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Abstract. A review is presented of the results of the theory
of relaxation of the macromolecule and of the dynamics of
a dilute solution of polymers, with intramolecular inter-
actions, hydrodynamic impermeability, and internal vis-
cosity of the macromolecule taken into account. The linear
viscoelasticity and optical anisotropy of the system are
examined. Typical features of the behaviour of dilute
solutions of polymers at various frequencies are discussed.

1. Introduction

A dilute solution of a polymer is understood as a system of
macromolecules in a solvent such that the macromolecules
interact only with the solvent molecules and not with one
another, so that the study of the dynamics of a dilute
solution of polymers reduces to the investigation of the
dynamics of one macromolecule surrounded by solvent
molecules. At low frequencies of motion, relaxation
processes with the highest relaxation times prove to be
significant, whereupon the macromolecule can be treated in
terms of a universal scheme, i.e. one independent of the
nature of the polymer and the solvent.
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W and H Kuhn, who were the pioneers of theoretical
study of the behaviour of flexible macromolecules in a
flowing viscous liquid, introduced into polymer physics a
very simple schematic representation of the macromole-
cule—the dumbbell model: two Brownian particles linked
by elastic (entropic) forces (Fig. 1) [1]. On this basis, they
took into account all the characteristic features of the
dynamics of a flexible macromolecule in a viscous liquid,
such as the intramolecular friction and the mutual hydro-
dynamic influence of the particles, and investigated the
principal characteristic features of the behaviour of dilute
solutions associated with the relaxation of flexible macro-
molecules: viscoelasticity and optical anisotropy. Their
results are qualitative, first, because the schematic repre-
sentation of a macromolecule by two particles is too
approximate and, second, because the study of a very
simple model such as the dumbbell leads to certain
difficulties, associated with the nonlinearity of the prob-
lem, which have been overcome comparatively recently [2].

At the present time, phenomena associated with relaxa-
tion processes in macromolecules are considered on the
basis of the multiparticle model of the macromolecule.
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Figure 1. Schematic representation of the macromolecule by a dumbbell
(two Brownian particles linked by an elastic force) used in pioneer studies
for the investigation of the behaviour of a flexible macromolecule in the
flow of a viscous liquid.
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When slow processes are considered, the macromolecules
are represented schematically, after Kargin and Slonim-
skii[3] and Rouse [4], by a set of linearly connected
Brownian particles (Fig. 2). The study of the problem of
the behaviour of such a chain in a deformable viscous liquid
taking into account the bulk-phase interactions, the hydro-
dynamic influence of the particles on one another, and the
internal friction led to a quantitative description of the
effects associated with the slowest relaxation of the
macromolecules, which can in fact be described solely on
the basis of the universal, i.e. independent of the chemical
structure, schematic representation of the macromolecule in
the form of a chain of Brownian particles. For the
investigation of the relaxation processes with short relaxa-
tion times, it is essential to use more detailed ideas about the
macromolecule which are no longer universal but reflect the
specific architecture of the macromolecule [5].
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Figure 2. Universal schematic representation of the macromolecule by
an assembly of Brownian particles linearly connected by elastic forces —
the subchains model.

The theory of relaxation processes in a dilute solution is
based on the theory of Brownian motion and reduces to the
consideration of systems of stochastic equations and the
calculation of average quantities. The formulation of the
problem became completely clear in the 1950s but technical
difficulties could nevertheless be overcome only when
several decades had elapsed —after the application of
modern methods of theoretical physics to the solution of
the problem.

At low concentrations, the above simple schematic
representation of the macromolecule as a collection of
linearly connected Brownian particles taking into account
the intramolecular friction, the volume effects, and the
hydrodynamic interaction leads to a quantitative descrip-
tion of the observed viscoelastic and double refraction
effects at comparatively low frequencies. At higher fre-
quencies, the universal description is qualitative: there is a
possibility of the appearance of effects associated with the
characteristics of the detailed structure of the macromole-
cules.

The effects of the viscoelasticity and optical anisotropy
of the dilute solution of polymers, which will be discussed
further in the present review, reflect the structure and
properties of an individual macromolecule and are there-
fore used in the study of newly synthesised polymers or
polymers isolated from natural materials. Under these
conditions, the more dilute the solution the easier the

interpretation of the results, since the so-called character-
istic values of the measured quantities (see Section 4.2),
which are independent of the concentration ¢ (at ¢ — 0), are
usually considered and discussed. The theoretical results
make it possible to compare these quantities with the
characteristics of an individual macromolecule.

Solutions of polymers at nonzero concentrations, when
the macromolecular coils interact with one another, are not
of interest merely as a means of studying macromolecules
but are of intrinsic interest as macromolecular systems with
unusual dynamic properties which have no analogues
among low-molecular-weight systems. Analysis of the
dynamics of macromolecules in a system of intertwined
chains naturally proved more complex but in the limit of
very high concentrations (¢ — 1) the system is convenient to
study: the equation for the dynamics of the macromolecule
can be formulated in such a way that the generalised
equation is a reliable basis for the construction of a theory
of the dynamic behaviour of systems concentrated to the
maximum extent.

From the standpoint of the vigorously developing theory
of nonlinear dynamic phenomena [58—60], the results under
discussion constitute a simple example of a system of
stochastic equations defining the motion of connected
Brownian particles. The study of systems of this kind
demonstrated that the model reflects the characteristic
features of the thermal motion of the macromolecule in
both dilute and concentrated solutions (the latter case is
discussed in the Conclusions) and therefore the system
considered constitutes one of the most fundamental models
used in the theory of the behaviour of high-molecular-
weight substances.

2. Thermodynamics of the macromolecule

A detailed description of the microstate of the macro-
molecule is achieved by specifying sequences of atoms,
bond lengths, bond angles, angles of the rotation of
neighbouring atoms about bonds, rotation potentials, etc.
The statistical theory of long chains, developed in
considerable detail and described in a series of mono-
graphs [6—8], defined the equilibrium average quantities,
characterising the macromolecular coil as a whole, as
functions of the microparameters of the macromolecule.
However, the characteristics of the macromolecule as a
whole can be found on the basis of more approximate
models representing the macromolecule.

2.1 Universal models of the macromolecule

Since the length of the macromolecule exceeds by many
orders of magnitude its transverse dimensions, the
macromolecule can be represented as a flexible homoge-
neous elastic filament with an elasticity coefficient @ taking
into account the individual properties of the macromole-
cule[7-9]. Consideration of the thermal fluctuations of the
macromolecule leads to a dependence of the mean square
distance between the ends the of the macromolecule (R ?),
on its length M and temperature 7. For MT > a, we have

2Ma
R, = .
(R?)y ==

@.1)

The last relation demonstrates that at high temperatures
long macromolecules are coiled up; the more coiled they
are, smaller the rigidity coefficient a.
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The continuous filament model considered is also called
the persistent length model. The quantity a/T, where T is
the temperature expressed in energy units, is called the
persistent length [7, 8].

In another universal method for the description of a
long macromolecule, which is applicable at high tempera-
tures, one begins with the fact that for large distances along
the macromolecule there is no correlation of the orienta-
tions of individual parts and the real chain may be
compared with a chain of consecutively connected freely
rotating segments, as was done for the first time by
Kuhn [6].

The expression for the mean square of the distance
between the ends of the macromolecule can be formulated
in this case by analogy with a wandering Brownian particle
as follows:

(RYy =17, 22)

where z is the number of chain segments and / is the length
of the segment. The length of the segment may be arbitrary
but must naturally be greater than atomic dimensions. To
make the treatment unambiguous, an additional condition
is established, which may require that

d=M . 2.3)

Eqns (2.2) and (2.3) define the freely jointed chain
model [6—8].

Thus, two procedures are used for the universal
description of macromolecules: the description with the
aid of a flexible filament and the description with the aid of
a freely jointed chain. In both cases the calculated mean
square distance between the ends of the macro molecule
(R?), is small compared with the overall length of the
macromolecule: regardless of its chemical structure, a
sufficiently long macromolecule coils up as a consequence
of thermal fluctuations so that (R 2)0 becomes proportional
to the length of the macromolecule:

Ry~ M . (2.4)

For a fixed distance R between the ends of the
macromolecule, one can formulate a distribution function
on this or another basis [6—8]. In the simplest case, it has
the form of the Gaussian distribution.

@~ () = (sm)

2.2 The model of Gaussian subchains
The description of the macromolecule with the aid of one
quantity —the mean square distance between its ends
(R?),— is not always sufficient. For very long macro-
molecules, use is made, after Kargin and Slonimskii [3] and
Rouse [4], of a more detailed but also macroscopic and
universal method of description in which the macromole-
cule is divided into N subchains each with a length M /N.
The coordinates of the ends of the macromolecule and of
the points corresponding to the divisions between the
subchains constituting the macromolecule are numbered
successively from O to N and are designated by
POt

Assuming that each subchain is also sufficiently long
and may be described in the same way as the entire chain,
we formulate the equilibrium distribution function for the

2.5)

probabilities of the locations of all the particles constituting
the macromolecule as derivatives of N distribution func-
tions of type (2.5):

we, et = Cexp(—pAyuyr'r’) , (2.6)
where
3 3N
—_—— N 2.7
K=o T 2Ry, @7
while the matrix A,, assumes the form
I -1 0 ... 0
—1 2 -1 ... 0
Ay = 0 -1 2 ... 0 (2.8
0 0 o0 ... 1

The free energy of the macromolecule is then given by
an expression of the following form:

Fro et ") = uTA T’ 2.9

It defines the force acting on a unit numbered v to within
the first-order terms in r.

o _OF

i _W: —2'[1TA vyrl.y .
1

(2.10)

There is a possibility of various extensions of the
Gaussian subchain model: if it is necessary to take into
account the additional rigidity of the chain in relation to
bending, one has to add the interaction between the
individual units and the matrix (2.8) is replaced, for
example, by a pentadiagonal matrix. It is also possible
to take into account the finite extendability of the
subchains. For this purpose, higher-order terms in r are
added to Eqn (2.9), etc.

The Gaussian subchain model defined in this way and
its possible extensions are universal and are applicable to all
sufficiently long flexible macromolecules regardless of their
chemical nature. By virtue of its universality, the model
considered plays a fundamental role in the theory of the
equilibrium and nonequilibrium properties of polymers.
For N = 1, the subchains model is converted into the
simplest model of a flexible macromolecule—a dumbbell
comprising two spheres linked by an elastic force. As
already mentioned, this model was introduced and used
by Kuhn and Kuhn [1] to elucidate the characteristic
features of the dynamics of the macromolecule in a flow.

We may note in conclusion that, for high values of N,
one may use the variable

o

SSNFT

<s<1,

and the matrix introduced in this Section written in the
form
o1&
W UNZTds??
which makes it possible to represent the formulae discussed
here in another way.

2.3 Normal coordinates
In terms of the Gaussian subchains approximation, the
distribution function (2.6) makes it possible to calculate all
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the equilibrium characteristics of the macromolecular coil,
for example the average value of the square of the radius of
inertia of the coil:

N 1 N

(%) = g U =Py =y Do

a=0

@.11)

However, for calculations in this and many other cases it is
convenient to employ new variables, referred to henceforth
in accordance with tradition as the normal coordinates and
introduced by means of the relations

=Q0pp", P=0gT1", (2.12)

as well as variables such that the quadratic form in
Eqns (2.6) and (2.9) assumes the diagonal form, so that

QA iy Qyp = Audup - (2.13)

It is readily seen that the determinant of the matrix A is
zero, so that one of the eigenvalues, say 4, is always zero.
The normal coordinate corresponding to the zero eigenva-
lues

P =051,
is proportional to the coordinate of the centre of gravity of
the macromolecular coil ¢ defined by Eqn (2.11).

In considering the behaviour of the macromolecule, it is
convenient to use a coordinate system with the origin at the
centre of gravity of the system. Then p’ = 0, so that in this
instance there are only N normal coordinates numbered
from 1 to N.

The distribution function (2.6), normalised to unity,
now assumes the following form in terms of normal
coordinates:

N ”)' 3/2
W(p‘,pi...,p”):f[(??) exp(—pdp'p’) . (2.14)

y=1

With the aid of this distribution function, it is easy to
calculate the equilibrium moments of the normal coor-
dinates:

(pipy) = J pipi{dp} = O »

through which one can express, for example, the mean
square radius of inertia defined by Eqn (2.11):

(s? Jo = ]_H\,Z(P,Pk ~ )

The calculation of higher-order moments, for example
fourth-order moments, does not present special difficulties
either:

(pl pk Ps p/v>0 (6l/<5\j + 5!\6/(] + 61/5/0) .

4(u /1)

We may note that the transformation matrix Q may be
selected in different ways, in particular an orthogonal and
normalised matrix may be chosen. In this case, the
eigenvalues (see, for example, Dean [10]) assume the
following form for high values of N and small numbers a:

2
™
,1a:(ﬁ>, x=0,1,2,... (2.15)

In the case of the orthogonal transformation, the
relation between the normal coordinate p°, corresponding
to the zero eigenvalue, and the coordinate of the centre of
gravity of the macromolecule is formulated thus:

P’ =q(1+N)"*. (2.16)

2.4 The excluded volume effects
The above results are valid for a free noninteracting
noncorporeal chain, which is an extremely useful ideal-
isation. However, the atoms of the macromolecule interact
with one another and the primary result of this interaction
is that parts of the macromolecule cannot occupy the
volume occupied by any other parts, i.e. the probabilities of
consecutive steps are no longer statistically independent as
is assumed in the derivation of the above distribution
functions for the probability and for the mean square
distance between the ends of the macromolecule [11, 12].
For the subchains model, considered in the previous
Section, the distribution function at equilibrium and
when account is taken of the potential of the interaction
between the particles can be expressed in the form
W = Cexp <—qur°‘r" — %U) , (2.17)
where C is the normalisation constant and U the energy of
the ‘lateral’ interactions, which depends on the difference
between the coordinates of the particles and may be
represented fairly accurately by pair interactions:

U=> U(r"—r").

Zald

The constant u may be expressed in terms of the mean
square distance between the ends of the subchain when
account is taken of the b interactions. From considerations
of dimensionality, we then have

ue~ b2

The average value of the square of the distance between
the ends of the entire chain (R?) is determined by the
‘lateral’ interaction, which is characterised by the second
virial coefficient B(T) (also temperature-dependent) and
can now be expressed in the following form taking into
account the considerations of dimensionality:

(R*) = Nb*f(N, B(T)b™) .

Naturally, the form of the dependence of the quantity
(R?) on the arbitrary number of subdivisions N (N — o),
which is not related to any other characteristics of the
macromolecules, is independent of N and one must there-
fore assume that B(T)/b’ does not change when the
number of subdivisions is altered, while the function of
the number of subdivisions must be formulated as a power
function:

(R*) = N*'b? (2.18)

Thus, fairly general considerations lead to the establish-
ment of a power dependence of the mean square size of the
macromolecule on its length:

(R ~M*, v=1/2. (2.19)

Taking into account the relations formulated above, the
expression for the elasticity coefficient of the subchain when
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account is taken of the volume effects can be written as
follows:

N2v
e lar)

The determination of the power exponent 2v in the
above expressions requires special and not very simple
calculations [12]. From the simplest hypotheses, it has
been found that [12, 13].

-9
2v—8.

(2.20)

Thus, when account is taken of volume effects, the size
of the macromolecular coil exceeds the size of the ideal coil.

We may note that the second virial coefficient generally
speaking does not depend on temperature. At high
temperatures, repulsion predominates between the mono-
mers, while at low temperatures attraction predominates, so
that there is a temperature, referred to as the @-tempera-
ture, at which the attraction and repulsion effects cancel out
and B(T) = 0. It is usually assumed [11] that at this point
the macromolecule is described by the relations for an ideal
chain, which were indicated in the previous Sections.

2.5 The macromolecule in a solvent

Next we shall consider solutions of polymers which are so
dilute that the macromolecules can be regarded as not
interacting with one another. In such a solution, the
macromolecules do not form aggregates and therefore one
should consider in the first place the behaviour of a single
macromolecule surrounded by solvent molecules. Apart
from the interaction between the parts of a single
macromolecule, it is now necessary to take into account
such interactions between the macromolecule and the
solvent.

In the subchains approximation, the equilibrium dis-
tribution function of the particle coordinates again assumes
the form (2.17) under these conditions, but the potential U
of the energy of the ‘lateral’ interaction of the particles is
now an effective potential which takes into account the
interaction of the atoms of the macromolecule with one
another and with the solvent atoms.

In solvents referred to as good, the polymer—solvent
contacts are energetically more favourable than the poly-
mer —polymer and solvent—solvent contacts, so that the
molecular coil tends to swell. In poor solvents, the opposite
situation occurs and the macromolecular coil tends to
contract [14, 15].

The second virial coefficient of the macromolecule B(T )
now depends not only on the temperature but also on the
type of solvent. If a solvent such that B(T) = 0 has been
found at a specified temperature 7, it is referred to as a @-
solvent. In such a solvent, the size of the macromolecular
coil is the same as the size of the ideal coil, i.e. one where no
account is taken of volume effects.

3. Dynamics of the macromolecule in a viscous
liquid

On the basis of the subchains model, we shall consider in
this section the dynamics of the macromolecule, and the
relaxation equations for the macromolecule moving in a

viscous liquid with a viscosity 5° for specified constant
velocity gradients will be derived:

ov;

ox, = Vi

It w1ll be convenient to employ henceforth the following
notation for symmetrised and antisymmetrised velocity
gradients:

1 1

vy =3y +vi). oy =305—vi) .

The characteristics of long macromolecules as macro-
systems make it possible to employ a phenomenological
procedure for the description of relaxation processes, which
permits the formulation of overall results regardless of the

extent to which the mechanism of a particular effect is
understood.

3.1 Hydrodynamic interaction of the particles of the
macromolecular coil

In the study of the dynamics of the macromolecule in the
subchains approximation, each subchain with a length
M/N (N is the number of subchains) is likened to a
Brownian particle and each particle, moving at a velocity
u’, is acted upon by the hydrodynamic entrainment force,
which according to Stokes has the form

Fl = ={o(u] —v]) , (3.1

where {, = 6my’ is the coefficient of resistance and v the
velocity of the liquid in which the given particle is present
the velocity corresponding to the situation where no
account is taken of the particle. When an assembly of
particles is considered, the velocity v is generally speaking
determined by the motion of all the particles considered.
For the slowest motions, we have in the Stokes
approximation [16]

N
Vi =] — ZTVﬂFﬂ
=0

The components of the hydrodynamic interaction tensor
Ty for y = B are zero, while in the case where y # f they
are determined by the relation

W _ ( " +evﬁ vﬁ) ,

i 3.2)

8nnlr? —rh|

where e = (7 —rP)/Ir7 — 1.
A system of equations for the entrainment forces follows
from Eqns (3.1) and (3.2):

— 6> TF
7

For small perturbations, the solution of Eqns (3.3)
assumes the following form to a first approximation:

) 1
=5 32| (o~ )

eacd
¢, e
- L ( / vhr)’ ) .

8yl |t — 1] !

Ff = =o(uf — v rf) (33

(3.4)

Eqn (3.4) shows that the resistance (entrainment) force for
a certain particle depends on the relative velocities of all
the particles of the macromolecule and also on the relative
distance between the particles.

We may note that values of the hydrodynamic inter-
action tensor (3.2) averaged beforehand with the aid of
some kind of distribution function are frequently used for
the estimation of the influence of the hydrodynamic
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interaction, as has been suggested by Kirkwood and
Riseman [16].

For example, after averaging with respect to the
equilibrium distribution function for the ideal coil, the
hydro-dynamic interaction tensor (3.2) assumes the follow-
ing form [16].

(CoTF) = 2hlo—y[7' 8, . (3.5)
The dimensionless hydrodynamic direction parameter
appears here:

C0\/6/Tc~a

Ty b
where a is the radius of the particle associated with a
subchain having a length M /N and b is the mean square
distance between neighbouring particles along the chain.

3.2 The effective coefficient of friction

The expression for the entrainment (resistance) force
[Eqn (3.4)] is valid for small mutual influences of the
particles, i.e. when the hydrodynamic interaction parameter
is small (h < 1). In the cases of interest to us, the parameter
h is not small and other methods are used for the
calculation of the entrainment (resistance) force [17—19].
However, one may also demonstrate the validity of the
result by a simpler procedure, which is convenient in the
case where one considers, following Kirkwood’s ideas [16],
a hydrodynamic interaction subjected to preliminary
averaging.

One may note that the forces presented, the effect of
which on the particle is linear as a function of the velocity
[see, for example, Eqns (3.1) and (3.4)], are associated with
the low velocities of the particles and of the flow and not
with the weakness of the hydrodynamic interaction, so that
the expression for the force acting on a particle in the flow
can be expressed in the following general form:

Fj' = =B (u} —vir])

j (3.6)

where in the case of the preliminary averaging the
hydrodynamic interaction matrix B;’ assumes the follow-
ing form according to Eqns (3.4)—(3.5) under the
conditions of weak interaction:
—1/2

BiT = (35 — 2hla— 9|73 .
while for arbitrary interactions it can be represented by the
equation

A A
B/7y = By + Vavﬂl(<”jﬁ”l )= (rfr, )0) :

after introducing the new numerical matrices By, and V ;.

We shall not discuss here the second term, which
contributes to the components in the subsequent results,
which are nonlinear in the velocity gradients, and precludes
the introduction of relaxation modes independent of one
another.

When normal coordinates are employed, defined by
Eqns (2.12), it is now possible to make use of the
arbitrariness in the definition of the matrix Q and to
define it in such a way that the matrix B,, assumes a
diagonal form after transformation. The problem of the
simultaneous adjustment of the symmetrical matrices A and
B to a diagonal form does have a solution [20]: since the
matrix A is defined non-negatively and B is defined
positively, it is possible to find a transformation such
that B is transformed into a unit matrix and A into a

3.7)

diagonal matrix.  Therefore, simultaneously  with
Eqn (2.13), in which the eigenvalues 4, are now defined
by Eqns (2.15) and the expression which we shall discuss
below, one can write

COQalBayva = Célv .

This relation introduces the effective coefficient of friction
of the particles {, the dependence of which on the length of
the macromolecule is of special interest.

In the case where the hydrodynamic interaction of the
particles of the macromolecule may be neglected, i.e. when
the coil is, as it were, permeable, the coefficient of resistance
of the latter is proportional to the length of the macro-
molecule and the coefficient of friction of the particle
associated with the length M /N is proportional to this
length:

(3.8)

M
{~ N 3.9)

The mutual influence of the particles leads to their
shielding within the coil and the overall coefficient of the
resistance of the coil proves to be smaller than for a
permeable coil.

The requirement of covariance in relation to successive
subdivisions of the macromolecule into subchains gives rise
to the following power dependence for high values of N:

M (z=2)v
o~ (%)

In order to calculate the power exponents, a calculation
based on specific representations is necessary, as in the case
where account is taken of volume effects. The exponents
calculated by Al-Noami et al. [17] are listed in Table 1. We
may note that these results are valid for infinitely long
chains, so that the exponents for finite chains may also
assume intermediate values.

(3.10)

Table 1. The exponents in the asymptotic formulae.

Allowance for  Allowance for 2y z (z=2)v  zv
volume effects  impermeability

+ — 9/8 154 63/64 2.11
— + 1 3 1/2 1.5
+ + 9/8 3 9/16 1.69
— — 1 4 1 2

3.3 Intramolecular friction

On deformation of the macromolecule, i.e. when the
particles constituting the chain are involved in relative
motion, an additional dissipation of energy takes place and
intramolecular friction forces appear. In the simplest case
of a chain with two particles (a dumbbell), the force
associated with the internal viscosity is proportional to the
relative velocity of the ends of the dumbbell u" — u/ and is
given by [1, 15, 21]

—x(u’ —uj )eje; .

(.11

where e is a unit vector in the direction of the vector
connecting the particles of the dumbbell and x is the
phenomenological internal friction coefficient.
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When a multisegmental model of the macromolecule
(the Slonimskii—Kargin —Rouse model) is considered, one
must assume that the force acting on each particle is
determined by the difference between the velocities of all
the particles ujy — ujﬁ. These quantities must be introduced
in such a way that dissipative forces do not arise on rotation
of the macromolecular coil as a whole, whereupon
u! = Qurf'. thus the internal friction force must be
formulated as follows in terms of a general linear approx-

imation:

Gl =— ZC“p(uf — uf)efﬂe?'ﬂ ,
B

where e;‘ﬂ = (r,9’—}’jﬁ)/|r“—rﬁ|. The matrix C% s
symmetrical and may depend on the distance between
the particles, but we shall assume henceforth that a
preliminary averaging has been carried out so that C*
is a numerical matrix. The diagonal terms of the matrix are
zero.

The internal friction force can also be written in the
form

Gl = —G;yu}' R (3.12)
where the matrix
G =6, CTele — et (3.13)

yF#

has been introduced. In contrast to the matrix C“ﬁ, the
matrix G* has nonzero diagonal terms.

Eqn (3.12) defines the intramolecular friction force, but
the requirement that the force remains unchanged on
rotation of the macromolecular coil as a whole is fulfilled
only for a particular choice of the friction matrix G;ﬂ.
When an attempt is made to simplify Eqn (3.13) by
preliminary averaging, we obtain the following expression
for the force instead of Eqn (3.12):

GY = -G

which clearly does not satisfy the above requirement.

On linearisation of the internal friction force according
to Cerf’s procedure [22], Eqn (3.12) may be modified and
written thus:

G =—=G"(u] —Q;r]) , (3.14)

where G* is now a symmetrical numerical matrix.
The rate of rotation of the macromolecular coil in a flow
Q; is determined by the velocity gradients:

Q= wj +AjgV -

When linear effects are considered, the matrix A can
be determined by considering the average rotation of the
coil subjected to equilibrium averaging. Since at equilibrium
the coil is spherical, it follows from symmetry conditions
that

Qi = wy
to within first-order terms.
In terms of the normal coordinates introduced by

Eqn (2.12), the matrix associated with the internal friction
can be written as follows:

QaAG;wa :

By considering the transformed expression for the
internal friction force (3.12) as a nonlinear function of
the normal coordinates and a unit vector referring to a
separate normal coordinate

! Ay A1

el =pilp*|" .
one may note that the requirement that the internal viscosity
force disappears when the whole coil is rotated is satisfied by

a unique combination of variables, so that the term with the
internal viscosity expressed in normal coordinates becomes

—Cvaeief py - (3.15)
For the linearised version (3.14), we have
—ya(p — wip}) (3.16)

where { is the effective coefficient of friction.

It is noteworthy that the representation of the force in
the form of Eqn (3.16) is possible only for weak intra-
molecular friction (y, < 1), whereas Eqn (3.15) is also valid
for arbitrarily large intramolecular friction. For low values
of y,, the results of the calculations are independent of
which expression, (3.15) or (3.16), is used.

The characteristic y, of the intramolecular friction forces
in Eqns (3.15) and (3.16), introduced here as a phenom-
enological quantity, should not depend on the method of
subdivision of the macromolecule into subchains and, by
virtue of the nature of the transformation, should be a
function of the ratio v/M. Here one may expect that y, is a
monotonically increasing function of the number of the
mode v. This dependence can be fitted by the power
function

o
v _
szyl"@"‘(M) . on~MT

where @ is a positive number and y; is a measure of the
internal viscosity.

The internal viscosity force is defined phenomenolog-
ically by Eqns (3.15) and (3.16) formulated above. Various
internal-friction mechanisms, discussed in a number of
studies [23-26], are possible. Their consideration leads
to the determination of the matrices C* and G* and
to the nature of the dependence of the internal friction
coefficients on the chain length and the parameters of the
macromolecule.

The significance and importance of the internal friction
coefficient y, introduced in this way can be elucidated by
comparing the consequences of the theory with experimen-
tal data, which will be discussed below. However, here one
should note that the phenomenological characteristics of
the intramolecular friction prove to depend not only on the
characteristics of the macromolecule, as might have been
expected, but also on the properties of the liquid in which
the macromolecule is present.

The internal viscosity of the macromolecule is a con-
sequence of the intramolecular relaxation processes occur-
ring on deformation of the macromolecule at a finite rate.
The very introduction of the internal viscosity is possible
only insofar as the deformation times are short compared
with the relaxation times of the intramolecular processes. At
deformation frequencies of the same order of magnitude as
the reciprocal of the relaxation time, these relaxation
processes must be taken into account in considering the
dynamics of the macromolecule and the dynamics of a
dilute solution of polymers [27].

(3.17)
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3.4 Equation of motion of the macromolecule

After considering the dissipative forces acting on the
particles of the chain, we shall now formulate and discuss
the equation for the dynamics of the macromolecule in the
flow of a viscous liquid with constant velocity gradients
v; = Ov;/0x; [28].

Apart from dissipative forces, elastic forces acting on
the particle are taken into account in formulating the
dynamic equation:

oF oU

K* = “HE —2TpA yyr? ~5
as well as random forces ®%, associated with thermal
motion, which leads to the formulation

d’r*
m——
dr?
where the expressions for the dissipative forces F* and G*
are defined by Eqns (3.6) and (3.12) formulated previously.
In terms of the normal coordinates introduced pre-

viously and taking into account all the considerations
described above, the dynamic equation becomes

(3.18)

=F*+G*+K*+®*, oa=0,N, (3.19)

d2p,ﬂ ca 3 o o
QpaQyut 3 7~ = —C (BF = vyp]) — Lvaele] by
=2uTlp?+ &, a=1,2,...,N, (3.20)

where & = 0,,9].

The transformations matrix Q,, is not generally speak-
ing orthogonal and the left-hand side of the equation
formulated therefore includes the derivatives of all the
coordinates, but we shall not dwell on this factor bearing
in mind that in the limit m — O which we are interested in
the left-hand side of the equation vanishes.

At the above limit, Eqn (3.20) defines independent
relaxation modes of the macromolecule. The equation of
motion for each mode represents the equation of motion of
a dumbbell with intrinsic elasticity and internal friction
coefficients.

The behaviour of modes with small numbers should be
independent of the arbitrary number of subdivisions N.
This means that the relation

¢

s
should not depend on N. Since the dependence of the
quantities 4 and { on the number of subdivisions was
elucidated previously [Eqns (2.20) and (3.10)], the above
requirement immediately leads to the expression

v
Ay~ (ﬁ> . a=1,2,..., <N.

The values of z and v for four cases are presented in
Table 1. For a permeable molecule, where zv = 2, the
eigenvalues (3.21) are defined by Eqn (2.15).

The random force @ in the dynamic Eqns (3.19) and
(3.20) is determined as an average quantity and is selected
from the condition that the equilibrium coordinates and
velocities are known beforehand [29]. In the linearised
version with y, <1, this requirement determines the
relation

(EOE") = 2TL(1 4 7,)0,0,6(t — 1) .

(3.21)

(3.22)

which is valid to within first-order terms in velocity
gradients. Here and henceforth the angular brackets
indicate averaging with respect to the assembly of
realisations of the random force.

3.5 The distribution function

Eqn (3.20) for the dynamics of the macromolecule is a
nonlinear stochastic equation for normal coordinates and
rates of change of the latter: p! and p! (i = 1,3,
v=1,2,...,N). An estimate shows that for the particles
of the subchains model under consideration, the inertial
effects are insignificant and one can therefore confine the
treatment to the consideration of the probability of the
distribution of coordinates:

PY) = (60" = p"(1))...8(p" =PV (1)) .

w(t, p°,... (3.23)

The distribution function satisfies [29] the continuity
equation

ow  JLoyiw

ot — Op?

(3.24)

where ¥ = (p*) is the rate of diffusion of the particle in
the coordinate space, which is determined by means of the
equation for the dynamics of the particles involving the
introduction of an average thermal ‘force’—T0In W /dp]
instead of the random force.

Calculations [21, 28, 30] have led to the derivation of
the diffusion equation for the distribution function:

ow L[ T *w
_+ R —
of Z[ £ @py)’

v=I

T (ZPY ow

ey oW )
{14y, \p}p} 0p} "/ plop)
_2uT 4 ow

oW
3w — Py —
¢ 14y, ( T op; > T Vichs opy

y ow

When there are no velocity gradients, the solution of
Eqn (3.25) normalised with respect to unity has the form of
Eqn (2.14). In the general case for low velocity gradients,
the time independent distribution function may be found in
the form of an expansion in terms of invariant
combinations of the vector p’ and the symmetrised and
antisymmetrised velocity gradient tensors y; and w;. In the
stationary case, we have, to within the second-order terms
in the velocity gradients

(3.25)

N
W= Wo{l +> [2u/1vrvv,-kp¥p2 +2(1h) TPl PLPLP)
v=1

—Tyuvi — 16G, (uhy1,) v, (kaP,YP/vc]} ) (3.26)

where W, is defined by Eqn (2.14) and the following

notation for the relaxation time has been introduced:

- =10, 3.27
To 4Tﬂla T ( )
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where 17, = {/4TuA, is the characteristic relaxation time
equal to the maximum relaxation time of the macromo-
lecule. By virtue of Eqns (2.20), (3.10), and (3.21), the
characteristic relaxation time is independent of the number
of subdivisions and depends on the length of the macro-
molecule M as follows:

o ~MY (3.28)

In Eqn (3.26), the coefficient of the last term G, depends
on the scalar pj‘.’p/‘-' and the internal viscosity. [fy, = 0, then

1

Ga = m (329)

For higher values of the internal viscosity, where y, > 1,
we have

1 1
Gy=cpipi+ 9—yvp}p, (5 —24up;jp;)

1
t o pp][35 = 56A,up]p] + 12(Avip)p])?] . (3.30)
v

3.6 Relaxation equations

The distribution function (3.26) considered in the previous
Section makes it possible to calculate the moments in the
stationary case, for example the second-order moments

(erel) = [Werertany. (ole0) = |Wolni{dn}

In the general case, it is more convenient to determine
the moments from equations which can be derived directly
from the diffusion equation (3.25) [21, 28, 30].

For example, on multiplying Eqn (3.25) by p;p; (to
simplify the formulation, the mode index has been omitted)
and integrating with respect to all the variables, we find the
relaxation equation

dlpipr) 1 3 1
dr T2 (eier) 35i/<

_% ((mm) - 2%/1 (e,»ek)) +vi(p;p)

(3.31)

v pipi) — T (Piprejes)Vis

l + Y
Two relaxation times appear here: the first time t,, defined
by Eqn (3.27), refers to orientation processes; the second
time 7, = (1 + y,)t, refers to deformation processes.
Indeed, by multiplying Eqn (3.25) by ,02 and integrating
with respect to all the variables or by carrying out a direct
summation of Eqn (3.31) with identical indices, we find

d<d€2) _ _% (<P2> 2;3M>

This equation describes only the deformation of the
macromolecular coil and therefore t’ is the relaxation
time of the deformation process. In order to isolate the
orientation process, we now formulate the moments in the
form

(p PNV - (3.32)

(pipi) = (P)eien) s (pipreje) = (P7)(eieneses) -
Then, when account is taken of the equation formulated

to within first-order terms in the velocity gradients, Eqn

(3.31) gives rise to the relaxation equation for the orienta-
tion process:

d{e;e;) 1 !
Tk =-= ((ei ex) —géik> + vijlejer)

+vii{eje;) _12——Zy<ei exejes)yys - (3.33)

Thus 7, is the relaxation time for the orientation process
and 7, is the relaxation time for the deformation process
associated with the vth mode of motion. Taking into
account the nature of the motion on excitation of the
vth mode, one may say also that 7, is the transverse
relaxation time, while 7, is the longitudinal relaxation
time. This claim becomes significant for large numbers v.

We may note that, for a nonzero internal viscosity, the
system of equations for the moments is found to be open:
fourth-order moments are introduced into the equations for
the second-order moment, etc. This situation is encountered
in the theory of the relaxation of a suspension of hard
particles [30]. Incidentally, for y — oo, Eqn (3.33) becomes
identical with the relaxation equation for the orientation of
infinitely extended ellipsoids of rotation (Pokrovskii [30,
p. 58]).

In contrast to the situation described, the system for the
moments (3.31) is closed in the case where the internal
viscosity may be neglected. This factor makes it possible to
find the moments in the form of a series expansion for low
values of the velocity gradients.

In the stationary case, the expansion assumes the form

1
(pipf) = i, {0 + 21,74

+2’L’§ [2'ylj'))/k + (] + Za)((l),:/"yjk + (l)kj'))_ii)] } 5 (334)
where

Zy=3%. V<1,

:2i(9 A2y 424597, oy > 1.

One may assume that Z is a monotonically increasing
function of y and if necessary may be fitted by any kind of
convenient function.

We may note that, by virtue of the possible dependence
y on the velocity gradients mentioned above, the expres-
sions for the moments are valid only to within second-order
terms.

4. Viscoelasticity of dilute solutions

A dilute polymer solution may be represented as an
assembly of macromolecular coils suspended in a viscous
liquid, the stresses tensor of which assumes the following
form on deformation:

O = —pdy + 21y, 4.1

Ojp = —POi + 210 Vi “4.1)
and the problem involves primarily the calculation of the
stresses tensor for a suspension of macromolecular coils.

4.1 The stress tensor

Suppose that n is the density of the number of coils. Since
each macromolecule can be represented schematically by
N + 1 Brownian particles, a unit volume contains n(N + 1)
Brownian particles—a number which is sufficiently large
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to introduce macroscopic variables for the system of
Brownian particles: the density

1) =3 m(d(e —r) = m(N + Dn(x, 1) 4.2)
and the density of the momentum
pyj(x, 1) = Jmufd(e — %)) (4.3)

In Eqns (4.2) and (4.3), the summation is carried out
with respect to all the particles per unit volume and the
average is with respect to the assembly of the realisations of
the random force.

In order to determine the stress tensor for a moving
system of Brownian particles, we shall consider, using the
methods developed in the theory of liquids [31], the
variation of the density of the momentum:

0
FYL A Zmu, —r%))

+ Z<mdde6(x - r“)>

and shall formulate the right-hand side of this equation in a
divergent form. In order to transform the second term into
the required form, we shall make use of the equation for the
dynamics of the macromolecule. Turning to Eqn (3.19), we
multiply it by d(x —r?%), carrying out the summation with
respect to all the particles of the macromolecule and
averaging the result. We may note that the average force
acting on the coil from the side of the liquid is zero, i.e. one
must put

D {(F* + @")5(x —r*)) =0

Thus for each coil we have

m Z<—5(x —r > = (K +GN)3(x —r%) .

Next, we use the formal expansion of the d-function in
Taylor’s series about the coordinate of the centre of gravity
of the ath macromolecules g, retaining only two terms of
the expansion:

o a o a a
ox —r*) =0(x — ¢ )*(rk—qk)a

4.4)

ox —q%)
and we transform the formula written above into
0 a
e KHE + GOt —a))
o

In this relation, the summation is carried out with
respect to the particles of one macromolecule. Carrying
out the summation with respect to all the macromolecules
and neglecting the statistical dependence of the coordinates
of the centres of gravity of the macromolecular coils on the
remaining coordinates, we obtain an expression for the
second term in Eqn (4.4) in a divergent form:

du 0
S ot —) = e S+ ).

Taking into account the assumptions made in this
derivation, the expression for the second term in
Eqn (4.4) must also be formulated in a more convenient

form. Using the equation for the average velocity and
taking into account the first term of the expansion of the &~
function, we find

m Z(ufuf‘é(x - =nm Z((u —v)

The symbol indicating the derivative in the transformed
right-hand side of Eqn (4.4) includes the expression for the
flux of momentum, from which we subtract the convective
transfer of momentum and find the stress tensor:

:_ﬂ§:

One may assume that the local-equilibrium distribution
with respect to velocities holds, which yields

=)+ pviv; -

(' = v;) (g —vi))+ (K1 + Gir )] 4.5)

oy =—n(N +1)To; + nZ(K}”rZ + G,“r,'f) . (4.6)
o

The additional stresses defined by this formula arise
owing to the difference between the rate of diffusion w* of
the Brownian particle and the average velocity of the
medium v* at the point where the particle is located.
This leads to the appearance of bulk-phase forces, which
can be written in the following form for slow motions:

F* = (" —w%) .

After averaging, the additional stresses assume the form

—ng Y {0 = wi)r)

where the angular brackets denote averaging with respect
to the distribution function for the coordinates of all the
particles. After determining the rate of diffusion, the
expression formulated leads to the result indicated above.

Next it is convenient to go over to the normal
coordinates defined by Eqn (2.12). After a special choice
of the internal friction matrix, considered in the second
Section, we have

oy = —nTdy +”Z 2T AP p) — Ty + Cnilerel b p))] -
v=I
In the last term, one can carry out the averaging with
respect to velocities and replace [)j" by the average velocity
Y. Taking into account the fact that (e,e;p,V;inW ) =
—3{e;e;), we find [28]

1 o ] v vV 2
oy = —nTdy +§nCVZ]:[T—,V ((PiPk) 20y (ei ek))

1.3 VoV ! 2')’ VRN
T i Y 4.
+Tv 2, <<e,ek) 35,/<) ey (prpieies)y;s| » (4.7)

where the relaxation times 7, and 7, were determined
previously.

In order to determine the stress tensor for the entire
system (a dilute solution of the polymer), the stresses in the
solvent (a viscous liquid), defined by Eqn (4.1), must be
added to Eqns(4.5)—(4.7) defining the stresses in a con-
tinuum of Brownian particles. The stress tensor for a dilute
polymer solution is expressed in terms of moments—
additional variables which were discussed in the previous
Section. The system of equations for the moments in the
case where the macromolecule is characterised by an
internal viscosity, proves to be open. The first of the chain
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of equations for the moments were presented previously [see
Eqns (3.31) and (3.33)].

The expressions for the stress tensor (4.7) together with
the equations for the moments, the continuity equations, and
the equations of motion constitute the basis of the dynamics
of dilute polymer solutions. This system of equations may be
used to investigate the flow of dilute solutions in various
experimental situations. Certain simple cases will be examined
in the subsequent subsections of the present Section in order
to demonstrate the applicability of the expressions obtained
to dilute solutions, to indicate the region of their applic-
ability, and to refine the expressions for the eigenvalues y,,
which were introduced previously as phenomenological
constants.

4.2 Characteristics of linear viscoelasticity
The study of the reaction of the system in the simple case
where the velocity gradients are independent of the
coordinates and vary in accordance with the law

P~ e—iwt
for different deformation frequencies @ yields important
information about the relaxation processes in the system.

In this case, Eqn (4.7), combined with the expressions
for the moments which can be calculated by Eqns (3.31)
and (3.33), defines [28] the stress in a dilute solution of
polymers in terms of a linear approximation.

oy = —poy +2n(@)yy

where #(w) is the complex shear viscosity with the
components

N
"(w) =n° +nT Ty
(@) =1 ;va
1 314 2
x_[zvar ( vv)2 : 2]
5 1+ (ry@)” 1+ (thw)
"(w)—nTZra)—[ & s+ 2 ] (4.8)
! 1+ (r,o)’ 1+ (o)

Since the velocity gradient is related to the displacement
gradient by the expression v, = —iwA,, it follows that,
instead of the dynamic viscosity, use may be made of
another characteristic—the dynamic modulus. The com-
ponents of the above complex quantitites are linked by the
relation

G' —iG" = —iw(n' +in") .

In the study of the linear response, it is convenient to
consider quantities independent of the concentration and
viscosity —the characteristic [intrinsic] viscosity and the
characteristic modulus:

0 .0

— .. G—1mow
11 [G] =lim 1
c—0 nT

, 4.9)

7" is the viscosity of the solvent and ¢ = nMNy' the
weight concentration of the polymer (N,=Avogadro
number).

Fig. 3 illustrates the dependence of the characteristic
viscosity as defined by Eqn (4.8) on the dimensionless
frequency T, for different theoretical parameters, which
appeared in the formulae for the dependence of the
intramolecular friction coefficient and the dependence of

[n'1/1n"]

0.5 F
(n"1/[n" ]y

-2 0 2 1g(t,0)

Figure 3. Dependence of the real (upper curves) and imaginary (lower
curves) components of the shear viscosity on the dimensionless frequency
for an impermeable (zv = 1.5, @ = 0.5) coil. The numbers opposite the
curves denote the internal viscosity ;.

the relaxation times introduced previously on the number of
the mode:

To = TIO‘71V» Ta,z = Toc(l +‘ch) >

ya:yla@ a=1,2,... KN .

The exponents in the above expressions can be estimated
beforehand from the dependence of the limiting values of
the characteristic viscosity at low and high frequencies on
the length of the macromolecule:

nT y—
:—OZ’[aNM"‘V 1 . (4]0)
=
/ 2nT T Vo M@
. 4.11
o = S Z] @11
[n']/[n']y
0.4

0.2

0 0.5

Figure 4. Dependenceoftheratio ofthe limiting characteristic viscosities
on the internal rigidity coefficient of the macromolecular coil for the
parameters (zv = 1.5 and @ = 0.5 on the basis of the theories of
Peterlin [32] (curve 1) and Pokrovskii and Tonkikh [28] (curve 2).
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We may note that the case where y; = 0 and zv = 2,
corresponding to an ideally flexible permeable macromo-
lecule, reproduces the relations indicated by Rouse [4]. For
low internal viscosities 7y, the results found by Peterlin [32]
follow from Eqns (4.8). The results for an arbitrary internal
viscosity have been published [28]. Fig. 4 presents a
comparison of the results. The infinite ratios of the limiting
values demonstrate the inadequacy of Peterlin’s theory in
the region of high internal viscosities.

4.3 Initial characteristic viscosity

The characteristic viscosity at low frequencies makes it
possible to estimate the role of the volume effects and of
the hydrodynamic interaction in the dynamics of the
macromolecule, which influence, according to Eqn (4.10),
the dependence of the quantity under discussion on the
molecular weight (the length of the macromolecule)

[y = kM 7" (4.12)

Theoretical estimates of the quantity zv — 1 (Table 1)
are in the range from 0.5 (impermeable Gaussian coil), to
1.11 (permeable coil with bulk-phase interaction). A
compilation of empirical values of K and of the power
exponents for different polymers and different solvents may
be found in the literature [8, 15]. Some of the values are
presented in Table 2. The empirical values of the exponent
zv—1 do not exceed 0.9, which indicates a significant
impermeability of the macromolecular coil in a flow.

Table 2. The constants in Eqn (4.12).

Polymer Solvent Temperature/°C 10*K/dl g=! zv—1
Polystyrene Benzene 25 0.42 0.774
" Cyclohexane 35 8.4 0.5
Poly(methyl- Chloroform 25 0.34 0.83
methacrylate)
Polyisobutylene Toluene 25 8.7 0.56
" Benzene 24 10.7 0.5
Polybutadiene Cyclohexane 20 360 0.70
Polyisoprene " 20 300 0.7
(natural rubber)
Polymethyl- Toluene 25 73.6 0.72
siloxane
" Bromocyclo- 28 5.6 0.5
hexane

For an impermeable coil, the characteristic viscosity
defined by Eqn (4.10) can be expressed in the form

<S2>3/2
M b

], =@ (4.13)
where (S?) is the average square of the radius of inertia of
the coil, while the experimental value of the constant @,
called the Flory constant, is [8]

® = 2.66(£0.1) x 10* mol™" .

A study of the characteristic viscosity defined by
Eqn (4.13) makes it possible in this case to interpret a
dilute solution of macromolecules as a suspension of solid
nondeformable spheres with a radius close to the mean
square radius of inertia.

The initial characteristic viscosity defined by Eqn (4.10)
is independent of the characteristics of the intramolecular

friction, but this is a consequence of simplifying assump-
tions. It has been shown for a dumbbell [2] that, when
account is taken simultaneously of the internal viscosity and
the anisotropy of the hydrodynamic interaction, then the
characteristics of these quantities enter into the expression
for the viscosity of type (4.10). This result must appear also
for the subchains model when account is taken of the
anisotropy of the hydrodynamic interaction. Once a
relation of type (4.11) has been established for a certain
polymer, it can be used to determine the molecular weight
of the polymer from the characteristic viscosity [15].

4.4 The mechanism of the intramolecular viscosity
The limiting characteristic viscosity, defined by Eqn (4.11),
is of special interest in the study of the influence of
intramolecular friction on the dynamics of the macro-
molecule in a viscous liquid. For low initial characteristic
viscosities y € 1, Eqn (4.11) can be rewritten thus:

_2nT

3 WC(ZV -0)tyy, ., (4.14)

']
where {(x) is Riemann’s zeta-function.

Experimental studies indicate [33, 34] that the limiting
characteristic viscosity for a given polymer-homologous
series is independent of the length of the macromolecule
and the type of solvent.

Since 1, ~M ™, n~M ™', and y, ~ M ~®, the relation

(4.15)

follows from Eqn (4.14) and the fact that the limiting
characteristic viscosity is independent of the length of the
macromolecule.

A consequence of the independence of the limiting
characteristic viscosity of the type of solvent is that y; is
independent of the viscosity of the solvent, which means
that the dimensional characteristic of the ‘internal’ friction
of the macromolecule {y, is proportional to the viscosity of
the solvent and the ‘internal’ friction is not solely internal.
On the basis of empirical studies, the conclusion that the
solvent contributes significantly to the intramolecular
viscosity was reported recently [35] and was referred to
as the ‘solvent modification effect’.

The fact that the limiting value of the characteristic
viscosity at high frequencies is not zero indicates the
existence of intramolecular (taking into account the solvent
molecules) relaxation processes with relaxation times which
are smaller than the reciprocal of the frequency of the
measurement. The true limiting value is naturally zero and
experi-ment sometimes reveals a step at a frequency w,
which indicates the occurrence of a relaxation process with
a relaxation time T~ w;'. This phenomenon may be
described by including the relaxing intramolecular viscos-
ity [27].

Fig. 5 illustrates the dependence of the viscosity on the
frequency obtained taking into account the intramolecular
relaxation process with a relaxation time 7. it may be hoped
that the study of intramolecular relaxation processes from a
phenomenological point of view will promote the establish-
ment of the detailed mechanism of the rapid relaxation
processes in polymers, although there is no doubt that more
detailed models of the macromolecule must be used at high
frequencies.

O—-—v+1=0.
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Figure 5. Dependence of the real and imaginary components of the
characteristic viscosity on the dimensionless frequency. The curves have
been calculated for y, = 0.1 and /27, = 107, The dashed line
represents the continuation of the relation based on Peterlin’s theory
[32]. The curves designated by the letter R represent the dependence based
on Rouse’stheory (zv = 2, @ = 0).

4.5 The dynamic modulus

Here comparison will be made of the values of the
characteristic modulus calculated by Eqns (4.8)—(4.9)
with the corresponding experimental values.

Fig. 6 demonstrates that, for certain values of the
maximum relaxation time t; and certain values of the
exponents zv and @, the theory reproduces satisfactorily
the experimental relations for polymer solutions at infinite
dilution [36—39].

We may note yet again that the identifying constants are
unambiguously determined by the limiting values of the
characteristic viscosity and can be estimated independently,
so that one may conclude that, in the region of compar-
atively low frequencies, the schematic representation of the
macromolecule by a subchain taking into account intra-
molecular friction, the volume effects, and the
hydrodynamic interaction makes it possible to explain
the dependence of the viscoelastic behaviour of dilute
polymer solutions on the molecular weight, temperature,
and frequency. At low frequencies, the description becomes
universal. In order to describe the dependence of the
dynamic modulus on the frequency at high values of the
latter, use must be made of other more detailed models,

[€))] 0 2

2 0
Figure 6. Dependence of the characteristic dynamic modulus for
polystyrene solutions in decalin (curve /) and in toluene (curve 2) on
the frequency. Circles—experimental  values according to
Russer et al. [39]. The theoretical curves have been plotted for
zv=1.788 and 1, =2.5%x1073s for case / and zv = 1.5 and
T, = 8.35 x 10—* for case 2.

which have been examined, for example by Gotlib et al. [5]
and Priss and coworkers [40, 41], and which make it
possible to describe large-scale motions of the chain.

As an illustration, certain data characterising dilute
polymer solutions are presented in Table 3.

4.6 Nonlinear effects in simple shear

The hypothesis, employed in the theory, that certain true
values can be replaced by average equilibrium values renders
the results applicable for small extensions of the macro-
molecular coil and hence for low velocity gradients: the
results for the moments are valid to within second-order
terms in the velocity gradients. It follows from Eqns (3.31)
and (4.7) that, for low velocity gradients in the stationary
case the expression for the stress tensor is

] N
ou = —pSy + 21"y +§”‘:Z(VU<P,YPZ> +vg{pjpi)) - (4.16)
v=1

This equation makes it possible to calculate stresses to
within third-order terms in the velocity gradient.

We shall consider the case of shear when one of the
components of the velocity gradient tensor has been
specified and is constant, namely v, # 0. This case is
close to the situations which as a rule occur in the
experimental study of polymer solutions [15]. In order to
achieve such a flow, it is necessary in this case that stresses

Table 3. The characteristic viscosities and maximum relaxation times of dilute solutions.

System T/°C p°/g em—3 7’/ P 10=5/M ]/ em3 g=t  10%7y/s
Polystyrene in decalin [36] 16 0.8868 0.0295 8.6 76 0.35
Polystyrene in di-2-cthyl-hexyl phthalate [36] 22 0.9827 0.678 8.6 — 7.59
Polystyrene in o-chloronaphthalene [36] 25 1.195 0.0315 8.6 197 1.26
Polystyrene in apochlor 1232 [36] 25 1.269 0.142 8.6 183 3.98
" 25 1.269 0.142 4.1 111 1.2
1,4-Polybutadiene in chloronaphthalene [37] 25 — 0.0312 2.2 200 0.26
" 25 — 0.0312 9.1 510 2.75
1,4-Polybutadiene in decalin [37] 25 — 0.0245 9.1 510 2.14
Poly-a-methylstyrene in a-chloronaphthalene [38] 25 — 0.0315 14.3 252 2.0
Poly-a-methylstyrene in decalin [38] 25 - 0.0245 14.3 135 0.79
Polystyrene in decalin [39] 15 0.887 0.287 180 300 23
Polystyrene in toluene [39] 20 0.867 0.0059 180 3100 69
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should be applied to the system and not only the shear
stress a1, as in the case of a linear viscous liquid, but also
normal stresses, so that in the case under consideration the
stresses tensor is

o, 01 0
oy 0y 0

0 0 033
The shear stress g, and the differences between the normal
stresses 017 — 033 and d,, — 033 are usually measured in the
experiment.

For a specified motion, Eqn (4.16) defines, apart from
the second-order moments (3.34), the nonzero components
of the stress tensor, which makes it possible to formulate
the expressions for the shear viscosity and the difference
between the normal stresses:

N
y,:nTer[l —Zv(rvv]2)2] : 4.17)
v=I
5 2
oy — 0y =nT Z(Tvvlz) s Op—03=0. (4.18)
v=I

It follows from Eqns (4.17) that the viscosity or, what
amounts to the same thing, the characteristic viscosity is
independent of the velocity gradient for flexible chains
(y, = 0). For chains with an internal viscosity, the viscosity
diminishes with increase in the velocity gradient. The nature
of the variation may be estimated. It is readily seen from
Eqns (3.34) that, for high values of y,, Z, does not exceed 4/
3 and therefore only the first terms contribute to the sum in
Eqn (4.17), which includes Z,, and for high molecular
weights one can therefore assume that

Zv~y‘,:ylv@, >0, 9y, ~M9.

From Eqn (4.15), according to which ® = zv — 1, the
dependence of the viscosity defined by Eqn (4.17) on the
molecular weight can be formulated as follows:

0=t~ M*V, (4.19)

According to the theoretical estimate of the exponent
(Table 1), zv varies from 1.5 (impermeable Gaussian coil) to
2.11 (permeable coil with bulk-phase interactions). Empiri-
cal estimates of the exponent zv by Eqn (4.19) for solutions
in which the coils are nearly unperturbed yield the exponent
2zv = 3 [15, 42].

We may note that it has been shown for the dumbbell [2]
that the joint allowance for the internal viscosity and the
anisotropy of the hydrodynamic interaction leads to the
appearance of a nonzero second difference between the
normal stresses g, — g33. Since the internal viscosity may
be estimated, for example, from dynamic measurements,
this effect may serve for the estimation of the anisotropy of
the hydrodynamic interaction in a molecular coil.

5. Optical anisotropy

Polymers and their solutions become optically anisotropic
in a flow, which is associated with the fact that the
optically anisotropic parts of the macromolecule (units and
segments) are oriented by the flow and the entire
macromolecular coil is deformed in the latter. This

phenomenon is widely used in combination with theoret-
ical results for the investigation of the structures and
properties of macromolecules [15].

5.1 The relative permittivity tensor

In order to examine the optical anisotropy, we begin with
the relative permittivity tensor for the system g, which is
defined (see e.g. Landau and Lifshits [43]) by the relation

EikE/( :Ei+4‘n:P,», (51)
where E; is the average electric field strength acting in the
medium and P; is the polarisation per unit volume of the
system expressed in terms of the polarisabilities of the
constituent elements of the system.

We shall make use of the heuristic model mentioned
previously in Section 2.1: each macromolecule consists of z
segments and is surrounded by solvent molecules. Suppose
that the solvent molecules have an isotropic polarisability
oy, while the segment has an anisotropic polarisability o.
In the coordinate system linked to the segment, the
anisotropy tensor is diagonal and we assume that it has
axial symmetry, so that ay, = a33. In any other coordinate
system, the polarisability tensor of the segment has the form

Aip = CisCrsUss »

where c;, is the cosine of the angle between the ith axis of
the laboratory system and the sth axis of the molecule.

Each solvent molecule makes an isotropic contribution
to the polarisability vector; the contribution of each
segment of the macromolecule is anisotropic and is
expressed by the formula

1
B, = ¢y clioiFy = [“5% + Aa (cxl Ck1 — g‘syk) ] F,

where a = (o) +20,)/3 and Ao = o) — o).

The true molecular field F acting on the segment differs
from the average field E because the scale of the dimensions
of the segments is molecular.

Taking into account all the molecules and segments and
designating by nz and m the densities of the number of
segments and of the number of solvent molecules (n is the
density of the number of macromolecules), we obtain, after
averaging with respect to the orientations of the segments,

P, = (nzady, + nzAaay + magdy)Fy , (5.2)
where a symbol has been introduced for the average of
the directing cosines for the segment relative to the
laboratory coordinate system—the orientation tensor
ag = (cs1¢x1) — 0 /3. The internal field F, is assumed
to be the same for the segments and solvent molecules.

Next, use is made of the simple hypothesis that all the
positions of the molecules and segments are equally
probable, so that, following tradition [44], we formulate
an expression for the internal field as a field within a
spherical cavity:

4n

Fi:Ei+_Pi'

3 (5.3)

Eqns (5.1)—(5.3) define the relative permittivity tensor
for the system which is formulated below to within second-
order terms in the orientation tensor:
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\2
& = &0y + 4nnzAa (80 ;_ > Ay

2y 2\
1 —g +4n (80 ;_ ) ] (4nnzAa)? (%)

1 g +2Y
X ayaydy + 3 (4nnzAa)? <0T) aay -

L
2

(5.4)

To a first approximation, allowance for the internal field
by the Lorentz procedure is equivalent to multiplication by
the factor

& +2 .

(%)

This result is well known [44] for isotropic systems. In the
second approximation, the principal axes of the relative
permittivity tensor do not coincide, generally speaking,
with the principal axes of the orientation tensor.

In conformity with the significance of the terms
employed by investigators of anisotropy [15], the effects
associated with the first-order terms in Eqn (5.4) may be
called the effects of the intrinsic anisotropy, while the
second-order effects may be referred to as the effects of
the anisotropy of the microform. It is readily seen that
interesting situations may arise when Aa < 0; in this case,
the coefficients of the first- and second-order terms have
different signs.

5.2 The polarisability of the macromolecular coil

Eqn (5.4), formulated in the previous Section, defines the
relative permittivity tensor in terms of the average
orientation of certain uniformly distributed anisotropic
elements, which we shall interpret here as the Kuhn
segments of the model of the macromolecule described in
Section 2.1 and we shall now discuss the characteristic
features arising on passing to the consideration of a dilute
polymer solution, in which the segments of the macro-
molecule are not uniformly distributed but are
concentrated in the macromolecular coils.

As before, we consider each macromolecule to be
divided into N subchains and, using the formula relating
the tensor of the average orientation of the segments of the
macromolecules aj to the distance between the ends of the
chain [6—8], we arrive, to a first approximation on the basis
of Eqn (5.4), at Zimm’s expression [45] for the relative
permittivity tensor:

& = 805i/< + nF((r‘warZ) —%<F7Aa.y}jy>5lk) .

where n is the density of the number of macromolecules in
solution, the matrix A has the form specified by formula
(2.8), while the coefficient of the anisotropy of the
macromolecular coil I' is given by the following expression
in the case where the macromolecule is modelled by a freely
jointed chain of Kuhn segments:

g + 2V 3N
3 57127

(5.5)

r= 41‘CAOC(
where z is the number of Kuhn
macromolecule.

The anisotropy of the macromolecule has been calcu-
lated for other chain models. Expressions are known for the
anisotropy coefficient in the case where the macromolecule
has been represented schematically by a continuous fila-

segments in the

ment (the persistent length model) [46, 47] and also in the
case where the microstructure of the macromolecule has
been specified. In the latter case, the anisotropy coefficient
of the macromolecule is expressed in terms of the bond
polarisabilities and other microcharacteristics of the macro-
molecule [6—8].

The expression for the relative permittivity tensor
[Eqn (5.5)] in terms of the normal coordinates introduced
by means of Eqns (2.12), assumes the form

N
1
g = 800y + ”FZ A ((piot) — 3 ( /’_7/’7)5:'/() . (5.6)

=1

When account is taken of the excluded volume effects,
one must also take into account the possible effect of the
shielding of the inner segments of the macromolecular coil,
the latter effect being greater the longer the macromolecule,
so that the expression for the anisotropy coefficient, which
is covariant in relation to the subdivisions into subchains,
assumes the form

2 2v
I' = 4nAa M 3L
3 ) 5(R?)

The dependence of the polarisability coefficient on the
length of the macromolecule may deviate from the relation
which follows from Eqn (5.7).

I ~ M—Zv

(5.7)

(5.8)

The expression for the relative permittivity tensor
[Eqn (5.6)] is valid only to a first approximation as regards
the orientations of the segments and describes, in words of
Tsvetkov et al. [15], the anisotropy of the system associated
with the intrinsic anisotropy of the segments. In order to
take into account the anisotropy of the microform, one
must turn to the second-order terms in Eqn (5.4).

The expressions given above are valid for polymer
solutions at any concentration and are independent of
the assumptions made in the calculation of the moments.
Here it only remains to use the expressions for the moments
in order to obtain the dependence of the relative permittiv-
ity tensor on the velocity gradients.

5.3 Anisotropy in a stationary shear flow
The expressions for the relative permittivity tensor
[Eqn (5.6)] are valid for flows of arbitrary type. How-
ever, the optical anisotropy of polymer systems is
frequently studied [15] under the conditions of simple
shear when the velocity gradient v;, # 0. The system
investigated then becomes, generally speaking, a ‘triaxial
dielectric crystal’ with nonzero components of the relative
permittivity tensor.

The relative permittivity tensor is then nondiagonal but
can be brought to the diagonal form by rotation about axis
3 by an angle y defined by the formula

23]2

tan 2y = 5.9)

€11 —&n
The extinction angle y and the differences between the
refractive indices (the extent of double refraction) in
different principal directions are determined experimen-
tally. For a beam propagated in directions 3 and 1, we find
respectively
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1 2 2 11/2
ny—n :ﬁ[(s” — &) +45|2]

E)

ny —ny = ﬁ(szz —&33) , (5.10)

where 71 is the average refractive index.

We can now formulate on the basis of Eqn (5.6) the
components of the relative permittivity tensor using the
expressions for the moments [Eqn (3.34)] and can determine
the gradient dependence of the above quantities to within
second-order terms:

N
ny —np =S E TyV12 »
v=1

N

§ : 2
ny —n3 = ) ZV(TVVQ) N

v=1

1

T
tan2x:m, X:Z—AVQ, (5]1)
where the dimensionless quantity
r
s=2" M. (5.12)
2nu

independent of the number of subdivisions, has been
introduced.

In order to establish the dependence of this quantity on
the length of the macromolecule, one can determine
experimentally the influence of the shielding effect.

The quantity

L5042
2 S, ’
called the characteristic angle [15], has also been intro-
duced in Eqns (5.11).

For low internal viscosities, the relation Z, = (2/5)y, is
valid, so that, knowing the dependence of the relaxation
time and of the internal viscosity on the number of the
mode, we can write, with the aid of the zeta-function {(x),

1 T

A =3 ) [C(sz) +§y|C(2zv— o) .

The first term is proportional to the solvent viscosity #°
and the second to the internal viscosity (kinetic rigidity) of
the macromolecule, so that measurement of the anisotropy
of solutions in different solvents makes it possible to
estimate the quantity

Ty ~ MO (5.13)

When account is taken of the relation indicated
previously [see Eqn (4.15)], the power exponent in
Eqn (5.13) is unity, which agrees with the experimental
results [15, 48]

T NMlto 1.2 )

We may note that, for high velocity gradients in an
experiment with I' <0, the so-called anomalous depend-
ences of the degree of double refraction and of the
extinction angle on the velocity gradient are observed
[49—51], indicating that the principal axes of the tensor
of the average orientation of the optical anisotropy do not

coincide. In order to interpret this phenomenon, one must
turn in the first place to equations of type (5.4) for the
relative permittivity tensor which are nonlinear as regards
orientation.

5.4 Oscillating double refraction
The consideration of the optical anisotropy for an
oscillating  velocity —gradient 7y, ~e™ is usually
restricted [52] to a linear approximation. The relative
permittivity tensor can then be expressed in the form

& = &by — 2718 (@)yyr » (5.14)
where a complex dynamo-optical coefficient S(w) =
S'(w) +S"(w), characterising the behaviour of the sys-
tem, has been introduced.

Under the conditions of shear motion, Eqns (5.9) and
(5.10) lead to the following quantities in the case con-
sidered.

T

7 An=n; —ny=—-S(@)vy,, ny—n3=0.

X:

An expression for the dynamo-optical coefficients with
components

N
S'(a)):SZra x%
o=1

3 n 2
1+ (o) 1+ (tho)’]’

1

N
3 2(1
$"(@) =5 Y 7o x & (Ut 7)
a=1

1+ (t,0)° 1+ (tho)’

(5.15)

follows from the expression for the relative permittivity
tensor (5.6) and Eqn (3.31) for the moments. The quantity
S is defined by Eqn (5.12).

In the case where the intramolecular viscosity is
neglected (y, = 0), the frequency dependence of the
dynamo-optical coefficient agrees with the analogous
dependence of the shear viscosity [see Eqn (4.8) and
Fig. 3]. When the intramolecular viscosity is taken into
account (y, #0), the variations of the dynamo-optical
coefficient also remain similar to the relations shown in
Fig. 3 except that the limit of the real part of the dynamo-
optical coefficient at high frequencies is zero. By comparing
these two quantities we can estimate from experimental
data the importance of intramolecular friction in the
dynamics of the macromolecule.

The frequency dependences of the dynamo-optical
coefficient for infinitely dilute solutions are available in
the literature [55] and it is interesting to compare them with
the relations based on Eqns (5.15).

The theoretical results presented here [53] extend the
results of Thurston and Peterlin [54] to the more general
case where the bulk-phase interactions are taken into
account and the internal viscosity parameters assume
arbitrary values.

6. Conclusions

Dilute polymer solutions constitute a unique example of a
system with slow relaxation processes. The study of this
system demonstrates the importance for the description of
the behaviour of a system, of the concept of the internal
thermodynamic variable introduced in the thermodynamics
of irreversible processes.
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As already mentioned in the Introduction, the results
presented are valid for solutions at limiting concentrations
of the polymer (¢ — 0) and for cases where the solvent is a
viscous liquid, i.e. when relaxation processes in the solvent
are neglected, which is possible if the solvent relaxation time
T is short compared with the characteristic relaxation time
of the macromolecule:

TLT .

The case where the characteristic times 7 of the external
and internal resistance are comparable to the relaxation
times of the macromolecule are of theoretical interest (for
T = 0, one is concerned with the viscosity of the solvent and
the intramolecular viscosity).

A problem of this kind arises in the study of the
dynamics of the macromolecule is a nondilute system. A
natural basis for the investigation of this problem is
provided by the procedures of the non-Markov random
processes, the use of which leads to unexpected and
interesting results, which have been discussed in a
review [56]. Thus it was found that, in contrast to the
case examined in the present review, the existence of several
relaxation branches follows from the general equation for
the dynamics of the macromolecule and different phenom-
ena are determined by different sets of relaxation branches.
When viscoelastic behaviour is considered, it is found that
the calculated principal relaxation time for the reaction of
the system agrees with the initial specified relaxation time
for the external and internal resistances or, in other words,
the theory of viscoelasticity proves self-consistent with
respect to the relaxation time.

When the thermal motion of the macromolecule is
considered, a certain intermediate length & appears. The
length is such that the nature of the displacement of the
macromolecule and of its constituent particles is inconstant:
for shifts by distances [ < &, the motion is freer and the
diffusion coefficient is smaller than for shifts by distances
[ > & The macromolecule is found to be located near its
initial position. This feature of the thermal motion of the
macromolecule in a system of intertwined, weakly con-
nected macromolecules was postulated by earlier
investigators [57] and was described qualitatively by the
introduction of a ‘tube’ with a radius & within which the
macromolecule is able to execute the so-called reptation
motions.

The study of the dynamics of the macromolecule on the
basis of the generalised equation taking into account the
character of external and internal resistances, which are in
the nature of an after-effect, has led to the creation of a
logical theory of the dynamic behaviour of concentrated
polymer solutions at limiting concentrations (¢ — 1).

The author is indebted to G R Ivanitskii for comments
after reading the manuscript.
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