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Abstract. Internal atomic—molecular vibrational dynamics
of'solids gives rise to short-lived localised states of atoms with
a much higher energy or amplitude of vibrations, i.e. it gives
rise to fluctuations. These fluctuations play the dominantrole
in a variety of physical processes, which include diffusion,
evaporation, plastic deformation, highly elastic deformation
of polymers, fracture, chemical reactions, electronic transi-
tions, biological functions, and many others. The essentials of
the fluctuation origin of these processes are given in the
classical papers of Ya I Frenkel’. The microscopics of
fluctuations of the energy of atoms has begun to develop
successfully. The present paper provides a brief historical
introduction, which is followed by the first results (obtained
by computer simulation) that can account for the detailed
characteristics of fluctuations: the lifetime of a fluctuation
state of atoms, the size of a fluctuation region, and migration
of fluctuations. Special attention is given to the mechanism of
formation of energy fluctuations. Investigations of
fluctuation dynamics in condensed media, regarded as a
new and to some extent independent part of the physics of
liquids and solids, have been given a decisive start by the
fundamental work of Yakov II’ich Frenkel’. He began his
investigations back in the twenties and continued them with
outstanding success throughout his life. The study reported
below represents the attempt by the present authors to
continue the development ofthe fruitful ideas of Yakov II’ich.

1. Introduction

The very important role of internal dynamics of bodies,
i.e. the motion of particles composing these bodies
(atoms, molecules, or quasiparticles such as phonons), in
determination of the physical properties of these bodies
and of the processes occurring in them is self-evident.
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The average values of the dynamical characteristics
(energy, mean free path, frequency, etc.) account satis-
factorily for the following properties of both gases and
condensed media: the specific heat, thermal conductivity,
velocity of sound, thermal expansion, temperature depen-
dence of the elasticity, etc.

On the other hand, just the average values of, for
example, the energy are insufficient to account for a
very large number of processes. For example, the
thermoluminescence of and ionisation in gases, or the
evaporation, diffusion, plastic deformation, viscous flow,
and many electronic processes in solids require for the
occurrence of elementary events an energy at least an order
of magnitude greater than the average.

If we ignore tunnelling (sub-barrier transitions T, it
becomes clear that elementary events of atomic—
molecular rearrangements occur only when a sufficiently
high (much higher than average) energy is concentrated
locally, in the region of an elementary event. Briefly,
therefore, the realisation of elementary events in an
enormous number of processes requires energy
fluctuations, specifically it requires sufficiently large
positive fluctuations.

Theoccurrences of such energy fluctuationsin the internal
dynamics of bodies follows naturally from a nonequilibrium
energy distribution between components of a body (subsys-
tems). The fundamental work of J Willard Gibbs on thermo-
dynamics and the atomistic theory of J Clerk Maxwell and
L E Boltzmann have established that a state of a body in a
global equilibrium at a temperature 7 is characterised by a
certain distribution function of the particle energy E in
which a dominant position is occupied by the Boltzmann
factory.

exp (—%) )

F The problem of the tunnel mechanism of atomic—molecular rearrange-
ments in a condensed system has begun to attract serious attention
recently and is an interesting trend [22].

I Dependences of the exp (—A/T) type are also frequently called the
Arrhenius laws. This is because in 1889 S Arrhenius established
experimentally the temperature dependence of this type of rate of
chemical reactions. A direct experimental confirmation of the
Maxwell and Boltzmann distributions has been provided much later.
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Eqn (1) represents essentially the distribution of energy
fluctuations in a body.

It should be pointed out that the kinetic aspect is
ignored in such a description of a steady equilibrium
state of a system. The questions of the lifetime of local
fluctuation states, nature of the time evolution of
fluctuations, frequencies of fluctuations of the energies
of atoms, etc. have not been analysed in these classical
investigations.

These problems were formulated and considered for
the first time by Yakov II’ich Frenkel’ in the twenties. He
concentrated his attention on the processes of fluctuation
origin in condensed systems, i.e. in liquids and solids, and
continued to work on this problem right up to the fifties.
The main results have been summarised by Frenkel’ in his
monograph Kinetic Theory of Liquids [1]. He has been
planning to prepare a revised edition and call it the Kinetic
Theory of Liquids and Solids, i.e. of condensed systems.

Frenkel’ has introduced the concept of jump-like or
hopping atomic—molecular rearrangements. He has intro-
duced the concept of the average waiting time for such a
rearrangement as ‘‘...the time necessary for the accumu-
lation by a given atom of a kinetic energy equal to or
greater than the potential barrier...” [1]; he has proposed
the hypothesis of ‘instantaneous release’ of the kinetic
energy after overcoming a barrier. He has derived an
expression for the average waiting time before a jump of
an atom across a potential barrier [1] (this is known as
Frenkel’s formula, described below), which represents the
waiting time for a specific fluctuation of the energy of an
atom. This formula is used very widely. In fact, the ideas
and work of Ya I Frenkel’ represent a transition from the
‘vibrational dynamics’ usually considered before his work
to the ‘fluctuation dynamics’ which determines many
characteristic features of the thermal behaviour of
condensed systems.

It was Frenkel’ who started the development of the
fluctuation dynamics, i.e. the task of obtaining detailed
information on fluctuations of the energies of atoms such as
their temporal statistics, evolution, degree of spatial
localisation, etc. Yakov Il’ich has thus formulated the
problems of the microscopics of fluctuations.

The fluctuation states of atoms are themselves of
physical interest. However, the role of fluctuations in an
enormous number of processes already noted makes the
study of fluctuations a particularly important task.

In dealing with fluctuations of the energy of atoms in
condensed media we are faced not only with the task of
obtaining detailed information on their characteristics, but
also with the fundamental task of identification of the
mechanism of formation of a fluctuation, i.e. the mecha-
nism of concentration of a higher energy at an atom, which
this atom can only obtain from other atoms.
A phenomenological description of energy accumulation
by an atom because of a directional energy flux from
the environment has been proposed [2]. However, the
dynamical reasons for such a flux (if it exists at all)
have not been identified. In the case of a condensed
medium the problem of energy transfer and its
accumulation at a single atom is naturally difficult to
deal with because in a system of this kind each atom
interacts directly with a small number of neighbours
(practically only in the first coordination sphere). In the
case of a gas this situation is simpler. There each atom or

molecule can interact consecutively by collisions with a
large number of atoms. A higher kinetic energy (an energy
fluctuation) can be acquired if over a sufficiently long time
there are no ‘head-on’ collisions with other atoms, but only
‘side’ impacts by these atoms. Then, if small energy portions
are received from a large number of other atoms, the atom
under investigation acquires a sufficiently high kinetic
energy and becomes a possessor of a fluctuation energy.
A situation of this kind, i.e. the feasibility of interaction
with a large number of other atoms, does not exist in the
case of condensed media and, therefore, the mechanism of
concentration of a higher energy is obviously different and
this requires elucidation.

It is not in fact possible to investigate by direct
experiments the details of fluctuation phenomena on the
atomic scale. In reality, large fluctuation affecting atoms are
relatively rare and the lifetimes of fluctuation states are
short, so that experimental studies of the evolution of
fluctuations have not yet been carried out.

Nevertheless, it is possible to elucidate the details of the
evolution of energy fluctuations of atoms and to identify
the mechanism of formation of fluctuations. This can be
done by the method of computer simulation, known as the
method of molecular dynamics [4]. The first work on
simulation of the dynamics was that of E Fermi [3]
Since then the number of papers on molecular dynamics
has been rising rapidly. However, there have been no
attempts to account for the physics of fluctuations. The
application of this approach to the problems in fluctuation
dynamics in solids is described below and the results
obtained are the subject of the present paper.

2. Method of computer experiments

The method of molecular dynamics involves numerical
integration of the classical equations of motion of atoms
with given interatomic interaction potentials and subject to
given initial and boundary conditions.

We considered various models of solids: one-
dimensional, two-dimensional, and three-dimensional
crystals (Fig. 1), as well as three-dimensional amorphous
structures. The number of atoms in the simulated systems
was varied from 100 in a chain of atoms to 500 in three-
dimensional crystalline and amorphous systems.

In the case of one-dimensional systems we used three
potentials: Morse, Toda [5], and harmonic, all with
identical values of the equilibrium interatomic spacings,
binding energy, and Young modulus (Fig. 2). In two-
dimensional crystals we used the Morse potential and in
three-dimensional systems we employed the Stillinger—
Weber pair potential [6].

We set the ‘temperature’ by random sampling of the
initial values of the velocities of atoms, followed by
subsequent thermalisation for approximately 20 periods
of atomic vibrations. We defined the temperature in
terms of the average kinetic energy of atoms.

We integrated the equation of motion for N interacting
particles:

d2x; aU,'

m = -7
ds? ax,»

were m is the mass of an atom, x ; are the coordinates of the
i-th atom,
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Figure 1. Lattice models used in computer experiments: (a) one-
dimensional; (b) two-dimensional; (c¢) three-dimensional (fcc lattice).
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Figure 2. Atomic pair-interaction potentials for computer simulation
experiments: (/) harmonic, (2) Toda, (3) Morse.

Ui=Y ®(r,))
J#i
is the potential energy of the i-th atom, and @ (r;,;) is the
interatomic interaction potential.

Integration gives the path of each atom in the phase
space of the coordinates and velocities.

The integral of motion is the internal energy of the
system. In all cases the integration of equations of motion
was carried out using the Nordsieck algorithm of the fifth
order of precision [7]. The integration step, which should be
sufficiently small, was selected in the range from 1/20-th to
1/50-th part of a period of atomic vibrations. The precision
was judged on the basis of conservation of the integrals of
motion.

In this way we found for each atom in the simulated
systems the instantaneous values of the coordinates

x4(1),
the instantaneous values of the velocities

dxy (1)
dt °

xq(’) =

the instantaneous values of the potential energy (defined as
the sum of the potential energies of the bonds of one atom
with its neighbours)

Epor(1) =3 Us[xi(r) = x,()]

the instantaneojus values of the kinetic energy
Ein(t) =3 m z:[)éq(t)]2 >

and the instantaegus values of the total energy
Eio1(t) = Epot(t) + Exin (1) -

The fitness of the models in respect of their ability to
describe the dynamical behaviour of atoms in solids was
checked by calculations based on the data, obtained in
computer experiments, on such characteristics as the values
and temperature dependences of the thermal expansion
coefficient, bulk modulus, and Debye—Waller factor. For
example, in the case of simulation of nickel we achieved a
quite satisfactory agreement with the experimental data
[12].

The ability to find the instantaneous values of the
characteristics of the dynamics of atoms enabled us to
analyse dynamical fluctuations, i.e. fluctuations of the
energies of atoms.

The characteristics of energy fluctuations found in our
computer experiments are shown in Fig. 3.

Ea\'T

Figure 3. Strong fluctuation of the energy, E, of an atom.

We determined the main characteristics, which were:
—the maximum energy of a fluctuation Egq (separately
kinetic, potential, and their sum);

—the excess of the energy of a fluctuation above the
relevant average energy AE;

—the lifetime of a fluctuation Atg;

—the number of fluctuations as a function of their energy
at different temperatures (statistics of fluctuations).

These and several other characteristics (spatial
localisation, velocity of fluctuations, distance travelled by
fluctuations, etc.) are the main elements of the microscopics
of fluctuations.

3. Results of computer simulation of dynamical
fluctuations in atomic systems

The results reported below have been described earlier
[8—13]. Fig. 4 shows a fragment of the ‘thermal life’ of one
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of the atoms in a one-dimensional model (chain) with an
anharmonic interaction potential (Morse potential). We
simulated one-dimensional vibrations only along the chain
axis. The fragment of a relatively ‘quiet life’ is identified in
this figure. We can see fluctuations of the kinetic energy,
but their amplitudes differ little from the average kinetic
energy (%kT). Strong fluctuations are not observed during

this time interval (amounting to several fluctuation
periods).

Eyin /KT
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Figure 4. Fragment of the thermal life of an atom. One-dimensional
model of 100 atoms with the Morse potential. The figure shows a
fragment without strong fluctuations of the kinetic energy. Here (and
later) 79 is the average period of the vibrations of atoms.

Fig. 5a shows a different fragment of the dynamics of the
same atom. During this time interval we can see a fairly
strong fluctuation of the kinetic energy of an atom. The data
in Fig. 5a can be used to answer the question of the lifetime
of a fluctuation state of an atom. We can see that a large
energy fluctuation moves very fast. The whole fluctuation
‘survives’ for about one period of the atomic vibrations.

Similar results are obtained also for two- and three-
dimensional models (see below). In all cases the energy
fluctuations appear as very sharp energy peaks. As already

Exin /KT

kT 1 o 1 1 1 1 1 | 1

-3 -2 -1 0 1 2 3 t/1
Figure 5. Fragments of the thermal life of atoms. One-dimensional
models with 100 atoms and with the Morse (a) and harmonic (b)
potentials. The figure shows fragments with strong fluctuations of the
kinetic energy.

mentioned, Frenkel’ was the first to formulate the problem
of evolution of fluctuations using the term ‘accumulation’
and for the dispersal of energy he introduced the
hypothetical concept of ‘instantaneous release’ of energy.
Yakov II'ich wrote about this hypothesis as follows:
‘“Rigorous justification of this hypothesis represents a
very complex problem, which nobody has yet attempted
to solve” [1]. We can now say that ‘accumulation’ is very
fast. The energy rise is in the nature of a flash. The
‘instantaneous release’ hypothesis is seen to be fully
supported.

Having established a strong time localisation of energy
fluctuations, let us now consider the degree of their spatial
localisation.

Fig. 6 shows a space—time diagram of the energy of
atoms in a chain. The abscissa gives the values of the energy
of each atom. The gaps, points, and numbers represent the
corresponding energy values (caption of Fig. 6). The
ordinate gives the time. Each row represents an
instantaneous distribution of the energy between the
atoms in a chain. The rows are spaced every one-sixth
of the average period (7o) of the vibrations of an atom. This
figure gives the total energy of atoms (the kinetic energy
plus the half-sum of the potential energies of two adjoining
bonds). The interaction potential is assumed to be harmonic
(the reason for assuming the harmonic potential will be
discussed later).

The data in Fig. 6 make it possible to identify the
following properties of fluctuations of the energy of atoms:
—the fluctuations are also localised strongly in space; an
excess energy is concentrated usually at just one atom; the
adjacent atoms are weakly excited; in a smaller number of
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Figure 6. Space—time diagram of the total energy of atoms. One-
dimensional model with 100 atoms and the harmonic potential. Eq
denotes the magnitude of the fluctuation of the total energy of an atom.
Gap: En < 1.5kT, (o) Eqa = (1.5—2.0)kT ;(1)Eq = (2.0 —2.5)kT ;
(2)Eqa=(2.5-3.00kT; (3)Ea=(3.0—-3.5)kT;
(4)Eqa=(3.5—-4.0)kT; (5)Ea=(4.0—4.5)kT;
(6)Eq=(45-5.0)kT; (7)Ea=(5.0—55)kT;
(8)Eqa=(55-6.00kT; (9)En=(6.0—6.5)kT;

0:Eq > T7.0kT.
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cases and usually for weaker fluctuations the excess energy
is spread out between two, three, or several neighbouring
atoms; the energy fluctuations are mainly of monatomic
scale;

—there is a definite migration of fluctuations; the diagram
shows translation of an excess energy from one atom to
another; the rate of this translation is close to the velocity
of sound; it should be stressed that the motion of
fluctuations is not of purely soliton nature (in a
harmonic system there should be no solitons at all)
when a local excitation travels with conservation of a
constant energy; the magnitude of a fluctuation oscillates
during its motion and the peak-to-peak amplitude of such
oscillations is fairly large;

—the strongest fluctuations appear as a result of
‘collisions’ of moving fluctuations (when the lines of
motion of fluctuations intersect).

Similar results are also obtained by simulation of the
dynamics of an anharmonic chain. In two-dimensional
anharmonic and also harmonic and three-dimensional
systems there are equally strongly localised (on the scale
of one atom) energy peaks (fluctuations). In two- and three-
dimensional systems there is also migration of fluctuations
along the lines of close packing of atoms.

Having demonstrated the strong temporal and spatial
localisation of energy fluctuations, we shall now consider
the problem of the mechanism of their formation.
Computer simulation experiments were carried out with
this particular aim in mind and in these experiments we
considered not only realistic anharmonic potentials, but
also harmonic potentials. For example, in addition to the
Morse potential

U(x) = Uofexp(~20) — 2 exp(—aux)]

we selected the harmonic potential
U(x) = Ugo?(x? —1).

Here, x is the deviation of the distance between two atoms
from the equilibrium value. The parameters of both
potentials, Uy and «, were assumed to be the same so
that the values of the potential and of its first and second
derivatives with respect to the displacement x (i.e. the
values of the elastic force and the linear elasticity
coefficient) were the same at x= 0.

[t was important to establish whether the nature of the
fluctuation dynamics is similar or very different for the
anharmonic and harmonic interactions. A comparison can
be made by examination of Figs 5a and 5b the latter of
which shows a fragment with fluctuations for a harmonic
chain. It is evident that

(1) the ‘peaks’ of the energies of atoms are also
observed for the harmonic interaction;

(2) the nature of the fluctuation pattern remains
practically the same as in the case of anharmonic inter-
action.

Similar results, demonstrating a high degree of similarity
of the dynamical behaviour of fluctuations in anharmonic
and harmonic systems, were obtained for two- and three-
dimensional models. The similarity makes it possible to
draw the following conclusions about the mechanism of
formation of fluctuations.

In an anharmonic system two types of phenomena may
lead to a local increase in the energy of an atom:

an interference between elastic
vibrations);

a redistribution of the energy between different vibra-
tional modes (energy transfer from some modes to others).

The second phenomenon is excluded in the case of a
harmonic system and, therefore, only the interference of
elastic waves is possible when the local phase matching of
the waves leads to energy ‘peaks’. T

The similarity of the fluctuation dynamics in the case of
anharmonic and harmonic systems thus allows us to
conclude that the mechanism of formation of
fluctuations of the energy of atoms is in all cases the
interference between the elastic waves. This conclusion is
supported by the fairly large change in the energy of a
fluctuation as it migrates, which is pointed out above
(Fig. 6). Such a change is obviously due to different
interference phase relationships along the path of a
moving fluctuation.

The interference—wave nature of energy fluctuations
allows us to call them characteristic ‘wave packets’.
Thus, if we assume that computer experiments do indeed
simulate real thermal processes in solids, we may conclude
that fluctuations of the energy of atoms in real bodies are the
results of an interference between phonons. In this case we
can say (without minimising the importance of phonons in
many dynamical processes in solids) that probably the main
role of phonons is to create fluctuations of the energy of
atoms.

[t is appropriate to mention here that the phonon origin
of fluctuations has been postulated earlier. For example,
Fabelinskii [15] says: ‘... Fluctuations are the results of the
interference between Debye waves.”” The results of our
computer simulation appear to support this treatment well.

There are thus grounds for concluding that fluctuations
of the energy of atoms are the result of the wave nature of
the internal dynamics of a solid. The overall picture may
then be described as follows.

The normal vibrations (with their own frequency spec-
trum) represent extended (over many wavelengths or up to
the dimensions of a body, and in an anharmonic system over
the phonon path) travelling or standing waves. The
interference between them creates solitary wave
formations (‘packets’) which result in fluctuations of the
energy of atoms. Computer simulations show that these
packets may appear both as a brief increase in the energy
only at a particular point (at one atom) or as a travelling
solitary formation (migrating fluctuation) with a variable
fluctua-tion energy mentioned above. Then, in addition to
the inter-ference between extended waves of the normal
vibrations (interference between the phonons themselves),
there is a possibility of a characteristic interference between
moving solitary waves (interference between packets
representing fluctuations) when they collide. It is then (as
is evident from Fig. 6) that particularly strong energy

waves (normal

T Strictly speaking, the results of wave interference in a harmonic system
do not fit the concept of fluctuations as random events, but represent
‘beats’ which are determined by the initial conditions. However, since the
criterion of stochasticity is related to the anharmonicity parameter and to
the number of particles in a system in such a way that an increase in this
number increases the anharmonicity needed for stochastic behaviour [14],
it follows that if the number of particles is sufficiently large we can use the
concept of fluctuations in harmonic systems in the same way as in the case
of anharmonic systems.
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fluctuations are formed. Computer simulation makes it
possible to obtain a detailed picture of the events.

Elastic waves in a solid are naturally related to density
fluctuations. Mandel’shtam [16] has shown that density
waves (components of a spatial Fourier expansion)
introduced by Einstein [17] are identical with the Debye
thermal elastic waves.

A change in the density of an elastic body is in one-to-
one relationship with a change in the potential energy at the
same point. The motion of a density wave leads to the
vibrations of atoms, which are periodic processes of
conversion of the potential into the kinetic energy and
vice versa. This applies to ordinary periodic processes. The
situation is obviously somewhat different when solitary
wave formations (fluctuations) appear. There is no
periodicity (everything happens in one period) and in
this case we can hardly use the concept of the phase
(which determines the result of the interference of
ordinary waves). Instead, for each specific packet we can
determine whether a positive or a negative dilation
predominates, i.e. whether elastic com-pression or
elongation of the bonds between atoms takes place. The
result of a collision of packets in the form of the ratio of the
kinetic and potential energies of an atom at the moment of
the ‘combined’ fluctuation then depends on the signs of the
dilations of the colliding packets.

Fig. 7 shows the space—time diagrams of the fluctuation
dynamics in anharmonic chain of atoms, but not of the
energies of atoms (contrary to Fig. 6), separately for
elongation and compression of fluctuations. We can see
that the migration of dilations is of the same nature as the
migration of energy fluctuations (compare with Fig. 6),
which follows in a natural manner from the relationship
between energy and density waves. We may point out some
quantitative differences between the diagrams of the
migration of compressions and elongations. They are
related to the anharmonicity of a chain. In the case of a

harmonic chain it follows from the simulation results that
there are no differences. The influence of the anharmonicity
will be discussed later.

Examples of computer results on the collisions of
fluctuations with the same and opposite signs of the
dilatation are presented in Fig. 8. We can see that a
collision of two fluctuations with the same sign of the
dilatation (elongation in Fig. 8a) leads to a strong energy
fluctuation which is almost wholely a fluctuation of the
potential energy. The kinetic energy represents only a small
fraction of the total energy of the fluctuation.

In contrast, when two fluctuations with opposite signs
of the dilatation collide (Fig. 8b), the resultant strong
fluctuation of the energy of an atom is mostly a
fluctuation of the kinetic energy. This is to be expected,
since fluctuations with opposite signs of the dilatation
moving towards one another have momenta directed in
the same way (parallel) and in a collision the momenta are
simply summed giving rise to a strong peak of the kinetic
energy when the potential energy falls because of the mutual
compensation of the elongation and compression.

Consequently, strong fluctuations of the energy of
atoms may have different ratios of the kinetic and
potential energies. It would be of interest to analyse
statistically the fluctuations in order to identify
characteristic ratios of the two types of energy in the
total energy of the fluctuation of an atom. This was
done by averaging over a number of realisations of the
total, potential, and kinetic energies of atoms in a one-
dimensional system (seven realisations), a two-dimensional
system (eight realisations), and a three-dimensional system
(twenty-two realisations). For each of these cases we
selected time scans of fluctuations with the same values
of the total energy and averaged the component potential
and kinetic energies.

The results obtaind are presented in Fig. 9 which shows
the total and kinetic energies. The potential energy is the
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Figure 7. Space—time diagrams of the strains experienced by interatomic bonds. One-dimensional model with 100 atoms and the Morse potential.
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difference between the total and kinetic forms. All the
systems are anharmonic. We can see that the nature of the
average time scan of the total energy of an atom for systems

with different dimensions is the same: the time ‘core’ of a
fluctuation, occupying about one vibrational period (7o),
and a somewhat longer pedestal (amounting to two
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Figure 8. Collision of fluctuations. One-dimensional model, with 100
atoms and the Morse potential. (a) Fluctuations with the same sign ofthe
strain (elongation) moving towards one another, snapshot at 0.5 7o before
collision on one bond. (a’) Moment of collision; a strong fluctuation of
the potential energy of the bond (o) and a low kinetic energy of atoms (e).
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(b) Fluctuations with opposite signs of the strain moving towards one
another, snapshot at 0.5tg before collision of one bond. (b’) Moment of
collision; a strong fluctuation of the kinetic energy of an atom (e) and a
low potential energy (o).
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Figure 9. Fluctuations of the energies of atoms in lattices with different
dimensions: (/) total energy; (2) kinetic energy. (a) One-dimensional model
with 100 atoms and the Morse potential, averaged over 7 realisations.

(b) Two-dimensional model with 271 atoms and the Morse potential,

averaged over 8 realisations. (c¢) Three-dimensional model with 500
atoms, fcc lattice, Stillinger—Weber potential averaged over 22
realisations.
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periods). We can also see that in all three cases the kinetic
energy represents a major fraction of a fluctuation peak.
In the case of a one-dimensional system this fraction is
about 90%; for two- and three-dimensional systems it
amounts to about 90% —95%. Consequently, the kinetic
energy statistically dominates the fluctuations of the energy
of atoms. This is evidently because the collisions of
fluctuations with different signs of the dilatation are
statistically more probable and, as demonstrated earlier,
this leads to the predominance (on average) of the kinetic
energy in a strong fluctuation of the energy of an atom.
However, this problem should be analysed further.

It would be interesting to supplement the above
information about fluctuations with the results obtained
for a model of a different atomic structure. The results
quoted so far have been obtained by computer simulation
of the dynamics of systems with the crystalline order of the
distribution of atoms. In simulation of an amorphous
system we started with a three-dimensional fcc lattice (a
crystallite of 500 atoms) and then this crystallite was
‘melted” on a computer and rapidly ‘cooled’ (the
equivalent cooling rate was 10'3 K s—!). This made it
possible to determine the positions of atoms corresponding
to an amorphous structure. This structure was confirmed by
computer determination of the function representing the
radial distribution of atoms. The dynamic characteristics of
the atoms were determined for such a system at a number of
temperatures, as was done earlier for crystalline systems.
The amorphous system was also found to exhibit
fluctuations of the energy of atoms.

Fig. 10 shows a time scan of a strong fluctuation of the
energy of an atom averaged over 43 realisations. The overall
nature of the time scan of the total energy is quite close to
the scans for crystalline systems (compare with Fig. 9).
However, it should be noted that in this case the fraction of
the kinetic energy is considerably less: it is below 50% .
Computer experiments show that this may be related to a
difference in the behaviour and state of the surrounding
atoms at moments preceding a strong energy fluctuation at
a given atom and at the moment of a fluctuation peak at
this atom. The results show that in the case of amorphous

E/KT

0 1 1
-1 0 1
I/TO
Figure 10. Fluctuations ofthe energy of an atom in an amorphous system.
Three-dimensional model with 500 atoms and the Stillinger—Weber
poten-tial, averaged over 43 realisations: (/) total energy; (2) kinetic
energy.

systems a fluctuation excitation extends over a somewhat
larger number of atoms than in crystals. Once again, a
further clarification is needed.

The results of our computer simulation of systems with
the anharmonic and harmonic interactions allow us to
estimate the role of the anharmonicity in the fluctuation
dynamics.

As pointed out earlier, fundamentally the anharmonicity
is not essential for the appearance of local energy peaks
(fluctuations). The pattern of the fluctuation dynamics
(time and space scans of the fluctuations for systems
with all three dimensions) are basically similar for the
anharmonic and harmonic models.

The nonlinearity of the interatomic interaction potential
has the effect that for the same fluctuation of the potential
energy the compression and elongation of bonds are
different: the elongation is stronger than the compression
(this naturally does not occur in a harmonic system). This is
obviously the reason for the differences, revealed by
computer experiments, between the characteristics of
fluctuations obtained in the anharmonic and harmonic
models, and also the differences between elongation and
compression fluctuations considered in the anharmonic
models.

If we use the concept of the lifetime of a fluctuation,
which is the time during which the energy E of an atom
exceeds the average energy E,y (see Fig. 3), we find that this
lifetime Atn is considerably longer for the elongation
fluctuations than for the compression fluctuations. For
example, in the case of a chain with the Morse potential
we find that when the fluctuation of the total energy is AE/
kT = 3, the lifetime of an -elongation fluctuation is
Ata= 1.719, whereas the lifetime of a compression
fluctuation is Atga= 0.87¢.

The space—time diagrams of the type shown in Figs 6
and 7 can be used to estimate the path or the lifetime of a
solitary wave formation (packet, fluctuation) along the line
of motion of a fluctuation from the more or less reliably
known point of its nucleation to the point of its dispersal.
The average results are given in Table 1 for a chain of 100
atoms. We can see from this table that the lifetimes in a
harmonic system are independent of the sign of a dilatation,
whereas for an anharmonic system the influence of the sign
is considerable.

Table 1. Lifetime of moving fluctuations with different signs of dilatation.

Potential Elongation fluctuation Compression fluctuation
Harmonic 46 £ 3) 10 46 £+ 3) 1o
Morse 25 £ 10) 10 (90 £+ 10) o

Moving compression fluctuations are much more stable
than elongation fluctuations. The latter have a lower (by a
factor of 1.5—2) velocity, so that their ‘mean free paths’ are
reduced even further compared with the paths of the
compression fluctuations.

Our computer data allow us to consider also the
problems of statistics of energy fluctuations. One aspect
is the distribution of fluctuations in terms of their energy.
This distribution can be found by calculating the
instantaneous values of the energies of atoms. The total
number of cases np when the average energy is exceeded is
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2 4 6 AE/KT characteristic as the average waiting time of a
0 T T T fluctuation is related also to the time characteristics of
a the fluctuations themselves; their lifetime and the time
ok profile of the energy.
Usually the waiting time of a fluctuation is the most
important characteristic that governs the kinetics of those
-4 numerous phenomena which are based on fluctuation
dynamics. Therefore, Frenkel’—who started the
61 1n n(AE) development of the microscopics of the fluctuation
no processes—paid special attention to this characteristic.
He estimated theoretically the average waiting time of a
fluctuation of the energy of an atom on the basis of a simple
n 7(AE) b and natural assumption that the lifetime of the state of an
—6 Ty atom excited by a fluctuation is close to the period to of the
vibrations of the atoms. The ratio of the lifetime in a state
with a higher potential energy (AU) to the lifetime of the
-4 ‘quiescent’ state (t) is the reciprocal of the ratio of
the probabilities of these two states described by the
iy Boltzmann factor exp (—AU/kT ). This leads to the
Frenkel’ formula
0 . , . L. exp AU ) 2)
2 4 6 AE/KT T0 kT

Figure 11. (a) Distribution of the instantaneous values of the total energy
of atoms in a two-dimensional model with 271 atoms and the Morse
potential. (b) Dependence of the average waiting time of an energy
fluctuation and its magnitude. One-dimensional model with 100 atoms
and the Morse potential, averaged over 10 realisations with different
initial conditions. (e) Kinetic energy of an atom; (o) potential energy of
an interatomic bond.

determined for a system that has undergone a period of
thermalisation. This corresponds to the number of atoms
with positive energy fluctuations of different magnitude
(from small to large) at a given moment. This is followed by
finding the number of cases when higher values of the
energy are exceeded, i.e. by finding the dependences n(AE)
(we recall that AE = Eq—E,y; see Fig. 3). The resultant
normalised dependences n(AE )/ ny are then averaged over
several tens of calculations of the distribution of the
instaneous energies of atoms.

The results of determining the distribution function of
fluctuations of the total energy of atoms for a two-
dimensional anharmonic model are presented in Fig. 11a.
We can see that a linear dependence with a slope close to
unity is obeyed fairly well when semilogarithmic coor-dinates
are used. This means that the distribution is described by the
function exp (—AE/kT ), i.e. it is the Boltzmann distribution.

These computer experiments show that the distribution
is stable. It is not affected by changes in the initial
conditions after the thermalisation period, i.e. after the
system reaches a dynamic equilibrium. Since the Boltzmann
distribution is to be expected for the energetics of an atomic
dynamic system, its direct manifestation in computer
experiments may be regarded as additional confirmation
of the reliability of the method and of the satisfactory
nature of the model results on the thermal state of real
bodies.

We shall now turn to a different aspect of the statistical
data which is the problem of the distribution of fluctuations
in terms of the frequency of their appearance or in terms of
the waiting time. It is understood that the frequency
distribution and the steady-state distribution of the
energy fluctuations are related. However, such a

Since in the treatment by Frenkel’ himself the ‘jump’ of
an atom over a potential barrier of height AU requires a
fluctuation of the energy of an atom AE > AU, Eqn (2)
leads directly to the expression for the average waiting time
of a fluctuation AE of the energy of an atom:

AE

T T exp T 3)

It should be pointed out that the average waiting time of
a fluctuation AE of the energy of an atom is also the
average time between two consecutive fluctuations of the
same magnitude AE at one atom. This interpretation of the
waiting time makes it possible to check directly the validity
of Eqn (3) by computer simulation. The assumptions made
by Frenkel’ determine, as pointed out already, the value of
the preexponential factor to within the average period of the
vibrations of atoms.

The dependence t(AE) for a thermalised system was
studied by calculating, over a fairly long time interval
At= M1y (M is the number of the vibrational periods),
the value of ng which is the number of energy fluctuations
of magnitude exceeding a certain energy level beginning
from E,,. In this way we obtain the dependences ng(AE)
which are used to determine the dependence of the average
time between fluctuations of the kinetic energy of one atom
and between the fluctuations of the potential energy of one
bond on the fluctuation energy:

M‘L'()

HAE) = AEIN

where N is the number of atoms or bonds in the model.

The results for a one-dimensional anharmonic system
are presented in Fig. 11b. The dependence of In [t(AE )/1¢]
is linear with a slope practically equal to unity (when the
argument is AE/kT ); moreover, it is not only linear but very
nearly directly proportional. Consequently, in the case of
fluctuations of the kinetic energy of atoms and of the
potential energy of bonds the following relationship is well
satisfied:

AE

T=T) expk—T.
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This means that the results of computer experiments
support directly the Frenkel’ formula both in the functional
(qualitative) and quantitative senses.

4. Summary

Computer simulation of the atomic dynamics in solids has
thus provided a whole range of detailed data on
fluctuations of the energy of atoms: the lifetime of such
fluctuations, their spatial localisation, the ratio of the
kinetic and potential energies at the moment of a
fluctuation, the migration of fluctuations and their
interaction, and the statistics of the energy fluctuations.
The mechanism of formation of fluctu-ations of the energy
of atoms has been identified: it is the inteference between
normal vibrations (phonons). These results will be needed
in the development of the microscopic theory of
fluctuation dynamics and of the processes that are based
on elementary fluctuation events.

The results of computer simulation naturally leave many
questions unanswered. These questions include whether the
selected potential fields around atoms correspond to reality
and also limitations of the description of the dynamics only
by the classical approach. Moreover, the processes
occurring in the electron subsystem of a body are
ignored (atoms are regarded as hard spheres connected
by springs) and so on. However, the computer simulation
method makes it possible to vary quite easily the parameters
of the models and thus approach the solution of at least a
number of similar problems.

It is worth mentioning that computer simulation is used
increasingly in an analysis not just of fluctuations them-
selves, but to an even greater extent in an analysis of
fluctuation atomic—molecular rearrangements. Diffusion,
evaporation, motion of dislocations, implantation of
atoms, and other events have been simulated successfully
[18—21].

We may assume that the appearance of detailed
microscopic data on energy fluctuations and fluctuation
parameters will lead to the solution of problems formulated
long ago and relating to the activation energy of the
processes in condensed bodies, the ‘compensation effect’
(which is the relationship between the pre-exponential
factors and the arguments of the exponential functions
in the expressions for the rates of the processes), the pre-
exponential factors in the Boltzmann-type expressions, etc.

The continuing development of the problem of
fluctuations in condensed systems has been stimulated
decisively by the ideas and work of Yakov Il’ich. The
range of fluctuation-type topics is increasing continually.
They include mechanical fracture and electrical damage,
decom-position of polymers, complex processes in glasses,
etc. It is worth stressing particularly the increasing
importance of fluctuation processes in biological
functions. All this is enhancing the importance of the
subject founded by Yakov [Il'ich, the fluctuation
dynamics, and makes it very desirable to develop this
subject further.
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