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Abstract. A brief review is given of theoretical and emission in free space, it also now has a long history. The

experimental investigations of the spontaneous emission
from an atom in a resonator cavity. A theory of
spontaneous emission from a two-level atom in free space
and in a cavity is presented in a methodical unified manner.
In a single-mode resonator the structure of the spectrum of
the emitted photons is a singlet or a doublet, depending on
the ratio of the cavity damping to the constant of the
interaction of an atom with a field. The emission spectrum
of an atom in a cavity with two modes with similar
frequencies may have a triplet structure.

1. Brief historical review

The problem of spontaneous emission is one of the classical
topics in quantum electrodynamics. Much work has been
done on this problem, beginning with the well-known
paper of Weisskopf and Wigner [1]. The theory of
spontaneous emission has been dealt with in many
books and review papers. Only some of them are
mentioned below [2—13], but the list is not exhaustive.
In the course of the last few years the problem of
spontaneous emission has been attracting attention in
connection with the study of the process of spontaneous
emission from an atom or a molecule inside a resonator
cavity. Although this problem postdates the spontaneous
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interest in it has recently increased because opportunities
have become available for an experimental verification of
the theoretical predictions.

The probability of spontaneous emission in a cavity was
first pointed out by Purcell [14]. He stated that the
probability wi of spontaneous emission in a single-mode
cavity can be deduced from the probability w, of spon-
taneous emission of an atom in free space if the latter is
divided by the density of field oscillators in free space
p(®) = 0’ /37°¢> and multiplied by a quantity Q/mw.V
which represents nominally the density of field oscillators in
a cavity mode (Q is the Q factor of a cavity, V is its volume,
A=2mc/w, and ¢ is the velocity of light):
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Eqn (1) predicts a considerable increase in the probability
of spontaneous decay if free space is replaced by a high-Q
cavity in the microwave range of wavelengths when the
wavelength is comparable with the linear dimensions of the
cavity. For example, the probability is w® ~ 4 x 102w, for
A ocVand Q~10%

A more consistent theory shows that Purcell and several
other authors [15, 16] are absolutely right, but only when
the cavity frequency we is tuned exactly to the atomic
frequency transition w,. The expression (1) for the
probability of spontaneous emission in a cavity does not
include in any way the detuning (offset) between the
eigenfrequency (natural frequency) of the cavity and the
resonance frequency of the atomic transition. A later
calculation of Bunkin and Oraevskii [17] has shown that
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where p is a matrix element of the dipole moment corre-
sponding to a light-emitting transition. If w, = w, is sub-
stituted in Eqn (2), the Purcell expression follows directly.
However, it also follows from Eqn (2) that when the
difference between w, and @ is sufficiently large, the
process of spontaneous emission in a cavity is strongly
inhibited. For example, if w.—w. lies between the funda-
mental and first mode of a cavity, so that w,—w. ~ ®., the
probability decreases by a factor Q2 compared with the
resonance case. This result naturally suggests that the
placing of an excited atom in a waveguide with a critical
frequency higher than the resonance frequency of the light-
emitting atom will inhibit spontaneous emission [18, 19].

In the late fifties and early sixties a series of experiments
has been carried out on a maser with a beam of ammonia
molecules in which two (or even three) consecutive cavities
have been used [3, 20—23]. The usual generation of
coherent microwave radiation (A = 1.25 cm) takes place
in the first cavity. The second cavity is used to observe
collective (coherent) spontaneous emission. Although in
these experiments the authors’ aim has not been to
demonstrate specifically an increase in the probability of
a spontaneous transition of a molecule in a cavity, these
experiments have provided a clear evidence of this increase.
In the second cavity, whose Q factor is several thousand, a
strong collective spontaneous emission has been observed
so that the molecules emerging from the second cavity have
been found to be de-excited. On the other hand, the passage
of a beam of molecules in free space between the cavities has
not produced any significant de-excitation of molecules.

The first direct observation of an increase in the
probability of spontaneous emission from an atom inside
a cavity was reported in 1983 [24]. The Rydberg state of
sodium atoms, corresponding to the principal quantum
number of 23, was used in this experiment. The atoms were
placed in a niobium superconducting cavity with its
eigenfrequency close to 340 GHz. Tuning of this
frequency to a resonance with an atomic transition
shortened the lifetime of the excited atoms.

In the optical range a similar experiment was carried out
by Heinzen and Feld [25]. They were able to detect an
increase in the probability of spontaneous emission in a
multimode optical cavity resonator.

The inhibition of spontaneous emission has also been
studied experimentally. The first experiment known to the
present author was reported by Drexhage in 1974 [26]. An
investigation was made of the fluorescence emitted by a thin
dye film placed near a mirror at a node of an electro-
magnetic field formed as a result of interference between the
waves incident on the mirror and reflected from it.
Drexhage reported a 25% reduction in the probability of
spontaneous decay. Similar experiments were also described
by DeMartini et al. [27 ]. Gabrielse and Dehmelt carried out
experiments involving the inhibition of spontaneous
transitions in a cavity [28]. They observed a tenfold
increase in the lifetime of a single electron on an excited
cyclotron orbit in a Penning trap. The electrodes of this trap
served as the cavity.

An increase in the lifetime of the Rydberg states of
atoms inside the cavity have also been reported by others
[29, 30].

The idea of inhibition of spontaneous radiative transi-
tions has recently been developed on the basis of periodic
optical structures. When electromagnetic waves propagate

inside such structures, there are forbidden ranges of
frequencies (and wave vectors) of these waves. If the
reson-ance frequency of an atom falls inside such a
forbidden range, the spontaneous decay of an atom is
strongly inhibited [9, 31 —33]

Eqn (2) is derived on the assumption of a relatively
strong  cavity damping  when the  inequality
/0 > (|,u|2(E2))'/2/h is satisfied; here, (E?) is the
average value of vacuum fluctua-tions of the electric
field intensity. In the microwave range a dipole
transition with the usual value |g| =~ 10=!® cgs units
and a cavity with Q = 10'*—104 such an inequality is
readily satisfied. The frequency distribution of the spontan-
eously emitted photons is then of monoresonance nature.
However, in the case of transitions between high Rydberg
atomic states the dipole moment is |u| = 10716 cgs units
and the Q factor of a superconducting cavity can reach
10° [34]. In this case the inequality w/Q < (|,u|2(E2))'/2/h
is obeyed and the spectral distribution of the photons
emitted in the cavity is a doublet [35—37].

It is well known that the cavity modes can be
degenerate: one and the same eigenfrequency can
correspond to several different field configurations. If
the modes are assumed to be rigorously orthogonal, the
transition probability should in this case be multiplied by
the number of degenerate modes. However, such modes are
frequently not exactly orthogonal. It is more consistent to
regard them as mutually coupled oscillators. The problem
of spontaneous emission from a particle in a cavity with two
coupled modes has been investigated [38]. The
spontaneous emission into coupled degenerate (or close
on the frequency scale) modes has been found to occur at a
lower rate than the emission of independent (orthogonal)
modes.

Very recently many papers have been published on
the problem of spontaneous emission in a cavity with
specific applications to various tasks in quantum elec-
tronics [39—47]. In particular, consideration has been
given to special features of open plane—plane cavity
resonators [39, 40] and cavities with a different geometry
[40], the noise in optical amplifiers [39], and the
spontaneous emission in semiconductor lasers [41]. The
reported investigations are interesting also from the
methodological point of view.

A brief historical review will be followed by an ordered
presentation of the theory of spontaneous emission and this
theory will be used to prove all the results mentioned above.

2. Spontaneous emission in free space

Although the main purpose of this review is to provide a
systematic account of the problem of spontaneous emission
in a single-mode cavity, it is logical to begin with the theory
of spontaneous emission in free space.

Let us begin with the classical model of Weisskopf and
Wigner: a two-level atom interacts with a continuum of
oscillators of a free-space field. The Hamiltonian of the
atom —field system is

H=H,+H:+V, )

where ﬁa is the operator of the energy of the atom with
two eigenvalues: W, =0 and W, = hw,; Hy is the operator
of the energy of the electromagnetic field and its
eigenvalues  my o fiw, describe the energy of a field
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oscillator corre-sponding to a plane wave with the wave
vector k and a polarisation e; V is the operator of the
interaction of the atom with the electromagnetic field.

The combined atom—field quantum states will be
described by two indices |a, a). The first index describes
the state of the atom and the second is the combined index
of the field oscillator a = (k, ).

When the two-level atom interacts with the field, the
system may be in one of the following states:

|1,0) when the atom is excited and all the field
oscillators are in the ground state;

|0, 1,) when the atom is de-excited and it has emitted one
photon with the combined index a.

The state |0,1,) is in fact a continuous set of states
because there is a definite probability of the excitation of
any one of the field oscillators.

The operators ﬁa and ﬁf are diagonal in the represen-
tation of the states |1,0) and |0, 1,):

ﬁa|],0>:W2|],0>, ﬁa|0a1a>zwl|071a>a (4)
Hil1,0) =0, H0,1,) =liw,0,1,). Q)

We shall assume that the operator V is off-diagonal in the
selected representation:

VI[1,0) = V,[0,1,), V|0,1,) = Vi[1,0). (6)

We shall seek the wave function of the system in the
form of a superposition of these states:

V(1) = A (1) exp(—io,)|1,0)

+ZBa(t) eXp(—i(,Oat)lo, 1a>' @)

The Schrodinger equation together with Eqns (4), (§), and
(6) yields the following equations for the coefficients A(t)
and B(t) [2]:

., dA . :
if E a Zx: V“ exp [l(wa - ma) t] Boﬂ + 1ﬁ5(l‘), (8a)
7L = Vi expl-i(o, — ) 4. (8b)

In the above equation the & function describes the initial
state: it represents the absence of the atom up to the
moment t = 0 and its appearance at the moment ¢t = 0 in
an excited state.

We shall seek the solution of Eqns (8a) and (8b) by the
Laplace transform method. We shall introduce the Laplace
transforms

ApHA(t)7 Bap HBa(t) exp[_i(wa_wa) t]a O]
which, in accordance with Eqns (8a) and (8b), obey the
following equations:

Va
A,,:ZX:EBW,H , (10a)

Va

A, (10b)

h’ - i(wa - wa)] Bap =

If B,, is expressed in terms of Eqn (10b) and is
substituted in Eqn (10a), the result is

(p+T,)A, =1, (11)
where
ry= Y (van) [+ it -] (12

o

Eqn (11) has a trivial solution if the sum (12) can be
calculated. This can be done by summation over two
polarisations for each value of the vector k and integration
with respect to the directions and magnitudes of this
vector, because k is a continuously variable parameter. The
replacement of the summation with the integral sign
requires introduction of a density of states p(w,) which
depends only on the frequency (modulus) of the wave
vector because space is regarded as isotropic. Consequently
Eqn (12) becomes

r,=3 [V

v

xp(@y) [p +i(0, ~w,)]  dQdo,, (13)

where the index v denotes the direction of the polarisation
and dQ is the differential of the solid angle. Summation
over the polarisations and integration with respect to the
angular variables (directions of k) is carried out in the
Appendix 1 on the assumption that the interaction of the
atom with the field is of the dipole nature:

V=—4-E
The result is

A e -1
r, =2(3nkc)"! J lul? [p +i(o, — wa)] da,. (14)
0

It now remains to integrate with respect to the frequency. It
is usual to proceed as follows (see, for example, Ref. [2]).

The value of the required function A(¢) is determined by
the poles of its Laplace transform A . Later calculations will
show that the value of p at a pole is much less than @, or wa,.
Therefore, |,u|2a)§ is a slowly varying function compared
with [p +i(w, — ®,)]”". In the limit of very small values of

p, compared with w, and w,, the results are

[p + i(ma - ma)]7] = 1136(6) - iP€7]7 C = Wy — Wy, (]5)

ry =26 [ Julw,+ OF @, +

x [md(&) —iPE ") dE. (16)

Since w, > p, the lower limit of integration in Eqn (16) can
be assumed to be —oo. The imaginary part of Eqn (16) is
the principal value of the integral. It determines the
radiative correction to the atomic transition frequency. The
problem of radiative corrections to the energy levels is of
interest for its own sake and it represents an important
chapter of quantum electrodynamics. However, the
radiative correction to the frequency does not play a
significant role in the theory of decay of atomic levels and
of the natural width of spectral lines. Therefore, in the
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majority of investigations of spontaneous emission, the
discussion of the radiative correction usually ends at this
stage. We shall do the same here.

A decisive role in the theory of the natural width of a
line is played by Rel',. It follows from Eqn (16) that

Rel, =y = 2|ulw;(3hc®) . (17)

This quantity is independent of p because A, has one pole
p = —v. Therefore,

A(t) = exp(=y1),

By (1) = V(i)™

(18a)

I —exp{—[y +i(w, — w,)]r}
Y + i(wa - waz)

(18b)

The probability ws of spontaneous transitions per unit time
is given by

I djAP 2 3/ap 3y-1
=———=2y=4 2(3hC7) . 19
= = 2 = el (19
The frequency distribution of the emitted photons is
[Eacorp@n) 00 =917 + @, — 02T 0

In writing down Eqn (20) it is assumed that p(w,) = p(w,),
which is permissible since p(w,) is a slowly varg/ing
function compared with the Lorentzian [y* + (@, — @,)°]™"'

All seems to be well: the integral (14) is calculated
subject to quite obvious assumptions and the value of the
integral is of general nonmodel nature. Unfortunately, in
the majority of the well-known books the discussion of the
calculation of this integral ends here. However, the situation
is more dramatic than it might seem at first sight. The point
is this: the integral

00 ” -1
Rel, = 2(3mic*)~" J |ﬂ|2m;p[p2 + (0, — wa)z] dw, (21)
0

converges only subject to more stringent assumptions
about the function |,u|2a)§ than simply its slow variation
compared with the function [p® + (@, — ,)*]”". If, for
example, it is assumed that ||~ decreases at higher values
of w, in accord-ance with the power law
|,u|2o<Q"/(Q"+a)Z), then the integral (21) converges if
n> 2.

The need to assume a reduction in the dipole moment on
increase in the frequency w, is not a serious problem. At
high frequencies, when the wavelength becomes less than
the dimensions of an atom, the field changes its phase many
times within these dimensions. In this case the dipole
approximation is, strictly speaking, invalid and one
should speak of a matrix element of the interaction
operator V. Since [2]

v, ~ J J J exp(ik-r) W3 (r) p, (r) d*r, (22)

where p is the momentum of an electron in an atom and
¥,(r) are the wave functions of the atomic states between
which a transition takes place, it follows that for |[k|a > 1 (a
is the effective size of an atom) the value of |Vm|2 decreases
with increase in the frequency faster than m;z. This can be
readily demonstrated by assuming that, for example,
¥,(r) o e,

However, strictly speaking, the two-level approximation
for the description of an atom is invalid at high frequencies
because the levels with higher energies can then be excited
right up to the state of ionisation of an atom. If Ziw, > me?,
pair creation begins, and so on. Therefore, we can see that
at high frequencies our calculation model becomes
meaningless.

How can this problem be solved? The solution is given
by the following procedure. The d-function approximation
used in the calculation of the integral (14) can be regarded
as the first approximation in the expansion of the integral as
a series in p. We have seen that this approximation is
independent of p and it is not based on any specific model
of the process at high values of w,. Calculation of the
results in higher approximations requires however either
modelling of the process at high frequencies or allowance
for the whole complex range of phenomena (ionisation, pair
creation, etc.) which are involved in the process in the limit
w, — 00, which is hardly practical. However, if the terms of
higher orders in p are small compared with the first
approximation, they can be simply ignored.

The question is: are these terms small? We shall answer
this by specific calculations of the integral (14) and by
modelling the frequency dependence of the dipole moment.
For example, let us assume that |u|* = |po|> @*/(Q* + w3)*.
Then the ratio of the terms which are ignored to the main
term is of the order of p@* /@) = yQ*/w,. If we assume that
Q is governed by the atomic dimensions (2 & ¢/a) and that
po ~ 10~17—10~18 cgs units, it follows that yQ*/w: < 1
(see also the Appendix 7.2).

It therefore follows that at sufficiently low values of the
probability of a spontaneous transition, compared with its
frequency, the use of the & function in the calculation of
(14) is justified. The result obtained in this way should be
regarded as the first term of the expansion of the
probability as a series in terms of the small parameter
y/w,. Calculation of higher-order corrections is strictly
speaking impossible within the framework of the two-
level model and the dipole approximation. We can only
say at sufficiently low values of y/w, the first-order term
predominates, so that the higher-order terms of the
expansion can be ignored.

We shall now give numerical estimates of the probability
of spontaneous transitions. We shall assume that the
wavelength of the spontaneously emitted radiation lies in
the visible part of the spectrum and, therefore, we shall
postulate that A= 0.5 pm. Let the dipole moment be |u|=
5 x 10~'8 cgs units; this value is typical of atomic
transitions in the visible part of the spectrum. It then
follows from Eqn (19) that ws= 6 x 10 s ~!. This value
agrees well with the experimentally determined lifetimes
(~10—8s) of excited atomic states. In the microwave range
when A = 1 cm the transition probability is (2 x 104)3
times smaller: wy &~ 107> s—!. This spontaneous emission
probability corresponds to a lifetime of the order of days.

3. Spontaneous emission in a cavity

3.1. Formulation of the problem and principal equations

We shall begin with the model proposed earlier [17]: in this
model a two-level atom is assumed to interact with an
oscillator which in turn interacts with the system
characterised by a continuous absorption spectrum. The
oscillator describes a cavity mode closest in its frequency to
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the two-level atom. The interaction of the oscillator with
the system that has a continuous spectrum (walls of the
resonator cavity) allows for the cavity damping.

The Hamiltonian of such a complex system is

H=H,+H,+H,+U+V, (23)
where H, is the eigenenergy of the atom, H. is the energy
of the oscillator, H,, is the energy of the system with a
continuous spectrum (cavity walls), U is the interaction of
the atom with the oscillator, and V is the interaction of the
oscillator with the walls.

The states of the combined atom—oscillator —walls
system will be described by three indices |a, ¢, w). The
first index indicates the state of the atom, the second that of
the oscillator, and the third represents the walls.

When the atom interacts with the cavity, the system may
be in the following states;

|1,0,0) when the atom is excited, the oscillator is in the
ground state, and the walls are not excited; the energy of the
state W, is equal to the energy of the excited atomic level
(the lower state of the atom is assumed to be the ground)
and we then find that W, = hw,, where w, is the Bohr
frequency of the atomic transition;

|0,1,0) when the atom is in the lower state, the
oscillator is in the first excited state, and the walls are
not excited; the energy of the state is W, = hiw,, where @, is
the eigenfrequency of the cavity;

|0,0,1,) when the atom is in the lower state, the
oscillator is in the ground state, and the walls have
absorbed a photon of frequency w; the energy of the
state is W, = ho.

Since the walls with a continuous absorption spectrum
can absorb a photon of any frequency, the third of the
above states represents in fact a set of states which can be
described by a continuous parameter w.

We shall seek the wave function ¥(r) of the system in
the form of a superposition of the above states, so that

Y(t) = A(r) exp(—iw,1)|1,0,0)

+ B(r) exp(—ieo,1)[0, 1,0)

+3 " Coo(t) exp(—iwr)[0,0, 1,). (24)
N
It follows from the Schrodinger equation that
in % — Uexp [i(wa - wc)t]B +in8(), (25a)
in ‘l—f — Uexp [—i(ma - wc)t]A (25b)
+> 0, Vo exp [i(a)C — a))t] Cyp,
in dd% — V% exp [—i(wc - a))t]B. (25¢)

In the above equations the quantities U and V, are the
matrix elements of the following interaction operators:

U =(0,1,0{U]1,0,0), V,=1(0,0,1,|V[0,1,0);  (26)

&(t) is the function on the right-hand side of Eqn (25a),
which allows for the initial state of the system when the
atom in an excited state appears at the moment r = 0.

As in the preceding section, we shall solve the system of
equations (25) by the Laplace transformation. We shall
introduce the Laplace transforms of the required quantities
A(t), B(t), and Cy,(t):

A, =A(r) exp [—i(wa - wc)t] ,

B, =B(t), @7
Cop = Cyp(1) exp [i(a)C — w)t]
It then follows from Eqns (25a)—(25c) that

. U

[,H](ma —wc)]Ap == B,+1, (28a)

U Ve

po:EAp-f—zw:Epr: (28b)
. Vo

[p Fi(w— wc)] Cop =28, (28¢)

3.2. Cavity damping

Before we analyse the system of equations (28), let us
consider the intermediate problem of the energy decay in a
cavity in the absence of an atom. We shall assume that
initially the cavity is in the first excited state and the ‘walls’
are in the ground energy state. We can easily see that in
this case the wave function is described by Eqn (24) with
A(t) = 0, where B(r) and Cy(t) obey

Vo
pB, = ijﬁ Cop+1, (29a)

. Ve
[p—i— i(w— wc)] Cop =28, (29b)
The structure of these equations is fully analogous to the
system (10) which describes the process of spontaneous
emission in free space. Elimination of C,), from the above
system gives

(p+Ty)B,=1, (30)
where
Vol I
r, = : . 31
@=L A= w) b

We now have to calculate the sum in Eqn (31). Since in the
formulation of the problem the absorption spectrum of the
walls is assumed to be continuous, the sum in Eqn (31) can
be reduced to an integral by introducing the density of
states p(w) for the walls:

<y, 1 1
Fc,,=j Vol pw) do> . (32)
0

e p+i(o—w)

[ts calculation requires assumptions about the frequency
dependence of |V,,|* p(w). Formally we are dealing with the
same problem as in the calculation of a similar sum in the
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process of spontaneous emission in free space. However, in
this case the situation is less dramatic and there is more
freedom in the choice of the model to describe the
absorption of radiation by the walls.

We shall not need to analyse the dependence of I'y, on
the microscopic parameters of the medium. It will be
sufficient to know that

Fcp =Y — 150 (33)

is a complex quantity dependent on p. We can say this on
the basis of the results of the preceding section if y. and .
are small compared with the eigenfrequency of the cavity
wc. This can be demonstrated by a direct calculation of the
integral (32) and a selection of the profile of the absorption
band of the walls in, for example, the same form as
adopted in the Appendix 7.2. In this case the quantity Q is
the spectral width of the absorption coefficient of the walls.
If @Q is sufficiently large, then

ve =m|Vo, | plod)i". (34)
We can now ecasily calculate that p = —y,. +id, is a pole of
B, and

B(t) exp(—iw.t) = exp [—(yc — iéc)t]. (35)

We can see that 7y, describes the cavity damping. It is
usually found at y, <€ w. and this has been used here to
calculate I'y, and y,. The probability of the state |B(t)|?
decays at a rate characterised by the constant 2y.. The
quantity . is the radiative correction to the cavity
frequency; it only corrects this frequency, but does not
lead to any qualitatively new effects.

3.3. Spontaneous decay rate and structure of the emission
spectrum of an atom in a cavity

We shall now return to the task of solving the system of
equations (28). Elimination of Cg, from Eqn (28b) by
means of Eqn (28c) gives

Vol 1 U
B, =—A,. 36
[p+za,: 2 ptiw—w)] "m0 G0

The sum in the brackets in the above equation is known
from the preceding section. Therefore,

U*/in
B, :#Ap, 37
Pty — 150
which in turn makes it possible to calculate A,:
—is
Ap: - p+yc l-c = (38)
(p+14) (p +7c = idc) + [ul
where
A=w, -0, u=U/i,

and to obtain the final expressions for B, and Coy:

*
—Uu

Bp: . . 20
(p+i4) (p + 7. —ibc) + |ul

(39

Cop=—— o 4
[(p+i4) (p + 7. —id.) + [ul] (p +14,)

where
A, =w— o, and v, =V, /il.
The inverse Laplace transformation, applied to Eqns

(39) and (40), gives

pl+'))c_i50
A(t)=———¢ex t
(1) =P exp(pi)

— 1
_m exp(p2t)7
P —P2

_ M*V* exp(p]t)
Cw(t) B w((Pl —p2) (p1 —p3)

exp(pat) exp(pst)
*@—M@—M*@—mwrmﬂ(m

(41)

where p;, are general poles of the functions A, and Cop,

1 . .
Pi2="75 (Vc —ié, +1A)

| . 2 , 1/2
+ [5 (7 —i6c —i4)" —4lu ] : (43)
are the roots of the equation
(p+id) (p+ 7. —i80) +|uf’ =0, (44)
and
ps = —id, (45)

is the third pole of the function Cup. The spectral
distribution of the photons is given by

v |

lps — 1 |2|P3 —pal

|Co(00)]” o) = > p(w). (46)

The frequency dependence of the denominator of Eqn (46)
is decisive: |vp|* p(@) is a continuous function of the
frequency and in fact can be replaced by a constant
quantity |y, |* p(ec) = 7./m.

Let us now estimate typical parameters governing the
process of spontaneous emission in a cavity. The domi-
nant form of the interaction of atoms or molecules with
an electromagnetic field is the dipole mechanism, so that

U= —a-E

Consequently, |u| = (u/7){0,1,0E[1,0,0). A  matrix
element of the field is (0, 1,0[E[1,0,0) :e(2nhwc)'/2 [2];
see also Eqn (7.1.3) in the Appendix 7.1.

In the classical microwave spectroscopy experiments a
typical object of an investigation is the rotational spectrum
of a molecule [48] Such spectra correspond to dipole
moments |u|~ 107'® cgs units. Since in this range we
have w. ~ 10'! Hz, it follows that |u| ~ 103 s—!. These
experiments are relevant to the first work in the field of
quantum electronics, which were studies of masers with
molecular beams of ammonia, formaldehyde etc. [3]. Metal
cavity resonators used in spectroscopic and maser
experiments have Q factors Q@ ~ 103—104 Such values
of the Q factor in the centimetre range of wavelengths



Spontaneous emission in a cavity

399

correspond to 795 & 107 s~!. We can see that in these
experiments the inequality 7, > |u| is obeyed. This is the
reason why an approximation based on this inequality was
used by Bunkin and Oraevski [17].

A different class of recent experiments is based on the
use of transitions in the spectra of highly excited atoms
(Rydberg transitions) [34]. The wavelengths corresponding
to these transitions also lie in the microwave range.
The correspond-ing dipole moment is || ~ 10716 cgs
units. Super-conducting cavities with Q ~ 10° are used in
such experiments. Therefore, these experiments correspond
to the inequality 7, < |u].

We shall now analyse these two cases.

In the first case (y, > |u|) not only y., but also the
detuning 4 can be large, so that we can calculate the values

of the poles of Eqn (43) on the assumption that
1 (9. — 16, —i4) > |u|. We then find that
p1=—Y,+1i0,, pr=—y+id —id, 47
where
.+ 4
e e eI R ML (48)

2+ (8. +4) 2+ (8, + 4)*

The function A, has thus in fact only one pole p, and

A(t) = exp[—(y — id)¢]. (49)
We can see that d is the radiative shift of the transition
frequency of an atom in a cavity resonator. It disappears
when d, + 4 = 0, i.e. when the cavity frequency (after
allowance for the radiative shift) coincides with the
frequency of the atomic transition.

It follows from Eqn (47) that

djaf’ 2

/= _2vAl. 50

P VAl (50)
The quantity wl =2y determines the rate of decay of the
upper atomic level. If it is assumed that the interaction is of
the dipole nature, U = —g°E, then w{ is described by Eqn
2).

Eqn (46) for the frequency distribution of the emitted
photons reduces in this case to

Cal00)l pl@) =L [y + (4, — 8] 7" 51

We can see that the emission line is a Lorentzian
monoresonance with a half-width y.
In the second case when |u| > y,:

1 .
Pip==75 Ve ilul. (52)
We shall now calculate the frequency distribution of the
emitted photons given by Eqn (46). In this case we have

|Coo(00)*p(w)

= Jul*ye/m s
[(7/2)* + (4 + [u)[(e/2)* + (Ao — M)z]/’( )- (53)

Eqn (53) describes a spectral distribution composed of two
peaks (Fig. 1). A physical interpretation of this distribution
is as follows. If |u| > y,, a photon emitted by an atom is
reabsorbed by the atom with a much higher probability
than the absorption by a wall. In this case the atom and the

ws ()

wa- Wa

wa + |l

Figure 1. Doublet structure of the spectrum of spontancous emission
of an atom in a single-mode cavity. Here, wy(w) is a spectral density of
the probability. The scale of the figure is arbitrary.

cavity can be regarded as one coupled system. The energy
of this coupled system has two values. At w, = ®, these
two values are @, + |u| and w, — |u|. This is the reason for
the appearance of the doublet. Such an interpretation is
supported by direct calculation of the atom —cavity system

Y(r) = A(r) exp(—iw,t)|1,0,0)

+ B(1) exp(—iw)[0,1,0) (54)

in the |u|> y, approximation. For simplicity, we shall
assume that w, = ., = . In this approximation the poles
of the functions A, and B, coincide and are given by Eqn
(52). Therefore,

A(t) exp(—iwot) :% exp [— (%) z] {exp [—i(wo + |u|)t]

+ exp [—i(wo — |u|)t] }, (55a)
B(t) exp(—iwgt) = % exp [— (Vz—°>t - 1(15]
x{exp [—i(wo + |u|)t] —exp [—i(wo - |u|)t] } (55b)

In Eqns (§5a) and (55b) the terms y./2 are retained in the
arguments of the exponential functions, but they are
omitted from the pre-exponential factors. They do not play
a significant role in these factors; they alter only slightly the
values of the coefficient. The retention of the terms y./2 in
the arguments allows for a qualitatively important effect
which is the decay of an excited state of the atom —cavity
system. It is interesting to note that the decay of an excited
state of this system is characterised by an exponential
function with an argument half that describing the decay of
energy in a cavity without an atom.

If allowance is made for Eqns (55a) and (55b), the wave
function can be represented in the form

W) = exp [— (g) t] {exp[i(wo + lur[+)]

o+ exp =iy — e -)] }, (56)
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where

) = 3111,0,0) i exp(~ig)[0, 1,0)]. (s7)
The wave function (56) represents a superposition of two
slowly decaying (quasistationary) states with energies
R(wy £ |u|). In accordance with these two values of the
energy, the spontaneous emission spectrum has two
maxima.

However, if we follow solely the fate of the states of an
atom, we find from Eqns (55a) and (55b) that the
probability of finding it in the upper or lower state
oscillates at a frequency 2|u| [49].

We shall now find the ratio of the parameters |u| and y.
for which a monoresonance becomes a doublet. We shall do
this by calculating |C,,(c0)|* without invoking the inequality
|u| > 9., but simply assuming that |u|>y./2. We shall
postulate that the cavity frequency is tuned exactly to
the frequency of a spectral line: 6. + 4 = 0. We then

have p1, = —(7./2) +i(8. £ B), B = (|u|2— —Y§/4)I/2, and

|Co(00)*p(e)

_ Juf (ve/m)p(@)
[(7./2)* + (4o + 3c + B)1[(7./2)* + (4 + 6. — B)°]

p(w).

(58)

It is obvious that a doublet in the spectral distribution of
the emitted photons corresponds to two maxima with a
minimum between them. The positions of the extrema of
the function (58) on the frequency axis are given by the
roots of the equation
2 2 1,

(Ao +6)[ (4o + 6. + lul* =3 92| =o. (59)
When considered as a function of the frequency, there are
three real roots if

lu > = . (60)
V2

It therefore follows that when an atom emits

spontaneously in a single-mode cavity resonator, a

doublet may appear in the emission spectrum if the
cavity has a sufficiently large Q factor. It has been
stated [50, S1] that in a certain range of values of the
ratio |u|/y. a triplet may appear in the spectrum of
spontaneous emission from a two-level atom in a single-
mode cavity. However, this is in conflict with the results of
other investigations [35—37] and is not supported by the
above theory.

4. Experimental verification of the doublet
structure of the spectrum

The splitting of the energy states in a sufficiently strong
external radiation field has been known from the time of
the experiments of Autler and Townes [48]. However,
observation of the splitting in the field of the intrinsic
radiation of an atom the energy of which is equal to one
photon, is difficult for fundamental reasons. It is necessary
to study the emission from a single atom in a cavity
because the situation becomes much more complex in the

presence of many atoms: in the final analysis, the atoms
may be in the field of many photons emitted by different
atoms and even the number of atomic collective states
involved in the process may become large [52].

The spectral distribution of the photons emitted
spontaneously in a cavity can be recorded provided a
sensitive detector capable of reacting to single photons is
available. The construction of such a detector for
microwave photons is a difficult experimental task. It is
much simpler to detect the state of an atom which escapes
from a cavity. It is therefore preferable to use an alternative
manifestation of the spectral doublet effect which is a
periodic time dependence of the probability of an atomic
state. The probability of finding an atom in the upper or
lower state at the exit from a cavity, depending on the time T
of its flight across the cavity, oscillates at a frequency 2|u|.
In fact, it follows from Eqns (55a) and (55b) that

A @) =3 exp(—y.D)[1 + cos(2lul7)], (61a)

B()I* =5 exp(=pe7)[1 — cos(2lulr)],

which can indeed be observed experimentally.

The recent technological progress has made it possible
to study the process of emission from single atoms in a
cavity with a very high Q factor [34, 53]. The state of an
atom emerging from a cavity can then be recorded.

The experiment involving observation of the probability
of oscillations described by Eqns (61a) and (61b) is difficult
to carry out in its pure form. First, it is necessary to
ensure that there is no thermal radiation inside the cavity.
In the microwave range this requires cooling to
temperatures well below 1 K. Second, the experimental
conditions must be such that the radiation from the atoms
crossing consecutively the cavity does not accumulate inside
it because otherwise the effect is not purely spontaneous.
This means that at each moment in time there should be
only one atom in the cavity and the time interval between
the consecutive atoms should be much greater than the
photon lifetime in the cavity 7, = (27.)”' = Q./w,. If 0 ~
10° and w. ~ 10!! Hz, then 7. = 10—2 s, so that the
intensity of the atomic beam should not exceed 100 atoms
per second. Moreover, a high degree of the selection of the
velocities of the atoms is required.

Eqns (6la) and (61b) can be readily generalised by
allowing for the presence of thermal radiation inside the
cavity. In this case the probability P, (t) of finding an atom
in an excited state is given by [53]

(61b)

P, (1) =1 exp(—7.7) [] — °Xp <_ TT)C>]

xS exp (— ”f?) {1 + cos[2Jul(n + 1)‘/%]}. (62)

It is this expression that was checked experimentally at T
= 3 K [53]. In this experiment use was made of a velocity-
selected beam of ®Rb atoms and a niobium resonator
cavity with Q. = 8 x 10%. The atoms were injected into
the cavity in a highly excited (Rydberg) state 63p3,2. The
resonator was tuned to the frequency w.= 2n X 21.5 GHz,
corresponding to the 63ps;; — 61 d,, transition in an
atom. Time was measured from the moment of injection of
an atom into the cavity. Measurements were carried out
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over an interval of 30—140 ps. The authors found that
Eqn (62) agreed excellently with the experimental results
(Fig. 2).

We shall once again draw attention to the fact that the
oscillations of the probability of finding an atom in a
specific state at the exit from the cavity are related uniquely,
in accordance with Eqns (56), (61a), and (61b), to the
splitting of the energy levels of the atom —cavity mode
system when these levels interact. Therefore, the
experiments of H Walther and his colleagues, the results
of which are plotted in Fig. 2, demonstrate unambiguously
the splitting of the energy levels of the atom —cavity mode
system, leading to the doublet structure of the spectrum.

v= 21.5GHz

0.8

o
N

Probability
o
N

0.2
85Rb 63p3/2H 61 113/2

1 | | | 1
0 100 200 300 400 500

Time of flight across cavity/ps

Figure 2. Oscillations of the probability of finding an atom in the
upper energy state: theory and experiments [53].

Quite recently H J Kimble and his colleagues (California
Institute of Technology) have succeeded in observing what
is known as the vacuum Rabi splitting of the energy level of
an atom into two closely spaced sublevels by carrying out
experiments in the optical range [54]. This is in fact a direct
observation of a spontancous doublet.

5. Possibility of a triplet structure in the
spectrum

A triplet structure of the emission spectrum may appear
due to the interaction of an atom with two cavity modes
which have similar frequencies or are even degenerate. It
readily follows from the above discussion that the system
of equations describing the dynamics of the process is

.. dA .
in 5 = Ui [i(w, — @))t] B,

+U, exp[i(w, — wy)t] By +iRd(t) (63a)
. dB, .
in e U7 exp [—1(ma — wl)t]A

+> Vip expli(o) — 0)t]Cy, (63b)

dB

in d_tz = U2 exXp [—l((l)d — (1)2)t]A
+> Vi expli(w, — )] Cy (63c)
w
and
dc
lFl d—tw = VTw €Xp [—l(w] — w)t]B]
+V3, exp[—i(w, — w)t]B, . (63d)

The notation is as follows: U; is the operator of the
interaction of an atom with the jth mode; V; is the operator
of the interaction of the jth mode with the cavity walls; w;
is the eigenfrequency of the cavity; B; is the amplitude of
the state of the jth mode (j = 1, 2). The resut of the
notation is the same as before.

We shall assume that the line emitted by such an atom is
half-way between the frequencies of two normal modes of
the cavity: o, =w, — 4, w, = w, + 4. Then, introduction
of the Laplace transforms A, = A(t), By, = B;(t) exp(idt),
By, = By(t) xexp(—idt), Cgy, = C,(t) exp(—id,t), where
A, = 0 — m,, leads to the following equations:

U, U,

Ay =2 Byt ol Boy + 1, (64a)
(p—iA)Blp:li/—;Ap—i-Xw:%pr, (64b)
(p+id) By, li]—h;A,,Jr; Vl—;“’ Cops (64¢)
(p+idy,) Cyp = ‘:—;" By, + VI—%" By,. (64d)

Elimination of Cg, from these equations yields the
following sums:

|V/'w|2 1
r=>Y = :
T4 w ptidy’

Kmn _ Z Vn1w2Vnw ]. .
Py i p+id,

The complex quantities I'; =y, +id,; describe, as
before, the damping and the radiative shift of the
eigenfrequency of the jth cavity mode. The quantities
Knun are the intermode coupling coefficients.

In order to concentrate our attention on the main effect,
we shall simplify the calculations by postulating that §, = 0,
Ky = 0, |Vlw| = |V2w|’ |UI| = |U2| = hlul This implies
equality of the damping coefficients of the modes
(y1 =79, =7.) and the absence of any intermode coupling.

At first sight the coupling coefficients are linked ‘rigidly’
to the damping coefficients, so that by selecting the values
of y;.» we are limited in the range of K,,,. There is naturally
a linkage: in the selected model the values of |K,,,| cannot
exceed the largest of the coeffcients y;, .. However, within
the limits of this constraint the coefficients K,,, can have
any values since they depend not only on the moduli of V4
and V4, but also on the difference between their phases.
In the case of a random phase distribution we have K, =
K2| = 0.

(65)
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In order to answer the question of the spectral
distribution of the emitted photons, we have to
calculate—as before—the value of |C,(c0)|. Standard
transformations give

Ve + 4a
[(p1 +id,,) (P2 +14,)(p3 +i4,)|

where p; are the roots of the following cubic equation with
real coefficients:

|Cw(oo)|2 = 4|uvw|2

5, (66)

p(p+7.)° + Ap+2Jul*(p +7.) = 0. (67)

If one of the roots of Eqns (61a) and (61b) is real (for
example p;), and the other two are complex conjugates

(P23 = o + iB), then
)

S+ 2@ + (A — B + (A0 + B

(68)

In this case three spectral peaks appear if 4> > 0 and f is
sufficiently large. If 42 is small, then

5 1
|Co(20)]" ox — ns >
[O‘ +(Aw_ﬁ) ][O( +(Aw+ﬁ) ]

22
x|14+— —C] . (69)
[ Jul* 72 + 45,

We can see that the appearance of a triplet is not subject
to a threshold of the detuning 4. If |u| > y./2, the third
peak appears as soon as 42> 0. However, if 42 is small, the
amplitude of this peak is small because it is proportional to
A2, This is illustrated in Fig. 3.

ws (@)

Wa w

Figure 3. Triplet structure of the spectrum of spontaneous emission of
an atom in a two-mode cavity. Here, ws(w) is a spectral density of the
probability. The scale of the figure is arbitrary.

If 4=0, it follows that p; = —y, a=—y,/2, and
B = 2u*— (?/4)]'*. We then have

1

I* o > T 5.

[OC + (Aw _ﬁ) ][OC + (Aw +ﬁ) ]
Let us now return to the doublet. The difference between a
two-mode doublet when 4 = 0 and a single-mode doublet
is only this: there are two identical modes, the strength of
the interaction of an atom with the cavity field is doubled,
so that the condition for the appearance of a doublet is
modified somewhat to

|u| > p./2.

|Co(o0 (70)

(71)

Can a triplet appear when 4 = 0? It may appear if there
is an intermode coupling. It follows from the classical
theory of oscillations that two linearly coupled
oscillators with absolutely identical frequencies w. can be
represented by two independent normal oscillations of
frequencies w, = @.(1 + k) and w_ = @, (1 — k), where &
is the frequency-normalised intermode coupling coefficient.
However, this situation is practically equivalent to the case
of two uncoupled modes with a detuning 24 =2w.k
considered above. On the same basis we can predict a
triplet in the spectrum of spontaneous emission of radiation
by a moving atom: for a certain configuration of the cavity
field a standing wave is ‘seen’ by an atom as two modes with
frequencies displaced symmetrically (because of the
Doppler effect) relative to the resonance frequency of
the atom. These ideas are supported qualitatively by
later calculations [55], but they represent a special case
of a more complex pattern. It has been shown [55] that the
motion of an atom may lead to the appearance of a
multiplet structure. A complex structure of the
spontaneous emission spectrum of a moving atom is
associated with the fact that the motion of the atom
modulates periodically the phase of the atom— cavity
mode system. Periodic phase modulation is known to
correspond to an infinite Fourier series with an
equidistant set of frequencies. Interference between a
large number of states corresponding to the Fourier
components is in fact responsible for the multiplet
structure of the spectrum. For certain velocities v of an
atom (the important parameter is wv/c|u|) the structure of
the spectrum may look like a doublet and a triplet. A very
fast motion of an atom ‘smears out’ the structure of the
spectrum and it is converted to a singlet even when the
condition (71) is obeyed.

6. Conclusions

1. The process of spontaneous emission is frequently said
to be due to quantum fluctuations. Quantum fluctuations
of both the electromagnetic vacuum and of the dipole
moment are important in this interpretation [11]. Since
quantum fluctuations disappear in the classical approxi-
mation, it is sometimes stated that spontaneous emission is
a pure quantum effect. However, this is incorrect, because
spontaneous emission also occurs within the classical
theoretical framework, as has rightly been pointed out
by Ginsburg [12]. Nevertheless, the role of fluctuations in
the quantum theory is important. The point is this: that in
the classical theory a radiator is usually represented by a
model of an excited dipole oscillator. However, if the
dipole oscillator is excited, this means that either the dipole
moment or its derivative or both are ‘automatically’
different from zero. A system of this kind unavoidably
begins to emit radiation as soon as it can oscillate freely.
The oscillations die out, as is known, because of the
reaction of the radiation field on the oscillator.

The situation is different in the quantum theory. The
excitation of a quantum system does not imply that the
system must have an average dipole moment. Quite the
reverse: this moment is usually zero and the system requires
an initial impulse to start the process of emission. Quantum
fluctuations provide such an impulse. In this connection it is
important to stress that initiating fluctuations are needed
also in some classical models. An example of such a model
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is provided by the Bloch equations describing the dynamics
of the magnetisation vector of a material. These equations
have been derived by Bloch from purely classical
considerations, but they have an exact quantum
analogue and have been used widely in the description
of the dynamics of masers and lasers beginning from the
work of Fain [56] and Oraevskii [57]. Within the framework
of these equations the energy stored by a radiator is
governed by the z-component of the magnetisation and
it cannot be zero if the system is excited. However, the
radiation is generated because of the x- or y-components of
the magnetisation, and initially these components may be
zero. The system does not begin to emit of its own until the
initial values of the x- or y-components of the
magnetisation or of the emitted field are induced by
fluctuations or in some other way.

2. It is well known that in addition to spontaneous
emission, there is also stimulated emission which is the basis
of the operation of generators of coherent radiation, in
particular, of lasers. There is a close relationship between
these two processes, as described by Einstein [58]

Ay =’ (1) By (72)

The standard notation is used in the above relationship:
A,y is the probability of a spontaneous transition from a
level 2 to a level 1; B, is known as the stimulated
transition coefficient. A consequence of this fundamental
relationship is that the probability of spontaneous emission
can be calculated if we know the linear response of the
investigated system (for example, an atom —cavity system)
to an external monochromatic field [8]. A linear response
of the system may be known in connection with investiga-
tions of other problems. The problem of spontaneous
emission is then solved almost automatically. However, if
the problem is formulated for the first time, the question is
which is simpler: calculation of the linear response of the
system or direct solution of the problem of spontaneous
emission?

3. The reader can see that this review deals with the
problem of spontaneous emission from a single atom. It is
the interaction of a single atom with an unexcited field
oscillator (free space or a cavity) that makes it possible to
detect and understand fine fundamental effects of the
interaction between matter and electromagnetic radiation
(including the electromagnetic vacuum).

This review has not dealt with the problems of
simultaneous interaction of many atoms or molecules
with electromagnetic radiation. In the simultaneous
interaction of many atoms with an electromagnetic field
we are faced unavoidably with the problem of cooperative
effects in spontaneous emission [52]. The cooperative effects
represent such a very large problem that it cannot be fitted
in the Procrustean bed of a single paper. I shall therefore
confine ourselves to references to fairly recent reviews
dealing with the cooperative effects [59, 60]. The
cooperative effects represent a topic in which it is
difficult to draw the line between the processes of
spontaneous and stimulated emission. This leads to the
hazard of sinking in the boundless sea of the results relating
to the physics of masers, lasers, and even radiophysics and
optics in general. For the same reason this paper does not
deal with the problem of spontaneous emission in the
presence of a strong monochromatic field. The reader is
referred to the treatment of this problem elsewhere [61, 62].

Even the problem of the emission of radiation by a
single atom can hardly be dealt with fully and permanently
by a single paper. It is continuing to attract the attention of
investigators to this day.

7. Appendices

7.1. Calculation of Eqn (14)

It follows from the canons of quantum electrodynamics
that the electric vector of an electromagnetic field can be
represented by a series

Er, 1) = 4 Fa(r) + 4. F.(r), (7.1.1)

where F,(r) are the eigenfunctions of the electrodynamic
boundary-value problem corresponding to the problem in
hand: g} and g, are the photon creation and annihilation
operators. The electromagnetic field in free space can be
described by eigenfunctions selected usually in the form of
plane waves

F,(r) = exp(—ik-r)

il

so that
E(r,t) = Zexp [(}: exp(ik-r) + g, exp(—ikor)]; (7.1.2)
o

e is a unit vector in the direction of polarisation of the
field; ek = 0, o is the combined (k,e) index. Each wave
vector kK corresponds to two field oscillators in accordance
with two linearly independent directions of the polarisation
of an electromagnetic wave.

In the dipole interaction case we have

V=—iE
and the calculation of V, involves calculation of the
matrix elements of the operators (j-e)e*’gy and
(fire) e*"§F. The matrix elements of the operators §;
and g, are given by the following relationship which applies
to the selected normalisation of the eigenfunctions:

At _ ~ _ 1/2

<071|Qa|]70)_ <170|(1a|07]>_(2nhw) . (7]3)
Let ¥ be the angle between the vectors # and e. We then
have (jie)e*" = jie® cos 9. Calculation of the matrix
element (0,1, lue®"|1,0) requires generally the knowledge
of the specific wave functions of an atom. However, the
value of u considered as a function of the coordinates
differs from zero within the limits of the dimensions of an
atom. If we then confine ourselves to spontaneous emission
at wave-lengths not shorter than in the visible range, then
within the limits of the dimensions of an atom we have

¢*" ~ 1. Therefore,

<0a 1w,,|.ueik.r|170> = <07 lw,,

ul1,0) = plo),  (1.14)
where p(w,) is a purely atomic characteristic found as
usual from the experimental results.

It remains to calculate cos ¥ and to sum in Eqn (13)
over the polarisations and to integrate with respect to the
directions of the emitted photons. The position and orien-
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Figure 4. Orientation of the dipole moment of an emitting atom in a
coordinate system linked to the unit vectors of a photon, i.e. with the
wave vector k and the directions of polarisaitons e, and e,.

tation of an atom in space are assumed to be given. In the
integration process the variable is the orientation of the
vector k. However, in calculations it is more convenient to
link the coordinate system to the wave vector k by selecting
its direction as the z axis; the other two axes can then be
linked conveniently to two directions of linearly
independent polarisations (Fig. 4). Then, integration over
the directions of k in Eqn (13) is equivalent to integration
with respect to the angles of the orientation of the vector u
in the selected coordinate system. It is clear from Fig. 4 that
cos’> ¥ =sin? Bcos’ ¢, if the emitted photon is polarised
along the x axis and that cos® ¥ = sin? 6 sin® ¢, if this
photon is polarised along the y axis. Summation over these
two polarisations has the effect that the square of the
interaction matrix element is proportional to sin® 0. Since
dQ =sin 6d0d¢, integration over the directions of the
vector k reduces to calculation of the following simple
integral:

T 27 . 8
J dGJ dr sin® 6 = = =.
0 0 3

(7.1.5)

Substitution of Eqns (7.1.3)—(7.1.5) in Eqn (13) gives Eqn
(14).

7.2. Calculation of the frequency integral
The reasoning given in Section 2 can be illustrated by
calculating

r, :2(3nhc3)"J lu)o’p + i(w, — )] do, (7.2.1)
0

on the assumption that
2 2
o] Q
n ‘(22"—(6005_60'&)27

where u, and @ are constant quantities. This form of the
dependence on w, in the case of a sufficiently high value of
Q satisfies the assumptions about the interaction matrix
element made in the derivation of Eqn (17). However, this
dependence is of purely model nature and it differs from
the dependence p(w,) for which estimates are given in the
main text above. The selection made here simplifies
maximally the calculation aspect of the problem without
altering the fundamentals.

Calculation of the integral (7.2.1) subject to Eqn (7.2.2)
gives the relationship

e (0,) P00y = (7.2.2)

@ 1
r,=y [(l ——arctanﬁ—i—iarctanﬂ)

@+ p? T w, 22 nQ Q

2
i ;
——In —2— 7.2.3
on “Q2+w2]’ (62
_ 2 3 ap 3
where y = 2|p,| w; /3%,
The poles of the function A, are given, in accordance
with Eqn (11), by

p=-T,.

(7.2.4)
If we assume that y/w, < 1 and y/Q < 1, we can find the
solution of Eqn (7.2.4) by the method of successive

approximations, where p = p; +p, + ... and

: 2
1 ;

We can see that in this approximation the real part of a
pole governing the decay of the upper atomic state is
independent of the model parameter Q. The imaginary
part, governing the radiative frequency shift, depends on
this model parameter. In the limit £ — oo the imaginary
part rises without limit and this is closely related to the
general  problem  of  divergences in  quantum
electrodynamics [38].

The corrections obtained in the next approximation are
of the order of y/w, and y/Q. These corrections depend on
the model parameter €. It is obvious that their actual nature
will change with the model.
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