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Abstract. A hidden-variable theory is the traditional, but 
not unique, basis for constructing various types of Bell's 
theorem. The starting point may also be a recognition of 
the existence of a positive-definite probability distribution 
function. This assumption alone is used to formulate and 
prove Bell's paradoxes of different types. A specific 
example is used to show that a formal quantum 
calculation can sometimes give negative values of the 
joint probabilities that are used in the proof. An attempt is 
made to identify the physical meaning of this result and an 
algorithm for determination of negative joint probabilities 
of this type is proposed. 

1. Introduction 
Bell's theorem or paradox is usually assumed to be some 
quantitative criterion of a hidden-variable theory (HVT), 
which can be checked in practice. However, this criterion is 
not simple: it must contradict the results of quantum theory. 
The resultant conflict is an interesting field for the activity 
of experimentalists and the results obtained by them 
usually support quantum theory, but they are continu
ously being disputed by adherents of the HVT that are 
continuously looking for new 'loopholes' to save this 
theory. 

The history of the HVT begins with the famous paper of 
Einstein, Podolsky, and Rosen (EPR) [1], who reached the 
conclusion that quantum theory does not provide a 
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complete description of the physical reality. Bohm [2] 
proposed an experiment illustrating the EPR reasoning. 
Bell [3] was able to 'formalise' the main propositions of the 
HVT in the form of an inequality that may break down 
within the quantum theory framework. 

A plethora of different types of such inequalities has 
been proposed and some of them have been checked by 
experimentalists who have reported results mostly in 
conflict with the HVT. However, the conflict is not dying 
out: it is becoming overgrown with new details and has 
basically transformed into an independent topic in modern 
physics, but it seems to have lost its initial attraction. The 
complexity of the problem is enhanced also by the fact that 
the HVT is based on several postulates (including the 
postulate of locality i.e. the absence of the influence of 
two instruments on one another when they are far apart; 
this possibility is still in hot dispute). Therefore, the reasons 
for the disagreement between the local HVT and the 
experimental results may be sought in failure of any one 
of these postulates. The situation is thus ambiguous. 

The purpose of the present paper is not to decide the 
right and wrong of the long-drawn-out controversy but to 
provide a somewhat different view on the problem which 
may possibly reconcile both sides. Without invoking hidden 
variables expli-citly, we shall begin simply from 'common 
sense' which tells us that the probabilities, including joint 
probabilities, cannot be negative. This sole assumption is 
sufficient to formulate a number of paradoxes initially 
developed specifically for the local HVT. 

I would not wish to claim any priority because the situa
tion is not very clear. In a sense a similar approach has been 
followed by d'Espagnat [4] (see also Ref. [5]), but it has 
been implemented most consistently by Fine [6] and de 
Muynck [7], who have demonstrated Bell's inequalities for 
two (N= 2) observers (see also Refs [8-10] and the 
literature cited there). 

In Section 2 I shall propose a new simple algorithm for 
proving Bell's inequalities for the case when N= 2. In 
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Section 3 an experimental scheme for checking this inequal
ity will be considered and the results will be given of 
quantum calculations confirming the possibility of its 
breakdown. In the next section an analysis will be made 
of the meaning (if it exists) of the negative joint prob
abilities, which may then be encountered and an algorithm 
for indirect measurement of these probabilities will be 
given, i.e. a method for reconstructing these probabilities 
from experimental results will be described. In Section 5 
there is a proof of Bell's inequalities for any number of 
observers N and Section 6 provides a formulation of the 
interesting Greenberger-Horne-Zeilinger paradox of the 
+ 1 = — 1 type, again starting only from the assumption of 
the existence of a positive-definite probability distribution 
function. Finally, in Section 7 Bell's inequalities for any 
number N of observers are generalised to the case of 
nondichotomous variables. The concluding section summa
ries the main results obtained. 

2. Bell's inequality for two observers 
Let us consider a random process characterised by four 
dichotomous variables which assume unity values: 

A = ± l , A' = ± l , £ = ± 1 , B' = ±l. (1.1) 

Let us assume that there is a positive-definite normalised 
probability distribution function 

P(A, A', B,B') ^ 0 , (1.2) 

A A' B B' 

which satisfies the correspondence conditions of the type 

P(A,A', B,B') + P ( - A , A ' , B,B') = P(A', B,BF), (1.4) 

which are similar for other variables and distributions of 
lower dimensionalities. 

We shall prove Bell's inequality of the type 

\n\ = I \(AB) + (A'B) + (AB ') - (A'B ' ) | *S 1 (1.5) 

on the basis of Eqns (1.1)-(1.4). This was first done by 
Fine [6]. The proposed variant of a proof of Bell's 
inequalities of Eqn (1.5) is much simpler than those 
already published [6, 10] 

The discrete probability distribution function (1.2) 
consists of 2 4 joint probablities: 

PAA>BB>(+ + ++) 

= P(A = + 1 , A' = + 1 , B = + 1 , B' = + 1 ) , 

P f+ + + ^ ( L 6 ) 

^AA 'BB'{1- + H ) 
= P(A = + 1, A' = + 1 , B = + 1, B' = - 1 ) etc. 

We shall use them to express the averages occurring in 
Eqn (1.5), such as 

(AB) = PAB (++) + PAB (—) - PAB (+-) - PAB (-+), 

(1.7) 

where, for example, it follows from Eqn (1.4) that 

R AB (++) = PAA 'BB ' (+ + ++) + PAA 'BB ' (+++-) 

+PAA'BB'(+ - ++) + PAA'BB'(+ - +-) • 

We can substitute these expansions on the left-hand side 
of Eqn (1.5). The result is (the subscripts of P 's are omitted) 

n = I ((AB} + (A'B) + (AB ') - (A'B')) 

= P(+ + ++) + P(+ + +-) - P(+ + -+) 

-P(+ + —) + P(+ - ++) - P(+ - +-) 

+P(+--+)-P(+ ) - P ( - + ++) (1-8) 

+P(- + + - ) - P ( - + -+) + P(- + —) 

- + + ) - / > ( - - + - ) + / > ( +) 

+P( ) . 

If all the terms on the right-hand side of Eqn (1.8) had 
appeared in the sum with the plus sign, the result would 
have been an expansion of the unity in Eqn (1.3). Since half 
the components have the minus sign, it follows from 
Eqns (1.2) and (1.3) that the sum of Eqn. (1.8) lies within 
the interval [—1,+1]. This proves Eqn (1.5). 

3. Quantum theory results 
Why the inequality of Eqn (1.5), based on very general 
assumptions described by Eqns (1.1)-(1.4), breaks down in 
practice? 

Let us consider the simplest experimental setup needed 
to check Bell's inequality of Eqn (1.5) [11-13]. Two 
observers A and B (Fig. 1) detected simultaneously one 
photon each with the aid of ' + ' or '—' detectors. If the 
observer A after a phase lag a records a photocount at the 
detector '+ ' , then this event is assigned the value A = +1 . If 
this event occurs subject to phase lag ar, then A'= +1 . 
Photocounts recorded by the detector '—' are labelled 
similarly and this applies also to the channels of the 
observer B. The 'primed' variables correspond to the 
'primed' phase lags. Many repetitions of such measure
ments make it possible to calculate the averages occurring 
in Eqn (1.5). 

The quantum state of photons reaching the observers is 
described by the wave vector [11] 

Figure 1. Schematic diagrams of an intensity interferometer with 
parametric radiation sources for two observers A and B. Correlated 
photons are created simultaneously in nonlinear components (7 or 2 ) 
by the action of a shared coherent pump P and directed to A and B in 
the form of two modes, one of which is subject to a phase lag (circles). 
The modes are mixed in 50% beam splitters (dashed segements) and 
are detected by identical detectors ' + ' or '—'. 
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\*) = Jtt°trt+4i>i)\o) 

= ^ ( | i o > a | i o > f c + |oi)Joi>,), (2.1) 

where a[ and bf are the operators describing creation of 
photons in two signal (travelling towards the observer A ) 
and idler (travelling towards B) modes; j= 1,2 is the 
number of the crystals emitting a given mode (see Fig. 1) 
and |0) denotes vacuum. 

The operators of the numbers of photons recorded by 
the detectors ' + ' and '—' in the channel A are [11] 

na± = a%a± =\[n\+r%± (aa_eia + < e _ i a ) ] , (2.2) 

where n" = afcij, oa = axa\, c\ = Similar relation
ships define n± in the channel B. 

We can now find the probability distribution function 
P^(A, A', 5 , B') predicted by quantum theory and we shall 
calculate all the components of its 16 joint probabilities. 
Since the variables in Eqn (1.1) are discrete, these joint 
probabilities are equal to the following moments: 

PAA>BB>(+ + + + ) = <iAK<44V>> 
PAA>BB>{+ + +~) = mn\ninb

+nb:^) etc. (2.3) 

The primes denote here the replacement of a with a' in 
Eqn (2.2) and/or ft with /T in the channel B. The result is 

P^(A, A', B, B') = ^ [ l + A A / c o s ( a - a / ) 

+BB 'cos(£ -p')+AA'BB'cos(a + 0 - a' - p) 

+AB cos(a + P) +A'B cos(a' + p) 

+AB ' cos(a + p) +A'B' cos(a/ + p)]. (2.4) 

Let us now assume that the phases in the channels are as 
follows: 

, 7C _ 71 71 

<x = 0, « ' = - , P = ~4, 
(2.5) 

which violates Bell's inequality of Eqn (1.5). Then some of 
the joint probabilities prove to be negative (their subscripts 
are omitted): 

V2 
16 '• 

p(+ + ++) =P(+ - - + ) 

=P(- - - - ) 

P(++—) =P(+ - + - ) 

=P(- -++) 

P(+ + -+) =P(+ - - - ) 

=P(- - + - ) 

P(+ + +-) =P(+ -++) 

=P(- - - + ) 

y/2 
- 6 > ( 2 ' 6 ) 

P(- + ++) 

2-V2 

P(- + —) 

2 + V2 
16 ' 

and direct substitution of Eqn (2.6) into Eqn (1.8) gives y/29 

i.e. Bell's inequality (1.5) is not obeyed. 

It therefore follows that determination of the probabil
ity distribution function in the form P^(A, Ar, 5 , B') 
makes it possible, by direct comparison of Eqns (2.4) 
and (2.6) with the initial assumptions of Eqns 
(1.2)-(1.4), to draw an unambiguous conclusion about 
the nature of breakdown of Eqn (1.5). Thus the only reason 
for the existence of the distribution function of the 
probabilities P(A, Ar, 5 , B') would seem to be failure to 
observe the self-evident requirement of Eqn (1.2), because 
according to Eqns (2.4) and (2.6) the normalisation (1.3) 
and correspondence (1.4) conditions are satisfied. In other 
words, a formal recognition of the existence of the 
distribution function of the probabilities P (A,A r , B,B') 
does not leave any scope for the unconditional requirement 
that the function should be nonnegative. 

4. What is the meaning of negative probabilities 
and how can they be measured ? 
Negative [10, 14-20] and even complex-variable [2, 21] 
probability distributions have been considered frequently in 
connection with the EPR paradox and Bell's theorem. In a 
wider sense similar questions have been raised a long time 
ago by Dirac [22] (see also Ref. [20]). The crux of the 
matter is that the distribution function of random 
quantities, described by noncommuting operators, is not 
always positive definite. A striking example is the Wigner 
distribution function for the coordinate and momentum of 
a quantum particle. In the orthodox Copenhagen under
standing of quantum mechanics there are no such 
probability distribution functions since it is impossible to 
carry out experiments in which they would be measured 
directly. Nevertheless, indirect measurement methods are 
possible. This has been demonstrated [23] by reconstructing 
a continuous two-dimensional Wigner distribution function 
of quadrature components of light in a squeezed state. 
Although negative distributions have not been observed, 
there are no fundamental quantum-theoretical reasons why 
these distributions should not exist. 

The probability distribution function P^(A, A r , 5 , B') 
is similar to the Wigner distribution function in the sense 
that not all the observables occurring in it can be described 
by commuting operators, for example, A and A1'. They 
cannot be measured in one realisation (a single photon can 
never be recorded by observer A when the phase lags a and 
a! are different). Consequently, direct measurements of 
P^(A,A r , B,B') are impossible. However, does it mean 
that we should give up? I shall try to answer this question in 
the present section. 

The results of the experiment mentioned above can be 
described formally by a discrete four-dimensional prob
ability distribution function which in this section can be 
denoted more conveniently by P^'ftr • Quantum theory 
predicts the^ possibility of obtaining not only a variable-
sign Paa'/w ' ^ u t also variable-sign three-dimensional 
probability distribution functions of the type P^^'B8* 

Paa'p8' •> e t c - This can be demonstrated quite easily with 
the aid of Eqns (1.4) and (2.6) [10]. Calculation of the latter 
from the experimental results will be tackled in the later 
sections. It should be stressed that direct measurements 
are possible only in the case of the two-dimensional 
distribution functions P^f, PA^,j, PAJ,\ P^f!, and the 
one-dimensional functions PA and Pp. 
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Let us now identify some of the properties of P^tfp8 , 
which will allow us to solve the formulated inverse problem. 

In view of the arbitrary nature of the selection of the 
signs of the variables, which depends on the observer's 
decision in the case of identical detectors, the following 
symmetry should be observed: 

r)AA 'BB ' _ r>AA 'BB ' 

A=-A, A' = —A ', B = -B, B' = -B'. 

Consequently 

['BB' 

(3.1) 

UA _ DAA 'BB' _ r>AA 'BB' 
^a — l^l^l^^aa'BB' ~ l ^ l ^ l ^ ^ a 

A ' (3.2) 
B _ 1 

2 ' 

which agrees with the experimental results [13]. The 
correspondence (1.4) and normalisation (1.3) conditions 
are used here. 

In view of the symmetry of the 'primed' and 
'unprimed' indices, it is found that 

T)AA 'BB ' _ T)AA 'BB ' (3.3) 

The interference nature of the experiment means that 
the dependence of P^ipp on one of the phase lags should 
be a harmonic of the type give by 

P%W= G(a',p, p')+H(a', p, /?') cos[a + cp(a', p,p')] 

(3.4) 

The above relationship applies also to the probability 
distribution functions of lower dimensionalities. It follows 
from the classical stochastic description of mixing of 
interfering waves in beam splitters. In fact, the double 
intensity of the radiation reaching the detector ' + ' belong
ing to the observer A is 

2n\ = \aiia + a2\2 

= \ \ai\ exp(- ia - i(px) + \a2\ exp(—i<p2)| 

= \ax|2 + \a2\2 + 2 |a 1 a 2 |cos(a + (p1 - (p2), (3.5) 

where aj are the complex amplitudes of the signals being 
mixed and cpj are their phases. Similarly, in the case of the 
'—' detector, this intensity is 

2na_ = \a\ | 2 + | a 2 | 2 — 2|<z1<z2| cos(a + q>x— cp2). (3.6) 

The above expressions match Eqn (3.4) if we assume 
that the joint probabilities are proportional to the inten
sities. Moreover, Eqn (3.4) does not contradict quantum 
theory, i.e. it does not contradict the result given by Eqn 
(2.4). 

For the same reasons, the relationship 

T)AA 'BB ' _ T)AA 'BB ' 
^aa'W — ^ ( azbTc )a W (3.7) 

follows from Eqns (3.5) and (3.6), because the addition of 
+ 7i to a is equivalent to transposition of n\ and na_. 
Similar reasoning applies to other variables and to the 
corresponding phase lags. 

Let us start with the reconstruction of the two-dimen
sional joint probability, 

p + + _ p A = + l , A ' = + l (3.8) 

The correspondence condition of Eqn (1.4) gives 

p + p + + _i_ P"i— 
r a — r aa' "r"

 r
 aa' 

(3.9) 

Let a = a r ; then P^a, = 0 since the identity A =Af then 
applies. Consequently, subject to Eqn (3.2), the result is 

P + + _ p + _ l 
r oca, r y. 2 

(3.10) 

It follows from Eqn (3.4) that transposition of a and a ' 
gives 

P + t = G(a )+H(a )cos [a , + (?(a)] • 

According to Eqn (3.7), the result is 

p + - _ p + + _ o 
1 oca, 1 aa+n u 

(3.11) 

(3.12) 

It is evident from Eqns (3.10)-(3.12) that 

G(a) +H(a)cos[a + (^(a)] = \ , (3.13) 

G(a) - H{ol) cos[a + cp{a)\ = 0 , (3.14) 

and hence, 

G(*)=\, (3.15) 

H{a) = {4cos[a + ^ ( a ) ] } _ 1 , (3.16) 

where in the last relationship it is assumed that 

cos[a + cp(a)] ^ 0 . (3.17) 

Substitution of Eqns (3.15) and (3.16) into Eqn (3.11) 
yields 

pU = \ {1 + cos(ar + 9(a)) [cos(a + p ( a ) ) ] _ 1 } 

— ra'a 

(3.18) 

The last identity is obtained on the basis of the property 
described by Eqn (3.3) and is derived similarly to Eqn (3.2) 

It follows from Eqn. (3.18) that 

cp(cc) == —oc zb mTC, m = 0 , 1 ,2 , . . . , (3.19) 

which is not in conflict with Eqn (3.17). Consequently, if 
we allow for Eqn (3.17), the result is 

P^/ =l[\+AA'cos(a-a')] . (3.20) 

According to Eqns (2.1) and (2.2) a formal quantum 
calculation of the moments (^|n±n±|^), corresponding to 
the joint probabilities gives the same result. It can also 
be obtained with the aid of Eqn (2.4) and by consistent 
application of Eqn (1.4). 

The three-dimensional probability distribution functions 
are related to the two-dimensional distributions by simple 
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expressions of the type 

pAA 'B _ 1 (pAB , pA'B pAA'\ n 9 n 

which can be readily checked by substitution of all the 
following quantities on the right-hand side of Eqn (3.21): 

pAB _ pAA'B , pAA'B f 

The probability distribution functions PAp and PA,p are 
found directly from experiments and are given by 

Pil = W+AB cos(a+ /?)], 
(3.22) 

P$'$ =\[l+A'Bcos(a' + PJ\. 

Substitution of the system (3.22) into Eqn (3.21) yields 

P^'i = H1 + A B
 c o s ( a

 + P)+A'B cos(ar + fi) 

+ A A ' c o s ( a - a ' ) ] . (3.23) 

A quantum calculation of the corresponding moments 
gives the same result. 

It is obvious that the joint probabilities, of which the 
probability distribution function (3.23) is composed, can be 
negative. For example, 

Ptrf=W->ft) (3-24) 

for a= 7i/2, a' = 0, and P= tc/4. 
It thus follows from the experimental results [Eqn (3.22)] 

and from the properties of Eqns (3.1) — (3.4) and (3.7) that 
the discrete probability distribution functions of the P^'p 
type can be reconstructed. They link together the observ
able quantities, some of which are described by non-
commuting operators (A and A ' in the present case). 
Therefore, as pointed out above, it is not possible to 
determine them directly, which applies also to the Wigner 
distribution functions. In this sense such distributions do 
not have an operational meaning. However, as shown for 
the continuous Wigner distribution [23] and demonstrated 
in the present paper for the discrete distributions, indirect 
methods can be used to find these distributions. Then P^'p 
and functions of the same kind need not be positive definite. 

What does the negative joint probability mean? Dirac 
[20, 23] regards this probability as a "fully defined 
mathematical analogue of a negative amount of money". 
It should be mentioned that in describing the results of the 
experiment in question the negative probability reduces the 
probability of events corresponding to it and increases 
the probability of opposite events. For example, 

(AB) = P + + + p - f - P+ - - P a - / , (3.25) 

Paft = Ptdf}~ + Pta'l3+- (3.26) 

The negative nature of P^p" means here that the 
probability of the result AB= + 1 , one of whose 
components if P^a~p+, falls as the probability of the 
opposite result (AB = — 1) rises. Like the Wigner distribuy 
tion function, multidimensional distributions of the P^'fi' 
type are convenient in the calculations and make it possible 
to present the results in a clear manner. In fact, suitable 
summation of Eqns (2.4) and (2.6) gives the correct values 

of the two-dimensional probabilities, for example those 
occurring in Eqn (3.22), which can be measured directly. 
One further advantage of the use of PA^pp> is the ability to 
resolve unambiguously Bell's paradox which consists in 
violation of Bell's inequality of Eqn (1.5). 

5. Bell's inequalities for any number N 
of observers 
The attraction of Bell's inequalities with N > 2 is primarily 
due to the quantitative increase in the discrepancies from 
quantum-theoretical predictions by a factor of 2 ^ - 1 ^ 2 [11, 
24, 25]. However, we shall begin this section from one 
further variant of the proof of Bell's inequality of Eqn (1.5) 
for two observers, which can easily be generalised to any N. 

Let us number consecutively the joint probabilities of 
Eqn (1.6), which are components of the probability 
distribution function of Eqn (1.2), for example, in the 
sequence adopted on the right-hand side of Eqn (1.8): 

Pl=PAA>BBi+ + ++) 

= P(Al=+l,A[=+l,Bl = +l,B[ = + 1 ) , 
(4.1) 

PI=PAA'BB'{+ + +-) 

ee P(A2= + 1 , A'2= + 1 , B2 = +1,B'2 = - 1 ) etc. 

up to 

^ 1 6 = PAA 'BB ' ( ) • 

The initial notation of the joint probabilities, adopted in 
the first two sections, is used again above. 

The normalisation condition (1.3) now looks as follows: 

£ P M = 1, M = \,2,...,22N • (4.2) 
M 

Let us consider the average products of two variables, 
for example A and 5 , in the form of the sum 

(AB)=J2AMBMPM (4.3) 
M 

and proceed similarly for other averages occurring in Eqn 
(1.5). We thus have 

n = I ( ( A S ) + (A'B) + (AB ') - (A'B')) =^S^PM, 
M 

(4.4) 
where Bell's observable for two observers 

— \(AMBM -\-AR

MBM -\-AMBR

M — A'MB'M) 

(4.5) 
= \[C^m + # mMm + (BM ~ BmMm] 

can assume only the values + 1 in view of Eqn (1.1). 
Consequently, Eqn (1.5) follows from Eqns (1.2), (4.2), 
and (4.4). 

This proof represents in fact a modification of the 
derivation of Bell's inequalities [11, 25, 26] based on the 
concepts of the local HVT. A further natural generalisation 
involves going over from two to an arbitrary number of 
observers N. 

Let us consider a random process described by 2N 
dichotomous variables, assuming unity values: 
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A ^ = ± l , A ^ ' = ± l , A < 2 > = ± 1 , 

| (2)' 
(4.6) 

Let us assume that there is a positive definite normalised 
probability distribution function 

P[A« A")', A<2\ A<2>',... ,AW, A W] > 0, (4.7) 

E E ••• E P ^ U ( i y , A ( 2 U p l ' , . , A « A « ] = 1, 

which satisfies the correspondence conditions of the type 

E P [ A ( 1 U ( 1 ) ' , A ( 2 U ( 2 ) ' , . . . , A ( S U W ] 
Ad) 

= P\AW',AW,AW,...,AW,AW] (4.9) 

with similar generalisations to other variables and to 
distributions of lower dimensionalities. 

We shall introduce also a Bell's observable of the type 

(N) _l\fA(N) ,A(N)\„(N-1) 

± ( A W T A W " 1 ) f ] = ± l . (4.10) 

which is similar to that used in Eqns [11, 25]. However, the 
variables of Eqn (4.6) labelled with the index M do not 
correspond to the same set of hidden variables {A}, but are 
numbered in accordance with the corresponding joint 
probabilities, as has been done in Eqn (4.1). 

The recurrence relationships (4.10) may go over from a 
Bell's observable for N = 2 to a Bell's observable for N = 3, 
etc. The prime in the last term of Eqn (4.10) means 
redesignation of the primed variables occurring in Bell's 
observables for the observer (N — 1) and vice versa, for 
example, 

, (2) ^ ± A ^ ) A ^ ± ( A ^ T A ^ ' ) A ^ (4-lD l(2)\,(l) 
(2) . i ( 2 ) \ , ( l ) ' l 

where s £ > = A$. 
The signs in Eqn (4.10) are arbitrary, but if the first 

parentheses contain a sum, then the second parentheses 
should contain the difference, and vice versa. 

A comparison of Eqns (4.7) and (4.8) [or Eqn (4.2)], and 
Eqn (4.10) makes it possible to conclude that 

V c(N)p < 1. (4.13) 

This is the prototype of a nonlocal Bell's inequality for 
any number N of observers. Its specific form is obtained by 
calculation from Eqn (4.10). The following formal trans
formations have to be made: the subscripts M have to be 
removed from Eqn (4.10), both SN_X and SN_X> have to be 
expressed in terms of the variable of Eqn (4.6), all the 
parentheses have to be opened, and each term should be 
enclosed inside the averaging symbols. The absolute value 
of the resultant expression should not exceed unity. For 
example, if N = 3, one of the variants of the combination of 
signs in Eqn (4.10) gives 

\\(ARBC) + (AB FC) + {ABC ') - (A'B'C')\ ^ 1. (4.14) 

The following substitutions are made here for clarity: 

A =A^\ B =A^2\ C ee A ^ ; similar substitutions are also 
made for the 'primed' variables. 

The relationship (4.14) is identical with the correspond
ing Bell's inequality derived on the basis of the local HVT 
[11, 25, 26]. This applies also to the Bell's inequality for an 
arbitrary value of N because of the formal identity of the 
expression given by Eqn (4.10) for a Bell's observable and 
the corresponding expression derived from the concept of 
the local HVT [11, 25]. 

As pointed out above, an increase in N increases quan
titatively the deviations from Bell's inequalities by the 
factor 2 ( i V " 1 ) / 2 [11, 24, 25]. For example, the left-hand 
side of Eqn (4.14) assumes the value 2 when a quantum 
analysis is made under certain conditions [11]. Moreover, 
beginning with iV= 3 we can formulate clearly the Green-
berger- Horne-Zeilinger paradox, which is dealt with in 
the next section. 

6. Greenberger-Home-Zeilinger paradox 

This interesting paradox demonstrates a contradiction of 
the +1 = — 1 type [11, 25-27] . It implies a total correlation 
of the results of measurements, for example, 

(A'BC) = A'BC = (AB FC) =ABFC = (ABC ') 

= ABCF = -(A'B'C') = -A'B'C' = 1, (5.1) 

which is permitted by quantum theory. It is precisely in this 
case that Bell's inequality of Eqn (4.14) breaks down, as 
mentioned at the end of the preceding section. Eqn (5.1) 
leads to the product 

(A'BC){AB 'C){ABC F)(AFBFCF) -1 (5.2) 

It will be shown later that this is impossible if the 
requirements of Eqns (4.6)-(4.9) are satisfied. 

Under complete correlation conditions, corresponding 
to Eqn (5.1), the components PM which give 
AR

MBMCM = — 1 should vanish. This applies also to the 
components which give AMB'MCM = AMBMC'M = — 1. 
Then, out of 64 components PM of the function 
P(A, Ar, 5 , BC, C r ) , only 8 nonzero components 
remain: 

P(+ + + + + + ) , P (+ + ), P (+ - + - - + ) , 

P(+-- + +-), P(- + + - +-), P(- + - + -+), 

P(- - + + —), P( ++)• 

but all of them give (!) A'MB'MC'M = +1 . Moreover, there 
is not a single component PM which for any of the three 
out of the investigated four factors will give the same sign, 
and for the fourth one the opposite sign, because the 
product is 

(AMBMCM)(AMB MCM)(AMBMC M)(AMB MC M ) 

(AMAMBMB MCMC M ) — +1 . (5.3) 

Consequently, if the limitations (4.7)-(4.9) permit the 
complete correlation required under these conditions, this 
happens only in the case when the product (5.2) is + 1. The 
above reasoning is readily generalised to arbitrary values 
N^3. The Greenberger-Horne-Zeilinger paradox for
mulated here does not require the hypothesis of locality and 
rejection of this hypothesis thus does not solve this paradox. 
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7. Bell's inequalities for nondichotomous 
variables 
The algorithm for the proof of Bell's inequalities described 
in Section 5 in the case of an arbitrary N permits also 
generalisation of the investigated inequalities to the case of 
nondichotomous variables contained within the interval 
[ -1 , +1]: 

| A ^ 1 , | A ^ ' | < 1 , |A<2>|<1, |A< 2 >' |<1,. . . , 
(6-1) 

| A ( i V ) | ^ l , | A ( i V ) | ^ l . 

Let us consider first Bell's inequalities for two observers 
under these conditions. Let us return to the Bell's observ
able of Eqn (4.11) and prove that if Eqn (6.1) is obeyed, 
then 

l ^ | < 1 . (6.2) 

Subject to Eqn (6.1), we find that 

| ( A ( 2 ) ± A ( 2 ) U ( 1 ) I - l A ( 2 ) ± A ( 2 ) ' l l A ( 1 ) l 

- lA ( 2 ) ± A ( 2 ) ' l - (1 - l A ( 1 ) h l A ( 2 ) ± A ( 2 ) ' l 

^ l ^ i ^ i f l - (6-3) 
Similarly, we obtain 

\{^TA$)AV\<\A%TA%\. (6.4) 

Let us add Eqn (6.3) to Eqn (6.4). If allowance is made 
for Eqn (4.11), the result is 

2 | s{2) I - I (A (2) ± A {2)')A (1) ± (A (2) m A {2)')A I 

^ \(A\} ^^AI MV| + T^Af MM I 
^\A{2)±A{2)) + \A{2)

TA{2))^2, (6.5) 

which leads to Eqn (6.2). 
The iterational nature of the algorithm of the algorithm 

of formation of the Bell's observable of Eqn (4.10) makes it 
possible to draw the conclusion from Eqns (6.1) and (6.2) 
that \S$\ ^ 1 and so on: 

We shall now assume that the variables of Eqn (6.1) 
assume a finite number K of their values, which is always 
satisfied in practice if only because of the finite number of 
experimental realisations. The number of components PM 

of the probability distribution function P then increases to 
22KN, but the validity of Eqn (4.13) is retained because of 
Eqn (6.6). Therefore, if the conditions described by Eqns 
(4.7)-(4.9) are obeyed, Bell's inequalities described above 
should be satisfied also in the case of nondichotomous 
variables obeying Eqn (6.1). 

8. Conclusions 
We shall now summarise some of our results. In a wider 
sense the family of different variants of Bell's theorem (or 
of Bell's paradox) is obtained in two stages. The first stage 

involves a certain relationship based on classical represen
tations such as the HVT or simply 'common sense'. This 
relationship is frequently in the form of an inequality, but 
sometimes it can be simply an algebraic formula as is true, 
for example, of Greenberger-Horne-Zeilinger or 
Kochen -Specker paradoxes (see, for example Ref. [11]). 
The object of the description can then be a specific concrete 
model, as well as an arbitrary random process in general. 

The second stage of Bell's theorem refutes the first stage 
and is based on a quantum-mechanical description of the 
process. Since to refute a given view it is sufficient to find 
just one concrete example, the second stage usually involves 
a concrete physical model, but sometimes the refutation can 
be very general as is true, for example, of the original 
version of the Kochen-Specker paradox just mentioned 
(for details see, for example, Ref. [11]). 

If we start from 'common sense' and recognise the 
existence of a nonnegative probability distrbution function, 
the result is a noncorrespondence of quantum-mechanical 
results of fundamentally possible and already carried out 
(for N = 2) experiments capable of demonstrating break
down of Bell's inequalities or the Greenberger-Horne-
Zeilinger paradox. The only argument which can resolve 
these contradictions is that in such cases there is no positive-
definite probability distribution function. 
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