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Abstract. The s ta tus of the virial theorem in classical and 
q u a n t u m mechanics is discussed and the pr incipal virial 
re la t ionships are derived. A mode l of the electron F e r m i 
gas in a meta l is considered t ak ing explicit account of the 
consequences of the virial theorem for a stable system of 
electrons and ions interact ing in accordance with the 
C o u l o m b law. This mode l is used to obta in expressions for 
the to ta l energy and the chemical po ten t ia l of the 
conduct ion electrons in undeformed and deformed me t 
als. These expressions are used to est imate the equil ibrium 
concent ra t ions of electrons and ions, the electron work 
function of a metal , and the cont r ibut ion of the collective-
state electrons to the bulk m o d u l u s of a metal . It is shown 
tha t an electric field appears in an inhomogeneous ly 
deformed meta l and tha t this field is p r o p o r t i o n a l to the 
gradient of the bulk strains. A space charge, which is 
compensa ted by a surface charge of opposi te sign, also 
appears in such a metal . 

1. Introduction 
In the electron theory of metals the conduct ion electrons 
are regarded as a degenerate F e r m i gas inside a po ten t ia l 
well created by the field of ions. The electrons and ions in a 
meta l interact in accordance with the C o u l o m b law and 
form a stable q u a n t u m system which, to some extent, 
resembles a single a tom or a mo lecu l e | . 

fThis analogy was stressed by Frenkel ' [1]. 
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Stable classical and q u a n t u m systems obey the 'virial 
t h e o r e m ' first formulated by Clausius over 120 years ago 
(see, for example, Refs [2 -4 ] ) . This theorem follows from 
the most general principles of classical and q u a n t u m 
mechanics . In par t icular , if part icles interact in accordance 
with the C o u l o m b law, it follows from the virial theorem 
tha t 

2T = -U, (1) 

where T is the average kinetic energy of the part icles and U 
is the average poten t ia l energy. 

W e shall use the virial theorem to describe some 
proper t ies of the electron gas in a metal . This theorem 
makes it possible to readily est imate the equil ibrium 
concent ra t ions of electrons and ions, the electron work 
function of a metal , and the cont r ibut ion of collective-state 
electrons to the bulk m o d u l u s (compressibili ty) of a metal . 

The C o u l o m b interact ion leads to a significant 
renormal i sa t ion of the chemical po ten t ia l of the electron 
gas in undeformed and deformed metals . 

2. Virial theorem in classical and quantum 
mechanics 
W e shall consider a system of interact ing part icles which 
are moving in a b o u n d e d pa r t of space. The to ta l kinetic 
energy of these part icles is 

i i 
W e shall rewrite E q n (2) in the form 

I I 

Here , Ft = dPt/dt is a force act ing on the iih part icle. 
W e shall average Eqn (3) over a very long t ime. Since 

the m o m e n t a and coordina tes of the part icles in b o u n d e d 
mot ion are finite, it follows tha t 

d ^ P , . r i = 0 . (4) 
dt 
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This leads to the virial theorem 

2T = ~Yjri-Fi (5) 

The r ight -hand side of E q n (5) is usually called the virial of 
the system (from the Lat in 'vires ' , which means forces) [2Jf. 

If the system is conservative, then 

Fi = - — U(rur29 ... ,ri9 ... ,rn) (6) 

where U(ru r2, . . . , rt, . . . , rn) is the poten t ia l energy of 
the interact ion. Subst i tut ion of Eqn (6) into E q n (5) gives 

rn) (7) 

W e shall consider an impor t an t case when there are no 
external forces and the poten t ia l U(rXi r2 , . . . , rt, . . . , rn) 
consists of pair potent ia ls q>(rik) tha t depend only on the 
distance between the part icles (rik = \rt—rk\). Then 

U(rh r2, ... ,rh ... , rn) = T ^ X ^ ( ^ ) (8) 

^ ( r i > r 2 > . . . > r | > . . . > r a ) = E ^ ^ M > ( 9 ) 

and E q n (7) becomes 

IT d(Pik(rik) (10) 

If the pair potent ia ls obey cpik oc r ^ , we have 

i+k 

Then, subject to Eqn (8), a simple relat ionship applies 
between the average kinetic energy T and the average 
poten t ia l energy U: 

2T = nU . (12) 

If the part icles interact in accordance with the C o u l o m b 
law (n = —1), then E q n (1) applies. In q u a n t u m mechanics 
the initial expression of E q n (3) is still valid, bu t it should 
be regarded as an opera tor re la t ionship. In q u a n t u m 
mechanics the b o u n d e d mot ion cor responds to s ta t ionary 
states of a m a n y - b o d y system with a discrete energy 
spectrum. F o r a s ta t ionary state the average value of a 
t ime-derivative opera tor vanishes. This means tha t the 
virial theorem also remains valid in q u a n t u m mechanics : 

(13) 2(f) = J2(rr^rU(rur2, ... , r i t ... ,r„) 

The symbol ( • • • ) denotes quan tum-mechan ica l average 
and 

f Virial is sometimes defined as the quantity 

i.e. the right-hand part of Eqn (5) without the minus sign [5], or as half 
this value. 

is the kinetic energy opera tor . If the part icles interact in 
accordance with the C o u l o m b law, we find tha t 

2{T) = -{U(rur2, (14) 

The to ta l energy of a s ta t ionary state is then equal to the 
average kinetic energy with its sign reversed: 

- c o (15) 

Since all the a tomic and molecular systems (including 
solids!) consist of part icles interact ing in accordance with 
the C o u l o m b law, the relat ionships (14) and (15) should 
apply to them. The source of the exchange energy, which 
ensures chemical b inding, is also the C o u l o m b interact ion. 
Consequent ly , in Eqn (14) the quant i ty (T) should be 
regarded as the average kinetic energy of all the electrons 
and nuclei, and the quan t i ty (U(ru r 2 , . . . , rt, . . . , rn)) 
includes also the exchange energy, which is due to 
ant i symmetr isa t ion of the wave function of identical 
electrons. In par t icular , it follows from E q n (15) tha t the 
dissociation energy of the hydrogen molecule is equal to the 
average sum of the kinetic energies of two electrons and two 
p r o t o n s (in a reference system in which the centre of mass of 
the molecule is at rest). 

It should be stressed tha t the virial theorem — repre 
sented by E q n s (7), (10), (14), and (15) — remains valid also 
in the case of complex microscopic systems: it is then 
necessary to carry out an addi t iona l averaging over a 
statistical ensemble. F r o m n o w on we shall use a ba r to 
denote the averages, irrespective of the na tu re of the 
averaging process . 

W e have assumed so far tha t no external forces act on 
the system and, in par t icular , tha t there is no external 
pressure. Let us n o w consider the case when the pressure is 
P ^ 0. The to ta l external force is still zero because 
otherwise the mo t ion of the system would no t have been 
b o u n d e d . Also, E q n (5) is valid under these condi t ions: the 
r ight -hand side of Eqn (17) should be supplemented by the 
virial of the 'walls ' . W e mus t n o w write 

2f=Yifrufa>r*> ••• ••• ' r * ) + p t d s n • ( i 6 ) 

Here , df = —PdS is the force acting on an element of a 
closed surface S which is the b o u n d a r y of the vo lume V of 
a body , and dS = ndS, where n is a uni t vector a long the 
direction of the outer n o r m a l to the surface S. 

It follows from the G a u s s theorem tha t 

(t dSr 
s 

- 1 * 
JV 

d i v r d V = 3V (17) 

Subst i tut ion of E q n (17) into E q n (16) yields the equat ion 
of state 

p y = \ t -\Y<r^u^r*> •••'r- •••'r») • ( 1 8 ) 

i 1 

If the poten t ia l energy has the s t ructure of E q n (7) with 
<Pik « 4> t h e n t 4 ] 

1 - n -
PV=-T--U 

3 3 

or 
nE n + 2 — 

PV = - - + — T 

(19) 

(20) 
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where E = T + U is the to ta l energy of the system. In the 
C o u l o m b interact ion case (n = —1) E q n s (19) and (20) 
give 

2T + U E + T 
r v = — = — - (2D 

Consequent ly , in the absence of pressure we have 

E + T = 0 

in full agreement with E q n (15). 
The relat ionship (16) can readily be generalised to the 

case of a rb i t ra ry inhomogeneous strains created by bulk 
and surface external forces. The virial theorem then 
becomes 

\rdV 2T = Y^r~U(ru r2, ... ,ri9 ... , rn) - J^/ . 

o 3 3 

- o ^2^2tafidSfixa . (22) Js a = 1 p=1 

Here , are elements of the stress tensor [5] and / is the 
external force acting on a uni t volume. The second term on 
the r igh t -hand side of E q n (22) describes the virial of the 
bulk external forces and the thi rd term represents the virial 
of the surface forces. Appl ica t ion of the G a u s s theorem 
gives 

- J E E ^ d v « = -[ (EEfe 

-lit'-)™-
dV 

(23) 

On the other hand , under equil ibr ium condi t ions we have 

so tha t 

f-r 
1 3 = 1 a=l Qxt. 

(24) 

(25) 

Subst i tut ing Eqns (23) and (25) into Eqn (22), we obta in 

3 

(26) 

In the case of a h o m o g e n e o u s hydros ta t ic strain, when 
tap = —PSap, E q n (26) reduces to E q n (16). 

3. Virial theorem and the energy of the electron 
gas in metals. Equilibrium condition 
In the absence of an external pressure the average kinetic 
and poten t ia l energies of electrons and ions in a meta l 
should be related by E q n (1). Then 

2(Te + T{) = -U , (27) 

where Te is the average kinetic energy of the electrons, Tx is 
the average kinetic energy of the ions, and U is the average 
poten t ia l energy. 

If we take into account the external pressure, which 
creates hydros ta t ic compressive or tensile strains, we find 
from the expressions in Eqn (21) tha t 

2(Te + Tl) + U 

E q n (28) remains valid also in the case of inhomogeneous 
strains provided T/V and U/V are replaced with the 
appropr i a t e local densities of the kinetic and poten t ia l 
energ ies | . 

It should be stressed tha t , strictly speaking, the initial 
equat ion (1) applies to a completely isolated system of all 
the electrons and nuclei in a metal , interact ing in accor
dance with the C o u l o m b law. However , in the first 
approx imat ion , we can consider the subsystems of free 
and b o u n d electrons independent ly and we can therefore 
apply the virial theorem for the C o u l o m b interact ion 
separately to the mot ion of the conduct ion electrons and 
charged ions, and to the internal mo t ion of the b o u n d 
electrons and nuclei (some of the b o u n d electrons are in a 
collective state under the influence of the ne ighbour ing ions, 
which ensures b ind ing of the lattice). 

W e shall be interested only in the proper t ies of the 
conduct ion-elect ron gas. It is impor t an t to stress tha t , in 
view of the large mass of the ions, their kinetic energy can 
be ignored compared with the kinetic energy of electrons. If 
T[ <̂  T e , E q n (3) gives 

2Te + U = 3PeV (29) 

where Pe is the par t ia l pressure of the electron gas. The 
relat ionship given by E q n (29) is obviously the equat ion of 
state of the electron gas in a metal . 

W e shall assume, as usual , tha t the conduct ion electrons 
are inside a certain effective poten t ia l well. In this mode l 
under degeneracy condi t ions , i.e. at t empera tu res much 
lower tha t 1 0 4 - 1 0 5 K, the average kinetic energy of the 
electrons is described by the familiar expression 

••INzE¥ (30) 

where N is the number of the ions, z is the charge of an ion, 
and E¥ is the F e r m i energy. 

W e then have 

EF = (3n2f'^(nzf3 , (31) 

3P . (28) 

where n = N/V is the concent ra t ion of the ions, nz is the 
concent ra t ion of the electrons, and m is the mass of an 
electron. 

It is wor th no t ing tha t if we take into account the virial 
theorem, the poten t ia l energy of the system of free electrons 
and ions and the effective depth of the poten t ia l well for one 
electron cannot be arbi t rary: they should be in one- to-one 
relat ionship with the average kinetic energy of the electrons 
and p r o p o r t i o n a l to the F e r m i energy E¥. 

Let us examine this p rob lem in greater detail. The 
poten t ia l energy of this system of electrons and ions 
includes the cont r ibu t ions of the following componen t s : 
the C o u l o m b interact ion of electrons with one another 
( including the exchange energy), the C o u l o m b interact ion of 
ions and electrons, and the C o u l o m b interact ion of ions 
with one another . Calcula t ions show tha t in this case the 
average potent ia l energy is [6] 

U = -C(z)e2(Nz)(nz)l/3 , (32) 

where C(z) is a coefficient which is of the order of uni ty 
and depends on the lattice s t ructure; e is the electron 

fFor arbitrary strains we must also make the substitution 
3P —> — (txx +tyy +tzz), where ti{ are the diagonal elements of the stress 
tensor [see Eqn (26)]. 
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charge. Consequent ly , the to ta l energy of electrons and 
ions is given by the expression 

E = Te + U = ^(3nz) ^ 2 / 3 7T- (nzf/3Nz - C(z)Nze 2{nz)1'3 

2m 
(33) 

It should be no ted tha t the to ta l energy of E q n (33) is 
independent of t empera tu re and is identical with the free 
energy F. 

W e shall demons t ra t e tha t the dependence of the 
average potent ia l energy on the concent ra t ion of ions 

Ucxn1/3 

is a r igorous consequence of the virial theorem for the 
C o u l o m b interact ion. Let us represent U in the general 
form 

U = Ncp(n) (34) 

which satisfies the requi rement of additivity. Accord ing to 
E q n (29), we have 

p ° - J v T e ' 
(35) 

Here , P0 is the pressure related to the kinetic energy of the 
electrons and Pe is the to ta l pressure of the electron gas. On 
the other hand , if we al low for the t empera tu re 
independence of the to ta l energy, we can define the 
pressure by 

dE 
(36) V ' 

which gives 

Pe=P0+n 
dn 

N 
(37) 

A compar i son of E q n s (35) and (37) leads to the equat ion 

d(p(n) 
q>(ri) = 3n-

dn 
(38) 

Hence , we find tha t 

, V 3 q>(ri) = const x nL 

in full agreement with E q n (32). 
Accord ing to the virial theorem, in the absence of an 

external pressure the average poten t ia l energy of electrons 
and ions is equal to twice the average kinetic energy of the 
conduct ion electrons t aken with the reversed sign: 

U = -2(Te+fi)^ -2fe . 

It follows from E q n (30) tha t 

U: \NzE j 
E = TQ + U = -\NzEv . 

(39) 

(40) 

F o r real metals E q n s (39) and (40) represent a satisfac
to ry approx ima t ion provided the external pressure is 
P < 1 0 1 0 Pa . 

The virial theorem can be used to find the equil ibrium 
ion concent ra t ion in an undeformed metal , i.e. at zero 
external pressure. In fact, it follows from E q n s ( 3 0 ) - ( 3 2 ) 
tha t in the case of a stable equil ibr ium of the system of 
electrons and ions we have 

- ( 3 7 1 ) — {n0z) : C(z)e2(n0z) 1/3 (41) 

Hence , 

n0 = 

where 

125 
243 7i 4 \ a 0 

(42) 

a0 — J 
me 

= 0.53 x 1 0 " 8 cm 

n0 ^ 3 . 5 C 3 ( z ) - 1 0 2 2 c m " 3 . 
z 

This result is in order -of -magni tude agreement with the 
real values of the density of metals . Similar est imates h a d 
been obta ined by F r e n k e F within the f ramework of the 
'd ia tomic m o d e l ' of a solid [1]. 

W e shall use E^ to denote the F e r m i energy for an 
equil ibrium concent ra t ion of ions n = n0. Accord ing to 
E q n s (30) and (31), if there is a finite external pressure 
result ing in compressive (P > 0, n > n0) or tensile 
(P < 0, n < n0) strains, the average kinetic energy of the 
electron gas is 

5 \no 

2/3 

(43) 

Bear ing in mind tha t , according to Eqn (32), U ocn1^3, 
and tha t the equali ty U = —2Te should be obeyed for 
n = n0, we readily obta in the following expressions for the 
average poten t ia l energy and the to ta l energy of electrons 
and ions in a deformed metal : 

/ \ V 3 

U = --NzE^ (44) 

E = -§AfcE<°> 2 1 ^ 
n0 

1/3 

- ) 
no J 

2/3" 

It is clear tha t if n 

dE_Q 

dn ' d?z2 

= riQ, then 

15 tin 
> 0 

(45) 

(46) 

As expected, we can see tha t in an equil ibrium state 
defined by the virial theorem the to ta l energy E is minimal , 
which ensures stability of the b inding of electrons and ions. 

4. Chemical potential of the electrons in a metal 
and the work function 
W e shall describe the number of electrons in a meta l by 

Ne=Nz = nVz (47) 

and rewrite E q n (45) in the form 

E = 
zVn0 

1 / 3 

\zVno 

2/3 ' 

(48) 

As poin ted out already, in the adop ted approx ima t ion the 
to ta l energy E is equal to the free energy. The general 
definition of the chemical po ten t ia l (see, for example, 
Ref. [5]) readily yields, on the basis of Eqn (48), an explicit 
expression for the chemical potent ia l of electrons in a 
metal : 

dF\ dE AO) 
2/3 

(49) 

file:///zVno
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A direct calculat ion of the t h e r m o d y n a m i c poten t ia l of a 
meta l per electron leads to E q n (49). In fact, if we take 
account of Eqn (28), the t h e r m o d y n a m i c poten t ia l is found 
to be a linear combina t ion of the to ta l and poten t ia l 
energies: 

<p = F + PV = E + PV = \E (50) 

Subst i tut ion of E q n s (45) and (44) on the r igh t -hand 
side of E q n (50) and division of the result by the n u m b e r of 
electrons Nz gives E q n (49). 

If n w n 0 , the chemical po ten t ia l of electrons in a meta l is 

(o) (51) 

W e can see tha t the chemical po ten t ia l jiie is negative 
relative to vacuum. A posit ive quan t i ty 

W ^E 
5 

(0) (52) 

is the 'work funct ion ' which is the work tha t has to be done 
in b reak ing the b inding of an electron to ions and removing 
this electron from a meta l to vacuum. Therefore, in our 
mode l of the electron gas the electron work function of a 
meta l represents three-fifths of the F e r m i energy. The 
surface effects are ignored here, bu t they can significantly 
affect the work function. 

The cont r ibut ion of the kinetic energy of the electron 
gas to the chemical po ten t ia l is equal to the F e r m i energy. 
W e shall represent the chemical po ten t ia l of an electron in 
the form [7] 

He -W 7(0) + u 

Here , u is the effective self-consistent po ten t ia l of one 
electron. It follows from E q n (51) tha t the depth of the 
po ten ta l well conta in ing an electron in a meta l is 

5 (0) (53) 

The quant i ty cp = u/e determines the j u m p in the 
electrostatic po ten t ia l across a double layer at the 
v a c u u m - m e t a l interface. 

E q n (31) for the F e r m i energy and E q n s (52) and (53) 
al low us to express readily the work function and the depth 
of the poten t ia l well in te rms of the density of a meta l p and 
the mass n u m b e r of the element: 

W = 15 
•iff1-

u = - 4 1 . 6 pz 
2/3 

(54) 

(55) 

Here , W and u are in electron volts, and p is in g rammes 
per cent imetre. 

In the case of some metals such as Ca, Sr, Cu, and H g 
the exper imental values of the work function are a lmost 
identical with the results of calculat ions based on Eqn (54). 
In the case of other metals the agreement is poorer , bu t the 
rat io of the theoret ical and exper imental values Wth/Wexv 

lies within the interval 0 . 5 - 1 . 7 5 (Fig. 1). 
The quant i ty z in E q n s (31), (54), and (55) gives the 

number of conduct ion electrons per nucleus. It is usua l to 
assume tha t z is identical with the valence of an element. 

Figure 1. Work function calculated from Eqn (52) and the experimental 
values obtained for various metals. The ordinate gives the value of 
3 E F / 5 W e x p and the abscissa represents the experimental values of the 

But an element m a y have several valences and the p rob lem 
of the number of collective-state electrons does no t have an 
u n a m b i g u o u s solution. Ions in a meta l m a y carry different 
charges and in par t icular some of them m a y be in the form 
of neu t ra l a toms . Therefore, we shall replace z by 'effective 
valence ' z which need no t be an integer. Moreover , a 
correct ion is necessary for the finite vo lume of an ion 
which is inaccessible to the collective-state electrons because 
of the Paul i principle. If we t ake into account the finite 
vo lume of an ion, we find tha t the F e r m i energy is 
p ropo r t i ona l to n2^', where 

« = n ( l - v 0 « ) - 1 = 7 ^ - ^ (56) 

and v 0 is the characterist ic vo lume of an i o n | . 
Consequent ly , the expressions for the work function and 

the depth of the potent ia l well become 

W = 15.6[ — ) f eV , (57) 

(58) 

A 1 — v0n 

U = - 4 \ . 6 ( ^ - ^ - ) / e V , 
\A 1 - v0nj 

5. Elastic properties of metals 
W e shall n o w find the cont r ibut ion of the conduct ion 
electrons to the bulk m o d u l u s (compressibili ty) of a metal . 
By definition, the bulk m o d u l u s is 

dPe dPe dPe 

dV dne dn 
(59) 

f l f v 0 ^ 0, Eqn (42) defines the concentration n0 and the ' t rue ' 
equilibrium concentration of ions is given by 

n0 

n0 - 1 + v0n0 ' 
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Here , Pe is the pressure, ne and n = ne/z are the 
concent ra t ions of electrons and ions, respectively. If we 
combine E q n s (29), (43), and (44), we obta in the following 
expression for the electron gas pressure 

:znE (o) 
\ 2 / 3 

no) 

Hence , 
2/3 

n0 

1/3" 

1/3' 

(60) 

(61) 

As poin ted out already, the equil ibrium concent ra t ion of 
ions n0 cor responds to zero pressure. Accord ing to 
E q n (61), under equil ibr ium condi t ions (when n = %), 
the bulk m o d u l u s of the electron gas in a meta l is 

(62) 

and is related to the work function, given by Eqn (28), by 
the simple expression 

(63) lzn0W . 

W e shall n o w find the correct ion for the finite vo lume of 
an a tom. The expression for the pressure becomes 

.\zRE^(^ 
5 \n0 

, (0) 

2/3 ~ \ 2 / 3 

no J 
n x ' 
h0 

(64) 

where E¥

 ) is still the F e r m i energy cor responding to the 
equil ibrium concent ra t ion n = n 0 , and 

1 - v0n n0 

n0 

1 - v0n0 

Since 

dn 

dn 
1 

(1 - v0n) 

we find tha t 

lzn0E^(l v0n) -8 /3 

(65) 

(66) 

(67) 

.e. the result of Eqn (31) is multiplied by the coefficient 

/ * = ( ! - v 0 « o ) " 8 / 3 > 1 (68) 

It follows from E q n (31) tha t the bulk m o d u l u s obeys 
Ke oc z 5 / 3 . If the role of z is played by the effective valence 
z, then Keocz5^3. The relat ionship between the bulk 
m o d u l u s and the work function thus becomes 

Ke=ln0zW(\-v0n0)-2 . (69) 

Calcula t ion of the bulk m o d u l u s of a meta l wi thout 
a l lowance for the finite-volume correct ion [Eqn (63)] gives 
underes t imated values for all metals . It should be noted tha t 
there are two groups of metals (Fig. 2). 

Meta l s belonging to the first g roup (for example, noble 
metals , metals of the p la t inum group , and t ransi t ion metals) 
all have a rigid ion lattice and the bulk m o d u l u s of the 
electron gas calculated wi thout the finite-volume correct ion 
is approximate ly an order of magn i tude less t han the 
exper imental value. The bulk m o d u l u s of a meta l is then 
domina ted by the lattice cont r ibut ion , i.e. by the exchange 
coupl ing between the ne ighbour ing ions because of an 
overlap of the wave functions of electrons tha t are no t 
'free' bu t are par t ly in a collective state. The cont r ibut ion of 
the conduct ion electrons does no t exceed 10%. 
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Figure 2. Bulk modulus calculated from Eqn (63) and the experimental 
values obtained for various metals. The ordinate gives the value of 
2zn0Wexp/9Kexp, and the abscissa represents the experimental values of 
the bulk modulus Kcxp in units of 10 1 2 dyn c m - 2 . 

The second group of metals includes, for example, alkali 
and alkal ine-earth elements whose compressibil i ty calcu
lated wi thout the finite-volume correct ion is smaller by no t 
m o r e t han a factor of 2 - 3 than the exper imental values 
(Fig. 2). In any case, the elastic proper t ies of metals cannot 
be explained entirely within the f ramework of our mode l of 
the electron gas if no al lowance is m a d e for addi t iona l 
factors. 

6. Electrostatic phenomena in inhomogeneously 
deformed metals 
The concent ra t ions of electrons and ions and, conse
quently, the chemical po ten t ia l / i e ( regarded as a function 
of the concent ra t ions) in an inhomogeneous ly deformed 
meta l are functions of the coordinates . U n d e r t h e r m o d y 
namic equil ibrium condi t ions the to ta l ( 'electrostatic ') 
po ten t ia l of electrons should be constant . As shown 
below, this gives rise to a space charge inside a metal . It 
follows from the electrical neutra l i ty condi t ion tha t this 
space charge should be compensa ted by a surface charge 
concent ra ted in a n a r r o w layer whose thickness is equal to 
the Debye radius of screening in a degenerate p lasma. The 
surface and space charges create an electric field b o t h 
inside and outs ide an inhomogeneous ly deformed m e t a l | . 

W e shall n o w consider in greater detail the electrostatic 
p h e n o m e n a tha t occur in inhomogeneous ly deformed 
metals and we shall do this with an aid of an explicit 

fThe question of the appearance of an electric field in an 
inhomogeneously deformed metal has been discussed earlier [8]. 
However, no allowance has been made for the dependence of the self-
consistent potential inside a metal on the electron concentration, which 
follows from the virial theorem. This has led to expressions different from 
ours. In particular, the right-hand side of Eqn (10) in Ref. [8] should be 
multiplied by the coefficient 1/5. 



Virial theorem and some properties of the electron gas in metals 351 

expression for the chemical po ten t ia l of electrons tha t 
follows from the virial theorem. 

W e shall use q>(r) for the addi t iona l electrostatic 
potent ia l . The condi t ion of constancy of the e lectrochem
ical po ten t ia l g i v e s | 

fie(r) + eq>(r) = const , (70) 

where e = —\e\ is the electron charge and the chemical 
po ten t ia l (with account taken of the relative smallness of 
the space charge) is described by Eqn (25) where the 
concent ra t ion of ions is n = n(r). 

Accord ing to E q n (70), the electric field inside an 
inhomogeneous ly deformed meta l can be expressed in 
te rms of the gradient of the chemical potent ia l : 

E = -Vcp{r)=-V^{r) . (71) 

Let us n o w apply the Laplace opera to r to E q n (70). It 
follows from the Poisson equat ion tha t 

W2(p(r) = -4neb(r) , (72) 

where the function eb(r) represents the density of the space 
charge inside the metal . This leads to 

V 2 / i e ( r ) = 4n2e2b(r) 

E q n (49) leads to 

E = -^-
e 

1 

Mr)] 1/3 2/3 1 5 2 /3 1/3 
1 nt' 

b(r) 
4ne2 \ 

o J 

1 
3 [n(r)f3n2/3 ^ [n{r)]2'3n]/3 

16 

(73) 

Vn(r) , (74) 

(75) 

o J 

[Mr)] '}-

\b(r)\ -2 <n0 . (76) 

W e can readily see from E q n (75) tha t 

1 
"aL2 

Here , a w e2/E^ w 10~ 8 cm and L is the macroscopic 
length. Therefore, the density of the space charge inside a 
meta l is very small compared with the ion concent ra t ion n0. 
If deformat ions are weak, we can subst i tute n(r) w n0 in 
front of the differentiation symbols . W e then ob ta in 

2 E^ V/i(r) 
E 

15 

,(o) 
b(r) 

n0 

V2n(r) (Vn(r) 
30ne2 n0 

• + n0 

21 

(77) 

(78) 

W e shall n o w represent the concent ra t ion of ions in the 
form 

1 2 

n{r) = n0 y - ^ ^ n0(\ -u + u ...) , (79) 

where u is the sum of the d iagona l elements of the strain 
tensor [5]. 

Subst i tut ion of Eqn (79) into E q n s (77) and (78), gives, 
with an accuracy to within te rms of the order of w, 

E = -
15 e 

r(0) 

*W = 3 S ? [ ^ 2 - V 2 f i ] -

(80) 

(81) 
3 0TI^ 2 

It follows from H o o k e ' s law tha t the bulk strain u is 
related to the sum of the d iagonal elements of the stress 
tensor t = tzz + tx 

t 

+ tyy by 

u = 3K ' 
(82) 

where K is the bulk m o d u l u s of a deformed b o d y [5]. 
Tak ing account of E q n (82), and using Eqn (62) for the 

cont r ibut ion of the conduct ion electrons Ke to the bulk 
modu lus , we can wri te the expression for the electric field 
inside a deformed meta l in the form 

1 V; Ke 

3 n0z\e\ K 
(83) 

In par t icular , in the hydros ta t ic compress ion case when 
tik = —PSik and t = — 3P, E q n (83) gives 

E = -
z\e\n0 K ' 

(84) 

where / = VP is the exernal force act ing on a uni t vo lume 
of the deformed metalf . 

F o r simple tension or compress ion in a metall ic rod 
(tzz = —P, all the other componen t s of the tensor vanish) 
the r igh t -hand side of E q n (84) is to be multiplied by 1/3. 

In conclusion, we would like to stress tha t the adop ted 
app roach is far from complete and in no way can it replace 
a detailed analysis based on a r igorous theory. Powerful 
ma themat i ca l tools are available in the m o d e r n theory of 
metals . Nevertheless , it is interesting from bo th the m e t h o d 
ological and pract ical po in ts of view tha t some of the 
p rob lems dealt with in the theory of metals can be 
unde r s tood and described approximate ly from first pr inci 
ples, one of which is the virial theorem. 

W e are deeply grateful to D A Kirzhni ts , M I K a g a n o v , 
L A M a k s i m o v , and M I Podgore tsk i i for discussions and 
valuable critical comments . 
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f in view of the smallness of the electron mass, we are ignoring here the 
contribution of the gravitational potential. 

J in the gravitational field of the Earth we have f/n0 « Mg, where M is the 
mass of an ion and g is the acceleration due to gravity. 


