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Abstract. A brief review is given of theoret ical and 
exper imental invest igations of the spon taneous emission 
from an a tom in a resona tor cavity. A theory of 
spon taneous emission from a two-level a t om in free space 
and in a cavity is presented in a methodica l unified manner . 
In a single-mode resona tor the s t ructure of the spectrum of 
the emitted p h o t o n s is a singlet or a doublet , depending on 
the rat io of the cavity damping to the cons tant of the 
interact ion of an a tom with a field. The emission spectrum 
of an a tom in a cavity with two modes with similar 
frequencies m a y have a triplet s t ructure. 

1. Brief historical review 
The p rob lem of spon taneous emission is one of the classical 
topics in q u a n t u m electrodynamics . M u c h work has been 
done on this p rob lem, beginning with the wel l -known 
paper of Weisskopf and Wigner [1]. The theory of 
spon taneous emission has been dealt with in m a n y 
b o o k s and review papers . Only some of them are 
ment ioned be low [ 2 - 1 3 ] , bu t the list is no t exhaustive. 

In the course of the last few years the p rob lem of 
spon taneous emission has been a t t rac t ing a t tent ion in 
connect ion with the s tudy of the process of spon taneous 
emission from an a tom or a molecule inside a resona tor 
cavity. A l though this p rob lem pos tda tes the spon taneous 
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emission in free space, it also n o w has a long history. The 
interest in it has recently increased because oppor tun i t ies 
have become available for an exper imental verification of 
the theoret ical predict ions . 

The probabi l i ty of spon taneous emission in a cavity was 
first po in ted out by Purcell [14]. H e stated tha t the 
probabi l i ty w°s of spon taneous emission in a single-mode 
cavity can be deduced from the probabi l i ty w s of spon­
t aneous emission of an a tom in free space if the latter is 
divided by the density of field oscil lators in free space 
p(co) = co2/3%2c3 and multiplied by a quant i ty Q/TZCOCV 
which represents nominal ly the density of field oscil lators in 
a cavity m o d e (Q is the Q factor of a cavity, V is its volume, 
X = 2KC/CQ, and c is the velocity of light): 

3A3G 
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(1) 

E q n (1) predicts a considerable increase in the probabi l i ty 
of spon taneous decay if free space is replaced by a high-Q 
cavity in the microwave range of wavelengths when the 
wavelength is comparab le with the linear d imensions of the 
cavity. F o r example, the probabi l i ty is w s w 4 x 1 0 2 w s for 
)? oc V and Q « 1 0 4 . 

A m o r e consistent theory shows tha t Purcell and several 
other au tho r s [15, 16] are absolutely right, bu t only when 
the cavity frequency w c is tuned exactly to the a tomic 
frequency t ransi t ion w a . The expression (1) for the 
probabi l i ty of spon taneous emission in a cavity does no t 
include in any way the de tuning (offset) between the 
eigenfrequency (na tura l frequency) of the cavity and the 
resonance frequency of the a tomic t ransi t ion. A later 
calculat ion of Bunk in and Oraevski i [17] has shown tha t 

(2) 
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where \i is a mat r ix element of the dipole m o m e n t cor re ­
sponding to a l ight-emitt ing t ransi t ion. If coa = coc is sub­
stituted in Eqn (2), the Purcell expression follows directly. 
However , it also follows from Eqn (2) tha t when the 
difference between coa and coc is sufficiently large, the 
process of spon taneous emission in a cavity is s trongly 
inhibited. F o r example, if coa-coc lies between the funda­
menta l and first m o d e of a cavity, so tha t coa-coc ~ coc, the 
probabi l i ty decreases by a factor Q2 compared with the 
resonance case. This result na tura l ly suggests tha t the 
placing of an excited a tom in a waveguide with a critical 
frequency higher than the resonance frequency of the light-
emit t ing a tom will inhibit spon taneous emission [18, 19]. 

In the late fifties and early sixties a series of exper iments 
has been carried out on a maser with a beam of a m m o n i a 
molecules in which two (or even three) consecutive cavities 
have been used [3, 20 — 23]. The usua l generat ion of 
coherent microwave rad ia t ion (A = 1.25 cm) takes place 
in the first cavity. The second cavity is used to observe 
collective (coherent) spon taneous emission. A l though in 
these experiments the a u t h o r s ' aim has no t been to 
demons t ra t e specifically an increase in the probabi l i ty of 
a spon taneous t ransi t ion of a molecule in a cavity, these 
experiments have provided a clear evidence of this increase. 
In the second cavity, whose Q factor is several t housand , a 
s t rong collective spon taneous emission has been observed 
so tha t the molecules emerging from the second cavity have 
been found to be de-excited. On the other hand , the passage 
of a b e a m of molecules in free space between the cavities has 
no t p roduced any significant de-excitat ion of molecules. 

The first direct observat ion of an increase in the 
probabi l i ty of spon taneous emission from an a tom inside 
a cavity was repor ted in 1983 [24]. The R y d b e r g state of 
sodium a toms , cor responding to the pr incipal q u a n t u m 
number of 23, was used in this experiment . The a t o m s were 
placed in a n iob ium superconduct ing cavity with its 
eigenfrequency close to 340 G H z . Tun ing of this 
frequency to a resonance with an a tomic t ransi t ion 
shor tened the lifetime of the excited a toms . 

In the opt ical range a similar experiment was carried out 
by Heinzen and Feld [25]. They were able to detect an 
increase in the probabi l i ty of spon taneous emission in a 
mu l t imode opt ical cavity resona tor . 

The inhibit ion of spon taneous emission has also been 
studied experimentally. The first experiment k n o w n to the 
present au thor was repor ted by Drexhage in 1974 [26]. A n 
investigation was m a d e of the fluorescence emitted by a thin 
dye film placed near a mir ror at a node of an electro­
magnet ic field formed as a result of interference between the 
waves incident on the mir ror and reflected from it. 
Drexhage repor ted a 2 5 % reduct ion in the probabi l i ty of 
spon taneous decay. Similar experiments were also described 
by D e M a r t i n i et al. [27 ]. Gabrie lse and Dehmel t carried out 
experiments involving the inhibi t ion of spon taneous 
t rans i t ions in a cavity [28]. They observed a tenfold 
increase in the lifetime of a single electron on an excited 
cyclotron orbit in a Penn ing t r ap . The electrodes of this t r ap 
served as the cavity. 

A n increase in the lifetime of the R y d b e r g states of 
a t o m s inside the cavity have also been repor ted by o thers 
[29, 30]. 

The idea of inhibi t ion of spon taneous radiat ive t rans i ­
t ions has recently been developed on the basis of per iodic 
optical s t ructures . W h e n electromagnet ic waves p r o p a g a t e 

inside such structures, there are forbidden ranges of 
frequencies (and wave vectors) of these waves. If the 
reson-ance frequency of an a tom falls inside such a 
forbidden range, the spon taneous decay of an a tom is 
s trongly inhibited [9, 31—33] 

E q n (2) is derived on the assumpt ion of a relatively 
s t rong cavity damping when the inequali ty 
co/Q> (\fi\2{E2))l,2/% is satisfied; here, (E2) is the 
average value of vacuum fluctua-t ions of the electric 
field intensity. In the microwave range a dipole 
t rans i t ion with the usua l value \fi\ « 1 0 - 1 8 cgs uni t s 
and a cavity with Q = 1 0 1 3 — 1 0 4 such an inequali ty is 
readily satisfied. The frequency dis t r ibut ion of the spon tan ­
eously emitted p h o t o n s is then of m o n o r e s o n a n c e na tu re . 
However , in the case of t rans i t ions between high R y d b e r g 
a tomic states the dipole m o m e n t is \fi\ « 1 0 - 1 6 cgs uni t s 
and the Q factor of a superconduct ing cavity can reach 
10 9 [34]. In this case the inequali ty co/Q < (\/i\2{E2))l/2/% 
is obeyed and the spectral dis t r ibut ion of the p h o t o n s 
emitted in the cavity is a double t [35 — 37] . 

It is well k n o w n tha t the cavity modes can be 
degenerate: one and the same eigenfrequency can 
cor respond to several different field configurat ions. If 
the modes are assumed to be r igorously o r thogona l , the 
t ransi t ion probabi l i ty should in this case be multiplied by 
the number of degenerate modes . However , such modes are 
frequently no t exactly o r thogona l . It is m o r e consistent to 
regard them as mutua l ly coupled oscillators. The p rob lem 
of spon taneous emission from a part icle in a cavity with two 
coupled modes has been investigated [38]. The 
spon taneous emission into coupled degenerate (or close 
on the frequency scale) modes has been found to occur at a 
lower ra te t han the emission of independent ( o r t h o g o n a l ) 
modes . 

Very recently m a n y papers have been publ ished on 
the p rob lem of spon taneous emission in a cavity with 
specific appl icat ions to var ious tasks in q u a n t u m elec­
t ronics [39—47]. In par t icular , considerat ion has been 
given to special features of open p lane—plane cavity 
resona to r s [39, 40] and cavities with a different geometry 
[40], the noise in opt ical amplifiers [39], and the 
spon taneous emission in semiconductor lasers [41]. The 
repor ted invest igations are interest ing also from the 
methodologica l po in t of view. 

A brief historical review will be followed by an ordered 
presenta t ion of the theory of spon taneous emission and this 
theory will be used to p rove all the results ment ioned above. 

2. Spontaneous emission in free space 
Al though the main pu rpose of this review is to provide a 
systematic account of the p rob lem of spon taneous emission 
in a single-mode cavity, it is logical to begin with the theory 
of spon taneous emission in free space. 

Let us begin with the classical mode l of Weisskopf and 
Wigner : a two-level a t om interacts with a con t inuum of 
oscil lators of a free-space field. The Hami l ton i an of the 
a t o m - f i e l d system is 

H = H,+Hf+V, (3) 

where Ha is the opera to r of the energy of the a tom with 
two eigenvalues: W\ = 0 and W2 = Hcoa; Hf is the opera tor 
of the energy of the electromagnet ic field and its 
eigenvalues nke%(Dk describe the energy of a field 
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oscillator cor re-sponding to a p lane wave with the wave 
vector k and a polar isa t ion e; V is the opera tor of the 
interact ion of the a tom with the electromagnet ic field. 

The combined a t o m - f i e l d q u a n t u m states will be 
described by two indices |<z, a). The first index describes 
the state of the a tom and the second is the combined index 
of the field oscillator a = (k, e). 

W h e n the two-level a tom interacts with the field, the 
system m a y be in one of the following states: 

11,0) when the a tom is excited and all the field 
oscil lators are in the g round state; 

|0, l a ) when the a tom is de-excited and it has emitted one 
p h o t o n with the combined index a. 

The state |0, l a ) is in fact a con t inuous set of states 
because there is a definite probabi l i ty of the excitation of 
any one of the field oscillators. 

The opera to r s Ha and Hf are d iagonal in the represen­
ta t ion of the states |1,0) and |0, l a ) : 

# a | l , 0 ) = W2|1,0), Ha|0,l„) = Wi|0,l„), 

# f | l , 0 ) = 0 , / / f |o , i a ) = ^« |o , i« ) . 

(4) 

(5) 

W e shall assume tha t the opera tor V is off-diagonal in the 
selected representa t ion: 

v|i,o> = v a |o, i a > ) v | o , u = v: | i ,o) . (6) 

W e shall seek the wave function of the system in the 
form of a superposi t ion of these states: 

W(t) = A(t) exp(- iav) | l ,0) 

+ exp( - i av ) |0 , l a ) . (7) 

The Schro'dinger equat ion together with E q n s (4), (5), and 
(6) yields the following equa t ions for the coefficients A(t) 
and B(t) [2]: 

.dB 

In the above equat ion the 8 function describes the initial 
state: it represents the absence of the a tom up to the 
m o m e n t t = 0 and its appearance at the m o m e n t t = 0 in 
an excited state. 

W e shall seek the solution of E q n s (8a) and (8b) by the 
Laplace t ransform me thod . W e shall in t roduce the Laplace 
t ransforms 

Ap^A(t), Bap^Ba(t) exp[-i(raa - r a a ) f ] , (9) 

which, in accordance with E q n s (8a) and (8b), obey the 
following equat ions : 

V 

v* 
\p - i(ra a - raj] Bv = -Tjr Ap . 

(10a) 

(10b) 

If B^p is expressed in te rms of E q n (10b) and is 
subst i tuted in E q n (10a), the result is 

(p + rp)Ap = l, 

where 

rP = J2{\v«\R~1)2[p + {((O«-C0J] 

( i i ) 

(12) 

E q n (11) has a trivial solution if the sum (12) can be 
calculated. This can be done by summat ion over two 
polar isa t ions for each value of the vector k and integrat ion 
with respect to the direct ions and magni tudes of this 
vector, because A: is a cont inuously var iable pa ramete r . The 
replacement of the summat ion with the integral sign 
requires in t roduct ion of a density of states p(coa) which 
depends only on the frequency (modulus) of the wave 
vector because space is regarded as isotropic. Consequent ly 
E q n (12) becomes 

^ = E f ( i v v K ) r ' ) 2 

v J 

xpKO [P + i(<»a - <»a)] dfl draK 
(13) 

where the index v denotes the direction of the polar isa t ion 
and dQ is the differential of the solid angle. Summat ion 
over the polar i sa t ions and integrat ion with respect to the 
angular variables (directions of k) is carried out in the 
Append ix 1 on the assumpt ion tha t the interact ion of the 
a tom with the field is of the dipole na tu re : 

V = -fi-E 
The result is 

rp = 2(3nhc3y | / i | 2w3[p + i K - w a ) ] 1 dav (14) 

It n o w remains to integrate with respect to the frequency. It 
is usua l to proceed as follows (see, for example, Ref. [2]). 

The value of the required function A(t) is determined by 
the poles of its Laplace t ransform Ap. La ter calculat ions will 
show tha t the value of p at a pole is much less t han coa or coa. 

(8b) Therefore, \fi\2col is a slowly varying function compared 
with [p + i(coa — coa)] 1 . In the limit of very small values of 
p, compared with coa and coa, the results are 

[p + i f o - O a ) ] - 1 = 7 t 8 ( £ ) - i P r 1 , £ = <»«-<»„, (15) 

t'OC 

rp = 2(37i?iC

3)-1 |,«|K + £)|2K + a3 

J —coa 

x [ ^ - i p r 1 ] ^ . ( i6) 

Since coa 5> p, the lower limit of in tegrat ion in E q n (16) can 
be assumed to be — oo. The imaginary pa r t of E q n (16) is 
the pr incipal value of the integral . It determines the 
radiat ive correct ion to the a tomic t ransi t ion frequency. The 
p rob lem of radiat ive correct ions to the energy levels is of 
interest for its own sake and it represents an impor t an t 
chapter of q u a n t u m electrodynamics . However , the 
radiat ive correct ion to the frequency does no t play a 
significant role in the theory of decay of a tomic levels and 
of the na tu r a l width of spectral lines. Therefore, in the 



396 A N Oraevskii 

major i ty of investigations of spon taneous emission, the 
discussion of the radiat ive correct ion usual ly ends at this 
stage. W e shall do the same here. 

A decisive role in the theory of the na tu ra l width of a 
line is played by R e T p . It follows from Eqn (16) tha t 

. p - y = 2\ti\zCDi(3Hc")-- 07) 

This quant i ty is independent of p because Ap has one pole 
p = -y. Therefore, 

A(t) = e x p ( - y O , (18a) 

y + i{coa - coa) 

The probabi l i ty w s of spon taneous t rans i t ions per uni t t ime 
is given by 

1 d |A| 
2y = 4\fi\2(ol(3nci)-1-„3\ —1 

\A\2 dt 
(19) 

The frequency dis t r ibut ion of the emitted p h o t o n s is 

J \Bx(oo)\2p(cox) dQ = yn-1 [y2 + (coa - cox)Y. (20) 

In wri t ing down E q n (20) it is assumed tha t p(co a ) = p(co c ) , 
which is permissible since p(co a) is a slowly varying 
function compared with the Lorentz ian [y2 + (coa — c o a ) 2 ] - 1 . 

All seems to be well: the integral (14) is calculated 
subject to quite obvious assumpt ions and the value of the 
integral is of general n o n m o d e l na tu re . Unfor tuna te ly , in 
the major i ty of the wel l -known b o o k s the discussion of the 
calculat ion of this integral ends here. However , the si tuat ion 
is m o r e d ramat i c t han it might seem at first sight. The poin t 
is this: the integral 

ReTp = 2(3nhc3Y \m\2MIP dcoa (21) 

converges only subject to m o r e stringent assumpt ions 
abou t the function |/j|2a>a t han simply its slow var ia t ion 
compared with the function [p2 + (coa — coa)2]~l. If, for 
example, it is assumed tha t \fi\ decreases at higher values 
of CQ<x in accord-ance with the power law 
\fi\2 oc Qn/(Qn + co«), then the integral (21) converges if 
n > 2. 

The need to assume a reduct ion in the dipole m o m e n t on 
increase in the frequency coa is no t a serious p rob lem. At 
high frequencies, when the wavelength becomes less t h a n 
the dimensions of an a tom, the field changes its phase m a n y 
t imes within these dimensions. In this case the dipole 
approx ima t ion is, strictly speaking, invalid and one 
should speak of a mat r ix element of the interact ion 
opera tor V. Since [2] 

1JI Q^{ik-r)W*2{r)pWx{r) d3r, (22) 

where p is the m o m e n t u m of an electron in an a tom and 
Wj(r) are the wave functions of the a tomic states between 
which a t ransi t ion takes place, it follows tha t for \lc\a 5> 1 (a 
is the effective size of an a tom) the value of | V a | 2 decreases 
with increase in the frequency faster than co~2. This can be 
readily demons t ra ted by assuming tha t , for example, 
Wj(r) oc Q ~ r / a . 

However , strictly speaking, the two-level approx imat ion 
for the descript ion of an a tom is invalid at high frequencies 
because the levels with higher energies can then be excited 
right up to the state of ionisat ion of an a tom. If Hcoa > m c 2 , 
pair creat ion begins, and so on. Therefore, we can see tha t 
at high frequencies our calculat ion mode l becomes 
meaningless . 

H o w can this p rob lem be solved? The solution is given 
by the following procedure . The 8-function approx imat ion 
used in the calculat ion of the integral (14) can be regarded 
as the first approx imat ion in the expansion of the integral as 
a series in p. W e have seen tha t this approx imat ion is 
independent of p and it is no t based on any specific mode l 
of the process at high values of coa. Calcula t ion of the 
results in higher approx ima t ions requires however either 
model l ing of the process at high frequencies or a l lowance 
for the whole complex range of p h e n o m e n a (ionisation, pair 
creat ion, etc.) which are involved in the process in the limit 
(Qa -> oo, which is hard ly pract ical . However , if the te rms of 
higher orders in p are small compared with the first 
approx imat ion , they can be simply ignored. 

The quest ion is: are these te rms small? W e shall answer 
this by specific calculat ions of the integral (14) and by 
model l ing the frequency dependence of the dipole m o m e n t . 
F o r example, let us assume tha t | / i | 2 = | / i 0 | 2 QA/{Q2 + co 2 ) 2 . 
Then the rat io of the te rms which are ignored to the main 
term is of the order of pQ2/co3

a = yQ2/co3

a. If we assume tha t 
Q is governed by the a tomic dimensions (Q « c/d) and tha t 
po « 1 0 ~ 1 7 — 1 0 ~ 1 8 cgs uni ts , it follows tha t yQ2/co3

a < 1 
(see also the Append ix 7.2). 

It therefore follows tha t at sufficiently low values of the 
probabi l i ty of a spon taneous t ransi t ion, compared with its 
frequency, the use of the 8 function in the calculat ion of 
(14) is justified. The result ob ta ined in this way should be 
regarded as the first te rm of the expansion of the 
probabi l i ty as a series in te rms of the small pa rame te r 
y/coa. Calcula t ion of h igher-order correct ions is strictly 
speaking impossible within the f ramework of the t w o -
level mode l and the dipole approx imat ion . W e can only 
say at sufficiently low values of y/coa the first-order te rm 
predomina tes , so tha t the higher-order t e rms of the 
expansion can be ignored. 

W e shall n o w give numer ica l est imates of the probabi l i ty 
of spon taneous t ransi t ions . W e shall assume tha t the 
wavelength of the spontaneous ly emitted rad ia t ion lies in 
the visible pa r t of the spectrum and, therefore, we shall 
pos tu la te tha t X = 0.5 um. Let the dipole m o m e n t be \ft\ = 
5 x 1 0 - 1 8 cgs uni ts ; this value is typical of a tomic 
t rans i t ions in the visible par t of the spectrum. It then 
follows from Eqn (19) tha t w s = 6 x 10 6 s - 1 . This value 
agrees well with the experimental ly determined lifetimes 
( ~ 10 ~ 8 s) of excited a tomic states. In the microwave range 
when X = 1 cm the t ransi t ion probabi l i ty is (2 x 1 0 4 ) 3 

t imes smaller: w s « 10 ~ 5 s _ 1 . This spon taneous emission 
probabi l i ty cor responds to a lifetime of the order of days. 

3. Spontaneous emission in a cavity 
3 .1 . Formulation of the problem and principal equations 
W e shall begin with the mode l p roposed earlier [17]: in this 
mode l a two-level a t om is assumed to interact with an 
oscillator which in tu rn interacts with the system 
characterised by a con t inuous absorp t ion spectrum. The 
oscillator describes a cavity m o d e closest in its frequency to 

file:///lc/a
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the two-level a tom. The interact ion of the oscillator with 
the system tha t has a con t inuous spectrum (walls of the 
resona tor cavity) allows for the cavity damping . 

The Hami l ton i an of such a complex system is 

H = Ha+Hc+Hw + U+V, (23) 

where Ha is the eigenenergy of the a tom, Hc is the energy 
of the oscillator, Hw is the energy of the system with a 
con t inuous spectrum (cavity walls), U is the interact ion of 
the a tom with the oscillator, and V is the interact ion of the 
oscillator with the walls. 

The states of the combined a t o m - o s c i l l a t o r - w a l l s 
system will be described by three indices |a, c, w) . The 
first index indicates the state of the a tom, the second tha t of 
the oscillator, and the thi rd represents the walls. 

W h e n the a tom interacts with the cavity, the system m a y 
be in the following states; 

11,0,0) when the a tom is excited, the oscillator is in the 
g round state, and the walls are not excited; the energy of the 
state Wa is equal to the energy of the excited a tomic level 
(the lower state of the a tom is assumed to be the g round) 
and we then find tha t Wa = Hcoa, where coa is the Bohr 
frequency of the a tomic t ransi t ion; 

| 0 ,1 ,0 ) when the a tom is in the lower state, the 
oscillator is in the first excited state, and the walls are 
no t excited; the energy of the state is WC = HCQC, where coc is 
the eigenfrequency of the cavity; 

|0 ,0 , l w ) when the a tom is in the lower state, the 
oscillator is in the g round state, and the walls have 
absorbed a p h o t o n of frequency co; the energy of the 
state is Ww = Hco. 

Since the walls with a con t inuous absorp t ion spectrum 
can absorb a p h o t o n of any frequency, the thi rd of the 
above states represents in fact a set of states which can be 
described by a con t inuous pa rame te r co. 

W e shall seek the wave function W(t) of the system in 
the form of a superposi t ion of the above states, so tha t 

! P ( 0 = A ( 0 e x p ( - i G ) a 0 | l , 0 , 0 ) 

+ B(t) exp( - i av) |0 ,1 ,0 ) 

+ 5 ^ C G ) ( 0 e x p ( - i G ) 0 | 0 , 0 , l f f l ) . 
CO 

It follows from the Schro'dinger equat ion tha t 

dA 
in 

dt 

dB 

~dt 

= UQxp ^i(coa - coc)t^B + \Hb(t), 

= U* exp ^—i(coa — coc)t^A 

+ Eco yco exp [ i ( o c - co)*] Cw , 

(24) 

(25a) 

(25b) 

i% = Vl exp [ - i ( o c - co)t^B. (25c) 

In the above equa t ions the quant i t ies U and Vm are the 
mat r ix elements of the following interact ion opera to rs : 

U = ( 0 , 1 , 0 1 1 / 1 1 , 0 , 0 ) , Vm = ( 0 , 0 , 1 J V | 0 , 1 , 0 ) ; (26) 

h(t) is the function on the r igh t -hand side of E q n (25a), 
which allows for the initial state of the system when the 
a tom in an excited state appears at the m o m e n t t = 0. 

As in the preceding section, we shall solve the system of 
equa t ions (25) by the Laplace t rans format ion . W e shall 
in t roduce the Laplace t ransforms of the required quant i t ies 
A(t), B(t), and Co>(t): 

Ap=A (t) exp [ - i ( o a - coc)t^, 

Bp=B(t), 

Ccop = CM exp [ i ( o c - co)t\. 

It then follows from Eqns (25a) —(25c) tha t 

[p + i K - 0Jc)^Ap = ^ Bp + 1 , 

p p ~ vn p 2^ ap ' 

(27) 

[p + i (G)-G) c ) ] CWp=^Bp 

(28a) 

(28b) 

(28c) 

3.2 . Cavity damping 
Before we analyse the system of equa t ions (28), let us 
consider the in termedia te p rob lem of the energy decay in a 
cavity in the absence of an a tom. W e shall assume tha t 
initially the cavity is in the first excited state and the 'walls ' 
are in the g round energy state. W e can easily see tha t in 
this case the wave function is described by Eqn (24) with 
A(t) = 0, where B(t) and CJj) obey 

PBP , + i 

\p + i(co - o c ) ] Ca 

(29a) 

(29b) 

The s t ructure of these equa t ions is fully ana logous to the 
system (10) which describes the process of spon taneous 
emission in free space. El iminat ion of Cap from the above 
system gives 

(p + rcp)Bp = \ , 

where 

H2 p + i(co - coc) 

( 3 0 ) 

( 3 1 ) 

W e n o w have to calculate the sum in E q n (31). Since in the 
formulat ion of the p rob lem the absorp t ion spectrum of the 
walls is assumed to be cont inuous , the sum in E q n (31) can 
be reduced to an integral by in t roducing the density of 
states p(co) for the walls: 

•p(co) 
1 

P + \(CQ- COC) 
dco (32) 

I ts calculat ion requires assumpt ions abou t the frequency 
dependence of |V w \ 2 p(co). Fo rma l ly we are dealing with the 
same prob lem as in the calculation of a similar sum in the 
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process of spon taneous emission in free space. However , in 
this case the si tuat ion is less d ramat i c and there is m o r e 
freedom in the choice of the mode l to describe the 
absorp t ion of rad ia t ion by the walls. 

W e shall no t need to analyse the dependence of rcp on 
the microscopic pa rame te r s of the med ium. It will be 
sufficient to k n o w tha t 

•i<5. (33) 

is a complex quan t i ty dependent on p. W e can say this on 
the basis of the results of the preceding section if yc and 3C 

are small compared with the eigenfrequency of the cavity 
coc. This can be demons t ra ted by a direct calculat ion of the 
integral (32) and a selection of the profile of the absorp t ion 
b a n d of the walls in, for example, the same form as 
adop ted in the Append ix 7.2. In this case the quant i ty Q is 
the spectral width of the absorp t ion coefficient of the walls. 
If Q is sufficiently large, then 

•n\Vfr (34) 

W e can n o w easily calculate tha t p = —yc + i3c is a pole of 
Bp and 

B(f) exp(-iov) = exp [ - ( y c - i<5c)fj. (35) 

W e can see tha t yc describes the cavity damping . It is 
usually found at yc <̂  coc and this has been used here to 
calculate rcp and yc. The probabi l i ty of the state | # (^ ) | 2 

decays at a ra te characterised by the constant 2yc. The 
quant i ty 3C is the radiat ive correct ion to the cavity 
frequency; it only corrects this frequency, bu t does no t 
lead to any quali tat ively new effects. 

3.3 . Spontaneous decay rate and structure of the emission 
spectrum of an a tom in a cavity 
W e shall n o w re turn to the task of solving the system of 
equa t ions (28). El iminat ion of Cap from E q n (28b) by 
means of E q n (28c) gives 

i 

H2 p + i(co - co c ) 
B„ (36) 

T h e sum in the bracke ts in the above equat ion is k n o w n 
from the preceding section. Therefore, 

U*/iR 
Bn=-

P + 7c is;Af" 
which in tu rn makes it possible to calculate Ap: 

P + lc- i<5c 

(p + iA)(p + yc-idc) + \u[ 

(37) 

(38) 

where 

A = coa — co c , u = U/ ih , 

and to obta in the final expressions for Bp and Cap • 

* 

B 
" (p + iA)(p + yc-idc) + \u\2 ' 

C„ 
[{p + id) (p + yc - iSe) + \u\2} (p + LdJ ' 

(39) 

(40) 

where 

A(0 = co- coc, and v0J = Vw/\Ti. 

The inverse Laplace t ransformat ion , applied to Eqns 
(39) and (40), gives 

A(t): _Pi+yc- A 
Pl -P2 

P2+yc~ i<*. 
Pl - Pl 

exp 

Qxp(p2t), (41) 

Cm{t) = u*v*a 

exp( /V) 

+ 

(Pi -Pi) (Pi ~Pi) 

exp(p 2 0 , exp(/v) 
(P2 -Pl) iPl ~Ps) (P3 -Pl) (P3 -Pl) 

(42) 

where pxl are general poles of the functions Ap and Cap, 

1 

( y c - i ^ c - i / l ) 2 - 4 | w | : 

l l / 2 

are the roo t s of the equat ion 

(p + iA)(p + yc-idc) + \u\2 = 0, 

and 

P3 -iAfl 

is the third pole of the function C ^ . 
dis t r ibut ion of the p h o t o n s is given by 

\C w(oo)\2 p(co) 
M2kJ2 

\P3 ~Pl\ \P3 ~Pl\ 
p(co). 

(43) 

(44) 

(45) 

The spectral 

(46) 
The frequency dependence of the denomina to r of E q n (46) 
is decisive: | v w | 2 p(co) is a con t inuous function of the 
frequency and in fact can be replaced by a constant 
quant i ty \vwf p(coc) = yjn. 

Let us n o w est imate typical pa rame te r s governing the 
process of spon taneous emission in a cavity. The d o m i ­
nan t form of the interact ion of a t o m s or molecules with 
an electromagnet ic field is the dipole mechanism, so tha t 

U= - fi-E 

Consequent ly , \u\ = (ji/H){0,1,0|Z£|1,0,0). A mat r ix 
element of the field is ( 0 , 1 , 0 | i | l , 0 , 0 ) = e(2TzHcoc)1/2 [2]; 
see also E q n (7.1.3) in the Append ix 7.1. 

In the classical microwave spectroscopy exper iments a 
typical object of an investigation is the ro ta t iona l spectrum 
of a molecule [48]. Such spectra cor respond to dipole 
m o m e n t s \p\ w 1 0 ~ 1 8 cgs uni ts . Since in this range we 
have coc « 1 0 1 1 Hz , it follows tha t \u\ « 10 3 s _ 1 . These 
experiments are relevant to the first work in the field of 
q u a n t u m electronics, which were studies of masers with 
molecular beams of ammonia , formaldehyde etc. [3]. M e t a l 
cavity resona to r s used in spectroscopic and maser 
experiments have Q factors Q « 1 0 3 — 1 0 4 . Such values 
of the Q factor in the cent imetre range of wavelengths 
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cor respond to ys « 10 7 s _ 1 . W e can see tha t in these 
experiments the inequali ty yc \u\ is obeyed. This is the 
reason why an approx ima t ion based on this inequali ty was 
used by Bunkin and Oraevski [17]. 

A different class of recent experiments is based on the 
use of t rans i t ions in the spectra of highly excited a toms 
(Rydberg t ransi t ions) [34]. The wavelengths cor responding 
to these t rans i t ions also lie in the microwave range . 
The correspond- ing dipole m o m e n t is « 1 0 - 1 6 cgs 
uni ts . Super-conduct ing cavities with Q « 10 9 are used in 
such experiments . Therefore, these exper iments cor respond 
to the inequali ty yc <^ \u\. 

W e shall n o w analyse these two cases. 
In the first case (yc > |w|) no t only y c , bu t also the 

de tuning A can be large, so tha t we can calculate the values 
of the poles of Eqn (43) on the assumpt ion tha t 
7z(yc — i3c — iA) 5> \u\. W e then find tha t 

P l = -yc + idc, p2 = -y + i8-iA, 

where 

8C + A 

(47) 

(48) 

The function Ap has thus in fact only one pole p2 and 

A(t) = exp[ - (y - i<5 ) f ] . (49) 

W e can see tha t 3 is the radiat ive shift of the t ransi t ion 
frequency of an a tom in a cavity resonator . It d isappears 
when 3C + A = 0, i.e. when the cavity frequency (after 
a l lowance for the radiat ive shift) coincides with the 
frequency of the a tomic t ransi t ion. 

It follows from E q n (47) tha t 

d]A| 
dt 

= -2y\A\2. (50) 

The quant i ty w°s = 2y determines the ra te of decay of the 
upper a tomic level. If it is assumed tha t the interact ion is of 
the dipole na tu re , U = —fi'E, then w°s is described by Eqn 
(2). 

E q n (46) for the frequency dis t r ibut ion of the emitted 
p h o t o n s reduces in this case to 

Cw(oo)\2p(c0) = y-[y2 + (Aw-S)2]-\ (51) 

W e can see tha t the emission line is a Lorentz ian 
monore sonance with a half-width y. 

In the second case when \u\ 5> yc: 

1 
y c ± i | 4 (52) 

W e shall n o w calculate the frequency dis tr ibut ion of the 
emitted p h o t o n s given by Eqn (46). In this case we have 

\Ca(oo)\2p(co) 

[(yj2)2 + (Aa + \u\)2}[(yc/2)2 + (Aa-\u\)2} 
P(f l>)-(53) 

E q n (53) describes a spectral dis t r ibut ion composed of two 
peaks (Fig. 1). A physical in terpre ta t ion of this dis t r ibut ion 
is as follows. If \u\ yC9 a p h o t o n emitted by an a tom is 
reabsorbed by the a tom with a much higher probabi l i ty 
than the absorp t ion by a wall. In this case the a tom and the 

ws (co) 

Wa + \fi\ 

Figure 1. Doublet structure of the spectrum of spontaneous emission 
of an atom in a single-mode cavity. Here, ws(co) is a spectral density of 
the probability. The scale of the figure is arbitrary. 

cavity can be regarded as one coupled system. The energy 
of this coupled system has two values. At coc = coa these 
two values are coa + \u\ and coa — \u\. This is the reason for 
the appea rance of the doublet . Such an in terpre ta t ion is 
suppor ted by direct calculat ion of the a tom —cavity system 

W(t) =A(t) exp(-iav)11,0,0) 

+ B(t) exp( - i av) |0 ,1 ,0 ) (54) 

in the \u\ yc approx imat ion . F o r simplicity, we shall 
assume tha t coa = coc = co0. In this app rox ima t ion the poles 
of the functions A p and Bp coincide and are given by E q n 
(52). Therefore, 

A(t) exp(—ico0t) = ^ exp - \ \ \ t | e x p [ - i ( o 0 + 

+ exp [-i(co0 - \u\)t^ j , (55a) 

•10 B(t) exp(—ico0t) = - exp 

x j e x p [ - i (co 0 + - exp [ - i (co 0 - j - (55b) 

In E q n s (55a) and (55b) the te rms yJ2 are retained in the 
a rguments of the exponent ia l functions, bu t they are 
omit ted from the pre-exponent ia l factors. They do no t p lay 
a significant role in these factors; they alter only slightly the 
values of the coefficient. The retent ion of the te rms yJ2 in 
the a rguments allows for a quali tat ively impor t an t effect 
which is the decay of an excited state of the a tom —cavity 
system. It is interesting to no te tha t the decay of an excited 
state of this system is characterised by an exponent ia l 
function with an a rgument half tha t describing the decay of 
energy in a cavity wi thout an a tom. 

If a l lowance is m a d e for E q n s (55a) and (55b), the wave 
function can be represented in the form 

W(t) = exp | e x p [ - i ( G ) 0 + |w|V|+>] 

+ e x p [ - u > 0 - (56) 
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where 

| ± > = - | [ | l , O , O > ± i e x p ( - i 0 ) | O , l , O ) ] . (57) 

The wave function (56) represents a superposi t ion of two 
slowly decaying (quasis ta t ionary) states with energies 
H(CQ0 ± \u\). In accordance with these two values of the 
energy, the spon taneous emission spectrum has two 
max ima . 

However , if we follow solely the fate of the states of an 
a tom, we find from E q n s (55a) and (55b) tha t the 
probabi l i ty of finding it in the upper or lower state 
oscillates at a frequency 2\u\ [49]. 

W e shall n o w find the rat io of the pa rame te r s \u\ and yc 

for which a m o n o r e s o n a n c e becomes a doublet . W e shall do 
this by calculat ing 1^(00) | 2 wi thout invoking the inequali ty 
\u\ 5> y c , bu t simply assuming tha t \u\ > yc/2. W e shall 
pos tu la te tha t the cavity frequency is tuned exactly to 
the frequency of a spectral line: dc + A = 0. W e then 
have p 1 > 2 = -(yj2) + i(«5c ±P),p = (\u\2- -y2j4f2, and 

\Cm(oo)\2p(co) 

[(yj2)2 + (Aa + SC + P)2][(yj2Y + (Aa + S0- p)z] 
p(<a). 

(58) 

It is obvious tha t a double t in the spectral dis t r ibut ion of 
the emitted p h o t o n s cor responds to two max ima with a 
min imum between them. The posi t ions of the extrema of 
the function (58) on the frequency axis are given by the 
roo t s of the equat ion 

(Am + Sc) [{Aa + <5C)2 + \u\2 ~\yl]= 0. (59) 

W h e n considered as a function of the frequency, there are 
three real roo t s if 

u > 
V2' 

(60) 

It therefore follows tha t when an a tom emits 
spontaneous ly in a single-mode cavity resonator , a 
double t m a y appear in the emission spectrum if the 
cavity has a sufficiently large Q factor. It has been 
stated [50, 51] tha t in a certain range of values of the 
rat io \u\/yc a triplet m a y appear in the spectrum of 
spon taneous emission from a two-level a t om in a single-
mode cavity. However , this is in conflict with the results of 
other investigations [35 — 37] and is no t suppor ted by the 
above theory . 

4. Experimental verification of the doublet 
structure of the spectrum 
The splitting of the energy states in a sufficiently s t rong 
external rad ia t ion field has been k n o w n from the t ime of 
the experiments of Autler and Townes [48]. However , 
observat ion of the splitting in the field of the intrinsic 
rad ia t ion of an a tom the energy of which is equal to one 
p h o t o n , is difficult for fundamenta l reasons . It is necessary 
to s tudy the emission from a single a tom in a cavity 
because the si tuat ion becomes much m o r e complex in the 

presence of m a n y a toms : in the final analysis, the a toms 
m a y be in the field of m a n y p h o t o n s emitted by different 
a t o m s and even the n u m b e r of a tomic collective states 
involved in the process m a y become large [52]. 

The spectral dis t r ibut ion of the p h o t o n s emitted 
spontaneous ly in a cavity can be recorded provided a 
sensitive detector capable of react ing to single p h o t o n s is 
available. The const ruct ion of such a detector for 
microwave p h o t o n s is a difficult exper imental task. It is 
much simpler to detect the state of an a tom which escapes 
from a cavity. It is therefore preferable to use an al ternat ive 
manifes ta t ion of the spectral doublet effect which is a 
per iodic t ime dependence of the probabi l i ty of an a tomic 
state. The probabi l i ty of finding an a tom in the upper or 
lower state at the exit from a cavity, depending on the t ime x 
of its flight across the cavity, oscillates at a frequency 2\u\. 
In fact, it follows from E q n s (55a) and (55b) tha t 

| A ( T ) | 2 = I exp( -y c T) [ l + COS(2|M|T)] , 

| £ ( T ) | 2 = \ e x p ( - y C T ) [ l - COS(2|M|T)] , 

(61a) 

(61b) 

which can indeed be observed experimentally. 
The recent technological progress has m a d e it possible 

to s tudy the process of emission from single a toms in a 
cavity with a very high Q factor [34, 53]. The state of an 
a tom emerging from a cavity can then be recorded. 

The experiment involving observat ion of the probabi l i ty 
of oscillations described by E q n s (61a) and (61b) is difficult 
to carry out in its pu re form. Firs t , it is necessary to 
ensure tha t there is no the rmal rad ia t ion inside the cavity. 
In the microwave range this requires cooling to 
t empera tu res well be low 1 K. Second, the exper imental 
condi t ions must be such tha t the rad ia t ion from the a toms 
crossing consecutively the cavity does not accumula te inside 
it because otherwise the effect is no t purely spon taneous . 
This means tha t at each m o m e n t in t ime there should be 
only one a tom in the cavity and the t ime interval between 
the consecutive a t o m s should be much greater than the 
p h o t o n lifetime in the cavity T C = (2yc)~l = Qc/coc. If Q ~ 
1 0 9 and coc « 10 1 1 Hz , then T c = 1 0 ~ 2 s, so tha t the 
intensity of the a tomic b e a m should no t exceed 100 a t o m s 
per second. Moreover , a high degree of the selection of the 
velocities of the a toms is required. 

E q n s (61a) and (61b) can be readily generalised by 
allowing for the presence of the rma l rad ia t ion inside the 
cavity. In this case the probabi l i ty PA (T ) of finding an a tom 
in an excited state is given by [53] 

P a ( T ) =\ e x p ( - y C T ) 1 — exp 
Hcoc 

~kT 

x E ^ - ^ O + c o s [ 2 H ( n + 1 ) 1 / 2 T ] } . (62) 

It is this expression tha t was checked experimental ly at T 
= 3 K [53]. In this experiment use was m a d e of a velocity-
selected beam of 8 5 R b a toms and a n iob ium resona tor 
cavity with Qc = 8 x 1 0 8 . The a t o m s were injected into 
the cavity in a highly excited (Rydberg) state 63/?3/2. The 
resona tor was tuned to the frequency coc = 2K X 21.5 G H z , 
cor responding to the 6 3 / ? 3 / 2 —> 61 d^^ t rans i t ion in an 
a tom. T ime was measured from the m o m e n t of injection of 
an a tom into the cavity. Measu remen t s were carried out 
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over an interval of 30 — 140 (is. The au tho r s found tha t 
E q n (62) agreed excellently with the exper imental results 
(Fig. 2). 

W e shall once again d r a w a t tent ion to the fact tha t the 
oscillations of the probabi l i ty of finding an a tom in a 
specific state at the exit from the cavity are related uniquely, 
in accordance with Eqns (56), (61a), and (61b), to the 
splitting of the energy levels of the a tom —cavity m o d e 
system when these levels interact . Therefore, the 
experiments of H Wal ther and his colleagues, the results 
of which are p lot ted in Fig. 2, demons t ra t e unambiguous ly 
the splitting of the energy levels of the a tom —cavity m o d e 
system, leading to the double t s t ructure of the spectrum. 

100 200 300 400 
Time of flight across cavity/(is 

500 

Figure 2. Oscillations of the probability of finding an atom in the 
upper energy state: theory and experiments [53]. 

Qui te recently H J K imble and his colleagues (California 
Ins t i tu te of Technology) have succeeded in observing wha t 
is k n o w n as the vacuum R a b i splitting of the energy level of 
an a tom into two closely spaced sublevels by carrying out 
experiments in the opt ical range [54]. This is in fact a direct 
observat ion of a spon taneous doublet . 

5. Possibility of a triplet structure in the 
spectrum 
A triplet s t ructure of the emission spectrum m a y appear 
due to the interact ion of an a tom with two cavity modes 
which have similar frequencies or are even degenerate . It 
readily follows from the above discussion tha t the system 
of equa t ions describing the dynamics of the process is 

dA 
Ux e x p [ n > a - col)t]Bl 

in 
dt 

+U2 exp [i(coa - co2)t]B2 + \h&(t), (63a) 

dB 
iH —^- = U\ exp [—i(coa — c o ^ J A 

+^2v^exp t 1 ^ 1 ~ ^ c « (63b) 

dt 

and 

i% 
dCa 

dt 

U2 exp [—i(coa — co2)t]A 

+ X V ^
 e x p t 1 ^ 2 ~ ̂  C" ' 

CO 

-- V*l(0 exp[-i(G)! -co)t]Bl 

+V*2co exp [~i(co2 - co)t]B2 . 

(63c) 

(63d) 

The no ta t ion is as follows: Uj is the opera to r of the 
interact ion of an a tom with the jth m o d e ; V} is the opera tor 
of the interact ion of the jth m o d e with the cavity walls; (Oj 
is the eigenfrequency of the cavity; Bj is the ampl i tude of 
the state of the jth m o d e (j = 1, 2). The resut of the 
no ta t ion is the same as before. 

W e shall assume tha t the line emitted by such an a tom is 
half-way between the frequencies of two n o r m a l modes of 
the cavity: coi = coa — A, co2 = coa + A. Then , in t roduct ion 
of the Laplace t ransforms Ap =A(t), BXp =Bx(t) exp(izk), 
B2p = B2{t) xexp(— iA t ) , Cwp = Cw(t) exp(— iA w t ) , where 
A a = co — coa, leads to the following equat ions : 

PAP = -£BIP + 1 ± B 2 P + 1, 

(p-iA)Blp = 

in 

in 
+ V — c 

(p + iA)B2p = 

V*co B ! V2co B 

in l p in 2p-

(64a) 

(64b) 

(64c) 

(64d) 

El iminat ion of Cmp from these equa t ions yields the 
following sums: 

1 

E V V* y mco y nco 

(65) 
1 

n2 P + iAw 

The complex quant i t ies 1} = ycj + iScj describe, as 
before, the damping and the radiat ive shift of the 
eigenfrequency of the jth cavity mode . The quant i t ies 
Kmn are the in te rmode coupl ing coefficients. 

In order to concent ra te our a t tent ion on the main effect, 
we shall simplify the calculat ions by pos tu la t ing tha t (5C = 0, 

\V2c0l \Ul\ = \U2\=n\u\. This implies 
equali ty of the damping coefficients of the modes 
(Vi — I2 — 7c) a n d the absence of any in te rmode coupling. 

At first sight the coupl ing coefficients are linked 'rigidly' 
to the damping coefficients, so tha t by selecting the values 
of yit2 we are limited in the range of Kmn. There is na tura l ly 
a l inkage: in the selected mode l the values of \Kmn\ cannot 
exceed the largest of the coeffcients 71,2- However , within 
the limits of this const ra int the coefficients Kmn can have 
any values since they depend no t only on the modu l i of Via> 

and V2a>, bu t also on the difference between their phases . 
In the case of a r a n d o m phase dis t r ibut ion we have Ki2 = 
K21 = 0. 

file:///V2c0l
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In order to answer the quest ion of the spectral 
dis t r ibut ion of the emitted p h o t o n s , we have to 
calculate — as before — the value of ^ ^ ( o c ) | . S tandard 
t r ans format ions give 

| C f f l ( o c ) | 2 = 4 | w v J 2 

l(Pi+i4»)(P2+i4»)(P3+i4»)r 
(66) 

where pj a re the roo t s of the following cubic equat ion with 
real coefficients: 

p(p + yc)2+A2p + 2\u\z(p + yc) = 0. (67) 

If one of the roo t s of E q n s (61a) and (61b) is real (for 
example p\)9 and the other two are complex conjugates 
(P2,3 = a ± iP), then 

\Cw(oo)\ oc 
[p\ + A%) [a2 + (Am - P)2] [a2 + (Am + P)z] 

(68) 

In this case three spectral peaks appear if A2 > 0 and /? is 
sufficiently large. If A2 is small, then 

1 
|C r o ( oo ) | oc 

[a2 + (Am-p)2}[a2 + (Am+f})2} 

1 + : u\2 y2

c+Ai 
(69) 

W e can see tha t the appearance of a triplet is no t subject 
to a threshold of the de tuning A. If \u\ > yc/2, the thi rd 
peak appears as soon as A2 > 0. However , if A2 is small, the 
ampl i tude of this peak is small because it is p r o p o r t i o n a l to 
A2. This is i l lustrated in Fig. 3. 

Can a triplet appear when A = 0? It m a y appear if there 
is an in te rmode coupling. It follows from the classical 
theory of oscillations tha t two linearly coupled 
oscil lators with absolutely identical frequencies coc can be 
represented by two independent n o r m a l oscillations of 
frequencies co+ = co c (l +K) and co = co c (l — TC), where K 
is the frequency-normalised in te rmode coupl ing coefficient. 
However , this s i tuat ion is practical ly equivalent to the case 
of two uncoupled modes with a de tuning 2A = 2COCK 
considered above. On the same basis we can predict a 
triplet in the spectrum of spon taneous emission of rad ia t ion 
by a moving a tom: for a certain configurat ion of the cavity 
field a s tanding wave is 'seen' by an a tom as two modes with 
frequencies displaced symmetrical ly (because of the 
Dopp le r effect) relative to the resonance frequency of 
the a tom. These ideas are suppor ted quali tat ively by 
later calculat ions [55], bu t they represent a special case 
of a m o r e complex pa t t e rn . It has been shown [55] tha t the 
mot ion of an a tom m a y lead to the appearance of a 
mult iplet s t ructure. A complex s t ructure of the 
spon taneous emission spectrum of a moving a tom is 
associated with the fact tha t the mot ion of the a tom 
modula te s periodically the phase of the a tom— cavity 
m o d e system. Periodic phase modu la t i on is k n o w n to 
cor respond to an infinite Four ie r series with an 
equidis tant set of frequencies. Interference between a 
large number of states cor responding to the Four ie r 
componen t s is in fact responsible for the mult iplet 
s t ructure of the spectrum. F o r certain velocities v of an 
a tom (the impor t an t pa ramete r is covlc\u\) the s t ructure of 
the spectrum m a y look like a double t and a triplet. A very 
fast mo t ion of an a tom 'smears o u t ' the s t ructure of the 
spectrum and it is converted to a singlet even when the 
condi t ion (71) is obeyed. 

Figure 3. Triplet structure of the spectrum of spontaneous emission of 
an atom in a two-mode cavity. Here, ws(co) is a spectral density of the 
probability. The scale of the figure is arbitrary. 

If A = 0, it follows tha t px = — yC9 a = — yc/2, and 
P = [2\u\2- (7c/4)]1 / 2 . W e then have 

| C j o o ) | 2 oc ^ =-. (70) 

Let us n o w re turn to the doublet . The difference between a 
two-mode double t when A = 0 and a single-mode double t 
is only this: there are two identical modes , the strength of 
the interact ion of an a tom with the cavity field is doubled, 
so tha t the condi t ion for the appea rance of a double t is 
modified somewhat to 

> y c / 2 . (71) 

6. Conclusions 

1. The process of spon taneous emission is frequently said 
to be due to q u a n t u m fluctuations. Q u a n t u m fluctuat ions 
of b o t h the electromagnet ic vacuum and of the dipole 
m o m e n t are impor t an t in this in terpre ta t ion [11]. Since 
q u a n t u m fluctuat ions disappear in the classical approx i ­
mat ion , it is sometimes stated tha t spon taneous emission is 
a p u r e q u a n t u m effect. However , this is incorrect , because 
spon taneous emission also occurs within the classical 
theoret ical f ramework, as has rightly been poin ted out 
by Ginsbu rg [12]. Nevertheless , the role of f luctuat ions in 
the q u a n t u m theory is impor tan t . The poin t is this: tha t in 
the classical theory a rad ia to r is usual ly represented by a 
mode l of an excited dipole oscillator. However , if the 
dipole oscillator is excited, this means tha t either the dipole 
m o m e n t or its derivative or b o t h are ' au tomat ica l ly ' 
different from zero. A system of this k ind unavo idab ly 
begins to emit rad ia t ion as soon as it can oscillate freely. 
The oscillations die out , as is known , because of the 
react ion of the radia t ion field on the oscillator. 

The si tuat ion is different in the q u a n t u m theory. The 
excitation of a q u a n t u m system does no t imply tha t the 
system must have an average dipole m o m e n t . Qui te the 
reverse: this m o m e n t is usually zero and the system requires 
an initial impulse to start the process of emission. Q u a n t u m 
fluctuat ions provide such an impulse. In this connect ion it is 
impor t an t to stress tha t ini t iat ing f luctuat ions are needed 
also in some classical models . A n example of such a mode l 
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is provided by the Bloch equa t ions describing the dynamics 
of the magnet i sa t ion vector of a mater ia l . These equa t ions 
have been derived by Bloch from purely classical 
considerat ions , bu t they have an exact q u a n t u m 
ana logue and have been used widely in the descript ion 
of the dynamics of masers and lasers beginning from the 
work of Fa in [56] and Oraevski i [57]. With in the f ramework 
of these equa t ions the energy stored by a rad ia to r is 
governed by the z -component of the magnet i sa t ion and 
it cannot be zero if the system is excited. However , the 
rad ia t ion is generated because of the x- or j - c o m p o n e n t s of 
the magnet isa t ion , and initially these componen t s m a y be 
zero. The system does no t begin to emit of its own unt i l the 
initial values of the x- or j - c o m p o n e n t s of the 
magnet i sa t ion or of the emitted field are induced by 
f luctuat ions or in some other way. 

2. It is well k n o w n tha t in addi t ion to spon taneous 
emission, there is also st imulated emission which is the basis 
of the opera t ion of genera tors of coherent rad ia t ion , in 
par t icular , of lasers. There is a close relat ionship between 
these two processes, as described by Einstein [58] 

A 2 1 =nco3(n2c3yl B2l. (72) 

The s tandard no ta t ion is used in the above rela t ionship: 
A2i is the probabi l i ty of a spon taneous t rans i t ion from a 
level 2 to a level 1; B2\ is k n o w n as the st imulated 
t rans i t ion coefficient. A consequence of this fundamenta l 
relat ionship is tha t the probabi l i ty of spon taneous emission 
can be calculated if we k n o w the linear response of the 
investigated system (for example, an a t o m - c a v i t y system) 
to an external m o n o c h r o m a t i c field [8]. A linear response 
of the system m a y be k n o w n in connect ion with investiga­
t ions of other p rob lems . The p rob lem of spon taneous 
emission is then solved almost automat ical ly . However , if 
the p rob lem is formulated for the first t ime, the quest ion is 
which is simpler: calculat ion of the linear response of the 
system or direct solution of the p rob lem of spon taneous 
emission? 

3. The reader can see tha t this review deals with the 
p rob lem of spon taneous emission from a single a tom. It is 
the interact ion of a single a tom with an unexcited field 
oscillator (free space or a cavity) tha t makes it possible to 
detect and unde r s t and fine fundamenta l effects of the 
interact ion between mat te r and electromagnet ic rad ia t ion 
(including the electromagnet ic vacuum) . 

This review has no t dealt with the p rob lems of 
s imul taneous interact ion of m a n y a t o m s or molecules 
with electromagnet ic rad ia t ion . In the s imul taneous 
interact ion of m a n y a toms with an electromagnet ic field 
we are faced unavo idab ly with the p rob lem of cooperat ive 
effects in spon taneous emission [52]. The cooperat ive effects 
represent such a very large p rob lem tha t it cannot be fitted 
in the Procrus tean bed of a single paper . I shall therefore 
confine ourselves to references to fairly recent reviews 
dealing with the cooperat ive effects [59, 60]. The 
cooperat ive effects represent a topic in which it is 
difficult to d r a w the line between the processes of 
spon taneous and st imulated emission. This leads to the 
haza rd of sinking in the boundless sea of the results relat ing 
to the physics of masers , lasers, and even radiophysics and 
optics in general . F o r the same reason this paper does no t 
deal with the p rob lem of spon taneous emission in the 
presence of a s t rong m o n o c h r o m a t i c field. The reader is 
referred to the t rea tment of this p rob lem elsewhere [61, 62]. 

Even the p rob lem of the emission of rad ia t ion by a 
single a tom can hard ly be dealt with fully and pe rmanen t ly 
by a single paper . It is cont inuing to a t t rac t the a t tent ion of 
invest igators to this day. 

7. Appendices 

7.1 . Calculation of Eqn (14) 
It follows from the canons of q u a n t u m electrodynamics 
tha t the electric vector of an electromagnet ic field can be 
represented by a series 

a 

where Fa(r) are the eigenfunctions of the e lect rodynamic 
boundary -va lue p rob lem cor responding to the p rob lem in 
hand : cjfc and qa are the p h o t o n creat ion and annihi la t ion 
opera to rs . The electromagnet ic field in free space can be 
described by eigenfunctions selected usually in the form of 
p lane waves 

Fa(r) = exp(-iA>r) ^ 

so tha t 

^(r> f) = 52 e x P [$* e x P ( i * - r ) + V* exp ( -# •# • ) ] ; (7.1.2) 
a 

e is a uni t vector in the direction of polar isa t ion of the 
field; e k = 0, a is the combined (k,e) index. Each wave 
vector 11 cor responds to two field oscil lators in accordance 
with two linearly independent directions of the polar isa t ion 
of an electromagnet ic wave. 

In the dipole interact ion case we have 

V = -fi-E 

and the calculat ion of VWa involves calculat ion of the 
mat r ix elements of the opera to r s (/**e) e i A > r # * and 
(Jime) e i A > r #* . The mat r ix elements of the opera to r s q^ 
and <7a are given by the following relat ionship which applies 
to the selected normal i sa t ion of the eigenfunctions: 

( 0 , 1 | # | 1 , 0 ) = < l ,0 |<y0 ,1 ) = (27 i / to ) 1 / 2 . (7.1.3) 

Let $ be the angle between the vectors fi and e. W e then 
have (Ji'e) e^ ' r = f i e i A ' r cos Calculat ion of the mat r ix 
element ( 0 , 1 ^ | / ie i A : " r | l , 0) requires generally the knowledge 
of the specific wave functions of an a tom. However , the 
value of fi considered as a function of the coordina tes 
differs from zero within the limits of the dimensions of an 
a tom. If we then confine ourselves to spon taneous emission 
at wave-lengths no t shorter t han in the visible range, then 
within the limits of the d imensions of an a tom we have 
e1*"" « 1. Therefore, 

< 0 , l f f l > e * - r | l , 0 ) = ( 0 , l ^ | / i | l , 0 ) = / i K ) , (7.1.4) 

where fi(coa) is a pure ly a tomic characterist ic found as 
usua l from the exper imental results. 

It r emains to calculate cos $ and to sum in Eqn (13) 
over the polar isa t ions and to integrate with respect to the 
direct ions of the emitted p h o t o n s . The posi t ion and or ien-
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Figure 4. Orientation of the dipole moment of an emitting atom in a 
coordinate system linked to the unit vectors of a photon, i.e. with the 
wave vector k and the directions of polarisaitons ex and ey. 

ta t ion of an a tom in space are assumed to be given. In the 
integrat ion process the var iable is the or ienta t ion of the 
vector k. However , in calculat ions it is m o r e convenient to 
link the coord ina te system to the wave vector k by selecting 
its direction as the z axis; the other two axes can then be 
linked conveniently to two directions of linearly 
independent polar i sa t ions (Fig. 4). Then, in tegrat ion over 
the directions of k in E q n (13) is equivalent to integrat ion 
with respect to the angles of the or ienta t ion of the vector ft 
in the selected coord ina te system. It is clear from Fig. 4 tha t 
c o s 2 $ = s in 2 0 c o s 2 </>, if the emitted p h o t o n is polar ised 
a long the x axis and tha t c o s 2 $ = s in 2 9 s in 2 </>, if this 
p h o t o n is polar ised a long the y axis. Summat ion over these 
two polar isa t ions has the effect tha t the square of the 
interact ion mat r ix element is p r o p o r t i o n a l to s in 2 6. Since 
dQ = sin 0d0d</>, in tegrat ion over the directions of the 
vector k reduces to calculat ion of the following simple 
integral: 

n2n o 

dO diz sin 9 = -n. (7.1.5) 

Subst i tut ion of E q n s (7.1.3) — (7.1.5) in E q n (13) gives E q n 
(14). 

7.2. Calculation of the frequency integral 
The reasoning given in Section 2 can be i l lustrated 
calculat ing 

by 

rp = 2(3nHc3y \p\2co3\p + i(coa 

on the assumpt ion tha t 
| 2 

2 . . 3 
\/t(G)a)\ CO 

\Mo\ Q 

- © a ) ] - 1 ( t o . (7.2.1) 

(7.2.2) 
K fl2 + ( G ) a - G ) a ) 2 ' 

where p0 and Q are cons tant quant i t ies . This form of the 
dependence on coa in the case of a sufficiently high value of 
Q satisfies the assumpt ions abou t the interact ion mat r ix 
element m a d e in the derivat ion of E q n (17). However , this 
dependence is of purely mode l na tu re and it differs from 
the dependence p(coa) for which est imates are given in the 
main text above. The selection m a d e here simplifies 
maximal ly the calculation aspect of the p rob lem wi thout 
al tering the fundamenta ls . 

Calcula t ion of the integral (7.2.1) subject to E q n (7.2.2) 
gives the relat ionship 

rP = y 
Q 

Q2+P2 

/ 1 P P P C0o\ 
1 arc tan — — arctan — 

V 7i coa 2Q %Q QJ 

In 
2TC Q2 + co2 

(7.2.3) 

where y = 2\p0\2co3

a/3Hc3. 
The poles of the function Ap are given, in accordance 

with Eqn (11), by 

(7.2.4) 

If we assume tha t y/coa <̂  1 and y/Q <̂  1, we can find the 
solution of Eqn (7.2.4) by the me thod of successive 
approximat ions , where p = px +p2 + ... and 

Pi -y i In 
2TC Q2 + co' 

(7.2.5) 

W e can see tha t in this approx imat ion the real pa r t of a 
pole governing the decay of the upper a tomic state is 
independent of the mode l pa ramete r Q. The imaginary 
par t , governing the radiat ive frequency shift, depends on 
this mode l pa ramete r . In the limit Q —> oo the imaginary 
pa r t rises wi thout limit and this is closely related to the 
general p rob lem of divergences in q u a n t u m 
electrodynamics [38]. 

The correct ions obta ined in the next approx imat ion are 
of the order of y/coa and y/Q. These correct ions depend on 
the mode l pa ramete r Q. It is obvious tha t their ac tual n a t u r e 
will change with the model . 
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