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Ya I Frenkel’s studies of the theory
of the electric conductivity of metals

R A Suris, V Ya Frenkel’

Abstract. The bulk of this contribution is a paper by
Ya I Frenkel’ on the theory of the electric conductivity of
metals, written in 1928 and published in the same year in
Uspekhi Fizicheskikh Nauk. Much of this paper is based
on the original results of Frenkel’ himself obtained in the
years 1924—1927. An introductory section provides a brief
review of Frenkel’s main investigation in the fields of
quantum mechanics and the kinetic theory of he condensed
state, applied to specific problems in physics. Frenkel’s
paper is accompanied by necessary comments relating
mainly to the current state of the art of the subject.

Much has been written about Yakov I1’ich Frenkel’ [1 —-3],
including also in Uspekhi Fizicheskik h Nauk [4, 5]. We shall
therefore preface Frenkel’s paper with just a brief
biographical sketch.

Yakov II’ich was born on 10 February (new style) 1894
in Rostov-on-Don in a family of an office worker. His
father had been a member of the ‘Narodnaya Volya’
(‘People’s Freedom’) organisation and had spent seven
years in Siberian exile because of this activity. In 1913,
after finishing the well-known K Mai high school in
St Petersburg, Frenkel’ entered the St Petersburg Univer-
sity in the Physicomathematical Faculty. He completed a
full course in three years and stayed to train for a university
teaching job. In the autumn of 1917 Yakov II’ich passed in
record time all the relevant examinations and was awarded
a Master’s degree.

This helped him to gain in 1918 the position of a privat-
dozent (unestablished university lecturer) at the Tauric
University in Simferopol. He worked there for three
years. The very hard conditions during the Civil War in
Crimea were aggravated in Frenkel’s case by his imprison-
ment for participating in the government of the Tauric
Republic: he worked as Deputy People’s Commissar of
Education and was a member of the editorial board of the
newspaper Krasnyi Krym (Red Crimea). Frenkel’ was
arrested by the intelligence service of Denikin’s Army
and spent a few months in prison. When he left prison
he was prevented from continuing his teaching. One should
mention also the practically complete isolation of Crimea
from St Petersburg (at that time called Petrograd) and
Moscow, where new physics schools began to evolve
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rapidly beginning from 1918. This is the reason why, after
a successful start in St Petersburg, the subsequent scientific
achievements of Frenkel’ were very modest. He did however
gain teaching experience and, moreover, established pro-
fessional and personal relationships with outstanding
scientists working in Simferopol: the mathematicians
N M Krylov and V I Smirnov, the physicist | E Tamm,
the biologist A G Gurvich and A A Lyubishchev, and the
literature specialist N K Gudzii.

In March 1921 Frenkel’ returned to Petrograd and
began to work simultaneously at the Physicotechnical
Institute (in his absence he was elected a staff member
and researcher back at the time of foundation of the
Institute in 1918—see p. 73 in Ref [1]) and in the
Physicomechanical Faculty of the Polytechnic Institute.
He soon became head of the Theoretical Division at the
Physicotechnical Institute (PTI) and held the Chair of
Theoretical Physics at the Polytechnic Institute. All the
scientific activities of Yakov II’ich took place at these two
institutes which could justifiably be regarded as the leading
scientific and teaching centres for physics during the first
quarter of a century of the existence of the USSR. At
various times Frenkel’ worked simultaneously at the
Institute of Chemical Physics, the Main Geophysical
Observatory in Leningrad, the Institute of Theoretical
Geophysics, the All-Union Institute of Aviation Materials
in Moscow, and Kazan University.

Frenkel’ travelled several times abroad: in 1925-1926
he went to Germany, France, and England as a Rockefeller
Foundation fellow; in 1930—1931 for ten months he was a
visiting professor at the Minnesota University in the USA,
and in 1927 he spent two months in Italy and France.

Frenkel’ became professor when still in Crimea at the
end of 1920 and was elected a corresponding member of the
Academy of Sciences in 1929 together with his friends and
colleagues P L Kapitza and N N Semenov, who had been
his colleagues at A F loffe’s seminar on new physics held in
Petrograd (1916—1917), and then at the PTI. This was the
end of the official career of Yakov II’ich. To a considerable
extent this was because of his uncompromising struggle with
the official Marxist philosophy, which had imposed restric-
tions on the development of theoretical physics, and even
physics as a whole, in the thirties and forties.

Censorship has prevented inclusion of these aspects of
Frenkel’s biography in the books cited earlier [1—3]
Therefore, we shall try (at least briefly) to give an account
of his relationships with the official Soviet philosophy.
When visiting the USA in the early thirties, Yakov II’ich
had tried to gain the attention and sympathy of American
scientists and intellectuals for his mother country, and
particularly to the policy of the development of science
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Yakov II’ich Frenkel’, Leningrad, 1936

and culture, which has undoubtedly had a major positive
impact. In his own words, on return home this gave him the
right to criticise sharply the distortions of such policy which
he saw with a ‘fresh eye’. At that time such policy
distortions in science affected most strongly the physicists
because of the attempts of Marxist philosophers to impose
the dogma of Marxist —Leninist philosophy. In the opinion
of and in accordance with the demands of the heralds of this
philosophy, it should direct and control the development of
new physics, particularly quantum mechanics and relativity
theory. These philosophers rejected almost completely the
universally recognised achievements of these fields of
physics.

At the Third Physicochemical Conference, held in
November 1931, Frenkel’ spoke against such guardianship
of physics. The published proceeding of this Conference
make no mention of his speech. However, in the subsequent
publications of these philosophers, above all those of
A A Maksimov, there have been frequent citations of
Frenkel’s opinions. It has been found subsequently that
these citations have been based on the minutes of a special
meeting of the Conference Communist Party Group, held
on 14 November. Frenkel’ was called to this meeting and, in
answer to questions from some philosophers among the
members of this Group, stated that ‘“The dialectical method
has no right to claim the leading role in science’ and that
what he ‘‘read in the works of Lenin and Engels could not
change [his] gnosiological views.”” In reply to a direct
question from the chemist S A Balezin ‘s it possible to
conclude from your statement that dialectical materialism is
an obstacle in the development of science and particularly
natural science?”” Frenkel’ replied “Yes, it is an obstacle, at
least in the dogmatic form in which it is taught now.” He
also added, in answer to another question, that ‘‘l am not

enthusiastic about what I read in the books of Engels and
Lenin. Neither Lenin nor Engels are authorities for
physicists”” (p. 141 in Ref. [6]).

Yakov II’ich confirmed later his negative attitude to the
regime of Arakcheev, which the official philosophers tried
to impose on physics. He did this in the middle thirties when
the journal Pod Znamenem M arksizma (Under the Banner
of Marxism) launched a campaign of defamation (with a
clear political slant) of a number of Soviet physicists
including S I Vavilov, A F loffe, L D Landau,
I E Tamm, V A Fok, Yal Frenkel’, and some others.
The majority of these leading physicists responded with
dignity to this ‘criticism’ and defenced with courage modern
physics from the attacks of the ‘physics ignoramuses’ such
as A A Maksimov, V F Mitkevich, and others. It was
surprising not to find Yakov II’ich among those who
answered the attacks, since he had the reputation of a
resolute and uncompromising person, as often confirmed
later by his colleagues and friends [2]. The answer to this
puzzle has been found in the archivesf. A A Maksimov’s
papers have been found to include an article by Ya I Fren-
kel’ counterattacking Maksimov and others with him so
strongly that the editors of the journal Pod Znamenem
Marksizma refused to publish it (this article has been
published quite recently; see Ref. [7]).

The spectrum of Frenkel’s scientific interests was
exceptionally wide and included classical electrody-
namics, electron theory, quantum mechanics, Kkinetic
theory of solids and liquids, optics of crystals, physics of
semiconductors, nuclear physics, as well as astrophysics,
biophysics, and geophysics. He belonged to the galaxy of
polymath scientists who have now passed away and whose
kind would be hard to find in the history of physics of our
country.

To conclude, we must mention that Frenkel’ was the
founder and continued to be the leader, right to his last
days, of the first seminar on theoretical physics, in the
USSR. This seminar met weekly at the PTI. Frenkel’ was
the author of the first complete course of theoretical physics
(theoretical mechanics, electrodynamics, statistical physics,
wave mechanics) written in 1925—-1940 and published fully
in Russian, as well as partly in German and in English. He
wrote a total (apart from translations and new editions) of
22 monographs and over 200 scientific and popular papers.

Yakov II’ich Frenkel’ died at night on 23 January 1952.

* *
3

The above list of active scientific interests of
Ya I Frenkel’ can be grouped into three main trends,
which have attracted him practically throughout the whole
period of his scientific work. The first was the physics of
real crystals (Frenkel defects, Frenkel solitons, theory of
strength) and the kinetic theory of liquids. The problems in
these branches of physics occupied Yakov I1’ich beginning
from 1923 to the end of his life. In his autobiography,
published in 1946, he wrote decisively: “‘Although I have
been concerned with a number of problems belonging to
different branches of physics, physical chemistry, and
geophysics, the mainstream of my work has been the

TG A Savina (staff member of the Archives of the Russian Academy of
Sciences, Moscow) kindly drew our attention to this article (which exists
in typescript form).
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Ya I Frenkel’ lecturing at the Physicomechanical Faculty of the
Leningrad Polytechnic Institute, 8 March 1937.

structure of matter, particularly of liquids and solids™
(p. 470 in Ref. [2]).

The second of his main preoccupations have been the
problems in nuclear physics. The master thesis of
Yakov Il’ich, published in three issues of Zh urnal Russkogo
Fiziko-Khimicheskogo Obshchestva, Chast’ Fizicheskaya
(Journal of the Russian Physicochemical Society, Physical
Part) in 1917 -1919 [8] was then, and for a long time after,
the fullest scientific review of the subject in the Russian
physics literature of the time. Frenkel’ was most active in
nuclear research in the years 1936—1939 (developing the
concept of the temperature of nuclei and applying the ideas
of statistical physics to the description of nuclei, proposing
an electrocapilllary theory of fission), but this continued
well into the late forties.

The last but not the least was his interest in the electron
theory of solids. This included quantum (1924) and wave-
mechanical (1927 —1928) theories of metallic conduction, a
theory of paramagnetism and ferromagnetism (1927 —1930),
physics of semiconductors and insulators, and physics of
quasiparticles which have become known as the Frenkel
excitons (1931-1936). Frenkel’ continued work on these
subjects also later and gave a full account of the majority of
his results in the second edition of his book Vvedenie v
Teoriyu Metallov (Introduction to the Theory of Metals),
which had ten editions in Russian and foreign languages.

In 1967 on the occasion of the fiftieth anniversary of the
October Revolution Uspekhi Fizicheskik h Nauk published

in two issues [9—10] the most important papers of Soviet
physicists. Yakov Il’ich was represented in these jubilee
issues by his paper on excitons [11]. This tradition was
followed by a jubilee issue of Uspekhi Fizicheskikh Nauk
published on the occasion of the 75th anniversary of the
foundation of the journal [12]F.

When planning to present Frenkel’s contribution to the
theory of metals on the centenary of his birth we decided, in
a sense to supplement Ref. [12] and to reproduce here
Frenkel’s review “Theory of metallic conduction” written at
the invitation of the editorial board of Uspekhi Fizicheskikh
Nauk in 1928 and presenting an extended summary of his
own results [13]. We decided to introduce this paper by this
short biographical note and to follow it by a number of
appendices and comments. We hope that these additions
will not be regarded as intrusions into Frenkel’s text and
will help to guide the reader to some of the early original
work of Frenkel’ as well as to some of the subsequent trends
of research in this branch of physics.

The physics of metals can be regarded as a kind of a
proving ground where new physical principles are being
tested. The concept of free electrons has been developed by
Drude. His theory has been refined by Lorentz, who took
into account the Maxwellian distribution of the electron
velocities in a metal. Then, in 1924, Frenkel’ applied the
Rutherford —Bohr model of an atom to an electron gas and
was thus able to resolve the paradox of the nonparticipation
of free electrons in the specific heat of metals, which was
called the ‘specific heat catastrophe’ by P S Ehrenfesti.

Two new approaches to the problem of the electric
conductivity of metals were proposed in 1927. Both were
presented at the A Volta Memorial Congress held in Como
in 1927 on the centenary of Volta’s death. One approach,
proposed by A Sommerfeld, was related to the fundamen-
tal—for the theory of metals—transition from the
Maxwell —Boltzman classical statistics to the Pauli—Fermi
quantum  statistics. The other, put forward by
Ya I Frenkel’, was based on a direct extension of the
ideas of de Broglie on the wave process, associated with
the motion of electrons in empty space, to electrons moving
in a metal. The stages of the development of this approach
are described in the paper of Yakov II’ich published in 1928
and reprinted below§.

We are very indebted to V I Perel” for valuable
comments and suggestions which he made in the course
of a review of the material presented here.

fTNoneofthepapersofYakov I1’ich, who published 17 of them in Uspekhi
Fizicheskikh Nauk between 1924 and 1951, have been reprinted in this
issue.

fIt is appropriate to point out here that Frenkel” was the first to apply the
ideas of Rutherford and Bohr on the nuclear model of atoms to contact
phenomena in metals. A theory he developed in 1916 made it possible in
particular to provide a theoretical basis of the Volta sequence of metals
(Volta series) in which each metal acquires a positive charge when brought
into contact with the next term of the series. An interesting assessment of
this paper of Yakov II’ich was given by T P Kravets (p. 74 in Ref. [1]).
The relevant papers of Frenkel’, which were published simultaneously in
1917 in Russia [14] and in England [15] and had become widely known,
served in 1927 as one of the reasons for inviting Yakov II’ich to the Volta
Memorial Congress in Como.

§This paper of Ya I Frenkel’ is the core of the article presented here. The
general list of references appended at the end includes the main papers of
Yakov 11’ich on the theory of the electric conductivity of metals as well as
some more general work on the physics of metals where detailed
discussions are given of the relevant problems [16—28].
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Theory of metallic conduction
Ya I Frenkel’ (Leningrad)f

1. Drude theory

The main and most characteristic property of metallic
materials is their electric conductivity. The electric
conductivity of metals not only is quantitatively much
higher than the conductivity of any of the other materials,
but it also differs qualitatively. The passage of a current
through a metal is not accompanied by the transport of
matter in the ordinary sense of that word, in contrast to
what happens in electrolytes. This property of the metallic
electric conductivity has been explained soon after the
appearance of the electric theory by the postulate that
electricity is transported in metals not by ions, i.e. not by
charged atoms or groups of atoms, but by ‘free’ electrons
which become separated from the individual atoms and
move independently. Drude was the first to formulate
quantitatively the theory of free electrons. Drude based his
theory on an analogy between the motion of free electrons
in a metal and the motion of molecules in a gas. In both
cases the particles (electrons or molecules) are not bound at
specific equilibrium positions, but move over the whole
volume occupied by the investigated body; the difference is
only that gas molecules are confined within this volume by
solid walls of some vessel, whereas in a metallic body the
role of these walls is played by its surface.

This circumstance by itself does not yet provide grounds
for drawing the analogy between electrons in a metal and
gas molecules (for example, in liquids again molecules are
not bound at some equilibrium positions). Moreover, there
is every reason to assume that free electrons experience, in
contrast to gas molecules, enormous forces which are
exerted on them by atoms, positive ions, and other
electrons and which continuously bend their paths. The
gas molecules, on the other hand, usually move rectilinearly
and uniformly in the intervals between very brief collisions.
Therefore, the identification of the motion of free electrons
with the motion of molecules in a gas has no reasonable
basis. It was introduced by Drude mainly, if not exclusively,
in order to simplify his calculations.

Drude left open the question of the number of free
electrons n (per unit volume) and of the mean free path /,
selecting a priori only their mean-square velocity v, defined
by the familiar equation

Im? =34kt , )

where k is the Boltzmann constant and 7 is the absolute
temperature. It then immediately follows that the number
of free electrons should be very small compared with the
number of neutral atoms which hold firmly on to their own
electrons. Otherwise the heat capacity of metals would have
been considerably greater than the value (6 calories per one
gramme-atom), which is predicted by the Dulong—Petit law
and which follows from the theorem on the equipartition of
energy. This theorem of classical statistical mechanics
becomes invalid in the case of solids at low tempera-
tures: according to Nernst’s theorem the heat capacity of
solids tends to zero as temperature is lowered. On the other
hand, the heat capacity of a monatomic gas retains a

FFirst published in Usp. Fiz. Nauk 8 (2) 155—193 (1928).

constant value (three calories per one gramme-atom).
Therefore, the theory of an electron gas confined in a
solid metal can be reconciled with the experimental
observations only if the number of free electrons is small
compared with the number of atoms.

If we assume that n is known, we can readily calculate
the electric conductivity of a metal. According to Drude,
this can be done as follows. In the presence of an external
electric field £ the motion of free electrons between two
collisions is subject to an acceleration w = ¢E/m (e is the
charge and m is the mass of an electron) and electrons seem
to ‘fall’ along the direction of this field. In a collision of an
electron with any atom (neutral or positively charged) the
electron loses its kinetic energy and transfers it to the atom,
which releases it in the form of heat (Joule heat). The
increment in the velocity of an electron at the end of its path
is wt, where ¢ is the travel time. If this additional velocity is
small compared with the average velocity v of chaotic
thermal motion, we can assume that ¢ = [/v. Therefore,
the average additional velocity imparted to electrons by the
field E is

1 1 eE |

u:§Wt_2mV'

The product of this velocity and ne is simply the density of
the electric current, equal by definition to ¢E, where o is
the electric conductivity of the metal. Therefore, the
conductivity is described by the expression
_ e*nl )
" 2my @
A comparison of this expression with the experimental
results is pointless because we do not yet know n or /.
However, Drude did not stop at the result given above,
but calculated the additional thermal conductivity which
metallic bodies should have because of the presence of an
electron gas. In so doing he put forward the hypothesis that
the additional electron thermal conductivity is equal to the
thermal conductivity of the electron gas itself, and he used
an expression familiar from the kinetic theory to describe
the latter:

K= % vic, (€)

where ¢ denotes the specific heat per unit volume of the gas
(at constant volume). In this case we have

c= % kn @)
and, consequently,

K= % kvnl . &)
A comparison of this expression with Eqn (2) gives

K _ kmv*

o &’

i.e. it follows from Eqn (1) that

2
§:3(§> T. (6)

Metals are known to be not only excellent conductors of
electricity, but equally good heat conductors. Experiments
show that the ratio of the total thermal conductivity of
various metals to their electric conductivity is the same for
all metals at the same temperature and directly proportional
to temperature. Therefore, this law (discovered by Wied-
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mann and Franz) is described correctly by Eqn (6) if o is
understood to be not the additional but the total electric
conductivity of a metal. The numerical value of the
coefficient of proportionality 3(k/e)* then agrees accu-
rately with the experimental value (it should be pointed
out that the ratio x/o does not contain the unknowns n and
l).

At first sight this result seems to represent a triumph of
the Drude theory, but in reality it suffers from an internal
inconsistency. The thermal conductivity of a metal can be
practically equal to the thermal conductivity of an electron
gas only if the number of free electrons is very large. In
reality Eqn (§) is based on the assumption that the
temperature of a nonuniformly heated metal is governed
by the kinetic energy of free electrons at a given point, i.c.
the thermal energy of atoms is equal to that of free
electrons. This is obviously possible only if the number
of free electrons is equal to the number of atoms. However,
under these conditions the specific heat of metals would
have been considerably greater than the quantity predicted
by Dulong and Petit in accordance with statistical mechan-
ics.

2. Lorentz theory

The Drude theory has been improved by Lorentz, who has
taken into account the distribution of the electron velocities
on the basis of the familiar Maxwellian law. According to
this law, the number of electrons whose projections of the
velocities along the coordinate axes x, y, and z lie within
the intervals (&, &+ d¢&), (1, n+dn), (¢, {+d)), is

dn = A exp <—%> dédndl, @)

where W = (1/2)m(&* +n* 4+ (%) = (1/2)mv? is the kinetic
energy of an electron and A is a constant given by

A= n(ZT’:IiT)M ' ®

The Maxwellian velocity distribution has played an
important role in a theoretical explanation of the Richard-
son effect (emission of electrons by heated bodies), but it
contributes only an unimportant correction to the theory of
electric and thermal conductivities of metals. The following
values are then obtained for ¢ and «:

,d_em__ [8em o
3 \2rmkT 3n my
8 [ kT 4 /2
= — — - —_— ]
K 3 21tmkln 3 3nklnv R (10)

where v is the mean-square velocity defined by Eqn (1).
The ratio x/ is then 2(k/e)*T; the rigorous theory is thus
in poorer agreement with experiments than the approximate
Drude theory.

Lorentz calculated ¢ and k¥ by a method which will be
described here, because it will be used later. The Maxwellian
distribution of Eqn (7) should be slightly distorted by the
presence of gradients of the potential or temperature (or at
least, a temperature gradient). In the first approximation,
this distortion has the following effect: at each point in
space the distribution of the electron velocities is not that
which corresponds to the temperature or potential of this
point, but the distribution corresponding to the temperature

and potential of those points at which the electrons have
just collided with the atoms (we shall consequently assume
that any specific distribution of the electron velocities is
established by such collisions). Electrons crossing any plane
perpendicular to the x axis at velocities which are within the
intervals d&, dy, and d{ have experienced the last collision in
a parallel plane separated from the plane in question by a
distance Ax = —¢&t, where ¢+ = [/v is the time from this
collision [v = (& +n° 4 ¢?)'/%]. Therefore, the number of
electrons of this kind, taken per unit volume, is not
fo(x, W)dw where for brevity we assume that
Ae WKL = folx, W) and dw = dédnd{, but is instead
given by

fx, W)do = fo(x + Ax, W + AW ) do .

Here, AW denotes the change in the kinetic energy of an
electron in the interval Ax. In view of the smallness of this
interval, we can assume quite accurately that

_ . o A, O
fo(x +A)C, W +AW) —fo(x, W) + (§Ax +W AW N
or, since

AW = eEAx

(the change in the energy is equal to the work done by the
acting force in the interval Ax),

W) =ple W) - (T dmep)er.
This is the approximate expression for that distorted
velocity distribution which originates from the presence of
the temperature and potential gradients along the x axis.
Knowledge of the function f(x, W) allows us to calculated
the density of the electric current and of the heat flux (i.e.
the amounts of the electric charge or kinetic energy
transported by electrons per unit time across an area of
1 cm? perpendicular to the x axis) from the expressions

m

[ = ejéfdw, 0= —Jv2éfdco . (12)

2
The earlier expression for the electric conductivity
[Eqn (9)] follows directly from the first of the above
expressions since I = oE when dT/dx = 0. In the calcula-
tion of the thermal conductivity from Q = —«k0T /0x it is
necessary to introduce an additional condition I = 0
(which is far from being automatically valid). This gives
Eqn (10) for .

3. Sommerfeld theory

As pointed out above, the Lorentz theory does not alter
significantly the Drude theory and in any case the former
does not resolve the main conflict between the small
number of free electrons required by the specific heat and
the large value of this number which follows from the
thermal conductivity. Last year this conflict was resolved
by A Sommerfeld, who retained all the ideas of Drude and
Lorentz on the motion of electrons in metals and simply
replaced the Maxwellian velocity distribution with what is
known as the Fermi distributiont

fThe physical meaning of the Fermi distribution is discussed later in
Section 4. At this stage we note that this distribution follows from certain
general principles of quantum theory.
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(m/h)’
clexp(-W/kT)+1°

fo= (13)

Here, h is the Planck constant and c¢ is a certain fairly
complex function of the temperature T and of the electron
density n (i.e. the number of electrons per unit volume)'}.
At very high values of T or for very low values of n this
function is identical with the coefficient A introduced
above and divided by (m/h)’. In the opposite case, i.c.
when n is large and T is low, the function ¢(n, T') is given
by the equationf

o <1nc)3/2[1 +W+]

n\’ nh’
=)A= o
m (2mumkT)

In the former case it is found that ¢~ ' exp(W /KT ) is very
large compared with unity, so that the Fermi distribution
reduces in practice to the Maxwellian form. In the latter
case the value of ¢ 'exp(W/kT) is conversely small
compared with unity and we obtain a very different
velocity distribution as well as a temperature dependence
of the average kinetic energy which is of completely
different nature from that given by Eqn (1). It is in fact
found that

(14)

1, 3 2 1

- =—kT x=Inc|l+=—+...| . 15
5mvt =3 xsnc[ +2(lnc)2+ ] (15)
In particular, if T = 0, we obtain

1, 31 /(3 \*

It therefore follows from the Fermi distribution that the
average kinetic energy of electrons at absolute zero does not
vanish but retains a finite value which increases with the
electron gas density. We can moreover show readily that
this average energy increases with increase in temperature
more slowly than its initial (‘zero’) value; at high tem-
peratures we come back to the linear dependence of the
classical theory: %mv2 = kT. These relationships are
illustrated in Fig. 1.

If we identify the number n with the number of atoms
per unit volume, i.e. we assume that there is one electron for
each atom in a metal, then the velocity vy deduced from
Eqn (16) is of the order of 103 cm s—!, i.e. it is comparable
with the velocities of revolution of the outer (valence)
electrons in isolated atoms. The increase in the velocity
between absolute zero and normal temperatures is very
slight. The ‘atomic specific heat’ of such extremely dense
electron gas is negligible (about one-hundredth of a calorie).
Therefore, the ‘electron gas’ contributes practically nothing
to the total specific heat of a metal. The electric and thermal
conductivities due to this gas are described by the following

tThe Roman superscripts (i.e. ' etc.) will be used to identify our
comments on Frenkel’s paper. These comments can be found at the end
of the paper (R A Suris, V Ya Frenkel’).

fThe exact form of this equation is as follows:

2 00, —X 3
— ¢ xci_dx: ﬁ A .
Vo 1+ce™ m

2
;mv

Figure 1.

approximate expressions:

am &1 30\ 3 (4n\ tnl
_reif2r =4/ = -— = 17
773 h<4n) 5(3) v, 00 (A7)

and
4 T 3\ © (4an\ KTl 8
K=— — | — _ _
9 h \4n V15 \ 3 mvy
which gives
2 2
k
E:”_(_> T (19)
o 3 \e

The above expression is in excellent agreement with the
experimental results. However, this is not true of the
preceding two expressions, because they contain the
unknown mean free path /. It should be noted that
Eqn (17) is of approximately the same form as the Drude
[Eqn (2)] or Lorentz [Eqn (9)] formulas. The only difference
between them is that in the former formulas the velocity v
represents a relatively small quantity proportional to the
square root of the absolute temperature (at normal
temperatures we have v = (3kT /m)'/* ~ 6 x 10° cm s7'),
whereas in Eqn (17) the velocity v, is of the order of
10% cm s™'. If the number n of electrons is also regarded as
constant, the temperature dependence of ¢ should reduce as
a whole to the temperature dependence of the mean free
path [ Experiments showed that the electric conductivity of
various metals at normal temperatures is inversely propor-
tional to the absolute temperature. We should therefore
have [ = const/T. The absolute value of / can be obtained
by substituting the experimental values of g in Eqn (17) and
this gives a value of the order of 107> cm at 7 = 300 K.
Therefore, the mean free path of electrons in a metal should
have approximately the same value as the mean free path of
molecules in a gas at normal temperature and pressure, i.e.
when the concentration of molecules is negligible. The
familiar expression

1

= nmr’ 20)
where r is the effective radius of atoms (we are assuming
that electrons do not collide with one another at all), allows
us to show readily by calculation that the effective radius r,
which governs the magnitude of the deflecting action of
atoms on electrons, is approximately 3 X 1072 cm, i.e. it is
10 times less than that which is usually attributed to atoms
and corresponds to the average distance between neigh-



Ya I Frenkel’s studies of the theory of the electric conductivity of metals 363

bouring atoms in any metal. Since, moreover, the number n
is independent of temperature, we have to assume that this
effective radius varies with temperature approximately
proportionally to the square root of temperature. It
seems that we are dealing not so much with the radius
of atoms, but with the amplitude of their thermal
vibrations near the equilibrium positions. It should be
noted that the energy of such vibrations is ar?, where o is
the coefficient of proportionality representing the strength
of the binding of an atom to its equilibrium position.
Therefore, from this point of view the mean free path of
electrons / should be inversely proportional to the thermal
energy of a metal (per unit volume). The thermal energy of
solids is known to be proportional to the absolute
temperature only at moderate temperatures. Cooling
causes this energy to decrease much faster than the
absolute temperature, so that the specific heat (i.e. the
derivative of the energy with respect to temperature)
vanishes at absolute zero. Consequently, if the above
interpretation of Eqn (20) corresponds to reality, i.e. if the
motion of electrons in a metal is hindered not by atoms
themselves but only by the spheres formed around their
centres because of thermal vibrations, then on the basis of
Eqn (17) we can expect the electric conductivity to increase
faster as a result of cooling than in inverse proportion to
temperature, namely it should be inversely proportional to
the thermal energy of metals. This conclusion is in
qualitative agreement with the experiments. However, it
is in reality found that this energy can be replaced by the
product of the (atomic) specific heat ¢ and temperature.
This law, established empirically by Gruneisen, is given by
the expression

const

o= @1

It is therefore clear that the above interpretation is
supported only qualitatively by experiments.

4. Pauli and Fermi distributions of the electron
velocities

We shall not analyse in detail Eqn (17)—(19) but consider
briefly the physical meaning of the velocity distribution law
from which these equations follow. This law was
established in 1926 by a young Italian theoretician
E Fermi, who extended the Pauli principle, governing
the structure of individual atoms, to gases. In more or less
complex atoms the electrons are distributed around a
central nucleus in a series of layers or groups which
correspond to specific terms in the X-ray spectra of these
atomst. The first, nearest to the nucleus, always consists of
just two electrons (K group). The next (L) group contains
eight electrons. In the group M there can be a maximum of
18 electrons and so on. Both K-group electrons move along
one-quantum orbits (i.e. along orbits with the principal
quantum number 1), the L- and M-group electrons move
along a two- and three-quantum orbits, respectively, and so
on. Each group is divided in general into subgroups and it
is found that each set of the quantum numbers (principal,
azimuthal, internal, and magnetic) corresponds to no more
than one electron. This is the Pauli principle. It can be

FThe terms represent the energies needed to extract these electrons
outside.

formulated also as follows: an atom cannot have two or
more ‘equivalent’ (in respect of the nature of their motion)
electrons; each electron of a given atom differs in some
respects (at least by one quantum number) from the rest.

At absolute zero the atoms are in the normal state
corresponding to the minimum of their energy. However,
this minimum is not absolute, but relative and its satisfies
the Pauli principle or the ‘equivalence principle’, which was
the name given by Pauli himself. If there had been no such
restriction, then all the electrons (no matter how large their
number) would have arranged themselves at the same
(nearest) distance of the nucleus, i.e. they would have
moved along identical one-quantum orbits. In reality,
these orbits carry just two electrons on condition that
their magnetic axes are oppositely directedf. The other
electrons must therefore occupy more distant orbits. Why
and how this happens we do not know, but it remains a fact.
The Pauli principle is only regulative and it represents the
principle governing the electronic ‘communal life’, and a
kind of ‘housing law’ of the electron community. In this
community each pair of electrons is given a separate
‘apartment’ and the presence of a third electron in any
‘apartment’—occupied by such an ‘electron couple’—is
never permitted (this applies also to the ‘unnatural
cohabitation’ of two electrons with identically directed
moments). Some electrons may of course remain in the
‘bachelor’ state occupying a whole ‘apartment’ by them-
selves. The number of such elementary ‘apartments’
occupied by single electrons or by pairs in an atom cannot
be expressed in terms of any volume. The number in
question is therefore described differently by attributing
it a unit ‘weight’ (in the statistical sense of this word).
Several ‘apartments’ with the same energy (if there are any)
usually join to form a larger ‘apartment’ whose weight is
equal to the sum of the individual ‘apartments’.

The concept of such discrete ‘apartments’ is completely
alien to classical statistical mechanics. This mechanics deals
with a continuous set of spatial points and velocities with
the a priori admission of the possibility of any state, i.e. of
any position and any velocity of the investigated particles.
The state of a system that consists of a large number of
identical particles (for example, an electron gas discussed in
the preceding section) is described by specifying the number
of particles f(x, y, z; & #, {) dx dy dzd&dnd{, whose coor-
dinates and velocities are limited to the intervals dx, dy, dz,
d¢, dy, dg, i.e. by the form of the distribution function f.
This method of representing the state of a complex system is
retained also in new statistical mechanics, related to
quantum theory, in those cases when each of the particles
under consideration can have arbitrary coordinates and
velocities in specified fairly wide intervals (which is true, for
example, of an electron gas or any other gas). The new
statistics does however introduce an important addition
that these intervals are separated into elementary cells the
dimensions of which are given by the expression

h

3
de dydzdédnde = (E) . (22)

f{The magnetic properties of electrons and their importance in the
mechanics of atoms can be judged on the basis of my earlier paper [29].
If we ignore these magnetic properties, i.c. if we regard as equivalent the
electron orbits differing only in respect of the direction of the magnetic
moment, the Pauli principle reduces to the statement that each orbit can
be present in an atom in no more than two ‘copies’.
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The cells (with the shape to be determined) represent in this
case the basic ‘apartments’ for separate electron pairs, in
the sense defined above. It was Planck back in 1916 who
pointed out that such cells correspond to distinct quantum
orbits, all with the same statistical weight of unity.
However, it is to Fermi that we owe the extension of
the Pauli principle, i.e. of the ‘housing law of the electron
community’, to such cells.

Let us now see what is the result of application of the
Pauli—Fermi theory to an electron gas at absolute zero [16].
From the point of view of the classical theory, electrons can
be at rest at a position which corresponds to a minimum of
the potential energy, i.e. in one specific cell of the phase
space (x, y, z; &, 1, {). However, this is as impossible as the
placing of all the electrons of an atom at the same one-
quantum orbits. In fact, the ‘most convenient’ cell just
mentioned can accommodate just one pair of electrons;
other pairs are distributed, possibly at a higher density, in
cells with higher values of both the kinetic and potential
energies. [f the potential energy is the same for the whole of
the spatial volume under consideration, the distribution of
electrons in this volume remains uniform.

We shall use vy, to denote the maximum velocity of
one out of N electrons in a volume V. The points
representing electrons in the velocity space (where the
coordinates are the velocity components &, #, {) should
then lie within (or on the surface of) a sphere of radius r,,,,
i.e. in the ‘velocity volume’ (47m/3)vi,. Combining this
sphere with the spatial volume V, we obtain the following
product for the phase volume:

4 -
®= ?’t BV (23)

Since the volume of a basic ‘phase apartment’ is (h/m)’,
the number Z of such ‘apartments’ in the phase volume @ is

m\  4n (m 3
Z=d(—) == [ v | V.
(h) 3 (h VI“dX)

The various ‘apartments’ can be imagined in the form of
a combination of the spatial volume V and concentric
spherical layers of the same velocity volume:

3
4mv* Ay = 1 <£> .
V \m
At absolute zero the number of ‘apartments’ should be
identical with half the number of electrons N (when there is
not a single free place!), which corresponds to the minimum
kinetic energy of an electron gas. If we substitute Z = N /2

and N/V = n in the electron density in Eqn (24), the result
is

24)

(25)

m 3 1/3

ZV = <g l’l> N (26)
so that as a consequence we have
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This is the maximum energy of one of the electrons at
T = 0. The average energy %mv% is found by summing the
values of %mv2 for different spherical layers of Eqn (25)

and dividing by the number of electrons N. At high values
of N the summation can be replaced with integration, i.e.
we can assume that

BT s
N 42 N Jo V=1 (h/m)’

1 /m\ Ve
=—|—)4nm vidv,
n l’l 0

which on the basis of Eqn (26) gives

1, 3R (3 VP
2™ T 10 m\sn")

The above expression differs from Eqn (16), which I took
from Fermi’s paper [31], by the replacement of 4 with 8m.
This can be explained by the fact that Fermi, and following
him Sommerfeld, applied the Pauli principle in a form
which is not quite accurate, namely by assigning basic
‘apartments’ (h/m)’ to single electrons and not to electron
pairs.!!

The above ideas can readily be generalised to the case
when T > 0. The number Z of the phase cells can then be
greater than half the number of electrons N; some of the
cells thus remain unoccupied. The probability of a partic-
ular electron distribution (which is not in conflict with the
Pauli principle) with a total energy W should then be
propor- tional to exp(—W /kT) or to exp[W — W) /kT],
where Wy = N X %mv% is the energy at absolute zero. This
principle, inherited by the new quantum statistics from
classical statistical mechanics, leads to the Fermi expres-
sion (13) for the distribution of the velocities subject to a
small ﬂcorrection, which reduces to the replacement of
(h/m)’ in Eqns (13) and (14) with {(h/m)’.

(28)

5. Physical picture of the motion of electrons in
metals

In 1924, i.e. before the appearance of the new statistics
associated with the pauli principle, I developed an electron
theory of metalst on the same basis as the Sommerfeld
theory, namely on the assumption that at absolute zero the
kinetic energy of free electrons is very high and it remains
almost constant when temperature is increased, and that
the number of such electrons is approximately equal to the
number of atoms.!!!

This approach follows from an analysis of the process of
formation of a solid or liquid metal by condensation of the
vapour of this metal.

Metal vapours are not electrically conducting. It follows
that they do not contain any free electrons. Experiments
show that the outer electrons of metal atoms are bound less
strongly to the atoms than the corresponding electrons in
the case of metalloids, which are insulators (nonconductors)
in the solid state. Moreover, according to the Bohr theory
the outer electrons of metal atoms follow strongly extended
orbits resembling the orbits of comets, whereas the outer
electrons of nonmetal atoms have orbits similar to those of
the familiar planets of the solar system.

The interaction of metal atoms with metalloids results in
the transfer of some of the electrons from the former to the

FSee Ref. [16].
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latter. These easily transferred electrons are usually called
the valence electrons since their number determines the
positive valence of a metal or an ion. The valence electrons
are simply the ‘cometary electrons’, just mentioned above.'V
The capture of these electrons by a metalloid atom is not so
much due to their weak binding to the parent (metal) atom,
as due to their considerable distance from the centre of this
atom because the orbits are elongated. If the aphelion of the
undisturbed elliptic orbit of such electrons is close to the
position of a metalloid atom, they fall within the sphere of
attraction of the latter and no longer return to the metal. In
a similar manner the comets in the solar system may be
captured by some other system of the same type if they
approach the sun sufficiently close.

In a metal vapour the average distances between atoms
are very large compared with the dimensions of the orbits of
the various electrons, including the cometary electrons.
Therefore, the latter remain bound to the corresponding
atoms. However, when a vapour is condensed into a solid,
these atoms are located in the direct vicinity of one another
and the cometary electrons can pass from one atom to its
neighbour. In each atom they can make one or at most
several revolutions (if the aphelion distance of their
unperturbed orbit is sufficiently large) and then join one
of the adjacent atoms. In this way the cometary electrons
are converted by the condenstation of a metal vapour into
‘itinerant’ electrons, i.e. they travel over the whole volume
occupied by a metallic body. These itinerant electrons,
which have lost their binding to specific ‘hosts’ and
continuously pass from one atom to another, represent
what are usually known as free electrons. Their ‘freedom’ is
very limited. These electrons are converted from the private
property of atoms isolated from one another in a metal
vapour into the collective property of the community
formed when these atoms combine into a solid or a
liquid. However, the binding of these electrons to the
community does not become weaker than the binding to
the previous hosts; just the opposite, the binding becomes
even stronger, because each itinerant electron located inside
the metal is held there not by one but by several (adjacent)
atomst.

In the case of isolated atoms the outer (cometary)
electrons revolve along orbits at a velocityf of the order
of 108 cm s—1.

When a metal vapour condenses, these electrons
continue to move at approximately the same velocity
and even, as can easily be demonstrated, at a somewhat
higher velocity. In fact, the stronger the forces acting on the
electrons, the greater the acceleration induced by these
forces and, consequently, the greater the velocity. This
relationship can readily be made more specific by the use of
what is known as the virial theorem. According to this
theorem, in a system of particles acting on one another with
forces inversely proportional to the square of the distance
and remaining at a finite distance from one another, the
average kinetic energy W of all the particles should be

FThese conditions change somewhat for electrons that manage to reach
somehow to the surface of a metal. There they can become separated from
the metal quite readily (at the expense of about half the energy otherwise
required for separation).

fFor example, in the case of an clectron orbiting around a proton
(hydrogen atom) along a circle of radius r, the attractive force is equal to
the centrifugal force, e*/r* = mv*/r, which gives v = (ez/mv)'/z, which
givesv = 2 X 10% cm s7! fore a5 x 10_'0, m = 10_27,and r=107%

numerically equal to their total energy with the reversed
sign, i.e. it should be equal to the work needed to separate
the system into its components§. Since in the condensation
of a metal vapour the total energy decreases by an amount
equal to the latent heat of condensation, the kinetic energy
of electrons and protons should then increase by the same
amount. This increase applies if not completely then at least
mainly to the cometary electrons, because the motion of the
other electrons is distorted only slightly and the kinetic
energy of the vibrational motion of atoms taken as a whole
can be ignored. If the kinetic energy of electrons is
measured in volts (i.e. in terms of that potential drop in
volts which is necessary to acquire this energy), we find that
the kinetic energy of electrons of isolated atoms is of the
order of 5—7 V, and the additional energy acquired due to
the vapour condensation processY is 1-2 V.

The application of the virial theorem to the process of
‘socialisation’ (collectivisation) of the valence electronsV
shows that the velocities of these electrons are of the same
order of magnitude as those that follow from the Pauli—
Fermi statistical theory (discussed above). It should be
pointed out that the virial theorem is applicable in the
above form only at absolute zero. At T > 0 there should be
a partial spontaneous dissociation of a metal in the gaseous
and solid (by evaporation) states. If the virial theorem is
extended into this case, it is necessary to allow also for the
vapour pressure (or, more accurately, for the pressure of a
mixture of ions, electrons, and neutral atoms) on the walls
of the enclosing vessel. The agreement between the ‘zero-
point energy’ of free electrons predicted by the Pauli—
Fermi—Sommerfeld theory with the quantity calculated by
us on the basis of an analysis of the condensation process is
not quite exact, which in all probability is due to
inaccuracies of our theory, which obviously represents
only a fairly rough approximation. We shall discuss the
meaning of such agreement, even though it is approximate
(see Section 8).

6. Theory of electric and heat conduction
deduced from the foregoing picture

These ideas on the number and motion of free electrons in
a metal were used by me to develop in 1924 a theory of
electric and thermal conduction of metals, which differs
considerably from the classical theories of Drude and
Lorentz, and from the similarly developed Sommerfeld
theory.

There should be a correlation between the motion of
various electrons, so that the position vacated by one
electron, which moves away from a given atom, should
be occupied immediately by another electron. We shall

§In the simplest case of the hydrogen atom we find that, for example,
m? = ez/v. The left-hand side of this expression represents the doubled
kinetic energy and the right-hand side is the potential energy with the

reversed sign. The total energy is consequently

2 T2 2
Y Theaveragekinetic energy of a valence electron in an atom ofa univalent
metal, such as sodium or potassium, is equal —in accordance with the
virial theorem —to the ionisation energy of this atom, i.e. to the work
needed to separate the eclectron in question. The latent heat of
condensation amounts to about 20—40 kilocalories per one gramme-
atom, i.c. per 6 X 102 atoms. When this is attributed to the same number
of electrons, it is found that 23 kcal are equivalent to 1 V.



366

R A Suris, V Ya Frenkel’

ignore this correlation and try to follow the path of any one
electron in a metal. The metal can be considered as one
molecule of giant dimensions so that the whole path of an
electron can be regarded as one unbroken ‘quantum’ orbit.
However, it can readily be shown that this applies only at
absolute zero. The thermal motion of atoms should,
because of its disordered nature, so to speak break the
electron orbit into longer or shorter quantised sections
related to one another by the stochastic laws only. We shall
call the rectilinear displacements corresponding to such
sections the ‘elementary electron displacements’.

These elementary displacements evidently play the same
role as the free paths in the theory of an electron gas. At
absolute zero they become infinite. Then a metallic body
does not resist more the motion of electrons than does a
single atom. The direct cause of the electric resistance of
metals is the presence of irregularities in the distributions of
atoms which are due to their thermal motion.

At sufficiently high temperatures these elementary
displacements of electrons should reduce to the minimum
value which is equal to the distance between the adjacent
atoms. This means that in the absence of an external electric
field the elementary displacements along different directions
from any atom A, to one of its s neighbours A, A,,...A;
are equiprobable irrespective of the direction of the
preceding (A; — Ao) eclementary displacement. In the
presence of an electric field E the elementary displacements
in the direction of this field (or, more correctly, in the
direction of the corresponding force F = ¢E ) become more
probable than the opposite displacements. This change in
the probability in the course of the displacement AyA; is
proportional to exp(—U,/kT ), where

U; = —eEd cos 0,

is the potential energy of an electron at the point A;
comparedlit)h the point Ay, and 0 is the angle between the
segment AgA; and the vector E (or eE). This modified
probability p; can consequently be represented in the form

pi=p) <SR EUAT) 29)

> exp(—U /KT )
=1

where p! = 1/s is its value for E = 0.

If ¢ is the time in which an elementary displacement is
completed, the average displacement velocity of an electron
in the direction of the external force ¢E is given by

d d cos 0,
=Y pdemt

i=1

(30)

or, in the first approximation on the assumption that
exp(—U;/kT) = 1 —(U;/kT) and, bearing in mind that
> cosf; = 0, we obtain

2

d -
u & cos? OE ,
tkT

(€1))
where cos® @ denotes the average value of cos’ 0; for all s
displacements AyA; (if they are regarded as equiprobable).
Since the number s is usually quite large (it is either 12 or
8), we can assume that cos’f = 1/3. Since the current
density is neu = gE, we obtain the following expression for
the electric conductivity of a metal:

&nd

7= 5T

The same result can be deduced from the familiar

relationship between the friction coefficient 9 and the
diffusion coefficient D:

DY =kT ,

(32)

(33)

which was first established by Einstein in the theory of
Brownian motion. Here, 9 is defined by ¥ = ¢E/u and the
diffusion coefficient is given by D = dv'/3 = d*/3t, where
v/ = d/t is the average displacement velocity of electrons
in a metal. In general, this velocity is somewhat less than
the intrinsic velocity v, but it is approximately equal to the
latter if an electron does not stay too long at the individual
atoms but makes just one revolution around each of them
and passes immediately to a neighbouring atomt.

This condition can be regarded as satisfied in the case of
alkali metals the atoms of which have only one cometary
electron with a very elongated orbit. If we assume that
d~10"%and Vv ~ 108, we find that the diffusion coefficient
of electrons is of the order of unity and, moreover, it is
independent of temperature. If we rewrite Eqn (32) in the
form

&nD
kT

o= (34)

we can then see that the electric conductivity should be
inversely proportional to the absolute temperature (in the
range of temperatures where the length of elementary
displacements reduces to the interatomic distance d) and it
is of the order of e*n/kT. If we assume that
e=47x107" na 10", and k = 1.3x107'%, we in
fact obtain numbers which are quite close to the
experimental results (the electrostatic cgs units are used
here; the electric conductance in terms of reciprocal ohms
can be obtained if the values are divided further by
9 x 10”). More accurate numerical data will not be given
here; the reader can find them in the paper cited above. |
shall simply note that in the case of divalent (alkaline-
earth) metals the velocity V' is approximately half v; in this
case the cometary electrons follow approximately two
revolutions around the same atom before passing to the
next one.

According to the proposed viewpoint, free electrons do
not participate directly in the thermal motion of atoms and,
therefore, they do not increase significantly the specific heat
of a solid or liquid metal, since they do not increase the
specific heat of a metal vapour (apart obviously from very

T If the electron density falls along the x axis, we find that the ‘diffusion’
clectric current along this direction has the density —cDOn/0x. In the
presence of an electric field we have to add the usual conduction current
neu = ne*E/¥. Here under equilibrium conditions the two currents
compensate one another. We therefore find, denoting the potential
energy of an electron by

Uler=-%Y oy
T ™) Ox

n = const X exp(—U/D?) .

novu

2% o
9 9x ’

On the other hand, according to the Boltzmann theorem, we should have
n = const X exp(—U/kT ). A comparison of this expression with the
preceding one yields Eqn (33).
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high temperatures where significant ionisation of atoms
begins). Therefore, the specific heat of a solid metal at
normal temperatures is ¢ = 3kn,, where n, is the number of
atoms per unit volume, in agreement with the Dulong—Petit
law.

Although they do not participate directly in thermal
motion, free electrons may nevertheless transfer thermal
energy from one atom to another in approximately the same
manner, as happens in gases. In the presence of a
temperature gradient in a metal the temperature distribu-
tion is described by the familiar equation

or_x(@T o7 o
o c\dxr 9 02)°

where k denotes as usual the thermal conductivity.
A comparison of this equation with the diffusion
equation
on’' _ o N o N o
or o2 oy 02 )°

which determines the changes in space and time of the
density n’ of an arbitrary selected set of electrons (n’
should not be mixed up with the total density n), yields the
result

(3%)

which expresses the identity of the processes of the
transport of electric charges and heat in a metal (it
should be noted that this relationship applies also to gases).
If we substitute in this expression the quantities ¢ = 3kn,
and D = ak/ne2 [on the basis of Eqn (34)], the result is

3 2
E:ﬁ<ﬁ>T,
g n e

i.e. the Wiedemann—Franz law. However, it must be
pointed out that the agreement with the experimental value
of the coefficient of proportionality is obtained only for
n = n, and that at low temperatures the specific heat is no
longer constant. This results in the replacement of 7 on the
right-hand side of Eqn (36) with a more complex function
of temperature. Experiments however show that the
Wiedemann—Franz law is valid right down to the lowest
temperatures.

At low temperatures the electric conductivity also ceases
to vary proportionally to 7, but can be described —as
pointed out earlier—by the Gruneisen formula

(36)

const
cT ’

where c is the specific heat of the metal or, more correctly,
a certain function of temperature such that it varies with
temperature at approximately the same manner as the
specific heat, but not the heat of the metal in question but
of some other metal.

A qualitative interpretation of the above formula on the
basis of the proposed theory is quite easy. Cooling
continuously increases the length of the elementary dis-
placements (which become infinite at 7 = 0). If this limit of
length is denoted by I, the diffusion coefficient is given by
D = Iv'/3, where v’ has approximately the same value as
before.

Hence it follows from Eqn (34) that

const
(@/nT

Therefore, we can derive the Gruneisen formula of
Eqn (21) by assuming that the ratio d/I varies in direct
proportion to the specific heat ¢. However, it is impossible
to derive this result in a rigorous quantitative form from
the principles stated above.

The proposed theory differs from that developed by
Sommerfeld in this respect: the influence of an external field
on the motion of electrons reduces it to a change in the
probability of elementary displacements of an electron
along different directions, whereas according to Sommer-
feld (also according to Drude and Lorentz), this influence is
due to an additional velocity acquired by an electron during
an elementary displacement (i.e. between two collisions).
According to our ideas, this additional velocity plays no
role whatever. Let us assume that, for example, electrons
can move only parallel to the x axis. In this case in the
presence of a field they travel a distance between two atoms
A, to A, somewhat faster in one direction, for example,
from Ay to A,, than in the opposite direction. However,
since both directions are equiprobable and since, as found
later, the length of elementary displacements along one or
the other directions remains the same, then —on average —
it is not possible to induce any additional motion along the
direction of action of the applied forces, irrespective of the
value of the above-mentioned additional velocity. This
velocity may be important only when electrons do not
encounter one another at each step, as is true evidently of
metals at moderate temperatures, but few steps apart and
only if the number of such steps (interatomic spacing) along
the direction of action of the active force is (in the final
analysis) greater than in the opposite direction. It is this
concept (although not stated explicitly) that is the basis of
the calculations reported by Sommerfeld, Lorentz, and
Drude. It is interesting to note that in the case of the
last two theories (Lorentz and Drude), postulating that the
average electron velocity is given by the expression
Imv* = 3kT, the electron mobility can be calculated by
either method (additional velocity or additional probability)
and the result is practically the same in both cases.V!

7. Principles of wave mechanics. Cathode rays
and waves

I shall now present new and very special ideas on the
motion of electrons in metals, which follow from the new
wave (or quantum) mechanics developed in the last few
years by L de Broglie and E Shrodinger, and also from an
equivalent (although superficially different) form proposed
by W Heisenberg, M Born, and P Jordan.

The essence of wave mechanics reduces to a closer
analogy between the motion of material particles and
propagation of light rays. This analogy is implied also
by the name ‘cathode rays’ given from the time of Crookes
to a stream of electrons emitted by the cathode of a
discharge tube. In this case the rays are the paths of
single electrons (which may be rectilinear or curvilinear).
On the other hand, the corpuscular theory of light,
proposed by Einstein, makes light waves resemble a flux
of electrons the role of which is then played by light quanta.
Such phenomena as the reflection and refraction of light,
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i.e. the geometric-optics effects, can readily be explained by
the quantum theory of light subject to some very general
assumptions about the interaction of light quanta with
‘ordinary’ matter. However, the phenomena of interference
and diffraction of light do not fit at all the framework of
corpuscular theory and can be explained solely by the wave
theory of light. In this theory the light rays and the light
quanta, the former being the paths of the latter, represent
geometric functions and should be regarded simply as lines
perpendicular to the surfaces of optical waves. The reality
and ‘essence’ of light is represented by these waves and not
by rays.

The main idea in the de Broglie—Schrodinger theory is
that in the case of a material flux, such as cathode rays, we
are not dealing with individual particles similar to light
quanta, but with waves of a special kind analogous to light
waves. In no way does it imply that there are no electrons as
such (i.e. as discrete material particles). It simply means that
their motion in space cannot be deduced from the principles
of classical corpuscular mechanics. We have to replace the
concepts of cathode rays with that of cathode or (as they
are called by de Broglie) phase waves, establish the relation-
ship between the wave and corpuscular representations,
similar to the relationship between light waves and quanta,
and finally find the laws of propagation of cathode waves in
space, being guided again by their analogy with optical
waves. This procedure can be reduced to the following. The
action of light on material bodies can be described in terms
of the corpuscular theory if we consider light quanta as
particles of energy hv and with a momentum A/4 = hv/c (¢
is the velocity of light)}. Hence it follows that in the case of
cathode rays we should define the oscillation frequency and
the wavelength of the corresponding cathode waves as
follows:

h=V, =my ,

Z (37

where V is the total energy of an electron and mv is the
electron momentum. The energy V should be defined in
such a way that an electron at rest has the energy me?.
Subject to this condition, the velocity Av of cathode waves
is approximately ¢?/v, i.e. it is as many times higher than
the velocity of light as the latter is higher than the velocity
of electrons.V!! If we consider only low (compared with c¢)
velocities v, we can describe the kinetic energy by the usual
expression %mvz. If W is the sum of this kinetic energy and
of the potential energy U(x, y, z), we can assume that
m*v* = 2m(W — U) and, consequently, it follows from
Eqn (37) that

%: V2mW = U(x, v, 2)] -

(38)

This expression provides a ‘single-valued’ relationship
between the wavelength of cathode waves and the
coordinates (the oscillation frequency v remains indepen-
dent of the coordinates, i.e. it is the same at all points in
space).

The amplitude ¥ of light waves with a definite
frequency, propagating in a certain isotropic but inhomoge-
neous medium where the wavelength of these waves A varies
continuously from one point to its neighbours, is described
as a function of the coordinates by the familiar equation:

FSee my paper listed as Ref. [32].

oy oy 'y 4r
Ox2 ayz + 622 + l2 ‘p =0. (39)

Optical oscillations at each point are described by the
product of this amplitude and cos2nvt. The square of the
amplitude (or, more correctly, its absolute value) determi-
nes the average energy of waves or the intensity of rays at
the point in question.

Schrodinger assumed that the propagation of cathode
rays is governed by the same differential equation as the
propagation of optical waves if the wavelength A is
expressed as a function of the coordinates in accordance
with Eqn (38). The Schrodinger equation then has the form

oy o Y  4n’m

ox? + oy? + 72 + h?

(W—U)y=0. (40)

Born has suggested however that the energy of cathode
waves, i.e. the square of the function ¥, is a measure of the
intensity of cathode rays or, more correctly, of the density
of the electron flux which forms these rays. The intensity of
this flux is found from this energy ()* (which can also be
treated as a measure of the probability of finding an
electron at a given space) multiplied by the velocity of rays
v, i.e. by h/mA.

8. Application of the theory of cathode waves to
metals]

If we apply these ideas to the motion of free electrons in
metals, we first of all obtain a very simple and clear
interpretation of that velocity distribution at absolute zero
which follows from the Pauli—Fermi principle. The
substitution of mv,/h = 1/, in Eqn (26) yields, on
the basis of Eqn (37), the expression

j'min = (8_‘“:)]/3 .
3n

This means that the minimum wavelength of cathode
waves, ‘ploughing’ along all directions in a metal, is
approximately equal to the average distance between the
adjacent electrons if we assume that they are distributed in
the from of a regular cubic lattice. Next, we can readily
show that the condition (25) is equivalent to the following:
at absolute zero the motion of electrons in a metal can be
described by a superposition of a system of N/2 standing
cathode waves, which represent resonant oscillations in a
body of a given volume and shape§. For example, in the
case of a metal in the shape of a rectangular parallelepiped
with the edges a, @y, a3 the wavelength of different waves

1S
S CEENCE
j. ay ay as

fThe results presented in this section were obtained by me in the summer
of last year (1927) and had been included partly in my paper presented at
the International Physics Congress in Como. Similar ideas were put
forward simultancously by Sommerfeld, but de did not develop them
into a quantitative theory. V!

§Each standing wave can be regarded as a set of two ordinary travelling
waves propagating in opposite directions.

(41)

(42)
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where kq, k,, k3 are integers. Exactly similar relationships
are obtained when thermal vibrations of atoms in a metal
(or any other monatomic solid) are represented by
superposition of a system of elastic standing waves, as is
done for example in the familiar Debye theory of specific
heat.

[t is interesting to note also the following circumstance.
The dimensions of the circular orbit followed by an electron
in an isolated atom is given by the familiar Bohr condition:
the angular momentum is mvr = kh/2m, where k is an
integer and r is the orbit radius. Substituting mv = h/A in
the above expression, we obtain

2nr

%:k (=1,2,3,..) .
This equality, first obtained by de Broglie, shows that the
length of the orbit of the cometary electrons in isolated
metal atoms is if not exactly equal then at least comparable
with the wavelength of the corresponding phase waves. If
the condensation of a metal vapour converts all the
cometary electrons into free electrons, the distance between
them (n~') is found to be comparable with the
interatomic distances. On the other hand, the interatomic
distances in solids are comparable with the dimensions of
orbits of the outer electrons, and we find that the minimum
or average wavelength of cathode waves in a solid metal is
of the same order of magnitude as in the isolated atoms.
Hence it follows that the average velocity of electrons is
approximately the same in both cases.

These relationships change somewhat when temperature
is increased. First and foremost such an increase gives rise
to shorter cathode wavelengths than those given by
Eqn (41). Next, and this is particularly important to us,
because of an irregular distribution of atoms associated
with their thermal motion, the propagating cathode waves
begin to experience diffuse scattering which reduces their
intensity, i.e. which causes their apparent absorption and is
the direct reason for the electric and also thermal resistance
of a metal. The ‘resistance’ is understood to be here the
reciprocal of the conductance. At absolute zero the electric
and thermal conductances of a metal are both infinite, i.e.
the corresponding resistances vanish. This means that from
the point of view of wave mechanics the cathode waves
‘ploughing’ through a metal propagate without any
‘absorption’ or diffuse scattering, i.e. they propagate in
the same way as optical waves in perfectly transparent
bodies.'X

However, it is known that even perfectly transparent
bodies such as pure air become more or less ‘turbid’ at
temperatures other than absolute zero, i.e. they begin to
scatter light rays passing through them. Such scattering of
solar radiation is the reason for the visibility of atmospheric
air (sky). The cause of such turbidity of air are the slight
local increments or reductions in the density, which are the
result of an irregular disordered motion of the air
molecules. The coefficient of the scattering light in gases
whose molecules travel completely independently of one
another is, as demonstrated by the theory and experiment,
temperature-independent. Conversely, in the case of solids,
this coefficient decreases rapidly when temperature is
lowered, but at moderate temperatures it is approximately
directly proportional to temperature. One should however
mention that this is true only of visible light or, more
correctly, of the optical waves whose wavelength is long

43)

compared with the interatomic distances. In the case of
short X-ray waves, whose wavelength is of the same order
of magnitude or even less than these distances, the
scattering coefficient remains constant at moderate tem-
peratures not only for gases, but also for liquids and solids.

When these principles are applied to the scattering of
cathode waves in metals, which is due to the thermal motion
of the metal atoms, it is necessary to answer first the
question whether these waves should be treated as ‘long’ or
‘short’, compared with the interatomic distances. In the
former case they should be scattered in approximately the
same way as the waves of ordinary light, i.e. approximately
proportionately to 7 at moderate temperatures, whereas in
the latter case they should be scattered in the same way as
X-ray waves, i.e. approximately independently of T,
naturally in the same temperature range. At very low
temperatures the scattering coefficient of these waves
should vanish in either case.t

The scattering coefficient of waves in any turbid
medium is generally given by the expression

1dJ
=—=—, 44
k=74 (44)
where J is the wave intensity and dJ is the change in this
intensity in an interval dx along the direction of the wave
propagation. Integration of this equation gives

J =Jy exp(—px) . (43)

In the case of cathode waves the intensity J, represented
by the square of their amplitude ¥, is a measure of the
number of electrons participating in the motion described
by these waves. Thus Eqn (45) represents the law describing
the reduction in the number of electrons in a cathode beam
because of that scattering which the electrons experience by
colliding with atoms. The rectilinear motion of electrons is
hindered not only by the atoms themselves (because at
T = 0 the scattering ceases), but also by the thermal
vibrations of the atoms [compare this with the interpreta-
tion of Eqn (20)]. In any case, the relative number of the
‘scattered’ electrons, i.e. those ejected from the beam in
question in an interval of length dx, is pdx. Hence it follows
that the scattering coefficient p is simply the reciprocal of
the mean free path of electrons or of their elementary
displacement I:

1

p=-.

, (46)

Therefore, if we know u, we can calculate the electric
and thermal resistances of metals (or the corresponding
conductances) by means of the expressions given above.

A theory of heat conduction in solid insulators con-
structed in a fully analogous way was put forward by Debye
in 1914. It has been established experimentally that the low-
temperature thermal conductivity of insulators becomes
very high and exceeds the thermal conductivity of met-
als. Debye described the thermal motion of atoms in solids
by a superposition of a system of elastic waves and came up
with the idea that the cause of the thermal resistance lies in
the scattering experienced by these waves on fluctuations of
the density of the investigated body. However, since these

fThe proof of'this for the second case is not as simple as in the first case;
the reader can find it in my paper presented at the Como Congress [17].
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fluctuations are in turn induced by elastic waves, the Debye
theory has led to a conflict with the principle of super-
position of elastic waves on which it has been based. The
theory of the electric and thermal resistance of metals
proposed above is free of this conflict, because the
scattered (cathode) waves differ from the scattering
(elastic) waves.

For the moment we shall not consider the determination
of the numerical value of the coefficient u (see below), but
we can put forward the following qualitative propositions.

If the cathode waves in metals are regarded as long, then
at moderate temperatures we can assume that

p=const xT . 47)

The electric conductivity o is inversely proportional to T
if it is described by the Sommerfeld formula [Eqn (17)],
which does not contain temperature explicitly, whereas the
application of my formula [Eqn (34)] gives, in accordance
with the equality

1 1y
D=0 =-—,
37 T3
the expression
const

Conversely, if we treat cathode waves as short (regarding
them as similar to X-ray waves), we obtain under the same
conditions

1 = const , (48)

and, consequently, according to my formula we have
o = const/T, whereas the Sommerfeld formula gives
o = const.

The question of which of these two formulas corre-
sponds to reality cannot be answered simply. We have seen
earlier that the average wavelength of cathode waves in a
metal is indeed comparable with the interatomic distances.
Therefore, these waves should not, strictly speaking, be
treated as long or short. A theory of the scattering of optical
waves whose wavelength is intermediate does not yet exist
because the development of such a theory meets with very
serious difficulties.

However, there are two circumstances which support the
Sommerfeld formula rather than mine.

According to the above theory the scattering coefficient
u' of cathode waves in a metal which is not quite pure, i.e. a
metal containing a small number of some impurities (if only
of another highly conducting metal), should always be
greater than the scattering coefficient y of the same metal
when it is perfectly pure.

Such irregularly distributed impurities should in fact act
on cathode waves in approximately the same way as dust
suspended in air acts on the scattering of light waves. We
can consequently assume that

(49)

where Ap is an essentially positive quantity, which is
practically independent of temperature. Substituting here
the value of u from Eqn (47) and applying the Sommerfeld
formula for the electric conductivity, we obtain

p=p+Ap,

I

1
p :?:p—l—Ap:consth—i—Ap,

where p o« T is the resistivity of a pure metal and Ap is the
additional resistivity proportional to the number of
impurities and independent of temperature. This result is
in full agreement with the experimental observations
formulated as the Matthiessen rule. However, according
to my formula the additional resistivity should be directly
proportional to the absolute temperature.

It is also known that the resistivity of the majority of
metals rises steeply (it approximately doubles) as a result of
melting. This can be explained directly by the concept of
‘long cathode waves’ because inhomogeneities caused by
fluctuations of the density in a liquid are stronger
(approximately twice as strong) than in the case of the
corre-sponding solid. If the assumption is made that
cathode waves are short, the scattering coefficient should
reach its maximum value g = 1/d ~ 10® cm~! already in a
solid near the melting point, so that its significant increase
as a result of melting becomes incomprehensible.

These considerations undermine the validity of the
calculation of the electron mobility made in Section 6,
which is based on the idea of a change in the probability
of various elementary displacements under the influence of
an electric field (and which is related directly to the
Boltzmann distribution law of electrons in a given force
field).X As far as the numerical value of g (at normal
temperatures) is concerned, both points of view — postulat-
ing ‘short’ and ‘long’ cathode waves—lead to values which
are in agreement with the experimental data on the electric
conductivity of various metals if in the former case this
conductivity is calculated using my formula and in the latter
case the Sommerfeld formula is used.

[ am unable to go into further details of the calculations
in this paper. The calculation of u is possible on the basis of
the Schrodinger equation [Eqn (40)]if U is understood to be
the potential energy of an electron relative to all the atoms
and if the atoms are regarded as neutral. The energy of
cathode waves scattered by one such atom is, as demon-
strated by a new theory of collisions developed by Born and
Wentzel, given approximately by

4k *a’

2\2
e 2 2mmv
# n(mv%) I +4k%a° < 1 h > (59)

if the energy ((1))2 of the incident waves is assumed to be
unity. Here, a denotes the effective radius of an atom in the
normal ‘Bohr’ sense, i.e. a quantity of the order of
10~% cm. The total scattering coefficient for a (pure)
metal containing n, atoms per unit volume can be found if
we multiply the above expression by n, in the case of
‘short’ waves and by the mean square fluctuation (An,)* in
the case of long wavest. In the former case this gives
u= 108, ie. I~ 10~8 cm =~ d, whereas in the latter case it
gives p~ 105 ie. [~ 107 cm (at T ~300K) with the
experimental electric conductivity if the latter is calculated
using my formula in the first case and the Sommerfeld
formula in the second case. However, I think that the
temperature dependence of ¢ at low temperatures agrees
better with the Sommerfeld formula, i.e. with the theory of
an electron gas formed by long cathode waves than with
my theory of itinerant comet-like electrons, which
correspond to very short cathode waves. However, there

fHere, An, represents the difference between the actual and mean values
ofn,.
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is no doubt that in reality the wavelength of these waves is
comparable with the interatomic distances and, conse-
quently, they are short rather than long.

Appendix: Comments on Ya I Frenkel’s paper

Tn terms of the more usual notation the value of ¢ can be
described as follows: ¢ = exp(—Ey/kT), where Ep is the
Fermi energy.

n Ya I Frenkel’s obituary [33] A I Ansel’m specially
emphasised the elegance of Yakov II’ich’s derivations of the
main formulas in the quantum theory of metals for an ideal
electron gas at absolute zero (Ansel’'m mentioned this later
in one of the first sessions of a meeting devoted to the
memory of Ya I Frenkel’ in 1953). These relationships are
derived in the first section of the famous article of
A Sommerfeld and H A Bethe ‘Electronentheorie der
Metalle’ [34] written in 1933 (and published in Russian
translation in 1938). There is naturally a direct reference to
Frenkel’s work. Judging by all the facts, Yakov Il’ich
himself also liked this derivation and with obvious satisfac-
tion he included it in a number of his papers and in a
book [28].

MThe paper mentioned by Frenkel’ was presented by
R Becker at a colloquium in Berlin on 24 November 1925.
Four days earlier Yakov II’ich visited Einstein, told him
about his own results obtained on the theory of metals, and
received his approval. This was confirmed at the colloquium
itself. On 26 November Frenkel’ wrote to his parents: ‘The
day before yesterday at a colloquium at the University in
the presence of Einstein, Planck, Nernst, Laue, and other
leading scientists (including Abram Fedorovich [loffe]) one
of the subjects reported on was my theory of electric
conduction of metals. Becker presented my results but
differed with me on one very important topic. Einstein
contradicted him strongly and declared that he ‘‘regards my
ideas to be perfectly correct and the results as very
remarkable” (see p. 146 in Ref. [1]). On the same day
loffe wrote to his wife V A Kravtsova: ‘‘l was present at
a colloquium where Frenkel’s work on metals was discussed
and praised very highly (particularly by Einstein)’” (p. 470
in Ref. [35]).

WVThe concept of ‘cometary’ electrons was applied by
Frenkel’ to metals in the (chronologically) second of his
publications [14] (for the English version of this paper see
Ref. [15]). It is amusing to note that Ya I Frenkel’ pub-
lished his first work in the Petrograd journal Avtomobil
(Automobile) and its title was ‘Mechanical conditions of the
operation of the differential’ [36].

Vin one of his postwar papers Yakov Il’ich referred to
the transition from the insulating to metallic type of
conduction under the influence of an external pressure
as the ‘forced collectivisation of electrons’. This served to
accuse him (at a meeting of the Academic Council of the
Leningrad Polytechnic Institute in the early fifties) of
mocking the Soviet collective farm system. These were
difficult times!

VIIn contrast to Sommerfeld’s work in which the
influence of an external field on the motion of electrons
is included automatically by the use of the Pauli—Fermi
quantum statistics, Yakov I1’ich tried to establish a physical
model of the effect by considering diffusion jumps.
However, this model provides an unsatisfactory descrip-
tion of the situation in ordinary metals, i.e. metals with an

allowed band which is not too narrow. However, the jump
(‘hopping”) concept applies directly to what are known as
low-mobility materials.

VIIOf course, we are dealing here with the phase velocity
of waves.

VII[t seems appropriate to say a few words about the
relationship between Frenkel’ and Sommerfeld. On 26
September 1927 he wrote to his wife from Naples: “I
travelled to Naples with Sommerfeld. On the way we
talked a lot, naturally about physics. He is no longer
young (58 years old), but be behaves in a very simple
and pleasant manner. It is a pity that ten years ago I could
not be one of his students. Almost all the most talented
young theoreticians (in Germany and partly elsewhere) are
his students’ (see p. 434 in Ref. [2]).

They evidently met in Italy. Foreign archives contain
several letters from Frenkel’ to Sommerfeld (the private
prewar archive of Yakov I1’ich was lost during the blockade
of Leningrad). These letters (see pp 337-341 in Ref. [2])
can be used to judge the profound respect and even
admiration that Yakov II’ich felt for Sommerfeld. It is
interesting that Frenkel’ abstracted a large paper of
Sommerfeld on the electric conductivity of metals for the
German abstract journal Physikalische Berichte [9 1051 —
1055 (1928)]. This abstract differs strikingly from the
conventional form. It not only gives Sommerfeld’s
results, but also—with Sommerfeld’ agreement—some
comments which are partially polemical. Frenkel’s abstract
was republished by Sommerfeld (pp 103-108 in Ref. [37])
and it is a good illustration of the approach to the problem
by two scientists, which supplements the paper of Yakov
[I’ich reprinted above.

We shall mention two events which describe the
relationship between the two theoreticians. I K Kikoin
writes in Reminiscences of Frenkel’ (pp 62—-69): ‘When I
graduated from the Institute (in 1927 Kikoin graduated
from the Physicomechanical Faculty of the Leningrad
Polytechnic Institute) I was sent on an official trip to
Germany and worked for a time at the Munich University,
where Sommerfeld held the chair of theoretical physics, and
[ became acquainted with young postgraduate students, i.e.
those who obtained a first degree, and found that they were
studying Frenkel’s electrodynamics. To my question what
are they doing they answered: ‘““We are preparing to be
examined on electrodynamics by Sommerfeld”. ‘“But
Sommerfeld has his own course of lectures on electro-
dynamics?”’. “Yes, but Professor Sommerfeld thinks there is
no better course in the world than that of Frenkel’. He will
examine us solely on the basis of Frenkel’s book” (p. 66 in
Ref. [2]).

The same Reminiscences include a paper by
G V Skrotskii. In September 1930 Sommerfeld partici-
pated in the First All-Union Congress of Physicists in
Odessa. He presented there a paper on the influence of a
magnetic field on the electric conductivity of metals. The
paper was translated on the spot by Yakov II’ich. Skrotskii
writes: ‘‘Yakov II’ich went beyond the remit of an inter-
preter: he did not provide a simple translation from the
German, but commented and explained various statements
in Sommerfeld’s paper. These improvisations did not escape
the attention of Sommerfeld, who thanked him and
mentioned this point especially at the conclusion. When
Yakov II’ich  translated these words, Sommerfeld,
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Yakov II’ich, and many participants were laughing”’ (p. 164
in Ref. [12]).

IXTt is interesting to point out that, judging by the paper
of Frenkel’ presented at the Como Congress [17], he already
then understood that electron diffraction by a regular
crystal lattice of a metal does not give rise to the
resistance. Yakov Il’ich stressed this point frequently in
the paper reprinted above. The idea that the resistance of a
pure defect-free metal is solely due to the thermal vibrations
of the lattice is fundamental to the whole theory of the
electric conductivity of metals. At present we might regard
it as trivial, but we must recall that this idea was put
forward in 1927 —1928, and at the time it has been far from
self-evident. The understanding has come only with the
development of the band theory of solids. Subsequently
Frenkel’ has accepted his theory but has regarded its role as
greatly exaggerated. His main objection was that it does not
allow for the electron—electron interaction which is very
strong in solids. Nevertheless, it is tempting to guess that
this objection has been partly due to purely psychological
and possibly even subconscious motivation. He approach
very closely what is now known as the weak-binding
approximation (nearly-free electron model) and is used
widely in the method of pseudopotential, but did not
make the next logical step of constructing a many-wave
theory of diffraction of electron waves. This is particularly
surprising because, judging by the list of names and
references to his papers, he knew of the work of Darwin
(1914), who developed a dynamic theory of X-ray diffrac-
tion in the two wave approximation. This theory is fully
equivalent to the weak-binding approximation.

Here is the relevant part of his paper presented in Como:
The electrical potential in an absolutely homogeneous metal
crystal of infinite dimensions at absolute zero can evidently
be represented by a triple Fourier series, the period of which
is equal to the edge of a unit cell and the constant term is
equal to the average value of the positive potential.
Consequently, we have

W—U=Wo+Y 'Cexplgixi + a2 +a5%3) , (A

where W, is the average kinetic energy of an electron,
gs = (2n/agn, (s =1, 2,3;n, =0, 1, 2,...) in the case of
the orthorhombic lattice in which the unit cell is a
parallelepiped with the edges a;, ay, as; the prime in the
summation sign indicates that the term ny = n, = n3 = 0
is excluded.

Introduction of Eqn (A.1) into the Schrodinger equa-
tion and neglect of the periodic terms compared with W,
gives the zeroth-order approximation in the form of a
solution of the type ¥ = ¥, = exp(ikx), where

m 2 2
k:%t:%:%\ﬁmwo.

This solution describes the main primary waves prop-
agating in a crystal along an arbitrarily selected direction.
Each periodic term (W —U) corresponds to one side
primary wave, described in the first approximation by

VA + kY = —C exp (iZ' ‘“’“) v

s

(A2)

— C exp [iz (4, +k,)xy] , (A3)

5

where k;, k,, and k3 are the components of the vector k,
representing the length and the direction of the main
primary wave.

If it is assumed that

W= exp[i Y (g +k)x] (A4)
the result is
[Z'(qs +ky)’ - kz] A=cC, (A.5)
ie. |
< (A.6)

A= —
7 +23 gk,
S

If we introduce the wavelength d of the exp(i)_ ¢,x;)
waves and use 6, to denote the angle between the vectors k
and —q, the denominator of Eqn (A.6) can be written in the
form

1 2cosf
2 — __Z27" "
q +2 E‘\- gk, = 2mnq (d 7 ) .

Hence it follows that A becomes infinite, in other words,
our approximation becomes invalid at values of 6, which
satisfy the relationship

A=2dcos b, ; (A.8)

(A7)

this is the well-known Bragg or Rayleigh relationship,
which determines the directions of the interference maxima.

[t therefore follows that in the absence of thermal
motion or any other cause of an inhomogeneity of a
crystal, the main waves, like the side waves, do indeed
propagate without any scattering.

The scattering and the closely related apparent absorp-
tion cannot be calculated simply. I shall not reproduce here
some of the attempts which | have made in this connection.
However, [ shall point out one circumstance which becomes
self-evident as soon as we turn to the topic. An elementary
event in a crystal is the propagation not of just a single wave
but of a ‘packet’ formed by the main and side waves. From
the corpuscular point of view this effect corresponds not to
a parallel beam of electrons, but to motion which is much
more complex. Had we been able to solve the thermal
scattering problem, could we have then found the quantity
which would correspond to an ‘elementary displacement’ /?
I do not know an answer to this question. A probable way,
a possible one, is to tackle this problem without recourse to
corpuscular ideas’ (see pp 87—88 in Ref. [17]).

X[t should be pointed out that fusion of these opposite
points of view on the process of conduction, ‘hopping’ and
‘free-electron’, has been achieved in what are known as
superlattice semiconductors. The electrons move in artifi-
cially formed layer semiconductor structures with periods of
tens of angstroms, are localised by an applied electric field,
and experience Bloch oscillations. The usual conduction
due to almost-free electrons in weak fields changes to the
hopping mechanism when the field is sufficiently high to
ensure that the localisation length becomes comparable
with the mean free path (or less than this path).
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