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Abstract. In te rna l a t o m i c - m o l e c u l a r v ibra t ional dynamics 
of solids gives rise to short-lived localised states of a toms with 
a much higher energy or ampl i tude of v ibra t ions , i.e. it gives 
rise to f luctuat ions. These f luctuat ions play the dominan t role 
in a variety of physical processes, which include diffusion, 
evapora t ion , plast ic deformat ion, highly elastic deformat ion 
of polymers , fracture, chemical react ions, electronic t rans i ­
t ions, biological functions, and m a n y others . The essentials of 
the f luctuation origin of these processes are given in the 
classical pape r s of Ya I F renke l ' . The microscopies of 
f luctuat ions of the energy of a t o m s has begun to develop 
successfully. The present paper provides a brief historical 
in t roduct ion , which is followed by the first results (obta ined 
by compute r s imulat ion) tha t can account for the detailed 
characterist ics of f luctuations: the lifetime of a f luctuation 
state of a toms , the size of a f luctuation region, and migra t ion 
of f luctuations. Special a t ten t ion is given to the mechanism of 
format ion of energy f luctuations. Invest igat ions of 
f luctuation dynamics in condensed media , regarded as a 
new and to some extent independent pa r t of the physics of 
l iquids and solids, have been given a decisive start by the 
fundamenta l work of Y a k o v Il ' ich F renke l ' . H e began his 
invest igations back in the twenties and cont inued them with 
ou t s t and ing success t h r o u g h o u t his life. The s tudy repor ted 
be low represents the a t t empt by the present au tho r s to 
cont inue the development of the fruitful ideas of Y a k o v Il ' ich. 

1. Introduction 
The very impor t an t role of in ternal dynamics of bodies , 
i.e. the mo t ion of part icles compos ing these bodies 
(a toms, molecules, or quasipart icles such as phonons ) , in 
de terminat ion of the physical proper t ies of these bodies 
and of the processes occurr ing in them is self-evident. 
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The average values of the dynamical characterist ics 
(energy, mean free pa th , frequency, etc.) account satis­
factorily for the following proper t ies of b o t h gases and 
condensed media: the specific heat , t he rmal conductivi ty, 
velocity of sound, t he rma l expansion, t empera tu re depen­
dence of the elasticity, etc. 

On the other hand , just the average values of, for 
example, the energy are insufficient to account for a 
very large n u m b e r of processes. F o r example, the 
thermoluminescence of and ionisat ion in gases, or the 
evapora t ion , diffusion, plastic deformat ion , viscous flow, 
and m a n y electronic processes in solids require for the 
occurrence of e lementary events an energy at least an order 
of magn i tude greater t han the average. 

If we ignore tunnel l ing (sub-barr ier t r a n s i t i o n s ! , it 
becomes clear tha t e lementary events of a t o m i c -
molecular r ea r rangements occur only when a sufficiently 
high (much higher t han average) energy is concent ra ted 
locally, in the region of an e lementary event. Briefly, 
therefore, the realisat ion of e lementary events in an 
e n o r m o u s number of processes requires energy 
f luctuations, specifically it requires sufficiently large 
posit ive f luctuat ions. 

The occurrences of such energy f luctuat ions in the internal 
dynamics of bodies follows natura l ly from a nonequi l ibr ium 
energy dis t r ibut ion between componen t s of a b o d y (subsys­
tems). The fundamenta l work of J Wil lard G ibbs on t h e r m o ­
dynamics and the a tomist ic theory of J Clerk Maxwel l and 
L E Bol t zmann have established tha t a state of a b o d y in a 
global equil ibrium at a t empera tu re T is characterised by a 
certain dis t r ibut ion function of the part icle energy E in 
which a dominan t posi t ion is occupied by the Bo l t zmann 
fac to r j . 

exp(-f). (1) 
f The problem of the tunnel mechanism of a tomic-molecula r rearrange­
ments in a condensed system has begun to attract serious attention 
recently and is an interesting trend [22]. 
J Dependences of the exp(— A/T) type are also frequently called the 
Arrhenius laws. This is because in 1889 S Arrhenius established 
experimentally the temperature dependence of this type of rate of 
chemical reactions. A direct experimental confirmation of the 
Maxwell and Boltzmann distributions has been provided much later. 
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E q n (1) represents essentially the dis t r ibut ion of energy 
f luctuat ions in a body . 

It should be poin ted out tha t the kinetic aspect is 
ignored in such a descript ion of a s teady equil ibrium 
state of a system. The quest ions of the lifetime of local 
f luctuation states, n a t u r e of the t ime evolut ion of 
f luctuations, frequencies of f luctuat ions of the energies 
of a toms , etc. have no t been analysed in these classical 
investigations. 

These p rob lems were formulated and considered for 
the first t ime by Y a k o v Il ' ich F r e n k e l ' in the twenties. H e 
concent ra ted his a t tent ion on the processes of f luctuation 
origin in condensed systems, i.e. in l iquids and solids, and 
cont inued to work on this p rob lem right up to the fifties. 
The main results have been summarised by F r e n k e l ' in his 
m o n o g r a p h Kinetic Theory of Liquids [1]. H e has been 
p lann ing to p repa re a revised edit ion and call it the Kinetic 
Theory of Liquids and Solids, i.e. of condensed systems. 

F r e n k e l ' has in t roduced the concept of jump- l ike or 
h o p p i n g a t o m i c - m o l e c u l a r rea r rangements . H e has in t ro ­
duced the concept of the average wai t ing t ime for such a 
rea r rangement as " . . . t h e t ime necessary for the accumu­
lat ion by a given a tom of a kinetic energy equal to or 
greater t han the poten t ia l b a r r i e r . . . " [1]; he has p roposed 
the hypothes is of ' ins tan taneous release ' of the kinetic 
energy after overcoming a barr ier . H e has derived an 
expression for the average wai t ing t ime before a j u m p of 
an a tom across a po ten t ia l barr ier [1] (this is k n o w n as 
F renke l ' s formula, described below), which represents the 
wai t ing t ime for a specific f luctuation of the energy of an 
a tom. This formula is used very widely. In fact, the ideas 
and work of Ya I F r e n k e l ' represent a t ransi t ion from the 
'v ibra t ional dynamics ' usual ly considered before his work 
to the ' f luctuation dynamics ' which determines m a n y 
characterist ic features of the the rmal behaviour of 
condensed systems. 

It was F r e n k e l ' who started the development of the 
f luctuation dynamics , i.e. the task of ob ta in ing detailed 
informat ion on f luctuations of the energies of a t o m s such as 
their t empora l statistics, evolut ion, degree of spatial 
localisation, etc. Y a k o v Il ' ich has thus formulated the 
p rob lems of the microscopies of f luctuations. 

The f luctuation states of a t o m s are themselves of 
physical interest. However , the role of f luctuat ions in an 
e n o r m o u s number of processes a l ready no ted makes the 
s tudy of f luctuat ions a par t icular ly impor t an t task. 

In dealing with f luctuat ions of the energy of a toms in 
condensed media we are faced no t only with the task of 
ob ta in ing detailed informat ion on their characterist ics, bu t 
also with the fundamenta l task of identification of the 
mechanism of format ion of a f luctuation, i.e. the mecha ­
nism of concent ra t ion of a higher energy at an a tom, which 
this a tom can only obta in from other a toms . 
A phenomenolog ica l descript ion of energy accumula t ion 
by an a tom because of a direct ional energy flux from 
the envi ronment has been p roposed [2]. However , the 
dynamica l reasons for such a flux (if it exists at all) 
have not been identified. In the case of a condensed 
med ium the p rob lem of energy transfer and its 
accumula t ion at a single a tom is na tura l ly difficult to 
deal with because in a system of this kind each a tom 
interacts directly with a small number of ne ighbours 
(practically only in the first coord ina t ion sphere). In the 
case of a gas this s i tuat ion is simpler. There each a tom or 

molecule can interact consecutively by collisions with a 
large n u m b e r of a toms . A higher kinetic energy (an energy 
f luctuation) can be acquired if over a sufficiently long t ime 
there are no ' head-on ' collisions with other a toms , bu t only 
's ide ' impacts by these a toms . Then , if small energy por t ions 
are received from a large number of other a toms , the a tom 
under investigation acquires a sufficiently high kinetic 
energy and becomes a possessor of a f luctuation energy. 
A si tuat ion of this kind, i.e. the feasibility of interact ion 
with a large number of other a toms , does no t exist in the 
case of condensed media and, therefore, the mechanism of 
concent ra t ion of a higher energy is obviously different and 
this requires elucidation. 

It is no t in fact possible to investigate by direct 
experiments the details of f luctuation p h e n o m e n a on the 
a tomic scale. In reality, large f luctuation affecting a t o m s are 
relatively ra re and the lifetimes of f luctuation states are 
short , so tha t exper imental studies of the evolut ion of 
f luctuat ions have no t yet been carried out . 

Nevertheless , it is possible to elucidate the details of the 
evolut ion of energy f luctuat ions of a toms and to identify 
the mechanism of format ion of f luctuat ions. This can be 
done by the me thod of computer s imulat ion, k n o w n as the 
me thod of molecular dynamics [4]. The first work on 
s imulat ion of the dynamics was tha t of E F e r m i [3]. 
Since then the number of pape r s on molecular dynamics 
has been rising rapidly. However , there have been no 
a t t empts to account for the physics of f luctuat ions. The 
appl icat ion of this app roach to the p rob lems in f luctuation 
dynamics in solids is described be low and the results 
obta ined are the subject of the present paper . 

2. Method of computer experiments 
The me thod of molecular dynamics involves numer ica l 
in tegrat ion of the classical equa t ions of mo t ion of a toms 
with given in tera tomic interact ion potent ia ls and subject to 
given initial and b o u n d a r y condi t ions . 

W e considered var ious models of solids: one -
dimensional , two-dimensional , and three-dimensional 
crystals (Fig. 1), as well as three-dimensional a m o r p h o u s 
s tructures . The n u m b e r of a t o m s in the simulated systems 
was varied from 100 in a chain of a t o m s to 500 in three-
dimensional crystalline and a m o r p h o u s systems. 

In the case of one-dimensional systems we used three 
potent ia ls : Morse , T o d a [5], and ha rmonic , all with 
identical values of the equil ibrium in tera tomic spacings, 
b inding energy, and Y o u n g m o d u l u s (Fig. 2). In t w o -
dimensional crystals we used the M o r s e poten t ia l and in 
three-dimensional systems we employed the S t i l l inger -
Weber pair po ten t ia l [6]. 

W e set the ' t empera tu re ' by r a n d o m sampling of the 
initial values of the velocities of a toms , followed by 
subsequent thermal isa t ion for approximate ly 20 per iods 
of a tomic vibra t ions . W e defined the t empera tu re in 
te rms of the average kinetic energy of a toms . 

W e integrated the equat ion of mo t ion for N interact ing 
part icles: 

d2xt _ dUi 
m~df~~dx~' 

were m is the mass of an a tom, x i are the coord ina tes of the 
i-th a tom, 



Microscopies of fluctuations of the energy of atoms in solids 337 

O O O (f) 
c 

Figure 1. Lattice models used in computer experiments: (a) one-
dimensional; (b) two-dimensional; (c) three-dimensional (fee lattice). 
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Figure 2. Atomic pair-interaction potentials for computer simulation 
experiments: ( 7 ) harmonic, ( 2 ) Toda, (3) Morse. 

is the poten t ia l energy of the i-th a tom, and ^{rtj) is the 
in tera tomic interact ion potent ia l . 

In tegra t ion gives the p a t h of each a tom in the phase 
space of the coordina tes and velocities. 

The integral of mo t ion is the in ternal energy of the 
system. In all cases the integrat ion of equa t ions of mo t ion 
was carried out using the Nords ieck a lgor i thm of the fifth 
order of precision [7]. The integrat ion step, which should be 
sufficiently small, was selected in the range from 1/20-th to 
1/50-th pa r t of a per iod of a tomic vibra t ions . The precision 
was judged on the basis of conservat ion of the integrals of 
mot ion . 

In this way we found for each a tom in the simulated 
systems the ins tan taneous values of the coordina tes 

xq(t), 

the ins tan taneous values of the velocities 

the ins tan taneous values of the poten t ia l energy (defined as 
the sum of the poten t ia l energies of the b o n d s of one a tom 
with its ne ighbours) 

Epot(t)=^Uj[xi(t)-Xj(t)] , 
j 

the ins tan taneous values of the kinetic energy 

q 

and the ins tan taeous values of the to ta l energy 

Etot(t) = Epot(t) + Ekm(t) . 

The fitness of the models in respect of their ability to 
describe the dynamica l behav iour of a t o m s in solids was 
checked by calculat ions based on the da ta , obta ined in 
compute r experiments , on such characterist ics as the values 
and t empera tu re dependences of the the rma l expansion 
coefficient, bulk modu lus , and D e b y e - W a l l e r factor. F o r 
example, in the case of s imulat ion of nickel we achieved a 
qui te satisfactory agreement with the exper imental da ta 
[12]. 

The ability to find the ins tan taneous values of the 
characterist ics of the dynamics of a t o m s enabled us to 
analyse dynamica l f luctuations, i.e. f luctuat ions of the 
energies of a toms . 

The characterist ics of energy f luctuations found in our 
compute r exper iments are shown in Fig. 3. 

E 

t 

Figure 3. Strong fluctuation of the energy, E, of an atom. 

W e determined the main characterist ics, which were: 
— the m a x i m u m energy of a f luctuation EQ (separately 
kinetic, potent ia l , and their sum); 
— the excess of the energy of a f luctuation above the 
relevant average energy AE; 
— the lifetime of a f luctuation At a; 
— the n u m b e r of f luctuat ions as a function of their energy 
at different t empera tu res (statistics of f luctuations). 

These and several other characterist ics (spatial 
localisation, velocity of f luctuat ions, distance travelled by 
f luctuations, etc.) are the main elements of the microscopies 
of f luctuations. 

3. Results of computer simulation of dynamical 
fluctuations in atomic systems 

The results repor ted be low have been described earlier 
[ 8 - 1 3 ] . Fig. 4 shows a fragment of the ' thermal life' of one 
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of the a t o m s in a one-dimensional mode l (chain) with an 
a n h a r m o n i c interact ion poten t ia l (Morse potent ia l ) . W e 
simulated one-dimensional v ibra t ions only a long the chain 
axis. The fragment of a relatively 'quiet life' is identified in 
this figure. W e can see f luctuat ions of the kinetic energy, 
bu t their ampl i tudes differ little from the average kinetic 
energy (\kT). S t rong f luctuat ions are no t observed dur ing 
this t ime interval ( amoun t ing to several f luctuation 
periods) . 

Ekin /kT 

W 4-0 
-1 0 1 3 t/z0 

Figure 4. Fragment of the thermal life of an atom. One-dimensional 
model of 100 atoms with the Morse potential. The figure shows a 
fragment without strong fluctuations of the kinetic energy. Here (and 
later) T 0 is the average period of the vibrations of atoms. 

Fig . 5a shows a different fragment of the dynamics of the 
same a tom. D u r i n g this t ime interval we can see a fairly 
s t rong fluctuation of the kinetic energy of an a tom. The da ta 
in Fig . 5a can be used to answer the quest ion of the lifetime 
of a f luctuation state of an a tom. W e can see tha t a large 
energy fluctuation moves very fast. The whole f luctuation 
'survives ' for abou t one per iod of the a tomic v ibra t ions . 

Similar results are obta ined also for t w o - and three-
dimensional models (see below). In all cases the energy 
f luctuat ions appear as very sharp energy peaks . As already 
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Figure 5. Fragments of the thermal life of atoms. One-dimensional 
models with 100 atoms and with the Morse (a) and harmonic (b) 
potentials. The figure shows fragments with strong fluctuations of the 
kinetic energy. 

ment ioned , F r e n k e l ' was the first to formulate the p rob lem 
of evolut ion of f luctuat ions using the term ' accumula t ion ' 
and for the dispersal of energy he in t roduced the 
hypothet ica l concept of ' ins tan taneous release ' of energy. 
Y a k o v Il ' ich wro te abou t this hypothes is as follows: 
" R i g o r o u s justification of this hypothesis represents a 
very complex p rob lem, which n o b o d y has yet a t t empted 
to so lve" [1 ]. W e can n o w say tha t ' accumula t ion ' is very 
fast. The energy rise is in the na tu re of a flash. The 
' ins tan taneous release ' hypothesis is seen to be fully 
suppor ted . 

H av i n g established a s t rong t ime localisation of energy 
f luctuations, let us n o w consider the degree of their spatial 
localisation. 

Fig. 6 shows a s p a c e - t i m e d iagram of the energy of 
a t o m s in a chain. The abscissa gives the values of the energy 
of each a tom. The gaps, poin ts , and n u m b e r s represent the 
cor responding energy values (capt ion of Fig. 6). The 
ord ina te gives the t ime. Each r o w represents an 
ins tan taneous dis t r ibut ion of the energy between the 
a t o m s in a chain. The rows are spaced every one-sixth 
of the average per iod (TO) of the v ibra t ions of an a tom. This 
figure gives the to ta l energy of a t o m s (the kinetic energy 
plus the half-sum of the potent ia l energies of two adjoining 
bonds ) . The interact ion poten t ia l is assumed to be h a r m o n i c 
(the reason for assuming the h a r m o n i c poten t ia l will be 
discussed later). 

The da ta in Fig. 6 m a k e it possible to identify the 
following proper t ies of f luctuat ions of the energy of a toms : 
— the f luctuat ions are also localised strongly in space; an 
excess energy is concent ra ted usually at jus t one a tom; the 
adjacent a t o m s are weakly excited; in a smaller number of 
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Figure 6. Space - t ime diagram of the total energy of atoms. One-
dimensional model with 100 atoms and the harmonic potential. Ea 
denotes the magnitude of the fluctuation of the total energy of an atom. 
G a p : £ f l < 1.5 kT, (.)En = (1.5 - 2.0) kT ; ( 7 ) En = (2.0 - 2.5) kT ; 
(2) En = (2.5-3.0)kT 
(4) E& = (3.5-4.0) kT 
(6)En = (4.5 - 5.0)kT 
(8) En = (5.5-6.0)kT 
0 : £ f l > 7.0kT. 

(3) En = (3.0-3.5)kT 
( 5 ) £ f l = (4.0 - 4 . 5 ) kT 
( 7 ) £ f l = (5.0 - 5 . 5 ) kT 
( 9 ) E f l = ( 6 . 0 - 6 . 5 ) £ r 
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cases and usually for weaker f luctuat ions the excess energy 
is spread out between two, three, or several ne ighbour ing 
a toms ; the energy f luctuat ions are mainly of m o n a t o m i c 
scale; 
— there is a definite migra t ion of f luctuat ions; the d iagram 
shows t rans la t ion of an excess energy from one a tom to 
ano ther ; the ra te of this t rans la t ion is close to the velocity 
of sound; it should be stressed tha t the mo t ion of 
f luctuat ions is not of purely soliton na tu re (in a 
h a r m o n i c system there should be no soli tons at all) 
when a local excitation travels with conservat ion of a 
cons tant energy; the magn i tude of a f luctuation oscillates 
dur ing its mo t ion and the peak- to -peak ampl i tude of such 
oscillations is fairly large; 
— the strongest f luctuat ions appear as a result of 
'coll isions' of moving f luctuat ions (when the lines of 
mo t ion of f luctuat ions intersect). 

Similar results are also obta ined by simulat ion of the 
dynamics of an a n h a r m o n i c chain. In two-dimens iona l 
a n h a r m o n i c and also h a r m o n i c and three-dimensional 
systems there are equally strongly localised (on the scale 
of one a tom) energy peaks (fluctuations). In t w o - and three-
dimensional systems there is also migra t ion of f luctuat ions 
a long the lines of close pack ing of a toms . 

Hav ing demons t ra ted the s t rong t empora l and spatial 
localisation of energy f luctuations, we shall n o w consider 
the p rob lem of the mechanism of their format ion. 
C o m p u t e r s imulat ion experiments were carried out with 
this par t icular aim in mind and in these experiments we 
considered not only realistic a n h a r m o n i c potent ia ls , bu t 
also ha rmon ic potent ia ls . F o r example, in addi t ion to the 
M o r s e poten t ia l 

U(x) = £/o[exp(—2oa) — 2 exp(—ax)] 

we selected the h a r m o n i c poten t ia l 

U(x) = U0a2(x2 - 1). 

Here , x is the deviat ion of the distance between two a t o m s 
from the equil ibrium value. The pa rame te r s of b o t h 
potent ia ls , Uo and a, were assumed to be the same so 
tha t the values of the poten t ia l and of its first and second 
derivatives with respect to the displacement x (i.e. the 
values of the elastic force and the linear elasticity 
coefficient) were the same at x = 0. 

It was impor t an t to establish whether the na tu re of the 
f luctuation dynamics is similar or very different for the 
a n h a r m o n i c and h a r m o n i c interact ions. A compar i son can 
be m a d e by examinat ion of Figs 5a and 5b the latter of 
which shows a fragment with f luctuat ions for a h a r m o n i c 
chain. It is evident tha t 

( 1 ) the ' peaks ' of the energies of a t o m s are also 
observed for the h a r m o n i c interact ion; 

(2) the na tu re of the f luctuation pa t t e rn remains 
practical ly the same as in the case of a n h a r m o n i c inter­
act ion. 

Similar results, demons t ra t ing a high degree of similarity 
of the dynamica l behaviour of f luctuat ions in a n h a r m o n i c 
and ha rmon ic systems, were obta ined for t w o - and three-
dimensional models . The similarity makes it possible to 
d r aw the following conclusions abou t the mechanism of 
format ion of f luctuations. 

In an a n h a r m o n i c system two types of p h e n o m e n a m a y 
lead to a local increase in the energy of an a tom: 

an interference between elastic waves (normal 
vibrat ions) ; 

a redis t r ibut ion of the energy between different v ibra­
t ional modes (energy transfer from some modes to others) . 

The second p h e n o m e n o n is excluded in the case of a 
h a r m o n i c system and, therefore, only the interference of 
elastic waves is possible when the local phase ma tch ing of 
the waves leads to energy 'peaks ' . | 

The similarity of the f luctuation dynamics in the case of 
a n h a r m o n i c and h a r m o n i c systems thus allows us to 
conclude tha t the mechanism of format ion of 
f luctuat ions of the energy of a t o m s is in all cases the 
interference between the elastic waves. This conclusion is 
suppor ted by the fairly large change in the energy of a 
f luctuation as it migrates , which is poin ted out above 
(Fig. 6). Such a change is obviously due to different 
interference phase relat ionships a long the p a t h of a 
moving fluctuation. 

The i n t e r f e r ence -wave na tu re of energy f luctuat ions 
allows us to call them characteris t ic 'wave packe t s ' . 
Thus , if we assume tha t compute r exper iments do indeed 
simulate real the rmal processes in solids, we m a y conclude 
tha t f luctuat ions of the energy of a toms in real bodies are the 
results of an interference between p h o n o n s . In this case we 
can say (without minimising the impor t ance of p h o n o n s in 
m a n y dynamica l processes in solids) tha t p robab ly the main 
role of p h o n o n s is to create f luctuat ions of the energy of 
a toms . 

It is app ropr i a t e to ment ion here tha t the p h o n o n origin 
of f luctuat ions has been pos tu la ted earlier. F o r example, 
Fabel inski i [15] says: " . . . F luc tua t ions are the results of the 
interference between D e b ye w a v e s . " The results of our 
compute r s imulat ion appear to suppor t this t r ea tment well. 

There are thus g rounds for concluding tha t f luctuat ions 
of the energy of a toms are the result of the wave na tu re of 
the internal dynamics of a solid. The overall p ic ture m a y 
then be described as follows. 

The n o r m a l v ibra t ions (with their own frequency spec­
t rum) represent extended (over m a n y wavelengths or up to 
the dimensions of a body , and in an a n h a r m o n i c system over 
the p h o n o n p a t h ) travell ing or s tanding waves. The 
interference between them creates solitary wave 
format ions ( 'packets ' ) which result in f luctuat ions of the 
energy of a toms . C o m p u t e r s imulat ions show tha t these 
packe ts m a y appear b o t h as a brief increase in the energy 
only at a par t icular po in t (at one a tom) or as a travell ing 
solitary format ion (migrat ing f luctuation) with a var iable 
fluctua-tion energy ment ioned above. Then , in addi t ion to 
the inter-ference between extended waves of the n o r m a l 
v ibra t ions (interference between the p h o n o n s themselves), 
there is a possibili ty of a characteris t ic interference between 
moving solitary waves (interference between packets 
represent ing f luctuations) when they collide. It is then (as 
is evident from Fig. 6) tha t par t icular ly s t rong energy 

f Strictly speaking, the results of wave interference in a harmonic system 
do not fit the concept of fluctuations as random events, but represent 
'beats ' which are determined by the initial conditions. However, since the 
criterion of stochasticity is related to the anharmonicity parameter and to 
the number of particles in a system in such a way that an increase in this 
number increases the anharmonicity needed for stochastic behaviour [14], 
it follows that if the number of particles is sufficiently large we can use the 
concept of fluctuations in harmonic systems in the same way as in the case 
of anharmonic systems. 
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f luctuat ions are formed. C o m p u t e r s imulat ion makes it 
possible to obta in a detailed pic ture of the events. 

Elastic waves in a solid are na tura l ly related to density 
f luctuat ions. M a n d e l ' s h t a m [16] has shown tha t density 
waves ( componen t s of a spatial Four ie r expansion) 
in t roduced by Einstein [17] are identical with the Debye 
the rmal elastic waves. 

A change in the density of an elastic b o d y is in one- to -
one relat ionship with a change in the poten t ia l energy at the 
same point . The mo t ion of a density wave leads to the 
v ibra t ions of a toms , which are per iodic processes of 
conversion of the poten t ia l into the kinetic energy and 
vice versa. This applies to o rd inary per iodic processes. The 
si tuat ion is obviously somewhat different when solitary 
wave format ions (fluctuations) appear . There is no 
periodici ty (everything h a p p e n s in one per iod) and in 
this case we can hard ly use the concept of the phase 
(which determines the result of the interference of 
o rd inary waves). Instead, for each specific packet we can 
determine whether a posit ive or a negative dilat ion 
p redomina tes , i.e. whether elastic com-pression or 
e longat ion of the b o n d s between a t o m s takes place. The 
result of a collision of packe ts in the form of the rat io of the 
kinetic and potent ia l energies of an a tom at the m o m e n t of 
the ' combined ' f luctuation then depends on the signs of the 
di lat ions of the colliding packets . 

Fig. 7 shows the s p a c e - t i m e d iagrams of the f luctuation 
dynamics in a n h a r m o n i c chain of a toms , bu t no t of the 
energies of a t o m s (cont rary to Fig. 6), separately for 
e longat ion and compress ion of f luctuat ions. W e can see 
tha t the migra t ion of di lat ions is of the same na tu re as the 
migra t ion of energy f luctuat ions (compare with Fig. 6), 
which follows in a na tu ra l m a n n e r from the relat ionship 
between energy and density waves. W e m a y poin t out some 
quant i ta t ive differences between the d iagrams of the 
migra t ion of compress ions and e longat ions . They are 
related to the anharmonic i ty of a chain. In the case of a 

h a r m o n i c chain it follows from the s imulat ion results tha t 
there are no differences. The influence of the anharmonic i ty 
will be discussed later. 

Examples of compute r results on the collisions of 
f luctuat ions with the same and opposi te signs of the 
di la ta t ion are presented in Fig. 8. W e can see tha t a 
collision of two f luctuat ions with the same sign of the 
di la ta t ion (elongat ion in Fig. 8a) leads to a s t rong energy 
fluctuation which is a lmost wholely a f luctuation of the 
poten t ia l energy. The kinetic energy represents only a small 
fraction of the to ta l energy of the f luctuation. 

In contras t , when two f luctuat ions with opposi te signs 
of the di la ta t ion collide (Fig. 8b), the resul tant s t rong 
fluctuation of the energy of an a tom is most ly a 
f luctuation of the kinetic energy. This is to be expected, 
since f luctuations with opposi te signs of the di la ta t ion 
moving towards one ano ther have m o m e n t a directed in 
the same way (parallel) and in a collision the m o m e n t a are 
simply summed giving rise to a s t rong peak of the kinetic 
energy when the poten t ia l energy falls because of the m u t u a l 
compensa t ion of the e longat ion and compression. 

Consequent ly , s t rong f luctuat ions of the energy of 
a t o m s m a y have different ra t ios of the kinetic and 
poten t ia l energies. It would be of interest to analyse 
statistically the f luctuat ions in order to identify 
characterist ic ra t ios of the two types of energy in the 
to ta l energy of the f luctuation of an a tom. This was 
done by averaging over a number of real isat ions of the 
to ta l , potent ia l , and kinetic energies of a t o m s in a one -
dimensional system (seven realisations), a two-dimens ional 
system (eight realisations), and a three-dimensional system 
(twenty-two realisat ions). F o r each of these cases we 
selected t ime scans of f luctuat ions with the same values 
of the to ta l energy and averaged the componen t po ten t ia l 
and kinetic energies. 

The results ob ta ind are presented in Fig. 9 which shows 
the to ta l and kinetic energies. The poten t ia l energy is the 

Atom number Atom number 
50 60 70 80 90 50 60 70 80 90 

Figure 7. Space - t ime diagrams of the strains experienced by interatomic bonds. One-dimensional model with 100 atoms and the Morse potential, 
(a) Tensile strain s. Gap : e < 10%; (•) e = 10% - 16%; (•) e > 16%. (b) Tensile strain s. Gap : e < 4 % ; (•) e = 4% - 7%; (•) e > 7%. 
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difference between the to ta l and kinetic forms. All the 
systems are anha rmon ic . W e can see tha t the na tu re of the 
average t ime scan of the to ta l energy of an a tom for systems 

with different d imensions is the same: the t ime 'core ' of a 
f luctuation, occupying abou t one v ibra t ional per iod (TO), 
and a somewhat longer pedestal ( amoun t ing to two 
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Figure 8. Collision of fluctuations. One-dimensional model, with 100 (b) Fluctuations with opposite signs of the strain moving towards one 
atoms and the Morse potential, (a) Fluctuations with the same sign of the another, snapshot at 0.5TO before collision of one bond, (b ' ) Moment of 
strain (elongation) moving towards one another, snapshot at 0.5 To before collision; a strong fluctuation of the kinetic energy of an atom (#) and a 
collision on one bond, (a ' ) Moment of collision; a strong fluctuation of low potential energy (o). 
the potential energy of the bond (o) and a low kinetic energy of atoms (•) . 
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Figure 9. Fluctuations of the energies of atoms in lattices with different averaged over 8 realisations, (c) Three-dimensional model with 500 
dimensions: ( 7 ) total energy; ( 2 ) kinetic energy, (a) One-dimensional model atoms, fee lattice, Sti l l inger-Weber potential averaged over 22 
with 100 atoms and the Morse potential, averaged over 7 realisations. realisations, 
(b) Two-dimensional model with 271 atoms and the Morse potential, 
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per iods) . W e can also see tha t in all three cases the kinetic 
energy represents a major fraction of a f luctuation peak . 
In the case of a one-dimensional system this fraction is 
abou t 9 0 % ; for t w o - and three-dimensional systems it 
a m o u n t s to abou t 90% - 9 5 % . Consequent ly , the kinetic 
energy statistically domina tes the f luctuat ions of the energy 
of a toms . This is evidently because the collisions of 
f luctuat ions with different signs of the di la ta t ion are 
statistically m o r e p robab le and, as demons t ra ted earlier, 
this leads to the p r edominance (on average) of the kinetic 
energy in a s t rong fluctuation of the energy of an a tom. 
However , this p rob lem should be analysed further. 

It would be interesting to supplement the above 
informat ion abou t f luctuat ions with the results obta ined 
for a mode l of a different a tomic s t ructure. The results 
quo ted so far have been obta ined by compute r s imulat ion 
of the dynamics of systems with the crystalline order of the 
dis t r ibut ion of a toms . In s imulat ion of an a m o r p h o u s 
system we started with a three-dimensional fee lattice (a 
crystallite of 500 a toms) and then this crystallite was 
'mel ted ' on a compute r and rapidly 'cooled ' (the 
equivalent cooling ra te was 1 0 1 3 K s _ 1 ) . This m a d e it 
possible to determine the pos i t ions of a t o m s cor responding 
to an a m o r p h o u s s t ructure. This s t ructure was confirmed by 
compute r de terminat ion of the function represent ing the 
radia l dis t r ibut ion of a toms . The dynamic characterist ics of 
the a t o m s were determined for such a system at a number of 
t empera tures , as was done earlier for crystalline systems. 
The a m o r p h o u s system was also found to exhibit 
f luctuat ions of the energy of a toms . 

Fig. 10 shows a t ime scan of a s t rong fluctuation of the 
energy of an a tom averaged over 43 real isat ions. The overall 
na tu re of the t ime scan of the to ta l energy is qui te close to 
the scans for crystalline systems (compare with Fig. 9). 
However , it should be no ted tha t in this case the fraction of 
the kinetic energy is considerably less: it is be low 5 0 % . 
C o m p u t e r experiments show tha t this m a y be related to a 
difference in the behaviour and state of the su r round ing 
a t o m s at m o m e n t s preceding a s t rong energy fluctuation at 
a given a tom and at the m o m e n t of a f luctuation peak at 
this a tom. The results show tha t in the case of a m o r p h o u s 
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Figure 10. Fluctuations of the energy of an atom in an amorphous system. 
Three-dimensional model with 500 atoms and the Stillinger—Weber 
poten-tial, averaged over 43 realisations: ( 7 ) total energy; ( 2 ) kinetic 
energy. 

systems a f luctuation excitation extends over a somewhat 
larger number of a toms than in crystals. Once again, a 
further clarification is needed. 

The results of our compute r s imulat ion of systems with 
the a n h a r m o n i c and ha rmon ic interact ions allow us to 
est imate the role of the anharmonic i ty in the f luctuation 
dynamics . 

As poin ted out earlier, fundamental ly the anharmonic i ty 
is no t essential for the appearance of local energy peaks 
(fluctuations). The pa t t e rn of the f luctuation dynamics 
(t ime and space scans of the f luctuations for systems 
with all three dimensions) are basically similar for the 
a n h a r m o n i c and ha rmon ic models . 

The nonl inear i ty of the in te ra tomic interact ion poten t ia l 
has the effect tha t for the same fluctuation of the poten t ia l 
energy the compress ion and elongat ion of b o n d s are 
different: the e longat ion is s tronger than the compress ion 
(this na tura l ly does no t occur in a ha rmon ic system). This is 
obviously the reason for the differences, revealed by 
compute r experiments , between the characterist ics of 
f luctuat ions obta ined in the a n h a r m o n i c and h a r m o n i c 
models , and also the differences between elongat ion and 
compress ion f luctuat ions considered in the a n h a r m o n i c 
models . 

If we use the concept of the lifetime of a f luctuation, 
which is the t ime dur ing which the energy E of an a tom 
exceeds the average energy EaY (see Fig. 3), we find tha t this 
lifetime Ata is considerably longer for the e longat ion 
f luctuat ions t han for the compress ion f luctuat ions. F o r 
example, in the case of a chain with the M o r s e poten t ia l 
we find tha t when the f luctuation of the to ta l energy is AE/ 
kT = 3, the lifetime of an e longat ion fluctuation is 
Atn = 1.7TO, whereas the lifetime of a compress ion 
f luctuation is Ata = 0.8TO. 

The space—time d iagrams of the type shown in Figs 6 
and 7 can be used to est imate the p a t h or the lifetime of a 
solitary wave format ion (packet, f luctuation) a long the line 
of mo t ion of a f luctuation from the m o r e or less reliably 
k n o w n poin t of its nucleat ion to the poin t of its dispersal. 
The average results are given in Table 1 for a chain of 100 
a toms . W e can see from this table tha t the lifetimes in a 
h a r m o n i c system are independent of the sign of a di la tat ion, 
whereas for an a n h a r m o n i c system the influence of the sign 
is considerable. 

Table 1. Lifetime of moving fluctuations with different signs of dilatation. 

Potential Elongation fluctuation Compression fluctuation 

Harmonic (46 + 3) To (46 + 3) To 

Morse (25 + 10) T o (90 + 10) To 

M o v i n g compress ion f luctuat ions are much m o r e stable 
t han e longat ion f luctuations. The latter have a lower (by a 
factor of 1.5—2) velocity, so tha t their 'mean free p a t h s ' are 
reduced even further compared with the pa th s of the 
compress ion f luctuations. 

Our computer da ta allow us to consider also the 
p rob lems of statistics of energy f luctuations. One aspect 
is the dis t r ibut ion of f luctuat ions in te rms of their energy. 
This dis t r ibut ion can be found by calculat ing the 
ins tan taneous values of the energies of a toms . The to ta l 
number of cases no when the average energy is exceeded is 



Microscopies of fluctuations of the energy of atoms in solids 343 

6 AE/kT 

AE/kT 

Figure 11. (a) Distribution of the instantaneous values of the total energy 
of atoms in a two-dimensional model with 271 atoms and the Morse 
potential, (b) Dependence of the average waiting time of an energy 
fluctuation and its magnitude. One-dimensional model with 100 atoms 
and the Morse potential, averaged over 10 realisations with different 
initial conditions. (•) Kinetic energy of an atom; (o) potential energy of 
an interatomic bond. 

determined for a system tha t has unde rgone a per iod of 
thermal isa t ion. This cor responds to the n u m b e r of a toms 
with posit ive energy f luctuations of different magn i tude 
(from small to large) at a given m o m e n t . This is followed by 
finding the n u m b e r of cases when higher values of the 
energy are exceeded, i.e. by finding the dependences n(AE) 
(we recall tha t AE = Ea—EaY; see Fig. 3). The resul tant 
normal ised dependences n(AE)/no are then averaged over 
several tens of calculat ions of the dis t r ibut ion of the 
ins taneous energies of a toms . 

The results of determining the dis t r ibut ion function of 
f luctuat ions of the to ta l energy of a toms for a t w o -
dimensional a n h a r m o n i c mode l are presented in Fig. 11a. 
W e can see tha t a linear dependence with a slope close to 
uni ty is obeyed fairly well when semilogari thmic coor-dinates 
are used. This means tha t the dis t r ibut ion is described by the 
function exp (—AE/kT ), i.e. it is the Bo l t zmann dis t r ibut ion. 

These computer exper iments show tha t the dis t r ibut ion 
is stable. It is no t affected by changes in the initial 
condi t ions after the thermal isa t ion per iod, i.e. after the 
system reaches a dynamic equil ibr ium. Since the Bo l t zmann 
dis t r ibut ion is to be expected for the energetics of an a tomic 
dynamic system, its direct manifesta t ion in compute r 
experiments m a y be regarded as addi t iona l confi rmat ion 
of the reliability of the me thod and of the satisfactory 
na tu re of the mode l results on the the rmal state of real 
bodies . 

W e shall n o w tu rn to a different aspect of the statistical 
da ta which is the p rob lem of the dis t r ibut ion of f luctuat ions 
in te rms of the frequency of their appearance or in te rms of 
the wai t ing t ime. It is unde r s tood tha t the frequency 
dis t r ibut ion and the s teady-state dis t r ibut ion of the 
energy f luctuat ions are related. However , such a 

characterist ic as the average wai t ing t ime of a 
f luctuation is related also to the t ime characterist ics of 
the f luctuat ions themselves; their lifetime and the t ime 
profile of the energy. 

Usual ly the wai t ing t ime of a f luctuation is the mos t 
impor t an t characterist ic tha t governs the kinetics of those 
n u m e r o u s p h e n o m e n a which are based on fluctuation 
dynamics . Therefore, F r e n k e l ' — w h o started the 
development of the microscopies of the f luctuation 
p r o c e s s e s — p a i d special a t tent ion to this characterist ic. 
H e est imated theoretical ly the average wai t ing t ime of a 
f luctuation of the energy of an a tom on the basis of a simple 
and na tu r a l assumpt ion tha t the lifetime of the state of an 
a tom excited by a f luctuation is close to the per iod To of the 
v ibra t ions of the a toms . The rat io of the lifetime in a state 
with a higher poten t ia l energy (AU) to the lifetime of the 
'quiescent ' state (T) is the reciprocal of the rat io of 
the probabi l i t ies of these two states described by the 
Bo l t zmann factor exp (—AU/kT ) . This leads to the 
F r e n k e l ' formula 

T 

^0 
= exp 

AU 
(2) 

Since in the t rea tment by F r e n k e l ' himself the ' j ump ' of 
an a tom over a po ten t ia l barr ier of height AU requires a 
f luctuation of the energy of an a tom AE ^ AU, E q n (2) 
leads directly to the expression for the average wai t ing t ime 
of a f luctuation AE of the energy of an a tom: 

AE 
: To exp kT (3) 

It should be po in ted out tha t the average wai t ing t ime of 
a f luctuation AE of the energy of an a tom is also the 
average t ime between two consecutive f luctuat ions of the 
same magn i tude AE at one a tom. This in terpre ta t ion of the 
wai t ing t ime makes it possible to check directly the validity 
of E q n (3) by computer s imulat ion. The assumpt ions m a d e 
by F r e n k e l ' determine, as poin ted out already, the value of 
the preexponent ia l factor to within the average per iod of the 
v ibra t ions of a toms . 

The dependence x(AE) for a thermalised system was 
studied by calculating, over a fairly long t ime interval 

= MTO (M is the n u m b e r of the v ibra t ional periods) , 
the value of HQ which is the number of energy f luctuat ions 
of magn i tude exceeding a certain energy level beginning 
from £av In this way we obta in the dependences na(AE) 
which are used to determine the dependence of the average 
t ime between f luctuat ions of the kinetic energy of one a tom 
and between the f luctuat ions of the poten t ia l energy of one 
b o n d on the f luctuation energy: 

where N is the n u m b e r of a toms or b o n d s in the model . 
The results for a one-dimensional a n h a r m o n i c system 

are presented in Fig. l i b . The dependence of In [ T ( A £ ) / T O ] 
is linear with a slope pract ical ly equal to uni ty (when the 
a rgument is AE/kT ); moreover , it is no t only linear bu t very 
nearly directly p ropor t iona l . Consequent ly , in the case of 
f luctuat ions of the kinetic energy of a toms and of the 
poten t ia l energy of b o n d s the following relat ionship is well 
satisfied: 

! To exp 
AE 
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This means tha t the results of computer experiments 
suppor t directly the F r e n k e l ' formula b o t h in the functional 
(quali tat ive) and quant i ta t ive senses. 

4. Summary 

C o m p u t e r s imulat ion of the a tomic dynamics in solids has 
thus provided a whole range of detailed da ta on 
f luctuat ions of the energy of a toms : the lifetime of such 
f luctuations, their spatial localisation, the rat io of the 
kinetic and poten t ia l energies at the m o m e n t of a 
f luctuation, the migra t ion of f luctuat ions and their 
interact ion, and the statistics of the energy f luctuations. 
The mechanism of format ion of f luctu-ations of the energy 
of a toms has been identified: it is the inteference between 
n o r m a l v ibra t ions (phonons) . These results will be needed 
in the development of the micros-copic theory of 
f luctuation dynamics and of the processes tha t are based 
on e lementary f luctuation events. 

The results of computer s imulat ion na tura l ly leave m a n y 
quest ions unanswered . These quest ions include whether the 
selected poten t ia l fields a r o u n d a toms cor respond to reality 
and also l imitat ions of the descript ion of the dynamics only 
by the classical app roach . Moreover , the processes 
occurr ing in the electron subsystem of a b o d y are 
ignored (a toms are regarded as ha rd spheres connected 
by springs) and so on. However , the compute r s imulat ion 
me thod makes it possible to vary qui te easily the pa rame te r s 
of the models and thus app roach the solution of at least a 
number of similar p rob lems . 

It is wor th ment ion ing tha t compute r s imulat ion is used 
increasingly in an analysis no t just of f luctuat ions t h e m ­
selves, bu t to an even greater extent in an analysis of 
f luctuation atomic—molecular rea r rangements . Diffusion, 
evapora t ion , mot ion of dislocations, implan ta t ion of 
a toms , and other events have been simulated successfully 
[18 -21] . 

W e m a y assume tha t the appea rance of detailed 
microscopic da ta on energy f luctuat ions and fluctuation 
pa rame te r s will lead to the solution of p rob lems formulated 
long ago and relat ing to the act ivat ion energy of the 
processes in condensed bodies , the ' compensa t ion effect' 
(which is the relat ionship between the pre-exponent ia l 
factors and the a rguments of the exponent ia l functions 
in the expressions for the ra tes of the processes), the p re -
exponent ia l factors in the Bol tzmann- type expressions, etc. 

The cont inuing development of the p rob lem of 
f luctuat ions in condensed systems has been st imulated 
decisively by the ideas and work of Y a k o v Il ' ich. The 
range of f luctuat ion-type topics is increasing continually. 
They include mechanica l fracture and electrical damage , 
decom-posi t ion of polymers , complex processes in glasses, 
etc. It is wor th stressing par t icular ly the increasing 
impor tance of f luctuation processes in biological 
functions. All this is enhancing the impor tance of the 
subject founded by Y a k o v Il ' ich, the f luctuation 
dynamics , and makes it very desirable to develop this 
subject further. 
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