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State of the conduction electrons and the work function of a metal 

B V V a s i l ' e v , M I K a g a n o v , V L L y u b o s h i t s 

Abstract. The condition for a minimum of the bulk energy 
of a metal is used to determine the chemical potential of the 
conduction electrons. This potential is measured from the 
value of the energy far from the metal and is equal (with 
the opposite sign) to its work function. Suggestions are 
made as to the reasons why a very simplistic description of 
the problem leads to results that do not conflict with the 
experimental data. 

The unusually long 'lifetime' of the books by Yakov 
Il'ich FrenkeP is due to this author's ability to explain the 
nature of complex quantum effects in a simple and clear 
manner. This applies particularly to the physics of the 
condensed state. FrenkeP justly said that the more complex 
the effect, the simpler should be the theory. His Vvedenie v 
Teoriyu Meta llov (Introduction to the Theory of Metals) [1] 
has gone through four editions and, although the last one 
was published in 1972, it is still a book used actively by 
physicists and physical chemists working at different levels. 
A comparison of the content of this book with those 
published recently (for example, A A Abrikosov's 
Fundamentals of the Theory of Metals [2]) shows that 
Yakov Il'ich treated the theory of metals much more 
comprehensively than the modern authors. His Introduction 
to the Theory of Metals contains chapters dealing with the 
theory of melting, ordering alloys, kinetics of precipitation 
of solid solutions, and strength and plasticity of metals. 
Three (out of 22) chapters of the Introduction deal with the 
electron (band) theory of metals. 

The rapid development of the electron band theory of 
metals has, on the one hand, led to the understanding and 
sometimes the discovery of fine quantum-mechanical 
properties of metals (galvanomagnetic phenomena, 
cyclotron reson-ance, Shubnikov-de Haas and de H a a s -
van Alphen effects, various acoustoelectronic effects, etc.) by 
relating them to the electron energy spectra ('fermiology') 
and, on the other, has provided a first-principles explanation 
of superconductivity as a phenomenon due to the formation 
of Cooper pairs of electrons by their interaction involving 
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the virtual-phonon exchange (see, for example, Refs [3] and 
[2]). 

In the band theory all the attention is on the electron 
system of a metal, i.e. on the conduction electrons moving 
in the field of the crystal-lattice ions; the interaction of 
electrons with one another is allowed for by the Landau 
theory of a Fermi liquid [4]. The expressions derived on the 
basis of the Fermi-liquid theory have made it possible to 
avoid the tiresome complexity of the discussion based on 
the direct allowance for the electron-electron interaction. 

In the band theory the ion lattice of a metal is the space 
where the conduction electrons 'live' (r space). This space is 
periodic so that the state of an electron (or any other 
quasiparticle) can be described by introducing the 
quasimomentum vector /?, very similar to the momentum 
vector, but differing from the latter because it is specified 
within one reciprocal-lattice cell: the p space is periodic. 

Introduction of the periodic r space and the associated 
periodic p space 'liberates' the metal electrons from the 
influence of the external world surrounding a sample. The 
boundaries of a sample (if its finite dimensions have to be 
allowed for) provide an additional channel for the 
scattering of the conduction electrons and/or a region 
where specific two-dimensional qua sip articles can 
congregate (these particles include the quanta of surface 
and Rayleigh acoustic vibrations, Tamm levels, surface 
polaritons, etc.). The feasibility of crossing the boundary 
of a sample, i.e. the escape of an electron outside the 
sample, is usually ignored completely in the band theory. 

However, there are phenomena which cannot be 
described if the escape of an electron from a metal is 
ignored. This applies particularly to the various types of 
emission (thermionic emission, cold emission, external 
photoelectric effect, ion-electron emission). They also 
include the contact potential, operation of galvanic cells, 
etc. In all those phenomena in which the escape of an 
electron from a metal into the surrounding space or the 
transition of an electron from one sample to another has to 
be allowed, the characteristic known as the work function 
assumes a decisive importance. The work function W is the 
minimum "work that has to be done on a particle if its 
removal occurs in a thermodynamically reversible 
manner" [5]. This function is always positive (W > 0) 
since a point charge is attracted to a neutral body (in 
particular, to a conductor). Introducing W = <?</>, where e is 
the charge of a particle, we can demonstrate that the sign of 
the work-function potential </> is identical with the sign of 
the charge (for electrons we have e < 0). 

It is evident that the positive nature of the work function 
of an electron is due to the fact that the electrons in a metal 
are in a potential well created by positively charged ions. 
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Since the conduction electrons are degenerate (the 
temperature T is usually much less than the degeneracy 
temperature T¥ M 0 4 - 1 0 5 K), the escape occurs from the 
Fermi level and the following problem (which is outside the 
framework of the band theory of metals) has to be faced: 
what is the position of the Fermi level relative to the 
external world? 

The problem is complicated by the dependence of the 
work function of an electron not only on the nature of the 
conductor, but also on its surface (for example, on the 
direction of the surface relative to the crystallographic axes 
if the conductor is a single crystal, on the degree of surface 
con-tamination, on the presence of an oxide film, etc.). At 
first sight this might seem to be strange because it is 
assumed intuitively that the removal presumes the transfer 
of electrons to 'infinity', i.e. to a point very far from the 
surface of a metal where no forces related to the charge of a 
semiconductor can act (we are assuming that the energy of a 
charge at rest at infinity — far from the surface of a 
metal — is zero). In fact, the work function represents 
the transfer of a charge from a conductor to its surface, 
where the potential depends on the surface structure. The 
reference data on the work function of different faces of 
single-crystal conductors with clean surfaces do not differ 
very greatly from one another. For example, the work 
function for different faces of a tungsten single crystal is as 
follows: 5.3 eV, 4.4 eV, and 4.6 eV for the (110), (111), and 
(100) faces, respectively [6]. We can ignore this difference if 
we confine ourselves to just a rough qualitative estimate of 
the work function (see below). 

In a macroscopic (average) description a metal it should 
be regarded as locally neutral, since the Debye-HuSckel 
radius of the conduction electrons is of the order of (or even 
less than) the lattice constant a (see Chapter 17 in Ref. [7]). 
In other words, the average charge density in a metal is 
p(r) = 0. Consequently, the potential well for the 
conduction electrons is in fact created by the potential 
of a double layer, which is located in a thin surface region 
where p(x) ^ 0 (x is the coordinate along the normal to the 
surface). The jump of the potential at the metal-vacuum 
interface is (see, for example, [5]) 

be carried out in a self-consistent manner and we cannot 
ignore the position of the bottom of the conduction band 
or the Fermi energy, which are the bulk characteristics of 
the electron system in the ion lattice of a metal (see below 
and, for example, Ref. [8]). 

However, the similarity of the work functions of 
different faces of the same crystal suggests that the 
structure of the unit cell near different faces is 
approximately the same and, moreover, that it differs little 
from their structure in the bulk. This is essentially the main 
model approximation adopted in the present paper. It 
follows from this approximation that the work function 
is equal to the Fermi energy measured from the zero level, 
which is the value of this energy far from a metal. This is 
manifested particularly clearly in the figure reproduced here 
(Fig. 1) from Ashcroft and Mermin's Solid State Physics [7] 
(Fig. 18.1b in that book). If the work function were to be 
measured for deliberately formed crystal faces with large 
Miller indices, along which the charge distribution differs 
considerably from the distribution along close-packed 
planes, the work functions might differ considerably 
from those usually given in reference books. 
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Figure 1. Crystal potential U (or the electrostatic potential (j) — —U/e) 
along a row of ions in a crystal. At a large distance from a crystal we have 
both U and (j) tending to zero. The negative F ermi energy is marked on the 
vertical axis. The shaded region represents schematically the filled 
electron states. The removal of an electron from a metal is possible if it 
is given an energy W — —fi (see Fig. 18.1b in Ref. [7]). 

§W = 4TI xp(x)dx . (1) 

Here 'oo' means the distance which is large compared with 
the linear size a of a unit cell. We can 'acquire a feeling' 
how Eqn (1) operates by considering the simplest model in 
which the charge density differs from zero in the interval 
[—d, d], x = 0 is the boundary of a crystal, and 

p0xd' 
0, 

\x\<d, 
\x > d . 

It then follows from Eqns (1) and (2) that 
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TPod 

(2) 

(3) 

The characteristic value p 0 is naturally e/a and we have 
d ~ a, since it cannot differ too much from the Debye-
HuSckel radius. Therefore, the jump of the potential is 
hW ~ e/a, i.e. it is identical with the characteristic potential 
of an ion (it is assumed that the degree of ionisation is 
unity). This estimate shows above all that the exact work 
function cannot be calculated without knowledge of the 
specific structure of the crystal surface. Calculations should 

In connection with the structure of a double layer on the 
surface of a metal and the role of this layer in the 
determination of the work function one must mention 
the pioneering work of FrenkeP on 'Electrical double 
layer on the surfaces of solids'. This work was carried 
out in December 1916 and published in two consecutive 
volumes of Zhurnal Russkogo Fizikokhimichesko go 
Obshchestva [49 100 (1917); 50 5 (1918)]. This paper begins 
with the words "The existence of electrical double layers on 
metal surfaces has recently been finally established by a 
number of investigations of the emission of free electrons by 
metals under the influence of heating (thermionic or 
Richardson effect) or illumination (photoelectric effect)." 

At temperatures T <^T¥ the Fermi energy is very nearly 
equal to the chemical potential fi = dE/dNe, where E is the 
energy and Ne is the number of electrons in a conductor. An 
attempt to estimate the chemical potential of the 
conduction electrons is made in Ref. [9] subject to 
allowance for the position of the bottom of the potential 
well, i.e. by 'linking' this potential to zero energy outside the 
metal. 
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The calculations made by A A Abrikosov [10] show 
that the potential energy of a system of ions and 
electrons, consisting of the energy of the Coulomb 
interaction of electrons and ions and of the exchange 
energy of electrons, is 

U = -C(z)e2Nz(nz)l/3 . (4) 

Here N, is the number of ions with a charge ze in a crystal; 
n = N/V is the density of these ions; nz is the electron 
density; V is the volume of a crystal (the density is the 
number of particles per 1 cm3); the factor in the above 
expression is C(z) ~ 1 and it depends on the lattice 
structure. In terms of the same notation the Fermi energy 
8 F of the conduction electrons, measured from the bottom 
of the potential well, is 

gF =(3n2)2/3n2(2m)-l(nzf3 , (5) 

and the total kinetic energy of electrons is 

Ee = -^NzsF . (6) 

The use of Eqns (5) and (6), valid for a gas of free 
electrons, needs some comment (which is given below). 

The total energy of electrons and ions is the sum of their 
potential and kinetic energies. According to Eqns (4)-(6), 
if ions are assumed to be immobile (i.e. if the temperature 
effects are ignored), the result is 

E = I (3n2)2/3 ^-Nz {nz)2'3 - C(z)e2Nz {nz)1'3 . (7) 
5 2m 

In the above expression the density of ions should be 
regarded as a parameter which has to be found by energy 
minimisation. This requires some explanation. We are 
assuming that the degree of ionisation z is characteristic of 
a metal atom (for example, the number z is equal to the 
valence of an atom) and that n = N/V = l/v0, where u 0 is 
the volume per one ion. Therefore, minimisation with 
respect to n means determination of the crystal structure, 
i.e. of the unit-cell volume for which the bulk energy is 
minimal. Equating dE/dn to zero, we find that the 
expressions corresponding to the equilibrium density 
n = n0(z) are 

E = -1NM"o)> NE = Nz . (8) 

It should be noted that the result obtained is independent 
of the actual dependence of the factor C on the degree of 
ionisation z. The important points to note are t h a t | 
8 F oc n2/3 and U oc nl/3. 

It follows directly from Eqn (8) that the chemical 
potential of the conduction electrons (for a fixed density 
of these electrons) is 

3 , x 

jn =--s¥(n0) . (9) 

Consequently, we find that 

W=^8¥(n0) . (10) 

f in the paper cited earlier [9], two of the present authors determined the 
equilibrium density of carriers and the total energy of the conduction 
electrons by the virial theorem. It was pointed out in Ref. [9] that the value 
of n0 agrees with the real values of the electron density in metals. 

The fact that the work function is governed solely by an 
electron characteristic is naturally a consequence of the 
simplifying assumptions made here and in Ref. (9). 

The principal assumptions are as follows: 
(1) A double (dipole) layer at the boundary of a sample 

is constructed so as to ensure the same jump in the potential 
for all the faces and the structure of the potential of both 
ions and electrons is not disturbed by the proximity of the 
boundaries of the sample (Fig. 1). A more rigorous 
formulation of the problem (even within the framework 
of the macroscopic description) requires, after calculation 
of the equilibrium density by minimisation of the bulk 
energy of Eqn (7) and introduction of certain assumptions 
on the surface structure, minimisation of the surface energy 
and calculation of the exact value of the jump of the 
potential and of the work function. The reasonable 
(qualitative) agreement between Eqn (10) and the 
experimental data allows us to restrict ourselves to the 
assumption formulated earlier (and repeated here). 

(2) The electrons in a metal form a free electron gas 
with the quadratic isotropic dispersion law. 

The second of these assumptions may seem rather 
strange. After all, it follows from it that the Fermi surface 
of a metal is a sphere, whereas — as pointed out above — 
one of the main achievements of the electron theory of 
metal is the explanation of the complex structure of the 
Fermi surfaces and of their role in accounting for the 
various properties of metals. However, although it may 
seem paradoxical, the two statements are not in conflict. 
Naturally, in discussing the dynamics of the conduction 
electrons (particularly in an external magnetic field) we 
must allow for the specific geometric structure of the Fermi 
surface, but in the calculation of the total energy of the 
conduction electrons the Fermi surface of many metals can 
be deduced from the Harrison model in which the principal 
assumption is that the complex structure of the Fermi 
surface (various sheets, pockets, etc.) is the result of 
degeneracy of the states corresponding to the boundaries 
of the Brillouin zone. In other words, the Fermi surface of 
many metals, which plays an important role in the dynamics 
of the conduction electrons, is the result of cutting up of the 
Fermi sphere of free electrons (see §11 in Ref. [3]; §§14 and 3 
in [2]). This means that the total energy of the conduction 
electrons in a real metal should not differ greatly from the 
energy of a gas of free electrons with the same density. This 
is supported by Fig. 1 of Ref. [9] (see preceding paper). The 
experimental values of the work function Wexv are 
compared there with the theoretical value of Eqn (9), 
which should be compared with Eqn (31) of Ref. [9]: 

/ \ 2 / 3 

W ( e V ) - 1 5 . 6 ^ J . (11) 

Here, A is the mass number of the element and p m is the 
mass density (g c m - 3 ) . For some metals (Ca, Sr, Cu, and 
Hg) the experimental values of the work function agree 
almost exactly with the results of calculations carried out 
on the basis of Eqn (11). In the case of other metals the 
agreement is poorer, and the ratio W/Wexv lies within the 
limits 0.5-1.75, which in our opinion is quite satisfactory 
in view of the rough approximation which has been used. 

We shall not deal with all the refinements that should 
have been considered in a rigorous quantitative theory, but 
point out the need to allow for the Fermi-liquid effects, 
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so strongly coupled that the height of the barrier which an 
electron has to overcome when leaving a metal can be at 
least approximately described only in electron terms. 
Specific results [Eqns (10) and (11)] may and should 
naturally be refined, but — in our opinion — the 
calculation of the work function (and, naturally, of 
various emission properties) is impossible without direct 
allowance for the interaction of electrons with the ion 
framework, which makes it possible to find the position of 
the conduction bands relative to zero, which is the energy 
outside a metal far from its boundaries. 
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H \sF ) 

Since fiH <̂  eF (this is one of the conditions for the 
appearance of oscillations), the difference between the 
power exponents (5/2 instead of 1/2!) may possibly account 
for the absence of oscillations of the work function. 

* 

It seems appropriate to publish this paper in the issue of 
Uspekhi Fizicheskikh Nauk celebrating the centenary of the 
birth of Yakov Il'ich FrenkeP. The amazing intuition, 
which enabled Yakov Il'ich FrenkeP to simplify the 
discussion right to the limit without losing the qualitative 
features of the effect, cannot be learned. However, attempts 
to achieve this are permissible. We would like to believe 
that we have not crossed the limit and have captured 
specifically the qualitative side of the topic: electrons and 
ions, creating together the potential well for electrons, are 

fi t is stated in Ref. [13] that there should be no oscillations of the work 
function because of the inhomogeneity of the state of electrons near the 
boundary of a sample in fields H ^ 0. 

renormahsation due to the interaction of electrons with 
phonons, etc. Naturally, in the development of a rigorous 
theory these effects cannot be ignored, but there are no 
grounds for assuming that the results would change by an 
order of magnitude. There is a group of metals (K, Na, Rb, 
Cs) whose Fermi surfaces are spherical. The degeneracy at 
the Brillouin zone boundaries, mentioned above, is not 
important in the case of these metals and the whole of the 
difference between the conduction electrons and free 
electrons in these metals is manifested by the difference 
between their effective mass and that of a free electron. 
However, this difference is only 10%-20%! Our 
calculations cannot pretend to be within these error limits. 

Our analysis suggests a comment about the lack of 
success in detection of oscillations of the work function in a 
quantising magnetic field [11] in the case of three-
dimensional samples, although an estimate of made 
many years ago [12] would seem to allow observation of the 
oscillations! (8/1 is the correction, oscillating with the 
magnetic / / , to the chemical potential / 1 of the conduction 
electrons). Only the change in the dynamics of the 
conduction electrons in a magnetic field H is allowed for 
in the paper by Kaganov et al. [12]. The role of the 
conduction electrons in creation of the potential well is 
not considered. If our estimate of the work function is 
correct, it is obvious that a change in the dynamics of 
electrons in fields H ^ 0 should alter the electron energy of 
Eqn (6) [and possibly also the potential energy of the 
interaction of electrons and ions of Eqn (4)]. According 
to the theory of the de H a a s - van Alphen effect (§§15-17 
in Ref. [3]), the maximum relative amplitude of the energy 
oscillations is 

•oc ^ , P = — , 
E V e F I m*c 

whereas 


