negative: the
excitation of this wave requires the removal of energy from
the medium and not the supply of energy. In this case it is
usual to speak of the anomalous Doppler effect.

The relationships describing the energy and momentum
of a wave can be conveniently represented in a somewhat
different form. Let us assume, for the sake of simplicity, that
the wave propagates along the x axis. The velocity of
vibrations of a medium for a wave with a given wave number
k can be represented in the form

u= \/quk exp(—iwyt + ikx ) + \/Lf u_y exp(—iw_gt — ikx) ,
where u_, and w_; are simply the corresponding values ofthe
amplitude and frequency for the factor with the negative
wave number —k. However, since u should be a real quantity,
it follows that u_;, = uj and w_;, = —w;. We can easily see
that the mean-square value of the velocity squared along the
X axis is

(W) = wai =

We shall now select some definite point on the x axis, for
example, x = 0. The velocity at this point can also be
represented in the form

o, 1/2 o, 1/2
U= <%> a () + (M) ag (1),

for the amplitudes ¢, and a; (known as phasors) are given by

mn 1/2
a, = 0 Uy exp(—ia)kt) N
Wy

(46)

N 47)
ap = (a)_ko) uy, exp(—iwyt) .

The energy density of the wave can be expressed very
simply in terms of the amplitudes a; and a}: & = mno(u’) =
wyagay. The velocity u at the point x = 0 can also be
represented in the form

® 1/2
U = (2 k > (Xk COS(,Okt + Y/( sin (,Okt>

The coefficients X; and Y, are known as the quadrature

components because the difference between the phases of the

cosine and sine is ©/2. We can easily show that

1

5
i

] * *
Xy 25(% +ai), Yi=o(a—a).
Since the momentum density P, can be expressed in terms of
the energy density,
k

Pk =—§&
Wy

the amplitudes a; and a; yield a simple expression for Py:
P, = ka,a;. We can now introduce an auxiliary function
Y(x, 1) defined by the relationship

1/2
= (%) g exp(—iayt + ikx) . (48)
Wy
We can easily see that
e=a Y, P=kly. (49)

In other words, the quantity |1//|2 can be interpreted as a
certain arbitrary ‘number of waves’ per unit volume. The
energy and momentum densities are obtained by a simple
multiplication of the ‘elementary energy’ w; and of the
‘elementary momentum’k by the arbitrary ‘density of waves’.

The expressions in Eqn (49) are readily generalised to
wave packets when the quantity |xp|2 is localised in a certain
relatively wide region of space and vanishes outside this
region.

In this case Eqn (49) can be integrated in space, and
values of the total energy and total momentum can be found
for a wave packet.

The relationships in Eqn (49) can be generalised to any
small-amplitude waves because the expression P = (k/wy)e
is universal. Consequently, the natural frequency w; in
Eqn (49) need not be equal to ¢k, as is true of an acoustic
wave, but may be governed by the appropriate dispersion
relation for any homogeneous medium.

According to the dispersion relation (39), for each value
of the wave vector k we can find two frequencies: ® = ¢k
and w = —ck. Consequently, two waves may exist: one
propa-gating along k and the other in the opposite
direction. For one of these waves the dispersion relation
(provided the root is not multiple) can be written in the form
w = wy, where wy, is the corresponding natural frequency. A
superposition of such waves belonging to the same mode of
oscillation is described by

Z(w—wk)lﬁk(r»t) =0.

k
Here, Y, is an elementary plane wave corresponding to the
dependence Y, o exp(—iwt + ik -r). We can easily see that

0

or’

so that for y(k,t) = >,y we obtain

(50)

w=i

i%:zk:wkt/lk(r,t)Ean. (51)

The expression on the right-hand side of this equation can
be regarded as the result of the action of some operator H on
spatial coordinates of a function . For example, in the case
of an acoustic wave travelling along x the frequency is
w, = kcg, so that H = —ic,0/0x. For other waves the
expression for H may be more complex. We shall consider
here only one special case, namely the evolution of the
envelope of a wave packet.

We shall temporarily introduce the symbol ¥’ for the
wave function (this is the simplest term for ¢ ): ' = Y, ¥,
Let us now assume that ¥’ = y(r, ) exp(—iwot + ikox).
Here, wy, = wy (k = k) is the frequency of a wave with
the wave number k = ky and the function ¥(r, ) plays the
role of the amplitude, i.e. of the envelope of the wave with
given values of k = kg and ® = w,. We shall assume that
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Y(r, t) is a smooth function of the variables r and ¢. Then, the
expansion of Y(r,t) into a sum of harmonics of the type
exp(—ivt + ik - r) contains frequencies v < w, and the wave
vectors kK <€ kg. We can use this to expand w; as a Taylor
series in kK = k —k:

~ 1 ) 1 2
W = Wy + VgKy +§Vg1€x + mvgxl . (52)
Here,
dwy , v, Doy
Vo = —=7 > Ve = = s
& Ok & Ok  Ok?

and the term with Ki appears because

1
k=2 +)? 2k +=—13 .
2k
If we substitute the above relationships in Eqn (51), then
after cancellation of the common phase factor exp(—iw, + ikox)
the result is

oy . oy
o T TVea 2%

This equation describes the evolution of the envelope of a
wave packet. It is known as the Leontovich parabolic
equation. If the spatial dimensions of a wave packet are
very large, the last two terms on the right-and side of
Eqn (53) can be ignored and then the wave packet simply
propagates at a group velocity v = Ow,/0k. We note that
since Eqn (53) applies to an envelope, the absolute phase of
the complex amplitude y ceases to have meaning: the
replacement of Y with Y exp(ia), where a = const, leaves
Eqn (53) unchanged.

1,0% 1

+ m VgAll// . (53)

11. Correlation function

Under real conditions one frequently encounters the
situation in which many waves are excited simultaneously
and they have different frequencies and amplitudes. For
example, in the case of acoustic waves this is the noise in a
large city or of a large number of people at a railway station.
A large set of waves can be regarded as wave chaos and can be
described by the methods of statistical physics. The elements
of such a description can be understood by considering the
simplest case of one mode of oscillations in a one-
dimensional medium. The analysis can be carried out again
using a wave function ¥(x, t) because in linear waves all the
other physical quantities experiencing small oscillation can
be expressed in terms of Y. For example, let us assume that

Yx,t) = a exp(—ioyt +ikr) (54)
k

where a; is the amplitude of a wave whose wave number is k
and wy is the corresponding oscillation frequency. The time
and space averages of Y/(x, ) obviously vanish. Ifthe number
of waves is large and their phases vary with time, their
average values (g;) can also be regarded as zero. This is
known as the random phase approximation. However, if we
take the product a,aj, its average value is independent of the
phase, so that we can assume that (a.a}) = ai, where a; is a
certain average value of the square of the amplitude. The
quantity a7, considered as a function of k, is known as the
spectral function or simply the spectrum.

We shall now find (y(x,)¥*(x’,¢")), where the angular
brackets denote the averaging over random phases and
amplitudes of the elementary waves. This quantity is known
as the correlation function. If we substitute here the sums of
Eqn (54) for ¥ and y* and bear in mind that after averaging
the phases only the products a,a; remain, we find that

Wl Y (x',17))
= ;a% exp [~y (t — ') +ik(x —x")] . (55)

This is the familiar expression which makes it possible to
calculate the correlation function from the known spectral
density.

It should be noted that the average of the square of the
modulus of the wave function at a given point x is simply

W=D ai
k

The time dependence of the correlation function on ¢ — ¢’
is determined, in accordance with Eqn (55), both by the
spectral composition of the waves and by the dispersion law
= .

(56)

12. The Schrodinger equation

Quantum mechanics shows that all microparticles have wave
properties. Each free particle corresponds to a wave
frequency w and a wave vector k, so that the energy of this
particle is w and the momentum is p = 7k, where 7 is the
Planck constant. For a free particle of mass m the energy is
p*/2m = B*k?/2m. In other words, & = fiw, = k> /2m.
Consequently, Eqn (51) for a free particle assumes the form
of the Schrodinger equation

2

ih% =— L

ot 2m

It should be noted that, like the Leontovich

equation (53), the Schrodinger equation is invariant under

replacement of ¥ with yexp(ia), where o is a constant phase

shift. [fa particle is not free but moves in a potential U(r), the

total energy ¢ is equal to the sum of the kinetic and potential

energies e= (p*2m) + U and, consequently, the
Schrodinger equa-tion can be written in the form

. oY
in P
where H is the Hamiltonian operator.

By analogy with Eqn (51), Eqn (5§7) may be regarded as
applicable to a classical wave field. Then, |Y|?> can be
interpreted as the density of identical Bose particles at a
given point in space. The application of the Schrodinger
equation to one particle requires interpretation of [i/|? as the
probability density. We shall discuss later this approach in
more detail.

At this stage we shall consider the equation of free
motion (57) for one particle in one dimension only, when
Y= Ylx, t).

Eqn (57) also resembles the diffusion equation, and the
only difference is an additional factor of i on the left-hand
side. Therefore, the approach to its solution can be similar to
that used in the solution of the parabolic diffusion equation.
For example, let us assume that at r = 0 the wave function is

o= (5) (-5

V2 . (57)

2
—zh—szl// + U =HY , (58)

(59)
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This function is normalised to unity, i.e.

+00
J t//(z) dx=1.
—00

It describes a wave packet localised in an interval Ax of
a scale b. Direct substitution can demonstrate that at
subsequent moments the solution of the Schrodinger
equation becomes

NI 52
Y(x,t) = (;)  Sxp (—2—a2> )

where a> = b* —i(fit/m). With the aid of this function we
can readily calculate the mean-square value (x?). It is given
by the expression

(60)

i

2 2
(x )Zb +m

(61)

This expression corresponds exactly to the familiar
uncertainty relationship

AxAp>Th. (62)

In other words, if the initial localisation Ax amounts to b,
then the velocity uncertainty Av o< 7i/mb results in the expan-
sion ofthe wave packet at a rate Av, and at high values oftime
the localisation Ax increases as Ax o #(%i/mb).

The localised perturbation (59) can be confined by a
harmonic potential U = %ocxz. We can easily show that the
‘elastic’ constant is then a = #*/mb* and the energy of an
oscillator is & = 37w = 37(a/m)"2. In the limit b — oo the
elastic constant becomes o — 0.

13. Particle in a thermostat

We shall consider a quantum particle with one degree of
freedom in a thermostat which isa box oflength L along the x
axis. At this stage we shall not be interested in the motion of
the particle along the y and z axes. If the walls of this box
reflect the particle perfectly, the following eigenfunctions
should be selected for this particle:

¥, = exp(—iw,t) 2 ]/2sinnnx (63)
=exp(— — —_.

" P TI\L L

Here, w,= ¢,/h is the eigenfrequency, &, = p2./2m =

(rnh/L)*/2m is the eigenenergy, and n = 1,2, 3,... is any
natural number. Normalisation of the functionsy, is selected
so that L{jy?|) = 1.

Ifthe walls of the box are at a temperature T = const, the
particle should reach thermodynamic equilibrium with the
walls at the same temperature. This means that, in
accordance with the Boltzmann formula or, equivalently, in
accordance with the canonical distribution in statistical
mechanics, the probability p, of finding a particle in a state
nis

P =2"exp(—pe,) . (64)
Here, Z is a normalisation factor and f= 1/T. Since
>.p, = 1, it follows that

Z = exp(—Pe) (65)

and for this reason the function Z is called the partition
function.

Sometimes the free energy F = —T In Z is used instead of
Z and then Eqn (64) becomes

pn = exp(—Pe, + BF) .

This relationship can be used to find readily the average
energy of the particle:

e=(e) = put,

and other thermodynamic quantities. The relevant relation-
ships can be simplified by assuming that the dimensions of
the system are very large so that the energy of the lower level
is & € T. Then the summation over n in Eqn (65) can be
replaced by an integral on the assumption that n is a
continuous variable. It is now quite easy to find the
expression for Z:

(66)

2L I/2
z- (— —) : (67)
T [)0
where
h

Similarly, we can obtain the expressions for other
physical quantities. In particular, the average energy is

e=(e)=1T . (68)

The first law of thermodynamics for a one-dimensional
particle can be written in the form

de=—pdL + Tds . (69)

Here, ¢, p, and s are the energy, pressure, and entropy per
particle; L isthe length ofthe box (vessel). Let us assumethat,
for example, the walls of the box are impermeable to heat, so
that ds = Oand theprocessis adiabatic. All the probabilities
Pn should then retain their previous values, which is possible
only if

TL? = const . (70)

This is the adiabatic law for the one-dimensional case. If
we assume that p = T/L, where 1/L plays the role of the
‘particle density’, it follows from Eqn (69) that the law of
conservation of energy for ds = 0 and the relationship (70)
are satisfied. The entropy is best defined in accordance with
statistical mechanics:

S:_anlnpn:ﬁ(g_F) .

We have used here the relationship (66). On the other hand,
Eqn (71) becomes

(71)

F=¢—Ts . (72)
For a free particle in a very large box we find that
s:ln]f—o—l—so, bozﬁ, (73)
where
1,2
So = 7 In -

are small numbers which can be ignored compared with
In(L/bg). Eqns (68) and (73) obtained above and the
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relationship p = T/L are valid only if L > bo. If the length L
isreduced so that it approaches by, it is no longer permissible
to change from the summation over n to integra-tion. We can
see that on approach to L — by the lower energy level g
becomes comparableto 7. Consequently, at low values of L a
particle drops to the lowest energy level and the energy of this
particle increases as L™ as L is reduced. The entropy s is zero
and the pressure p varies as L~3. Weseem to reach the ‘size’ of
the particle by and further deformation of the particle
requires a greater energy.

We can therefore broadly say that by is the characteristic
‘size’ of the particle at a temperature 7 and then the ratio L/bg
represents the number of cells in which a particle with
temperature T can be placed.

The distribution of the probabilities p,, can be used to find
one further quantity p(x,x’), which is called the density
matrix in quantum mechanics. The density matrix resembles
the correlation function for a random set of classical waves. It
is defined by the following expression:

ple, x) = WY ) =D pa () () - (74

If L > by, the function p(x,x’) depends only on the
difference x —x'. Therefore, in calculating Eqn (74) we can
average over x for a given difference x —x’. Next, since in
accordance with Eqns (66), (72), and (73) the probability is

h? 1/2
Pn = (21,—2) eXp(—ﬁﬁn) s

the density matrix p can be calculated quite rapidly. Once
again the summation over n can be replaced by integration
and then p(x,x") is given by

p(x, x') :lexp =)
: L w2 |

(75)
where by = i /mT .
The above expression can be represented in the form

V21h,
plx, x') = T ® polx, ),

1 1/2 (x _xl)Z
n_ X Tx) )
Polx. x) <21tb(2)> eXp[ 202 ]

The function po(x,x’) is normalised to unity, i.e. the
integral of po with respect to x’ is unity. The function
po(x,x") seems to represent the density distribution over x’
for a fixed value ofthe point x, which in its turn can be placed
in one of the cells with the probability 2mbo/L.

(76)

14. Wave — particle dualism

There is some similarity between the formal expressions for
the density matrix in quantum mechanics and for the
correlation function of a random classical wave field.
However, actually these physical objects differ strikingly
from one another. The wave function in quantum mechanics
applies in the simplest case to just one particle. Broadly
speaking it is real only where the particle exists and has little
meaning outside the particle. We can state this differently. In
quantum mechanics all the physical quantities are obtained
as a result of the action of some operators on the wave

function. Accordingly the average values of these quantities
can be found after assigning to them the weight |12, Hence it
is clear that the absolute phase and the absolute amplitude of
a wave function have no physical meaning and can be selected
for convenience in calculations. Therefore, major relative
changes in the amplitude at distant points do not
significantly alter the physical quantities if the gradient ¥
changes only negligibly. For this reason the ||? function
assumes the meaning ofa distribution of probabilities and not
a distribution of the real density or of the wave motion, as is
true of classical fields.

We shall apply this approach to a particle in a thermostat.
As demonstrated earlier, the energy of a free particle in such a
thermostat is independent of the length L provided L > byo.

We shall repeat now the same thought experiment on a
quantum particle as was done earlier on a classical particle.
Specifically, we shall insert an impermeable barrier into our
thermostat and thus divide it into two parts. The
perturbation of the thermostat by this barrier is slight and
the particle still has the energy %T, provided L > bo. The
particle is then only in one of the halves, but as far as the
external world is concerned this does not imply anything:
repetition of this experiment still leaves a situation in which
[|2 is equal to 1/L in either of the two halves.

Let us assume now that we know of a method of
identifying which of the halves contains the particle. In
quantum mechanics such detection of a particle in one of
the states is called ‘measurement’. As soon as this
measurement is carried out, the value of || in the empty
half disappears and it is doubled in the half with the particle.
The wave function collapses. The entropy of the particle
decreases by In 2, i.e. it decreases by one bit.

If this had not resulted in any change in the external
world, we could have constructed a perpetual motion
machine of the second kind. Since this is impossible, it
follows that our measurement should be accompanied by an
irreversible increase in the entropy in the external world by an
amount which is at least one bit. We can say that the collapse
of the wave function is a real physical event, but it is induced
not so much by a device as by an irreversible process in the
external world.

One might try to ‘capture’the particle in a smaller interval
Lo < L. Ifagain we have Lo > by, the barrier does not alter
the energy of the particle and reduces its entropy to In(L/bo),
i.e. by an amount In(L/Ly). The entropy of the external world
should increase by at least the same amount. We can see that
this collapse may occur quite spontaneously provided only
Lo> bo. We can say that the quantity bo represents the
effective ‘size’ of the particle and at distances much greater
than bg a quantum particle differs little from a classical one.
In other words, in spite of its wave properties, a quantum
particle in a large vessel may behave like a classical particle.

We shall now consider this problem from a somewhat
different standpoint. The wave function of Eqn (63) can be
represented by the sum

alexp(—iw,t + ik,x) — exp(—iw, — ik,x)] ,

where a is a certain amplitude and k, = mn/L is the wave
number. We can see that the above sum is the superposition
of two waves, one of which travels to the right and the other
to the left. The wave number k, is proportional to the
momentum of the particle: p, = fik,. This means that ¥,
describes a particle which travels between perfectly reflecting
walls and has a constant momentum p,. Such motion can
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continue indefinitely if the walls are immobile. This state is
known as pure in quantum mechanics.

However, in the presence of heat exchange with the walls
this pure state cannot be conserved: according to Eqn (64)
each such state corresponds to just a certain probability p,. If
we are dealing not with one particle, but with a very large
number (for example, N > 1) of identical bosons, then in
each state there may be many particles. In this case the
probability p, multiplied by the total number of particles N
would correspond simply to the Maxwellian distribution and
then the density matrix p(x,x’) multiplied by the total
number of particles could be considered as a classical
correlation function of a random wave field N /2§ (x, ). In
this case we could begin with the natural assumption that the
phases of the eigenfunctions ¥, are mutually random, so that
averaging of them gives the average correlation function.

When we consider one particle, the behaviour becomes
purely probabilistic. At each moment in time the particle can
be in only one of its mutually incoherent states: one particle
cannot have many momenta at the same time. [f we suddenly
open one of the covers and allow such a particle to escape far
from the containing vessel, we could detect this particle with
just one of the possible values of the momentum. In exactly
the same way we cannot have two values of the momentum in
the case of a classical particle. Therefore, p, represents only
the probability of finding a particle in a state n. Loss of the
mutual coherence of the i, functions because of heat
exchange with the wall leaves one possibility: the particle
remains in one of the mutually incoherent states. There seems
to be a hidden ‘collapse’ of the wave function, but this
collapse is not yet real: the external world may still have no
information on the level at which the particle is located.

[fthe particle is acted upon very slowly, for example if the
end barrier is moved or new barriers are introduced, the
particle may have sufficient time to go over from one level to
another and assume on average the Maxwellian distribution.
From the point of view of the external world such a particle
behaves as a small thermodynamic-equilibrium system. In
this case again we are dealing with a density matrix p(x,x"),
but the changes or actions corresponding to it must be
averaged over time intervals much longer than the time
needed for the establishment of thermodynamic equilibrium.

If we attempt to localise the particle sufficiently rapidly in
space or to find its momentum, the automatic result is the
collapse of the probabilties accompanied by the collapse of
the wave function. It is this event that cannot take place
without an increase in the entropy in the external world. In
other words, the collapse is a miniature irreversible process
which resembles microscopic birth or death.

This example shows that a real measurement event in
quantum mechanics can be represented as a combination of
two actions: the preparation of the y function for expansion
into mutually incoherent components and the collapse into
one of these components. The loss of coherence may occur
simply because of external noise or thermal motion, but the
collapse during measurement requires a real nonequilibrium
process which creates information in the measuring
instrument and generates at least an equal amount of
entropy in the external world. Under real conditions these
two components of the measurement may be combined or
they may be difficult to distinguish. They are more important
for logical clarity than for practical realisation.

We shall continue our discussion of the behaviour of a
particlein a box or vessel of length L but we shall now assume

that only one of the ends of the box is maintained at a
temperature 7 and the other end is very cold, i.e. we shall
assume that it is practically at absolute zero. Then the particle
may carry a heat flux g. We can readily estimate its maximum
value gmax. This value is reached if in the first collision with
the warm wall the particle receives a thermal energy 7.
When it arrives at the cold wall the particle transfers to it an
energy of the same order and then returns to the warm wall
for the next portion of heat. Let us assume that v, = (T/m)'/?
is the average thermal velocity. The time of flight to the
second wall and return to the first wall cannot be less than 2L/
vt. Therefore, the heat flux is limited to gmax = 7Tv¢/4L. The
real heat flux may be much smaller: its value depends on how
effectively the particle can exchange heat with the walls in
each collision.

We shall now assume that initially the particle is introdu-
ced in some localised state of Eqn (59) with an initial localisa-
tion width b. Moreover, if this particle moves at a velocity
vo = po/m, the corresponding wave function can easily be
shown to be simply ¥(x,t) = Y(x —vot, ) exp(—iwt + ikx),
wherefik = po= mvoand fiw = p2¢/2m.Ifvyis of the order
of the thermal velocity w, the time of flight from one wall to
the other is o< L/vy. According to Eqn (61) in this time the
particle spreads out additionally, but if b2 is selected so that
the width of this spread conserves the scale of the initial
width, ie. if b2~ ht/m ~ fi/vyn, Wwe can assume
approximately that the wave packet retains its width. We
can see that b2 = Lbo, where b%y = #hi/mT determines the
minimum width of localisation of the density matrix. If
L > by, the quantity b considerably exceeds by, but it is (bo/
L)V? times less than L.

Since the system under consideration is far from
equilibrium, we cannot exclude the situation in which each
collision with a cold wall may be recorded, i.e. may be
‘measured’ by the wall itself.

This process implies that phonons created by the particle
reflected inelastically by the cold wall can induce irreversible
strains in the wall or give rise to other excitations of soft
modes which are then ‘remembered’ in one form or another.
Irreversible processes inside the wall may automatically
‘measure’ the particle, i.e. they may induce an additional
collapse of the wave function. The quantity (Lbo)"/? then
determines the minimum size of the wave packet: this size is
attained when the ‘measurement’ occurs in each impact. It is
evident that the wave packet can then resemble a classical
particle. However, the width of this packet b = (Lbo)V? is
considerably greater than the minimum scale by = Ai(mT)"2.
It follows from the uncertainty relation that b corresponds to
the momentum uncertainty Ap ~ /i/b. We can see that each
wave packet is broadened over several energy levels, so that
Av/ve ~ bo/b. If the localisation width is b <€ L, the particle
may travel as a nonequilibrium wave packet and, in order to
fillthe whole permitted range of velocities ~ vy, it hasto make
many collisions with the walls.

If we begin to increase the temperature of the cold wall so
that it approaches the temperature of the warm wall, the
degree of nonequilibrium decreases. There is a corresponding
broadening of the width of the nonequilibrium packet b. In
the limit we again have a situation in which the wave function
of a particle spreads out over the whole length L. Ifthen the
interaction with the walls is negligible, the particle will be for
a long time at each energy level g, undergoing a slow
Brownian motion between the levels because of the
interaction with the thermal vibrations of the walls.
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It thus follows from the above discussion that the wave—
particle dualism in quantum mechanics can depend to a great
extent on the external conditions under which a particle finds
itself.

The apparatus of quantum mechanics makes it possible
to describe a wide range of specific physical situations. In
particular, the description of the thermal motion of the
particle in the form of moving packets may be provided on
the basis of the density matrix p(x,x"), but this matrix will
differ from the thermodynamic density matrix of Eqn (74),
because for each wave packet the phases of the neighbouring
harmonics are correlated with one another, i.e. each such
packet looks like a superposition ), ¢, ¥, . Iftheaveraging of
the density matrix in Eqn (74) is carried out, the result is the
expression

plx, x') = Z WomWWs s

n,m

(7

in which the off-diagonal matrix elements W,,, need not
vanish. Moreover, if W, = c,c,, we obtain simply the
unique pure state which corresponds to the selected wave
packet.

If again we draw an analogy with the classical field, we
can say that in the pure state the phases of the individual
waves are correlated with one another, i.e. they are not fully
chaotic. The transition to thermal equilibrium is
accompanied by a change to chaotic phases and by the loss
of coherence. A particle can then be only in one of two
mutually incoherent states. Therefore, when the phases are
completely chaotic the off-diagonal terms in Eqn (77)
disappear and we have the usual definition of the
equilibrium density matrix with the Boltzmann energy
distribution of the probabilities W,,,.

15. Radioactive decay

Our idealised model of a one-dimensional thermostat will be
used to consider a process which resembles the radioactive
decay of a nucleus. In a thermostat of length L we place a
minature trap for a particle by introducing an additional
barrier at a distance b from one of the ends, for example from
the end on the left. Let us assume that b < by, where
bo = H(mT )"? is the width the minimum localisation of the
particle whose energy is ~T. The first (lowest) energy level in
this small trap, &5, = ®°#°/2mb?, is much higher than the
temperature. Therefore, the temperature of the left-hand end
of the thermostat plays no role: the particle is already at a
high level &};, and the next level may be so high that the
probability of the particle reaching it is negligible.

Let us assume that our particle is in a pure state of energy
&, in a small trap of size b € L. Let us now make a small
aperture in the barrier so that the wave function of the
particle can leak through it slowly into the main part of the
thermostat. Naturally, instead of such an aperture we can
employ an energy barrier, which is analogous to a barrier
through which a wave function can leak in a process known
as tunnelling, which is subbarrier leakage of the particle to
the free region.

This processis exactly analogousto the a decay ofa heavy
nucleus. Since for L > b the wave function in the free region is
always small compared with the  function in a small section,
the wave function of this small section decreases exponen-
tially with time: , o< exp(—1/21), [, |* o« exp(—t/z). Ifthere

are very many particles in a small section, for example if there
are initially N particles, their number decreases with time as
Ngexp(—t/t). However, we have only one particle so that we
have to speak of probabilities.

It is quite obvious that the probability of finding a particle
in a small section is p; = exp(—t/t), and the probability of
finding the particle in the main thermostat is p, =
1 —exp(—1/7). For a classical particle this is exactly how an
irreversible process of penetration of this particle across a
‘slimmed down’ barrier would take place. The spatial part of
the entropy of Eqn (28) for a particle in a thermostat would
have been considerably greater than unity and a monotonic
rise of the probability p» would have been automatically
accompanied by a monotonicrise of the entropy (the entropy
of the small section can be assumed to be zero). However, a
quantum particle behaves in a somewhat more complex
manner.

Let us assume initially that the right-hand end of the
thermostat represents a pure barrier at absolute zero. Then it
would seem that the probabilities p; and p> should apply to
the small section and to the thermostat, and that their values
should be described by the relationships given above.
However, we now have a contradiction because the entropy
§ = —>,p;Inp,;should increase first, reaching its maximum
at py = p> = 1/2, and then should fall to zero at p; — 0 and
p>— 1. In fact, the state under discussion, composed of a
superposition of the wave functions in the small section and
in the main part, is pure if there is no external disturbance.
Before measurement this is the only state. Only after repeated
measurements can we obtain the values of the probabilities of
finding the particle in the small section p; or in the large part
p2.

The state is pure before measurements even if it does not
have a fixed energy. For example, if the decay is very slow,
then at some moment in the middle of the process one can
increase adiabatically slowly the length L by shifting the more
distant end barrier. The energy of that part of the wave
function which is outside the small section (trap) then
decreases strongly compared with &;,. The ¥ function
leaking out from this small section has still the energy &pn;p,.
Therefore, the Y function would form as a superposition of
two states with different energies.

Before the measurements the superposition is again a
pure state. An external force of frequency corresponding to
the difference between the energy levels can freely change the
ratio ofthe amplitudes of the two sublevels. Therefore, before
the measurements it is not possible to detect the radiation
decay.

However, if it is assumed that the right-hand end area is
not perfectly reflecting, the first collision of the particle with
this barrier shows that the particle has escaped somewhat
earlier from a small initial volume. Such a collision,
accompanied by the excitation of phonons in the end
barrier, serves as a measurement after which the ¥ function
ofthe small volume practically disappears and the y function
in the main part of the thermostat is normalised to unity. In
other words, an inelastic collision with the wall causes the
collapse of probabilities (which up to that moment exist as
possibilities and not as real numbers), namely, the result is
that p;—0 and p,— 1. Only multiple repetition of the
process of decay can give the dependence N = Noexp(—t/
7), on the basis of which we can gain an idea about the
evolution of the averages in an ensemble of the a priori
probabilities p; and p-.
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After the first collision the particle is fixed inside the
thermostat because it is ‘measured’ together with the
approximate path from the ‘decay’ point and then the
process of establishing equilibrium with a thermostat
begins. The particle exchanges phonons with the wall, its
average energy decreases, and the distribution between the
levels approaches the Maxwellian form. Finally, the particle
energy reaches its average thermal value ¢ = 7 and the
energy residue eh;, — % T is transferred to the wall in the form
ofaportion ofheat AQ = b, — %T. The internal entropy of
the particle then reaches the value given by Eqn (73), i.e. it
becomes s = 1In(L/by), and the entropy of the thermostat rises
by an amount AS = AQ/T = (g;,/T ) — 3. All this second
stage of the process is essentially irreversible and is
accompanied by an entropy increase.

However, we shall now return to the first stage, ie. to the
first collision. Let us assume that ¥, is the normalised wave
function in the small section and y; is the normalised wave
function in the free volume of the cold thermostat. These two
functions correspond to the same energy when ¢ — oco. For
finite values of ¢ the wave function can be represented by the
superposition

V=¥, tay;, (78)

where ¢, and ¢, are the corresponding amplitudes. It follows
from the rules of quantum mechanics that the quantities | c|?
and |cr|? correspond to the probabilities of the relevant states
when repreated measurements are carried out. Each of these
measurements induces the collapse of the function into either
VYp or . In the case under discussion the role of the
measuring instrument is played by the second end of the
large volume and the measurement itself induces the ¢ —
collapse. According to quantum mechanics, the measuring
instrument cannot be used to induce deliberately this
collapse. It simply awaits the moment when the collapse
takes place and after many measurements makes it possible
to find p,(r) = 1 —exp(—t/t). The collapse itself is
essentially random. Einstein said that the process looks as if
“God played dice’’. He assumed that a deeper meaning lies
behind thisrandomness. However, since this meaning has not
been found, we are left with the orthodox quantum-
mechanical point of view.

We can thus conclude that our process of relaxation ofan
equilibrium state begins with the first inelastic collision of a
particle with the thermostat wall. In quantum mechanics this
collision represents a random collapse of the wave function:
Y — Y. One pure state of the particle is transformed to
another purestate, but an irreversible process of emission ofa
phonon takes place in the wall and the phonon escapes to the
external world. A memory of this phonon may remain in the
form of one bit of information concealed somewhere deeply
in the wall. In principle, if some automaton is placed
alongside the wall, this bit of information can be
transformed into the subsequent action of the automaton in
accordance with an algorithm provided in advance. For
example, the automaton could use part of the ‘decay’ energy
to do work.

We shall carry out one more thought experiment. We
shall assume that a narrow trap of width b < bgis located not
at the end, but exactly in the middle of a thermostat of length
L. We shall also postulate that the trap has two small
apertures so that the particle may equally well escape to the
left- or right-hand half-volumes.

The process of relaxation again begins from the first
collision. This may now be the collision with the left-hand
or right-hand wall. This first collision leaves one bit of
informa-tion in the relevant wall. This is followed by a
process of relaxation which again creates an entropy
AS = AQ/T = (gyin/T) —% in the appropriate wall. The
entropy of the particle is then equal to
s=1In(L/2by) = In(L/by) —In2, because the region
occupied by the particle is equal to only half the length L.
The entropy of the particle is now one bit less. Then the
displacement of the central barrier in the direction of the
empty volume could carry out work. However, we then have
to know in which halfthe particle is actually located and this
requires the use of the same bit of information that has
escaped into the wall in the first collision. Therefore, once
again we cannot utilise the thermal energy of the particle
without ‘payment’.

The ‘radioactive’ decay considered by us is thus an
irreversible process of relaxation to thermodynamic
equilibrium. It begins with an irreversible collapse of the
wave function which creates entropy in the external world.
This is followed by thermal relaxation which increases the
entropy of the particle and the entropy of the external world.
In our example the energy is stored in the particle itself and,
therefore, dissipation does not require an additional energy
or the additional introduction of a negative entropy from
outside the system.

16. Schrodinger’s cat

The wave function y thus has the following meaning. In
the case of many identical particles the quantity [y|? is
proportional to the density of particles at a given point in
space. In the limit of one particle the quantity [|? becomes
the probability of finding this particle at a given point. The
wave function evolves in accordance with the linear
Schrodinger equation, which admits the superposition of
linear solutions, i.e. the superposition of different states. In
this superposition the functions ¥ themselves and not their
squares are used. Therefore, the usual law for the additional
probability applies only if the wave functions of different
states do not overlap in space or if they have mutually
uncorrelated phases. Such decorrelation may appear as a
result of the interaction of a particle with the external
environment. [f this environment fixes one of the states of
the particle, the wave function seems to collapse.

The external world is assumed to be classical, i.e.
macroscopic bodies are postulated to be not wave but point
(or extended) objects with fixed coordinates that vary with
time in accordance with the laws of classical mechanics.
However, this approach means that there is a yawning gap
between the wave microworld and the classical macroworld:
in the usual approach it is not possible to go over from one
world to the other. In fact, when the approach is made from
the microworld side, it is necessary to include, in the
Schrodinger equation description of many particles, objects
of increasing size including in the limit the whole Universe.
On the other hand, when the approach is from the classical
macroworld side, it is natural to extend the classical
description right down to the smallest particles and the
smallest dimensions. The boundary between the microworld
and the macroworld is indeterminate and its discussion has
raised and continues to raise many problems.
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This contradiction has been stated most clearly by
Schrodinger [26] in his famous thought experiment with a
cat. Let us assume that there is a Geiger counter which
records o particles originating from a decay of nuclei and
passing through this counter. This counter is in contact with a
device which can break an ampoule with potassium cyanide
when the particle crosses the counter. If the ampoule and a
live cat are placed together under a glass jar, it follows from
standard quantum mechanics that there is the possibility of a
superposition of live and dead cats if the counter has not
made its measurement and is in a state of superposition of
recorded and unrecorded particle flights.

Obviously there is no real paradox. The actual recording
ofa flight ofa particleis an irreversible process accopanied by
the collapse of the wave function and only this can be
followed by the operation of an automaton which breaks
the ampoule. Superposition of this state with the process of
detection of a particle which has not taken place is simply
impossible. However, orthodox quantum mechanics does
not cover the process of irreversible measurements and the
feasibility of unreal superposition shows that there is an
intermediate region between the quantum microworld and
the classical macroworld where standard quantum
mechanics does not apply and which requires a special
discussion. We shall return to this topic later.

17. Irreversibility of our environment

Not only life on Earth but other nonequilibrium processes on
our planet depend to a large extent on solar radiation. The
solar constant, which is the flux of energy at the average
distance of the Earth from the Sun, amounts to 1.4 x
106 erg cm—2 s—2. If we ignore albedo, we find that this
energy is eventually converted to heat at a temperature T of
about 300 K. We can easily estimate the corresponding rate
of entropy per unit area per unit time S, =3 X
10" ecm =2 s—!. Since the temperature of the Sun is about
6 x 103 K —i.e. about 20 times higher than the temperature
of the Earth — and since solar radiation is contained within a
very small solid angle, we can readily estimate that the
proportion of the solar entropy in S, represents no more
than 1%. In other words, the solar energy has a very high
degree of order and before it is converted into heat it carries
an information flux /; of the same order of magnitude as S.
The information flux I, has a giant value of ~4 X
10'° bit cm—2 s~ !, It is incomparably greater than any one
of the information fluxes deliberately created by man.
Naturally, this information flux should be divided by the
number of molecules to which it is transferred and which
gives a much more modest value per molecule. For example,
if the flux [ is divided by the number of molecules in the
terrestrial atmosphere, in 1 ¢m? of the Earth’s surface, then
the information flux per molecule does not exceed one bit per
week. However, even this number is not so small. We must
also bear in mind that not all the energy is converted into
heat. Some ofthe solar energy is captured by the atmosphere
and serves as the source of air currents, winds, clouds,
precipitation, etc. Another part of this energy is used in the
photosynthesis of proteins by the plant kingdom and the
proteins in turn serve as the food and life support of the
animal world. Therefore, in addition to degradation of the
ordered solar energy and its conversion into heat, there is a
simultaneous process of self-organisation and complexifica-
tion of the structures in the world surrounding us. All the

growth processes occur only because they are accompanied
by a powerful increase in the entropy due to a reduction in the
degree of ordering of the energy arriving from the Sun.

Taken as a whole the atmosphere and biosphere of the
Earth represent a complex open system. A steady-state
balance of the energy fluxes is established by the emission of
thermal radiation from the Earth into space: the energy
arrives on the Earth with a low entropy and escapes with a
much higher entropy. However, we cannot say that the
irreversible process of the entropy increase is perfectly
monotonic in all the components of our complex system.
On the contrary, the overall entropy increase is accompanied
by the process of creation of ordered structures and a
reduction in the local values of the entropy. It is this global
entropy rise that makes possible the opposite process of local
organisation and development of order. The situation is
similar to an irrigation system in which mechanisms are
used to raise water from a lower to a higher level: the water
falling back sets in action a water wheel which transports part
of the water upwards. The large flux downwards creates a
small flux upwards.

Stephen Hawking, a major physicist of our time, uses the
following lecture demonstration of irreversibility. He shows a
small episode on cine film where a cup with coffee slides down
from a table, falls on the floor, and breaks; the coffee spreads
over the floor. He comments on this episode as follows: “all
of us are familiar with this scenario’’. He then adds that “‘the
reverse process is simply impossible” and shows the same
event in the reverse order: a pool of coffee returns back to the
cup, which is restored from the fragments, and then the cup
with coffee jumps and comes to rest on the surface of the
table. Naturally, nobody believes in the possibility of such a
miracle although perhaps not all of us think what happens to
the entropy.

After all, the whole episode begins from the point at
which a cup with coffee stands on a table. A million yearsago
nothing has indicated that such a cup would appear as a
result of a purely irreversible process accompanied by
continuous degradation of'the global order and a monotonic
increase in the total entropy in the process of thermalisation
of the energy flux arriving from the Sun. It is this general
degradation of energy that has made possible the opposite
process, again irreversible, involving a reduction in the local
entropy and the creation of highly organised matter. It is this
process that has finally resulted in the appearance of the cup
with coffee on the table.

We can say that not only in a general open system, the
passage of ordered energy through which is accompanied by
entropy creation, but also in separate open parts of this
system there are two simultaneous processes: degradation
leading to chaotic thermal motion of molecules and self-
organisation accompanied by an increase in the complexity
of structures and the growth of the associated portion of
information (i.e. the entropy decreases).

A full understanding of the irreversibility must simulta-
neously allow for both processes: self-organisation with a
slight reduction in the entropy and degradation of the order
with energy thermalisation and entropy creation at a much
higher rate. Both destruction and ordering are essential for
the understanding of irreversibility.
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18. Who throws the dice?

The probabilistic description of events in quantum theory
raises the natural question of whether a more complex
deterministic pattern of physical processes lies behind the
random events and we are simply unable to describe this
pattern because of its complexity. Attempts to introduce
into quantum theory so-called hidden variables have been
made on many occasions. However, it has been shown
convincingly —beginning with the work of von Neumann,
and then later —that the logical structure of quantum theory
is closed and excludes the possibility of introducing hidden
variables. (The reasons given by von Neumann himself are
not quite correct, as pointed out for example by Mermin [34],
but this does not change the situation.)

What is the origin of randomness? Who in the final
analysis throws the dice? In order to understand what it is
all about, we must consider first the game of dice itself.
Two players in turn throw a cube with six faces bearing
numbers from one to six. This is indicated usually by the
number of dots on the faces. After throwing the dice cube the
players determine—in accordance with rules established in
advance—who won. Usually each of the faces appears
perfectly randomly with a probability of {. However, why
does this happen at random?

It happens because before the cube comes to rest it turns
over many times. Let us assume that, for example, the cube
makes 100 such revolutions. The same face appears for the
second time if the cube is thrown with a precision of at least
1/600. Here the number 6 allows for the number of faces. It is
practically impossible to repeat the throw of the cube with
this precision. Moreover, if the throw of the cube produces
repeatedly the same result, the second player may suspect the
first of cheating. It follows that in this case the random
behaviour is due to the hands ofthe players. The fact that the
numbers appear at random is more due to the inability of the
players to coordinate precisely their movements than to their
conscious behaviour.

Instead of throwing dice one could consider a device
ensuring a perfectly chaotic motion of a cube in a box closed
to the players. The players would open the top of the box
from time to time and read the result. In this case we are
dealing with an objectively occurring random process. The
motion ofthe cube in the box can be regarded as an analogue
of chaotic thermal motion. Consequently, the cube in the
closed box has the entropy S = In6. As soon as the box is
opened and both players look at the cube the entropy of the
cube collapses to zero, because the cube face is now fully
determined with the probability of unity. Each of the players
acquires the information /= In6, which may then be
followed by the following events: one of the players may
become pale and the other may smile with pleasure. The
information is received when each of the players destroys
without fail some of his ordered structure and transfers to
chaos, i.e. to the entropy, at least /= In6 of his own
information.

We shall now assume that our players have decided to
replace the cube with a Brownian particle so as to exclude
completely any possibility of regular motion. It is unimpor-
tant which position the players decide to regard as the winning
position and we shall simply assume that they periodically
measure the position of the particle and then return it to the
origin of the coordinate system. Let us assume that a dust
particleismoving in air in a container of 1 ¢cm?in volume. The

motion of this particle is completely independent of the
observers and is absolutely chaotic. It is here that we might
say that ““‘Godplays dice’’. However, let us not be in haste.

We shall now consider to what extent this motion is
random. One cubic centimetre of air contains something of
the order of N &~ 10'° molecules. Consequently, the volume
per moleculeis Vo &~ 10~'° em3. If we want to localise each of
the molecules in volume not smaller than V, it follows from
Eqn (29) that the configuration part of the entropy of the gas
is a quantity which is at least N &~ 10'°. We shall now assume
that we want to localise, i.e. ‘freeze’, this state. This state then
has the information I &~ S ~ 10'°. We also desire to control
this complex system by correcting it at time intervals
T l/cg = 107! s. Here, [ ~ 107 m is the average distance
between molecules and ¢; = 300 m s—! is the velocity of
sound. We can see that the control of the motion of the gas
requires an information flux, converted into the entropy, of
the order of ~ 1030 s—! Thisis 10'° times greater than can be
supplied by the solar energy flux reaching 1 ¢cm?. In other
words, if somebody would want to help one of the players, he
would have to posses a spiritual potential capable of
maintaining an ordered motion of molecules by changing
into chaotic the flux of information on the scale arriving from
the Sun on a surface of 1 cm?.

[t is therefore more correct to say that God does not play
dice but the reverse is true: because of complete neutrality of
God to this game, it occurs on the basis of pure randomness
created by the spontaneous nature.

The randomness may be regarded as an integral property
of matter which is in thermal motion. Observations of a
random process reveal chaotic successive numerical values of
arandom quantity. Therefore, the most rigorous approach to
the description of this process is based on the concepts of
probability, or distribution functions of probabilities, if the
random quantity can be regarded as continuous. If random
events are considered, then in the presence of information
links they should be analysed allowing simultaneously for the
complex events which concern the observer or, more
generally, occur in the external world.

19. Brownian motion

We shall now consider the motion of a Brownian particle in
greater detail. We shall begin with the one-dimensional
motion of a classical particle. The most convenient approach
to the description of the motion of such a particle is based on
the Langevin equation

(79)

Here, v is the velocity of the particle, y is the coefficient of
friction, m is the mass of the particle, and F'is a random force
created by random collisions of molecules with the particle.
Let us assume that at r = 0 the velocity of the particle is
zero. It then follows from Eqn (79) that
1 t
v=— J exp[—y(t —tHIF(t')dt' . (80)
mJo
If the average value of the force is (F) = 0, the average

velocity is also zero. However, the mean-square value differs
from zero and is
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Since the collisions of molecules occur very frequently,
the force F has a very small time-correlation scale, so that we
can  assume  approximately that  (F(t')F(t")) =
F?t8(t" —t"). Here, F2is a characteristic scale of the square
of the force and 7 is the characteristic correlation time. The
expression (81) becomes

2
(v2) _ Ft

2m?y
We can see that at low values of # the mean-square value
(+v?) increases with time as (v2) = F2tm ™%t and, in the limit
t — oo, tends to the constant value F2t/2m*y. Under thermal
equilibrium conditions this limiting value is 7/m, so that we
obtain

[l — exp(—2yt)] . (82)

D,=— ="

2m? (83)

Here, D, denotes the velocity diffusion coefficient. Accord-
ing to Eqn (82) at low values of  we have (v?) = 2D,t. We
shall also introduce the velocity distribution function f(v, t).
Ifthere is no random function, then all the velocities decrease
as voexp(—yt). In this case the distribution function would
vary in accordance with the law f (v, £) = exp(yt) fo[vexp(yt)]
where fo(vo) is the velocity distribution at t = 0.

We can easily see that then

of 0, .
E—Va(‘{ff

On the other hand, if y vanishes and there is a random force,
velocity diffusion occurs. In fact, we then have

: . , of 1 9°f
Flot+A) = Flv—Av,t) = (1) —a;cAv+§#(Av)2 ,
where Av can be found from Eqn (80). The averaging
procedure  gives  ((Dv))2= 2D,Dr.  Consequently,
expanding the left-hand side in Ar and allowing At to
approach zero, we obtain the diffusion equation. Together
with the term containing 7y it becomes

of 0 o°f
T Ya‘{f‘i‘Dvﬁ .

(84

This is known as the Fokker—Planck equation. After a
long time a steady-state distribution is attained and it follows
from Eqn (83) that this is the Maxwellian distribution

1/2 2
oo (Y (i
o 2nT 2T )

The time needed for the establishment of the Maxwellian
distribution is usually very short.

[f the time intervals are regarded as much greater than 1/
y, the motion of a particle along the x coordinate can be
regarded as diffusion. In fact, we can find the quantity

(%) = J;J;(v(t')v(t "yde'de” .

Since vis described in Eqn (80) in terms of an integral of a
random force, and since the force is regarded as 8-correlated,

(85)

(86)

it follows that

(") = - expl=a( — 1]

and Eqn (86) leads to the relationship {(x2) = 2Dt, where the
diffusion coefficient is D = 2T/aym. Consequently, by
analogy with the discussion leading to Eqn (84), we can
readily obtain the equation for the probability of the
distribution p(x, t) of a particle along the x coordinate:

op Da2p

o T oxt’

The description of the evolution of the particle velocity
thus leads to the Fokker—Planck equation and the diffusion
of a particle with a steady-state velocity distribution is
described by Eqn (87) if pt > 1.

If initially the particle is localised with respect to its
velocity and coordinates, and its entropy is very small,
the entropy increases monotonically with time. In the
velocity distributions this occurs because of the approach to
the Maxwellian distribution, whereas the configuration
component of the entropy increases because the particle
occupies an increasing interval along x by a diffusion process.

We shall now consider the Brownian motion of a
quantum particle. The numerical aspect of the problem will
not be stressed here and we shall therefore consider only an
extremely simplified variant of such motion. We shall discuss
the example, considered qualitatively in Section 14, of a
particle in a finite one-dimensional box with walls which are
at different temperatures. In this way we shall directly allow
for the occurrence of a nonequilibrium process.

Let us assume that a particle of mass m is inside a box of
length L and one end of this box is at a temperature 7; and
the other is at a lower temperature 7> < T,. Temperature 7>
of the cooler is always regarded as lower than the
temperature 7| of the heater. Only one-dimensional motion
will be considered.

Let the particle be initially localised in the interval b < L.
We can use the classical approach during a certain time
interval before the wave packet spreads out. Let v be the
velocity of the particle. This velocity changes randomly
owing to collisions with the walls, so that after a certain
time the changes in the velocity can be described by the
Langevin equation. The motion along the x coordinate is of
little interest to us: it simply represents free flight from one
wall to the other and back again. The time of flight between
the walls is L/v, so that the frequency of collisions with each
of the walls is v/2L.

Let us assume that each collision with the wall results in
the loss of some of the momentum by the particle, so that its
velocity decreases by av, where v = (T1/m)"? and the
coefficient « is simply a number smaller than unity. Then
the loss of the momentum in collision with one of the walls
can be described as uniform deceleration at the rate

87)
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If we assume approximately that the loss of momentum on
the hot and cold walls does not differ greatly from the above
value, then the losses on both walls are described by y =
oave/L. There is a well-known fluctuation—dissipation
theorem which shows that the mechanism responsible for
the dissipation also creates fluctuations. In our case thisis the
heating of the particle by diffusion. Eqn (83) allows us to
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write down the Fokker—Planck equation in the previous
form (84), but for T»#T; we have different diffusion
coefficients for the left-hand and right-hand walls, so that
on average

D, = %(TI +T,) . (88)

We can easily see that the velocity distribution of the
particle approaches the Maxwellian form with the average
temperature Ty = %(Tl + T>»).

We shall now discuss the question of how long we can use
the classical approach. We can resolve this question if we
know how fast a wave packet spreads with time. We shall
consider first the fate of the temperature of the particle before
it has reached its equilibrium value. We shall multiply
Eqn (84) by mv? and integrate it with respect to velocity. If
we assume that the distribution over the velocity is close to
Maxwellian, we obtain

O T -T) (T~ Ty).

t
We have used here the relationship (88) for D,,.

According to Eqn (89) the particle tends to equilibrium
with each of the walls at a rate ~y. Under equilibrium
conditions, i.e. when T = ;(Tz + T,), the particle receives
heat from the hot wall at a rate of ¢ = %y(T.—Tz) and
transfers it at the same rate to the cold wall. In other words, ¢
is the heat flux carried by the particle. This heat transfer
delivers to the cold wall an entropy flux

: q y (T,
So= L _T(Z1_q),
==

This entropy flux may induce an irreversible process in
the wall, such as the storage of information that the particle
has collided with the wall. We can say that this entropy
increase is evidence ofa kind of “‘measurement’ of the particle.
It can be regarded as a process of destruction of mutually
coherent parts of a wave packet. Broadly speaking, if
AS.~ 1, a wave packet may split into two mutually
incoherent halves. This results in the collapse of the wave
function: one of its halves vanishes and this increases the
stored information, i.e. it increases the ‘knowledge’ at the
cold wall with respect to the packet, but such knowledge is at
the expense of an increase in the wall entropy by AS. ~ 1. If
this process is repeated many times, the wave packet retains
on average a localised state. The width of localisation of the
packet can be estimated from Eqn (61), which describes the
spreading of the packet with time if its initial localisation is
(x?) = b* 4 (B> /m*b?*). If the packet is ‘pressed’ against
the cold wall in successive collisions, the spreading width
should be of the same order as the initial width of the packet.
In other words, if t &~ l/S.c, then % a7 /m2112§c2. Hence, we
find the localisation width

1/2
b= <L> .
mS

It follows from Eqn (90) that at the temperature 71 much
higher than T», the value of S, is of the order of y = av/L,
where o is a numerical factor which can be regarded as of the
order of unity. In this way Eqn (91) yields the estimate
b~ (boL)V?, where the quantity bo= h(mT )~?
introduced earlier represents a characteristic localisation
width of the density matrix. Even for an electron when
L= 1cmand T = 10 eV an estimate of b gives a fairly

(89)

(90)
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small value: b ~ 10=% cm. In other words, nonequilibrium
results in a strong localisation of the particle and imparts
those properties that are wusually attributed to a
microparticle.

If b € L, then the behaviour of such a particle can be
described by classical mechanics. Each of the possible wave
packets has a ‘velocity’ width which is of the order of
vibo/b <€ vi. Consequently, the velocity distribution of the
particle can be regarded as continuous and characterised by a
distribution function f(v).

20. Microworld and macroworld

The discovery of quantum mechanics has immediately raised
a number of problems and the solutions to some of these
problems cannot yet be regarded as fully satisfactory. This
does not prevent the use of the powerful theoretical
apparatus of quantum theory when applied to an extensive
range of physical phenomena. Quantum mechanics has not
yet failed to account for practically any experimental
observation (this applies primarily to the nonrelativistic
theory). Nevertheless, we are left with the question of why
the theory predicts only probabilities of random processes in
the microworld, and also with the question why these
processes are random. The most important is the difficulty
of establishing where the boundary is between quantum and
classical physics.

It is obvious to everyone that classical macroscopic
bodies have no visible wave properties. On the other hand,
all microparticles behave exactly as predicted by quantum
mechanics, demonstrating the universal wave nature of the
microworld. Therefore, where is the intermediate region and
if it does exist, what is the theoretical apparatus needed to
describe it?

In this section we shall discuss this problem in a purely
qualitative way in order to make clear the direction of
thought which will be followed later. The main point is the
constant information coupling which is characteristic of
objects in our environment. All of nature is exposed to solar
radiation, which shines with all colours; this is sufficient for
all living organisms continuously to observe their
environment. A similar coupling or link via light may also
exist between inanimate objects. In quantum mechanics this
means that the positions of macroscopic bodies are being
constantly ‘measured’ by the surrounding living organisms
and inanimate bodies. Therefore, the Yy waves of macroscopic
bodies are subject to constant destruction of coherence. We
live in a world of destroyed coherence and further continuous
destruction of coherence. We shall now try to estimate where
the natural boundary is between the microworld and the
macroworld. We shall do this on the basis of Eqn (91),
describing the width of a nonequilibrium wave packet.

Let us consider a macroscopic body of density
p= 1gcm~3 and of transverse size L. The mass of this
body is m = pL3. An information flux reaches the body
directly or indirectly and this flux is then converted into
entropy, which can be estimated from §C = L2§0, where
Sy ~ 10! em =2 s—! is the flux reaching the Earth from the
Sun.

We shall now consider a body for which the localisation
width of Eqn (91) is of the order of its own dimensions. Such
a body is obviously somewhere on the boundary between the
macroworld and the microworld. Substituting the relevant
quantities,we obtain the following estimate:
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Naturally, this is a very rough estimate, just sufficient to
show that all visible bodies belong to the macroworld and this
applies to the objects seen under a microscope. We recall that
a wavelength of visible light is A~ 107 ¢cm, so that the
minimum dimensions of a macroscopic body of ~0.1 um
obviously do not exceed A.

It follows that all the objects in our macroscopic
environment have wave packets which are ‘collapsed’ to
dimensions much smaller than their transverse size and
which appear to us as sharply defined and capable of
description in the classical terms of solid, liquid, or gaseous
bodies. It is sufficient to introduce the corresponding
classical variables and to apply classical theoretical
mechanics. In other words, we are dealing with conventional
dynamics.

On the other hand, in the case of microparticles the wave
behaviour predominates. If we want to know something
about the behaviour of a microparticle, we must ensure that
it interacts with a macroscopic instrument which intervenes
between the particle and the observer. This instrument,
including its components, is all the time in a state of
information exchange with the environment. Therefore, the
wave function of the instrument ‘lives’ under conditions of
unavoidable destruction ofits coherence. It is the destruction
of coherence ofthe instrument that occurs in a purely random
manner because of the many links with the classical objects in
the environment.

The instrument itself is constructed in such a way that
different states of a microparticle correspond to different
readings. The selection by the external world of one of the
readings automatically destroys the coherence of the wave
function of the microparticle. All this looks like a random
process but, if it is repeated many times, then certain features
of statistical relationships are revealed and they can be
described on the assumption of transformation of a pure
ensemble into a mixed one. The quantity ||? then plays the
role of the probability density. The instrument simply
indicates in which part of the complete set of states acquired
by the instrument is the particle located during a given
measurement.

21. Behaviour of a microparticle

Any object or living organism interacting with the
surrounding world manifests only a small proportion of its
properties or structural possibilities. The usual atomic
approach postulates that all these internal properties can be
revealed step by step, i.e. they can be explained completely if
we know all the properties of the small components of the
object and their interactions with one another. Following the
same approach we shall consider the simplest object, namely
a small particle which manifests only its dynamics, i.e. its
mechanical properties.

In classical mechanics such an object is called a material
point, i.e. a body of very small dimensions without any
internal structure. All that such a point has are its mass,
position in space, and response to external forces in accor-
dance with Newton’s second law. In the one-dimensional
case this response is described by

m)f'o = [50 =F. (93)

Here, xo is the coordinate of the point, m is its mass,
po= mxo is the momentum, x, is the velocity, x is the
acceleration, and Fisthe force acting on the point. In the case
of a potential field the force is F(x,) = —0U/0x,, where
U(xo) is the potential energy. This approach to a small
particle seems to be absolutely irreproachable and most
rigorous. However, it does not always satisfactorily describe
the interaction of such a particle with the external world. In
fact, if the particle is inside a thermostat and is subjected to
very slow actions, such as a change in the volume occupied by
it or a change in its average kinetic energy, it is more correct
to describe it in terms of thermodynamic quantities, which
include the temperature, volume, entropy, internal and free
energies, etc. The descrip-tion of the object should
correspond exactly to the interaction of this object with the
external world.

In the thermodynamic description there is no need to
consider the instantaneous position of a particle in space and
it is sufficient to know only its average characteristics.
Naturally, in this case the description is based on incomplete
information about the particle. A more general approach to
an incomplete description of the particle is based on the
introduction of the distribution function f(x,v,t) for the
probability of finding the position and velocity of the particle
near x and v, respectively, so that the quantity f(x, v, 1) AxAv
corresponds to the probability that the coordinate lies within
the interval Ax and the velocity within Av. Evolution of the
function f(x, v, t) is governed by the kinetic equation

of | o
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The description given by Eqn (94) is most appropriate to
a small particle. It naturally covers both limiting cases: in one
case when the velocity and coordinate distributions have time
to assume the Maxwell—Boltzmann form and the thermo-
dynamic limit is reached, and also in the case when

fo=08(x —x0)3(v —vg)

and we are dealing with a material point whose coordinates
are xo(t) and vo(t). Eqn (95) contains formal & functions
which always vanish except at the points where their
argument vanishes. In physical discussions it is convenient
to assume that x and v are not continuous but discrete
variables, so that the space of x and v is split into very small
cells of dimensions Ax and Av. Then the function (95) should
beequalto (AxAv)~!in just one cell and in all the other cells it
vanishes.

Ifthe distribution function of Eqn (95) is substituted into
Eqn (94) and integrated with a weight x and then with a
weight v, the result is Eqn (93). Therefore, the description of
the motion of a particle in terms of the dynamic variables x
and p = mv corresponds to the maximum localisation of
Eqn (95). We shall assume that the coordinate x varies only
in a finite segment of length L and the velocity is limited from
above to the value ¢. Then the total number of cells in the
phase spaceis N = Lc(AxAv)~!. Consequently, the function
described by Eqn (95) corresponds to a state with just one
occupied cell, i.e. with the maximum information / = In N
and zero entropy. If we select smooth distributions, then the
corresponding values of the entropy increase with the
number I' of occupied cells: S = InI'. Consequently, the
amount of information decreases: /= InN—InT". In the
limit when the particle uniformly fills the whole segment L
and the velocity distribution becomes Maxwellian, the

94)
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entropy reaches its maximum value for a given average
energy. Consequently, the amount of information for this
state should be regarded as zero because the velocity limit at a
given temperature T is simply ¢ &~ (T/m)">.

A description based on the distribution function readily
deals with the problem of going to the thermodynamic limit.
However, even this description has a characteristic, but not
very obvious defect: it applies only to a small particle in the
macroworld. Essentially this particle is in constant informa-
tion ‘contact’ with the external world and the information
interaction is sufficiently small not to affect in any way the
dynamics of this world.

Thekinetic description does in fact admit a solution ofthe
type given by Eqn (95). It readily follows from the kinetic
equation (94) that xo and po satisfy Eqn (93). This con-
sequently means that if the x coordinate has the value xo(¢)
attime¢, and the value xo(r + Af)attimet + At, its velocity is
defined as [xo(r + At)—xo(¢))/At. In other words, the velocity
measurement can be made by measuring the coordinate
twice: at time ¢ + Af and at time ¢. Only if we are sure that
the second measurement does not disturb the state of the
particle during the first measurement, can we speak of the
existence of the velocity vo and, consequently, of the
momentum po which occurs in the dynamic equation (93). It
is understood that the measurement and the interaction of
the particle with the instrument are objective processes.
Therefore, it is more correct to say that the dynamic
equations are based on the assumption that the particle has
a constant information link with the external world and
this link does not disturb the dynamic properties of the
particle. These are the characteristics appropriate for
relating them to the objects in the macroworld. However, in
the case of the microworld particles it follows from quantum
mechanics that the old assumptions about the simultaneous
existence of the position and momentum of a particle are
incorrect.

Quantum mechanics is based on a completely new
appproach to the process of measurement or, more
accurately, to the information interaction of a microparticle
with the macroworld objects. The fundamental principle of
quantum theory says that the process of measurement, which
would seem to permit an infinitesimally small exchange of
energy between a particle and an instrument, has nevertheless
a significant influence on the microparticle dynamics. Each
measurement considerably alters the state of the micro-
particle and therefore a second measurement applies only to
a new state and the previous state is disturbed by the
measurement itself. The question is: how can one describe a
microparticle in such a case?

The first conclusion is obvious. If any measurement
destroys something, then the required relationship can be
identified only by many similar experiments. This means that
each measurement may give results somewhat different from
the other measurements: the events are random and only the
average statistical results can reveal the investigated relation-
ship. However, this is also true when the description is based
on the distribution function f(x, v, t). Where is then the differ-
ence? The difference is that the macroscopic description
admits the solution of Eqn (95) with the minimum entropy
and this solution is based on the feasibility of second
measure-ments without disturbing the state of a particle,
whereas in the microworld any measurement disturbs this
state.

We shall call the solution of Eqn (95) with the minimum
entropy a pure classical ensemble: repeated measurements
carried out on such an ensemble always give the same result.
It is this fact that corresponds to § = 0. However, in
addition to this pure state, Eqn (95) also predicts states with
S #0. Weshall call them mixed states. Any mixed state can be
regarded as a composite of pure states:

fx, fit) = JC(XO»VOJ).fbdXOVO , (96)
where c(xo, vo, t) is a function of the variables xo and vy,
whose form is identical with f (x, v, t).

However, a quantum particle can also be in a mixed state:
this is simply a randomly selected member of a statistical
ensemble with a certain distribution of probabilities between
individual states which can be called pure. A particle in a
mixed state interacts with the external world as if only some
of its information potential is participating in this
interaction. In the limit of maximum entropy and minimum
information about a quantum particle we can once again
apply a thermo-dynamic description in terms of temperature
and entropy.

Quantum mechanics states that even in a pure quantum
state a particle interacting with a macroinstrument behaves
as a random object which requires a statistical description.
We shall try to show why the logic of quantum mechanics
naturally leads to the wave equation. We shall assume that we
have an instrument which can measure the position of a
particle. After each measurement the state of the particle is
destroyed, i.c. it is converted either into a state which cannot
be pure or to a different pure state but different from the
initial one. The second measurement of the coordinate of the
pure state cannot give the result which would be related
directly to the first measurement of position. Therefore, the
most natural assumption is that the position can be measured
by establishing some statistical relationship. Let us assume
that p,(x) is the probability density for obtaining the results
of the measurements of the position of a particle in the
interval (x,x + dx).

In addition to the coordinate y a particle has a second
dynamic characteristic, which is its momentum p. The
momentum p cannot be measured with an instrument but is
used in the determination of its position: if repeated
measurements that do not destroy the state are forbidden,
the velocity of the particle cannot be found by measuring its
coordinates. Consequently, the momentum has to be
measured with a different instrument, for example on the
basis of the recoil momentum after reflection from a perfectly
reflecting barrier in the instrument, which makes it possible
then to measure the momentum acquired by this barrier. Let
us assume that p,(p) is the probability of finding the particle
momentum in the interval (p,p + dp).

We can therefore carry out two incompatible types of
measurements: either we determine the position of a particle
or itsmomentum. These measurements may be carried out on
the same state of the particle, but by completely different
instruments. In each case we speak ofa complete set of mea-
sured quantities and, consequently, a complete
measurement.

Let the state of the particle evolve with time. Then, the
probabilities found by the instruments are functions of time:
Px = px(x,1),pp = pp(p, t). Weshallnow try to see what we
can deduce about these probabilities by clear and logical
physical reasoning. We shall simplify such reasoning by
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assuming that our particle moves freely, i.e. that U = 0. The
energy isthen ¢ = p?/2m and, therefore, determination ofthe
momentum distribution function gives automatically the
energy distribution function.

Let us next assume that a state is created with a precisely
specified momentum p = po and a precisely specified energy
& = p2/2m. From the point of view of mechanics such a
state is absolutely stationary (steady) in time and, therefore,
the probability p, should no way depend on time. However,
this automatically means that p, should be independent of x
because uniform motion along x should again yield a
stationary state.

[t therefore follows that a stationary state corresponds to
the probabilities px = const and p, = 8(p—po). We shall
now consider a slightly nonstationary (unsteady) state when
D« is a slowly varying function of the coordinate x and of the
time ¢, and p,(p) is a strongly localised function near the
valuep = po.

[fthe width of the localisation region of the particle along
x is very large, then the instrument used to measure the
position of the particle need not be known very precisely: a
slow change in p, along x means that the scale of Ax in the
measurement of the particle can be large. However, we then
have an almost classical particle and it is natural to assume
that p.(x,t) travels at the velocity of the particle, which is
close to po/m: py= py(x—potm—'). We thus obtain an
analogue of Eqn (95) except that the scale of localisation
along x is fairly large and the probabilities p, and p, apply to
the readings of different instruments, so that they cannot be
combined into one product of Eqn (95).

By analogy with Eqn (95) we shall assume that there is a
function W (x, p) such that, when integrated with respect to p
or x, yields the following expressions for p,(x) and p,(p),
respectively:

pi) = [Wen oo o) = Wik e o9)

The function W (x, p) is called the Wigner function. In the
classical case W(x, p) should be identical to the distribution
function of x and p, but in the quantum case this is not true
because measurements of the values of x and p are carried out
by different instruments. Consequently, W (x, p) need not be
a positive or even real function. Moreover, the Wigner
function may not be expandable into the product of the
function of just x and another function of just p. Finally, in
the case ofa smooth distribution of p, (x) with respect to x the
function W(x,p) may be regarded as close to
W(x—ptm~', p) with the dependence on the second
argument localised strongly near p = po. So far none of this
is in conflict with the classical distribution of the
probabilities. The transition to the quantum description
requires the appearance of a quantity with the dimensions
of length which would indicate at what length scale the new
physics applies. It has been found, however, that there is no
such universal quantity with the dimensions of length.
Instead there is a universal quantity 7, which is the Planck
constant with the dimensions of action.

We can try to find the minimum length with the aid of 7
and p. For example, we can relate this length to the quantity
ni/p and, consequently, relate the momentum to the reciprocal
of length. It would be more natural from the mathematical
point of view to assume that the momentum is proportional
to the derivative 7i0/0x. However, the average value of the
derivative 8/0x vanishes for any distribution p,(x). There-

fore, this derivative should not act on the probability but on
some other quantity, for example, a new quantity such as the
wave phase in a wave packet. By analogy with classical fields
it is necessary to introduce a wave function . More exactly,
if Y, (x) = exp(ikx)then p is defined as follows:
. Oy,

pU = —ifi k= k.
Therefore, for a plane wave the momentum is p = Fik, where
k isthe wave number and the Planck constant 7 indicates that
for oneand the same particle the momentum p corresponding
to a given value of the wave number £ cannot be as small as
we please, but is limited from below by the quantum of
action.

The function ¥ should be linked somehow to the prob-
abilities W(x, p), px(x), and p,(p). We shall assume that ¢
depends also on time, for example, in accordance with the law

Vi (x,t) = exp(—iot + ikx) .

The frequency @ should depend first of all on the wave
number, i.e. ® = @i = (k). If this is true, the superposi-
tion of the function ¥, can be used to plot wave packets
propagating at a group velocity. These packets with a set of
wave numbers near a specific valuek = ko = po/hi correspond
to the probability px & px(x —potm —!) for a very wide distri-
bution of the probability density p, along the x axis. Since in
the case of a wave packet we have pym = v, = 0w, /0k and
since pg = hk, we find directly the dispersion law:
W, = hk2/2m. Analogy with the construction of the classical
wave packets leads in a natural manner to the relationship

pel,t) = Y (e oW (x,r) = Wil 98)

Next, we can close the relationships in Eqn (97) on the
assumption that the Wigner function is

Wi p) = o [t e [2 ) ax

In other words, W(x, p) corresponds to the Fourier trans-
formation of the density matrix ¥*(x)y(x ') along one of the
coordinates and the probability p,(p) is equal to the modulus
of the square of the amplitude in the Fourier expansion (x)
in terms of harmonics of the type exp(ikx ), where x = p/h.
The logic of the information interaction of a microparticle
with a macroinstrument, considered on the assumption that
the state of the particle is destroyed by measurement and that
there is a quantum of % action, thus unavoidably leads to
wave mechanics, and then to the Schrodinger equation and
the probabilistic interpretation of ¥.

99

22. Perception

Measurements in quantum mechanics represent an entirely
irreversible information process and this process can be
described if we introduce some auxiliary reasoning and
constructs. We recall once again that in the information
processes it is not the energy aspect which is important
(although it is essential), but the meaning of the transmitted
and received signals. The dynamics is the exchange of
momentum and energy, and the informatics is the exchange
of symbols between partners participating in the information
interaction process.

We shall consider here the information aspect of the
process of measurement which can be called the detection
or perception of signals processed first by an analyser. A
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Figure 1. Perception occurs as a result of a transition from the state a to the state b. In response to an event u; in an observed object U an analyser A
detects an event a; due to the initial storing of information in a feeder system F.

measured object U (unity) interacts directly with an analyser
A, which is in one of the states a;. For the sake of simplicity,
we shall assume that these states are equivalent and related to
the object of measurement in such a way that all a; are
equiprobable. Let us assume that the total number of a; states
is N. Then the probability of any one of these statesis I/N. A
measurement is regarded as performed if a state a; isrecorded
by a detector acting as an information ‘perceptor’. The
information can then be recognised. In this section we shall
deal specifically with recognition itself.

We shall assume that our detector consists of two parts:
an information perceptor P and a feeder F which feeds
informa-tion to the system P. Let us assume that P and F
each have N components. Let us also assume that before
receiving information the system P is ‘clean’, i.e. it is free of
any initial information.

A system free of information can be represented in two
variants: it is either simply a set of N clean cells or these cells
have states which vary rapidly and at random, for example
from zero to unity and back again. In the former case we are
dealing simply with a memory M, which we shall also
consider later. In the latter case we have what is apparently
a thermo-stat with pure thermal motion or its chaotic
analogue. Therefore, we shall denote it by the letter C
(capacity). In the case of M we have a system with zero
information and zero entropy, whereas in its initial state the
information in C is zero and the entropy has its maximum
value S = InN. In this section we shall consider purely
physical processes by which information can be exchanged
with the external world and therefore in our discussion it will
be more convenient to consider an initially stochastic system
with zero information and maximum entropy, i.e. a system of
the type C.

We shall now discuss the system F which can serve as a
source which can feed information to the perceptor P in the
state C. We shall also assume that F consists of N cells, but
only one cell is filled or excited. The entropy of F is zero and
its information contentis/ = InN.

We shall now consider the model of perception in the
purely classical case when the occurrence of a random value
of the measured quantity is not related to the measurement
process. Let usassumethat the system U has N states u; which
can be realised with the same probability 1/N. We shall
assume that between the states of the measured objects u;
and the states of the analyser a; there is a one-to-one
correspondence, so that the occurrence of u; automatically
results in the event a;.

Therefore, in the classical case we seem to have just one
event (u;, a;). For example, a change in the direction of wind
u; alters the direction of a weathercock a;, and if these
directions are observed every hour, a chain of random events

(u;, a;) is recorded. However, these events have not yet been
recognised and ‘understood’. Recognition requires an
irreversible recording a; somewhere in the instrument. This
can be done as follows (Fig. 1).

After an event u; occurs in the system U, the analyser
consecutively scans the cells of U and when it detects u;, it
responds to u; by an event a; at the expense of the information
stored in the feeder system F. This system is constructed in
almost the same way as the analyser A, but it is in the state of
maximum order, when only one of the cells is filled and the
other cells are empty. The initial information about the event
u;, for example, that one of the faces of a cube comes up, is
In N, where N is the number of cells in U. The analyser A
responds by the appearance of a signal in the cell a;
corresponding to u;. The information in the system A then
increases abruptly from zero to In N and the entropy falls
from the initial value In N to zero. In accordance with the
second law of thermodynamics such a fall of the entropy is
possible only because of a change to chaotic behaviour in
the feeder system F, the entropy of which rises from zero to
InN.

It should be pointed out that the total entropy is
conserved in the interaction of the systems A and F. This
means that the process of information transfer from F to A is
fully reversible: from the state of the systems A and F in
Fig. 1b can return to the state of A and F in Fig. la without
violation of the second law of thermodynamics. Therefore at
this stage the appearance of the signal a; in the analyser does
not represent the irreversible storage of information.

However, we must bear in mind that in practice such an
ideal instrument is difficult to construct because of natural
external disturbances. Therefore, a more realistic device for
signal detection may look as shown in Fig. 2.

If because of irreversible processes some of the
information is lost by the feeder F, it is necessary to ‘fatten
up’ the feeder itself and expand it, i.e. it is necessary to
increase the information stored in it. This can be done by
increasing the number N, of its cells so that N, > N and
I, > 1. Now in the course of storing the information which is
in A some of the stored information /, may be lost, i.e. it may
be destroyed by dissipative interactions with the surrounding
medium. The information W = I, —I = In(N,/N) is then
given up to the external medium in the form oflosses (waste).
We can say that the interaction with a medium in equilibrium
increases the entropy of the A + F system by W. We shall
introduce a quantity #; = I/I, < 1 which can be naturally
called the information efficiency or effectiveness. Clearly, all
the real processes have the efficiency ;< 1.

Ifn;< 1, theprocess of recording the signal becomes irre-
versible: it isno longer possible to return simply from Fig. 2b
to Fig. 2a. We can therefore say that the signal a; is now
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Figure 2. Record of'an event u; in an analyser A when the information I, in the feeder F is not fully utilised: the rest of the information W = I, —1 is

lost by dissipation in the environment.

‘perceived’ or ‘stored’. We can easily see that apart from the
analyser A, shown in Fig. 2, we can imagine one or more sim-
ilar additional analysers. All of them ‘see’ the same signal u;.
Let us assume that U is a cube with numbered faces and the
event u; is a random coming up of one of its faces. Analysers
of the A type are the players checking which face of the cube
appears on the top. They record the events a; by seeing them
and storing them in their memory.

The players may want to throw the cube again. However,
they should prepare for the recognition of the results of the
new throw. This is done by ‘cleaning’ the analyser A, i.e. by
removing the recorded signal (Fig. 2b)and transferringitto a
different memory system by exactly the same process as that
by which the signal a; has been obtained from the signal u;.
Moreover, it is necessary to ‘fatten up’ the feeder F with
information. This can be done by exactly the same process
which F has used to ‘interrogate’ A, namely we must have a
feeder F’ with the information I, > I, and then with the
efficiency n, = I,/l,« < 1 we can switch F to the state in
Fig. 2a. In other words, in order to throw the cube and
recognise the results of such events it is necessary to ‘feed’
information from somewhere outside.

The information process in Fig. 2 includes two
irreversible processes: the actual event u; and the recording
of the event a; with the aid of F and with the loss of
information /, — I, i.e. with an increase in the entropy of the
combined system A + F. The event u; arrives from outside
and can be either random or may represent a more regular
sequence. The process in the system A + F is a typical
irreversible process accompanied by an increase in the
entropy and the loss of the information W. The random or
nonrandom nature of a chain of consecutive recognition
events is determined entirely by the input, i.e. by the presence
or absence of regularity in the sequence of events u;.

We shall now assume that the object U is not of classical
but of quantum nature. Then the cells in Fig. 2a correspond
to eigenfunctions of the complete basis and the object U itself
is a superposition of these eigenfunctions. The analyser A
must also be a quantum object, so that its cells corresponding
to arbitrary readings of the instrument are also eigenvectors
correlated with U. The actual measurement occurs when the
irreversible system F associated with the external world
comes into play. It is this system that performs the
irreversible ‘measurement’ process corresponding to the
transition from Fig.2a to Fig. 2b. This increases the
entropy of the system F and the systems U and A collapse
simultaneously into u; and a;. The quantum systems U and A
come into contact with the external classical world via the
system F. This contact destroys the coherence of the initial

states of the systems U and A and leads to an immediate
collapse of these systems into u; and a;. When measurements
of the same type are repeated, the collapse occurs at random
in one and then in another cell, so that the pattern averaged
over many measurements assumes the nature of'a mixed state
described statistically by, for example, the density matrix.

The system F is thus the boundary between the quantum
and classical worlds. In the time interval between the
measurements the quantum description can be expressed in
terms of the evolution of the wave function  of a pure state
or of the density matrix p of a mixed state.

These discussions are fairly general and do not yet give a
direct recipe for the description of the real link and interac-
tion between the quantum microworld and the classical
macroworld. Before we can provide this description we
have to become acquainted with one more very important
phe-nomenon, which is the presence of fluctuations.
However, a further general comment should be made first.

Complex physical objects can be described with different
degrees of detail and this is not only because an exact
description requires much effort or a large volume of com-
puter calculations. After all, all our experience shows that
when interacting with the external world a physical object
never reveals all its potential inner complexity.
Consequently, an incomplete or even a phenomenological
description of physical phenomena or of physical objects
sometimes better describes the crux of the matter and
provides an under-standing of what occurs. This applies in
particular to collec-tive phenomena when an enormous
number of particles is involved in general collective motion.
For example, gas dynamics describes better and more
satisfactorily the wind flows than does simply molecular
dynamics. Exactly in the same way the processes associated
with the thermal motion of atoms are described better and
can be understood more easily if use is made of
thermodynamics and statistical physics. We can state this
differently: there are physical phenomena for which an
incomplete description with neglect of excess detail is more
satisfactory and even reflects better the essence of the
processes under consideration.

In particular, a statistical description involving the
introduction of probabilities and averaging over the velocity
distributions is a better description of objects composed of a
very large number of atoms. If the number of atoms is
reduced, then against the background of a probabilistic
description, which does not lose its meaning averaged over
many processes of the same type, individual processes begin
to appear and play an increasingly important role. These can
be called fluctuations and we can quite arbitrarily select the
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degree of detail in their description. For example, the motion
of a Brownian particle can be described as diffusion.
Frequent repetition of the measurements makes it possible
to charac-terise this motion as a random Markov chain. In
the limit, if the particle is followed over very short time
intervals, we can see a very complex path of such a particle. In
any case, when applied to classical physics, there is no doubt
that we can provide the description as accurately as required.
However, this is not true of a quantum particle: the
observation is accompanied by the particle interaction with
the macroworld and this interaction cannot be as small as we
please. It is desirable to become acquainted first with
fluctuations in order to find ways of achieving a better
understanding of the effects in question.

23. Fluctuations and irreversibility

The thermodynamic relationships used above in Sections 3 —
6 apply solely to the average values. Under real physical
conditions such averaging may occur, in a sense, spon-
taneously because of the slowness of the processes that take
place. The formal averaging should therefore also be carried
out only with respect to time. It has been shown in statistical
physics that in the case of a large number of particles the
averaging in question can be carried out not only with respect
to time but also over the phase space, which finally leads to a
canonical distribution. However, the discrete—i.e.
atomic—structure of matter does not appear completely
and it is manifested by fluctuations, which are small
deviations from statistical equilibrium. In this section we
shall consider the simplest examples of fluctuations and
discuss their relationship to irreversibility.

Once again let us consider an ideal gas. Let N noninter-
acting classical particles be located in a volume V. Then the
average density of the particles is given by n = N/V. The
thermal motion ofthe particles has the effect that the number
of particlesin a certain small volume Vyisnot exactly equal to
No = NV, but fluctuates near this value. These fluctuations
can be found quite simply. Let us assume that a sum over all
the particles

ny(r) =) 8(r—r)

represents the real microscopic density of the particles at the
pointr. Here, the & function of the type 8(r—r;) is localised at
the point of location of the ith particle. We can now assume
that n, = n + On, where n is the average density and

dn(r) =n, —n :ZS(r—ri) —n.

The function dn(r) represents a set of spikes against the
background of a uniform negative value (—n). The average
value is (dn) = 0. The magnitude of fluctuations is usually
found by introducing a correlation function (3n(r) dn(r’)). It
follows formally from Eqn (101) that

(8n(r)n(r')) = 8 —r') (> 8(" —r))

(100)

(101

+Y @ —r)3(r—r))—n’ .  (102)

i
Here, the first term is simplified to the components with the
same indices i and j and it is assumed that

d(r—r)d(r' —r) =

O(r—r')d(r'—r;), and in the second

term only the com-ponents with i #j are retained. We can
easily see that the resultant relationship can be represented in
the form

(Bn(r) 5n(r")) = n [5(r ) - lv] .

This relationship can be used to find readily the
fluctuation of the number of particles in a small volume V.
This can be done by integrating twice with respect to r and r’
in the volume Vy. The result is the deviation 6N, from the
average value No = Von

(8N3) = N, (1 - %) .

If Vo<V, we obtain the familiar relationship
ON, = N(:/Q and for Vy = V we find the natural result that
the total number of particles in the whole volume V does not
fluctuate. The relative fluctuations of the density become
particularly large when only one particle is in the volume V:
N= l,n= 1/V.

We can easily show that Eqn (104) retains its form also
for one particle so that the fluctuations of the particlenumber
in the volume Vg are described by

_ Vo(V=Vy)
=

(103)

(104)

(8N5)° (105)
This relationship is absolutely symmetric relative to the
internal Vo and external (V—Vj) volumes. In the limits
Vo— 0 and Vo— V the fluctuations disappear. For a small
value of V¢, compared with V, we have (SN(%) = V,y/V. This
relationship has an obvious physical meaning: V¢/V is simply
the fraction of time when within the volume V| there is only
one particle, so that (8Ng) is unity multiplied by the
probability that the particle is found inside the volume V.
We can see that for one particle the square of the fluctuation
in the particle number (8Ng) is equal to the average number
of particles No = V/V in the volume V. In other words, the
fluctuations are very large and, therefore, they may signifi-
cantly influence the logic of some of our earlier conclusions.

We shall now return to the process of work done at the
expense ofthe thermal energy by a single particle, with the aid
of Maxwell’sdaemon, i.e. to the measurement of the position
or velocity of a particle considered in Section 4. For
simplicity, we shall begin with the one-dimensional case on
the assumption that the particle is in a thermostat with two
ends separated by a distance L from one another along the x
axis. The particle collides with the ends and on average
maintains the Maxwellian velocity distribution with a
temperature 7. If the effective mass M of an acoustic wave
created by the impact of the particle on the end considerably
exceeds the mass m of the particle under investigation, then
each such collision with the end changes the absolute velocity
of the particle only by a small fraction ~m/M of its value.
The smallness of m/M is due to the fact that phonons in a
substance consisting of heavy atoms are also ‘heavy’ and
slow. If m/M <1, an atom experiences many collisions
before there is any deviation from the Maxwellian
distribution. The process of relaxation is then similar to a
random walk described by the Langevin equation. After
many collisions the Maxwellian distribution will definitely
berestored and the process can easily be described in terms of
the Brownian motion of the momenta.

It would be more convenient to consider a simpler case
when m = M. It is then necessary to assume approximately
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that only one collision is sufficient to reach the Maxwellian
distribution of the particles flying away from the wall
irrespective of the velocity that these particles have arriving
at the wall. For example, let us assume that one particle with
a Maxwellian velocity distribution fills the whole thermostat
of length L. We shall now begin our thought experiment on
the work done. Let a detector record the collisions of particles
by the end wall and then after a time shorter than b/v, a
barrier is inserted at a distance b from the end and imprisons
the particle in a small section. A slow shift ofthe barrier in the
direction of the other end makes it possible to perform
negative work W on this barrier at the expense of the thermal
energy of the particle, which is ;T in the thermal equilibrium
case.

It would seem that this experiment is a threat to the
second law of thermodynamics. In fact, in recording the
impact of a particle at the wall we obtain only one bit of
information, because against the background of many time
intervals without any collisions and without any new
information, only one interval provides the signal:
‘collision’. This is equal to one bit of information.
Consequently, ‘assimilation’ of this information and the
subsequent insertion of a barrier requires an increase in the
external entropy S by an amount In 2. It seems that the gain
in the work can be much greater: after all, the initial volume b
can be expanded to L, which may be much larger than b.
Consequently, the entropy increases by an amount In(L/
b) > 1. However, we must not be too hasty with our
conclusions. It is found that the validity of the discussion
requires allowance for the presence of fluctuations.

We shall begin with a certain general comment. The
famous fluctuation —dissipation theorem has been proved in
statistical physics: its meaning is that the mechanism of any
dissipation is simultaneously the mechanism of creation of
fluctuations. This isthe reason why fluctuations never die out
but are maintained at the level dictated by the discrete, i.e.
atomic, nature of matter.

In our case the dissipation, i.e. the conversion of the
probability of the distribution of the particle velocities to the
Maxwellian form, is created by collisions with the warm ends.
It is the collisions with the ends that maintain the
fluctuations. We shall now consider this process in
somewhat greater detail.

We shall begin by assuming that there is a cloud of many,
for example N > 1, particles. Let f(x, v, #) be the distribution
function along the coordinate x and the velocity v of these
particles. If this cloud is incident on a perfectly reflecting
wall, it is reflected without distortion and consequently no
irrevers-ible processes occur. However, if this wall is ‘warm’,
then the reflection of each atom becomes inelastic and after
many repeated reflections the distribution function
approaches the Maxwellian form. It would seem that
dissipation can ‘disperse’ and smear out all the
perturbations, including those associated with the atomic
structure of the cloud. However, this is not true: the
microscopic distribution function f, always has the form

Ju= 25()5 —x;)8(v—v;),

where the coordinates of the particles x; and v; obey the
microscopic equations of dynamics and therefore provide the
full description of the motion of the particles. The
fluctuations of the type described by Eqn (102) should
therefore be conserved. Creation of fluctuations can be
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regarded as a random process in which one particle is
apparently taken out from the incident flux which has a
smooth distribution function. A particle, with certain definite
values of x;and v;obeying on average the statistics of inelastic
scattering, then appears in the reverse flux. Therefore, an
inelastically reflecting wall is simultaneously responsible for
the mechanisms of the smoothing out of fluctuations and
creation of new fluctuations by a random ‘injection’ of
particles accompanied by simultaneous removal of particles
from their average distribution function.

If the number of particles is large, the fluctuations
themselves are small and the mechanism of their formation
has a weak perturbing effect on the average distribution.

We shall now consider what happenswhen N = 1. Let us
assume that a cloud with the probability density p(x, v, 1) is
moving towards a wall. Somewhere inside this cloud the one
and only particle is ‘hidden’. A layer Ax = vAt of this cloud
reaches the wall in a time Az. The thickness of this layer is
proportional to the running value of the velocity v. Since we
are interested only in the probability p(x,v, ), then in our
model we should take the fraction fp(x,v, t)vAtr dv, which
applies to the probability of finding a particle in this layer,
and convert it to the Maxwellian distribution with reflection
from the wall. If the Maxwellian distribution applies to the
cloud incident on the wall, then the cloud reflected by the wall
has the same Maxwellian distribution.

A completely different description language should be
used if we wish to follow in detail the fluctuations. In the
whole cloud with p(x,v,?) there is only one particle at an
unknown location. We can easily see that an inelastic
collision of the particle with a wall can be regarded as a
random event, which instantaneously destroys the a priori
probability p(x, v, t) and transforms it into the & function of
the type 8(v—v0)d(x —vot), where vg is the velocity after the
collision at the moment + = 0 and at the point x = 0. A
collapse takes place, i.e. the extended probability cloud
p(x,v,t) collapses into a narrow localised & function.
Repeated collisions of the particle with the end wall repeat
the process: the a priori probability for the incident cloud
disappears at some moment and the particle with the
associated d-function probability density flies away from
the wall.

If the cloud contains, say, N particles with the same
distribution p(x,v,t), then Np (x,v,t) = f(x,v,t) and each
collision ‘picks out’ just one particle so that the distribution
function is transformed ‘instantaneously’ from Np (x,v,t)
into (N—1p(x,v,1) + 8(v—v)d(x —vot). If N > 1, the
random process of the appearance of fluctuations does not
disturb very strongly the initial Maxwellian distribution. In
this case the fluctuations occur in accordance with the N'/2
law and at high values of N the fluctuations are relatively
weak.

In the case of a single particle however, the fluctuations
are very large: they transform the motion of the particle into
classical flight from one end to the other with a random
change in the velocity after each collision. Nevertheless, it
seems obvious that if the motion of a piston-shaped barrier is
very slow, so that the collisions can be regarded as very
frequent, the time-averaged distribution of the particle
velocities can be regarded as Maxwellian. However, this is
not quite true because there are fluctuations.

Let us assume that a barrier, located initially at a distance
b from the left-hand end and separating the particle from the
rest of the volume of size L > b, begins to move slowly at a
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constant velocity ev, where ¢ € 1 is a very small number and
v = (T/m)"? is the average thermal velocity. In the smaller
section the particle will mainly exhibit the Maxwellian
behaviour so that the work will be done on the barrier and
the power corresponding to this work is
. T. T
P=-W=—x =¢y—,
b b

since the average pressure of the particle on the wall is 7/b.
However, there is a low probability that after reflection by
the warm wall the velocity of the particle will be less than gvy.
Such a particle can never catch up with the moving barrier
and, consequently, with a probability of the order of ¢ the
pressure on the barrier can unexpectedly fall to zero and
never recover. This can occur after 1/¢ collisions with the wall
(on average). Because the average time between the collisions
isofthe order of b/, it follows that before the disappearance
of the pressure the barrier becomes displaced through a
distance Ax = ev(b/v)/e & b. In other words, when the
work is done we can only double the section containing the
particle and then the pressure on the barrier (piston)
disappears abruptly and no further work can be done. The
entropy of the particle can then be increased by just one bit,
i.e. exactly equal to the amount by which the entropy of the
environment increases in the initial detection of the collision
of the particle with the wall. Further work can be done by
stopping the barrier and waiting until the particle catches up
with the barrier and then recovers its Maxwellian
distribution. Having detected that at least one ‘full-weight’
collision with the barrier, we again expand the section with
the particle. However, such a measurement requires an
expense of information, i.e. it requires an increase in the
entropy of the environment by one bit. The subsequent
expansion of the volume can again increase the entropy of
the particle by just one bit, doubling the volume until the
pressure on the barrier disappears again. Once again,
Maxwell’s daemon has to take account of the second law of
thermodynamics.

We note that if instead of one particle we have N particles
which do not interact with one another, the disappearance of
the pressure due to the motion of the barrier applies to each
particle separately so that on average the pressure disappears
and the volume is doubled even if N > 1.

At first sight it seems that our example is too artificial and
that we can find the conditions under which one detection of
a collision with the end can ‘fence off” the particle at a
distance b from the end. Then by expanding the volume to
the total length L it should be possible to increase the entropy
of the particle by In(L/b) and do the relevant work at the
expense of the thermal energy. However, this is not true. Let
us consider, by way of example, a more realistic case when the
particle is in a cylindrical thermostat of radius a. The
Maxwellian distribution is then established by collisions
with the side walls, so that the appearance of slow
longitudinal motion of the particle at a velocity less than
that of the barrier (piston) plays no major role: the particle
can rapidly recover its longitudinal velocity because the side
walls convert the distribution to the Maxwellian form.

Let us assume that v, = v/a is the average frequency of
collisions of the particle with the side walls. It is convenient to
consider the limit in the case when b > q; it is then that v,
governs the rate of recovery of the Maxwellian distribution.
It would seem that at a low expansion velocity X = &w, where
¢ €1, there should be no problem in recovering the

Maxwellian distribution and the average pressure on the
wall should always be T/b. However, this is not true: the
diffusion effects begin to play a role. At each collision with a
side wall there is a random change in the transverse and
longitudinal components of the velocity. Therefore, the
motion of a particle in the longitudinal direction becomes a
random walk with the diffusion coefficient D = v*a2 = na.
A part of the vessel of length b is filled by such a particle in the
time r = b*/ D, so that the velocity of the barrier should not
exceed x= b/t= D/b= va/b to guarantee that the
distribution of the probability over x does not become
‘detached’ from the moving barrier. However, this is not
sufficient. Each collision with the side wall results in
localisation of the distribution function of the particle near
the point of collision and then this localised cloud wanders
for a long time along the x axis. The time ¢ & b*/D is the time
of wandering inside the segment of width b from one end to
the other, so that the average collision frequency in the
presence of a barrier is of the order of

1 D
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For a/b <€ 1 this quantity is much less than the average
collision frequency v/b of a freely moving particle. It follows
that in a narrow tube the work done by the particle on a
piston is considerably less and the high rate of conversion to
the Maxwellian distribution does not help at all, but even
interferes with the work.

It follows that fluctuations play a major role and
particularly when one particle is involved. It should be
stressed that fluctuations can be considered as an intrinsic
part of an irreversible process: dissipation disperses the
consequences of fluctuating behaviour, but it also creates
new fluctuations. In particular, the process of conversion to
the Maxwellian distribution of a particle at a warm wall can
be regarded as a randomly repeated process of annihilation
of the probability density flowing to the wall and of creation
of a state localised narrowly along x and v: this is a typical
collapse of the distribution of the probabilities for a classical
particle.

We shall now consider a quantum particle which is
subject to the uncertainty limits Ax Ap> i, where Ax is the
uncertainty along the coordinate and Ap is the momentum
uncertainty. Let us assume that this particle is in a mixed
state, for example, that it represents a set of wave packets
with the probability |C; 1? of finding it in the ith packet. Such a
particle differs little from the classical one if each of the wave
packets does not spread out during the observation time. The
collision of the particle with a warm wall has the effect that
only one of the wave packets exists in reality after an inelastic
reflection: the other packets do not contain the particle and
they become automatically annihilated. And if in this process
the important aspect for the external environment is the state
in which the particle flies away, we can say that a collapse of
the mixed state takes place.

The situation is somewhat more complex in the collapse
of a pure state. We shall assume that a very wide almost
monochromatic packet with Ax Ap < 7i is incident on a wall.
The quantity |y|> for such a packet plays the role of the
probability distribution and, therefore, it may in principle
collapse in the same way as the density of the probability
distribution for a classical particle. If |{|? is the classical
probability distribution, then an inelastic collision accompa-
nied by storage and information about the collision in the
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body itself can randomly capture a particle from the cloud
[|? and completely annihilate the incident part, emitting a
strongly localised reflected part of the probability density.
Something similar occurs in the case of a quantum particle. [f
the incident wave packet is split into wide strips of thickness
Ax, then for a sufficiently large value of Ax the collapse
occurs in only one of the layers. The very fact of localisation
with respect to x automatically broadens the distribution of
the momenta by an amount 7/Ax. This broadening cannot be
greater than the measure of an inelastic collision. If, for
example, the velocity ofa particle is altered by a collision by a
value of the order of v, then the minimum size of an
inelastically reflected packet can be i/mv, = bo. Since our
particle is reflected inelastically from many atoms of the wall,
it follows that for Av & v, the quantity bo corresponds to the
coherence length of the packet. It is natural to assume that
the particle is captured by just one of the coherent packets. If
for any reason the probabilistic localisation of a particle is
considerably greater than the coherence width, it means that
we again have a mixed state with a certain distribution of the
probabilities |C; | of finding a particle in the ith pure state.

We shall return again and again to the phenomenon of
collapse of a wave function. Here, we shall stress once more
the irreversible nature of the fluctuation effects. We shall
consider once more just one particle in a long tube, which isa
thermostat of length L. If the particle is localised at some
point in the middle part of the tube, it begins to diffuse along
the x axis and this is characterised by a diffusion coefficient
D. This is a typical irreversible process accompanied by an
increase in the entropy in accordance with law S ocIn(Dr). On
the other hand, each collision with a side wall can be regarded
as a random event, which localises a particle in a distance of
the order of a. Each such collision is also an irreversible
process, but it is accompanied not by an increase in the
entropy but by its reduction. What is the reason for this?

This is a very fundamental problem and should be
discussed in greater detail.

Let a particle be in a tube of length L separated into
N = L/b identical cells each of length b (Fig. 3a). In the
initial state the position of the particle is unknown and its
entropy is S = In(L/b). Let the particle now be in the shaded
cell in Fig. 3b. The process of appearance of the particle in
the cell can be regarded as, for example, a pure fluctuation
collapse: the particle ‘informs’ of its position by one collision
with a side wall, and all the other probabilities vanish. A
random event occurs and in this event the entropy of the
particle falls to zero, but this must be accompanied by
appearance of information in the wall of the shaded cell in
Fig. 3b. This information may be subjected to the following
subsequent processing: the receiving system may ‘store’ this
information as one of the N = L/b possibilities, so that the
corresponding value/is/ = In(L/b). In this case the quantity
I would represent the information imparted to the external
observation system about the position of the particle and we
would havel + S = const = In(L/b).

[fthe collision of a particle with a wall triggers an external
information system, then the information obtained can be
used to produce the work due to the thermal motion. [fthis is
not done, then the received information is simply forgotten in
the course of the irreversible increase in the entropy. The
work done can be maximised if maximum use is made of the
opportunities for the recognition of information and
subsequent increase in the entropy of the particle during
expansion of the free volume.
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Figure 3. Fluctuations localise a particle from an initially homogeneous
state (a) in the only cell (b).

In the other limiting case we may do nothing with the
obtained information and not even ‘recognise’ it, so that we
do not know where the particle is really located. Then an
equilibrium path of the particle along the cube in Fig. 3a
represents a simple thermal random walk with a constant (on
average) entropy S = In(L/b).

It therefore follows that the information about a particle
can be dealt with by very different methods. Let us assume
that, for example, the wall of each cell in Fig. 3a contains a
sensor which records the impact of a particle with the wall. If
the transverse size of the tube is greater than the cell length b,
repeated collisions in one cell will be rare, so that between the
collisions the particle can ‘jump’ from one cell to another.
Repeated measurements can give the average frequency of
collisions with the walls 7! and the mean-square displace-
ment (Ax)2 between collisions. These quantities can be used
to calculate the diffusion coefficient D = 1 (Ax)’c™" and then
one can use a statistical description of the Brownian motion
of a particle. This description of an individual particle is
effectively replaced by an ensemble of identical systems and
then the average evolution of this ensemble corresponds to
the probabilistic, i.e. incomplete, description of the particle
dynamics.

The corresponding diffusion process is irreversible and is
accompanied by a monotonic increase in the entropy if in the
initial state the entropy is not maximal. For example, if
initially an ensemble of identical systems corresponds to the
position of a particle in the shaded cell with zero entropy,
then during the subsequent time intervals the probability
‘cloud’ expands in accordance with the law (Ax)* = 2Dt
and the entropy increases logarithmically with time.
However, if just one individual particle is selected from this
ensemble, then the very first collision with a wall, recorded by
a particular cell, leads to the collapse of the a priori
probability p(x, v, t) in one cell and this is accompanied by
an abrupt fall of the entropy of the particle to zero.

It seems that this collapse is independent of the presence
or absence of sensors on the walls. In fact this is not correct:
the process of collapse is closely related to the system of
measurement. For example, all electrical signals from sensors
can be brought together at one input and then only the
occurrence of the collision is recorded, i.e. it seems that the
collapse is recorded without indication of the cell where it
occurs. Ifirreversible sensors such as minature photographic
plates are used, the occurrence of the collapse is recorded for
one of the cells, but as yet without an immediate recognition
by external recording instruments.

It is very clear from the last examples that one bit of
information is sufficient to record the actual collapse. The
collapse is an irreversible process or, more exactly, a random
event corresponding to a collision and the amount of the
corresponding new information / and the reduction in the
previous entropy S depend primarily on the ensemble which
models the average statistical characteristics of the particle
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motion. Consequently, the values S and / apply not so much
to the particle as to the combined system formed by the
particle and its immediate environment, including the
observation and perception of information about the
particle.

[t is convenient to separate these two physical events. The
first event is a random appearance of a particle in one of
the possible positions with corresponding ‘marking’ of the
cell number, which we will call the hint. The hint is the
appearance of a number on a thrown dice. The hint and
perception or storage of information represents what we shall
call ‘observation’ or ‘measurement’. The complete measure-
ment process can involve a major change, which is the
‘collapse’ of the a priori probability and, consequently, may
be accompanied by a large change in the entropy which
applies to the ensemble representing the collective aspect of
the dynamics of a given particle.

A measurement in classical mechanics can thus be
represented as a combination (linkage) of a hint, which is
the appearance of a given numerical value of the measured
quantity, and subsequent recording and storage of this value.
Overall, this is an irreversible process accompanied by an
increase in the entropy of the external world.

We shall consider one more aspect of the interaction of a
classical particle with a macroscopic object. We have
assumed so far that the walls of a vessel or a thermostat
have rigorously defined geometric dimensions and the
probabilistic descrip-tion is required only for a particle.
This isnot generally true: the walls themselves are in random
motion and, moreover, external instruments may be
insufficient for accurate and constant tracking of the
positions of macroscopic bodies. We shall assume that the
positions of the walls are determined with an error and that
there is a probability density which applies to the distribution
of the wall positions (Fig. 4).

The continuous curve in Fig. 4 is the main (on average)
boundary of a solid and the dashed lines represent its
uncertainty. A ‘cloud’ of the probability distribution p(x, v, f)
is incident on this wall. After inelastic reflection by this body
there may be one bit of information about the collision and
the particle flies away from the body. If far from the body this
particle is detected either by an instrument or as a result of a
spontaneous irreversible process in which the actual appear-
ance of a particle plays a definite role in the subsequent evo-
lution of the system, the reflected particle should be regarded

Figure 4. Conversion of'a ‘cloud’ of the probability distribution incident
on a wall into one reflected particle. The solid wall has an uncertainty
represented formally by dashed curves. The wavy line is the information
on collision ‘stored’ in the macroscopic body and the continuous arrow is
the information which escapes to the external world.

as present in a localised state: p = O(r—vot—ro)d(v—wo),
where ro and vy are the coordinates immediately after
collision atr = 0.

As we can see, under these conditions after the particle
bounces off from the boundary of the body the probability
distribution of the particle collapses and nothing as yet
occurs in relation to the uncertainty about the body itself:
the particle may bounce off from the continuous line or from
any of the dashed lines (Fig. 4). However, if not one but two
incident particles are bounced off from the same point on the
wall, the point of their intersection may be localised and
information may be transferred to the external world that
only the point on the continuous line is real. Two more
particles will be sufficient to determine the angle of direction
of the continu-ous line in the plane of the figure. Not only the
probabilities of the motion of the particles but also the
probabilities of the position of the solid collapse. We can
see that only one information link with the external world is
sufficient for the distribution function of the probabilities of
the position of the solid body to collapse into a state
corresponding to a quite definite position of the classical
object (naturally, accurate to within thermal fluctuations of
its boundary).

We shall now consider what happens when a quantum
particle is incident and then reflected by a macroscopic body
with a fixed boundary. If the incident ‘cloud’ |¢/|?> of the
density matrix of the particle is sufficiently extended, its
behaviour may differ little from that of a classical particle.
Irrespective of whether the incident state is pure or mixed,
only a strongly localised ‘cloud’is reflected from the boundary
of the body as a result of an inelastic interaction (with a
corresponding ‘measurement’ inside the body). The only
restraint is the uncertainty of the position and momentum,
corresponding to the Heisenberg relationship. However, ifthe
boundary of the macroscopic body itself is subject to an
uncertainty corresponding to an additionally extended wave
function of this body, the situation changes. The subsequent
reflections of particles one after another result in narrowing
of the localisation of the macroscopic body. And since the
spreading of the quantum packet of the macroscopic body is
very slow, the final result is that the packet acquires features
of a classical object. It is the interaction with the external
world that converts macroscopic bodies into classical objects
with localised wave functions. In general, when micro-
particles interact with other objects, we encounter two
extremes: the microworld of light particles and the macro-
world of very massive bodies, with some intermediate range
between them representing bodies with small but macroscopic
scales.

24. Measurement in quantum theory

We shall now consider in greater detail the problem of
measurement in quantum mechanics. To do this, it is
convenient to turn back to Fig. 1 which shows schematically
the process of perception of the information resulting from
an event u; in a physical system U. Therows A and F in Figs 1
and 2 demonstrate how this information may be perceived.
Only the first row U is important to us and it demonstrates
the actual event u;, Measurement in classical or quantum
systems begins with such an event.

We shall adopt the logic and notation of the book by
J Schwinger Quantum Kinematics and Dynamics (Reading,
MA: W A Benjamin, 1970) and assume that an event u;
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Figure 5. Sclective measurement of M (u;) corresponds, in quantum
theory, to a random event when a physical quantity U, which can assume
one of W values, is in the only cell #;. The dashed outline represents the
possibility of adding another physical quantity v; to the system.

corresponds to a measurement which results in the selection
of u; out of a set of other possible realisations of the physical
quantity U. We shall denote this event by the symbol M (i;). It
follows from Fig. 5 that the symbol M (;) simply means that
a quantum particle, which can be in any one of N possible
states, enters the cell u; in this event. In other words, M (u;)
corresponds to the collapse U — u;.

The process itself can be explained somewhat differently.
Let usassumethat a quantum particle with a wave function ¥
is incident on an instrument, i.e. on a macroscopic body
which has a complex internal structure. At the entry to this
instrument there is an analyser which specifically shows how
the information on the incident particle can be perceived. In
quantum mechanics this means the method of determination
of the eigenvectors y; into which the y function can be
expanded: ), cf,. The eigenfunctions y; are assumed to be
orthogonal and normalised, and each of them corresponds to
an eigenvalue u; of a physical quantity U. Let there be N such
functions, so that the corresponding number of cells (Fig. 5)
is N. The instrument for selective measurement in Fig. 5
retains only the function y; in each measurement event. All
the other functions are annihilated, so that the collapse
¥ —; takes place and this corresponds simply to the
circumstance that the particle being measured has ‘fallen’
into the state i. It should be stressed that in such selective
measurement followed by perception of the relevant
information the absence of the particle from one of the
remaining empty cells also implies nothing for the
subsequent ‘history’: only the information with the value of
the physical quantity U equal to u; is real and meaningful.

A single measurement event can be regarded as purely
random and it is obviously insufficient to establish the
structure of ¥ function. Only repeated measurements can
give the average values of the probabilities of realisation of
the values u; of the investigated physical quantity U.
Repeated measurements create a mixed ensemble which can
be described by a density matrix, but this is not essential. Our
attention will be concentrated on the measurement itself.

The symbol M (u;) thus corresponds to a selective
measurement event which retains (or ‘transmits’) a particle
with the value u; of U and rejects (i.e. annihilates) all the other
states.

The class of selective measurements can be extended in a
natural manner. Namely, we can assume that a screen D is
placed inside the instrument and it selects some part of the
Y function incident on the instrument (Fig. 6). Then the cells
outside the screen aperture will never be recorded. In
particular, if the screen obstructs all the cells apart from the
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Figure 6. Screen D can reduce the number of states that can be recorded
by an analyser A (the inaccessible region is shaded).

ith, it selects a subensemble with the value u; of the quantity
U. If all the cells are obstructed, the result is a measurement
which would be natural to denote by the symbol 0. On the
other hand, if the screen is opened completely and the actual
value of u; is not recorded, then such an extremely non-
selective measurement can be designated by the symbol 1.
It is then quite easy to introduce the operations of addi-
tion and multiplication of the measurement symbols. The
addition operation creates a measurement which is not so
selective and the result of measurements is a subensemble
corresponding to all the values of U occurring in the sum,
i.e. one of these values cannot be distinguished from the
others by a measurement of this kind. Measurement which
corresponds to the sum over all u;, i.e. which transmits
the whole ensemble without dividing it into subensembles,
should obviously be regarded as unity. The operation of
multiplication of the measurement symbols implies con-
secutive measurements (from right to left). It follows from
the physical meaning of such operations that the addition
is commutative and associative, and the multiplication is
associative.

The properties of elementary operations denoted by
selective measurement symbols can be written in the form

M ()M (u;) =M (w;),  M(@u)M () =0 for i#j,

ZM(“l‘) =1,

where the symbols 0 and 1 represent measurements which
either reject or transmit all the systems. The meaning of such
measurements implies that they have the following algebraic
properties:

1-1 =1,

(107)

0.0=0, 1-
1+0=1,

M) = M(@u)-1 =M(u),

0-M@u)=M(@u) 0=0M@u)+0=M() .

(108)

(109)

We have considered so far the one physical quantity U
whose action on the wave function y is regarded in quantum
mechanics as the operator

Uy = UZCH//,' = Zciuil//i :
Naturally, the number of physical quantities can be large.
Therefore, there can be many measuring instruments. Two
physical quantities UM and U are regarded as compatible
if measurement of one of them does not destroy the knowl-
edge obtained by an earlier measurement of the other. They
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are denoted by the symbols U and V in Fig. 5. The corre-
sponding selective measurements M (u; )) and M (u( )) carried
out in one sequence or another, create an ensemble of systems
in which the quantities UM and U® have simultaneously
quite definite values u; Y and u; %) We can therefore introduce a
symbol for a composite selectlve measurement:

M@, ) =M @M @) = M @@ ) - (110)

A complete set of compatible physical quantities
(') U(2) ceey U® is understood to be a set of physical
quantltles in which each pair is compatible and at the same
time there are no other physical quantities which are
compatible with each of U®. Then

ORS00

describes a complete measurement. It corresponds to the
maximum number of tags which can be obtained simulta-
neously without uncontrolled measurement of the value of
each of them in an earlier measurement. The symbolic
properties of complete measurements correspond also to
Eqns (108) and (109).

We shall make one further step on the way of expanding
the class of measurements. We shall consider measurements
which may alter the state. Let the symbol M (u;, u;) denote a
selective measurement in which only the systems in the state
j* are accepted and the systems appear in the state i’. The
value of u; of the physical quantity U is thus converted to u;. It
is naturally understood that M (u;, u;)) = M(u;)). We can
easily show that measurements of the M (u;, u;) type have
the property

M (i, u))M (g, wy) = 8 M (u;, wy)
where 8 = 0 when j#k and §; = 1. In fact, the factor
M (u;, uj) on the left transmits only the states for which the

value of U is u;, i.e. ux must be equal to ;. It should be noted
that if the factors in Eqn (112) are transposed, the result is

M (uy, u)M (u;, ;) = ;M (uy, ;) , (113)

(111)

(112)

which shows that multiplication of measurement symbols
(112) and (113) is noncommutative.

In addition to the complete set of U, there may be also
other complete set V, W,..., which are mutually incom-
patible. Measurement symbols of the type M (u;, u;) may be
derived for each ofthese sets. Naturally, the question arises of
a selective measurement linking two such sets. The symbol
M (u;, v;) denotes a measurement process which rejects all the
values, except v;, of a physical quantity V and which emits a
system into the state u; of a physical quantity U.

We shall now construct a combined measurement
M (u;, vj))M (w, z;). The final result of such a measurement is
selection of the state z; and its transfer to u;, i.e. this should be
a selective measurement of the M (u;, z;) type. However,
during the first stage a system appears in the state wy and
only the second stage represents selection of the state v;. Ifv;
and wy have the same value, i.e. V= W, we should obtain an
intermediate factor 8 which is either zero or unity. However,
in the general case of different values V # W, we can expect
the transfer factor to fluctuate from one measurement to
another. On the average, only a certain fraction of the states
originating from W is recognised in the second stage of
measurement by the composite instrument. It is therefore
natural to assume that on average

M (ui, vi)M (Wi, 21) = (v [wi)M (i, z1) (114)
Here, the quantity (v; |wy) is a number such that the matrix
(v; |[wy) represents the statistical relationship between the
states of V and W. In the special case when V =W, we
obviously have

(vj [vi) = 8

Since M (u;, u;) =
relationship (114) that

MM (wi, 21) = O wdM (v, )
M(”ti’ VI)M (Zl) = <V, |Z/>M (Lti, z,) .

(115)

M (u;) it follows from the general

(116)
(117)

The appearance of numerical factors of the (v; Iwg) type in
Eqns (114)—(117) is of fundamental importance in quantum
theory. Formally, these factors appear as the property of
measurements, but we shall see later that they in fact lead to
the principle of superposition of states, which is the main
positive principle of quantum mechanics.

However, we shall begin first with some of the simplest
consequences of the relationships obtained above. If we
assume that wy = z;in Eqn (116) and use the relationship
M (wi, wi) = M (wy), we obtain

MM (wi) = (v; Wi )M (v, wy)

We shall now consider the triple products
M (vi))M (u;)M (wi), which we shall sum over all intermediate
values of u;. Then, on the one hand, we obtain simply the
quantity (118) and, on the other, in the case of the first pair of
factors we can use the relationship (118) and then apply (117)
so that the result is

(118)

D M ()M ()M (wi) = (v |wi)M (v, wy)

Ui

—Z< ) at [wi )M (v, i) (119)
A comparison of the last two expressions yields
Dl bwiy = v wi) - (120)
In the special case when V = W, we find that
D 20yl s i) = 8 (121)

So far these are purely algebraic relationships which are a
simple consequence of the definitions of the measurement
symbols introduced above. However, let us consider a
simpler product M (v))M (u;)M (v;). By analogy with the last
expression in Eqn (119) (without summation over u;), we
obtain

M ()M (u)M (v;) = p(u;, v )M (v;) , (122)
where
pui, v;) = (v lu)u; [v;) = p(vj, w;) . (123)

The meaning of the left-hand side of Eqn (122) is that the
instrument first selects the state v;and then selects from it that
part which can be transmitted as u;; the instrument then emits
again the state v;. Therefore, p(u;, v;) plays the role of the
probability that the state v; passes through the whole
instrument, i.e. that p(u;, vj) can be interpreted as the
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probability of detection of the state u; in the initial state v;.
The probability p should be regarded as a real nonnegative
quantity. It is therefore natural to assume that the factors in
Eqn (123) are mutually conjugate:

i lu) = Gui|v;)" . (124)

It follows from the relationships (121) and (124) that the
matrix § with the matrix elements S; = (u;|v;) should be
regarded as unitary.

The above relationships can be written in a more usual
form if we use the language of wave mechanics. Let { be the

measured wave function. It can be represented as a
superposition of the eigenfunctions of the operators U and V:

Y = ZCH//,- = Z’?/‘P_/»

where UY; = u;y; and Vo; = v; ;. Naturally, the measure-
ment symbols should also be regarded as operators, so that

M@u)y =cahi, M) = bio; . (126)

Each of the functions ¢; can be expressed as a linear
superposition of the functions ¥, simply because of the
properties of the eigenfunctions (it is assumed that the
Hermitian operators V and W have all the necessary
properties). Let us assume that the relevant relationship is

U= ;0.
7

We shall apply the operator M (v¢) to this relationship. On
the right-hand side of this relationship it leaves only one term
with j = k and on the left-hand side instead of M (vx) we can
use an operator M (vi)M (u;) since M (u)y; = ;. However,
we can now apply a relationship of the type given by
Eqn (118), from which it follows that

(125)

(127)

M ()M (u)y; = (vilui) @ (128)
since M (vi, upf; = ;. Consequently, we find that
Sy = (), i Y= (vlu)e;. (129)

]

This is the relationship for going over from one represent-
ation to another. If, asusual, it is assumed that y; and ¢, each
represents an orthonormal basis, we readily find that

[)/ = Z(V/ |Ltl‘)(,'l‘ .

Derivation of the expression for |b;|* shows that the
superposition of terms of the ¢/ ¢; type appears on the right-
hand side of Eqn (130). Let us assume that the difference
between the phases of mutually orthogonal amplitudes has
no direct physical meaning and can be random. Then,
averaging over the phases gives

|b; = ZP(“:" Vj)|Ci|2 >
7

where the transition probability is given by Eqn (123). Now,
Eqn (131) looks like the relationship between the prob-
abilities if the quantities |b;|?> and |¢;|? are interpreted as
probabilities. An assumption is made (sometimes implicitly)
that the phases of the individual modes in the expansion of
the ¥ function in terms of the eigenfunctions are mutually
random. Therefore, a measurement in quantum mechanics

(130)

| 2

(131)

intrinsically depends on the appearance of incoherence in the
case of mutually orthogonal modes.

Let us return to Fig. 5. Selective measurement of M (i;)
identifies only the cell in which there is a physical quantity U
if the corresponding information is received by the
instrument. The wave function then collapses into ¥; and all
the coeffi-cients ¢x (with the exception of ¢;) disappear. The
coefficient ¢; is transformed into unity. Therefore, within the
framework ofthislogic a measurement seems to be composed
of two closely related elements: the measurement symbol
M (u;) ‘points a finger’ to the quantity u; and the perception of
u; causes the collapse of the function Y —; and of the
probability distribution |cy |> — 8.

The measurement symbol is thus constructed in such a
way that it does not yet define fully the results of measure-
ments. In particular, if in Fig. 5 a ‘line’ of cells u; of the
quantity U is followed by a similar ‘line’ of the quantity V, a
process is possible in which the first line transmits only ¥,
i.e. Y is transformed into c¢;y; before it is measured.
Therefore, the measurement symbol plays the role of a hint,
i.e.therole ofan indication which quantity may be measured.
Theny; = 37, (v; |u;) @ dropsinto the second ‘line’and only
there the final collapse ¥ —¢@; with a corresponding
composite measurement takes place. If this is repeated
many times by changing the cells i, the result is Eqn (131)
relating the probabilities |b;|?> and |c;|> by the transition
probability p(u;, vj).

Since in a composite measurement M (v;, u;) the order of
operations is definite, an opportunity arises for arranging a
sequence of measurements in time. In particular, ifthe level U
corresponds to the function (0), then the level V in Fig. 5
may be attributed to the function Y(¢) related to y(0) by

) = 5w(0) = exp (11 )900).

where H is the Hamiltonian operator. Then also the § matrix
assumes the meaning of the operator of a transition from the
initial time + = 0 to some subsequent moment ¢. The wave
function Y(r) satisfies the Schrodinger equation.

We can now understand more precisely the principle of
superposition. The relationship given by Eqn (131) means
that for any linear superposition of the wave functions, i.e.
for any expansion of the { function in terms of any one of its
bases, there is a ready probabilistic interpretation of what
occurs in the course of measurements: the squares of the
amplitudes give the probabilities and the squares of the
matrix elements give the transition probabilities. The whole
evolution in time of these future possible elements of the
measurement process is governed by the linear Schrodinger
equation.

Why have we arrived at quantum mechanics? [f we return
once more to the beginning of the present section and follow
again the logic of introduction of the measurement symbols
M (u;), it is far from self-evident that they will lead to
quantum mechanics rather than to classical mechanics. A
hint of the appearance of elements of the quantum-
mechanical approach first appears in Eqn (114) when a
matrix element (vj|wg), i.e. a number different from the
trivial zero and unity in Eqns (107)—(109), is introduced for
the first time. In constructing the symmetric expression (122)
we encounter the square of the matrix element (123) which
can be interpreted as the transition probability.

However, the main and decisive step towards wave
mechanics is made in going over from Eqn (130) to

(132)
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Eqn (131), when the hypothesis of random phases of
mutually orthogonal amplitudes makes it possible to draw
the conclusion that only the squares of the amplitudes of the
|ci|? type have a real physical meaning and are interpreted as
corresponding probabilities.

We shall now draw attention to the following circum-
stance. All the operations on the transition symbols are
conventionally carried out from right to left. However, they
can be read also from left to right naturally in a somewhat
different sense. For example, the relationship (114) can be
read from left to right on the assumption that the first
operator on the left perceives u; and emits v;, the second
recognises wi and emits z;, and so on. However, the same
process can be constructed in the usual order, i.e. we can
obtain

M (zps wi)M (v, ;) = (we|v)M (24, w;) (133)

According to Eqn (124), the matrix element that appears
here is (wi Iv;) = (v;|wi)*. The meaning of the relationship
(133) read element by element from right to left has been
interpreted above as consecutive operations in time, i.e. in the
direction from the past to the future. Consequently, if
Eqn (114) is read from left to right this means that the
operations are carried out in the direction from the future
to the past. We can see that the entire difference between
Eqns (114) and (133) lies simply in the complex conjugate of
the operators. Therefore, beginning from an introduction of
the composite-measurement symbols and later we have
already been following the tracks of quantum mechanics by
establish-ing a symbolic basis for fully reversible operations.
The whole subsequent logic automatically leads to the
conclusion of full reversibility of quantum-mechanical
processes: time can be reversed simply by going over to
complex conjugates. The relationships (122) and (123) can
therefore be interpreted as the condition of ‘encounter’ ofthe
past with the future. At this point an instrument can
break the quantum-mechanical causal relationship between

the past and the future, but the probabilistic
relationship (123) is super-imposed on the results of
measurements.

[t is clear from the discussion that the logic of quantum
mechanics establishes a rigid boundary between two classes
of events.The fundamental object of quantum mechanics is
the study of fully reversible processes beginning from a
certain externally imposed state and right up to the entry
into an instrument where a strongly irreversible process ofthe
collapse of a wave function takes place. Wave mechanics
describes the evolution of a wave function and predicts only
the probabilities of some specific results of measurements.
Therefore, wave mechanics represents powerful apparatus
for the study of the possibilities rather than an ‘earth-bound’
theory of real processes. This can be seen particularly clearly
in the what is known as the many-world interpretation of
quantum mechanics [27], but we shall not discuss this topic.

Instead, we shall consider a specific example of a typical
quantum process which is radioactive decay. This process is
shown schematically in Fig. 7.

Let us assume that at a point R there is a radioactive
nucleus R which emits o particles as a result of its decay.
According to quantum mechanics, the wave function of an
a particle consists of a part localised inside a nucleus and ofa
wave flux leaking outside the nucleus, represented formally
by the wavy arrows in Fig. 7. Let us assume that an
instrument detecting « particles consists of a set of thin

Figure 7. Schematic representation of an instrument for detecting an
o particle emitted as a result of radioactive decay of a nucleus R. The
dashed lines represent a variant of a measurement in which the exact
position of the nucleus R is not known.

plates each of which contains an enormous number of cells
connected to counters that can record the passage of an o
particle through one of the cells. All the cells operate in
passive mode and transmit no information to the memory of
an instrument if there are no signals in these cells.

Let us assume that at some moment 7 a cell u; in the very
first plate records the passage of an a particle and transmits
this information for the processing and perception inside the
instrument. Enormous changes should then occur in the
function. Relative to the future there is a total collapse of the
wave function into a compact wave packet, which then
intersects all the other plates along the dashed line shown in
Fig. 7. Consequently, only such cells correspond to the
a particle. However, an equally surprising effect occurs with
respect to the past. The whole wave function for the past also
collapses into a wave packet moving in the direction towards
the cell u; so that the particle velocity v and the distance L
from R to u; can be used to find approximately the time
t—(L/v)when this collapse occurs. At this calculated moment
not only does the whole external wave function collapse into
a wave packet (apart from the wave packet travelling towards
the instrument), but the wave function ofthe a particle inside
the nucleus is annihilated.

If the initial wave function of the nucleus itself has not
been localised but covers the dashed circle in Fig. 7, the first
measurement in the first plate is insufficient to determine the
a-particle ray inside the dashed tangents to this circle.
However, the second measurement in a subsequent plate
fixes the ray itself along which the a particle is travelling. In
fact, measurements on one o particle are insufficient to
determine the position of the nucleus along the ray path and
to find the moment of a-particle decay, i.e. the moment of
collapse of the wave function in the nucleus itself. There is
some uncertainty in this respect. However, if a small grain of
the radioactive element is available, then repeated measure-
ments on o particles can fix the position of this grain (if this
information has not been obtained by another method).

Let usnow assume that instead of a radioactive nucleus R
there is its classical imitator, ie. a small classical ‘warm’ trap
which can emit classical particles with the same lifetime. We
shall assume that the measuring instrument is constructed
similarly. We can easily see that the corresponding classical
‘decay’ has much in common with that shown in Fig. 7.
Instead of the flux of { outside the ‘nucleus’, we now have a
probability density flux. Measurement of u; again collapses
its flux into a compact bunch, which in the future crosses all
the plates of the instrument P and in the past there is a
collapse of the probability associated with the wave function
collapse. Apart from the uncertainty relationships, the two
processes are very similar. However, in the classical case we
know exactly that there are particles with classical paths and
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the probabilistic description is used simply because we do not
fully know the ‘lifetime’ of a classical particle inside the trap.
In the quantum case thereisno exact path and the probability
becomes an integral property of the evolution ofthe quantum
object. It would seem that the quantum and classical
descriptions should be identical when applied to objects and
processes which are similar to one another, apart from the
uncertainty relationship. However, this is not true.

Quantum mechanics has been developed as a theory of
fully reversible processes, but only ‘between measurements’.
It doesnot include the concept of a classical body and there is
no description of the processes of the interaction between
microscopic and macroscopic bodies. The strength of quan-
tum mechanics is that it describes universally all phenomena,
but only in the framework ofreversible processes. This is also
its weakness, because the process of measurement is an
external effect which is not catered for by this theory. We
can see from Fig. 7 in which direction this theory should be
extended.

Let us move the instrument P increasingly further away
from the nucleus R, so that L — oo. The process of collapse
of the Y function near the nucleus is obviously not affected.
In other words, the decay of the nucleus and the
corresponding collapse of the y function can be regarded as
theresult of a measurement carried out in the far future. [f we
retain the causality, the influence of the future can be only a
causeless random process. Thus, a more general view of the
evolution of quantum systems should include the causal
development of events in accordance with the Schrodinger
equation and ‘causeless’ collapse events representing the
result of ‘measurements in the future’. We shall consider a
little later how these collapse events occur.

25. The Einstein—Podolsky — Rosen paradox

At the very early stages of the development of quantum
theory, in 1935, Einstein, Podolsky, and Rosen published a
paper [2] entitled ‘‘Can quantum-mechanical description of
physical reality be considered complete?’” The authors
formulated their famous paradox which has stimulated lively
discussions that are still continuing.

Einstein, Podolsky, and Rosen (EPR) considered two
quantum-mechanical systems which interact for a time with
one another and then cease to interact. For example, these
may be two particles which, having interacted at a short
distance, fly far apart. [f measurements are carried out on the
first system, different results of these measurements corre-
spond to different states of the second system described by
different wave functions, although in fact there is no physical
action on the second system. A pair of particles with a wave
function which cannot be factorised into a product of wave
functions of each of the particles is usually called an EPR
pair. States with the wave function which cannot be
separated into products of individual functions have been
called by Schrodinger ‘entangled states’. Such states are
characterised by a fairly strong internal correlation. It is
precisely because of this correlation that a measurement on
one particle alters the wave function of the second particle
even ifthe latter is very far from the first particle. At first sight
this seems to be an absolutely paradoxical situation
indicating the existence of some nonlocal interaction,
known as the ‘absence of local reality’. The formal
resolution of this paradox was provided by Bohr almost
immediately after publication of the EPR paper. Bohr

pointed out that in quantum mechanics it is not permissible
to speak of a state independently of its environ-ment and, in
particular, independently of the measuring instruments. Ifin
the measurement of the momentum of one particle it is
possible to predict uniquely the momentum of a second
particle, then this occurs precisely because of a certain
configuration of the instruments. The exact knowledge of
the momentum of the second particle is obtained for a
specific distribution of the instruments and it is this
macroscopic configuration that makes it possible to reveal
internal correlations in a quantum system.

However, this approach to the resolution of the EPR
paradox has not satisfied all and other ideas have been put
forward. We shall discuss this paradox by considering a more
specific example shown in Fig. 8.
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Figure 8. Decay of an unstable molecule R into two particles and
recording of a particle by an instrument P; C is a gas cloud

An unstable particle R dissociates into two particles M
and m. This may be the dissociation of an excited molecule in
two atoms or the o decay of a radioactive nucleus or the
decay of the Auger effect type when an excited atom emits an
electron and drops into a stable state. [fin the initial state the
particle R is at rest, the particles M and m emerging in
opposite directions have identical but oppositely directed
momenta. Let us assume that an instrument P measures the
momentum p of the particle m. Obviously, this procedure
also measures the momentum of the particle M although the
distance between the particles may be very large and there is
practically no direct effect of the instrument on the second
particle. Measurement of the momentum of the particle M
converts its wave function into a wide wave packet in the
form of a plane wave with the momentum —p and with an
amplitude which decreases slowly towards the edges of the
packet. Clearly, the particle M can no longer move along the
directions represented by the dashed and chain lines in Fig. 8.
A real collapse of the wave function of the particle M occurs
in the direction identified by the continuous line. If the
momentum of the particle M is now measured, it is found to
beequal to —p. However, if we try to measure the coordinate
of the particle M, the appropriate instrument destroys the
wide wave packet because the momentum of the particle M is
perturbed. We can say that the instrument P prepares the
initial state of the wave function of the particle M and
then this wave function evolves in accordance with the
Schrodinger equation. The most interesting aspect is that
the instrument alters the wave function for the particle M by
its influence only on the second partner of the EPR pair, i.e.
on the wave function of the particle m.

Let us look at Fig. 8 once again. If instead of a quantum
system we have had a classical imitator, then the collapse
would have been quite obvious and natural. In fact, the
continuous, dashed, and chain lines would have corre-
sponded to different random events. Their probabilities
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would have been perfectly identical and then the recording of
the particle m by the instrument P would have meant that this
measurement would have involved precisely the event which
can be recorded with the instrument P. This instrument
would have obtained the information / = — ), p,Inp,, and
the probabilities p; would have collapsed to unity for the
continuous line and would have vanished for all the other
states. This irreversible measurement process should be
accompanied by irreversible reception processes, as pointed
out above, so that the combined entropy of the particle and
the instrument cannot decrease.

However, as demonstrated earlier, wide quantum packets
behave in practice as localised particles. Therefore, the
behaviour shown in Fig. 8 should not differ very greatly
from that of the classical imitator. We shall consider the case
when the mass of the light particle m is considerably less than
the mass of the heavy particle M. The velocity of the light
particle is then considerably higher than the velocity of the
heavy particle, so that the former is the first to escape to the
external world. We shall now remove the instrument P and
replace it with a gas cloud C. The light particle reaches this
cloud and is ‘self-measured’ becoming a participant of a
nonequilibrium process. We can state this as follows: the
separate wave packets of the light particle lose their mutual
coherence because of the interaction with the cloud C and the
initially pure state of the light particle becomes mixed.
The entropy of this particle increases from zero to
I = =) ,p;Inp,, where p; are the probabilities of the
incoherent packets and i is the packet number. The
correlation between M and m ensures that the same occurs
to the heavy particle: it loses the ‘purity’ of its state and
acquires the same entropy S. If an irreversible collapse
process now occurs in the cloud (for example, at the expense
of the energy of the particle m itself), the probabilities p;
collapse, so that only one state with the probability of unity
remains. This is accompanied by the collapse of the wave
function of the particle M. We can say that this collapse is a
direct consequence of the forbiddenness of the Schrodinger’s
cat state: there cannot be a superposition of states belonging
to very different scenarios of history, i.e. to evolution of the
nonequilibrium world. It should be stressed once again that
the collapse of a wave function is related directly to the
contact (direct or indirect) of a quantum object with the
external world.

Macroscopically isolated systems with a low level of the
thermal noise can also exhibit quantum properties. Such
objects sometimes are called ‘quantum cats’ in scientific
jargon [28, 29]. Only their contact with the classical world,
for example, in the form of dissipation, can transform their
statistical properties to the realm of classical logic [30, 31].

The collapse of a wave function is thus more likely to be
the property of the environment of a quantum object and not
of the object itself: it is the external world that first converts
[|? into a set of probabilities p; and then, by nonequilibrium
evolution, transforms the probabilities into a set of zeroes
and one unity for the state into which the collapse takes place.
The collapseisa random process of the dice-throwing type. It
is this process that is outside the framework ofthe traditional
apparatus of quantum theory, which is a theory of reversible
processes. The collapse events can be allowed for by explicitly
supplementing the equations of evolution with appropriate
operators which would allow for the real irreversible
evolution of quantum systems with time. We shall see later
how this can be done.

26. Bell’s inequalities

Quantum theory has become the normal tool of modern
physics. Nevertheless, there is a certain suspicion of doubt
which sends tremors through the souls of theoreticians and
experimentallists, and a direct check of the fundamental
principles of wave mechanics is still a topical subject. In
particular, it would be desirable to exclude by direct
experiments an alternative but inconsistent theory of hidden
variables. In 1964, J S Bell published a paper [3]in which the
problem of hidden variables was considered from a new
standpoint. He demonstrated that the hypothesis of the
existance of hidden variables, i.e. the hypothesis of the
statistics of events close to the classical ideas, makes it
possible to derive a number of inequalities which do not
agree with quantum theory and can be checked by direct
experiments. We shall consider here only the simplest
example of Bell’s inequalities.

This example is based on an analysis of a correlation
experiment of the EPR type, but in a simpler form proposed
by D Bohm [32]. Let us assume that a molecule in a singlet
state dissociates into two atoms, each of spin % (in units of 7).
After dissociation the combined momentum of the two
particles is still zero because of the law of conservation of
momentum. Let us first check that the quantum approach
does indeed lead to the EPR paradox. [f the projection o, of
the momentum of the first particle along the x axis is
measured, the second particle is automatically found to be
in the state —oy. In the classical case the projection of the
spin of the second particle onto other axes, for example y and
z, would have vanished automatically. However, this is not
true in the quantum case. The operator g, does not commute
with g, and its eigenvalues are :I:%. Therefore, measurements
of o, for the second particle give values ﬂ:% with equal
probabilities.

We shall now derive one of Bell’s inequalities. We shall
assume that the second particle has simultaneously all three
components of the spin which in the measurements can give
the values :I:%. We now make many measurements and
obtain an ensemble of states. Let us use X © for the case
when g, = Jand X ~ for the case when 6, = —1, and so on.
We then find that

NXt Y ) =NXY Y L,ZH4HNXT, Y, Z27), (134

where N is the number of measurements in an ensemble with
properties identified by the parentheses. We similarly obtain

NY ,zH)=NX' Y ,ZH+NX", Y, 2%, (135
NXtzZz)=NX' Y Z))+NXT, Y, Z27). (136)

It follows clearly from the above three relationships that
NXH Y)SNY ,ZH+NX",Z7). (137)

We shall now return to two particles which fly apart in a
singlet state, so that the spins of the two particles are exactly
opposite. For example, if the first particle is in the state X —,
then the second is in the state X ™. Similarly, if we reverse the
signs of the second (i.e. the first when reading from right to
left) terms inside the parentheses in Eqn (137), we obtain the

relationship
nXE Y)Y <n(Y 7, Z2F) +n(X*, 27, (138)

where n(X T, ¥ *) denotes the number of particle pairs in the
ensemble and in each pair the first particle has the spin
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projection o, = +1, the second has oy = +1, etc. The
relationship (138) is in fact one of Bell’s inequalities.
Naturally, not one but several such relationships can be
written down. They correspond to the assumption of the
existence of hidden variables and, consequently, they may be
violated in the case of real quantum objects because the spin
components are noncommutative.

Experiments carried out on different quantum objects
have shown that Bell’s inequalities are in fact violated, as
expected on the basis of quantum theory. We shall mention
here only two of this series of experiments. A Aspect and his
colleagues [39] experimentally studied the correlations of the
polarisation of photon pairs with the aid of analysers varying
with time. They were switched at a rate faster than ¢/L, where
c is the velocity of light and L is the distance between the
detectors (analysers). The results were in full agreement with
quantum mechanics: there are correlations at any moment in
time and they are not transferred by any signal. Bell’s
inequalities are violated with an error amounting to five
standard deviations. In the latest experiment reported by
T E Kiess et al. [40] it was found that Bell’s inequalities are
violated with an error of 22 standard deviations. Many
experiments on violation of Bell’s inequality thus confirm
reliably the principle of quantum mechanics and exclude
‘local realism’, i.e. they exclude the existence of hidden
variables.

27. Quantum cryptography

The EPR paradox and the associated Bell’s inequalities
appear as certain kinds of nonlocal interactions, i.e. as
force-free transfer of information over a large distance,
possibly even at superluminal velocity. Therefore, the
feasibility of constructing a superluminal telegraph has been
discussed frequently in the literature. We can easily see that in
the direct variant of a single EPR pair, the EPR paradox is
not appropriate for this purpose. In fact, a measurement
carried out on the first particle of the pair is purely random
and cannot be predicted and controlled in advance. The
situation does differ very much from the classical case, when
black and white balls are concealed separately in different
boxes and the boxes are far apart. Opening one of the boxes
immediately reveals the colour of the ball inside it and that in
the second box. There is no transfer of information in this
case: thisis an a priori known correlation ofthe probabilities.
The quantum case differs only in that before the opening of
the box the balls have no colour. However, as soon as the first
boxisopened and the ball is ‘illuminated’ (in the same way as
happens to a photographic plate), it immediately reveals a
colour, and the second ball then acquires an opposite colour
inside the second box. In quantum mechanics other types of
measurements with noncommutative operators can be
carried out on the second box, but in the determination of
the ‘colour’it isnot possible to detect anything else except the
colour opposite to that of the first ball. Since the first event is
purely random, a correlation between isolated EPR pairs
cannot be used directly for instantaneous information
transfer [5].

However, EPR correlations are interesting because of
their possible use in encoding the transmitted messages. The
fundamental idea is based on the circumstance that any
interference with a quantum system, such as ‘eavesdropping’,
destroys a pure state and therefore cannot remain undetected
if the pure states are used correctly. This has been called

quantum cryptography [6—9]. We shall now consider two
very simple examples of quantum cryptography. The simplest
variant is probably that proposed by A K Ekert [6]. It is
based on Bell’s inequalities. Two participants of the process
of information transmission and reception prepare many
EPR pairs, atoms with spin 1, which have a net spin of zero.
These pairs are divided into two halves between the partici-
pants, who then measure the spins in accordance with a
matched programme, so as to violate Bell’s inequalities. It
is found that a suitable selection of the measurement
programme can maximize these violations [10]. In this
correlated experimental scheme the information appears in
the course of measurements and cannot be obtained by
eavesdropping. Deliberate interference by a third person
ignorant of the measurement programme is readily detected.

There are also more direct ways of quantum encoding
information without recourse to Bell’s inequalities [7, 8]. One
of the most interesting variants of quantum information
transfer has been proposed by C H Bennett et al. [9]. They
have called it ‘teleporting’ of a quantum state with the aid of
double, classical, and EPR channels. The term teleporting
comes from science fiction where it describes a process by
which a person or an object disintegrates at one place and
complete information on its structure is transferred elsewhere,
where an exact copy is formed.

In the present case the following process is considered. A
singlet EPR pair ofidentical particles, each with spin %, is first
prepared. One particle remains with the information sender
and the second is sent to the receiver. Let us assume now that
the sender wishes to teleport to the receiver a third particle in
an unknown state [¢) with spin 1. It is found that the sender
needs to carry out only a simultaneous measurement of the
spin in the double system comprising the first partner of the
EPR pair and the third particle. This can be done by means of
Bell’s basis [10], which contains four orthogonal states: one
singlet and three triplet (with spins 0 and 1, respectively).
However, the three particles, i.e. the EPR pair and the third
particle in the unknown state |¢) = a|T) + b |]), havea total
of four orthogonal states and they can be represented by the
superposition of certain eigenfunctions containing the
amplitudes a and b. After measurement, the sender can send
the classical information on these amplitudes to the receiver,
who can construct the state |@¢) by simple rotation of the
instrument about the x, y, z axes relative to the second
partner of the ESR pair.

28. Random wave function

We shall now consider a somewhat more complex thought
experiment by means of which we shall study, in a very
simplified form, the evolution of a quantum system which is
in a constant information coupling with the external world.
We shall specifically assume that a quantum particle is
‘measured’ not by instruments, but by the interaction with
the nonequilibrium environment. An appropriate experi-
mental set up is shown in Fig. 9.

Let us assume that a microparticle of mass m is enclosed
between two horizontal walls, which are kept at somewhat
different temperatures: 71 # T»2. Then, this particle collides in
turn with the upper and lower wall and, if the interaction is
inelastic, it can transport portions of heat from the hot to the
cold wall. At the cold wall each such portion spreads into the
interior of the wall material and can be ‘measured’ there.
More accurately, such a portion of heat resembles, in a sense,
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Figure 9. Microparticle m moving along they axis collides consecutively
and inelastically with the walls of a vessel. The temperature of the upper
wall't jisnot equal to the temperature of the lower wall'Y ; and the particle
transfers (on average) heat from one wall to the other. A plugin the form
of a macroscopic body M is introduced into the left-hand end ofthe vessel
so that motion alongx may result in a collision of the microparticle with
the macroscopic body.

the process of radioactive decay, because it may collapse in a
natural manner: we can say that it is ‘measured in the future’.
The collapse of each portion of heat causes collapse of the
Y function of the microparticle and, consequently, the
motion of the particle along the x axis can be regarded as a
sequence of random collapse events.

Since the interaction of the particle with the walls is
random, the ¥ function is random. We can describe it by
developing suitable rigorous methods of statistical physics,
but at the moment it would be more useful to concentrate on
the qualitative aspects of the phenomenon. We shall
therefore adopt major simplifications and describe the
Y function only by its moments, i.e. by the average values
of the position of the wave packet (x), its width {(x — (x))2>,
and velocity u = (p)/m, where p is the momentum and the
angular brackets denote averaging with the weight [y/]%.

We shall assume that immediately after an inelastic
collision with a wall the wave function assumes the form
of a localised packet, Eqn (59), with the momentum
p= u/m:

72
Yo = (mh?)"* exp (ikx’ —%) ,
where k = u/fim, x' = x — &, £ is the coordinate of the
‘centre of mass’ of the packet, and b* = ((x")?) is its width;
the initial time is taken as zero. At the subsequent times the
wave function evolves so that the packet spreads in
accordance with Eqns (60) and (61):

U (x, 1) = exp(—iwt + ikx’ W, (x' —ut, t) ,

where w = hik?/2m and the function o, (x’, ¢) is given by
Eqn (60), i.e. by

b2 1/4 x/2

=|—] exp|l—-—=],

Vo (na4> p( 2a2>
where a> = b?>—i(fi/m)t. According to Eqn (61) the width of
the packet increases as

e
m?b*’
Let us assume that 7 is the average time between
consecutive ‘measurements’. Then, on average, the width of

the packet before a collision with a wall is given by Eqn (142)
at t = 1. The square of the width of localisation b? of the

(139)

(140)

(141)

&%y = b+ (142)

wave packet immediately after an inelastic collision with the
cold wall is governed by the processes of ‘measurement’ of a
portion of heat, which occur in the wall itself. The average
time 7 is proportional to the distance between the walls and is
a free (fitting) parameter. [t can be selected in such a way that
the second term in Eqn (142) is much greater than the first. In
other words, after ‘measurement’ a wide wave packet con-
tracts to dimensions much less than its previous width.
We shall use @ to denote the quantity described by
Eqn (142) at t= 17, i.e. immediately before an inelastic
collision. Averaging Eqn (142) during the time interval
between collisions allows us to determine the average value
a® = 1(ag +2b%). Therefore, the wave packet oscillates in
width between b? and aé and the mean-square width is a®.

Between two consecutive collisions the wave packet is
displaced on average by A¢ = wur. If we assume that the
velocities u# have the Maxwellian distribution with a
temperature T = ;(TI + T>), the average value of the
square of the displacement along & before the second
collision will be Tt*m. The displacements due to the
widening of the packet and its free motion are statistically
independent of one another, so that the probability p(&, ¢) of
the position £ ofthe wave packet is described by the diffusion
equation:

op ?%p 1/, 717
o = Paa D_zr(“°+ m >

It therefore follows that a random walk of a quantum
particle can be regarded as the diffusion of a wave packet
with the probability distribution p(z, ) of its centre of mass
whose evolution is described by Eqn (143). The distribution
of the velocities u can be regarded as Maxwellian and the
square of the width (x '2) is periodically either compressed to
b? after a collision or expands to a(z) before the next collision.

We shall now consider how such a randomly moving
quantum particle interacts with a macroscopic body whose
mass is M. Let the wave function of the macroscopic body be
Y(X ), where X is the coordinate of the right-hand boundary
of the body with which the particle may collide. Before the
interaction with the particle the wave function ¥(X ) can be
regarded as stationary, because for M » m the quantum
spreading of Y(X ) can be ignored. In the course of its
motion along the container the microparticle sooner or later
collides with the macroscopic body and after reflection from
it flies to the right. Since the coordinate of the macroscopic
body is undetermined, superposition of the wave packets
occurs.

Let ¥(X ) be localised near X = 0, as shown in Fig. 9. We
can easily see that if X > 0 the reflected packet is found to be
slightly further to the right, but for X < 0it is slightly further
to the left, compared with the reflection by the boundary
X = 0. Therefore, after reflection the point x —X < 0 assumes
the positionx’ = —x + 2X > 0 and the wave function becomes

Y(X)(—x +2X, 1), (144)

where the Y function of the microparticle is given by
Eqn (140). In other words, in this approximation the parts
ofthe wave packet which would have been outside the surface
of the macroscopic body in the case of free motion, i.e. would
havebeen atx —X < 0, is simply reflected elastically from the
X plane and is found at the point X —(x —X ) = 2X —x.
Before the next collision with the thermostat wall the
wave function of the microparticle resembles the wave packet
of Eqn (141). However, immediately after the collision this

(143)
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wave function contracts into a narrow wave packet with the
square of the width amounting to b%. There cannot be any
super-position of different wave packets: the ‘measurement’
leaves only one packet and annihilates all the other
components of the ¥ function. A real collapse of the wave
function takes place. The coordinate X of the macroscopic
body is also measured to within ao: after the collision
accompanied by ‘measurement’ the coordinate of the
microparticle x is known to within b, so that the factor
Y(X) in the wave function (144) also collapses and we have
((X — const)’) = d}, i.e. the coordinate is X ~ Xo = const
to within 1ao.

The setup in Fig. 9 represents essentially an indirect
measurement of the coordinate of the macroscopic body.
After each such indirect measurement the initial function
Y(X) collapses into a packet of width less than %ao. Before
the collapse, the quantity |¥(X)|?> plays the role of the
classical probability density of the distribution of the
average values of the coordinate X for each of the localised
wave packets which are generated randomly by collisions of
the microparticle with a horizontal wall.

Our thought experiment suggests a way of developing a
theory describing the phenomena involving natural processes
of the collapse of the wave function. First, a random
intrusion of collapses into the evolution of the system with
time shows that the main role begins to be played not by
quasistationary states, but by wave packets which spread
with time. Apart from quantum-mechanical properties, these
packets acquire features of extended classical objects, so that
it is natural to apply to them a mixture of classical and
quantum  descrip-tions. The naturally appearing
noncoherence of states imparts to macroscopic bodies the
usual nature of determinate behaviour and ‘throws bridges’
across between the classical macroworld and the quantum
microworld.

Thereader naturally asks the question: why is it necessary
to assume that T, #T,? It would seem that an ordinary
thermostat can destroy the quantum coherence and create
mixed states of the wave-packet type from any pure state. In
fact, this is not so much the question of the real behaviour,
but of logical grounding. Even if Ty = T, there are grounds
for speaking of the absence of coherence, but we cannot state
with certainty that the noncoherence is accompanied by
‘measurement’ and collapse of wave functions. Random
collapse processes are natural in systems which are not in
thermodynamic equilibrium.

[t will probably be necessary to come back to this topic in
future discussions. At this stage we shall consider in greater
detail how to describe the evolution of a random wave
function. Let (x,7) be a random wave function
representing one-dimensional motion of a particle when
random measure-ments take place. The evolution of { with
time can be described by the equation

oy W oMy

g = MY = e
Here, M is a random °‘measurement’ operator. We shall
assume that M intrudes randomly in the evolution of the
system, i.e. in accordance with the Poisson distribution with
an average time interval Ar = t© between ‘measurements’.
Immediately after a ‘measurement’, which will be assigned
the time ¢ = 0, the function Y collapses into a packet of
Eqn (139). Since this packet contains two parameters u and &,
the definition of the operator M should include an instruc-

+MW)Y . (145)

tion how these parameters should be dealt with. Before the
next collision the solution y is given by Eqn (140), i.e.
Y, = exp(—iHt/M)o, where t is measured from the preced-
ing collision. We shall assume that b < a, so that we can write
approximately

plu, u', & 1) = plu, u' )y, (x = O . (146)

Here, p(u, u', &, t) is the distribution of the probabilities of
the quantities u and £ in the case when this collision occurs
after a time interval ¢ from the first; p(u, u’)is the probability
of a change in the velocity of the packet from the value u’
before ‘measurement’ to the value u after ‘measurement’. In
the special case of complete ‘forgetting’ of the velocity before
‘measurement’, the probability p(u, u") is independent of u’,
so that the quantity p(u, u’) = p(u) has the Maxwellian
distribution with the temperature 7. If there are many such
‘measurements’, the transition probability can be averaged
over time:

plu,u &) = L exp (— %) plu, u', &, t)% . (147)

Here the first factor under the integral represents the proba-
bility of the absence of a collision up to the moment ¢ and the
quantity d#/7 is equal to the probability of ‘measurement’ in
the interval d¢. If we go over to the time-average probability,
the number of collisions in the interval A¢ should be taken as
At/t. In this way the proposed logic automatically leads to a
classical Markov chain and the quantum approach is needed
only to find the probabilities of a transition from one
‘measurement’ to the next. As a result, in the case of many
repeated measurements we obtain the diffusion equation
(143) for p(&, r) with the Maxwellian particle velocity
distribution. It is possible to go over from these probabilities
to the density matrix p(x, x’) = (W*(x)¢(x’)). However, we
can see that there is no urgent need for this. Average wave
packets, which occur in Eqn (147), play the role of the basis
in which the density matrix is diagonal: p(x, x ') represents a
random sampling of one of such packets with a probability
which is prescribed from outside by the measurement opera-
tor M (). Consequently, the description of the statistical
properties of a random wave function is influenced greatly by
the properties of the ‘measurement’itselfand the free flight of
the particle between one ‘measurement’ and the next
determines only the diffusion coefficient D.

Let us see once again how the operator M () acts on the
right-hand side of Eqn (145). As established above, before
the action of this operator the wave function looks like a
relatively wide wave packet of Eqn (141) and its width is
~ap. Immediately after the measurement a packet of width
~b < agis formed. Thus, [i|? has the value ~ 1/ao before the
measurement and ~ 1/bafter it. The pattern looks like a wave
packet of width ~ao cut into segments of width b. The
number of such segments is ao/b. At each measurement the
particle falls into one of these segments and, therefore, the
square of the wave function increases by the factor ao/b.
Therefore, the operator M(Y) is strongly nonlinear: it
destroys the wave function in all the cells except one and in
that cell it increases the amplitude of the function by (ao/b)"/?.
Thisisa natural consequence ofthe collapse with retention of
the normalisation. However, it is found that changes in the
density matrix, and particularly in p(x, x) = [¥(x)|?, are
much less remarkable (if they occur at all). Naturally, we
need at least ao/b measurements to ensure that the particle
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drops once into each of the segments formed by ‘cutting’ the
original packet. Therefore, the average (over ao/b measure-
ments) probability that the particle falls into a given segment
is approximately the same as for the original packet. If we
bear in mind that the probability of measurement is assumed
by us to be proportional to [y, (x)|?, we find that this
probability is exactly the same as after the measurement.

The operator M(y) differs little from a macroscopic
instrument in respect of its action on ,: it causes the
collapse of the wave function in accordance with the rules
of measure-ment theory in quantum mechanics, i.e. the
collapse is into one of the mutually orthogonal states. If
these measurements are treated in terms of the conversion of
a pure ensemble into a mixed one, we can easily see that the
density matrix p(x, x ') changes very little as a result of such
measurements. In fact, the oscillatory dependence of the
density matrix on x —x’ is governed primarily not by the
dimensions of the wave packets, but by the Maxwellian
distribution of the momenta. Therefore, the description of a
mixed state in terms of the density matrix is not sufficiently
sensitive to determine whether the collapse does take place:
averaging over an ensemble easily destroys the relevant very
fragile information.

In the description of the measurements resulting in the
destruction of the coherence and in the collapse of a wave
function one needs a more rigorous approach in which the
processes in question are described explicitly.

[t is known from quantum theory that there are no
universal measurements: the construction of an instrument
or, more exactly, the macroscopic conditions during
measure-ment, entirely determine which specific physical
quantities can be measured and to which eigenvectors these
quantities correspond.

We shall consider here just one more specific example ofa
natural measurement process, which is radioactive decay. In
the a-decay of a radioactive nucleus the wave function of the
a particle consists of two parts: a function localised near
the nucleus and decreasing with time as exp(—#/27) and a
stationary function outside the nucleus, describing the flux of
the function to infinitely distant regions. The decay can be
described by a random measurement operator M (¥).
However, in this case the operator M () should select at
random a certain ray emerging from a nucleus and should
form on this ray a wave packet which travels away along the
ray at the velocity of the emitted a particle. The action of the
operator M () can be regarded arbitrarily as the result of a
measurement carried out at infinity and, consequently, in the
infinite future. In the Schrodinger equation it appears as a
random collapse of a wave function. We can readily establish
again that the collapse itself represents a strongly nonlinear
process, which occurs at random, but if we consider just the
quantity |¥|?, as representing the probability density of an
ensemble of identical systems, then the relevant processes in
question appear as very ‘soft’ that do not alter the average
value (|{|?) over the ensemble.

29. Mesoworld

We can now consider how the mesoworld is constructed, i.e.
the range of physical phenomena between the classical
macroworld and the quantum microworld. It is natural to
start with the microworld which can be regarded as the base
for describing all the other phenomena.

Quantum theory itself is logical and closed. The
dynamical behaviour of microscopic objects with any
number of particles, including quantised fields, is described
by the generalised Schrodinger equation
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(148)
where Y is the wave function of the whole system, dependent
on a large number of coordinates, and the operator H is the
Hamiltonian of the system. The wave function can be
regarded as a vector in Hilbert space, so it is sometimes
called the state vector.

The Schrodinger equation describes the evolution of a
quantum system beginning from a certain initial state and
ending with a measurement, i.e. with the interaction between
this system and a macroscopic instrument. The instrument is
assumed to be a purely classical object and is described in
terms of classical variables. Between these two limits thereisa
mesoworld, the understanding of which is absolutely
essential if we want to link the microworld and the
macroworld. We shall begin discussing this topic again with
a thought experiment.

Let usassume that a radioactive tracer is deposited on the
surface of a solid macroscopic body (Fig. 10a). If an a
particle emitted by the tracer is ‘measured’ by an
instrument, the measurement gives also the coordinate y on
the surface of the macroscopic body: after the measurement
we can reliably say that the radioactive nucleus is known to
be located at the point A, and not at some other point B,.
Before the measurement the points B, and A, may be
equivalent either because the wave function of the
macroscopic body has the same amplitude at these points
(pure state) or simply because an external observer does not
know at which of'the two points, A, or B,, the tracer is really
located. In the first case the measurement on an « particle
automatically leads to the collapse of the wave function ofthe
macroscopic body, whereas in the latter case the a priori
uncertainty of the probability of finding the tracer is lifted
and the probability ‘collapses’,i.e. the external world receives
information on  the position of the tracer. It should be
pointed out that the o particle itself could escape along any
one of the rays emerg-ing from the point A,, but the ray
identified in Fig. 10a by an arrow identified by a. This means
that the wave function of the a particle collapses on one of
the rays.
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Figure 10. Ifon the surface of a macroscopic body there is a radioactive
tracer A,, detection of an o particle which is emitted can be used to
measure they coordinate of the macroscopic body (the dashed lines in
Fig. 10a show the unrealised paths). In the presence of external
perturbations the Y function of the a particle splits into noncoherent
wave packets b and of these only one packet is real: the a particle “falls’
accidentally into this packet.
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We can imagine that the selection of one of the rays
occurs because weak external perturbations shift somewhat
the relative phases of the wave functions for different rays,
converting them into ray packets. If this is true then the
phases may be shifted along the ray so that the wave function
ofthe a particle may change from a spherical wave diverging
from the point A, into a set of wave packets shown in Fig.
10b. The particle itself can be in just one of these packets
identified by a solid circle (in Fig. 10b) and the other packets
are just missed opportunities for the particle to occupy them.
We can now easily show that this representation is correct. In
fact, if we turn back to Eqns (130) and (131), we can show
once again that the squares of the amplitudes are
transformed into the probabilities only if the difference
between the phases of the various orthogonal states become
chaotic. Nonintersecting wave packets in Fig. 10b seem to
represent such mutually orthogonal states. The phase chaos
seems to split the coherent wave function into separate blocks
and the value of ||? for each ofthese blocks is converted into
the probability. In terms of the transition from a pure to a
mixed state such conversion of the phases to chaos seems to
be a slightly changing transition: |/|?> changes nowhere in
magnitude and it is only converted into the probability, i.e.
into the a prioripossibility. A particle may drop into only one
of the cells, i.e., into one of the wave packets, but an external
observer does not know it yet. Only a real observation results
in the collapse of the probability into one of the cells. In
accordance with our terminology the dropping of a particle
into a cell is simply the measurement symbol or hint that a
future measurement will find the particle precisely in this cell.
This is more an informational than a dynamical effect.
Consequently, one bit of information is required to label
one of the cells as the cell with the particle.

The distribution of the cells in Fig. 10b and the dimen-
sions of the cells depend largely on the intensity of the
external perturbations that destroy the coherence of the
pure state. However, since the ¥ function of a particle
emerging from a radioactive nucleus spreads progressively
from the nucleus A,, in the real world the destruction of the
coherence sooner or later does occur: if external
perturbations are reduced, the cells in Fig. 10b simply
move to the right and become larger. The particle itself
sooner or later falls into one of the cells and, therefore,
objectively (i.e. independently of the observer) the collapse of
the  function seems to take place. The subsequent
measurement collapses only the probability and thus
confirms that the radioactive decay has taken place and that
the a particle flies along one of the possible rays.

The collapse of the wave function occurs into just one of
the wave packets within which the phase is not greatly
distorted. Therefore, initially the collapse of the ¥ function
and then the measurement of [|? relatively far from A,
determines (approximately) the whole pattern of the initial
emission of the particle from the nucleus and its subsequent
motion along a ray. We can say that the collapse of the wave
function is spontaneous, but it is more logical to assume that
it isinduced by a ‘measurement’ at a very large distance from
the nucleus A,. We can now imagine a situation when this
‘measurement’ occurs very far, i.e. practically at infinity,
from A, and then the collapse of the ¥ function can be
regarded as the result of a ‘measurement’ carried out at an
infinite distance in the infinite future.

We can thus formulate the principle of collapse. It is
similar to the principle of emission of radiation in

electrodynamics. We recall that in discussing the emission
of an electromagnetic wave by a periodic dipole a single-
valued solution can be obtained by applying a boundary
condition in the form of the absence of an advance (i.e.
arriving from infinity) wave. This principle is not universal: if
the radiation is emitted in a closed resonator cavity, then
undoubtedly we have to allow for waves both leaving the
source and arriving there. However, in open space an
advance wave is assumed to be absent, which is equivalent
to a very weak attenuation of the wave, i.e. a slight initial
dissipation. The suppression of an advance wave makes the
solution single-valued.

In the case of quantum particle we must also impose the
condition of absence of a wave arriving from infinity.
Moreover, we may assume that a ‘measurement’ occurs in
infinity, i.e. that the collapse of a wave function takes place
there. This distant collapse leads to the collapse of the
Y function into a wave packet over the whole path of motion
of a particle along a ray on which this particle is found. The
net result is that the measurement itself seems to be
unnecessary.

We can extend the principle of collapse to all the quantum
particles escaping from macroscopic bodies to infinity. We
thus seem to say that a wave function diverging to infinity
cannot be a real object if this function corresponds to a single
particle. Such a particle should manifest itself by the
interaction with the external world only in a finite volume,
because it corresponds to the only reality.

We shall now consider a situation in which the boundary
of a solid is illuminated with a flux of light and the photons
reflected by the boundary fly away to infinity (Fig. 11).

Let usassume that the whole surface of this body is black-
ened and only a small region near a point A, is specularly
reflecting. This region is fully analogous to the radioactive
tracer discussed above: the photonsreflected from this region
can be measured at infinity and the external environment
then obtains information on the position ofthe point A,. The
position of this point can therefore be found irrespective of
whether the initial position has been indeterminate in the
classical sense (i.e. because of a certain distribution of the
position probability) or because the macroscopic body hasan
extended wave function. In particular, the eye can be the
measuring instrument and then the behaviour looks as if the
observer has caused the collapse of the wave function ofboth
a photon and of the macroscopic body. It is understood that
in this case the collapse is in no way related to the observa-
tional and intellectual capabilities of the human observer: the
detection of a reflected photon by any instrument has exactly

Figure 11. Boundary of a solid M with a blackened surface carries a
small mirror, A,, which reflects photons. ‘Measurement’ of these photons
at infinity determines the coordinates of the point A, with an error up to
one wavelength.
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the same effect. Moreover, the participation of this photon in
any irreversible process occurring as far as we please from A,
can be regarded as a ‘measurement’ accompanied by the
collapse of the wave function.

Let usnow assume that the mirror A, isin fact the pointer
ofan instrument so that various coordinates y; of the position
of A, on the surface of the body correspond to different
values of u; of a certain physical object U. Ifthe object U is of
quantum nature, then the quantities u; can also assume
certain discrete values. Therefore, the photons reflected
from A,, which can be ‘measured’ somewhere far from A,,
cause the collapse of the { function of the mirror, i.e. of the
instrument pointer. This results in measurement of a physical
quantity U when it has a certain value u; and the result of this
measurement may be recognised by the external world and, if
desired, the reflection of the photon from A, can be stored in
a memory. We can easily see that two irreversible processes
occur in such a measurement. Initially because the phases
become chaotic the single coherent state splits into layers
which represent a set of wave packets. The only ¥ function is
split into segments with a slight phase distortion, but the
particle (photon) can be in only one of the coherence regions.
The wave function seems to split into a set of probabilities
and only inside one of the packets is there a pure state of the
particle. We can say that its wave function represents a some-
what ‘softer’ entity than the distribution of the probabilities
or of information: different parts of the wave function of the
pure state still retain a certain ‘affinity via the phases’.

We can then easily see what the classical world represents.
In the case oflarge macroscopic bodies with a large mass even
few ‘measurements’ are sufficient for the localisation of the
wave packet to be negligible compared with the dimensions
ofa body. Such bodies acquire ‘forever’ the characteristics of
classical objects with precisely specified coordinates. The
classical world is the world of large dimensions and masses.
Therefore, any measurements which are then applied to
classical objects are accompanied by the collapse of the
wave functions in accordance with the recipes of quantum
mechanics. The objectively occurring ‘measurements’ per-
formed by the nonequilibrium solar radiation are quite
sufficient for the reduction of the wave packets of classical
bodies in our environment.

The mesoworld intermediate between the classical and
quantum worlds is much more complex and much richer with
regard to the physical phenomena which occur in it. The
bodies in the mesoworld exhibit both classical and quantum
properties. The mesoworld is the world of a set of alternative
collapses of wave functions and probabilities, and it is the
world in which the coherences are born and die.

It is therefore evident that there is no universal recipe for
the description of the mesoworld: the variety of specific
physical conditions in which a combination of classical and
quantum processes is possible isnow far too great. One ofthe
possible approaches to this description is given in the
preceding section, but there may be many other approaches.

It seems to be now somewhat clearer what processes
cannot exist in the mesoworld. For example, superpositions
of the Schrodinger’s cat type should definitely be forbidden.
In fact, the actual recording of radioactive decay excludes the
possibility of its superposition with a nucleus which has not
decayed. Even more so there cannot be a superposition of a
live and a dead cat, because a living organism represents a
macroscopic body which is closely linked to the external
world and is therefore subject to continuous ‘measurement’.

We can see that the logic of the mesoworld excludes many
imaginable but physically impossible states of the macro-
world when wide coherent wave functions, incompatible with
real conditions, may be attributed to macroscopic bodies.
The microworld may include mixed, i.e. classical —quantum,
states and processes when the coherence of the packets may
be annihilated and created again. This is why the mesoworld
is a very mobile and live world of collective phenomena
organised in a complex manner.

We shall now turn back to Fig. 11 and consider in greater
detail how ‘measurements’ in the external world can localise
the wave function of a massive particle. We shall consider a
quantum system of two particles: a very heavy particle with a
mass M and a light particle with a mass m < M. We shall try
to see how the measurements carried out on the light particle
result in an indirect ‘measurement’, i.e. in compression ofthe
wave function of the heavy particle. Let the wave function of
the system be Y(r, R, t), where r and R are the position
vectors of the light and heavy particles, respectively. Let us
assume that the tracer A, in Fig. 11 corresponds to some
local potential of the interaction U(jr—R|) between the
particles under consideration. Let this potential be not only
strongly localised, but also not very deep, so that the Born
approxima-tion can be used to describe the interaction, i.e.
the scattering of the light by the heavy particle. More
specifically, let us consider the following situation. Let a
plane wave of the light particle with coordinate dependence
of exp(iK; -r) be incident on the body with the mass M . Here,
ki is the wave vector of the incident wave (Fig. 12). We shall
assume that the marker A, isnear the origin of the coordinate
systems so that R < r.

ki
\ ka

Figure 12. Plane wave of a light particle is incident on the scattering
centre A, representing a ‘marker’ of a heavy particle. The scattered wave
with the wave vector k¢ falls on an instrument P and it is measured there.

If, for example, R = 0, the incident wave can be
described as exp(ik-r) and the scattered wave is
r~'exp(iks-r) [the dependence of the type exp(—iwr) is
ignored]. If the scattering centre A, is now displaced to the
point R, the incident wave acquires at the scattering point the
factor exp(ik;+R), so that after the scattering a wave
Ir — R | exp(ik¢|r — R | + ik; - R) arrives from this point at
the point r. If an instrument P is located very far, then the
quantity |r—R| in the pre-exponential function can be
regarded simply as L = const. This quantity is unimportant
to our analysis, but the phase factor will be considered in
greater detail. It will be assumed that the heavy particle is at
rest and that the scattering of the light particle is elastic, so
that |k¢| = ki| = k. Moreover, for the sake of simplicity, it
will be assumed that the incident wave propagates only along
the x axis, i.e. it has the form exp(ikx ) and that the instrument
is also located on the same axis. Moreover, we shall assume
that R has only two coordinates, which we shall denote by the
capitals X and Y. If we assume that y, Y < L, we obtain the
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following expression for the phase factor of the scattered
wave, accurate to within Y %
i (y—v)

e 4 X
exp |1 —|—2 i3

We shall now assume that this wave is measured by the
instrument P, i.e. that a packet localised along the y axis and
of the envelope Yp = exp(ikx —y?/2b?) separates from this
wave; here, b is the localisation width of the packet. The wave
function can be ‘projected’ onto this state simply if it is
multiplied by ¥} and the result then can be integrated with
respect to x and y. The final expression is proportional to an
exponential function:

b e Kby ? L
=exp|l-—————+ |1 —— .
P2 v\ 2

This exponential function should be multiplied by the wave
function of the heavy particle Y(Y ). We can see that
measurement on the light particle automatically localises
the heavy particle with the form factor @. If we ignore the
imaginary part in the exponential function of @ and retain
only the real part of the form factor @, it can be
represented in the form

(149)

y?2
Dcal = €Xp (_ﬁ> P (150)
where
, L+
@ = ———

k2b?

Two limiting cases, L? <€ x?b* and L2 > k2b*, can easily
be dealt with by means of the above expressions. In the
former case (ofa nearby instrument) we have a> = b2, i.e. the
localisation of a heavy particle is identical to the localisation
of a light particle. In the other limiting case, L? > k2b*, we
have a = 1/6k, where 8 = b/L is the vertex angle of a cone
supported by the instrument at the position of the particle.
Since k = 2m/A, where A is the wavelength, then even for
small angles 6 =~ 1/10 the size of the localisation of the
particle is of the order of the wavelength.

The complete expression (149) for ¢ contains also an
exponential function with an imaginary phase which may
lead to additional localisation for L2 > k?b* for small
departures from coherence, but at this stage we shall not go
into such detail.

In the above discussion the concept of an instrument is
used frequently. However, it is quite unnecessary: if the
localisation of the light particle occurs somewhere in the
external world, i.e. because of the interaction with an
unknown ‘instrument’, this process still leads to the
localisation of the wave function of the heavy particle. If
then L2 > k2b*and the angle 6 is small (but not negligible) the
localisation of the heavy particle will be on the scale of the
wavelength of the light-particle wave function.

Fig. 12 has just been used to consider the localisation
along the y axis, but the same instrument of finite size along
the z axis performs similar localisation of the wave function
along z. If the instrument and the incident wave are both
rotated by 90°, then localisation along the x axis is possible.
Naturally, in spontaneous ‘measurements’ on many incident
particles a complete localisation along all directions can be
achieved.

We shall assume that such ‘measurements’ on different
incident particles are repeated one after another at a certain
average frequency N =_1/7, so that after a long time interval
talargenumber N = Nt = ¢/t of such measurements takes
place. Each measurement gives a new factor of the type
given by Eqn (150), so that after N measurementsthe factor
becomes @V. The localisation region then becomes a/N"
2= a(t/t)V?. For a very large mass the localisation con-
tinues until such a particle becomes a classical object with a
fully determinate classical coordinate Y and, consequently, X
and Z. Ifthe massis not very large, the process of localisation
is compensated for by the opposite effect of the broadening of
the wave packet between consecutive measurements. If we
recall Eqn (61) for the broadening of a wave packet with
time, we can estimate the minimum localisation of the
particle with mass M :

(ﬁ’f)] /2 ( 7 )] /2
Amin = | 7 =\ .
M MN

This expression defines an approximate boundary
between the macroworld and the mesoworld: if from the
practical point of view the value of amin can be regarded as
zero, then we are dealing with a macroscopic body which has
classical coordinates. In the opposite case, a body has both
the properties of a classical object, and may also exhibit wave
properties, i.e. we are dealing with a mesoworld object.

It therefore follows from the standpoint of wave
functions that the macroworld is the world of ‘fossils’: all
the past ‘measurements’ carried out on the macroscopic
bodies in the preceding epochs had the result that these
bodies have ‘lost’ their former wave properties and have
become classical objects with sharply defined coordinates. In
‘contact’ with the microworld and mesoworld they can only
‘recall’ their wave properties by a simultaneous ‘collapse’ of
the wave function of the microworld and a random choice of
the coordinate of the classical object, for example, the
position of a pointer of a measuring instrument. The last
process can be described also in terms of the model of the
scattering of a light particle by a marker A,, shown
schematically in Fig. 12. All that is required is that the
instrument P should distinguish various positions of the
marker A, in one coherent state. This can be done most
simply by supplementing the instrument P with a set of
collimators and detectors, so that each collimator —detector
pair is directed to its own point with the coordinate Y;. These
discrete coordinates Y; should be selected in such a way that
the form factors of the different positions ofthe marker A, do
not overlap along the coordinate Y. Then the very first
operation of one of the detectors measures one of the
coordinates Y; (the relevant collimator is directed to this
coordinate).

[f instead of an instrument P there is an external world,
the scattering of just one light particle immediately causes the
collapse of the wave function of the macroscopic object along
the coordinate Y. If the microparticle is ‘emitted’ into the
external world through a system of collimators, such that
each of them is directed to just one of the discrete positions
Y, then each microparticle collapse is accompanied by the
collapse Y — Y ;. Repetition of such ‘measurements’ can
establish the statistical distribution of the coordinate Y;. In
this way we can find the density matrix of a mixed state of a
macroscopic object after ‘measurement’, i.e. after destruction
ofthe coherence by the scattering and subsequent ‘escape’ of
the scattered microparticle to the external world.

(151)
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30. Collapse of wave functions

Some examples of the collapse of wave functions are
discussed above: in radioactive decay and in indirect
‘measurements’ as a result of the collapse of the wave
function of a particle that escapes to the external world and
loses its coherence there. As a rule, the collapse applies more
properly to the probabilities of ‘expectation’ by the external
world, i.e. it in fact corresponds to a random appearance ofa
specific value of one or another physical quantity. However,
it is convenient to refer the collapse to the wave function
itself. When this approach is adopted, the collapse can be
described by a ‘measurement operator’ in the generalised
Schrodinger equation (145). The term ‘measurement
operator’ indicates that this operator should cover also the
quantum measure-ment processes. In the latter case the
operator is identical to the projection operator: it projects
the initial state Y onto an eigenvector y;, which corresponds
to an eigenvalue u; of a physical quantity U which is being
measured. Therefore, in discussing real measurement
processes we can use instead the von Neumann projection
operators [33]. However, our more general problem requires
not only the description of the deliberately made
measurements, but of the natural processes of the collapse
of wave functions which represent, together with the
reversible dynamics in accordance with the Schrodinger
equation, the real ‘quantum history’.

In this section we shall consider what general properties
should the measurement operator have in the simplest case of
one or two particles. First of all, let us point out that in
Eqn (145) the operator M () is in the form ofa term alongside
the kinetic energy and the total energy 7iw. Therefore, the
operator should have the dimensions of energy, i.e. of the
ratio h/tg, where to is a characteristic measurement time.
Therefore, interference of the operator in the evolution of a
quantum particle should in general perturb not only the wave
function, but also the energy of the particle. In other words,
measurement may be accompanied by the exchange of energy
with the external environment. However, this energy may be
negligible if either the measurement takes a very long time or
the collapse occurs into such wide wave packets that the
corresponding energy change can be ignored. For example,
when the physical quantity U is such that its operator
commutes with the Hamiltonian of the particle is being
measured, there is no energy perturbation and this measure-
ment need not destroy the stationary state.

The simplest example of measurement of a physical
quantity is the Stern—Gerlach experiment in which the
passage of a beam of particles across an inhomogeneous
magnetic field splits this beam into components correspond-
ing to different values of the projection of the spin onto the z
axis. Let us assume that, for example, the spin projection %az
can have only two values: j:%. Then, a detector will register
only two lines. Let a wave packet of rectangular shape along
the longitudinal coordinate enter the detector. [fthe length of
the packet is L, then the spatial part of the square of the wave
function is [y|?> = 1/L.Before reaching detectors (in this case
there are two of them) the packet splits into two components
with magnitudes o, = =+ 1. We shall denote by v the velocity
of the particle and by 7 the time taken to record the particle
inside the detector. If T < L/v, the wave packet can be ‘cut’
mentally into layers of width / = vt. Obviously, each of the
detectors will analyse a packet layer by layer and, with the
probability /2L, one of the detectors will record a particle

and at the same time measure the value of g;. In this example
we can assume that the probability of the distribution along
x, equal to ||, reaches the detector input, so that in fact the
collapse of probabilities takes place. However, it is not very
wrong to say that each of the detectors induces the collapse of
a wave function into a layer of width / in one of the detectors
and destroys therest of the wave function. The result does not
change if we assume that even before reaching a detector the
wave function collapses into one of its components, for
example that with 6, = +1 or with 6, = —1, and then this
component collapses into a layer of width / in one of the
detectors. Introduction of a suitable operator into the gen-
eralised Schrodinger equation makes it possible to describe
the collapse of a wave function as a consequence of the
collapse of probabilities (throwing of dice) when a quantum
particle is information-coupled to the external world.

We shall now consider how an operator acts in the case of
radioactive decay. Once again it is convenient to consider the
probabilities and not the wave functions. Moreover, it is
preferable to replace [/|> by a very large number of identical
radioactive nuclei and consider the number of nuclei. Let the
dependence N = Njexp(—t/7) indicate how the number of
radioactive nuclei decreases with time (No is the initial
number of nuclei and 1/7 is the decay rate constant).

We shall select a time interval At < t and consider what
happensto the wave functions of o particles emitted from the
nuclei. We shall select some value R = Ry for the distance
from the radioactive source and assume that the o particles
are ‘measured’ outside this radius, i.e. they fall within the
environment of atoms and molecules in which they follow
nonequilibrium tracks. Let vbe the velocity of the a particles.
Then in a time Ar they travel a distance AR = v At. Since the
source power is N/z, then in a layer of volume 4nR2 vAt there
are AN = NAt/1 particles.

Let the interval AR be selected in such a way that it
corresponds to the localisation width of a wave packet after
‘measurement’. If in a transverse direction the localisation
width is also of the order of AR, then in the layer in question
of volume 4nR%yAR there are Ns = 4m(Ro/AR)?* cells and
each of the collapsing particles may fall into one such cell.
The probability of reaching the cell per particle is

_AN 1 1 (AR)

Ap == — = .
P= "N Ns T T 4R}

We can easily see that the value of 1/t per particle is equal
to the flux across a surface of radius Ro: 1/7 = [Y(R)|> x 41R?vy.
Therefore, the probability Ap is simply Ap = |[W¥(R)|*(AR)>.
Consequently, the operator can be regarded as equal to the
form factor which collapses a particle into one of the cells of
volume (AR)? and annihilates the ¥ function in all the other
cells. This process can be regarded as repeated randomly near
a sphere of radius Ry at an average repetition frequency
1/At = v/Ry. Ifthe decay process is slow, then the sum of the
probabilities of falling into all the cells of volume 4nRéAR,
i.e. > x 4TRJAR, may prove to be much less than unity.
This means that the process of collapse near the sphere of
radius Ro should be repeated many times until the particle
fallsinto at least one of the cells. However, if it falls there, then
Iy|? in the cell should be increased to (AR)~3 and elsewhere
the wave function should become annihilated.

A packet which collapses into a volume (AR)3 spreads out
further away from the source, so that after a long time its
transverse localisation varies, in accordance with Eqn (61),
as Ax o it/mAR. The radial coordinate of a packet also
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increases with time as vz so that at high values of ¢ the packet
remains within a cone of size

Ax n

vt mvAR

Hence, it is clear that the selection of Rg is fairly arbitrary:
provided only Ro > AR, further propagation of wave packets
depends little on the value of Ry. Moreover, the formation of
packets can be represented by an evolution, reversed in time,
down to the scale Ro = AR. The measurement operator can
therefore be regarded as performing random sampling on a
wave packet with the aid ofa form factor localised both along
the radius and with respect to the angle. The actual moment
of collapse is not so important: it may only be indicated as a
‘trend’ near a certain point of radius R = vt and a wave
packet may form with a shift along the time axis, i.e. much
later. The ‘trend’ itself corresponds to one bit of information
about the subsequent formation of a wave packet near a
given point with definite angular coordinates and with the
radial coordinate R = vt. Correspondingly, the
measurement operator also permits freedom of change in
the localisation width of a wave packet around randomly
selected coordinates of its centre.

Real ‘measurement’ of an a particle my occur at a further
large distance from a nucleus. However, the wave packet
obtained then may be ‘projected’ into the future. Con-
sequently, the collapse of a wave function can be regarded
as a spontaneous contraction of a wave function into a wave
packet as a result of ‘premonition’ of a future measurement.

The collapse is an irreversible process, but its evolution in
time does not resemble the usual causal evolution from the
past to the future, passing successively through all the
intermediate phases: such a detailed description of the wave
function would have required intermediate measurements
and these measurements would have destroyed the coherence
of the state. Therefore, the operator in the generalised
Schrodinger equation is much more complex than the
operators acting on physical quantities.

If allowance is made for the collapse, the relationship
between the past and future may be more complex than that
viewed from the standpoint of the usual classical determin-
ism. Its analysis can conveniently be made by simplified
measurements.

Let us consider, for example, an EPR pair in the Bohm
variant when two particles with spin % are prearranged
initially, at + = 0, in a singlet state and then they fly apart
in different directions to large distances from one another.
We shall assume that at the moment ¢, the x component of
the spin oy is determined for the first particle and the result is
0x1 = +1. This means that in view of the correlation the
second particle collapses to a state with gy, = —1. Since an
observer cannot control the selection of o, and the values
0x1 = =1 appear completely at random, the collapse of the
second spin g, — —1 cannot be used for instantaneous
transfer of information from the first observer to the
second. Let us now assume that the second observer
measures the component oy, and with a probability 0.5
obtains the value g, = +1. Such a measurement on a
correlated EPR pair would have led to a corresponding
reduction of the state of the first particle: o,y — —1. If both
observers are not too far apart, the collapse of the wave
functions will be induced by the first (on the time scale)
measurement. However, when the particles are far apart, the
concept of simultaneity loses its absolute meaning: in the

Lorentz-invariant theory the sequence of events on a space-
like plane depends on the velocity of the coordinate system.

The question arises how the processes of the wave-
function reduction can be made consistent with the Lorentz
invariance. We shall consider this in more detail. We shall
begin with the measurement a,; = 1 on the first particle ata
moment ¢. This measurement automatically leads to
o> = —1 for the second particle. Since no action has been
taken in relation to the second particle, it seems natural that
the spin g2 = —1 ofthe second particle is quite definite not
only at times longer than #; but also when #< ;. In other
words, the measurement yielding a1 = 1 not only makes it
possible to predict g, = —1 for a future measurement of
0x2, but it also matches the value oy = —1 in the past.
However, similar reasoning can also be extended to the
measurement of the spin of the second particle. The
measured value of this spin 6,, = +1 means, because of
the correlation, that o,; assumes the reliable value
gy1 = —1, both after the measurement which gives o,» = 1
and before this measurement. We now seem to be faced with a
paradox. Namely, if 0,1 = 1 is measured first, then the spin
of the second particle assumes the value o, = —1 and the
subsequent measurement yielding o, = 1 destroys the
coherence and correlation of the EPR pair. If the first
measurement gives gy> = 1, then the value o,y = —1 is
established automatically for the first particle and the
subsequent measurement oy; = 1 destroys the correlation
of the EPR pair. The sequence of measurements can be
different in different Lorentz-invariant coordinate systems.
Therefore, it is not clear which scenario is the true one.

In fact, there is no major conflict. The intermediate
correlated states of the o1 = 1, 6x2= —1 and 6,2 = 1,
oy1 = —1 types are only the possible measured states and
not the real ones. In reality the measured a1 = 1, 0y2 = 1
measured state does not conserve the correlation in the EPR
pair, although at first sight the operators oy, and oy, seem to
be commuting, i.e. simultaneously measurable. In fact, the
measurement of one of the operators perturbs the measure-
ment of the second one because of a correlation (for details
see Ref. [11]). Therefore, the measurements of o, and o>
give uncorrelated pairs o,1 = =+1 and 6,2 = +1 without
any causal relationship between the measurements.

We shall now turn back to the correlated measurements
of the ox1 = 1, o,2 = —1 type. Here we have a strong
correlation. Therefore, it is quite unimportant which of the
measurements is carried out first: the second measurement
gives a definite result both forward and backward on the time
axis. The second measurement simply reveals the result which
had been predetermined either by the past or future
measurement on the first particle. Naturally, here we are
speaking of the first and second particles in a fairly arbitrary
manner: the two particles are equivalent. Therefore, in the
case of measurement of g, and oy, it is more logical to
assume that the selection of o,y = 1 and o= —1 is
perfectly spontaneous, i.e. that it occurs before a real
measurement. [t is even more logical to assume that we are
dealing here only with a hint symbol of a measurement which
has not yet been converted into a real measured result. Only
the measurement event itself selects the values of o1 and o>.
The situation is similar to that of radioactive decay: an EPR
pair seems spontaneously to select the polarisation matched
to the instruments. This polarisation is then measured by the
instruments.
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It should be stressed that in all three cases under
discussion —the measurement of o,; and o,, in an EPR
pair, the radioactive decay, and the collapse of the wave
function of a heavy particle in the case of an indirect
‘measurement’ when a correlated light particle escapes to
infinity —no energy perturbation is introduced from outside.
It is sufficient to assume one bit of information appears
somewhere in the external world, which is fully compatible
with the nonequilibrium state of this world. However, in the
case of a purely local analysis, the collapse can be regarded as
spontaneous. It can be described by a ‘measurement’
operator M in the generalised Schrodinger equation. This
operator can be regarded as random with a not very accurate
indication of moment of time when this operator causes the
collapse.

We shall now consider a more complex example of a
system of many particles in the form of a low-density gas of
‘classical’ particles. We shall postulate that the gas of atoms
(or molecules) with a density n is at a temperature 7. Let us
assume that ¢ is the cross section for collisions between
particles, so that ro = ¢!/? represents the average size of an
atom and A= 1/no is the average mean free path. The
density parameter & = nry of a low-density gas is very
small: ¢ € 1. Let us assume that initially the gas is classical,
i.e. that the average localisation size of the wave functions
(which will be denoted by b) is much less than the average
distance between the atoms n~ 3. That gas can be regarded
as consisting of a set of separate wave packets. We shall now
try to understand what happens to these wave packets and
whether the initial pattern of separate wave packets is also
retained subse-quently.

Let us assume that v, = (T/m)"? represents the average
thermal velocity. The quantity

A 1

T = — =
Vi nov,

is equal to the average time between pair collisions of atoms
with one another. We shall select an arbitrary wave packet
and consider what happens to it. [f initially the value b is less
than ro and this inequality is retained for a time 7, the wave
packet evolves in the same way as a classical particle,
colliding and being scattered by other atoms at a frequency
v = 1/t. Therefore, after a time 7 the initial wave packet
disappears and becomes transformed into a scattered wave.
However, if b> ry, then the initial packet also disappears in
thetime 7, but it isnot converted into one but (h/r¢)? scattered
waves, because in travelling a distance A the initial packet
meets (b/ro)? different atoms. In the second case, when (b/
ro)>> 1, the separate scattered waves lose their mutual
coherence and the original atom drops into one of the
scattered waves with a probability (ro/b)?. In the first case,
when b < ry, at the first scattering event the packet may still
retain its individuality, but a few subsequent collisions are
sufficient to make the scattered waves so complex that the
coherence between its individual parts will be lost completely.
The particle may again drop into just one of the scattered
packets.

We can therefore draw the conclusion that in the course
of its subsequent evolution the gas may retain its ‘packet
structure’. We may easily estimate also the dimensions of the
(on average) steady-state wave packets. We can do this by
applying the uncertainty relation. Let b be the spatial
localisation of the packet. Then, the uncertainty in the
velocities Av amount to Av & fi/mb and the average size of a

packet does not change greatly in the time 7 between the
collisions if Avt &~ b. Hence, we find that

1/2
b:( i > = ()2,
my,on

where by denotes bo = #i/mv; of the order of the de Broglie
wavelength of an atom moving at thermal velocity.

Let usnow estimate the value of the quantity described by
Eqn (152) for air at atmospheric pressure. [f we substitute (in
the cgs system of units) the valuesi = 10~ m = 3 x 10—23,
vi= 3x10% o= 10=", and n= 3 x 10", we find
approximately that b &~ 2 x 10~7. This is slightly less than
the average distance between the atoms: n= "3 ~ 3 x 10~7.
We can see that air can be regarded arbitrarily as a gas of
classical particles in the sense that the effective dimensions of
the wave packets of the nitrogen and oxygen molecules do not
exceed the average distance between these molecules.

Our discussion ignores the circumstance that in the case
of identical bosons the wave function should be symmetrised
over all the molecules. However, this circumstance does not
greatly affect our conclusions, provided we indeed have
b< ro. In view of the identity of the particles the wave
packet of one particle is indistinguishable from the wave
packet of a second colliding particle, but the packet structure
of the gas is still conserved.

In our discussion the key feature is the initial assumption
that a particle may drop into one of the component and
mutually uncorrelated parts of a complex wave packet. It is
this assumption that underlies the statistical interpretation of
the square of the wave function [if|2. Conversion of one
packet into a set of uncorrelated packets is equivalent to
conversion of a pure state into a mixed one, i.e. we find that
the wave function is apparently converted into probabilities.
Since in this case there is no external measurement, formally
there is no collapse of the probabilities either. The transfer of
a particle into one of the component parts of a packet
discussed here is not observable in the external world.
Consequently, although the evolution of the wave packets
with the corresponding collapse events does take place inside
the gas, in the external world this appears only in the form of
probabilities which should be described statistically with the
aid of the density matrix. Since the events in which the wave
functions of an equilibrium gas collapse are not observable,
they cannot by themselves lead to the collapse of the
distribution of probabilities for macroscopic bodies which
are interacting with the gas. However, the gas molecules may
destroy the coherence of the wave functions of macroscopic
bodies (this is true, for example, of a particle in Brownian
motion). This requires the destruction of the coherence
between the individual components in a superposition of
the wave functions of a macroscopic body. The phases of the
components change with time if their frequencies are altered
somewhat and then after a time ¢ it is possible to change the
phase by ~ 1 if Aw & 1/t. Since Aw corresponds to an energy
perturbation AE = 7w, the loss of coherence requires an
exchange of energy AE = 7i/t.

We can summarise the above discussion by drawing the
following conclusions. In generalised quantum mechanics,
which includes a description of irreversible ‘measurement’
processes, there are two types of collapse of wave functions.
The first corresponds to a nonequilibrium ‘measurement’
process in the external world, it relates purely to informa-
tion, can occur without any perturbation, and appears as

(152)
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spontaneous contraction of a wave function. These are the
processes that occur in measuring instruments. The processes
of the second kind are associated with uncontrolled
perturbations. They appear as the loss of coherence with
energy exchange and are described in terms of conversion of
pure ensembles into mixed ones. They include above all the
processes associated with the thermal motion of particles.
They can be described naturally in terms of the density
matrix, which in the case of a weak perturbation of the
diagonal terms is automatically converted into the prob-
ability distribution function.

In the case of the collapse associated with the appearance
of information in the external world the most natural
description is that involving the ‘measurement’ operator M.
The action of this operator leads to random transitions ofthe
wave function to new more localised states. This represents a
kind of consecutive application of the projection operators.
Each such projection operator can be described in terms of
the Dirac notation in the form P = | )(¥.|, where i, is the
wave function after the collapse. The action of the operator P
is given by

Py = wcjv/:wdx = W) .

if Y(x) depends only on one variable x. In general, the action
of P, on ¥y —i.e. the projection of Y on Y.—is equal to the
scalar product of the wave functions . and ¥, multiplied by
the wave function Y. The operator M differs from P only in
this respect: after projection the wave function should be
normalised to unity. Moreover, as a rule the operator M
represents a set of many random projections. Since both
functions Y and . , evolve with the same Hamiltonian
operator H, in many cases it is not important at which
precise moment the operator M is applied: in particular, it
can be assumed that it is applied from the future if in the
interval from a given time ¢ to infinity there are no other
collapse events.

(153)

31. Second quantisation

In systems of many identical particles it is more convenient to
use the apparatus of second quantisation. We shall discuss
this only to the extent necessary for subsequent considera-
tions. Let us assume that Yuy(xi, ..., xy, £) is the wave
function of identical particles dependent only on one of
the spatial coordinates x; of the ith particle out of the total
number N. For simplicity, we shall assume that these
particles satisfy the Bose—Einstein statistics, i.e. that the
wave function is symmetric in the variables x;. In the second
quantisation language there is no need to fix the number of
particles N and it is possible to admit the possibility of
creation and annihilation of the particles, as well as changes
in the occupancy numbers of different quantum states.
Therefore, instead of one function Yy we can consider a set
of functions Yo, Y1, Y2, ..., Yu, ... with different number of
particles. These functions can be arranged in column form
and we can thus obtain what is known as the state vector in
Fock space. Instead of considering the functions Yy, it is
convenient to introduce operator functions acting on the
state vector. These operator functions represent a second-
quantisation field or simply quantum field. In the case of the
Fock space under discussion, two operator fields are
specified: the creation operator ¥ (x) and the annihila-tion
operator ¥~ (x) of one particle. Sometimes in the case of the

operator ¥—(x) the minus index is omitted and then ¥*
denotes simply the Hermitian conjugate operator relative to
Y. The operator ¥ acting on the function Yy transforms it
into Yn—1, and the operator ¥* transforms Yy —; into Y.
The explicit expression for these operators is

E4COINCIINE )

1
= WZS(X = X)W1 (K15 ey Ximts Xpgrs s XN)
=1
(154)

ql+(x)‘pN—l(xl»---» xN—l) :Nl/z‘plv(x» Xseees xN—l) .

We shall add here one more useful relationship describing
the commutator of the operators Y(x) and ¥* (y):

[, ¥ ()] = PP () - ¥ ()P ()
=8(x—y).

(155)

(156)

The action of these operators can be understood most
simply by considering the example of noninteracting particles
when the symmetrised function ¥y may be assumed to be the
product of one-particle functions i;:

YUy(xy, ., xy) = H‘/’l(xi) .

This state is known as Bose—Einstein condensation. We
can now see that the operator ¥(x) transforms the function
Yi(x;) into the & function &(x —x;) and then summation is
carried out over all the functions 8(x —x;). The operator ¥
adds one more factor ;(x) to the product (157). We can say
(and this is true, apart from a factor 1/N'2 or N'/?) that the
operator ¥Y(x) replaces one of the functions ¥,(x;) with the &
function at a point x,, so that one of the factors of the y;(x;)
type disappears. The operator ¥ (x) simply adds one more
particle with the wave function ¥, (x), i.e. it increases by unity
the number of factors of the ¥ (x;) type. The relationships
given by Eqns (154) and (155) allow us readily to find the
expression for the operator ¥ * ¥, which is called the particle-
number operator N:

Ny (xq, e, xy) = PP O, (x4, ...

(157)

s XN)

N
ZS(x—x,)lﬁN(x],...,xN) . (158)
=1

The particle-number operator is diagonal and the integral
is [P (x)¥P(x)dxyy = Ny, ie. it is simply equal to the
number of particles N for each of the functions Y. The
meaning of the operators ¥(x), ¥ *, and N can be understood
better if we average them, i.e. if we integrate with respect to
X1, ..., xy with the weight [yx|. In the simplest case we find
that integration of Eqn (157) gives

(P)y = N,
() = (V+ 1" ()
2

(N)y = N ()"

In the more general case, when Yy is not equal to the
product (157), instead of y;(x) thereis a one-particle function
averaged over all N variables with the exception of one. The
operators ¥(x) and ¥*(x) can be used to find readily the
projection operators. Let us assume, for example, that as a

result of measurement the initial function Y, collapses into
V.. Ifthere is only one particle, then this collapse is due to the

(159)
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collapse operator (153). [fwe are dealing with N particles, we
have to ensure the collapse of each particle in turn and even
symmetrise the resultant wave function so as to allow for the
Bose—Einstein symmetry. If Eqn (154) is integrated with
respect to x and the weight used is ¥c(x), then the right-hand
side is exactly the wave function in which one of the factors
Yi(x)) is replaced with Yo(x)), i.e. the particle for which the
collapse ¥1(x;) — Yo(x)) takes place. We can now obtain an
equation of the type given by Eqn (153) if we just add the
matrix element (Y./¥). We can readily see that this can be
done by integration of Eqn (155) with the weight ¥ (x). In
this way we obtain by a natural procedure the following
expression for the projection operator:

P, = jw:u)w(x)dxjwcwmy)dy . (160)

It is understood that this expression is accurate apart
from a normalisation factor (if the final wave function is
normal-ised). If we use the relationships (154) and (155), the
action of the projection operator (160) on the wave function
of N particles Yn(x1, ..., xn) can be written in the form

Py (xi, ..., xy) = Z‘/’c(xl) JW:(XI)WN(M» s Xy) dxg.
- (161)

In other words, the matrix element is calculated for the
wave function Y relative to the wave function ¥} (x;) and it is
then multiplied by ¥¢(x,); next, the resultant expression is
symmetrised for all the particles. After the collapse the
symmetry of the type given by Eqn (157) is lost but the new
expression applied to the function (157) is still quite simple.

Introduction of the operators ¥ and ¥* is convenient
because their use makes the description of the dynamics of
quantum particles very similar to the description of the
dynamics of fields. Therefore, the operator ¥Y(x) is usually
called the quantum field. Let us consider what this means.

First of all, some additive physical quantities can be
expressed very simply in terms of the operators ¥Y(x) and
¥ *(x). For example, the momentum of one particle py is
expressed in the form of the operator

.. 0

Py = lﬁax’
which is applied to the wave function. If we define the
operator

P, = J P (x)p, P(x)dx , (162)
it then follows from Eqns (154) and (155) that its action on
Yn(x1, ..., xy)is equivalent to the sum of the momenta of all
N particles. Similarly, the one-particle Hamiltonian
JWT(x)H(x)¥(x)dx averaged over x and applied to Yy is
equal to the sum of the Hamiltonians of N particles.
Moreover, even in the presence of pair forces with the
potential U@ (|x — y|) the total Hamiltonian may be written
in the following compact form

H = Jqf+(x)H<'>qf(x)dx

+ [P U - )P O)dray . 6

Here, H (" is a one-particle Hamiltonian in the field of forces
with the potential U"(x), and U@ (|x — y|) is the potential
of the interaction between the particles. In the description of
the dynamics of many particles it is frequently convenient to
go over to the occupancy number representation. Thisis done
as follows. Let ¥,(x) be the complete orthonormal basis. As
this basis we shall consider, for example, standing waves of
the type

Tnx

v, (x) = sin(T) .

However, in general, ¥, are complex variables. The operators
Y(x)and ¥* (x), considered as functions of the variable x can
be expanded into the series:

P() =Y aryix). W) = D oafyilx) . (164)

The functions ¥, represent an orthonormal basis, so that

ai = Jl//,.*(x)qf(x)dx, af = Jl//i(x)q’+(x)dx . (165)

The amplitudes a, and g, are also operators. The wave
functions Yn(xy,..., xn), considered as functions of the
variables x1, ..., xy, can also be expanded in the basis ¥,,(x).
It is then convenient to go over to the occupancy number
representation. The wave function with the serial number n;
can be denoted by |n;) and it is possible to show that the
action of the operators a; and a™; is quite simple:

aflny = (ni+ 1) i+ 1),

166
ai |n) = 11}/2 [y — 1) . (166)
The operator a;'a; = n; is diagonal and the operator of
the total number of particles is
N =) afa;i = n. (167)
- -

1
We have ignored so far the time dependence of the wave
functions Y. In fact, these functions satisfy the Schrodinger
equation, which can be written in the following compact
form:

oy
in-- = Hy , 168
e = HY (168)
where ¥ is a column of the functions Yy (x1, ..., xy) and the

Hamiltonian operator is given by Eqn (163). The symbolic
solution of Eqn (168) is

¥ = exp (—% t)t//(O) .

where /(0) is the state vector at the initial time.

The equations for quantised fields become even more
striking if we try to carry out all the averaging of the physical
quantities with the weighting function ¥(0). This implies
going over from the Schrodinger to the Heisenberg
representation: the wave function is regarded as independent
of time, but all the operators acquire a time dependence. In
the case of the operator ¥ this means

iH iH
Y(t) = exp <17t) ¥, exp (—%t) ,

(169)

(170)
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where ¥y is the time-independent operator introduced earlier
by means of Eqns (154) and (155). It follows from the
relationship (170) that

d¥
ih— = —[H, ¥
T [, ],

a71)
where the square brackets denote commutation. Eqns (170)
and (171) describe the evolution of a pure state. They are fully
reversible and ignore all the interactions with the external
world. If an interaction of this type can be reduced to just
heat exchange with the external medium and the loss of
coherence of the states, the corresponding processes can be
described simply by introducing the density matrix of mixed
states. However, if these processes include nonequilibrium
collapse events, the situation becomes more complex. Each of
these events can be described by the projection operator of
the type given by Eqn (159). It can be represented in the form
P, = AfA, where the amplitudes A, and A} are,
respectively,

A = prc(x)'l’(x)dx, A:r = Jl//c(x)q]jdx . (172)

The appearance of random projection operators can be
allowed for in Eqn (168) by an additional term of M. The
generalised Schrodinger equation then ceases to be reversible
and the corresponding evolution of the quantum field,
described by Eqns (170) and (171), takes place only between
the collapse events. In general, the evolution of a quantum
system becomes much more complex and, most importantly,
ceases to be reversible. The irreversibility is the result of an
information link or coupling between a given quantum
system and the nonequilibrium external world.

32. Molecular chaos

Our main task is to describe nonequilibrium processes, which
may be of quantum or classical nature. In these processes we
shall distinguish two types of behaviour: the approach to an
equilibrium because of dissipation, accompanied by an
increase in the corresponding entropy; and the reverse
process of development of self-organisation with a reduction
in the entropy at the expense of an increase in the
environment entropy. It is natural to begin with the first of
these irreversible processes, i.e. with the approach to
equilibrium. This approach represents monotonic
destruction of order or unavoidable dispersal of the initial
fluctuations only if the deviation from equilibrium is small.
In systems far from equilibrium there are usually more
complex nonlinear processes in which in the case of some of
the degrees of freedom there is no destruction but
complication of the structures. Naturally, it is necessary to
begin with the simplest case of a small deviation from
equilibrium. Moreover, it is natural to start from the
simplest physical system.

This simplest system is a low-density gas of classical
particles. Let us assume that the density parameter of the
gasise = na’ (where n is the density and a is the average size
of the molecule) is much less than unity. This means that the
average distance [ = n~!3 between the molecules is con-
siderably greater than the size of the molecules. Therefore,
the gas molecules travel freely a distance A = 1/na®> > a and
they collide with one another relatively rarely.

Under these conditions the behaviour of the gas is
described by the Boltzmann equation

of s
&"‘V'Vf = St(f) .

173)
Here, f(r,v,t) is the distribution function of the particle
velocities at a point r and at time ¢. The collision term St(f),
quadratic in f, describes the evolution of the distribution
function when allowance is made for pair collisions of
molecules with one another. The collision term is derived on
the assumption that both particles flying towards one
another have the same distribution function f and that the
collisions are random. This approximation postulates that
‘molecular chaos’ is established in the gas, i.e. that molecules
are in no way correlated before collisions. This assumption is
perfectly natural from the physical point of view, but it needs
a definite justification which will be discussed below.

The collision term in Eqn (173) explicitly introduces an
irreversibility, as demonstrated by the famous H theorem of
Boltzmann. The question is frequently asked how does this
irreversibility arise: after all, in finding the change in the
distribution function owing to pair collisions it would seem
that there have been no explicit assumptions about
irreversibility. Moreover, the collision term itself is derived
on the assumption that the dynamics ofthe colliding particles
isreversible. Consequently, it is the assumption of ‘molecular
chaos’ that leads to irreversibility. It is necessary to consider
the origin of ‘molecular chaos’ and how such chaos is then
involved in the irreversible evolution of the distribution
function.

We shall first consider the process of approach to
thermodynamic equilibrium. The kinetic equation (173) can
be written very roughly in the form

TV = A fo)-
where fo is the Maxwellian distribution with density n,
average velocity u, and average energy (%mvz), which are
exactly the same as analogous quantities in the function f. On
the right-hand side of Eqn (174) the coefficient v represents
the average frequency of pair collisions: v= v/ and
ve = (T/m)"2. If the distribution function fis homogeneous
inr,itthen follows from Eqn (174) that any deviation from fy
decays with time as exp(—vt). However, if the initial
distribution function depends both on v and on r, its
evolution is much more complex. In particular, for spatial
scales considerably greater than the mean free path A, the
collisions establish quite rapidly, in a time 7= 1/v, a local
equilibrium distribution function with the density n,
tempera-ture T, and velocity u dependent on the spatial
coordinates.

In the subsequent time the evolution of the quantities n, u,
and T is described by the equations of gas dynamics. If
allowance is made for the terms proportional to 1/v, these
equations contain dissipative terms with the viscosity and
thermal conductivity. They lead to a much slower decay of
fluctuations with time. Since the kinematic viscosity and
thermal diffusivity are of the order of y =~ vtz/v, perturba-
tions of the order of A decrease only as exp(—yt/A?) =
exp(—vtzt/vAz). We can see that the higher the collision
frequency v, the slower the decay of the corresponding
perturbations. The slowest decay is exhibited by perturba-
tions of the maximum scale A = L, where L is the size of the
container enclosing the gas. In the final analysis, it follows
from the kinetic equation (173) that all the fluctuations
should disappear and the function f should eventually

(174)
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become the equilibrium Maxwellian distribution indepen-
dent of the spatial coordinates.

However, the derivation of the Boltzmann equation (173)
is subject to a certain inaccuracy. Although the collision term
describes, by definition, random collisions of molecules, only
the time-average part of this term is retained. It will be more
correct to consider the collision term a random quantity, so
that Eqn (173) should be supplemented by a fluctuation term
equal to the difference between the true random collision
term and its average part St(f). It is found that this
correction, which plays a role of an external random force,
prevents complete relaxation of f and continuously
reactivates thermal fluctuations. It is convenient to divide
these fluctuations into two classes: individual and collective.
The individual fluctuations occur on a scale less than the
mean free path when the motion of the molecules can be
regarded as free. However, on a scale greater than A we have
to speak of collective fluctuations.

These collective fluctuations can be described by the
equa-tions of gas dynamics. The corresponding motion of
the gas splits into two classes: acoustic vibrations and
incompressible motion of the type represented by small
vortices. Each thermal mode of the acoustic vibrations has
an energy T, equal to the sum of the kinetic (37) and
potential (37 ) energies. For each vortex there is an energy
%T. The number of such modes is a quantity of the order of
(L/2)3. Hence, it is clear that the energy of thermal motion of
collective modes, ~(37/2) L3/43,ismuch less than the total of
thermal  energy (37/2)L3n. Their ratio is 1/
APn= dan?= e <1.

Therefore, ifin Eqn (173) we replace the average collision
term with its true random value, we find that the distribution
function evolyes not to the Maxwellian form fp, but to the
quantity fo + f, where f corresponds to thermal fluctuations.
In the presence of these thermal fluctuations a small fraction,
&2 < 1, of the energy is related to the collective degrees of
motion and the rest, 3nT/2)(1 —¢&?), of the thermal energy is
represented by the individual degrees of motion. The total
energy of thermal motion is %nT, in accordance with the laws
of thermodynamics.

Two questions remain: why nonthermal perturbations of
the distribution function relax and whether thermal
fluctuations can be regarded as reversible. In order to
understand the basis for these questions it is desirable to
consider one further possible approach to the description of
the dynamics of a gas with the aid of the Liouville equation.
This equation describes the evolution of the distribution
function W(riy, vi; r2, v2; ...; ry, vy, t) for all N particles in
the gas in a 6N-dimensional phase space:

N N
f’af‘f+zijv,<-va+2ijg,.-Vv,.w —0.

Here, g; is the acceleration of the ith particle. In classical
mechanics the motion of particles is described by the
Hamilton equations

(175)

6r< dp
i _VH =1 = _VH 1
= =G H., mg=Tl=VH, (176)
where
2
H = Z§+Ziv(|ri—rf|) 177)

represents the Hamiltonian operator, i.e. the sum of the
kinetic and potential energies of the particles, p; = mv; is

the momentum of'the ith particle; and g; is the acceleration of
the ith particle. It follows from the Hamilton equation (176)
that the probability W is conserved along a path in the phase
space so that Eqn (175) can be written in the form dW/d¢=
0, where d/dt is the total time derivative along the path. In
other words, the flux in the phases space is incompressible.

The Liouville equation (175) is fully reversible: the state-
ment about the constancy of W along a path is true both as
far as the future and the past are concerned. Therefore, it is
not at all obvious that the statistical description should lead
to irreversibility: after all this is not evident in the Liouville
equation. More likely the opposite is true: the probability W
is constant along a path and for each of the configurations of
the initial coordinates and velocities of the particles the path
is uniquely defined both in the future and in the past.

Let r;(t) and v;(¢) describe the motion of a point in the
phase space for a certain number of initial values. We can
easily see that the function

W, = Hs[r,. —r:(0)]8[v; — vi(1)]

satisfies the Liouville equation. At each moment in time this
function corresponds to one unique point in the phase space.
Any function W can be regarded as the average value W, of
the initial data taken with a certain weight Fo(rio, vio). We
shall now consider the microscopic density in a six-
dimensional phase space

F/(rv) = Z d(r—r)d(v—y;) .

This function plays the same role in relation to W as the
second-quantisation operator N in relation to the wave func-
tion Yy (x1, ..., xy). The only difference is the addition of the
variables v; to the configurational variables r;. Averaging the
function (178) with the weight W makes it possible to find a
single-particle distribution function f(r, v, t). If W, is used
instead of W, the result is the following time-dependent
microscopic density:

Fu(rv.t) = 8 —ri(n)]8ly —vi(0)] .

This function can be averaged over the initial data and
we then again obtain f(r, v, t). We can easily see that the
function (179) satisfies the Klimontovich microscopic
equation:

(178)

(179)

oF,
5 +v-VF,+g-V,F, =0, (180)
where
1
g = —EVJU(|r—r'|)FH(r',v',t) dr'dv . (181)

Eqn (180) is also fully reversible. However, ifaveraging is
carried out over r and over a time interval of the order of the
collision time, then under the conditions of molecular chaos
the last term may be transformed into a collision term. It is
then quite obvious that the assumption of molecular chaos,
i.e. the absence of correlation in the motion before collisions
is precisely that key element which introduces irreversibility
into the Boltzmann kinetic equation.

In order to understand the meaning of the assumption
about molecular chaos, we must consider in greater detail the
scenario of motion of a single molecule.
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Figure 13. Molecule M collides consecutively with molecules 7, 2, 3. If
the velocity of the initial motion is perturbed slightly (dashed line), the
deviations from the initial path increase from one collision to the next.

Fig. 13 The continuous line in Fig. 13 represents the path
of one of the molecules, and the spheres labelled 7, 2, 3
describe the potential of the scattering of a molecule M by the
molecules /, 2, 3. The radius of each ball is regarded as
approximately equal to «; the average path between the
collisions is taken to be A = 1/na?. The initial velocity of
the molecule M is assume to receive a certain perturbation v,
so that its path follows the dashed line that deviates by an
angle yo = v/v; relative to the initial path. We can readily see
that in the next collision this angle increases by a factor A/a
and after the kth collision it is of the order of yo(A/a)*. If the
average distance along the path is denoted by s & k4 and if
s = vt, the result is

= 9 exp(kt) , (182)

where

is known as the Kolmogorov—Sinai entropy.

Hence, we can see that even for a very small initial
perturbation yo < 1 the value of y may become of the order
of unity for

s 1 A\

The dashed path subsequently represents collisions with
very different molecules. Therefore, the motion ofa molecule
in a gas is very sensitive to the initial perturbations.

We shall now show that in addition to the initial
perturbations there are those which are contributed by the
external environment. We shall do this by allowing for those
thermal fluctuations which correspond to the collective
degrees of freedom. If there are no inelastic interactions of
molecules with the walls, these fluctuations become a
component part of the motion of a system of N particles in
a 6N-dimensional phase space. In other words, it should be
regarded as reversible. In the hydrodynamic approximation
such collective fluctuations are created by a random
component of the collision term and the corresponding
energy of the fluctuations is a fraction of the order of &> of
the thermal energy. In the presence of inelastic collisions with
the walls a new source of thermal noise appears and its power
seems to be equivalent to the noise due to the boundary layer
of a gas of thickness A/L. Consequently, the fraction of the
noise due to the external source is

6282%<].

In other words, perturbations on a scale

are introduced from outside, i.e. they are absolutely random
and uncontrollable. Hence we can see that after

-1 1/2 -1
k=1In <i> <ln é) = In [l <£) ] <ln £>
Yo a e\ 4 a
collisions the initial conditions are completely forgotten since
there cannot be any reversibility.

We shall estimate k for air. Then (in the cgs system of
units) we have n= 3 x 10'%, a>= 10715, A= 3 x 103,
and ¢ = na®= 1073, so that if L = 1, we obtain approxi-
mately k =~ 2. After the first two or three collisions the
correlation of the motion of molecules is lost completely!
Therefore, the simplest mechanism for the excitation of the
acoustic noise by the walls is sufficient for the instability of
the particle pathsto lead to molecular chaos under very usual
conditionsin air at normal temperature and pressure. A weak
interaction ofthe gas with the walls is sufficient for molecular
chaos to be established in the gas and the consequence of this
chaos is an irreversible approach to an equilibrium.

The influence of the external environment can be allowed
for quantitatively (but still approximately) by adding small
additional terms to the kinetic equations. Let us begin with
Eqn (180) for the microscopic function F,. The presence of
external perturbations has the effect that in each collision of
the molecules an additional inaccuracy appears in the
collision parameters and the scale of this inaccuracy is £. In
other words, a random distortion of the path of a departing
particle of the order of & is introduced by each collision. We
can say that each of the molecules experiences an additional
random force which produces additional impulses at an
average frequency v equal to the frequency of pair collision.
This situation corresponds exactly to the Langevin equation
(79) and therefore the average result of such impulses can be
allowed for exactly in the same way as has been done in the
derivation of Eqn (84) allowing for the Einstein relationship
Eqn (83). Consequently, the right-hand side of Eqn (180)
should be supplemented by an additional term

Kf = DY, (v% f+ va) ,
t

where D, = £%v2v is the diffusion coefficient in the velocity
space and v} = T/m.

Here K is the diffusion operator in the velocity space. It
acts on the function F, and leads to broadening of the & func-
tions, so that with time the uncertainty (Av)? near each of the
8 functions increases linearly with time, i.e. Avocvi(E2vr)!2.
After a time t & t = 1/v this uncertainty represents a small
quantity Av & €y, i.e. the estimate obtained is exactly the
same as for V. The subsequent collisions characterised by
diverging paths lead to a much faster broadening of localised
‘lumps’in Eqn (179) which appear as a result of averaging of
Fyover the impulses received from the external environment.
Ifthe localisation of the individual components (F,) becomes
of the scale a, then Eqn (181) for the acceleration of particles
can no longer be used because in the course of collisions the
average value (Fu(r, v, HF,(r’, v', 1)) cannot be regarded as
equal to the product of the average values of the function F,,.
A way of bypassing this difficulty is well known: it is
necessary to assume that the functions Fy(r, v, f) and
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Fu(r', v', t) are uncorrelated before the collision. Then the
average value of the third term in Eqn (180) automatically
leads to the Boltzmann equation. Therefore, the ‘molecular
chaos’isin fact created by the external world and is enhanced
by a large factor due to the motion of the molecules.

The random interference of the external world can also
easily be allowed in the Liouville equation (175) by adding
again the corresponding additional terms. We can readily
determine how these terms look. In fact, if the solution of
Eqn (175) is taken to be the microscopic function

W, = H5["i —r;i(0)8[v; —vi(1)]

it follows from the Langevin approximation that we
should allow for the additional velocity diffusion of each of
the particles. Therefore, the generalised Liouville equation is
of the form

ow N N
E+2j:v,‘-VfW+Zgin,.W = KW

i

— 3 mv;
—D‘)ZVV,(T W+Vv,.w> . (183)

We can see that the diffusion operator K leads to
broadening in time of a localised function W,. We can say
that K represents the operator of entropy creation by the
external world. The need to allow for the microscopic
irreversibility has been pointed out by Prigogine [12]. His
approach also includes the entropy creation operator M
which is close in meaning to the operator K (we are using K
only because the symbol M is employed as the measurement
operator). In contrast to Prigogine’s treatment, Eqn (183)
gives the explicit form of the operator K.

The existence of the operator K qualitatively alters the
structure of Eqn (183). This equation is no longer reversible:
the velocity diffusion, no matter how slow, makes Eqn (183)
parabolic and an increase in the entropy occurs in just one
direction, from the past to the future. According to Eqn (183)
the probability W is not simply transferred along the paths,
but also diffuses weakly from one path to another. Asa result
of this we may speak of the ‘molecular chaos’.

However, we have assumed so far that the external
environment itself is close to equilibrium. It is found that
the situation changes radically when the external
environment is not in equilibrium. A physical system which
can exchange energy and entropy with the external world is
known as open. Many open physical systems have the
property of formation of complex nonlinear structures and
processes. This is why they are called complex physical
systems or systems with self-organisation.

33. Convection

Let us consider convection of a liquid in a gravitational field
as the simplest example of an irreversible process in an open
system. Such convection readily appears in any layer of a
liquid when it is heated from below. The warmer parts of the
liquid become lighter as a result of thermal expansion and
they are pushed upwards by the Archimedean force, and
become replaced by cold masses. There is a large number of
convective flows. Let us consider just one of the simplest
examples of convection in a closed torroidal vessel (Fig. 14)
ofradius R.

Figure 14. Liquid in a ring—shﬁ"f)cd vessel is heated from below by a
heater kept at a temperature, T, considerably higher than the
temperature 7o of a cooler in the upper part of the vessel. When the
temperature difference is sufficiently large, convection appears in the
liquid.

We shall assume that the liquid in this vessel is heated
from below and cooled from above. More exactly, we shall
assume that the wall temperature is

Tw = To+3(Tw —To)(1+cos 8),

where the angle 0 is identified in Fig. 14.Let T = T (6, t) be
the temperature of the liquid averaged over the transverse
cross section of the toroidal vessel. [fy denotes the coefficient
of heat exchange with the vessel walls, then the temperature T
can be described by the equation

or v oT T_T

o TRag - T

The liquid is regarded as weakly compressible, so that the
velocity visindependent of @ and can vary only with time. Let
« be the volume thermal expansion of the liquid, so that its
density p acquires a correction 8p = paT. In a gravitational
field this change in the density gives rise to a force gdp. Its
projection along the azimuthal direction is —gddp sin 0 =
—gpoT sin 0. If this force is averaged over the angle 6, the
result is a certain average value. It is this average value that
acts on a ring of the liquid, so that

(184)

pg = —gpa(T sin 6) —nv . (185)

Here the last term with the coefficient #, proportional to
the viscosity of the liquid, allows for the deceleration of the
liquid by the walls.

Averaging of Eqn (184) over the angle 6 shows that the
angle-independent part of the temperature reaches a steady-
statevalue (T )= XTo + Tm).Let T= (T )—T;sinf + T2 cosb.
Then T and T, are described by the equations

aTI v

—+—=T, = —-T 1
at +R 2 1 (86)
6T2 v Tm_TO

2T =T, -0 1
o R V( 2 2 (187)

After averaging T sin 0 over the angle 6 the equation for the
velocity becomes
ov gpo
— =42 T -y
Po + - L=y
As we can see, in the system of three equations for the
variables v, Ty, and T> , two of them — Eqns (186) and (187)
—are nonlinear and only Eqn (188) is linear. The system of

(188)
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equations (186) and (187) has been derived by Lorenz [13],
who has drawn attention to its very interesting features. Usually
the Lorenz equations are written in the dimensionless form

dx
ey —x

dr d )

&y ix—xz. (189)
dt

z

9 _ zixv

dt

where o, r, and b are dimensionless parameters and the
quantities X, Y, Z are selected in such a way that they are
proportional to v, T, and Tz—%(Tm -T,y), respectively.

The system of equations (189) is usually called the Lorenz
model. [ts simplest solutionisX = Y = Z = 0. It describes
the temperature distribution in a liquid at rest. However, the
system (189) has one more steady-state solution:

Xo =Yy = £[b(r— 1)]]/2, Zy=r—1. (190)

Naturally, this solution exists only for r> 1. A comparison
of the second equation of this system (189) with Eqn (187)
readily shows that the parameter r is proportional to the
temperature difference T, —To. Therefore, the solution with
a nonzero velocity vocX appears only after the difference
Tm—To exceeds a certain critical value. Steady-state
convection then can occur either anticlockwise (vocX > 0)
or clockwise (voxX < 0). According to Eqn (190), the
convection velocity is proportional to the square root of the
supercriticality (r—1).

Let us consider the linear approximation of Eqn (189)
when the variables X, Y, and Z are small. In this case the
quadratic terms should be dropped and the third equation of
the system (189) is unrelated to the first two and describes the
decay of Z with time. The first two linear equations have a
solution in the form of an exponential function such that
both X and Y are proportional to exp(yt). The growth
increment y of small perturbations is described by the
dispersion equation:

y2+(a+l)y+a(l—r) =0.

If r< 1, two roots of this equation are negative, i.e. small
perturbations decay with time. However, if r> r. = 1, one
eigenvalue becomes positive, i.e. an instability appears. If
r—1 <1, i.e. if the supercriticality is small, then one of the
modes varies slowly with time: in many branches of physics
these are called soft modes. The quantity X —Y for a soft
mode is small, so that ¥ ~ X. Therefore, in the second and
third equations of the system (189) we can ignore the deriva-
tives with respect to time, so that ¥ and Z are described by the
quasiequilibrium values: Y = X, Z= b~'XY = b~'X2,
These approximate relationships can be used to write down
the second equation of the system (189) in the form
1 dx du

dx 3
:—E—i-(r—l)X—]—) Xo= ey =0 (192)

(191)

This equation should be regarded as the equation of motion
of a material point with zero mass and with a coordinate X,
acted upon by a force F equal to the viscous friction —dX/dz,
and by a force exerted by the potential

—1 1
! X2+—X4+const.

U=-7 4b

(193)

According to Eqn (192), a ‘particle’ slides slowly down to
the bottom of a potential well U. The potential U is very
different for r< 1and r> 1 (Fig. 15).

U U

X X

Figure 15. Dependence of the potential energyJ onX in the case when
(a) r< land(b) r> 1. Atr> 1theparticlein a stablesteady state can be
only in one of the minima of U: 1 or 2.

If r< 1, the potential U rises in both directions from
X = 0, so that X = 0 is a stable steady state. When the
parameter r passes through unity in the direction r—1> 1, a
bifurcation appears: one unstable and two stable positions
are acquired by a material point with the coordinate X and
these positions correspond to steady states.

If we recall that the coordinate X is proportional to the
velocity of the liquid v, we can say that steady-state
convection in the clockwise or anticlockwise direction
appears when the supercriticality is small.

The supercriticality parameter r is frequently called the
control parameter: it is imposed from outside. If the
parameter r rises and passes through unity, the liquid
responds by an instability at the point r= 1 and by a
subsequent spontaneous untwisting of the flow so that
v (r—1)"2. We can say that if 7< 1, the liquid carries no
information associated with its motion: the liquid is simply at
rest. However, if > 1, the liquid has two equilibrium states
differing in respect of the sign of the rotational velocity. This
means that one macroscopic degree of freedom can
‘remember’ one bit of information which for r> 1 is
maintained stably by convection flow. It is readily seen that
within the framework of the adopted macroscopic equations
one bit of information appears directly at » = 1 when the
flow velocity of the liquid is still zero: if r is reduced from
r> 1in the direction of »r = 1, the bit of information about
the liquid is conserved up to r = 1. We can say thatat r = 1
the liquid exhibitsa ‘trend’,i.e. a hint of the appearance of the
macroscopic order parameter v. Then a negligibly small
excess of r over unity transforms this trend into one bit of
information. A further increase in r does not change in any
way the information capacity of our convection ring
regarded as a memory cell: only the velocity v changes, i.e.
the cell becomes more resistant to disturbances.

Real liquids or gases are subject to thermal fluctuations.
In particular, the degree of freedom associated with circular
flow corresponds to an energy %T. Consequently, if r< 1,
there is a grass-line background of the thermal noise of
different modes. In the limit r— 1, a circular-motion mode
seems to separate from other modes: its amplitude becomes
greater since the decay decreases and the pumping of the
thermal noise remains the same as before. It is this
phenomenon that can be called a trend: the mode amplitude
stands out by its height among ‘coevals’. The passing of the
parameter rthrough unity converts this epithermal mode into
macroscopic flow.
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Let usreturn to the complete Lorenz model of Eqn (189).
It has three steady-state solutions for »> 1, but only two of
them described by Eqn (190) are stable when the
supercriticality is small. Let us consider what happens if we
increase the parameter » without limiting it to small values.
The first question, whether the equilibrium of Eqn (190) is
stable, can again be considered by a linear approximation
near an equilibrium. An appropriate analysis shows that
there is a second critical value r., above which a second
bifurcation takes place. However, this is not all. The system
of equations (189) is found to have many solutions
representing different modes of motion. The most surprising
among them, discovered by Lorenz [14], corresponds to the
values of the parameters r = 28,6 = 10, and b = 8/3. This
solution is known as the ‘strange attractor’. Lorenz has
shown that the system (X, Y, Z ) undergoes complex chaotic
motion, resembling a dance, around two unstable foci.
Beginning from any point with small values of X, Y, Z the
system goes over to an unstable focus around which it begins
to describe spirals of amplitude increasing with time, i.e. to
follow paths along an untwisting spiral. After a certain
number of such turns the system abruptly moves to the
second focus around which it again forms paths along an
untwisting spiral. After several turns of the second spiral the
system jumps back to the first spiral in order to repeat
approximately the same motion. However, there is no
periodicity in such motion: the times for which the system is
close to one of the foci and the number of turns in each of the
spirals seem to be perfectly random. Chaotic motion appears
in a perfectly determinate dynamical system with three
coordinates X, Y, and Z.

Although the form of the equations of motion in the
system (189) is very simple, it does not give a clear idea how
the chaos appears. With this in mind, one of the equations
should be written in a more complex form. The variable

1 dx
Y =X +- —
o dt

from the first equation in the system (189) should be
substituted into the second and third equation, and then the
variable

1 dz
Z=-(xy —-=
b( dt)

should be substituted into the second equation. We thus
obtain an equation for X which again isnot closed, but it now
has the following form which is very convenient for

qualitative analysis:

1 d*x - I+o0—X>dX dU X dZ

o d? o & aX b
Here U is the same potential (193) with two humps (for
r> 1). Without the last term Eqn (194) has the form of the
equation of motion of a material point in a potential well U
with a friction force proportional to dX/d¢ and a friction
coefficient whose sign is reversed from positive to negative
for X2 > 1 + o. The last term has the form of an elastic force
with a time-dependent elasticity coefficient

1 dz

b dt

(194)

Ifthe derivative dZ/dt is not small, this term depends on two
other variables Y and Z which have complex time depen-
dences, and acts as a variable driving force. If the correlation

between dZ/dt and X is ignored, it seems to be a random
force. In other words, a material point in a two-hump
potential well moves under the action of a random force
and the friction coefficient can be both positive or negative.
This accounts for qualitatively for the nature of motion of a
strange attractor, but its quantitative analysis is preferably
carried out by going back to the initial system of equations
(189).

At high values of the parameter r the Lorenz system has
not only a strange attractor, but a whole series of different
dynamical regimes. These regimes will not be discussed in
detail here (the reader is directed to, for example, Ref. [34]).
We shall simply point out that these solutions are associated
with convection and that convection itself is related to an
enhancement of the heat flux from a heater to a cooler. In
fact, a vertical heat flux ¢, calculated unit area of the
transverse section of the vessel, is ¢ = ¢vT sin 6, where c is
the specific heat. Averaging of ¢ over the angle 6 gives
qg= ovT/2, i.e. {q) xXY. If the system (189) is averaged
over time, it is found that the time-average heat flux is
proportional to bZ, where the bar over Z denotes time
averaging. In a stable state it is found that Z = 0 and in a
regime with convection the relationship () «b(r—1) is
obeyed approximately. In other words, convective motion is
related directly to enhancement of heat transfer, i.e. to an
increase in the rate of rise S, of the entropy of the
environment.

The convection in the Lorenz model is found to have the
main common features of dissipative nonlinear processes
considered in the approximation of a small number of the
order parameters. An increasing deviation from equilibrium
(i.e. an increase in the difference T — 7o) gives rise initially,
beginning from a certain critical value of this control param-
eter, to spontaneous new nonzero order parameters (7; and v
in this case). A further increase in the supercriticality causes
these parameters to grow, i.e. a steady-state bifurcation of
Eqn (190) appears and there is a corresponding increase in
the rate of dissipation, i.e. in S.. Then, a further increase in
the supercriticality Ty, — T gives rise to a second bifurcation,
so that the coordinate parameters X, Y, Z become dynamical
variables of a complex nonlinear system (189). A further
increase in Ty, —To =~ r— 1 considered within the framework
of the system (189) may result in interchange of the various
modes. New order parameters may appear in a real physical
system and they describe higher harmonics of the motion of
the liquid. As the number of harmonics increases, the motion
becomes more and more complex: for simplicity, we shall call
it simply turbulent. Such turbulent motion together with heat
transfer from the heater to the cooler represents a complex
scenario of approach to an equilibrium in a system far from
it.

34. Self-organisation

Our convection system is a typical example of self-
organisation: as the nonequilibrium parameter r increases, a
liquid becomes unstable at »= 1 and then steady-state
convection is established; at high values of r there are
various modes of stochastic motion of the strange-attractor
type. There is an enormous number of other types of
nonlinear self-organisation which are described in
books [14—19] and in the literature cited there.

Many of the nonlinear systems are so beautiful that they
are quite suitable for brightening up the interiors of modern
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apartments or houses. For example, the structure shown in
Fig. 16, which is known as the ‘plasma sphere’, can be seen
quite frequently in the shops of Western cities.

S

Figure 16. ‘Plasma sphere’ in which glow-discharge ‘plasma snakes’
appear, rise upwards, and pairwise merge there.

This is indeed a sphere made of a dark glass, %m in
diameter, filled with luminous moving ‘snakes’. Each snake is
a plasma formation representing a weakly luminous
filamentary discharge. Such a discharge is very similar to
the luminous discharge in conventional neon tubes used for
illumination of major cities at night. It is known as the glow
discharge: it appears when the electric current in a low-
pressure gas is not too high. In the plasma sphere the glow
filamentary discharge develops between a spherical metal
electrode located at the centre of the system and a weakly
conducting metallised surface of the outer glass sphere.

Each discharge snake, and up to twenty of them may
appear simultaneously, is directed on average in the radial
direction. However, like a live snake, it bends slightly and
vibrates all the time and there are several bending periods
along its length. At each of its ends the snake has a
characteristic trident, which like a tiny cat’s paw, shimmers
continuously and collects charges from the appropriate
electrode. These snake discharges are in continuous motion.
In addition to the twisting, each of the snakes slowly rises
upward and this is obviously the result of convection. The
snakes collect in the upper position and merge in pairs, so
that some of them disappear permanently. On the other
hand, in the lower part of this system there is a continuous
process of creation of new snakes, they multiply, split into
two, and rise upwards, where they disappear.

In spite of its complexity, the whole pattern can be readily
understood from the physical point of view. Naturally, it is
theoretically much simpler to consider an absolutely sym-
metric glow discharge between the inner and outer electrodes.
However, such a discharge is unstable: heating of the gas and
a reduction in its local density with a corresponding
reduction in the electric resistance mean that an electric
current flows more readily along relatively narrow tubular
channels. The discharge splits into plasma filaments. Since
these filaments are lighter, they float up under the
Archimedean force. The interaction of the filaments with
the gas currents and with one another is the reason for the
formation of a pattern of snakes, which is organised in a

complex manner and which resembles the mythological head
of the Medusa (one of the Gorgons). We can see why cat’s
paws form at the ends of each snake. [fthe conductivity ofthe
electrodes is low, the density of the surface charge directly
opposite the discharge becomes less and the end of a snake
with the opposite charge is likely to split and travel from
point to point collecting the surface charge. The qualitative
behaviour isthus absolutely clear and even somewhat boring.
Nevertheless, the plasma sphere fascinates and attracts by its
apparent mystery: it resembles a living thing with conscious
motion.

The example of the plasma sphere makes it possible to
follow once again all the main characteristics and compo-
nents of self-organisation. It begins in a system which is close
to its stability margin. An instability, which in this case is the
splitting of the discharge into filaments, begins from a hint of
the appearance of a future filament. Only one bit of
information is sufficient for each hint. As the external non-
equilibrium parameter (in this case current) increases, real
formation of filaments takes place. The initial spherical sym-
metry is disturbed: we can say that spontaneous symmetry
breaking occurs. As the gas in the filaments becomes heated,
convection begins to play a role, i.e. the next bifurcation
occurs and a new order parameter (gas-dynamic velocity)
appears. The cat’s paw at the end of each snake represents
one further bifurcation with its own instability mechanism.
On the whole, a complex nonlinear physical system with
chaotic motion is formed. The motion is maintained for a
long time if the system is open: an electric current from an
external source must be passed continuously through the
plasma sphere. Moreover, this source should supply energy
in a sufficiently ordered form: in accordance with the
Brillouin terminology, a negative entropy, i.e. an entropy
with the opposite sign, should be ‘injected’ into the system.

Let us now consider what this means in the case of the
plasma sphere. The snakes exist only because of local heating
of the gas inside a filamentary discharge. In other words, the
gas inside the filament should be heated but the system as a
whole remains at room temperature, i.e. the excess heat is
transferred to air across the glass sphere. If there is a flow of
heat, it means that entropy is created. The plasma sphere
converts some of the highly organised electric energy into
heat, which isthen disipated into surrounding space. Entropy
is created continuously inside the sphere and it flows together
with heat into the surrounding space. If the entropy flux is
blocked, a plasma filament ‘dies’. In the plasma sphere we
need to remove continuously the ‘slag’ of the newly created
entropy: figuratively speaking, we have to introduce an
entropy with the opposite sign. If entropy is a measure of
disorder, then entropy with a negative sign (negentropy) is a
measure of order.

It follows that self-organisation requires two elements to
‘feed’ it: energy and negentropy. Only their sum can ensure a
steady maintenance of a structure of a nonlinear dissipative
system. Systems of this kind are usually called complex open
physical systems.

A clearer idea of the entropy (or information) fluxes can
be gained by considering the simplified scheme in Fig. 17. In
this figure the abscissa represents the absolute maximum
entropy of a system M when it is isolated from the external
world and the ordinate gives the internal entropy S; with the
opposite sign, i.e. the negentropy. If the system is initially
perturbed from a stable equilibrium, its negentropy increases
to So. In monotonic relaxation processes (Fig. 17A) the
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Figure 17. Schematic representation of the entropy fluxes in a
nonequilibrium system M: (A) monotonic increase of the internal
entropy S;i; (B) in the presence of N pivots a part of the entropy S
decreases against the general background of'an increase in the entropy Si;
(C) ifentropy flows through the external system, the reduction in the part
of the entropy of the system S{ may be due to a ncgative entropy
(information) of the external medium.

negentropy of the system smoothly slides down, apparently
‘falling’ in the direction of the ‘force of gravity’. However, a
relaxation process of this type is relatively rare. For example,
if in a perfectly homogeneous gas the particle velocity
distribution function is disturbed identically at all the
points, a fast slide of the type shown in Fig. 17A occurs.
However, if such a perturbation is not homogeneous in space,
the picture changes drastically. Collisions convert the
distribution function to the Maxwellian form only locally:
the local equilibrium order parameters (density, velocity, and
temperature) evolve then in accordance with the laws of gas
dynamics. Collisions then even prevent fast relaxation to an
equilibrium: the more frequent the collisions, the smaller are
the kinetic dissipation coefficients. In Fig. 17B this variant is
identified as dissipation with a connectivity (number of links)
N, which prevents a uniform slide of the entropy level. We
apparently have a lever with its large arm dropping and a
small arm which can rise. In other words, dropping down to
the ‘centre of mass’is accompanied by a rise of a small part of
the system: an increase in the order appears in the number of
degrees of freedom, i.e. self-organisation takes place.

The variant in Fig. 17C shows a more complex self-
organisation scenario when the second arm with a
connectivity N ' prevents dropping of the system negentropy
because of the flow of entropy to the external world.
The result is an open system in which ordering is due to an
increase in the entropy S. of the external world.

The entropy AS; flowing out of the system M represents
heat either partly or mainly. This means that the entropy flux
is accompanied by an energy flux. Consequently, a steady
state in a self-organised system M cannot be maintained
simply by removal of the excess entropy: energy has to be
applied to the input of this system. The energy delivered to
the system should be more organised compared with heat: the
entropy per unit of this energy should be less than 7o', where
T.isthetemperature of the external medium. In other words,
it is necessary to feed the system simultaneously with both
energy and negentropy.

On Earth the most powerful source of energy and
negentropy is solar radiation. It is this radiation that sets in
motion the mechanisms of self-organisation in the
atmosphere, oceans, and biosphere of the Earth.

35. Approach to equilibrium and collapse

Many of the processes discussed above represent relaxation,
i.e. the approach to thermodynamic equilibrium either in
systems initially far from such an equilibrium or in systems
disturbed from equilibrium by other relaxation processes.
Let us try to discuss them from a general standpoint. Let us
begin with the simplest example of one particle in a potential
well (Fig. 18).

Figure 18. Classical material point M in a potential well (a) undergoes
weakly damped vibrations and transfers its energy to the external
medium. A quantum particle (b) can transfer its energy by emitting
radiation quanta.

If a classical particle M is placed in the potential well
shown in Fig. 18a, then this particle vibrates periodically
with an amplitude which decreases monotonically because of
the friction force. The energy ¢ of the vibrations is gradually
transferred to the medium until this energy reaches the
thermal vibration level, which is equal to the temperature of
the medium T.

It is quite obvious why this occurs. After all, a
displacement of the particle M from its equilibrium
position, imparts to it a greater energy, i.e. it ‘drives’ an
energy ¢ much greater than temperature into one degree of
freedom. If this energy is simply converted into the thermal
energy of the medium, the entropy of the medium would
increase by AS = ¢&/T. Consequently, our initial state is far
from equilibrium and has a negentropy &/7. The simplest
scenario of disappearance of this negentropy is the
dissipation of the energy of ordered oscillations of the point
particle M simply into heat, which does indeed occur because
of the friction forces.

Naturally, there are also more complex scenarios of such
a transition. For example, the point M can be used as a
weight to set in motion a pendulum clock and then the
process of dissipation of energy into heat, i.e. the
disappearance of the negentropy, is different.

Near the bottom ofthe potential well in Fig. 18a the point
particle M oscillates thermally. These oscillations can be
described following Langevin, i.e. the frictional force may
be supplemented by random impulses from the external
medium. On average, the total energy of the particleisthen 7.

Let us now consider a quantum particle (Fig. 18b). The
energy of such a particle is quantised. For example, in a
harmonic potential the energy ofa level nis ¢, = hwo(% + n),
where wy is the vibration frequency. The initial state of the
particle need not correspond to just one level. For example, in
the case of a harmonic oscillator it is possible to construct
what are called coherent states from a superposition of wave
functions of different levels. However, even in the more
complex case of an anharmonic oscillator we can select as
the initial wave function any superposition of eigenfunctions.
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However, the specific nature of selection then is manifested
quite rapidly during subsequent evolution.

Each level n has its own eigenfrequency w, = &,/h, where
&y is the corresponding eigenenergy. Therefore, a particle M
can transfer energy to the medium if it ‘itself searches for’
resonances at frequencies @mn= n—,. If such
resonances are found, then even in the case of a very weak
interaction with a medium the particle M may transfer energy
to the medium. However, the process of relaxation does not
begin from this event. If the oscillator is anharmonic, the
frequen-cies w2, W23, ..., do not coincide and they therefore
find different resonances in the external medium. The first
effect is the loss of the phase difference between the various
levels. The wave functions of different levels lose their mutual
coherence and, therefore, the wave function of the particle
collapses into one of the levels. The probability of this
collapse is equal to the square of the amplitude. In view of
energy conservation, a similar collapse should also occur in
the system in which the particle is ‘prepared’ in a state of
superposition of several levels. In other words, the collapse of
the function of the observed particle seems to be transferred
to the system that prepares the particle for the subsequent
observation.

When the particle ‘settles’ at a particular level, the
processes of emission of quanta 7w, fiwas, etc. begin, i.e.
the particle ‘drops’ down the levels. Finally, at the lower
levels, thermal equilibrium is established: the particle either
emits or absorbs quanta and reaches equilibrium by emitting
thermal radiation. The last process is also accompanied by
quantum transitions, i.e. by the collapse to one level, then to
another, and so on. At any given moment one quantum
particle can be only at one level if coherent links of some
quantum states of radiation with other states are not
established deliberately in the external medium. The
transitions accompanied by the emission of radiation or
emission of field quanta represent the collapse of the wave
function of the particle. We can say that the concept of
collapse is implicit in the concept of quanta: instead of the
term quantum transitions, we can equally well consider the
collapse of wave functions.

We shall now consider a somewhat more complex
thought experiment. We shall assume that the potential of
Fig. 19a is deformed adiabatically slowly in such a manner
that instead of one minimum, two potential energy minima
are created. We shall also assume that a particle is at the
lowest energy level.

More rigorously, in a potential with two wells and a large
hump between them we have to allow for the presence of two
lower levels. One of them (the lower) corresponds to a
symmetric wave function and the other to an antisymmetric
function. Ifthe initial state is set very accurately, i.e. if it is set
by adiabatic deformation of the lower state in the initial
single well, then the particle is in a symmetric state.

Let us now consider various thought experiments on this
particle. First of all, let us assume that two wells (Fig. 19a)
are sufficiently far apart to seem to ‘lock’ the wave functions
in two ‘boxes’. The energies of the symmetric and
antisymmetric functions are then found to be practically
identical. Con-sequently, the energy levels in the left-hand
and right-hand wells are also identical and the wave functions
of the particle in each of the wells are correspondingly equal
to the half-sum and half-difference between the symmetric
and antisymmetric functions.

Figure 19. Lower energy levels in a two-hump well (a) represent a weakly
split doublet. If a weak external interaction destroys the coherence of the
right-hand and left-hand parts, the wave function collapses into one of the
potential wells. The corresponding symmetry breaking can be detected
from outside, which is equivalent to measurement: out of two possible
states (b) only one is real.

Let us now begin to ‘heat’ the particle by bringing it into
contact with an external thermostat. Then, in addition to the
lower levels, higher levels begin to play a part and the particle
may be transferred to these levels with the probability given
by the Boltzmann distribution. However, a different effect is
more important to us. The thermal noise disturbs the
coherent coupling between the right-hand and left-hand
wells. The particle may then exist only in one of the boxes.
Consequently, the wave function does exist in one of the
boxes but not in the other. The collapse of the wave function
takes place, but at this stage without the collapse of the
probabilities: the probability of finding the particle in one of
the boxes is still exactly equal to one-half. The situation is
exactly similar to that considered in the first sections of this
paper. We have a particle in a thermostat separated by an
internal barrier. We can try to find in which of the boxes
inside the thermostat the particle is located. This requires an
appropriate measurement, which is accompanied by an
irreversible process in the external world. After such a
measurement the distribution of the probabilities for the
particle collapses into the state (0, 1). The entropy of the
particle then decreases by one bit and an irreversible process
accompanied by an increase in the entropy by at least one bit
should take place in the external world. In other words, we
are dealing with a typical information process.

Let us now assume that no such measurement takes place
and we again begin to lower temperature to zero. In the final
state the particle is again at the lowest the level in one of the
wells, but now we can say precisely that one of the boxes is
empty and the particle is inside just one of these boxes. In
other words, only a very weak contact between the system
and the external world and the corresponding destruction of
the coherence seems to have resulted in a ‘spontaneous
symmetry breaking’, so that the wave function of the particle
collapses into one of the boxes. We can again try to detect in
which ofthe boxes (wells) the particle is located, but this time
the process of measurement does not affect the wave function
and simply causes the collapse ofthe probability distribution.

Let us consider the situation when this measurement is
not carried out. We can then imagine a mixed ensemble of
many states, half of which have the half-sum and the other
half the half-difference of the symmetric and antisymmetric
wave functions. In other words, in half of the states the
particle is in the left-hand well and in the other half'it is in the
right-hand well. Then each of the states begins to oscillate
since the corresponding wave function passes periodically
from one well to the other. The frequency of such oscillations
is Ae/h, where Aeg is the difference between the energies of the
symmetric and antisymmetric states. [fthe frequency of these
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oscillations is known, we can predict the moment when the
wave function again collects in one of the wells from the
previously isolated boxes. If we now detect the presence of the
particle in one of the wells, we automatically induce the
collapse of the previous probabilities, i.e. we shall determine
to which subensemble a given particle belongs.

Instead of this very long description of a scenario, let us
now consider a simpler example. Let us assume that we wish
to carry out a measurement, i.e. to detect in which ofthe wells
(Fig. 19a) the particle is more likely to be located after the
second well has been formed by slow deformation of a single
well (Fig. 18a). Let the instrument be constructed in such a
way that after measurement the wave function collapses into
just one well, i.e. that only one of the possible states is real
(Fig. 19b). Such an instrument should destroy the coherence
of the initial state and create a mixture of symmetric and
antisymmetric functions. This means that it should transfer
an energy of at least 1 Ag to the particle. However, together
with the collapse of the wave function (in one of the wells) the
instrument also induces the collapse of the probabilities in a
specific well. This means that the instrument of the external
world should experience an increase in the entropy by at least
one bit, i.e. In 2.

Our very simple example has thus made it possible to deal
with a number of problems. First of all, the collapse of the
wave functions can be separated from the collapse of the
probabilities. As established above, the thermal motion itself
is sufficient to destroy the coherence and cause the collapse of
the wave function into one of the possible states. As long as
this collapse is not observed outside, it is better to speak of
the conversion of a pure ensemble into a mixed one: we have
here an irreversible process with a set of probabilities in the
final state and our particle is a member of this ensemble. We
can say that the collapse is a fluctuation and if we are not
particularly interested in fluctuations, we can use this average
statistical description with the corresponding probabilities,
i.e. the density matrix of the mixed state.

However, the collapse itself is an interesting physical
process and it could be studied in the case of quantum mea-
surements. A quantum measurement is a process organised in
such a way that the wave function and the probabilitles
collapse simultaneously. We seem to have a unique informa-
tion process. According to Fig. 2, a measurement does
indeed cause the collapse of the wave function and of the
prob-abilities. Information about a quantum object is
perceived, i.e. stored in a perceptor P, and this is
accompanied by a simultaneous ‘release’ of a value U; of a
physical system U. All this is possible because of a feeder F,
which transfers some of the negentropy (information) to the
perceptor and some of the entropy W = I, — I is ejected in
the form of ‘slag’ to the surrounding medium. In the physical
object itself the coherence is lost and the wave function
collapses into just one of the states. Therefore, a quantum
measurement repre-sents a process far from equilibrium and
it can be considered as one of the scenarios of approach to
equilibrium.

We shall consider one further aspect of the model in
Fig. 19a. If the potential wells in Fig. 19a are moved
sufficiently far apart, the system obtained can be regarded
as a memory cell. A particle placed in one of the boxes can
now remain there indefinitely, retaining one bit of
information. This bit can be imparted initially by
deformation of the well of Fig. 18a so that it forms the
potential of Fig. 19a and this is accompanied by an

asymmetric correction so that a particle drops to the lowest
level in just one of the wells. This asymmetric correction is the
control parameter which initially conserves one bit of
information and then deposits it in a cell. Another variant
of creating an asymmetry is more cumbersome: the second
wellin Fig. 19a could be formed far from the first well (where
the particle is located) and then bring it closer in the empty
form and thus create the symmetric cell of Fig. 19a. One
further variant involves the formation of many cells of the
type shown in Fig. 19a and then collapse into them of the
wave functions by ‘heating’ the cells; this is followed by
separation of the cells into ‘right-handed’ and ‘left-handed’
by measurement. The cells can then be used to construct a
text. However, even more attractive is the possibility (if it can
be realised) to record the text directly by the collapse of wave
functions inside the cells.

A set of many cells of the type shown in Fig. 19a with the
wave functions collapsed inside them can be regarded as a
form of a ‘quantum memory’. The text can be retrieved from
such a memory simply by identifying which well contains the
wave function. There is not any need to destroy the existing
quantum state: all that is necessary is an external feeder with
a sufficient store of the classical negentropy and a detector
which recognises which well is filled.

We shall now consider the approach to equilibrium of a
system of many particles, namely a gas, which is one of the
simplest systems of this kind. As demonstrated earlier,
classical analysis of the motion of atoms or molecules in a
gas leads naturally to molecular chaos and to the Boltzmann
equation. The approach of a dense gas to equilibrium, con-
sidered within the framework of the Boltzmann equation,
goes over naturally to the description based on the equations
of gas dynamics with dissipation.

However, gas atoms are not classical particles but
microparticles. How can one construct a more logical
picture of the process? We can do this by considering a
separate quantum packet of a randomly selected particle.
Since the particles are indistinguishable, it is best not to speak
of a specific particle, but of a wave packet corresponding to
one particle. The motion of such wave packet causes its
scattering by other packets and its shape may resemble that
of an expanding cloud with a complex jagged shape. Some
parts of this cloud rapidly lose their mutual coherence, so that
the particle must unavoidably fall into one of the parts. We
can say that the wave packet of such a particle collapses into a
more compact wave packet. However, this collapse is not
observed. The collapse of wave functions inside a gas are
indistinguishable from thermal fluctuations: they cannot be
measured from outside and they are not accompanied by the
collapse of the observed probabilities. Therefore, inside a
small macroscopic volume the process of relaxation occurs in
exactly the same way as for classical particles. Consequently,
the distribution function becomes locally M axwellian and the
gas acquires macroscopic order parameters (temperature,
density, velocity). Macroscopic gas particles have a very
short de Broglie wavelength, so that their wave functions
can be regarded as collapsed into quasiclassical functions.
Therefore, the equations of classical gas dynamics, with all
their consequences, can be applied to the gas as a whole.

36. Sokolov effect

The collapse of wave functions of gas atoms cannot usually
be observed. However, it does not mean that the process is
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always hidden and we shall now describe an effect in which
the role of such a collapse is the dominant one. We shall
discuss the effect discovered experimentally by Yu L Sokolov
[36, 37] and we shall call it the Sokolov effect. This effect was
detected in atomic interferometry experiments [36] carried
out with the use of apparatus shown schematically in Fig. 20.
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Figure 20. Experimental setup for atomic interferometry. Here, S is the
source of hydrogen atoms in a metastable state 25; 7 and 2 are double
slits with a longitudinal electric field in the gaps; D is a detector of
radiation due to 2P — 1§ transitions.

A beam of excited hydrogen atoms in a metastable state
2§ is generated in a special source S: hydrogen ions are
extracted from a small plasma source and accelerated to an
energy of about 20 keV; they are then subjected to a charge
exchange process in a gaseous target. Beyond this target
many excited atoms are formed, but at a distance of a few
metres only the metastable 25 atoms remain. These atoms are
first transmitted by a pair of miniature slits (/) to which a
longitudinal electric field is applied, i.e. a small capacitor is
formed. Each atom becomes polarised in this longitudinal
electric field, i.e. a state representing a superposition ofthe 25
and 2P states is formed. The state 2P is no longer metastable
and a dipole transition causes its decay to the ground state
accompanied by the emission of a Lyman-alpha photon
which can be recorded with a detector, D. In addition to
the first capacitor (/) there is also another capacitor (2)
connected rigidly to the detector D.

After crossing the first capacitor (/) the state 2P decays
monotonically, so that the detector D of the Lyman-alpha
radiation yields a monotonically falling dependence as the
detector is moved away from the slits (/) to a distance L
(Fig. 21a). However, if the second capacitor (2) with an
electric field E» is placed in front of the detector, the
coordinate dependence of the intensity of the Lyman-alpha
radiation I>p(L) shows a very clear interference pattern
(Fig. 21b). It appears because the energy levels of the 2§
and 2P states are separated from one another by the Lamb
shift with a frequency of about 10° Hz. The velocity of a
hydrogen atom with an energy 20 keVisabout2 x 10% cm s
I. Con-sequently, the phase of the 2P amplitude oscillates
relative to the phase of the 25 amplitude, changing by an
amount 2w in a distance of about 0.2 cm. The second
capacitor (2) creates a new admixture of the 2P amplitude
to the 25 state and adds it to the component created earlier in
the first capacitor (/). Since the phases of these two
components are different, atomic interference between the
two 2P amplitudes becomes possible (Fig. 21b).

[t must be stressed once again that we are not speaking of
interference between two ‘rays’, but of interference between
two 2P amplitudes inside the same atom. Since the 25 + 2P
superposition appears at an electron cloud shifted relative to
the proton, interference apparently takes place between two
dipole shifts of an electron.

The Lamb shift is by itself small, but the real difference
between the energy levels of the 2§ and 2P states in this

experiment is even less and is practically zero. This is because
the shift of the levels is induced by static electric fields
which do not alter the total eigenfrequency of an energy
level. Therefore, a small change in the energy of an electron
level is compensated for exactly by a corresponding change
in the kinetic energy of an atom. We can say that if allow-
ance is made for the kinetic energy of the proton, the levels
28 and 2P have the same energy, so that the transitions
28 — 2P and 2P — 25 are apparently equivalent to a change
in the polarisation of a particle without a change in its
energy.

These atomic interference experiments are in good
agreement with standard quantum theory. They have made
it possible to measure the Lamb shift with a very high
precision. However, this is not of prime interest to us. The
most important feature is that in the Sokolov experiments a
small admixture of the 2P amplitude appears after passage
through the second gap 2 even in the absence of any electric
field at this gap. Moreover, this admixture appears also when
a 2S5 atom simply flies near a metal plate (Fig. 21c¢). Precisely
this phenomenon will be called the Sokolov effect.

The effect is fairly strong. Its results appear as if a
longitudinal electric field of the order of several volts per
centimetre were present near a slit or a metal plate, but under
the experimental conditions the appearance of a field of this
order of magnitude is quite impossible. Since the effect is
strong, interference can be observed even when both capaci-
tors are replaced with metal plates (Fig. 21d). Deliberately
designed experiments have shown that this ‘daemon’s field’
(which is the name used by Sokolov) polarises a 25 atom in
such a way that its electron shell stands away somewhat from
the proton.

loglrp
E,
2 | 25 || 25 +2P
I Lz
E, E,
b 25 1] 25+2P ]
| s 11
E,
o 25 1] 25 +2P
[ (i Lyp L
+ Ml %D
4 25 25 + 2P TN
| I L
M M D

Figure 21. Experimental setup for atomic interferometry. (a) After
crossing a capacitor with a field £, a mixture of 25 and 2P amplitudes is
formed, atoms in the state 29 decay, and the corresponding intensity /»p
falls monotonically when the distance L from the slit is increased.
(b) Second slit with the field E, gives rise to interference patterns
(dashed curve) in a weak field E; and (solid curve) in a strong field E».
(c) Weak interference appears even when the second capacitor is replaced
by metal plate M. (d) Even weaker interference is detectable when both
capacitors arc replaced with metal plates M.
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Figure 22. (a) Atom A with dipole moment d flies at a velocity vo above a
metal at a distance I from its surface. The thickness of the layer of the
interaction with the conduction electrons is I. (b) In a coordinate system

in which an atom is at rest there are two electrons, ¢’ and ¢, which travel at
an angle to the metal surface and are then reflected, escaping into the bulk
of the metal.

All attempts to account for the Sokolov effect by the force
interaction of an atom with fluctuating electric fields or with
an image field in a metal have not been successful: they give
contributions which are several orders of magnitude less than
the required value. However, the effect can be explained on
the basis of the ideas on the collapse of wave functions of
electrons in a metal [38].

In this explanation it is necessary to consider in greater
detail the interaction of an excited 25 atom with electronsin a
metal. For simplicity, we shall consider the case when an
atom A flies along the surface of a metal at a constant
distance /p from this surface (Fig. 22). The velocity of the
atom is vo. In Sokolov’sexperiments the hydrogen atoms had
an energy ofabout 20 keV, so that vo & 2 x 108 cm s—!. This
value is somewhat greater than the velocity vr of electrons in
a metal at the upper levels of the Fermi distribution, which
amounts to about 10% cm s—!,

Let the z axis be parallel to the motion of the atom. The
28 — 2P dipole transition along this axis corresponds to a
dipole moment d &~ 3ape, where ag is the Bohr radius and e is
the electron charge. We can say that such an atom interacts
with a conduction electron whose number is i at a point M;
(Fig. 22a) in accordance with the Coulomb law with the
potential U; = edz/r®. This interaction is very weak. In no
way can it disturb the coherence of a wave function of an
atomic electron, but it can shift somewhat the phases of the §
and P amplitudes. This process corresponds to the creation of
a small admixture of the P state from the original S state by
an off-diagonal matrix element of the interaction. Our task is
to estimate this admixture created by all the conduction
electrons.

Let n be the density of the conduction electrons. The
order of magnitude of this density is given by n & a53T/EF,
where T is the absolute temperature (in energy units) and Er
is the Fermi energy. We shall introduce [ = n='3 = ao(Ex/
T)3 for the average distance between the conduction
electrons at the upper Fermi levels.

The interaction of an atom with each conduction electron
is formally described by a quantity U;, but the total inter-
action of all the electrons with an atom is not the sum of all
the U; contributions: it is strongly suppressed by the presence
of an ion core and by the correlations of electrons with one
another. The main correlation, which can be called a local
quasineutrality, appears in the bulk of a metal. Each charge,
including the charge of every electron, is surrounded by a
shell with the opposite charge. In a plasma, i.e. in a system of
charged classical particles, the characteristic charge-
screening length is equal to the Debye radius. In metals this

length is approximately equal to the average distance /
between the conduction electrons. We can therefore assume
that only those electrons which are in a surface layer of
thickness / do actually interact with an atom.

Each electron travelling from the interior of a metal in the
direction of its boundary and then reflected back into the
interior remains for a time At = I/vg in the surface layer.
Therefore, it seems that during the time interval At all the
surface electrons are replaced with new ones that arrive from
the interior of the metal.

We shall now consider one of the electrons in the surface
layer of thickness /. If there is only one electron, then in the
time At it should induce a change Aap; of the amplitude of the
2P state (on the assumption that the amplitude ofthe 25 state
is close to unity), which is of the order of Aap; & U;At/h.
However, the total change in the amplitude Aap is not always
equal to the sum of the random quantities Aap;. This is
because the contributions Aap; are correlated in such a way
that the sum of the amplitudes practically vanishes. This
condition can be called external quasineutrality: the motion
of electrons in the surface layer is perturbed weakly in such a
way that the total electric field outside the metal is weak, i.e. it
does not exceed the thermal noise value E T7'/2lo_3/2.
Therefore, the effect of the total change in the amplitude
Aap seems to be always excluded. However, this is not quite
true.

The interaction of the conduction electrons with an atom
should in fact be considered as a single quantum process so
that the phase shift Aa; applies not only to an atom but also to
a conduction electron whose number is i. After the
interaction this electron escapes into the interior of the
metal and there, because of the loss of coherence, its wave
function collapses so that out of a wide packet of a wave
reflected on the surface only a small fraction remains after the
collapse ofthe y function. We can say that each pure state of
the wave packet is converted into a mixed state, but then a
nonforce correction may also appear in the phase Aap;. This
effect is similar to a correlation pair of particles in the EPR
paradox: the collapse of the wave function of one of the
particles which has already ceased to interact alters the wave
function of the particle correlated with it. The EPR paradox
is not of the force but of the correlation type, such as, for
example, the Pauli principle. Therefore, the correlation phase
shifts do not obey the quasineutrality rule and the sum of the
phase shifts does not vanish: these phase shifts are not due
only to the average electric field acting on an atom, but also
to the processes in the interior of a metal.
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We shall now try to estimate the order of magnitude of
this effect. We shall do this by adopting a coordinate system
moving together with an atom (Fig. 22b). In this coordinate
system the electrons in a metal move relative to an atom so
that they approach the boundary and are reflected from it at
an acute angle relative to the surface (Fig. 22b).

We shall consider two electrons, €’ and e, reflected from
the boundary of a metal at exactly symmetric points, M’ and
M, at the same time. A macroscopic electric field of such
electrons is exactly zero simply because of the symmetry. We
can readily see that, on average, all the electrons interacting
with an atom can be divided into such symmetric pairs so
that, if thermal fluctuations are ignored, the macroscopic
interac-tion of the conduction electrons with the atom is, on
average, zero. However, let us consider in greater detail what
happens to each electron after reflection from the boundary
of the metal (Fig. 23).

Figure 23. Wave-function packet of an electron ¢ is reflected from the
boundary ofa metal and spreads into its interior. Somewhere in the region
C the wave function collapses because of the scattering by impurities,
inhomogeneities, or other electrons. Correlation is transferred from this
collapse to a point M and to an atom A.

Let the wave function of an electron e appear as a small
wave packet which isincident on the boundary of the metal, is
reflected by it, and then escapes into the interior. Let the size
of this packet be of the order of b. Then the wave function of
an electron immediately after reflection can be approximated
by Eqn (139) on the assumption that the x axis is directed
along the motion of the packet and the wave number is
k = u/hm, where u is the component of the electron velocity
alongthe x axis. The order of magnitude of this component is
u &~ vp. Further away from the point M the wave function of
a free electron evolves in accordance with the relationships
given by Eqns (140)—(142), i.e. the wave packet spreads out.
However, in the distance equal to the mean free path 4, i.e. at
the point C in Fig. 23, the wave packet is ‘torn into tatters’ to
such an extent by the scattering on impurities, inhomo-
geneities, and other electrons that separate parts of the
packet are no longer coherent. Under these conditions the
original packet splits into several parts and the electron
remains in only one of them. In other words, the wave
function collapses to dimensions of the order of b and the
remaining parts of the packets are annihilated.

The collapse of the wave functions should not change the
average electron energy. However, if a wide wave packet
collapses into a compact packet of size b, it follows directly
from the uncertainty relationship that its energy should
increase by an amount
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The average energy of the particle does not change if its
velocity decreases by an amount Au, so that
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represents the distortion asymmetry: the velocity of the
‘centre of mass’ of the wave packet slows down somewhat.
We can say that the collapse ‘carves out’the slower part ofthe
electron wave packet. The change in the wave function of the
atom therefore corresponds to a longer atom—electron
interaction.

Let us now turn back to Fig. 22b. We can see that the
asymmetry seems to correspond to an effective delay of the
reflected packet by a time interval oAt = al/vp. It is evident
from Fig. 22b that after reflection at the points M’ and M the
wave packets are not quite symmetric relative to the atom.
After a displacement by Az = voAr during the time At = /v
needed to cross the interaction layer the packet M’ is
somewhat further from the atom than the packet M. In
other words, at the point M’ there is apparently an effective
charge and at the point M there is an equal (in the absolute
sense) opposite charge. [f we now bear in mind that in the
interaction layer of thickness /= n'/3 there are nl = n?3
electrons per unit area, we obtain an estimate of the effective
density of the surface charge

mulAu =

o, o ane' vove'l5 " . (195)

We can assume here approximately that N'/> = g (T/EF)'/3.
Knowing this surface charge density we can estimate [38] the
phase shift Aap for a finite aperture

2 1/3
T
Aap o 3a £ (—) .

196
hVF EF ( )

A comparison of Eqn (196) with experiments shows that
o~ 10~2. In accordance with the above representations,
R oc(z)/b2 and, consequently, the size b of an electron packet
is ~10ay, i.e. it is slightly larger than .

We can say that an effective field E, represents the net
effect on an atom. However, E, is not a real electric field: it
cannot be measured with a macroscopic instrument.
Probably the most appropriate name for E, is the daemon’s
field. The effective field E, acts only on an excited atom flying
past. The field E, is closest to the field acting in insulators,
when the effective field experienced by each specific
microscopic dipole differs from the average field E because
of a mutual correlation between the interacting dipoles.

In our case the field E, #E =~ 0 appears because of a
correlation in the evolution of the wave function of an atom
and of the collapsing wave functions of the conduction
electrons. We meet here with an effect such as the EPR
correlation, not in the variant of isolated EPR pairs, but
under conditions when an atom is the only primary partner
interacting with an enormous number of secondary partners,
which are the conduction electrons. After the interaction with
the atom in the conduction layer the electrons fly back into
the interior of the metal, where in the process of collapse they
create correlation responses which then accumulate at the
atom in the form ofthe phase shift Aap. In the final analysis it
isthe collapse that results in a dipole deformation ofthe atom
and in a gradual appearance of the 2P amplitude from the
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initial 25 amplitude. The Sokolov effect is a completely new
type of irreversible interaction in the microworld. It is based
on well-understood (in principle) microscopic processes, but
it has been observed for the first time in the variant of fine
correlations of the EPR pairs.

37. Quantum telegraph

It would be desirable to carry out additional test experiments
to provide the final proof that the above discussion does
indeed give the correct explanation of the Sokolov effect.
However, if we assume that everything is correct, we can
consider what consequences follow from the possibility of
hidden collapse on a mass scale. [fthe polarisation ofan atom
is in a final analysis owing to the collapse, we can try to
estimate the velocity at which the collapse effect propagates.
A more practical formulation of the problem is whether it is
possible to utilise the collapse to create fundamentally new
means for information transfer. For example, let us consider
a device shown in Fig. 24, which could be called the
‘quantum telegraph’.

~
<

Figure 24. Schematic representation of the quantum telegraph based on
the Sokolov effect. The conduction electrons in a sample M made of a
pure semimetal or a semiconductor fly, after the interaction with an
excited atom A, away from the interaction surface to a scattering region
R. Their wave functions collapse in this region and simultaneously an
atom A’ located at a distanceL from the sample acquires a 2P amplitude.

This is in fact a more complex modification of Sokolov’s
experiment. Once again metastable 25 hydrogen atoms fly
above the surface of a sample M. If this sample is made of a
very pure metal, semimetal, or a semiconductor, then at
liquid helium temperatures it is possible to establish
conditions under which the mean free path of an electron
before the scattering is A & 1 cm. Let us assume that the
sample has exceptionally smooth, i.e. perfectly reflecting,
side walls. Then, an electron ¢ that has interacted with an
atom may travel freely a distance 4 until it reaches a ‘turbid
medium’ R, where it begins to scatter strongly and collapses.
We can assume that before the collapse of electrons the 2P
amplitude ofthe 25 atom isnot excited. Therefore, in the time
taken by electrons to travel the distance A the atom moves a
distance L away from the sample M.

Let v denote the average velocity of the electrons inside
the sample. In a metal this velocity is ve = vp &~ 108 cm s—1,
but in a semimetal or a semiconductor at liquid helium
temperatures the value of v, may be reduced to v. =~
107 cm s—'. We shall moreover assume that atoms A have a
very high energy, so that their velocity vo is of the order of
10'° cm s—!. During the time t = A/v. taken by an electron

to travel the mean free path an atom flies away from the
sample to a distance L = vt = A(vo/ve).

Let us assume also that the electron scattering region R is
much less than 4; for example, that it amountsto A4 = 0.14.
Then the collapse duration At is also ten times shorter than t;
that is, information about the appearance of the 2P
amplitude is transferred from the point R to the point A
apparently at a velocity ten times higher than vy, i.e. at
va 10" ecm s~!. We can see that this is three times the
velocity of light.

The most interesting question is: can the collapse of
electrons on a massive scale be controlled? In fact, it is easy
to imagine a structure in which inhomogeneities in the region
R can be altered deliberately either under the influence of
deformations or with the aid of an external magnetic field
acting on magnetic scattering centres. In principle, it is
possible to use any methods for ordering or disordering of a
medium. A periodic or an aperiodic variation of the rate of
the electron collapse would seem to be transferred to an atom
A at the velocity

L _ 4
At AL

We can say that the daemon’s field E, acts on an atom flying
above the sample not immediately but after a delay time
7= Alve. The field begins to act only at a distance L = vot
= Aw/ve and creates decaying 2P atoms. Lyman-alpha
photons produced by such decay can be detected and the
time dependence of the decay rate should reproduce duration
of the collapse in the scattering zone R. We meet here a
completely new principle of information transfer based on
collapse control. Single events of the collapse of EPR pairs
cannot be controlled, but the rate of collapse on a massive
scale when electrons are scattered by impurities would seem
to be controllable.

We can see from the description of the device in Fig. 24
that its not so easy to construct a practical working quantum
telegraph because it is necessary to simultaneously satisfy
several contradictory requirements. For example, the sample
M must be very pure with perfectly reflecting side walls. The
density of the conduction electrons must be sufficiently high
[according to Eqn (195) the Sokolov effect is proportional to
n'/3] and the scattering zone R must be sufficiently narrow
and, most important, controllable. Moreover, the beam of
atoms must be sufficiently strong so that fluctuations of the
Lyman-alpha photons do not suppress the useful signal.

However, at present much more interesting is not the
device itself, but the principle of information transfer. Since it
is based on the collapse of wave functions without any
motion of matter or wave propagation, the rate of
information transfer should not similarly be limited by the
velocity of light. However, superluminal information
transfer is so unusual, because it affects the main principles
of modern physics, that the feasibility (or otherwise) of signal
(not wave!) transfer at a speed greater than that of light will
be considered in greater detail.

38. Superluminal communication

We shall denote the velocity of signal transfer by V and the
velocity of light by c. It follows from the theory of relativity
that no material body and no wave can travel at a velocity
higher than c¢. Therefore, superluminal communication
characterised by V> ¢ cannot involve energy transfer over



Dynamics and information

487

a distance, i.e. it should be of completely different nature.
Nevertheless, let us assume that signal transfer at a super-
luminal velocity is possible and consider the consequences of
this assumption. For simplicity, we shall consider the case of
one-dimensional propagation of signals and introduce the
time ¢ and the coordinate x along which the signal
propagates. Let the signal be emitted from the point x = 0
at time ¢t = 0. Then at subsequent times the coordinate x is
x = V. IfV> 0, thesignaltravelsto theright, but for V< 0
it travels to the left.

Let us consider the question: what is seen by an observer
moving at a velocity v? To answer this question we shall go
over to the coordinate system of the observer and look at the
external world together with the observer.

Let x’ and ¢’ be the space—time coordinates of the
moving observer. It is well known they are related to x and ¢
by the Lorentz transformation:

o X —vt = t—xv/c . (197)
1 —V2/C2 /1 —V2/c'2

Thepoint from which the signal originates in a coordinate
system at rest, i.e. x = 0, r = 0, is seen from the moving
coordinate system as the point x'= 0, t'= 0. Let us
consider now how the signal propagates. If we substitute

x = Vtinto Eqn (197), we obtain
, V—y , 11—/
X =, = . (198)
1—v?2/c? V1=
Dividing one relationship by the other, we find the signal
velocity V' = x'/t’in the moving coordinate system:
V—v
Vie ——. 199
1—vV /2 (199)

If V< ¢, the above relationship shows that for v>V
there is a change in the sign of V', which is to be expected: if
the observer overtakes the signal, it sees it as lagging, i.e. as
propagating in the opposite direction. If we are dealing with
an electromagnetic wave, then V = ¢ and according to
Eqn (199) we simply have V' = ¢. This is the familiar
result: light propagates at its constant velocity in any
coordinate system. This is the portulate that underlies the
theory of relativity.

However, let us assume that V> ¢. Eqn (199) directly
yields a coordinate system in which the signal velocity V'
is infinite. This coordinate system moves at a velocity
v= c?/V< c. It is evident that the coordinate system with
the infinite velocity V is for some reason special. We shall
therefore assume that it is a coordinate system at rest and,
going to the limit V — oo, we find from Eqn (199) that

(200)

We can see that in the coordinate system moving to the
right the signal moves to the left and for v< 0 the signal
moves to the right, i.e. V'> 0. In the limit v— 0, we have
V' — o0, i.e. the signal propagates at an infinite velocity in
both directions at the same time. Naturally, these relation-
ships are somewhat simplified and idealised, because the
signal emission time is assumed to be zero.

At first sight the relationship (200) seems to be in clear
conflict with the principle of causality. Let us assume that
indeed the propagation of a signal at the velocity V'> 0 from
the coordinate system with v< 0 is observed. For example,
the signal sender may be at the point x’'= 0, ¢'= 0, and

then the signal reaches the recipient at the point x' = L
somewhat later, i.e. at t' = L/V'> 0. It is quite clear here
which is the cause and which is the effect. However, the
observer travelling at a velocity v> 0 sees the signal at a
velocity V< 0, i.e. the cause and the effect are interchanged.
[t would seem that because of this absurdity the superluminal
information transfer is impossible. However, we must not be
too hasty! Passive observation by itself means little. The real
conflict with the principle of causality occurs only if the
information recipient can send the signal back to the sender
before the emission of the first signal and therefore the cause
ofthe effect may be changed. Let us consider whether this can
occur and if so, what additional constraints ensure that the
principle of causality is obeyed.

Let there be two events A and B related by the cause and
effect link. Let us assume that A is the cause and B is the
effect. For example, in the quantum telegraph of Fig. 24 the
event A is the collapse of the wave functions of the
conduction electrons and the event B is the appearance of
the 2P amplitude in the 25 atom and the emission of Lyman-
alpha photons. Let us select a coordinate system in which the
signal transfer rate is infinite. Thus both events A and B occur
at the same time r = 0. This means that they are in the same
spatial segment AB (Fig. 25). The selected coordinate system
with V = oo is clearly special. Therefore, the time 7 in this
system has certain features of absolute time, but this point
will be considered later.

Let us assume that these events are observed from the
coordinate system x ', ' moving at a velocity v> 0. Then the
result obtained from Eqn (197) forr= 0,x = L is

Ly
ANE 2
In other words, this observer sees the signal B earlier than A
and undoubtedly is very surprised. Even more surprising is
that at the point x = 0 the time ¢ corresponds to the time of
the event A’, which is

_vL

ty = ———.
c C

li

=t = — <0.

Bearing this in mind, the observer B may want to influence
the event A by, for example, attempting to remove the sample
M in the experiment of Fig. 24. We can imagine for example
that near the sample M there is an automaton which removes
the sample immediately on receiving an order from outside.
In particular, the order may be a signal sent by the observer in
the primed coordinate system. Naturally, if no additional
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Figure 25. Two events A and B occur simultancously at r = 0 and are
separated by a spatial segment of length L. An observer, moving at a
velocity v> 0, sees the event B earlier than the event A. The dashed lines
represent 1’ = const.
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constraints are imposed on the signals, the causality principle
is lost immediately.

We shall therefore formulate three additional principles:

(I) each new coordinate system x’, ¢’ corresponds to a
macroscopic body which exists in reality;

(IT) a superluminal telegraph associated with this body
transmits in the body a signal at the velocity V' = Zo0;

(IIT) a superluminal control signal cannot propagate in
the opposite direction of the time ¢ of the main coordinate
system if the two coordinate systems are information-
coupled.

Let us return to Fig. 25. It is clear that any signal cannot
be transferred by a material carrier from the point B to the
point A faster than in At = L/c because the velocity of such
signals is less than the velocity of light in any coordinate
system. Therefore, At> —ta/, i.c. a combination of just one
superluminal signal from A to B together with an ordinary
light signal from B to A does not violate the principle of
causality. In other words, it is sufficient to consider just the
superluminal telegraph satisfying the principles (I)—(I11I).

We shall assume that we have a telegraph sending signals
at the velocity V' = x'/t’ in the primed coordinate system.
With the aid of Eqn (197) we can easily find that in the
laboratory coordinate system the signal velocity V is

Vi+v
= 201
1+vV'/c? (201)
In the limit V' — oo this velocity is
2
v=S (202)
v

We can see that if v> 0, the velocity v is positive. If we
adopt the principle (I11), this signal can only propagate to the
right. This means that the telegraph in the primed coordinate
system cannot send a signal back from the point B to the
point A, i.e. it cannot influence the cause although it can ‘see’
it as occurring after B. The signal can be sent to the left, i.e.
from B to A, if there is a ‘doubly primed’ superluminal
telegraph moving at the velocity v/ = —[v"|. According to
Eqn (202) the velocity V " of the signal from this telegraph is
V" = —¢*/|v"|. However, this telegraph sees the event B at
the moment

t" _ L >0

A /c2 _ V2

[we are using Eqn (197) again but with the substitution
v— [v"]]. In other words, for this telegraph the event B is
indeed the consequence of the cause A and even for a signal
travelling at an infinite velocity it cannot influence the cause
A.

A decisive role in our discussion is played by the principle
(IID). This principle imparts the features of absolute time to ¢,
which —strictly speaking—is in conflict with the principle
of relativity. Therefore, we should consider in greater detail
the physical meaning of the constraint set by this principle,
which seems to be quite natural for an observer at rest.

We shall therefore approach this problem from a
somewhat different standpoint. We shall implicitly assume
that there is no way that superluminal signals can be
generated except on the basis of the wave collapse and we
shall consider a certain wave function ¥y = exp(—iwt + ikx).
Let this wave function apply to a particle of mass m and a
momentum 7ik. The quantity 7w represents the energy of this

particle. We shall allow for the kinetic energy of the particle
as well as for the rest energy, so that in the nonrelativistic
limit the energy is &= fhiw= mc*+imv? and
px = hk = mv, where v is the particle velocity. Let V = w/
k represent the phase velocity. As is known, the phase
velocity is the velocity of motion of a point with a constant
phase @ = wt—kx = const. Let us consider how this point
moves in a primed coordinate system which is travelling at a
relative velocity v relative to a coordinate system at rest. This
can bedone by using the relationships of Eqn (197) to express
x, tin terms of x ’, ¢’; these expressions are then substituted
into ¢ = wt—kx = const. The result is an expression for a
new frequency @', a new wave vector k', and a new phase
velocity V"

,  — kv
o = ——,
11—/
, Kk — v/
TV e
v = L
1—Ww/e

We can readily see that the expression for V' is exactly the
same as that given by Eqn (199). We can therefore directly
draw the conclusion that there is a special coordinate system
moving at the velocity v= pi/e = ?/V = c*/w. In this
coordinate system the phase velocity V' becomes infinite and
the wave number k' vanishes, so that the wave is converted
simply into oscillations homogeneous in x “ and of frequency
o'. At the selected frequency we have fiw’ = mc? + 3 (mv?)
and in the nonrelativistic limit we obtain fiw’ = mc?. This
means that we are dealing simply with a particle at rest and its
wave number is zero. [t isusual to regard the phase velocity as
not having much physical meaning: the energy, and
consequently the wave information, propagate at the group
velocity and not at the phase velocity. However, the phase
velocity plays a major role in the collapse.

We shall consider a typical example of an EPR pair in the
Bohm variant: two particles with spin %ﬂy apart in opposite
directions and their total momentum is zero. The two
partners of such a pair have equal and oppositely directed
momenta and exactly the same phases at the same distance
from the point where their motion begins. A measurement
carried out on one particle immediatelly collapses the wave
function of the second particle to the spin value corre-
sponding to the oppositve direction. It is natural to assume
that this process is instantaneous in a coordinate system in
which the centre of massis at rest. In other words, the velocity
of the signal about the collapse is V = oo. However, in a
moving coordinate system we find from Eqn (200) that
V'= —c?/v. Depending on the sign of v, this quantity can
be positive or negative. It means that for some observers the
signal of collapse to the second particle arrives after a delay,
which is quite natural. For other observers it arrives ahead of
the collapse, i.e. in the reverse direction in time from the
future to the present. This seems to be a fantasy, but there is
no violation of the principle of causality: the collapse of
correlated functions is a purely random process, i.e. it is
uncontrollable. Therefore, in the collapse of isolated EPR
pairs there is in fact no information transfer: this is simply a
unique process without cause or effect. In this sense the signal
about a single collapse resembles the phase velocity: it exists,
but carries no information.
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The analogy has in fact a deeper meaning. After all, the
collapse appears when the coherence is lost. The coherence
between two pointsin a wave can be destroyed by a very small
external perturbation most easily if for a considerable time
there is a constant phase difference between the points. In
other words, they travel at the phase velocity ofthe wave. The
phase velocity itself carries no information, but makes it
possible to impose ‘markers’ on those parts of the wave which
can subsequently collapse.

We shallnow consider an EPR pair moving at a velocity v.
In its own coordinate system the collapse corresponds to the
transmission of a signal at an infinite velocity V' = oo.In the
laboratory coordinate system the velocity is V = ¢?/v, as is
clear from Eqns (201) and (202). Once again, depending on
which ofthe partners the first measurement is carried out, the
signal of collapse can be sent to the second partner either into
the future or into the past. There is again no violation of the
principle of causality, because the measured result is purely
random: recipes from quantum theory can be used to
calculate the probability of the results of measurements, but
the results themselves cannot be predicted a priori.

Therefore, although the collapse represents an
irreversible process, there is a great variety of such
processes: they occur absolutely spontaneously and cannot
be controlled from outside if we consider only separate
elementary events. The question arises whether in principle
it is possible to consider any forms of controlled quantum
collapse. The example of a chain reaction in an atomic
reactor suggests that there is some hope of a positive
answer. After all, the whole reaction is based on elementary
quantum transitions, each of which cannot be controlled.
However, ifthe probabilities of the transitions are controlled,
they are multiplied by the large number of nuclei
participating in the process, which makes them
automatically the corresponding macroscopic variables of
nuclear kinetics. Control then becomes possible. It therefore
follows that many participants of a process are needed if the
process is to be controlled.

We shall go back to the quantum telegraph of Fig. 24. We
shall first consider an elementary event: an excited atom A
flies above a sample which contains the conduction electrons
and then the electrons travel deeper into the metal and
participate there in the collapse event, whereas the atom A
acquires a 2P amplitude which may create a photon. If this
photon is detected, this represents a ‘measurement’ in which
the collapse of an atom into the 2P state with a subsequent
transition to the 1S state takes place and at the same time in
the region R of the sample M the occurrence of numerous
events of the collapse of wave functions of the conduction
electrons is confirmed. At first sight this seems to be the sole
random collapse process: a detector of Lyman-alpha radia-
tion records a photon and inside the metal numerous wave
functions of the electrons collapse. It would seem that such a
collapse should be detectable from outside. The process has
no cause or effect. Therefore, the signals of the collapse may
be transferred between the electrons and the atom at an
infinite velocity and observers moving outside may observe
such collapse events in different time sequences.

Let us, however, assume that we have a whole beam of
excited atoms and, consequently, we can carry out a long
series of identical measurements. A change in the structure of
the region R makes it possible to control the probabilities of
the collapse of the electrons in this region, i.e. to alter the
coefficient o in Eqn (196) for the daemon’s field E,. In this

way we seem to control the rate of decay of excited hydrogen
atoms at a large distance from the sample M. The control
signal travels together with the collapse signal and, therefore,
is superluminal. In actual fact this represents control of the
probabilities of real quantum ‘measurement’ processes, i.e. of
irreversible information processes in their relationship to
external classical devices and objects (in this case,
observers). This process is clearly irreversible and
determines the direction of the ‘arrow of time’. The time ¢
inside the sample M assumes the nature of the ‘absolute time’
and can no longer be reversed: the principle of causality is not
compatible with reversibility in time.

It is obvious that a superluminal control signal cannot
propagate in the reverse direction of time ¢ in that system of
coordinates in which the telegraph is at rest. For the same
reason of irreversibility of the processes of measurement and
control of the probabilities in the case of the telegraph in
Fig. 24 it is quite clear that the cause of the changes in the
rates of decay of the atoms A can only be a controlled change
in the collapse probability occurring in R. The cause is R and
the effect is A, so that the control signal travels from R to A’
(possibly with a short delay Ar required to change the
probabilities in R).

More difficult is the question how the telegraph of Fig. 24
acts when it is set in motion and observed from a coordinate
system at rest. In proper time this telegraph receives a control
signal at the velocity V' = oo. Formally, the signal in a
coordinate system at rest may propagate along ¢ or against ¢.
On the other hand, however, this signal is irreversible. The
question now is how to resolve this paradox.

We have decided earlier to impose an additional
constraint (III) the meaning of which is that in the usual
(conventional) time ¢ of immobile bodies the irreversible
processes should occur only from the past to the future, i.e.
there should exist the ‘arrow of time’. However, further
analysis is needed to understand better the meaning of this
principle.

We shall return to this problem later. At this stage we note
that the spatially correlated collapse events simply must lie on
spatially similar world lines. Otherwise we would have
collapse events consecutive in time (in one of the mobile
coordinate systems) and this would have led to even greater
conflicts with the principle of causality if there are indeed no
hidden variables. Thus, the most natural assumption is that
the correlated collapse events occur ‘instantaneously’ when
they are, for example, located on lines of the phase velocity
vph = &/p = const of the centre of mass of the correlated
system. The velocities &/p are always superluminal and
random measurements K take place along such velocities.
However, in order to understand how this occurs, we must
consider how the collapse events agree with the principle of
relativity.

39. Present, past, future

What is the present? Each of us has a ready answer: this is
our world, because all that has happened earlier has taken
place in the past. Until the appearance of the theory of
relativity such an answer would have been in full agreement
also with a more rigorous mathematical, i.e. quantitative,
treatment (Fig. 26a).

In the simplest case of one measurement of x we have a
space which travels uniformly along the time axis ¢. In this
approach time is absolute; at all points x it flows at the same
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Figure 26. (a) Before the theory of relativity the structure of space-time
was considered as uniform motion ofthe whole space along the world time
coordinate 7. (b) Since the velocity of light is constant, the real ‘visible’
present lies in the shaded layer and the line 7 = const here represents an
arbitrary time.

rate and absolutely identically for immobile and moving
bodies.

In the theory ofrelativity everything is more complicated.
Its main principle states that there are no signals propagating
faster than the velocity of light and that this velocity is the
same in immobile or moving coordinate systems. To people
living on Earth this means that simultaneity on the Earth’s
surface has been determined to within 2R ¢/c ~ 40 ms, where
Roistheradius of the Earth. And if we look at the starry sky,
we can see stars along the r = —L/c line, where L is the
distance to the star and ¢ isthe time in the past measured from
the moment of observation. Hardly any ofthose watching the
stars will agree that what is seen is not ‘now’. This ‘present
visible’ corresponds to the lines x = =ct, extending to
negative times. For all the inhabitants of the Earth the
present is defined to within 2R ¢/c.

What does ¢ = const mean? Strictly speaking this
isochronous line, i.e. a line with the same time, is purely
arbitrary. It can be obtained as follows. First, a set of clocks is
placed along the x axis. The clocks are identical physical
bodies or mechanisms that are in periodic motion such that
the period is constant. These clocks are then synchronised by,
for example, a light signal travelling from a given clock to the
neighbouring one and vice versa. All these effects have taken
place in the past and, therefore, an extended periodic object
with the same instantaneous phase is formed: at t = const all
the ‘arrows of time’ point in the same direction.

If we consider each of the clocks as an oscillator with a
period T = 12 h, we obtain a wave with wave vector k = 0
and frequency w = 2n/T. Clearly, such a classical object
with an infinite phase velocity can be formed only by
evolution from the past and at this moment ¢ there is no
physical link between the clocks.

The arbitrary nature of such ‘simultaneity’ can be seen
quite clearly by considering the example of ordinary clocks
on the Earth. They can be set so that they would show exactly
12.00 hoursat midday. Then, viewed from space, we can see a
wave constructed from the phases of the clocks. The
wavelength is 2R, and the phase velocity of the wave is
exactly equal to the velocity of rotation of the Earth and
oppositely directed. The constant phase equal to 12 h will
always point to the Sun. There is no internal physical link
between such clocks: they are set on the basis of external
information, i.e. they are set by the Sun!

We shall now consider a single observer at rest at the
pointx = Oat atime ¢ (Fig. 27).

The world line of an observer at rest corresponds to the
half-axes ofthe ordinates, arriving from t = —oco at the point
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Figure 27. Observer O at the pointx = 0, atthemoments = 0 finds the
real ‘past’ in the shaded region bounded by the lines x = ¢t. The lines A
and B correspond to moving bodies.

t = 0. At the point O with the coordinates x = 0, t= 0
there may also be moving bodies, for example A with a
positive velocity and B with a negative velocity. According to
the theory of relativity the maximum velocity at which any
material objects can travel, and this includes the waves, is
equal to the velocity of light. Therefore, at the point O it is
possible to collect only that information which existed
earlier, inside the shaded region in Fig. 27. This is the past,
which can be directly seen, heard, touched, or reconstructed
on the basis of all the monuments and ‘fossils’ located at the
point O.

We thus reach a somewhat paradoxical conclusion that
the future of the observer O lies not at > 0 but throughout
the unshaded part of Fig. 27. In any case, this should be the
situation as seen by a single observer. As far as the past is
concerned, it should be a region accessible to passive
acquisition of information, which arrives with electro-
magnetic waves or which is stored in any moving material
carriers (for example, sound, mail, etc.).

We shall now consider a region of bidirectional inform-
ation communication between an observer O and any other
observer in the past (or in the ‘present’).

Let us assume that three observers A, O, and B are at rest
(Fig. 28a). In the state O, i.e. at the moment —¢, an observer
may send signals with the maximum velocity c¢. These signals
reach the world lines A’A and B'B ofthe other two observers
at the points A” and B”, which in turn send their own
‘responses’ to the point O. It is evident from Fig. 28 that the
observers A and B are separated by a distance L = +ct/2.
Inside these world lines there is a region (shown shaded) of
bidirectional communication between the observer O at rest
and the other observers also at rest. In particular, there may
be clocks at the points A, O, and B and then bidirectional
communication may be used to synchronise clocks at rest, i.e.
to plot the lines t = const.

Mobile observers may also congregate at the pointx = 0
at the time r= 0. If they also are in bidirectional
communication with other objects, then all the information
on bidirectional communication is collected at the point O.
For example, in Fig. 28b a mobile observer at the position O’
sends, at a time —¢, information at the velocity of light to the
point A” on the world line A’A of an observer at rest, and
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Figure 28. Space—time region of bidirectional communication between an observer O and other observers: (a) observer O’ at rest; (b) observer O’

moving along the line O'O.

then the response from the second observer appears at the
point O.

We can see that if all the mobile observers congregate at
the point O, then all the information on bidirectional
communication in the region between the lines x = =ct is
collected. In other words, in addition to the results of passive
observations, it is possible to collect at this point the
information on bidirectional communication.

We shall now consider two observers A and B at rest and
separated by a distance L (Fig. 29).

Neither of the observers has any special features to distin-
guish him from the other. However, one of them, for example
A, sees B at a somewhat earlier time at the point B, whereas B
experiences an opposite effect: it sees A somewhat earlier at
the point A’. Naturally, the two results should match,
because at any given moment they correspond to r = const
and because of the signal delay they do not have
instantaneous information on one another. The region
covered by dots in Fig. 29 is the shared past of the observer
A and the observer B.

Obviously, to within an error Ar = L/c, the observers A
and B can beregarded as sharing the time even from the point
of view of their mutual information coupling. This shared
time they naturally regard as the present. For shorter
characteristic times of physical processes the observers are
more likely agree with the delayed signals than with their own
existence in different times.

In the theory of relativity the concept of simultaneity is
even more complex. Specifically, the Lorentz transformation
to the system of coordinates x , ' moving at the velocity v is
described by the expressions in Eqn (197). Lines correspond-
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Figure 29. Observers A and B scparated by a distance L from one
another. A sees B’and Bsees A’; the shaded region is their common past.

ingto thesametimes’ = const do not coincide with the lines
corresponding to ¢= const (Fig. 30). However, the
boundary of the past x = ¢t remains in its place also in

the new system, i.e.x'= +ct'.
When the velocity v is increased the slope of the line
t’ = constrelative to the x axisincreases, but it never reaches

the position x = ¢t and approaches it only in the limit v —c.
We can now consider the concept of the future. In the
framework of the Galilean invariance characterised by the
absolute time ¢ the future relative to = 0 is defined by the
simple relationship > 0. When the time increases by a small
amount Ar the realisation of the future can be viewed
simultaneously for all values of the coordinate x. If we bear
in mind that there are no bodies or wave signalstravellingat a
velocity exceeding ¢, then the ‘active’ future for the point
x = 0,¢t= Oliesintheranget > |x |/c which can be reached
by light signals or moving bodies from the point x = 0,
t = 0. Only in this region the material point x = 0, t= 0
can act to influence the evolution of its environment. This
region is identified by the same properties also in the case of
moving bodies with world lines passing through the point
x'=0,t"= 0.

All the discussions in the present section are based on the
ideas of the theory of relativity and classical field theory. We
shall now consider what new features are introduced by the
collapse of wave functions. As established earlier, the
collapse of functions of correlated particles occurs on world
lines of the phase velocity of their centre of mass. When the

Figure 30. Coordinates x’ and ¢’ of a moving coordinate system in an
(x, 1) plane.
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centre of mass is fixed, this line corresponds to t = constand
for the centre moving at the velocity vitisthelinet’ = const.
According to Figs 28 and 29, the collapse event seems to
occur in the future. This is the reason why they are random
and causeless. However, the collapse events are irreversible.
This becomes particularly clear when the collapse of a wave
function is accompanied by the collapse of probabilities, and
it is true in measurements. In the case of this process the
information about a quantum system increases and the
entropy should increase in the external world. However,
even in the absence of the collapse of probabilities, the wave
function collapse is irreversible: in an ensemble of many
particles it converts a pure ensemble into a mixed one. In the
case of just one partner a pure state ‘collapses’into a random
‘representative’ of a mixed ensemble. The irreversible process
of collapse isrelated to the information interaction of a given
system with the external world. If this is true, then the time ¢
in the coordinate system associated with the external
environment becomes the absolute time. On Earth, and
more precisely in the solar system, this time is linked to a
system of coordinates in which the centre of mass of the solar
system is at rest.

Thelinet’ = const (Fig. 30) can beregarded asthe world
line of a constant phase velocity on which the collapse of
corre-lated particles may take place and the centre of mass of
these particles travels at a velocity v. If a system of particles
and bodies with the centre of mass at rest in the coordinate
system x " and ¢’ is completely (also in respect of information)
isolated from the external world, the collapse events can
occur in the system simultaneously along the line¢’ = const.

From the point of view of absolute time ¢ all looks exactly
the same except that the collapse events associated with the
external world (for example those observed from the outside)
should occur consecutively in the direction of the increasing
time ¢. The collapse events can occur in the opposite direction
of ralong the line ' = const only in the absence of observa-
tion or information coupling with the external world. Only in
that case the two directions of time in a closed reversible
quantum systems are fully equivalent. In reality even a weak
information coupling to the external world leaves only ¢ as
the absolute time.

We can now return to the quantum telegraph. It utilises
objectively occurring collapse events. A change in the
configuration of a physical system imposed from outside,
which thus influences the probabilities of random natural
collapse events, makes superluminal information transfer
possible. However, this information transfer is based on
irreversible processes in the absolute time ¢ and cannot
occur in the opposite direction along ¢: the arrow of time is
quite clearly encountered here. In this way we reach in a
natural manner the principle (IIl), i.e. that propagation of
superluminal information signals from the future to the past
cannot occur in the absolute time ¢. This time variable
corresponds to the reference frame where the centre of mass
of the combined system is at rest.

In order to make it clear why the existence of the quantum
telegraph should not be rejected a priori, it is useful to con-
sider the following analogy. The main means for information
transfer in the animal world, including mankind before the
invention of radio, have been sound and light. Sound is used
actively: our speech is formed by sound and we receive it by
hearing. In the case of light we receive passively the solar
radiation scattered by objects. Since the invention of radio,
electromagnetic waves are generated actively by transmitters

and reach receivers, i.e. they are used in the same way as
sound. From this point of view the superluminal telegraph is
an analogue of light and colour observed in daylight. The
wave functions of the microworld are under conditions of a
continuing process of consecutive collapse. Variation of
details of such a collapse at one point in space makes it
possible then (i.e. after a small shift in the absolute time ¢) to
change the probabilities of the collapse at other points in
space. The collapse itself cannot be transferred to another
point in space. However, it is quite feasible to vary in a
controlled manner the classical environment of a set of
collapsing systems at one point in space and to detect this
influence on the collapse at another distant point in space.

40. Free will

Before returning to the collapse events, let us make a trip to a
completely different field. Specifically we shall try to
understand how to deal with the phenomenon of free will
within the framework of physics.

By free will we understand here the freedom of action or
of selection between two or more possibilities. It is usual to
assume without question that human beings have a free will
because they are free in their conduct. Naturally, man
frequently has to act under the force of external
circumstances, but even then he retains the final choice.

It is not true that absolutely everybody accepts these
statements as true. For example, following Schopenhauer,
one could say that man analyses only his desires and at the
last moment the decision may be outside his control. In other
words, the exercise of his will may be imposed from outside.

However, we shall retain a more naive point of view and
assume that man is free in his deeds and is therefore
responsible for them. In accepting the freedom of action for
man we must not offend the animal world. The paradox of
Buridan’s ass has been passed on to us from ancient times: an
ass exactly half-way between two bundles of hay dies of
hunger because it cannot decide from which one to begin its
meal. We all know that this does not happen in reality and
that the ass chooses one hay bundle without any difficulty.
But the logical paradox remains. Its simplest solution is based
on small perturbations: an accidental breeze may bring a
stronger smell of one of the bundles and this is sufficient to
ensure that the ass makes its choice. Observations of animals
lead us to the conclusion that the ass anyway is free to make
its choice unrelated to any external motivation: all that it
needs to know is the existence of two bundles of hay.

Moreover, any animal is alive because it has to make
decisions how to feed itself and not to become food for a
beast or bird of prey. The higher a given species is on the
evolution tree, the greater the spectrum of decisions that it
has to take. However, we cannot accept the hypothesis that
the freedom of action appears abruptly at some stage of the
evolution: even the most primitive members of the animal
world retain the freedom of action. Moreover, it is very
difficult to set the boundary for the freedom of will between
living and inani-mate worlds. Its much more natural to
assume that the free-dom of will is an immanent, i.e. an
intrinsic property of the universe. Only on the basis of this
initial assumption can we escape from the thoughtless
completely deterministic mech-anistic universe to the
universe which is alive and developing.

We shall therefore assume that the universe as a whole has
the freedom of will, i.e. the ability to take decisions and freely
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act within those restraints which are imposed by the laws of
physics, including those of classical physics. This freedom of
action is realised in the form of an enormous range of small
free actions and each of them should fit within the framework
of the physical laws. This means that the freedom of action
can be realised only at bifurcation points where the laws of
mechanics and physics permit multipath development of a
process.

Let us begin with classical physics. A typical example of
bifurcation can be found in Fig. 15b, which shows an
unstable position of a material point at the top of a hump
between two potential wells. The instability of the initial state
causes the material point to roll down into one of the wells.
The result is spontaneous symmetry breaking. The process
can be regarded as the result of evolution under the influence
of an initial perturbation. The perturbation itself can be
regarded as completely random, unrelated to any cause.
However, equally well we can say that the universe as a
whole (including a large number of small links, i.e. perturba-
tions) ‘makes a decision’ on the subject of this spontaneous
symmetry breaking. Similarly, random bifurcations can be
regarded as occurring in a causeless and spontaneous
manner, i.e. as if they have been adopted in a volitional
manner from outside the system.

Let us now turn to the microworld. Large-scale bifurca-
tions can occur in systems of many particles. However, of
much greater interest are the smallest bifurcation transitions,
i.e. the collapse of wave functions. It is naturally tempting to
consider the collapse events as microinstabilities of a certain
kind. One could assume, for example, that the wave function
which splits into incoherent parts is unstable and that a
particle may be in one coherent subpacket. This approach is
close to the idea of hidden variables and can hardly serve as
the basis for complete understanding of microprocesses.
Moreover, we can easily give a counterexample which
contradicts this hypothesis. Specifically, let us again divide
one wave function between two potential boxes and then heat
the boxes, so that the coherence between the two parts of the
wave function is destroyed. The collapse of the wave function
occurs in one of the boxes and this is where the particle is
located. The particle cannot jump from one box to the other.

Therefore, it is more logical to assume that the wave
function is above all a ‘measurement index’. This can be seen
particularly clearly in Schwinger’s formalism when measure-
ment symbols are introduced. These symbols are simply
possibilities or intentions of a particle to manifest some
value of a physical quantity. The real physical quality is
found only by measurement when the intention collapses, i.e.
when the wave function collapses, and this is accompanied by
the collapse of probabilities, which is the recording of the
relevant quantity by a measuring instrument.

If we now turn back to Section 24, we can demonstrate
once again that the evolution of the state vector, i.e. of the
wave function, in time is in a natural way inscribed in the
formalism of time evolution of the measurement symbols.
Exaggerating somewhat, we can say that the whole quantum
theory represents the formalism for the description of the
time evolution of measurements in the microworld. Even in
quantum theory the field operators evolve with time only to
be able to act on the stationary state vector, which is the
quintessence of the intentions in the microworld. We can now
understand at a qualitative level the evolution of the nature
on the Earth, as observed by us. The most general approach
to the description of atoms, molecules, and fields which

form our environment is based on the use of the wave
function Y —i.e. of the state vector—which obeys the
following equation:

iﬁ% = Hy+My .

ot
Here, H is the Hamiltonian operator and K is the collapse
operator. In the absence of collapse events, Eqn (204)
describes the evolution of a pure state for the whole matter
on the Earth including the biosphere. We then have

() = exp (=5 )ui0)
where /(0)is the initial state vector. Instead of Y(r) we can use
the Heisenberg representation by introducing time-
dependent operators. These operators act on the stationary
state vector Y(0). All the relationships then have Lorentz-
invariant form.

However, ¥(0) has an enigmetic form and in order to
describe real processes allowing for thermal motion we have
to adopt additional statistical averaging. Such averaging in
fact implicitly implies the occurrence of collapse events which
create a mixed ensemble from a pure state. If statistical
averaging is not carried out, but the existence of collapse
events is assumed, then the operator M should be regarded as
random because it is an analogue of a set of causeless voli-
tional events. Naturally, the state vector ¥(¢) also becomes a
random quantity.

It is natural to assume that the collapse events K realise a
nonequilibrium evolution of a system. This is particularly
clear in the processes similar to measurements when the
collapse of wave functions is accompanied by the collapse
of probabilities. As demonstrated in the preceding sections,
the negentropy of a collapsing system should then increase
because of an increase in the entropy of the environment. It is
clear that this can only give rise to a nonequilibrium system.
On Earth the most powerful source of nonequilibrium is solar
radiation and, therefore, the rate of collapse (of the state
vector and probabilities) is governed by the negentropy flux
from the Sun.

However, the collapse of wave functions need not be
accompanied by the collapse of probabilities because of, for
example, thermal motion. Nevertheless even in this case a
nonequilibrium environment plays an important role. The
situation is similar to that of molecular chaos. We have seen
that even a weak coupling to the external world considerably
alters the evolution of a system of many particles: in a closed
system the reversible Liouville equation applies and the
coupling with the environment destroys the reversibility of
time. A similar situation also arises in the quantum case: a
closed system evolves as a pure state and the coupling to the
external environment disturbs the coherence and leads to
collapse events.

The structure of Eqn (204) suggests that a real physical
system includes both the cause-and-effect Lorentz-invariant
evolution of the state vector,—i.e. the evolution of
‘intentions’—and the random ‘volitional’ sequence of
actions, i.e. the collapse events M. The collapse of the wave
functions on the Earth is in the final analysis due to the
collapse of solar radiation photons in the cascades of their
transformations into thermal motion of atoms and
molecules. The rate of collapse, i.e. the absolute value of the
nonlinear operator M, is governed by the level of the solar
negentropy flux. The collapse operator need not be Lorentz-

(204)
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invariant. It acts primarily in a coordinate system linked
rigidly to Earth. In a system of correlated particles at rest the
collapse operator acts simultaneously in the whole space, i.e.
it acts ‘instantaneously’ in terms of the absolute time ¢ to
within a constant time of the process Ar. The collapse
operator for mobile correlated systems of particles, not
isolated from the environment, acts consecutively in time ¢
on a world line of the phase velocity of the centre of mass.

It follows that even in terms of the microscopic structure
of matter and fields we have to distinguish the cause-and-
effect and ‘volitional’ (i.e. spontaneously acting) aspects of
the evolution ofthe world. Without the collapse event the loss
of coherence of the separate parts of the wave function would
have resulted in a branched scenario of the development of
the world: according to Everett 11 [27], we can imagine many
worlds developing in parallel. In fact , however, we live in
one natural world: the spontaneously occurring ‘volitional’
collapse events create a unique and unrepeatable line of
evolution and development of the world. The addition of
macroscopic bifurcations does not alter the qualitative
picture, but greatly extends the range of possible scenarios
out of which the history chooses just one.

We shall go back again to the problem of the past,
present, and future, but we shall now assume that
superluminal signals may propagate because of the collapse
of wave functions. We shall select a coordinate system linked
to the solar system. Wecan assume that the bulk of matter in
such a coordinate system is at rest because the motion of all
the macroscopic bodies takes place at velocities much less
than the velocity of light. The time ¢ in such a system will be
regarded as ‘absolute’. Then, in the simplified pattern of one-
dimensional motion, a simplified graph of the past, present,
and future for a particleatx = 0, = 0 has the form shown
in Fig. 31. In this figure the hatched region P corresponds to
the past: an observer at the point x = 0, = 0 can receive
signals transported by material carriers (waves, particles)
from the whole of this region. The boundary N of this region
corresponds to the present: this is what the observer atx = 0,

Figure 31. Graph ofthe past, present, and future for a pointx = 0 at the
time r = 0. The shaded region P covers the past events and its boundary
N corresponds to the present. The region F is the dynamic future: the
point x = 0, t = 0 can be the cause of the events in this region. In the
regions C an information coupling is possible with other points of the
spatial intervals: the continuous liner = 0 corresponds to the collapse in
the ‘absolute time’ and the dashed lines represent the collapse in moving
bodies which are information-coupled to the main body at rest. The
arrows indicate possible directions of control signals.

t = 0 sees around himself, including the stars in the distant
galaxies. All that this is outside P is the future: if the observer
moves uniformly along the ¢ axis, then sooner or later any
point outside P passes through the ‘present’ crossing the
moving boundary N. However, the future divides naturally
into two regions F and C.

The region F is the dynamic (i.e. active) future for the
point x = 0, t = 0: an observer at this point can actively
influence the eventsin F with the aid of signals transported by
material carriers. The region C is the passive future. This
future sooner or later crosses the ‘present’ N, but the observer
at x = 0, t = 0 cannot influence this future by material
signals. The reverse is also true: no object in the future C can
send a signal by a material carrier to the pointx = 0,¢= 0.
In other words, within the framework of the dynamical
interactions the points in the region C cannot be in the
cause-and-effect relationship with the pointx = 0,¢= 0.

We shall now assume that the quantum collapse events
occur in such a way that they can transport superluminal
signals because of the quantum correlations of the
‘entangled’ states, i.e. we shall admit the feasibility of the
‘quantum tele-graph’. Then the collapse events involving
particles travelling at subrelativistic velocities correspond to
the ‘instantaneous’ (V = oo) transmission of a signal, which
is identified by the double-headed arrows on the x axis. The
dashed lines in Fig. 31 correspond to moving bodies for
which the signal velocity is V' = oo in their own coordinate
systems. [fthe wave functions of the particles of these bodies
have correla-tion links with the external environment, then
only that direc-tion of propagation of the control (i.e.
carrying information) signals is possible which corresponds
to an increase in the ‘absolute time’ ¢. Directions of this kind
are identified by arrows of the dashed lines in Fig. 31. It is
implied that we can imagine a moving body isolated
absolutely from the external world, and this includes
isolation in respect of information. If nonequilibrium
irreversible processes occur in this body, then the collapse
of wave functions also occur in it. In this case it is sufficient
just to lock the coordinate system of Fig. 31 to a moving
body and the rest of the reasoning can be applied in the new
coordinate system. In other words, the full Lorentz
invariance includes information isolation of the system.

41. Hierarchical systems

The term ‘hierarchical system’ reminds us a little of bureau-
cracy. In fact, the principle of hierarchical organisation is
used to construct any management structure, which may be
management ofa small enterprise, a ministry, or the Stateasa
whole. The principle of such a structure is illustrated in
Fig. 32.

At the head of such a management structure there is one
person M who makes the final decisions on the most
important problems in an enterprise D. Between M and D
there is an intermediate management level (or several such
levels). The level C reports to M about the decisions made,
receives orders from M, and controls sections of the
enterprise D so as to ensure its optimal functioning.

It would seem that Fig. 32 is very far from the physical
systems under discussion here. However, this is not true: in
complex open physical systems there may be tendencies to
splitting into information and dynamical subsystems, some-
what similar to the diagram in Fig. 32.Let us consider what is
involved here. We recall that an open physical system is
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Figure 32. Hierarchy of a management structure: M is the head of
the organisation, C arc divisional heads, and D are sections of the
organisation.

constructed in accordance with the principle illustrated in
Fig. 33. An open system X receives from outside an ordered
energy of power P and a negentropy flux —S;. If, for example,
the temperature of the system X is 7 and the arriving energy
has an entropy which can be described by an effective
temperature T, then the negentropy flux is —S; =
—P(T.' =T 7).

Irreversible processes inside the system X lead to entropy
creation and a small part of the negentropy arriving in the
system is dissipated in the maintenance and improvement of
the internal structure of the system X. The entropy flux S,
generated in the system X, is expelled, together with an excess
mass, outside in the form of waste.

Ifthe system X has an internal structure which is not too
complex, it may behave as a homogeneous dynamical
(mechanical) system. For example a mountain river receives
mass (water) and an ordered potential energy from the
melting of glaciers. In terms of hydrodynamics, the river has
no internal structure with a memory, unless we are interested
in the evolution of the river gorges or valleys.

However, in more complex systems with a complicated
internally organised structure a single system may split into
two closely coupled subsystems. One of them we shall still call
dynamical or force subsystem and the second can be called
the information or control subsystem. This is possible
because of the great complexity of the ‘phase portrait’ of the
system. If such a system is described by certain order
parameters, which are generalised coordinates Q;, then the
evolution of Q; in time may be very complex because of

L\

Figure 33. Open system X receives energy from outside at a rate equal to
the power P and can receive matter at a rate M. The energy should arrive
in an organised form, so that together with the energy in the system a
negative entropy (Sl) is introduced. Waste is ¢jected from the system X to
the external environment and this waste results in ‘thermal pollution’ of
the medium in the form of an increase in the external entropy at a rate §c;
the waste also includes the mass M flowing through the system.

Waste: 50 +M

nonlinear links between Q;. Consequently, the path Q;in the
phase space may be very sensitive to small perturbations and
have many bifurcation points. Under these conditions the
phase point may be easily transferred from one path to the
other by small external perturbations or small changes in the
structure elements of the system.

Those structure elements which can strongly influence
the dynamics of a system by relatively small perturbations
(signals) naturally form a control structure. In this way
complex dynamical systems can themselves split into two
hierarchical levels as shown in Fig. 34.

Ix
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Figure 34. Hicrarchical systems X and Y consist of dynamic systems D x
and Dy and control subsystems Cx and Cy. Each of the ‘control units’,
for example Cx, receives information on its dynamic subsystem and on
other systems. It uses this information to form controlsignals Cx and Dx.

Let us consider, for example, a system X. It has two
hierarchical levels: a control subsystem Cx and a dynamical
subsystem Dx. Here Cx is also a dynamical system, but it is
more ‘sensitive’ than Dx. The block Cx can ‘work’ with much
weaker energy exchange processes, i.e. it can in fact work
with ‘signals’. If the subsystem Cx is organised in a fairly
complex manner, it may not respond to the intensities of the
transmit-ted signals, but to their profiles, i.e. to their
‘meaningful parts’. In other words, Cx becomes an
information system and its complex internal organisation
makes it possible to construct a thesaurus, which is a set of
internal archives which enables the system to process the
incoming information and generate control signals addressed
to the dynamical sub-system Dx. We shall refer to the
hierarchical systems of the type shown in Fig. 34 as systems
with information behaviour.

We shall now consider two systems with information
behaviour, X and Y, as shown in Fig. 34. The highly sensitive
block Cx can receive signals not only from its dynamical
subsystem Dx, but also from the subsystems Cx and Dx of
the second system Y. The signals should carry information,
i.e. the relevant negentropy should also be supplied from
somewhere outside. The blocks Cx and Cy can then utilise
either part of that negentropy which reaches the blocks Dx
and Dy or other negentropy fluxes which exist in the non-
equilibrium external world. If we consider living organisms,
then the negentropy source for the D subsystems is food and
information may be obtained with the aid of light received by
the vision organs.

For any system X the second system Y may be the whole
external world. In this case we should speak of ‘immersion’
of a given system in the external Universe and of its
adaptation to the energy and information fluxes in the
nonequilibrium Universe. It is in the case of the systems
with information behaviour that this mutual relationship
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between the dynam-ical and information processes, discussed
in the preceding sections, is important.

It should be pointed out that the structural complexity
and structural hierarchy, rather than the hierarchy of
elementary levels (particles, atoms, molecules, bodies) are
more important for information behaviour of complex
physical systems. Elements of information behaviour are
also exhibited by microparticles in the form of the collapse
ofthe wave functions and as the structures become larger and
more complex, they acquire nonequilibrium collective order
parameters playing the role of dynamical variables. The
collapse of wave functions and the bifurcations of their
dynamical variables near branching points look like free
deeds, i.e. as manifestations of the freedom of will. This is
why nature as a whole can develop freely and this is realised
by structural complications and development of its
component elements which are complex physical systems.

42. Summary

Let us now summarise briefly all that has been said above.

At a school level knowledge of mechanics an unwitting
impression is gained that this branch of physics is an exact
science dealing with a set of clearly formulated and exactly
solvable elegant dynamical problems. At least this is how
mechanics is usually taught. This impression of mechanics
leads quite naturally to a mechanistic approach to other
phenomena in physics and Laplace’s determinism then seems
to be fully justified: it would seem that it is sufficient to find
the forces acting between individual bodies and then use the
initial conditions to predict the evolution of the world. We
know that nature is built and develops in a much more
complex manner. However, it may not yet be very widely
known that the situation in mechanics itself has changed
considerably in the last few years.

It has been found that all the exactly solvable, or integra-
ble, problems belong to a class of specially selected, strongly
simplified tasks. The majority of the problems dealing with
mechanical systems are not integrable. This is not simply due
to the inability of finding the final form of the solution, but is
the result of a complex behaviour of dynamical systems
which resembles chaos (random behaviour). This
behaviour, known as the dynamical chaos, has been
demonstrated and analysed for a large number of specific
examples and it seems a fairly universal phenomenon. In this
case, neighbouring paths of motion diverge in the phase
space, i.e. the motion is locally unstable. Therefore, a
description of such motion can be provided only by rigorous
calculations of the paths on a computer, but also by statistical
methods if our interest is in the behaviour of a system
evolving over a fairly long period time.

However, this is not all. In discussing the behaviour of
systems with stochasticity and the characteristics of the
interaction of such systems we can use ideas borrowed from
the theories of control and cybernetics that have been
developed to describe control systems deliberately created
by man, but which also have their own analogues in natural
phenomena, particularly in biological processes.

Chaotic behaviour is typical of a large number of
dynamical systems, both energy-conserving and dissipative.
In Hamiltonian systems in which the phase volume is
conserved the motion represents mixing in the phase space:
an initial ‘drop’ of the phase space is of a size which is set by
the uncertainty of the initial data and becomes deformed in a

complex manner during its motion. The ‘drop’ sprouts
‘branches’ which then become longer, deformed, and
gradually penetrate the whole phase space while retaining
their volume, so that the result resembles a ball of cotton
wool. The close paths diverge rapidly from one another
during such motion and the average range of their
divergence is characterised by the Kolmogorov—Sinai
entropy. In the course of this mixing process the paths may
at any given point in space be approached arbitrarily close.
These systems are known as ergodic: the temporal and spatial
average values of a certain function of the coordinate of the
phase space are identical.

In systems with dissipation the phase volume contracts
during motion. In the simplest case such a system evolves to a
state of equilibrium: the corresponding path in the phase
space has the form of a stable focus. When energy is supplied
from outside, a dissipative system may experience stable
oscillations—they represent a stable cycle in phase space
(and in the multidimensional phase they represent a torus)—
or it may exhibit complex stochastic motion known as a
strange attractor. All the paths of a dissipative system in the
phase space thus correspond to attractors: they represent an
equilibrium, periodic oscillations, or a strange attractor. One
of the attractors may be the destruction of the system.

Ifa dissipative system has many degrees of freedom, it can
have many attraction zones in the phase space. If they are
composed of stable foci, the system tends to one of the stable
equilibrium points. In this case it is usual to speak of a
multiequilibrium system and the simplest example is a com-
puter memory. The limiting state may also be one of the limit
cycles: such memories also exist (for example, a cyclic train of
magnetic bubble domains running one after another). In a
more general case a system may tend to one of many possible
attractors, including strange attractors. When external
action takes a system out of a given attractor state, the
system will evolve to another attractor where the attraction
zone covers the point of the initial state of the system. An
ordering process known as self-organisation may develop in
complex many-attractor physical systems.

In the simplest case the process of self-organisation repre-
sents the appearance of order in an initially homogeneous
systems, i.e. it represents spontaneous symmetry breaking in
an unstable homogeneous state. There are many examples of
self-organisation of this type in physics, chemistry, and other
natural sciences.

Second-order phase transitions can be described, follow-
ing Landau, by introduction of an order parameter. A similar
approach is used to describe the appearance of Benard cells
in a layer of a liquid heated from below. These examples
demonstrate the appearance of order and of new symmetry is
associated with an increase of a certain physical order
parameter well above the initial thermal level. For an insta-
bility in a liquid the relevant physical parameters are the
velocity, density, and temperature. Chemical self-oscillatory
waves (self-waves) can be described in terms of the concentra-
tions of the substances participating in the reaction.

Macroscopic quantities such as the velocity, density,
temperature, and concentration of chemical substances are
continuous functions of a point, i.e. they are physical fields.
Therefore, such fields formally have an infinite number of the
degrees of freedom. However, when order appears or
structures develop, only a finite number of the degrees of
freedom is excited. This is manifested particularly by the
Benard cells or the Taylor vortices. Therefore, systems with
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ordering can frequently be regarded as having a finite
number of the degrees of freedom and they can be modelled
(at least numerically) by simple dynamical systems. It is
worth recalling that strange attractors have been found
specifically when describing convection in a liquid.

After transition to turbulence the number of strongly
excited degrees of freedom can be very large. However, even
then the number of effectively active free quantities need not
be very large. The fractal dimensionality of the effective
phase space is as a rule not high: small-scale degrees of
freedom simply match the large-scale ones and play the role
of stronger dissipation.

Summarising, we can say that self-organisation in homo-
geneous media and the formation of structures bring some
collective degrees of freedom to a level which is far from
thermal. These degrees of freedom can be described in terms
of macroscopic parameters which play the role of generalised
coordinates in the relevant dynamical models. Therefore,
descriptions of self-organised systems resemble those of
dynamical systems.

A more complex type of self-organisation appears in that
case when the hierarchy may develop further in the newly
formed structures because of the appearance and interaction
of new structure elements. An example is provided by
prebiological evolution of macromolecules and biological
evolution. Adopting a simplified approach we can say that
such self-organisation involves new degrees of freedom
which, in terms of dynamical modelling, can be regarded as
memory components in multistable states. For example,
desert sand dunes can be treated as a slowly evolving
dynamical system which stores the history of the interaction
of the surface of the sand with the wind. A quantitative
description ofthe corresponding development processes may
be modelled by dynamical constructs with dissipation and
memory and with a sufficiently large number of the degrees of
freedom.

The very existence of stochastic systems with a small
number of degrees of freedom significantly alters our ideas on
the formulation of dynamical problems. In fact, it had
hitherto been assumed that stochasticity is a property only
of systems with a very large number of the degrees of freedom
when it is natural to employ a statistical description, whereas
systems with few degrees of freedom should be described
exactly, i.e. ‘exactly’ in the framework ofthe adopted model,
which may not correspond fully to reality. However, this can
bereplaced by an analysis of the response ofa system to small
perturbations: in a stable system the perturbations remain
small.

If a system is unstable, then all the paths in the phase
space diverge and, therefore, the initial data become very
important. [f we wish the path of real motion to be close to a
selected one, i.e. that the end ofthe path should be in a certain
region of the phase space, the initial data should be selected
sufficiently precisely. In other words, it is necessary to specify
the value of each of the coordinates ¢ to a sufficiently large
number of decimal places. The number of decimal places is
proportional to +In(1/Ag), where Agq is the error with which
a coordinate is specified. When all the coordinates and
momenta are specified with a certain error, the result is a
quantity proportional to In(V/AV'), where V is the total
volume of the phase space and AV is the proportion of this
volume in the initial state. The quantity In(V/AV') is known
as the amount of information. Therefore, in the case of
unstable systems we have to deal not only with the

dynamical part of the problem, associated with the forces
acting between the bodies, but also with the information part
which plays a major role and is associated with the
specification of the initial values of the coordinates.

However, this is not all. Let us consider, for example, a
Hamiltonian system and postulate that we are interested in
the problem ofa phase path reaching a certain finite ‘drop’in
the phase space. Let us project this ‘drop’ along the phase
path from the future to the initial time. Then this ‘drop’
spreads out to resemble a ‘ball of cotton wool’ covering a
large part of the phase volume in the manner of a highly
porous body. A random point in this volume is unlikely to be
located on a ‘fibre’ of the ‘cotton-wool ball’, but a small
displacement in the phase space may result in placing this
point on a path inside a ‘fibre’ ending in a ‘drop’. Therefore, a
very small displacement in the phase space can bring the
point to the required path: all that is necessary to know is in
which direction the displacement should be made. This
knowledge is also information. The simplest method of
obtaining this knowledge involves following the paths. This
is exactly how the control systems are constructed: they
follow the real path and apply small signals to alter it to the
required one.

It follows that small signals can greatly alter the paths in
unstable systems. In the case of these signals it is not their
amplitude which is important, but the exact matching to the
feasibility of transferring the initial path to the required one,
i.e. the correct information on the structure of the phase
portrait is necessary.

Let us now consider dissipative systems. As pointed out
earlier, the phase space of open dissipative systems can be
represented in a simplified manner as divided into regions of
attraction to different attractors. The system can be trans-
ferred from one attractor to another if it is taken from one
region of attraction to another. Again it is not the magnitude
of the force acting that is of prime importance, but its
information characteristics: a force is necessary to transfer
the system to any point of attraction of the second attractor,
i.e. the system has to be provided with a certain amount of
information In(V/AV'), where AV is the attraction volume of
the second attractor. Obviously, in reality the transfer of a
system from one attractor to another requires a certain
amount of energy and there may be a minimum value of
this energy below which the transfer is impossible and the
appro-priate signal does not implement the available
information.

Nevertheless, not only the dynamical but also the
informational aspect is important in a transfer of this kind.
It should therefore be described in terms of information
processes. The important feature is not only the amount of
the information which is provided, but also its content
(sometimes called the semantic content), i.e. an indication
to which specific attractor the system is being transferred.

Let us consider a system which is dynamically unstable,
i.e. a system with diverging paths. The discussion can be
made easier by considering a very much simplified discrete
model in which the path passes consecutively through
bifurcation points.

At each such bifurcation (branching) point a system
forms a ‘deed’ or ‘act’: it selects one of the subsequent parts
of the path. At every point the selection is random and there
isno correlation between the selections, which means that we
are dealing with a Markov chain. However, this aspect is of
no interest to us.
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We shall assume that our system in fact complex and, in
addition its external dynamic variables, it has also internal
degrees of freedom such as those corresponding to multi-
stable states or internal attractors. Then the path selection at
the bifurcation point is governed by the state of the internal
degrees of freedom. If the system has an energy source, then
in the selection process it is again important to have just an
information hint which path is preferable. A system of this
kind may be regarded as one with control, which is governed
by the state of the internal part of the dynamical system.

Against the background of force dynamics the behaviour
of this system begins to be governed by its information
properties so that it can be called a system with information
behaviour. If there is moreover a feedback between the
dynamical and internal degrees of freedom, then a system of
this kind can react in a complex manner to all external
stimuli.

The behaviour of complex systems is undoubtedly a
suitable topic for specific investigations. Nevertheless, some
general ideas can be put forward.

In a comparison of simple and complex systems, for
example simple mechanisms and biological systems with a
complex hierarchical organisation, the principal difference
between them strikes the eye: the motion of simple
mechanical systems is fully predetermined, whereas in the
case of living (even the simplest) organisms we can detect
signs of free behaviour, which is not determined simply by
external factors. Naturally, this freedom of action is
manifested even more strongly by complex organisms.

The question arises whether it is possible to follow this
trend starting with the ideas on self-organisation.

As mentioned earlier, self-organising systems can split
into dynamical and informational (control) parts. If we are
dealing with biological or prebiological systems, capable of
replication and multiple repetition of a growth cycle, we can
easily see that systems with information behaviour can, and
in fact have, advantages in the fight to survive, i.e. in the
attempt to extend the phase space of their stable existence. It
follows that under competitive conditions the dynamical
behaviour of a system and its development begin to be
determined to a greater extent by its information properties,
including the information coupling to the external world.

In addition to the usual exchange of energy and negen-
tropy with the external environment, which is necessary to
retain an open self-organised structure, systems of this kind
arecapable ofinformation development, i.e. of increasing the
complexity and quality of their control. This process is
related to complications of the controlling part, i.e. by
appearance of new degrees of freedom or order parameters
because of increasing number of new bifurcations. The
process may be characterised phenomenologically as
requiring additional information from the nonequilibrium
external world.

When systems with memory and information behaviour
interact, processes of adaptation of some system to others
may take place. This is an analogue of the appearance of
‘knowledge’ of the reaction of other systems to the behaviour
of a given one. Further development of the mechanisms
of adaptation and optimisation of the behaviour of a
system leads to the possibility of data processing, i.e. to
the appearance of elementary consciousness. However, in
addition to freedom, these complex systems exhibit the
beginnings of free will.

Freedom is the ability to select one of several possibilities
and the act of volition is the selection itself. In unstable
systems with diverging paths it is sufficient to select one of the
paths by altering very slightly the initial data, i.e. to use for
this purpose a very small signal with specific information. In
a complex system with information behaviour this selection
can be made by a signal from a control unit. This signal is
generated by a control system in the process of its dynamic
motion and using the accumulated memory, i.e. knowledge.
Such knowledge is the product of a long development of a
given system in the course of its interaction with other
information systems and this knowledge is to some extent of
permanent nature, i.e. it is not related solely to the events in
the recent past. Therefore, an act of volition seems to be free:
it is not predetermined by causes which are obvious at
present. Moreover, the information integrated over a long
time and accumulated in memory includes data on the evolu-
tion of the system in its environment with time, so that it is
possible to predict events and make decisions with a definite
aim. In other words, in contrast to the usual dynamics where
the behaviour of a system is governed by its instantaneous
configuration and by the forces corresponding to this con-
figuration, in information processes the selection is made on
the basis of long-term memory and with possible extrapola-
tion to the future. Hence it is possible to select the goal. In this
way the selection of the goal and its feasibility can be
regarded as quite natural products of the development of
complex systems with information behaviour.

It would seem that the more complex the system, the
greater the degree to which it should manifest aspects of
information behaviour. In nature as a whole the ‘volitional
spirit’ is related to the structure and memory that have
formed as a result of a long development. If in the course of
investigation it is possible to isolate a system from its external
environment, the situation becomes much simpler and more
readily understood, but the situation is impoverished by
information isolation from the external world.

In tackling increasingly complex systems it is the
structural and information aspects of their behaviour and
evolution that become of prime importance and the dynamics
is simply the base for the development of the information
aspect.

If we allow for quantum processes in the microworld the
picture of development of the world becomes even more
complex and richer in the sense of information behaviour.
New nonequilibrium and strongly nonlinear process in the
form of the collapse of wave functions now come into play.
The structure information links and their influence on
dynamical processes become correspondingly more complex.

The concept of the collapse of wave functions appears
naturally in measurements of quantum values: it follows
from the fundamental principle of quantum mechanics that
measurement of this kind can provide with a certain
probability only one of the discrete eigenvalues of the
corresponding operator. We can see that when an
‘information contact’ is established between a quantum
object and its classical nonequilibrium environment (for
example, an instrument), the wave function of the object
retains only one projection and all the other components are
destroyed. They are annihilated. This process is also known
as decoherence and in recent years it has been discussed
extensively, together with the ‘historicity’, in the literature on
fundamentals of quantum theory (see, for example, the
review by Omnes [41]).
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We have adopted here a much simpler point of view
according to which both the decoherence and the collapse of
wave functions of our environment are the results of its very
strong nonequilibium associated in particular with the
negentropy flux from the Sun. Quantum transitions in the
course of thermalisation of the solar radiation are, on the one
hand, responsible for the monotonic increase in the entropy
and, on the other, destroy the coherence of the wave
functions of macroscopic bodies and thus impose on them
the con-ditions of classical behaviour. In other words, the
evolution of nonequilibrium nature by itself gives rise to
classical behaviour of macroscopic bodies. The contact
between the classical macroworld and the quantum
microworld induces the collapse of wave functions. In
quantum measurements such collapse is accompanied by
the collapse of the prob-abilities, which creates information
on a microobject in the external world.

The problem of measurement in quantum mechanics has
always attracted and continues to attract the interest of many
physicists, both theoreticians and experimentallists. There
are two main points of view in this respect. One begins from
Niels Bohr and states that the results of measurements are
purely random and that quantum theory can only prescribe
the probabilities proportional to the squares of the
amplitudes of the wave function. The structure of a specific
instrument and the macroscopic configuration determine
which specific amplitudes are being measured. The other
point of view was put forward by Albert Einstein. It
postulates that behind the complex results of measurements
lies a more complex physical picture of the universe. This
second point of view has been developed in several variants of
theories of ‘hidden variables’. However, in recent years,
particularly after an experimental confirmation of Bell’s
inequalities, we have seen the acceptance of Bohr’s view. In
spite of this, the problem is still under discussion and will
continue to be discussed in the scientific literature.

The celebrated paradox of Einstein, Podolsky, and
Rosen [2] is very frequently used in discussions of this kind.
This paradox is based on a thought experiment in which two
quantum particles become separated by a very large distance
after they interact. The two particles are correlated and,
therefore, the results of measurements on one particle are
correlated with the results of measurements on the other
particle. At first sight this looks like an instantaneous action-
at-distance and it is not surprising that different authors have
at times discussed the possibility of signal transmission faster
than the velocity of light by means of correlated EPR pairs.

Shimony [5] and Ghirardi, Rimini, and Weber [42] have
shown that superluminal signals are impossible within the
framework of the standard quantum theory when all the
results of measurement follow the [y|? law. It is found that the
measurements carried out on one partner of an EPR pair
cannot in any way control the results of measurements of the
second partner. This would seem to solve the problem.
However, as specially stressed by Shimony [5], the proof
relies implicitly on the assumption that macroscopic bodies
cannot have microcorrelations.

Sections 36 —40 demonstrated that the problem is not so
trivial. Section 36 described the effect discovered experi-
mentally by Sokolov et al. [36, 37] when the flight of an
excited 2P hydrogen atom through a slit in a metal screen
creates continuously a correction to the 2P amplitude. The
simplest theoretical explanation of this effect [38] is based on
the idea that the hydrogen atom is the first partner of a set of

EPR pairs and the second partner is a conduction electron.
After interaction in the surface layer with metal the electrons
travel into the interior of the metal and their wave functions
collapse there by the decoherence mechanism. There is no
external measurement in this collapse and therefore the |y|?
law is not obeyed. However, it follows from energy conserva-
tion that each such collapse is very likely to release a slower
part of a wave packet. There is in fact no measurement in the
process of evolution of the complex wave function of many
electrons. The collapse events have the effect that the slow
part of a wave packet of each electron which has interacted
with an atom is somewhat more likely to appear than the
corresponding value of [Y|2. The individual effect is
extremely small, but it has the same sign for the conduction
electrons, so that the corresponding admixtures to the 2P
amplitude accumulate. We can say that an excited atom
creates microcorrelations inside a macro-scopic body which
gradually result in the accumulation of the 2P amplitude of
an atom from the 25 amplitude.

Since the collapse of single wave functions of electrons
does not necessarily obey the law of the probabilities ||, we
can discuss the possibility of control of the collapse of the
secondary partners of EPR pairs. A suitable scheme was
considered in Section 37. It is at present difficult to say how
realistic such a scheme is: this is primarily a matter for
experimental verification. However, we can formulate a
purely theoretical question: do superluminal signals con-
tradict the standard theory of relativity? This was discussed
in Sections 38 —40.

It is shown in these sections that superluminal signals
associated with the collapse and not with material carriers do
not contradict the theory of relativity. Moreover, we can
imagine a scheme shown in Fig. 31 when the cause-and-effect
closure loops are completely eliminated. In this case the
causality is not violated even in the superluminal regions C.
At a point x = 0, t = 0 such a region corresponds to the
future and, therefore, the standard requirement of causality
in a region C (effect after cause) may be too stringent.

All these topics require further investigation.

The ideas on self-organisation and formation of dissipa-
tive structures in open systems have proved very important in
building bridges between physics and biology. It is, however,
clear that one should go further and study hierarchisation of
structures, formation of structures from memory, feasibility
of acquiring information from outside, storing it in a
memory, and using information to control and process the
stored information with the aim of achieving optimal control.
We can readily see that there are many features in common in
the behaviour both of organic and of inorganic complex
systems, and that inorganic systems with a complex structure
are not simple in respect of the structure and their behaviour.
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