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Abstract. A review is presented of the results of the theory 
of re laxat ion of the macromolecu le and of the dynamics of 
a dilute solut ion of polymers , with in t ramolecular inter­
act ions, hyd rodynamic impermeabil i ty , and internal vis­
cosity of the macromolecule t aken into account . The linear 
viscoelasticity and optical an i so t ropy of the system are 
examined. Typical features of the behaviour of dilute 
solut ions of po lymers at var ious frequencies are discussed. 

1. Introduction 
A dilute solut ion of a polymer is unde r s tood as a system of 
macromolecules in a solvent such tha t the macromolecules 
interact only with the solvent molecules and no t with one 
another , so tha t the s tudy of the dynamics of a dilute 
solut ion of po lymers reduces to the investigation of the 
dynamics of one macromolecule su r rounded by solvent 
molecules. At low frequencies of mot ion , re laxat ion 
processes with the highest re laxat ion t imes p rove to be 
significant, whereupon the macromolecu le can be t reated in 
te rms of a universal scheme, i.e. one independent of the 
na tu re of the polymer and the solvent. 

W and H K u h n , who were the pioneers of theoret ical 
s tudy of the behaviour of flexible macromolecules in a 
flowing viscous liquid, in t roduced into polymer physics a 
very simple schematic representa t ion of the m a c r o m o l e ­
c u l e — the dumbbel l model : two Brownian part icles l inked 
by elastic (entropic) forces (Fig. 1) [1]. On this basis, they 
took into account all the characterist ic features of the 
dynamics of a flexible macromolecu le in a viscous liquid, 
such as the in t ramolecular friction and the m u t u a l h y d r o -
dynamic influence of the part icles, and investigated the 
pr incipal characterist ic features of the behaviour of dilute 
solut ions associated with the relaxat ion of flexible m a c r o ­
molecules: viscoelasticity and optical an iso t ropy. Their 
results are quali tat ive, first, because the schematic repre ­
sentat ion of a macromolecule by two part icles is too 
approx ima te and , second, because the s tudy of a very 
simple mode l such as the dumbbe l l leads to certain 
difficulties, associated with the nonl inear i ty of the p r o b ­
lem, which have been overcome comparat ive ly recently [2]. 

At the present t ime, p h e n o m e n a associated with re laxa­
t ion processes in macromolecules are considered on the 
basis of the mult ipar t ic le mode l of the macromolecule . 
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Figure 1. Schematic representation of the macromolecule by a dumbbell 
(two Brownian particles linked by an elastic force) used in pioneer studies 
for the investigation of the behaviour of a flexible macromolecule in the 
flow of a viscous liquid. 
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W h e n slow processes are considered, the macromolecules 
are represented schematically, after Karg in and Slonim-
skii [3] and R o u s e [4], by a set of linearly connected 
Brownian part icles (Fig. 2). The s tudy of the p rob lem of 
the behaviour of such a chain in a deformable viscous liquid 
tak ing into account the bu lk-phase interact ions, the h y d r o -
dynamic influence of the part icles on one another , and the 
in ternal friction led to a quant i ta t ive descript ion of the 
effects associated with the slowest re laxat ion of the 
macromolecules , which can in fact be described solely on 
the basis of the universal , i.e. independent of the chemical 
s t ructure, schematic representa t ion of the macromolecule in 
the form of a chain of Brownian part icles. F o r the 
investigation of the re laxat ion processes with short re laxa­
t ion t imes, it is essential to use m o r e detailed ideas abou t the 
macromolecu le which are no longer universal bu t reflect the 
specific archi tecture of the macromolecule [5]. 

Figure 2. Universal schematic representation of the macromolecule by 
an assembly of Brownian particles linearly connected by elastic forces — 
the subchains model. 

The theory of re laxat ion processes in a dilute solut ion is 
based on the theory of Brownian mo t ion and reduces to the 
considerat ion of systems of stochastic equa t ions and the 
calculat ion of average quant i t ies . The formulat ion of the 
p rob lem became completely clear in the 1950s bu t technical 
difficulties could nevertheless be overcome only when 
several decades h a d elapsed — after the appl icat ion of 
m o d e r n m e t h o d s of theoret ical physics to the solution of 
the p rob lem. 

At low concent ra t ions , the above simple schematic 
representa t ion of the macromolecule as a collection of 
linearly connected Brownian part icles t ak ing into account 
the in t ramolecular friction, the vo lume effects, and the 
hyd rodynamic interact ion leads to a quant i ta t ive descr ip­
t ion of the observed viscoelastic and double refraction 
effects at compara t ive ly low frequencies. At higher fre­
quencies, the universal descript ion is qual i tat ive: there is a 
possibili ty of the appearance of effects associated with the 
characterist ics of the detailed s t ructure of the m a c r o m o l e ­
cules. 

The effects of the viscoelasticity and optical an i so t ropy 
of the dilute solut ion of polymers , which will be discussed 
further in the present review, reflect the s t ructure and 
proper t ies of an individual macromolecule and are there ­
fore used in the s tudy of newly synthesised po lymers or 
po lymers isolated from na tu r a l mater ia ls . U n d e r these 
condi t ions , the m o r e dilute the solution the easier the 

in terpre ta t ion of the results, since the so-called charac ter ­
istic values of the measured quant i t ies (see Section 4.2), 
which are independent of the concent ra t ion c (at c —> 0), are 
usually considered and discussed. The theoret ical results 
m a k e it possible to compare these quant i t ies with the 
characterist ics of an individual macromolecule . 

Solut ions of po lymers at nonzero concent ra t ions , when 
the macromolecu la r coils interact with one another , are not 
of interest merely as a means of s tudying macromolecules 
bu t are of intrinsic interest as macromolecu la r systems with 
unusua l dynamic proper t ies which have no analogues 
a m o n g low-molecular-weight systems. Analysis of the 
dynamics of macromolecules in a system of inter twined 
chains na tura l ly proved m o r e complex bu t in the limit of 
very high concent ra t ions (c —> 1) the system is convenient to 
study: the equat ion for the dynamics of the macromolecu le 
can be formulated in such a way tha t the generalised 
equat ion is a reliable basis for the const ruct ion of a theory 
of the dynamic behaviour of systems concent ra ted to the 
m a x i m u m extent. 

F r o m the s tandpoin t of the vigorously developing theory 
of nonlinear dynamic phenomena [58 -60] , the results under 
discussion const i tute a simple example of a system of 
stochastic equat ions defining the mot ion of connected 
Brownian particles. The study of systems of this kind 
demons t ra ted tha t the mode l reflects the characterist ic 
features of the the rmal mot ion of the macromolecule in 
bo th dilute and concentrated solutions (the latter case is 
discussed in the Conclusions) and therefore the system 
considered consti tutes one of the most fundamenta l models 
used in the theory of the behaviour of high-molecular-
weight substances. 

2. Thermodynamics of the macromolecule 
A detailed descript ion of the micros ta te of the m a c r o ­
molecule is achieved by specifying sequences of a toms , 
b o n d lengths, b o n d angles, angles of the ro ta t ion of 
ne ighbour ing a t o m s abou t bonds , ro ta t ion potent ia ls , etc. 
The statistical theory of long chains, developed in 
considerable detail and described in a series of m o n o ­
graphs [ 6 - 8 ] , defined the equil ibr ium average quanti t ies , 
character is ing the macromolecu la r coil as a whole , as 
functions of the mic roparamete r s of the macromolecule . 
However , the characterist ics of the macromolecu le as a 
whole can be found on the basis of m o r e approx ima te 
models represent ing the macromolecule . 

2.1 Universal models of the macromolecule 
Since the length of the macromolecule exceeds by m a n y 
orders of magn i tude its t ransverse dimensions, the 
macromolecu le can be represented as a flexible h o m o g e ­
neous elastic filament with an elasticity coefficient a t ak ing 
into account the individual proper t ies of the m a c r o m o l e ­
cule [ 7 - 9 ] . Cons idera t ion of the the rmal f luctuat ions of the 
macromolecu le leads to a dependence of the mean square 
distance between the ends the of the macromolecule {R 2 ) 0 

on its length M and t empera tu re T. F o r MT a, we have 

The last relat ion demons t ra tes tha t at high t empera tu res 
long macromolecules are coiled u p ; the m o r e coiled they 
are, smaller the rigidity coefficient a. 
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The con t inuous filament mode l considered is also called 
the persistent length model . The quan t i ty a/T, where T is 
the t empera tu re expressed in energy uni ts , is called the 
persistent length [7, 8]. 

In ano ther universal me thod for the descript ion of a 
long macromolecule , which is applicable at high t empera ­
tures , one begins with the fact tha t for large distances a long 
the macromolecu le there is no correlat ion of the or ienta­
t ions of individual pa r t s and the real chain m a y be 
compared with a chain of consecutively connected freely 
ro ta t ing segments, as was done for the first t ime by 
K u h n [6]. 

The expression for the mean square of the distance 
between the ends of the macromolecule can be formulated 
in this case by ana logy with a wander ing Brownian part icle 
as follows: 

( R \ = zl' (2.2) 

where z is the number of chain segments and / is the length 
of the segment. The length of the segment m a y be arb i t ra ry 
bu t must na tura l ly be greater t han a tomic dimensions. To 
m a k e the t rea tment u n a m b i g u o u s , an addi t iona l condi t ion 
is established, which m a y require tha t 

zl = M . (2.3) 

E q n s (2.2) and (2.3) define the freely jo in ted chain 
mode l [ 6 - 8 ] . 

Thus , two procedures are used for the universal 
descript ion of macromolecules : the description with the 
aid of a flexible filament and the descript ion with the aid of 
a freely jo in ted chain. In b o t h cases the calculated mean 
square distance between the ends of the macro molecule 
(R2)Q is small compared with the overall length of the 
macromolecule : regardless of its chemical s t ructure , a 
sufficiently long macromolecule coils up as a consequence 
of the rmal f luctuat ions so tha t {R2)0 becomes p ropo r t i ona l 
to the length of the macromolecule : 

<* 2 >o • M (2.4) 

F o r a fixed distance R between the ends of the 
macromolecule , one can formulate a dis t r ibut ion function 
on this or ano ther basis [ 6 - 8 ] . In the simplest case, it has 
the form of the Gauss ian dis t r ibut ion. 

W(R) = 
3 

2n(R2){ 

i/2 

exp -
3R2 

2{R\ 
(2.5) 

2.2 The model of Gaussian subchains 
The description of the macromolecule with the aid of one 
quant i ty — the mean square distance between its ends 
{R2)0— is no t always sufficient. F o r very long m a c r o ­
molecules, use is made , after Karg in and Slonimskii [3] and 
R o u s e [4], of a m o r e detailed bu t also macroscopic and 
universal me thod of descript ion in which the m a c r o m o l e ­
cule is divided into N subchains each with a length M/N. 
The coordina tes of the ends of the macromolecule and of 
the po in ts cor responding to the divisions between the 
subchains const i tu t ing the macromolecu le are numbered 
successively from 0 to N and are designated by 
r°, r \ . . . , r N . 

Assuming tha t each subchain is also sufficiently long 
and m a y be described in the same way as the entire chain, 
we formulate the equil ibrium dis t r ibut ion function for the 

probabi l i t ies of the locat ions of all the part icles const i tu t ing 
the macromolecule as derivatives of N d is t r ibut ion func­
t ions of type (2.5): 

W(r°, r \ . . . ,rN) = C exp(-fiAxyrV) , (2.6) 

where 

3 _ 3JV 
(2.7) 

while the mat r ix A a y assumes the form 

1 
- 1 

0 

-1 0 
2 - 1 

-1 2 

0 0 0 

(2.: 

The free energy of the macromolecu le is then given by 
an expression of the following form: 

F(r(,,r\...,rN) = fiTAxyrV (2.9) 

It defines the force act ing on a uni t numbered v to within 
the first-order te rms in r. 

6F 
8r v 

KJ = -^=-2fiTAvyrJ (2.10) 

There is a possibili ty of var ious extensions of the 
Gauss ian subchain model : if it is necessary to t ake into 
account the addi t iona l rigidity of the chain in relat ion to 
bending, one has to add the interact ion between the 
individual uni ts and the mat r ix (2.8) is replaced, for 
example, by a pen tad iagona l matr ix . It is also possible 
to t ake into account the finite extendabil i ty of the 
subchains . F o r this purpose , h igher-order te rms in r are 
added to Eqn (2.9), etc. 

The Gauss ian subchain mode l defined in this way and 
its possible extensions are universal and are applicable to all 
sufficiently long flexible macromolecules regardless of their 
chemical na tu re . By virtue of its universali ty, the mode l 
considered plays a fundamenta l role in the theory of the 
equil ibrium and nonequi l ibr ium proper t ies of polymers . 
F o r N = 1, the subchains mode l is converted into the 
simplest mode l of a flexible macromolecu le — a dumbbel l 
compris ing two spheres linked by an elastic force. As 
al ready ment ioned , this mode l was in t roduced and used 
by K u h n and K u h n [1] to elucidate the characterist ic 
features of the dynamics of the macromolecu le in a flow. 

W e m a y no te in conclusion tha t , for high values of N, 
one m a y use the var iable 

+ 1 ' 
0 ^ s ^ 1 

and the mat r ix in t roduced in this Section wri t ten in the 
form 

A 
a y N2 ds2 ' 

which makes it possible to represent the formulae discussed 
here in ano ther way. 

2.3 Normal coordinates 
In te rms of the Gauss ian subchains approx imat ion , the 
dis t r ibut ion function (2.6) makes it possible to calculate all 
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the equil ibrium characterist ics of the macromolecu la r coil, 
for example the average value of the square of the rad ius of 
inertia of the coil: 

(S2) 
1 £ ^ - « i 2 > . *=TTNZ''- ( 2 - n ) 1 + N a=0 a=0 

However , for calculat ions in this and m a n y other cases it is 
convenient to employ new variables, referred to henceforth 
in accordance with t radi t ion as the n o r m a l coordina tes and 
in t roduced by means of the relat ions 

(2.12) 

as well as variables such tha t the quadra t i c form in 
E q n s (2.6) and (2.9) assumes the d iagonal form, so tha t 

(2.13) 

It is readily seen tha t the de te rminant of the mat r ix A is 
zero, so tha t one of the eigenvalues, say A0, is always zero. 
The n o r m a l coord ina te cor responding to the zero eigenva­
lues 

/ = G o > y , 

is p ropo r t i ona l to the coord ina te of the centre of gravity of 
the macromolecu la r coil q defined by E q n (2.11). 

In considering the behaviour of the macromolecule , it is 
convenient to use a coord ina te system with the origin at the 
centre of gravity of the system. Then p° = 0, so tha t in this 
instance there are only N n o r m a l coordina tes numbered 
from 1 to N. 

The dis t r ibut ion function (2.6), normal ised to unity, 
n o w assumes the following form in te rms of n o r m a l 
coordinates : 

/ > \ / , . . . , ^ ) = n ( ^ . (2. 14) 

Wi th the aid of this dis t r ibut ion function, it is easy to 
calculate the equil ibrium m o m e n t s of the n o r m a l coor ­
dinates: 

{Plpl)=\wplpl{dp}=^dik, 

t h rough which one can express, for example, the mean 
square rad ius of inertia defined by E q n (2.11): 

1 
1 + N <x=l 

The calculat ion of higher-order momen t s , for example 
four th-order momen t s , does not present special difficulties 
either: 

/ V V V v\ 
(PiPk PSPj)o 

1 

" 4 ( A I A V ) 2 

W e m a y no te tha t the t rans format ion mat r ix Q m a y be 
selected in different ways, in par t icular an o r thogona l and 
normal ised mat r ix m a y be chosen. In this case, the 
eigenvalues (see, for example, D e a n [10]) assume the 
following form for high values of N and small n u m b e r s a: 

fnoc :0, 1, 2 , . . . <tf (2.15) 

In the case of the o r thogona l t rans format ion , the 
relat ion between the n o r m a l coord ina te p°, cor responding 
to the zero eigenvalue, and the coord ina te of the centre of 
gravity of the macromolecule is formulated thus : 

p°=q(\+N)1/2 . (2.16) 

2.4 The excluded volume effects 

The above results are valid for a free nonin te rac t ing 
noncorporea l chain, which is an extremely useful ideal­
isation. However , the a t o m s of the macromolecu le interact 
with one another and the p r imary result of this interact ion 
is tha t pa r t s of the macromolecu le cannot occupy the 
vo lume occupied by any other par t s , i.e. the probabi l i t ies of 
consecutive steps are no longer statistically independent as 
is assumed in the derivat ion of the above dis t r ibut ion 
functions for the probabi l i ty and for the mean square 
distance between the ends of the macromolecule [11, 12]. 
F o r the subchains model , considered in the previous 
Section, the dis t r ibut ion function at equil ibrium and 
when account is t aken of the poten t ia l of the interact ion 
between the part icles can be expressed in the form 

W = C e x p -fiA rar (2.17) 

where C is the normal i sa t ion constant and U the energy of 
the ' la teral ' interact ions, which depends on the difference 
between the coordina tes of the part icles and m a y be 
represented fairly accurately by pair interact ions: 

U = ^U(\ry-r'\). 
y^v 

The cons tant \i m a y be expressed in te rms of the mean 
square distance between the ends of the subchain when 
account is t aken of the b2 in teract ions. F r o m considera t ions 
of dimensionali ty, we then have 

/a ~ b~2 . 

The average value of the square of the distance between 
the ends of the entire chain {R2) is determined by the 
' la teral ' interact ion, which is characterised by the second 
virial coefficient B(T) (also t empera tu re -dependen t ) and 
can n o w be expressed in the following form tak ing into 
account the considera t ions of dimensional i ty: 

(R2)=Nb2f(N,B(T)b-3) . 

Natura l ly , the form of the dependence of the quant i ty 
(R2) on the a rb i t ra ry n u m b e r of subdivisions N (N —> oo), 
which is no t related to any other characterist ics of the 
macromolecules , is independent of N and one mus t there­
fore assume tha t B(T)/b3 does no t change when the 
number of subdivisions is altered, while the function of 
the number of subdivisions must be formulated as a power 
function: 

{R2)=N2vb2 (2.18) 

Thus , fairly general considera t ions lead to the establish­
ment of a power dependence of the mean square size of the 
macromolecu le on its length: 

(R2) ~ M 2v 
v > 1 / 2 . (2.19) 

Tak ing into account the relat ions formulated above, the 
expression for the elasticity coefficient of the subchain when 
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account is t aken of the vo lume effects can be wri t ten as 
follows: 

v2v 

(2.20) 

The de terminat ion of the power exponent 2v in the 
above expressions requires special and no t very simple 
calculat ions [12]. F r o m the simplest hypotheses , it has 
been found tha t [12, 13]. 

2v : 

Thus , when account is t aken of vo lume effects, the size 
of the macromolecu la r coil exceeds the size of the ideal coil. 

W e m a y no te tha t the second virial coefficient generally 
speaking does no t depend on t empera tu re . At high 
tempera tures , repulsion p redomina tes between the m o n o ­
mers , while at low tempera tu res a t t rac t ion p redomina tes , so 
tha t there is a t empera tu re , referred to as the 0 - t e m p e r a -
ture , at which the a t t rac t ion and repulsion effects cancel out 
and B(T) = 0. It is usual ly assumed [11] tha t at this po in t 
the macromolecule is described by the relat ions for an ideal 
chain, which were indicated in the previous Sections. 

2.5 The macromolecule in a solvent 
Next we shall consider solut ions of po lymers which are so 
dilute tha t the macromolecules can be regarded as no t 
interact ing with one another . In such a solution, the 
macromolecules do no t form aggregates and therefore one 
should consider in the first place the behaviour of a single 
macromolecu le su r rounded by solvent molecules. A p a r t 
from the interact ion between the pa r t s of a single 
macromolecule , it is n o w necessary to take into account 
such interact ions between the macromolecule and the 
solvent. 

In the subchains approx imat ion , the equil ibrium dis­
t r ibut ion function of the part icle coord ina tes again assumes 
the form (2.17) under these condi t ions , bu t the poten t ia l U 
of the energy of the ' la teral ' in teract ion of the part icles is 
n o w an effective poten t ia l which takes into account the 
interact ion of the a t o m s of the macromolecule with one 
ano ther and with the solvent a toms . 

In solvents referred to as good, the p o l y m e r - s o l v e n t 
contacts are energetically m o r e favourable t han the poly­
m e r - p o l y m e r and s o l v e n t - s o l v e n t contacts , so tha t the 
molecular coil t ends to swell. In p o o r solvents, the opposi te 
s i tuat ion occurs and the macromolecular coil tends to 
contract [14, 15]. 

The second virial coefficient of the macromolecu le B(T) 
n o w depends no t only on the t empera tu re bu t also on the 
type of solvent. If a solvent such tha t B(T) = 0 has been 
found at a specified t empera tu re T, it is referred to as a 0-
solvent. In such a solvent, the size of the macromolecu la r 
coil is the same as the size of the ideal coil, i.e. one where no 
account is t aken of vo lume effects. 

3. Dynamics of the macromolecule in a viscous 
liquid 
On the basis of the subchains model , we shall consider in 
this section the dynamics of the macromolecule , and the 
relaxat ion equa t ions for the macromolecu le moving in a 
viscous liquid with a viscosity rj° for specified constant 
velocity gradients will be derived: 

8v,. 

It will be convenient to employ henceforth the following 
no ta t ion for symmetrised and ant isymmetr ised velocity 
gradients : 

yij = Hvij + vJi)> G>ij = i(yij-vji) • 

The characterist ics of long macromolecules as m a c r o -
systems m a k e it possible to employ a phenomenolog ica l 
p rocedure for the description of re laxat ion processes, which 
permi ts the formulat ion of overall results regardless of the 
extent to which the mechanism of a par t icular effect is 
unde r s tood . 

3.1 Hydrodynamic interaction of the particles of the 
macromolecular coil 
In the s tudy of the dynamics of the macromolecu le in the 
subchains approx imat ion , each subchain with a length 
M/N (N is the number of subchains) is likened to a 
Brownian part icle and each part icle, moving at a velocity 
uy, is acted u p o n by the hyd rodynamic en t ra inment force, 
which according to Stokes has the form 

(3.1) - C o W - v J ) , 

where £ 0 — 67O7 0a is the coefficient of resistance and vj the 
velocity of the liquid in which the given part icle is present , 
the velocity cor responding to the si tuat ion where no 
account is t aken of the part icle. W h e n an assembly of 
part icles is considered, the velocity vj is generally speaking 
determined by the mo t ion of all the part icles considered. 
F o r the slowest mot ions , we have in the Stokes 
approx ima t ion [16] 

The componen t s of the hyd rodynamic interact ion tensor 
Tjf for y = are zero, while in the case where y ^ they 
are determined by the relat ion 

1 
(3.2) 

l k 8 7 W / V - . , 

where ef = (rj - rf)/\ry - rfi\. 
A system of equa t ions for the en t ra inment forces follows 

from E q n s (3.1) and (3.2): 

(3.3) 

F o r small pe r tu rba t ions , the solut ion of Eqns (3.3) 
assumes the following form to a first approx imat ion : 

Co i 
y^oc L 

Co 

871?/° 

ej el 
871*7° 

(3.4) 

E q n (3.4) shows tha t the resistance (ent ra inment) force for 
a certain part icle depends on the relative velocities of all 
the part icles of the macromolecu le and also on the relative 
distance between the particles. 

W e m a y no te tha t values of the hyd rodynamic inter­
action tensor (3.2) averaged beforehand with the aid of 
some kind of dis t r ibut ion function are frequently used for 
the est imation of the influence of the hyd rodynamic 
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h = 

interact ion, as has been suggested by K i r k w o o d and 
R i seman [16]. 

F o r example, after averaging with respect to the 
equil ibrium dis t r ibut ion function for the ideal coil, the 
hydro -dynamic interact ion tensor (3.2) assumes the follow­
ing form [16]. 

<C0rf> = 2 f t | a - T | - 1 / 2 ^ . (3.5) 

The dimensionless hyd rodynamic direction pa ramete r 
appears here: 

\2Krj°b ~ b ' 

where a is the rad ius of the part icle associated with a 
subchain having a length M/N and b is the mean square 
distance between ne ighbour ing particles a long the chain. 

3.2 The effective coefficient of friction 
The expression for the en t ra inment (resistance) force 
[Eqn (3.4)] is valid for small m u t u a l influences of the 
part icles, i.e. when the hyd rodynamic interact ion pa ramete r 
is small (h <̂  1). In the cases of interest to us, the pa rame te r 
h is no t small and other m e t h o d s are used for the 
calculat ion of the en t ra inment (resistance) force [ 1 7 - 1 9 ] . 
However , one m a y also demons t ra t e the validity of the 
result by a simpler p rocedure , which is convenient in the 
case where one considers, following K i r k w o o d ' s ideas [16], 
a hyd rodynamic interact ion subjected to pre l iminary 
averaging. 

One m a y no te tha t the forces presented, the effect of 
which on the part icle is linear as a function of the velocity 
[see, for example, E q n s (3.1) and (3.4)], are associated with 
the low velocities of the part icles and of the flow and no t 
with the weakness of the hyd rodynamic interact ion, so tha t 
the expression for the force acting on a part icle in the flow 
can be expressed in the following general form: 

F? = -UBf?{u]-vur]), (3.6) 

where in the case of the pre l iminary averaging the 
hyd rodynamic interact ion mat r ix B*? assumes the follow­
ing form according to E q n s (3 .4 ) - (3 .5 ) under the 
condi t ions of weak interact ion: 

B^ = (dxy-2h\a-y\-^)dy, 

while for a rb i t ra ry in teract ions it can be represented by the 
equat ion 

J \ / J M \ Bf=Baf8jl + Vaf^rf)-{rfrt)0) (3.7) 

after in t roducing the new numer ica l matr ices Bay and V^^. 
W e shall no t discuss here the second term, which 

contr ibutes to the componen t s in the subsequent results, 
which are nonl inear in the velocity gradients , and precludes 
the in t roduct ion of re laxat ion modes independent of one 
another . 

W h e n n o r m a l coordina tes are employed, defined by 
E q n s (2.12), it is n o w possible to m a k e use of the 
arbi t rar iness in the definition of the mat r ix Q and to 
define it in such a way tha t the mat r ix Bay assumes a 
d iagonal form after t r ans format ion . The p rob lem of the 
s imul taneous adjustment of the symmetr ical matr ices A and 
B to a d iagonal form does have a solut ion [20]: since the 
mat r ix A is defined non-negat ively and B is defined 
positively, it is possible to find a t rans format ion such 
tha t B is t ransformed into a uni t mat r ix and A into a 

d iagonal matr ix . Therefore, s imultaneously with 
E q n (2.13), in which the eigenvalues are n o w defined 
by E q n s (2.15) and the expression which we shall discuss 
below, one can wri te 

C o G « A 7 e 7 v = C»xv • (3-8) 

This relat ion in t roduces the effective coefficient of friction 
of the part icles £, the dependence of which on the length of 
the macromolecule is of special interest. 

In the case where the hyd rodynamic interact ion of the 
part icles of the macromolecule m a y be neglected, i.e. when 
the coil is, as it were, permeable , the coefficient of resistance 
of the latter is p ropo r t i ona l to the length of the m a c r o ­
molecule and the coefficient of friction of the part icle 
associated with the length M/N is p ropo r t i ona l to this 
length: 

e ~ £ - ( « > 

The m u t u a l influence of the part icles leads to their 
shielding within the coil and the overall coefficient of the 
resistance of the coil proves to be smaller t han for a 
permeable coil. 

The requi rement of covar iance in relat ion to successive 
subdivisions of the macromolecule into subchains gives rise 
to the following power dependence for high values of N: 

(Z-2)v 
(3.10) 

In order to calculate the power exponents , a calculat ion 
based on specific representa t ions is necessary, as in the case 
where account is t aken of vo lume effects. The exponents 
calculated by A l - N o a m i et al. [17] are listed in Table 1. W e 
m a y no te tha t these results are valid for infinitely long 
chains, so tha t the exponents for finite chains m a y also 
assume in termedia te values. 

Table 1. The exponents in the asymptotic formulae. 

Allowance for Allowance for 2v z (z-2)v zv 
volume effects impermeability 

+ — 9/8 15.4 63/64 2.11 
— + 1 3 1/2 1.5 
+ + 9/8 3 9/16 1.69 

— — 1 4 1 2 

3.3 Intramolecular friction 

On deformat ion of the macromolecule , i.e. when the 
part icles const i tu t ing the chain are involved in relative 
mot ion , an addi t iona l dissipation of energy takes place and 
in t ramolecular friction forces appear . In the simplest case 
of a chain with two part icles (a dumbbel l ) , the force 
associated with the in ternal viscosity is p r o p o r t i o n a l to the 
relative velocity of the ends of the dumbbe l l u- — uj and is 
given by [1, 15, 21] 

—K (u" — u- ) ejet , (3.11) 

where e is a uni t vector in the direction of the vector 
connect ing the part icles of the dumbbel l and K is the 
phenomenolog ica l internal friction coefficient. 
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W h e n a mul t i segmenta l mode l of the macromolecule 
(the S l o n i m s k i i - K a r g i n - R o u s e model ) is considered, one 
must assume tha t the force acting on each part icle is 
determined by the difference between the velocities of all 
the part icles uj — uf. These quant i t ies must be in t roduced 
in such a way tha t dissipative forces do not arise on ro ta t ion 
of the macromolecu la r coil as a whole , whereupon 
uf = Qjirf. t hus the internal friction force mus t be 
formulated as follows in te rms of a general linear a p p r o x ­
imat ion: 

G? = -Y,C^W-Uj)efef , 

rf)/\ra-rfi\. The mat r ix C a / ? is 
symmetr ical and m a y depend on the distance between 
the part icles, bu t we shall assume henceforth tha t a 
pre l iminary averaging has been carried out so tha t 
is a numer ica l matr ix . The d iagonal t e rms of the mat r ix are 
zero. 

The internal friction force can also be wri t ten in the 
form 

(3.12) 

where the mat r ix 

Gf = S*fi C * l e ? e ? - C^efef (3.13) 
y^a 

has been in t roduced. In contras t to the mat r ix C 0 ^ , the 
mat r ix has nonzero d iagonal te rms. 

E q n (3.12) defines the in t ramolecular friction force, bu t 
the requi rement tha t the force remains unchanged on 
ro ta t ion of the macromolecu la r coil as a whole is fulfilled 
only for a par t icular choice of the friction mat r ix G^. 
W h e n an a t t empt is m a d e to simplify Eqn (3.13) by 
pre l iminary averaging, we obta in the following expression 
for the force instead of Eqn (3.12): 

Gf = -G"yu] , 

which clearly does no t satisfy the above requi rement . 
On l inearisat ion of the internal friction force according 

to Cer f ' s p rocedure [22], E q n (3.12) m a y be modified and 
wri t ten thus : 

(3.14) Gt = -G«\u]-Qjir]), 

where Gay is n o w a symmetr ical numer ica l matr ix . 
The ra te of ro ta t ion of the macromolecu la r coil in a flow 

Qji is determined by the velocity gradients : 

Qji = coji+AjMysk • 

W h e n linear effects are considered, the mat r ix Ajlsk can 
be determined by considering the average ro ta t ion of the 
coil subjected to equil ibrium averaging. Since at equil ibrium 
the coil is spherical, it follows from symmetry condi t ions 
tha t 

Qji = ™ji 

to within first-order terms. 
In te rms of the n o r m a l coordina tes in t roduced by 

E q n (2.12), the mat r ix associated with the in ternal friction 
can be wri t ten as follows: 

By considering the t ransformed expression for the 
internal friction force (3.12) as a nonl inear function of 
the n o r m a l coordina tes and a uni t vector referring to a 
separate n o r m a l coord ina te 

one m a y no te tha t the requi rement tha t the internal viscosity 
force d isappears when the whole coil is ro ta ted is satisfied by 
a un ique combina t ion of variables, so tha t the term with the 
internal viscosity expressed in n o r m a l coordina tes becomes 

-{yxe«e«p° . (3.15) 

F o r the linearised version (3.14), we have 

- C y a ( # - o > ; , P ? ) , (3.16) 

where £ is the effective coefficient of friction. 
It is no t ewor thy tha t the representa t ion of the force in 

the form of E q n (3.16) is possible only for weak in t ra­
molecular friction (ya <̂  1), whereas E q n (3.15) is also valid 
for arbi t rar i ly large in t ramolecular friction. F o r low values 
of y a , the results of the calculat ions are independent of 
which expression, (3.15) or (3.16), is used. 

The characterist ic y v of the in t ramolecular friction forces 
in E q n s (3.15) and (3.16), in t roduced here as a p h e n o m -
enological quant i ty , should not depend on the me thod of 
subdivision of the macromolecule into subchains and, by 
vir tue of the na tu re of the t ransformat ion , should be a 
function of the rat io v/M. H e r e one m a y expect tha t y v is a 
monoton ica l ly increasing function of the number of the 
m o d e v. This dependence can be fitted by the power 
function 

, 0 
yx ~ M (3.17) 

where © is a posit ive n u m b e r and y x is a measure of the 
internal viscosity. 

The internal viscosity force is defined p h e n o m e n o l o g -
ically by E q n s (3.15) and (3.16) formulated above. Var ious 
internal-friction mechanisms , discussed in a number of 
studies [ 2 3 - 2 6 ] , are possible. Their considerat ion leads 
to the de terminat ion of the matr ices and G 0 ^ and 
to the na tu re of the dependence of the internal friction 
coefficients on the chain length and the pa rame te r s of the 
macromolecule . 

The significance and impor tance of the internal friction 
coefficient y a in t roduced in this way can be elucidated by 
compar ing the consequences of the theory with exper imen­
tal da ta , which will be discussed below. However , here one 
should no te tha t the phenomenolog ica l characterist ics of 
the in t ramolecular friction p rove to depend no t only on the 
characterist ics of the macromolecule , as might have been 
expected, bu t also on the proper t ies of the liquid in which 
the macromolecule is present . 

The internal viscosity of the macromolecu le is a con­
sequence of the in t ramolecular re laxat ion processes occur­
r ing on deformat ion of the macromolecule at a finite ra te . 
The very in t roduct ion of the internal viscosity is possible 
only insofar as the deformat ion t imes are short compared 
with the relaxat ion t imes of the in t ramolecular processes. At 
deformat ion frequencies of the same order of magn i tude as 
the reciprocal of the re laxat ion t ime, these relaxat ion 
processes must be taken into account in considering the 
dynamics of the macromolecu le and the dynamics of a 
dilute solut ion of po lymers [27]. 
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3.4 Equation of motion of the macromolecule 
After considering the dissipative forces act ing on the 
part icles of the chain, we shall n o w formulate and discuss 
the equat ion for the dynamics of the macromolecule in the 
flow of a viscous liquid with cons tant velocity gradients 
Vij = dvi/dxj [28]. 

A p a r t from dissipative forces, elastic forces act ing on 
the part icle are t aken into account in formulat ing the 
dynamic equat ion: 

K* = -
8F 
87 

-=-2TfiA0 

W 
8 ^ 

(3.18) 

as well as r a n d o m forces <Pf, associated with the rmal 
mot ion , which leads to the formulat ion 

d V 
dfi 

0, Af , 

where the expressions for the dissipative forces F* and G a 

are defined by E q n s (3.6) and (3.12) formulated previously. 
In te rms of the n o r m a l coordina tes in t roduced p r e ­

viously and tak ing into account all the considera t ions 
described above, the dynamic equat ion becomes 

- 2 / i 7 7 a p ? + ff, a = l , 2 , (3.20) 

where = Qya<Pj. 
The t rans format ions mat r ix g a v is not generally speak­

ing o r thogona l and the left-hand side of the equat ion 
formulated therefore includes the derivatives of all the 
coordinates , bu t we shall no t dwell on this factor bear ing 
in mind tha t in the limit m —> 0 which we are interested in 
the left-hand side of the equat ion vanishes. 

At the above limit, E q n (3.20) defines independent 
re laxat ion modes of the macromolecule . The equat ion of 
mo t ion for each m o d e represents the equat ion of mo t ion of 
a dumbbel l with intrinsic elasticity and internal friction 
coefficients. 

The behaviour of modes with small n u m b e r s should be 
independent of the arb i t ra ry number of subdivisions N. 
This means tha t the relat ion 

x 
MX 

should not depend on N. Since the dependence of the 
quant i t ies \i and £ on the number of subdivisions was 
elucidated previously [Eqns (2.20) and (3.10)], the above 
requi rement immediate ly leads to the expression 

N 1,2, (3.21) 

The values of z and v for four cases are presented in 
Table 1. F o r a permeable molecule, where zv = 2, the 
eigenvalues (3.21) are defined by E q n (2.15). 

The r a n d o m force &J in the dynamic E q n s (3.19) and 
(3.20) is determined as an average quan t i ty and is selected 
from the condi t ion tha t the equil ibr ium coordina tes and 
velocities are k n o w n beforehand [29]. In the linearised 
version with y a <̂  1, this requi rement determines the 
relat ion 

( f f ( 0 ^ 0 > = 2 r C ( i + y a ) V ^ - ^ ) . (3.22) 

which is valid to within first-order t e rms in velocity 
gradients . He re and henceforth the angular b racke ts 
indicate averaging with respect to the assembly of 
real isat ions of the r a n d o m force. 

3.5 The distribution function 
E q n (3.20) for the dynamics of the macromolecu le is a 
nonl inear s tochast ic equat ion for n o r m a l coord ina tes and 
rates of change of the latter: p] and p] (i = 1,3, 
v = 1,2, . . . ,N). A n est imate shows tha t for the part icles 
of the subchains mode l under considerat ion, the inertial 
effects are insignificant and one can therefore confine the 
t rea tment to the considerat ion of the probabi l i ty of the 
dis t r ibut ion of coordinates : 

(3.19) W(t,p°,...,pN) = (S(p0-p0(t))...S(pN-pN(t))) . (3.23) 

The dis t r ibut ion function satisfies [29] the cont inui ty 
equat ion 

aw "WW n 

h > — = 0 . 
dt ^ QPf 

<x=l rJ 

(3.24) 

where ij/J = {pf) is the ra te of diffusion of the part icle in 
the coord ina te space, which is determined by means of the 
equat ion for the dynamics of the part icles involving the 
in t roduct ion of an average the rmal ' force' — TdlnW/dp* 
instead of the r a n d o m force. 

Calcula t ions [21, 28, 30] have led to the derivat ion of 
the diffusion equat ion for the dis t r ibut ion function: 

dW T d2W 

8* ' C (dp])2 

T 2p] W 
C \+yv\p]p]dPJ PpPl 

Vv v v A w , v Q W 

= 0 (3.25) 

W h e n there are no velocity gradients , the solution of 
E q n (3.25) normal ised with respect to uni ty has the form of 
E q n (2.14). In the general case for low velocity gradients , 
the t ime independent dis t r ibut ion function m a y be found in 
the form of an expansion in te rms of invar iant 
combina t ions of the vector pv and the symmetrised and 
ant isymmetr ised velocity gradient tensors y i k and coik. In the 
s ta t ionary case, we have, to within the second-order te rms 
in the velocity gradients 

W 
( N r 

^ v = l 
vJikp'tpl + 2(^v)2yikySjPviPkPlpvj 

-illiklik - ^Gv(^XVTv)2ySI(Dskp]pl (3.26) 

where W0 is defined by E q n (2.14) and the following 
no ta t ion for the re laxat ion t ime has been in t roduced: 

(3.27) 
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where X\ = is the characterist ic re laxat ion t ime 
equal to the m a x i m u m relaxat ion t ime of the m a c r o m o ­
lecule. By vir tue of E q n s (2.20), (3.10), and (3.21), the 
characterist ic re laxat ion t ime is independent of the number 
of subdivisions and depends on the length of the m a c r o ­
molecule M as follows: 

T i ~ M z v . (3.28) 

In Eqn (3.26), the coefficient of the last te rm Gv depends 
on the scalar pjpj and the internal viscosity. If y v = 0, then 

1 
Gn = 

" 4 / U a ' 
(3.29) 

F o r higher values of the internal viscosity, where y v > 1, 
we have 

+ ^ r P > J [ 3 5 - 5 6 A v W > ] + 1 2 ( A v W > ] ) 2 ] . (3.30) 

3.6 Relaxat ion equations 

The dis t r ibut ion function (3.26) considered in the previous 
Section makes it possible to calculate the m o m e n t s in the 
s ta t ionary case, for example the second-order m o m e n t s 

(eWk) = jweWk{dp}, {pjpl) = Wp]pv

k{dp} 

In the general case, it is m o r e convenient to determine 
the m o m e n t s from equa t ions which can be derived directly 
from the diffusion equat ion (3.25) [21, 28, 30]. 

F o r example, on mult iplying E q n (3.25) by ptpk (to 
simplify the formulat ion, the m o d e index has been omit ted) 
and integrat ing with respect to all the variables, we find the 
relaxat ion equat ion 

d(piPk)_ 1 3 / , , 1 
dt 

- \i {{PiPk) - ^ (eiek)^j + MPjPk) 

+Vkj(pjPi) 
2y 

l + y 
(PiPkejes)Vjs (3.31) 

Two relaxat ion t imes appear here: the first t ime T a , defined 
by Eqn (3.27), refers to or ienta t ion processes; the second 
t ime T „ = (1 + y A ) T A refers to deformat ion processes. 

Indeed, by mult iplying E q n (3.25) by p 2 and integrat ing 
with respect to all the variables or by carrying out a direct 
summat ion of Eqn (3.31) with identical indices, we find 

d (p 2 ) 
dt 

1 
(P2) 

_3_ 
2/U + l + y (psPj)ySj (3.32) 

(3.31) gives rise to the re laxat ion equat ion for the or ien ta­
t ion process: 

dt •=~\{{eiek) ~\3i^j + Vij(ejek) 

+M67 '̂) 
2y 

l + y 
(ejekejes)yjs (3.33) 

T h u s T v is the re laxat ion t ime for the or ienta t ion process 
and %[ is the re laxat ion t ime for the deformat ion process 
associated with the vth m o d e of mot ion . Tak ing into 
account the na tu re of the mot ion on excitation of the 
vth mode , one m a y say also tha t T v is the t ransverse 
re laxat ion t ime, while %[ is the longi tudinal re laxat ion 
t ime. This claim becomes significant for large n u m b e r s v. 

W e m a y no te tha t , for a nonzero internal viscosity, the 
system of equa t ions for the m o m e n t s is found to be open: 
four th-order m o m e n t s are in t roduced into the equa t ions for 
the second-order m o m e n t , etc. This si tuat ion is encountered 
in the theory of the relaxat ion of a suspension of h a r d 
part icles [30]. Incidentally, for y —> oo, Eqn (3.33) becomes 
identical with the relaxat ion equat ion for the or ienta t ion of 
infinitely extended ellipsoids of ro ta t ion (Pokrovski i [30, 
p. 58]). 

In contras t to the si tuat ion described, the system for the 
m o m e n t s (3.31) is closed in the case where the internal 
viscosity m a y be neglected. This factor makes it possible to 
find the m o m e n t s in the form of a series expansion for low 
values of the velocity gradients . 

In the s ta t ionary case, the expansion assumes the form 

+2TI [2yijyjk + (1 + Za)((Oyyjk + cokjyji)] } , (3.34) 

where 

± ( 9 _ 4 2 y a - 1 + 2 4 5 y a - 2 ) , 

One m a y assume tha t Z is a monoton ica l ly increasing 
function of y and if necessary m a y be fitted by any kind of 
convenient function. 

W e m a y no te tha t , by vir tue of the possible dependence 
y on the velocity gradients ment ioned above, the expres­
sions for the m o m e n t s are valid only to within second-order 
terms. 

4. Viscoelasticity of dilute solutions 
A dilute polymer solution m a y be represented as an 
assembly of macromolecu la r coils suspended in a viscous 
liquid, the stresses tensor of which assumes the following 
form on deformat ion: 

This equat ion describes only the deformat ion of the 
macromolecu la r coil and therefore x' is the relaxat ion 
t ime of the deformat ion process . In order to isolate the 
or ienta t ion process, we n o w formulate the m o m e n t s in the 
form 

(PiPk) = (P2)(eiek), (PiPkejes) = {P2){eiekejes) . 

Then, when account is t aken of the equat ion formulated 
to within first-order t e rms in the velocity gradients , E q n 

-pdik+2ri0yik (4.1) 

and the p rob lem involves pr imari ly the calculat ion of the 
stresses tensor for a suspension of macromolecu la r coils. 

4.1 The stress tensor 
Suppose tha t n is the density of the number of coils. Since 
each macromolecu le can be represented schematically by 
N + 1 Brownian particles, a uni t vo lume conta ins n(N + 1) 
Brownian part icles — a number which is sufficiently large 
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to in t roduce macroscopic variables for the system of 
Brownian part icles: the density 

p(x, t) = ^2m(3(x -ra)) = m(N + \)n(x, t) (4.2) 

and the density of the m o m e n t u m 

pvj(x, t) = ^m(ujd(x - r a ) ) . (4.3) 

In E q n s (4.2) and (4.3), the summat ion is carried out 
with respect to all the part icles per uni t vo lume and the 
average is with respect to the assembly of the real isat ions of 
the r a n d o m force. 

In order to determine the stress tensor for a moving 
system of Brownian particles, we shall consider, using the 
m e t h o d s developed in the theory of l iquids [31], the 
var ia t ion of the density of the m o m e n t u m : 

Qt' 

(4.4) 

and shall formulate the r ight -hand side of this equat ion in a 
divergent form. In order to t ransform the second term into 
the required form, we shall m a k e use of the equat ion for the 
dynamics of the macromolecule . Turn ing to Eqn (3.19), we 
mult iply it by 3(x — r a ) , carrying out the summat ion with 
respect to all the particles of the macromolecule and 
averaging the result. W e m a y no te tha t the average force 
acting on the coil from the side of the liquid is zero, i.e. one 
must pu t 

^2((Fa + 0a)3(x-ra)) = 0 . 
a 

T h u s for each coil we have 

-r")) = X;<(X» + G")S(x-r«)>. 

Next , we use the formal expansion of the 8-function in 
Taylor ' s series abou t the coord ina te of the centre of gravity 
of the aih macromolecules qa, re ta ining only two te rms of 
the expansion: 

S(x - r") = S(x - qa) - (r! - qt)^{x ~ qa) 

and we t ransform the formula wri t ten above into 

In this relat ion, the summat ion is carried out with 
respect to the part icles of one macromolecule . Car ry ing 
out the summat ion with respect to all the macromolecules 
and neglecting the statistical dependence of the coordina tes 
of the centres of gravity of the macromolecu la r coils on the 
remain ing coordinates , we obta in an expression for the 
second term in E q n (4.4) in a divergent form: 

Tak ing into account the assumpt ions m a d e in this 
derivat ion, the expression for the second term in 
E q n (4.4) mus t also be formulated in a m o r e convenient 

form. Us ing the equat ion for the average velocity and 
tak ing into account the first te rm of the expansion of the 8-
function, we find 

a 

The symbol indicat ing the derivative in the t ransformed 
r ight -hand side of Eqn (4.4) includes the expression for the 
flux of m o m e n t u m , from which we subtract the convective 
transfer of m o m e n t u m and find the stress tensor: 

= - » £ M ( « " "
 V M - v * ) > + (Kri + Gfrf)] . (4.5) 

a 

One m a y assume tha t the local-equil ibrium dis t r ibut ion 
with respect to velocities holds , which yields 

-n(N + \)TSjk + n V<AT/^ + Gfrf) . (4.6) 

The addi t iona l stresses defined by this formula arise 
owing to the difference between the ra te of diffusion w a of 
the Brownian part icle and the average velocity of the 
med ium v a at the poin t where the part icle is located. 
This leads to the appearance of bu lk-phase forces, which 
can be wri t ten in the following form for slow mot ions : 

Fa = - C ( v a - wa) . 

After averaging, the addi t iona l stresses assume the form 

where the angular b racke ts denote averaging with respect 
to the dis t r ibut ion function for the coordina tes of all the 
part icles. After determining the ra te of diffusion, the 
expression formulated leads to the result indicated above. 

Nex t it is convenient to go over to the n o r m a l 
coordina tes defined by E q n (2.12). After a special choice 
of the internal friction matr ix , considered in the second 
Section, we have 

aik = -nTSik +nY\2nTXMpt) ~ TSik + ^(eUlpjPj)] • 
V=l 

In the last te rm, one can carry out the averaging with 
respect to velocities and replace pj by the average velocity 
x/jj. Tak ing into account the fact tha t (ekeiPjVj\nW) = 
-3{etek)9 we find [28] 

1 N f l / 
z v=i LTv V 

+ T V 2/iAa 

v = l 
IpD •{eWk) 

, (4-7) 

where the relaxat ion t imes T v and T v ' were determined 
previously. 

In order to determine the stress tensor for the entire 
system (a dilute solution of the polymer) , the stresses in the 
solvent (a viscous liquid), defined by E q n (4.1), mus t be 
added to E q n s (4 .5 ) - (4 .7 ) defining the stresses in a con­
t inuum of Brownian part icles. The stress tensor for a dilute 
polymer solution is expressed in terms of m o m e n t s — 
addi t ional variables which were discussed in the previous 
Section. The system of equat ions for the m o m e n t s in the 
case where the macromolecule is characterised by an 
internal viscosity, proves to be open. The first of the chain 
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of equat ions for the m o m e n t s were presented previously [see 
Eqns (3.31) and (3.33)]. 

The expressions for the stress tensor (4.7) together with 
the equations for the moments , the continuity equations, and 
the equations of mot ion constitute the basis of the dynamics 
of dilute polymer solutions. This system of equations may be 
used to investigate the flow of dilute solutions in various 
experimental situations. Certain simple cases will be examined 
in the subsequent subsections of the present Section in order 
to demons t ra te the applicability of the expressions obta ined 
to dilute solutions, to indicate the region of their applic­
ability, and to refine the expressions for the eigenvalues y v , 
which were in t roduced previously as phenomenologica l 
constants . 

4.2 Characteristics of linear viscoelasticity 
The study of the react ion of the system in the simple case 
where the velocity gradients are independent of the 
coordina tes and vary in accordance with the law 

for different deformat ion frequencies co yields impor t an t 
informat ion abou t the re laxat ion processes in the system. 

In this case, Eqn (4.7), combined with the expressions 
for the m o m e n t s which can be calculated by E q n s (3.31) 
and (3.33), defines [28] the stress in a dilute solut ion of 
po lymers in te rms of a linear approx imat ion . 

oik = -p$ik + M^ytk > 

-2 0 2 Igitico) 

Figure 3. Dependence of the real (upper curves) and imaginary (lower 
curves) components of the shear viscosity on the dimensionless frequency 
for an impermeable (ZV — 1.5, 0 — 0.5) coil. The numbers opposite the 
curves denote the internal viscosity YX. 

the re laxat ion t imes in t roduced previously on the number of 
the mode : 

TA=TlcTz\ T « = T a ( l + y a ) , 

y a = y i a

0 , a = l , 2, . . . < t f . 

where rj(co) is the complex shear viscosity with the 
componen t s 

J 7 » = J 7° + « r ^ T ^ 

l 
X 5 2yv + " ; — + 

1 + ( T V W ) 2 1 + ( T » 2 . 

N"{p) = « 7 , ^ \ 2 c o - - • + -
1 + ( T V O ) 2 1 + ( i » 2 . 

(4.: 

Since the velocity gradient is related to the displacement 
gradient by the expression v 1 2 = —icoA12, it follows tha t , 
instead of the dynamic viscosity, use m a y be m a d e of 
ano ther characterist ic — the dynamic modu lus . The com­
ponen t s of the above complex q u a n t i t i e s are linked by the 
relat ion 

G'-iG" = -iG)(i/ / + V ) . 
In the s tudy of the linear response, it is convenient to 

consider quant i t ies independent of the concent ra t ion and 
viscosity — the characterist ic [intrinsic] viscosity and the 
characterist ic modu lus : 

[rj] = lim 
rj — rj 

c^o rj c 
[G] • lim • 

irj°co 

nT 
(4.9) 

rj° is the viscosity of the solvent and c = nMN^1 the 
weight concent ra t ion of the polymer (NA = Avogad ro 
n u m b e r ) . 

Fig. 3 il lustrates the dependence of the characteris t ic 
viscosity as defined by Eqn (4.8) on the dimensionless 
frequency Tico for different theoret ical pa ramete r s , which 
appeared in the formulae for the dependence of the 
in t ramolecular friction coefficient and the dependence of 

The exponents in the above expressions can be est imated 
beforehand from the dependence of the limiting values of 
the characterist ic viscosity at low and high frequencies on 
the length of the macromolecule : 

5ci/° V ! + ^ 
• M zv-l-0 

(4.10) 

(4.11) 

Figure 4. Dependence of the ratio of the limiting characteristic viscosities 
on the internal rigidity coefficient of the macromolecular coil for the 
parameters (zv = 1.5 and 0 — 0.5 on the basis of the theories of 
Peterlin [32] (curve 1) and Pokrovskii and Tonkikh [28] (curve 2) . 
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W e m a y no te tha t the case where yx = 0 and zv = 2, 
cor responding to an ideally flexible permeable m a c r o m o ­
lecule, reproduces the relat ions indicated by R o u s e [4]. F o r 
low internal viscosities y, the results found by Peterlin [32] 
follow from E q n s (4.8). The results for an arb i t ra ry internal 
viscosity have been publ ished [28]. Fig. 4 presents a 
compar i son of the results. The infinite ra t ios of the limiting 
values demons t ra t e the inadequacy of Peter l in 's theory in 
the region of high internal viscosities. 

4.3 Initial characteristic viscosity 
The characterist ic viscosity at low frequencies makes it 
possible to est imate the role of the vo lume effects and of 
the hyd rodynamic interact ion in the dynamics of the 
macromolecule , which influence, according to Eqn (4.10), 
the dependence of the quan t i ty under discussion on the 
molecular weight (the length of the macromolecule) 

- l ••KM'- (4.12) 

Theoret ical est imates of the quant i ty zv — 1 (Table 1) 
are in the range from 0.5 ( impermeable Gauss ian coil), to 
1.11 (permeable coil with bu lk-phase interact ion) . A 
compi la t ion of empirical values of K and of the power 
exponents for different po lymers and different solvents m a y 
be found in the l i terature [8, 15]. Some of the values are 
presented in Table 2. The empirical values of the exponent 
zv — 1 do not exceed 0.9, which indicates a significant 
impermeabi l i ty of the macromolecu la r coil in a flow. 

Table 2. The constants in Eqn (4.12). 

Polymer Solvent Temperature/°C l O ^ / d l g - 1 zv - 1 

Polystyrene Benzene 25 0.42 0.774 

Cyclohexane 35 8.4 0.5 

Po lymethy l ­ Chloroform 25 0.34 0.83 

methacrylate) 

Polyisobutylene Toluene 25 8.7 0.56 

Benzene 24 10.7 0.5 

Polybutadiene Cyclohexane 20 360 0.70 

Polyisoprene 20 300 0.7 

(natural rubber) 
Polym ethyl- Toluene 25 73.6 0.72 

silo xane 

Bro mo cyclo­

hexane 

28 5.6 0.5 

F o r an impermeable coil, the characterist ic viscosity 
defined by E q n (4.10) can be expressed in the form 

As2)3'2 

W o <2>-
M 

(4.13) 

where (S2) is the average square of the rad ius of inertia of 
the coil, while the exper imental value of the constant <P, 
called the F lo ry constant , is [8] 

<2> = 2 .66(±0.1) x 1 0 2 3 m o l " 1 . 

A s tudy of the characterist ic viscosity defined by 
E q n (4.13) makes it possible in this case to interpret a 
dilute solut ion of macromolecules as a suspension of solid 
nondefo rmable spheres with a rad ius close to the mean 
square rad ius of inertia. 

The initial characteris t ic viscosity defined by E q n (4.10) 
is independent of the characterist ics of the in t ramolecular 

friction, bu t this is a consequence of simplifying a s s u m p ­
t ions. It has been shown for a dumbbel l [2] tha t , when 
account is t aken s imultaneously of the in ternal viscosity and 
the an iso t ropy of the hyd rodynamic interact ion, then the 
characterist ics of these quant i t ies enter into the expression 
for the viscosity of type (4.10). This result must appear also 
for the subchains mode l when account is t aken of the 
an i so t ropy of the h y d ro d y n ami c interact ion. Once a 
relat ion of type (4.11) has been established for a certain 
polymer , it can be used to determine the molecular weight 
of the polymer from the characteris t ic viscosity [15]. 

4.4 The mechanism of the intramolecular viscosity 
The limiting characterist ic viscosity, defined by Eqn (4.11), 
is of special interest in the s tudy of the influence of 
in t ramolecular friction on the dynamics of the m a c r o ­
molecule in a viscous liquid. F o r low initial characteris t ic 
viscosities y <̂  1, Eqn (4.11) can be rewri t ten thus : 

M » = | 5c(zv_0)TlTl' (414) 

where is R i e m a n n ' s zeta-function. 
Exper imenta l studies indicate [33, 34] tha t the limiting 

characterist ic viscosity for a given po lymer -homologous 
series is independent of the length of the macromolecule 
and the type of solvent. 

Since xx ~ M Z V , n ~ M ~\ and yx ~ M 0 , the relat ion 

e - z v + 1 = o. (4.15) 

follows from E q n (4.14) and the fact tha t the limiting 
characterist ic viscosity is independent of the length of the 
macromolecule . 

A consequence of the independence of the limiting 
characterist ic viscosity of the type of solvent is tha t yx is 
independent of the viscosity of the solvent, which means 
tha t the d imensional characterist ic of the ' in ternal ' friction 
of the macromolecu le £yx is p r o p o r t i o n a l to the viscosity of 
the solvent and the ' in ternal ' friction is no t solely internal . 
On the basis of empirical studies, the conclusion tha t the 
solvent cont r ibutes significantly to the in t ramolecular 
viscosity was repor ted recently [35] and was referred to 
as the 'solvent modif icat ion effect'. 

The fact tha t the limiting value of the characteris t ic 
viscosity at high frequencies is not zero indicates the 
existence of in t ramolecular ( taking into account the solvent 
molecules) re laxat ion processes with re laxat ion t imes which 
are smaller t han the reciprocal of the frequency of the 
measurement . The t rue limiting value is na tura l ly zero and 
experi-ment somet imes reveals a step at a frequency cos, 
which indicates the occurrence of a re laxat ion process with 
a re laxat ion t ime T ^ C O " 1 . This p h e n o m e n o n m a y be 
described by including the relaxing in t ramolecular viscos-
ity [27]. 

Fig. 5 i l lustrates the dependence of the viscosity on the 
frequency obta ined tak ing into account the in t ramolecular 
re laxat ion process with a re laxat ion t ime T . it m a y be hoped 
tha t the s tudy of in t ramolecular re laxat ion processes from a 
phenomenolog ica l poin t of view will p r o m o t e the establish­
ment of the detailed mechanism of the rapid relaxat ion 
processes in polymers , a l though there is no doub t tha t m o r e 
detailed models of the macromolecu le mus t be used at high 
frequencies. 
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Figure 5. Dependence of the real and imaginary components of the 
characteristic viscosity on the dimensionless frequency. The curves have 
been calculated for yl = 0 . 1 and T / 2 T J = 1 0 - 5 . The dashed line 
represents the continuation of the relation based on Peterlin's theory 
[32]. The curves designated by the letter R represent the dependence based 
on Rouse 's theory (zv = 2, 0 — 0). 

4.5 The dynamic modulus 
Here compar i son will be m a d e of the values of the 
characterist ic m o d u l u s calculated by E q n s (4 .8 ) - (4 .9 ) 
with the cor responding exper imental values. 

Fig. 6 demons t ra tes tha t , for certain values of the 
m a x i m u m relaxat ion t ime xx and certain values of the 
exponents zv and 0 , the theory reproduces satisfactorily 
the exper imental re lat ions for polymer solut ions at infinite 
di lut ion [ 3 6 - 3 9 ] . 

W e m a y no te yet again tha t the identifying cons tan ts are 
unambiguous ly determined by the l imiting values of the 
characterist ic viscosity and can be est imated independent ly , 
so tha t one m a y conclude tha t , in the region of c o m p a r ­
atively low frequencies, the schematic representa t ion of the 
macromolecu le by a subchain t ak ing into account in t ra­
molecular friction, the vo lume effects, and the 
hyd rodynamic interact ion makes it possible to explain 
the dependence of the viscoelastic behaviour of dilute 
polymer solut ions on the molecular weight, t empera tu re , 
and frequency. At low frequencies, the descript ion becomes 
universal . In order to describe the dependence of the 
dynamic m o d u l u s on the frequency at high values of the 
latter, use must be m a d e of other m o r e detailed models , 

0 
Figure 6. Dependence of the characteristic dynamic modulus for 
polystyrene solutions in decalin (curve 1) and in toluene (curve 2 ) on 
the frequency. Circles — experimental values according to 
Russer et al. [39]. The theoretical curves have been plotted for 
zv — 1.788 and xx — 2.5 x 1 0 - 3 s for case 1 and zv — 1.5 and 
T j = 8.35 x 1 0 - 4 for case 2. 

which have been examined, for example by Got l ib et al. [5] 
and Priss and coworkers [40, 41], and which m a k e it 
possible to describe large-scale mo t ions of the chain. 

As an i l lustration, certain da ta character is ing dilute 
polymer solut ions are presented in Table 3. 

4.6 Nonlinear effects in simple shear 
The hypothesis , employed in the theory, tha t certain t rue 
values can be replaced by average equil ibrium values renders 
the results applicable for small extensions of the m a c r o ­
molecular coil and hence for low velocity gradients: the 
results for the m o m e n t s are valid to within second-order 
terms in the velocity gradients . It follows from Eqns (3.31) 
and (4.7) that , for low velocity gradients in the s ta t ionary 
case the expression for the stress tensor is 

°ik = -PSik+2ri0yik +UcJ2(MpVjPl)+^j(pVjPj)) • (4-16) 
Z v = l 

This equat ion makes it possible to calculate stresses to 
within th i rd-order t e rms in the velocity gradient . 

W e shall consider the case of shear when one of the 
componen t s of the velocity gradient tensor has been 
specified and is constant , namely v 1 2 ^ 0. This case is 
close to the s i tuat ions which as a rule occur in the 
exper imental s tudy of polymer solut ions [15]. In order to 
achieve such a flow, it is necessary in this case tha t stresses 

Table 3. The characteristic viscosities and maximum relaxation times of dilute solutions. 

System 77 °C p°/g c m " 3 „ ° / P 1 0 - 5 / M [rj]/cm3 g - 1 1 0 4 T i / s 

Polystyrene in decalin [36] 16 0.8868 0.0295 8.6 76 0.35 
Polystyrene in di-2-ethyl-hexyl phthalate [36] 22 0.9827 0.678 8.6 - 7.59 
Polystyrene in oc-chloronaphthalene [36] 25 1.195 0.0315 8.6 197 1.26 
Polystyrene in apochlor 1232 [36] 25 1.269 0.142 8.6 183 3.98 

25 1.269 0.142 4.1 111 1.2 
1,4-Polybutadiene in chloronaphthalene [37] 25 - 0.0312 2.2 200 0.26 

25 - 0.0312 9.1 510 2.75 
1,4-Polybutadiene in decalin [37] 25 - 0.0245 9.1 510 2.14 
Poly-oc-methylstyrene in oc-chloronaphthalene [38] 25 - 0.0315 14.3 252 2.0 
Poly-oc-methylstyrene in decalin [38] 25 - 0.0245 14.3 135 0.79 
Polystyrene in decalin [39] 15 0.887 0.287 180 300 23 
Polystyrene in toluene [39] 20 0.867 0.0059 180 3100 69 
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should be applied to the system and no t only the shear 
stress cr1 2 , as in the case of a linear viscous liquid, bu t also 
n o r m a l stresses, so tha t in the case under considerat ion the 
stresses tensor is 

( 7 N <T12 0 

0 0 < 7 3 3 

The shear stress cr1 2 and the differences between the n o r m a l 
stresses c r n — cr3 3 and cr2 2 — cr3 3 are usually measured in the 
experiment . 

F o r a specified mot ion , E q n (4.16) defines, apar t from 
the second-order m o m e n t s (3.34), the nonzero componen t s 
of the stress tensor , which makes it possible to formulate 
the expressions for the shear viscosity and the difference 
between the n o r m a l stresses: 

N 

r, = nT^2Tv[\-Zv(Tvvl2f\ , (4.17) 
v = l 

N 

G N - ( 7 3 3 = nT ^ ( T V V 1 2 ) 2 , g22 - < 7 3 3 = 0 . (4.18) 
v = l 

It follows from Eqns (4.17) tha t the viscosity or, wha t 
a m o u n t s to the same thing, the characterist ic viscosity is 
independent of the velocity gradient for flexible chains 
(yx = 0). F o r chains with an internal viscosity, the viscosity 
diminishes with increase in the velocity gradient . The na tu re 
of the var ia t ion m a y be est imated. It is readily seen from 
E q n s (3.34) tha t , for high values of y v , Z v does no t exceed 4/ 
3 and therefore only the first t e rms cont r ibute to the sum in 
E q n (4.17), which includes Z v , and for high molecular 
weights one can therefore assume tha t 

6 > > 0 , y, - M " 

F r o m E q n (4.15), according to which © = zv — 1, the 
dependence of the viscosity defined by Eqn (4.17) on the 
molecular weight can be formulated as follows: 

' M 2zv 2 
V12 (4.19) 

Accord ing to the theoret ical est imate of the exponent 
(Table 1), zv varies from 1.5 ( impermeable Gauss ian coil) to 
2.11 (permeable coil with bu lk-phase interact ions) . Empi r i ­
cal est imates of the exponent zv by E q n (4.19) for solut ions 
in which the coils are near ly unpe r tu rbed yield the exponent 
2zv « 3 [15, 42]. 

W e m a y no te tha t it has been shown for the dumbbel l [2] 
tha t the jo int a l lowance for the internal viscosity and the 
an i so t ropy of the hyd rodynamic interact ion leads to the 
appearance of a nonzero second difference between the 
n o r m a l stresses cr2 2 — cr3 3 . Since the in ternal viscosity m a y 
be est imated, for example, from dynamic measurements , 
this effect m a y serve for the est imat ion of the an i so t ropy of 
the hyd rodynamic interact ion in a molecular coil. 

5. Optical anisotropy 
Polymers and their solut ions become optically anisot ropic 
in a flow, which is associated with the fact tha t the 
optically anisot ropic pa r t s of the macromolecu le (units and 
segments) are oriented by the flow and the entire 
macromolecu la r coil is deformed in the latter. This 

p h e n o m e n o n is widely used in combina t ion with theore t ­
ical results for the investigation of the s t ructures and 
proper t ies of macromolecules [15]. 

5.1 The relative permittivity tensor 
In order to examine the optical an iso t ropy, we begin with 
the relative permit t ivi ty tensor for the system eik, which is 
defined (see e.g. L a n d a u and Lifshits [43]) by the relat ion 

eikEk = E i + (5.1) 

where Ek is the average electric field strength acting in the 
med ium and Pt is the polar isa t ion per uni t vo lume of the 
system expressed in te rms of the polarisabil i t ies of the 
const i tuent elements of the system. 

W e shall m a k e use of the heurist ic mode l ment ioned 
previously in Section 2 .1 : each macromolecule consists of z 
segments and is su r rounded by solvent molecules. Suppose 
tha t the solvent molecules have an isotropic polarisabil i ty 
a 0 , while the segment has an anisot ropic polarisabil i ty aik. 
In the coord ina te system linked to the segment, the 
an i so t ropy tensor is d iagonal and we assume tha t it has 
axial symmetry, so tha t a 2 2 = a 3 3 . In any other coord ina te 
system, the polarisabi l i ty tensor of the segment has the form 

where cis is the cosine of the angle between the iih axis of 
the l abo ra to ry system and the sth axis of the molecule. 

Each solvent molecule makes an isotropic cont r ibut ion 
to the polarisabi l i ty vector; the cont r ibu t ion of each 
segment of the macromolecule is anisot ropic and is 
expressed by the formula 

Ps — Csicki0CiiEk — otdsk+Aot[cslckl 

where a = ( a n + 2 a 2 2 ) / 3 and Aa = a n — a 2 2-
The t rue molecular field F act ing on the segment differs 

from the average field E because the scale of the dimensions 
of the segments is molecular . 

Tak ing into account all the molecules and segments and 
designat ing by nz and m the densities of the number of 
segments and of the number of solvent molecules (n is the 
density of the n u m b e r of macromolecules) , we obta in , after 
averaging with respect to the or ienta t ions of the segments, 

Ps = (nzocSsk + nzAotask + moc0Ssk)Fk (5.2) 

where a symbol has been in t roduced for the average of 
the directing cosines for the segment relative to the 
l abora to ry coord ina te system — the or ienta t ion tensor 
ask — (csicki) — <>sk/3- The internal field Fk is assumed 
to be the same for the segments and solvent molecules. 

Next , use is m a d e of the simple hypothesis tha t all the 
pos i t ions of the molecules and segments are equally 
p robab le , so tha t , following t radi t ion [44], we formulate 
an expression for the internal field as a field within a 
spherical cavity: 

4ti 
(5.3) 

E q n s (5 .1 ) - (5 .3 ) define the relative permit t ivi ty tensor 
for the system which is formulated be low to within second-
order t e rms in the or ienta t ion tensor: 
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sik = s03ik + 4%nzA(x 

1 - 8 0 + 4tc 
8 0 + 2 

(4nnzAa) 
8 0 + 2 

x ajiaijSik + i (47mzAa)2 ( £ ° * 2 ) aualk . (5.4) 
3 

To a first approx imat ion , a l lowance for the internal field 
by the Loren tz p rocedure is equivalent to mult ipl icat ion by 
the factor 

8 0 + 2 

This result is well k n o w n [44] for isotropic systems. In the 
second approx imat ion , the pr incipal axes of the relative 
permit t ivi ty tensor do no t coincide, generally speaking, 
with the pr incipal axes of the or ienta t ion tensor . 

In conformity with the significance of the te rms 
employed by invest igators of an i so t ropy [15], the effects 
associated with the first-order t e rms in E q n (5.4) m a y be 
called the effects of the intrinsic anisot ropy, while the 
second-order effects m a y be referred to as the effects of 
the an iso t ropy of the microform. It is readily seen tha t 
interest ing s i tuat ions m a y arise when Aa < 0; in this case, 
the coefficients of the first- and second-order te rms have 
different signs. 

5.2 The polarisability of the macromolecular coil 
E q n (5.4), formulated in the previous Section, defines the 
relative permit t ivi ty tensor in te rms of the average 
or ienta t ion of certain uniformly dis tr ibuted anisot ropic 
elements, which we shall interpret here as the K u h n 
segments of the mode l of the macromolecule described in 
Section 2.1 and we shall n o w discuss the characteris t ic 
features arising on pass ing to the considerat ion of a dilute 
polymer solution, in which the segments of the m a c r o ­
molecule are no t uniformly distr ibuted bu t are 
concent ra ted in the macromolecu la r coils. 

As before, we consider each macromolecule to be 
divided into N subchains and , us ing the formula relat ing 
the tensor of the average or ienta t ion of the segments of the 
macromolecules ajk to the distance between the ends of the 
chain [ 6 - 8 ] , we arrive, to a first approx ima t ion on the basis 
of E q n (5.4), at Z i m m ' s expression [45] for the relative 
permit t ivi ty tensor: 

% = BoSik +nr((rfAayry

k) - ±(rjAayry)dik) , (5.5) 

where n is the density of the n u m b e r of macromolecules in 
solut ion, the ma t r ix A has the form specified by formula 
(2.8), while the coefficient of the an iso t ropy of the 
macromolecu la r coil T is given by the following expression 
in the case where the macromolecule is model led by a freely 
jo in ted chain of K u h n segments: 

r = 4*Aa{JLr)—2, 

where z is the number of K u h n segments in the 
macromolecule . 

The an i so t ropy of the macromolecule has been calcu­
lated for other chain models . Express ions are k n o w n for the 
an i so t ropy coefficient in the case where the macromolecu le 
has been represented schematically by a con t inuous fila­

ment (the persistent length model ) [46, 47] and also in the 
case where the micro s t ructure of the macromolecu le has 
been specified. In the latter case, the an iso t ropy coefficient 
of the macromolecu le is expressed in te rms of the b o n d 
polarisabil i t ies and other microcharacter is t ics of the m a c r o ­
molecule [ 6 - 8 ] . 

The expression for the relative permit t ivi ty tensor 
[Eqn (5.5)] in te rms of the n o r m a l coordina tes in t roduced 
by means of E q n s (2.12), assumes the form 

sik = 80dik+nrJTla((p«pt)-l-(p«p«)dik) . (5.6) 
<x=l 

W h e n account is t aken of the excluded vo lume effects, 
one must also t ake into account the possible effect of the 
shielding of the inner segments of the macromolecu la r coil, 
the latter effect being greater the longer the macromolecule , 
so tha t the expression for the an i so t ropy coefficient, which 
is covar iant in relat ion to the subdivisions into subchains , 
assumes the form 

r = 4KA(X 
3NIV 

5<*2> ' 
(5.7) 

The dependence of the polarisabil i ty coefficient on the 
length of the macromolecule m a y deviate from the relat ion 
which follows from Eqn (5.7). 

-2v (5.8) 

The expression for the relative permit t ivi ty tensor 
[Eqn (5.6)] is valid only to a first approx ima t ion as regards 
the or ienta t ions of the segments and describes, in words of 
Tsvetkov et al. [15], the an iso t ropy of the system associated 
with the intrinsic an i so t ropy of the segments. In order to 
t ake into account the an i so t ropy of the microform, one 
must tu rn to the second-order te rms in Eqn (5.4). 

The expressions given above are valid for polymer 
solut ions at any concent ra t ion and are independent of 
the assumpt ions m a d e in the calculat ion of the momen t s . 
He re it only remains to use the expressions for the m o m e n t s 
in order to obta in the dependence of the relative permi t t iv­
ity tensor on the velocity gradients . 

5.3 Anisotropy in a stationary shear flow 
The expressions for the relative permit t ivi ty tensor 
[Eqn (5.6)] are valid for flows of a rb i t ra ry type. H o w ­
ever, the optical an i so t ropy of polymer systems is 
frequently studied [15] under the condi t ions of simple 
shear when the velocity gradient v 1 2 ^ 0. The system 
investigated then becomes , generally speaking, a ' tr iaxial 
dielectric crystal ' with nonzero componen t s of the relative 
permit t ivi ty tensor . 

The relative permit t ivi ty tensor is then n o n d i a g o n a l bu t 
can be b rough t to the d iagonal form by ro ta t ion abou t axis 
3 by an angle % defined by the formula 

2 8 1 2 

t an 2x = -
£ 1 1 — s22 

(5.9) 

The extinction angle % and the differences between the 
refractive indices (the extent of double refraction) in 
different pr incipal directions are determined exper imen­
tally. F o r a b e a m p ropaga t ed in directions 3 and 1, we find 
respectively 
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n2~n3 = — (s 22 - 633 ) (5.10) 

where /z is the average refractive index. 
W e can n o w formulate on the basis of E q n (5.6) the 

componen t s of the relative permit t ivi ty tensor using the 
expressions for the m o m e n t s [Eqn (3.34)] and can determine 
the gradient dependence of the above quant i t ies to within 
second-order terms: 

coincide. In order to interpret this p h e n o m e n o n , one mus t 
tu rn in the first place to equa t ions of type (5.4) for the 
relative permit t ivi ty tensor which are nonl inear as regards 
or ienta t ion . 

5.4 Oscillating double refraction 
The considerat ion of the optical an i so t ropy for an 
oscillating velocity gradient yik ~ Q~mt is usual ly 
restricted [52] to a linear approx imat ion . The relative 
permit t ivi ty tensor can then be expressed in the form 

% = BoSik - 2nS (co)yi}i (5.14) 

nx - n 2 = S ^ T V V 1 2 

v=l 

n2 
•n3 = -S ^ Z v ( T V V 1 2 ) 2 , 

where the dimensionless quan t i ty 

S = 
nT 
2h\i 

(5.11) 

(5.12) 

independent of the number of subdivisions, has been 
in t roduced. 

In order to establish the dependence of this quant i ty on 
the length of the macromolecule , one can determine 
experimental ly the influence of the shielding effect. 

The quant i ty 

_ 1 E » ( 1 + Z v ) 4 

called the characterist ic angle [15], has also been in t ro ­
duced in E q n s (5.11). 

F o r low internal viscosities, the relat ion Z v = (2/5)yv is 
valid, so tha t , knowing the dependence of the relaxat ion 
t ime and of the internal viscosity on the number of the 
mode , we can write, with the aid of the zeta-function 

1 X\ 

2 C(zv) L 
C ( 2 z v ) + - 7 l C ( 2 z v - 0) 

The first te rm is p r o p o r t i o n a l to the solvent viscosity rj 
and the second to the internal viscosity (kinetic rigidity) of 
the macromolecule , so tha t measurement of the an iso t ropy 
of solut ions in different solvents makes it possible to 
est imate the quant i ty 

zv-0 - M2 (5.13) 

W h e n account is t aken of the relat ion indicated 
previously [see E q n (4.15)], the power exponent in 
E q n (5.13) is unity, which agrees with the exper imental 
results [15, 48] 

Ttfi ~ M 

W e m a y no te tha t , for high velocity gradients in an 
experiment with r < 0, the so-called a n o m a l o u s depend­
ences of the degree of double refraction and of the 
extinction angle on the velocity gradient are observed 
[ 4 9 - 5 1 ] , indicat ing tha t the pr incipal axes of the tensor 
of the average or ienta t ion of the opt ical an i so t ropy do no t 

where a complex dynamo-op t ica l coefficient S(co) = 
S\co) + S''(CD), character is ing the behaviour of the sys­
tem, has been in t roduced. 

U n d e r the condi t ions of shear mot ion , E q n s (5.9) and 
(5.10) lead to the following quant i t ies in the case con­
sidered. 

71 
4 : 

An = n\ — n2 = —S(co)v]2 , n2 0 

A n expression for the dynamo-op t ica l coefficients with 
componen t s 

1 

<x=l 
- + -

1 + (Tacoy 1 + vaG>y 

S"(CD) = S^2TICDX-
3 

• + 
2(1 

1 + (TAC0)Z 1 + (T'ACD)Z 
(5.15) 

follows from the expression for the relative permit t ivi ty 
tensor (5.6) and E q n (3.31) for the mo men t s . The quant i ty 
S is defined by E q n (5.12). 

In the case where the in t ramolecular viscosity is 
neglected (yx = 0), the frequency dependence of the 
dynamo-op t ica l coefficient agrees with the ana logous 
dependence of the shear viscosity [see Eqn (4.8) and 
Fig. 3]. W h e n the in t ramolecular viscosity is t aken into 
account (yx ^ 0), the var ia t ions of the dynamo-op t ica l 
coefficient also remain similar to the relat ions shown in 
Fig. 3 except tha t the limit of the real pa r t of the d y n a m o -
optical coefficient at high frequencies is zero. By compar ing 
these two quant i t ies we can est imate from exper imental 
da ta the impor tance of in t ramolecular friction in the 
dynamics of the macromolecule . 

The frequency dependences of the dynamo-op t i ca l 
coefficient for infinitely dilute solut ions are available in 
the l i terature [55] and it is interest ing to compare them with 
the relat ions based on E q n s (5.15). 

The theoret ical results presented here [53] extend the 
results of Thur s ton and Peterlin [54] to the m o r e general 
case where the bu lk-phase in teract ions are taken into 
account and the internal viscosity pa rame te r s assume 
arb i t ra ry values. 

6. Conclusions 

Dilute polymer solut ions const i tute a un ique example of a 
system with slow relaxat ion processes. The study of this 
system demons t ra tes the impor tance for the descript ion of 
the behaviour of a system, of the concept of the internal 
t h e r m o d y n a m i c var iable in t roduced in the the rmodynamics 
of irreversible processes. 
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As a l ready ment ioned in the In t roduc t ion , the results 
presented are valid for solut ions at l imiting concent ra t ions 
of the polymer (c —> 0) and for cases where the solvent is a 
viscous liquid, i.e. when re laxat ion processes in the solvent 
are neglected, which is possible if the solvent re laxat ion t ime 
T is short compared with the characterist ic re laxat ion t ime 
of the macromolecule : 

T < Ti . 

The case where the characterist ic t imes x of the external 
and internal resistance are comparab le to the re laxat ion 
t imes of the macromolecule are of theoret ical interest (for 
T = 0, one is concerned with the viscosity of the solvent and 
the in t ramolecular viscosity). 

A p rob lem of this kind arises in the s tudy of the 
dynamics of the macromolecule is a nondi lu te system. A 
na tu r a l basis for the investigation of this p rob lem is 
provided by the procedures of the n o n - M a r k o v r a n d o m 
processes, the use of which leads to unexpected and 
interest ing results, which have been discussed in a 
review [56]. T h u s it was found tha t , in contras t to the 
case examined in the present review, the existence of several 
re laxat ion b ranches follows from the general equat ion for 
the dynamics of the macromolecu le and different p h e n o m ­
ena are determined by different sets of re laxat ion branches . 
W h e n viscoelastic behaviour is considered, it is found tha t 
the calculated pr incipal re laxat ion t ime for the react ion of 
the system agrees with the initial specified re laxat ion t ime 
for the external and internal resistances or, in other words , 
the theory of viscoelasticity proves self-consistent with 
respect to the re laxat ion t ime. 

W h e n the the rmal mo t ion of the macromolecu le is 
considered, a certain in termedia te length { appears . The 
length is such tha t the na tu re of the displacement of the 
macromolecu le and of its const i tuent part icles is inconstant : 
for shifts by distances / < the mot ion is freer and the 
diffusion coefficient is smaller t han for shifts by distances 
/ > £. The macromolecu le is found to be located near its 
initial posi t ion. This feature of the the rmal mo t ion of the 
macromolecu le in a system of inter twined, weakly con­
nected macromolecules was pos tu la ted by earlier 
invest igators [57] and was described quali tat ively by the 
in t roduct ion of a ' t ube ' with a rad ius { within which the 
macromolecu le is able to execute the so-called rep ta t ion 
mot ions . 

The s tudy of the dynamics of the macromolecule on the 
basis of the generalised equat ion t ak ing into account the 
character of external and internal resistances, which are in 
the n a t u r e of an after-effect, has led to the creat ion of a 
logical theory of the dynamic behaviour of concent ra ted 
polymer solut ions at l imiting concent ra t ions (c —> 1). 

The au tho r is indebted to G R Ivanitski i for comment s 
after reading the manuscr ip t . 
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