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Abstract. A new approach to the study of antiferromag-
netic phenomena in terms of the exchange magnetic 
structure code is examined. If the positions of the 
magnetic ions are known this code could play the same 
role in the symmetric description as the international 
symbol for the crystallographic space group plays in the 
description of the properties of nonmagnetic crystals. 

1. Introduction 
Antiferromagnetics are the largest class of magnetically 
ordered substances. At present the number of antiferro-
magnetic (AFM) compounds, alloys, etc. is counted in 
thousands. It can be said that "God loves antiferromag-
netism". Nevertheless there are no modern monographs 
(or, at least, detailed reviews) devoted specifically to the 
properties of antiferromagnetics. In the new edition of the 
Physical Encyclopedia [1] the compilers of various articles 
on antiferromagnetism have to refer to publications up to 30 
years old|. 

In recent years we have witnessed a marked increase in 
the study of antiferromagnetics. This is due on the one hand 

f Of course, there is a new, small, book by the present writer [2], but it is 
not familiar to a wide circle of readers because it was produced by the 
Metal Physical Institute of the Urals Branch of the Russian Academy of 
Sciences (Ekaterinburg) and it has not been put on the market through the 
booksellers' network. Nevertheless interested readers can still order the 
book (cash on delivery) from the Metal Physics Institute. 
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to the fact that antiferromagnetism exists in oxides used as a 
basis for the synthesis of HTSC, and on the other hand to 
the fact that its most important applications lie in the field 
of multilayer magnetic systems ('large magnetoresistance', 
etc.), which are attracting wide interest at the moment. 

The need to compile the present review became clear to 
me while I was preparing the contributions submitted to the 
Second International Conference on Magnetic Interaction 
Phenomena in Crystals (MEIPIC-2, Ascona, Switzerland, 
13-18 September 1993) and during the conference itself. 
The proceedings will be published in 1994 in the journal 
Ferroelectrics. Unfortunately, this field of research includes 
many erroneous theoretical studies and many (apparently) 
incorrect assertions arising from the absence of a single 
language (i.e. of a universally adopted terminology). 

Under these conditions it seems very desirable to 
formulate accurate crystal physical propositions which 
allow characteristic properties of antiferromagnetics 
(weak ferromagnetism, piezomagnetism, magnetoelec-
tricity, and other properties due to the AFM order [2]) 
to be examined as simply as possible, as well as their 
interdependence and the possibility of their coexistence. The 
problem chosen as a title for this review is only a symbolic 
representation of problems of this type. 

In the present discussion I shall analyse specific articles 
and name their authors, whom I hold in great respect. 
Antagonists will be identified as an abstract person: 
Dr N. Full references are given (unfortunately, rather 
uncritically) in a well known review [3] and in a more 
recent book [4]. 

In order not to appear to 'explain the inexplicable' I 
shall confine the discussion to colinear and weakly nonco-
linear magnetic structures, such as those produced by 
magnetoanisotropic and relativistic interactions. We shall 
also assume that the magnetic and the chemical unit cells 
coincide (which is usually a necessary condition for the 
appearance of these effects). We shall use the term exchange 
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magnetic structure to define the mutual directions of the 
magnetic moments (induced by the magnetic interaction), 
and their direction (usually, in the case of antiferromag­
netics, the direction of the antiferromagnetism vector L) 
relative to the crystallographic axes will be called the 
magnetic state. Of course, this division of two concepts 
is not always legitimate, but it is justified in the situation 
discussed below, when the magnetoanisotropic interactions 
are small in comparison with the exchange interactions. 

Table 1. 

Exchange magnetic Code 
structure 

Vectorial order parameter 

rf l ( + ) 4 z ( - ) 2 d ( + ) Lj = MX+M2-M3-M4 

2. Magnetic and crystal chemical symmetries 
Let us examine some of the symmetry aspects of the crystal 
physics of magnetically ordered (and, in particular, AFM) 
substances. To make the discussion specific we shall 
demonstrate the above statements for individual examples 
of AFM structures having tetragonal crystals with 
PA2/mnm (pH) symmetry. These include the trirutiles (a 
group of compounds of the type of Fe2TeC>6, Cr2WC>6, 
V2WO5, etc.) [5]. The trirutile unit cell shown in Fig. 1 
indicates only the four-fold position of the magnetic ions 
( F e 3 + , C r 3 + , etc.) in the coordinates 

(4e): 1(0, 0, z) , 2(0, 0, 1 - z ) , 

4 ( - - ~ \2' 2 ' 2 

4 1 1 
r 2 + z 

P42/mnm (Dl

4

4

h) 
^ are the magnetic ions 

(position 4e) 

Figure 1. Unit cell of the trirutile. 

Fig. 1 also shows the position in space of some symmetry 
elements of this group: a centre of symmetry (T), a tetrad 
screw axis (42), and a diad axis of rotation (2d). 

This is a particularly convenient example to consider 
because different AFM structures and states can be realised 
in trirutiles. Furthermore putting z = 0 gives the double 
position 2a (1 = 2, 3 = 4 ) , characteristic of another large 
group of crystals with AFM ordering and the same 

l ( - ) 4 z ( + ) 2 d ( - ) L2=MX -M2 + M 3 -M4 

l ( - ) 4 z ( - ) 2 d ( - ) L3=MX-M2-M3+M4 

rt 1 ( + ) 4 z ( + ) 2d(+) M =MX+M2+M3+M4 

symmetry P42/mnm. These are the fluorides of the transi­
tion metals, which have the rutile structure. 

Three different colinear exchange magnetic structures 
available for trirutiles are shown in Table 1 (first column). 
The symbols 0 and 0 denote mutually antiparallel 
magnetic moments, irrespective of their orientation with 
respect to the crystallographic axes. By additionally 
determining these directions we fix the magnetic states 
for these structures. The magnetic states most often found 
in uniaxial crystals (trigonal, tetragonal, and hexagonal) are 
states of the 'easy axis' (EA) type, in which the magnetic 
moments are oriented along or against the principal axis of 
symmetry (i.e. the 4 2 axis in Fig. 1), or of the 'easy plane' 
(EP) type, in which the magnetic moments lie in a plane at 
right angles to this axis. 

The true symmetry, which allows not only for the 
ordering in space of the atoms or ions of which the crystal 
is composed but also for periodic ordering of their magnetic 
moments, is described by the magnetic (Shubnikov) space 
groups. In other words, the magnetic symmetry is a 
parameter which combines the exchange magnetic struc­
ture with the magnetic state (though this combination is 
often simply called the magnetic structure). 

However, the initial symmetry of the crystal chemical 
ordering of micr op articles (i.e. the symmetry not allowing 
for their magnetic moments), described by the Fedorov 
space groups G F , may be of even greater importance in the 
symmetry description of magnetically ordered crystals 
(magnetics). I refer not only to the fact that the magnetic 
state often becomes labile and easily changed: when planes 
of easy anisotropy are present in the magnetic substance a 
magnetic field of a fraction of an oersted is often sufficient 
to change the direction of the magnetic moments (i.e. the 



Can the magneto electric effect coexist with weak piezomagnetism and ferromagnetism? 305 

magnetic state and the magnetic symmetry) while retaining 
the crystal symmetry. 

In fact, if we wish to describe the behaviour of a 
magnetic in external magnetic fields, in orientational and 
(in general) structural magnetic phase transitions, and also 
its dynamics, we should start from the crystal chemical 
symmetry, which provides a background upon which all the 
phenomena listed above can take place. One should stress 
the fact that in this discussion the term crystal chemical 
symmetry refers to a Fedorov space group complemented 
by the time inversion, R = \'{t —> —t). Thus, if the magnetic 
and the chemical cells coincide, we can use the contracted 
Gp group, in which all the translations (by a whole period) 
are considered to be the same element as compared with G F . 

3. Energy invariants in the context of magnetic 
and crystal chemical symmetries 
Two variants of the symmetry description of the properties 
of a magnetic material are generally used. The first consists 
in the invariant description of the material equations 
linking the observed macroscopic quantities, or of the 
material tensors describing this link. This approach directly 
establishes the possibility and the symmetry conditions for 
the existence of the effect of interest. The second variant, 
which is more compatible with the objects of the present 
study, is based on the symmetry description of the 
corresponding contribution to the energy (thermody­
namic potential) responsible for the effect. But two 
alternative approaches are again possible: from the 
standpoint of magnetic or of crystal chemical symmetry. 

We shall demonstrate the state of affairs by considering 
a magneto electric (ME) effect linear with respect to a field 
E. If we are considering a specific exchange AFM structure 
and a specific magnetic state, corresponding to a fully 
determined (in general) magnetic symmetry space group, 
the existence of the ME effect is due to the presence in the 
thermodynamic potential of a term of the form [6] 

F M E = -aHE = -KijHfij , (1) 

where a is the ME susceptibility tensor. The form of a is 
determined by the condition of in variance of Eqn (1) with 
respect to the transformations of the magnetic (i.e. the true) 
symmetry. In these circumstances it is sufficient, in 
accordance with the fundamental law of crystal physics 
(see, for example, §25 of Ref. [7]), to consider only the 
elements of the magnetic point group [5]. For example, for 
Fe2Te06 this is A/m'm'm', and the above in variance 
requirement gives only the following nonzero components 
of the tensor a: 

an = a 2 2 = a ± , a 3 3 . (2) 

We note that the symmetry element written with a prime is 
g = gR. Since 4 2 = 2, we can write 2/m' = IR = l ' , i.e. 
we have an antisymmetry centre (ASC). This is the 
necessary (but not, in general, the sufficient!) condition 
for the existence of a linear ME effect in the centresym-
metric (CS) antiferromagnetics (in the crystal chemical 
sense) to which the discussion to follow is applicable. 

Thus, the information provided by the magnetic 
symmetry effectively explains the presence of nonzero 
components of the tensor a and identifies these compo­
nents, i.e. it gives the geometric conditions under which the 
effect can be observed under known concrete values of the 

exchange magnetic structure and of the magnetic state. In 
the present case, by using Eqns (1) and (2) and allowing for 

M _ d^ME p _ d^ME 

we obtain 
Mx = oc±Ex , My = oc±Ey , M_ = oc33Ez , 

Px = a±Hx , Py = a±Hy , Pz = a33Hz . (3) 
(These linking equations can also be obtained by the first 
variant of the symmetric treatment mentioned above.) 

However, if we are concerned with a wider circle of 
phenomena associated with the EM effect in an antiferro-
magnetic material with a given AFM exchange structure, 
beginning with the thermodynamics and magnetic transi­
tions and ending with the dynamics (spectrum, wave 
propagation, etc.), we must start (as was mentioned 
above) with the crystal chemical symmetry. Under these 
conditions the ME interaction is most effectively expressed 
as an expansion over all the dynamic variables which tend 
to perturb this symmetry. In our case, in addition to the 
local magnetisation M = Mi +M2 and the polarisability 
P, this will include a vectorial AFM order parameter 
L = Mi — M 2 , and if allowance is made for the elastic 
subsystem it will also include the deformation tensor 
eij = 2 (Pui/^xj + duj/dxi), where u is a displacement 
vector. Here the vectors M and L are expressed in the 
model of two magnetic sublattices. However, the conclu­
sions outlined below will apply also to the great majority of 
sublattices with colinear or slightly noncolinear magnetisa­
tions. 

To express the energy densities responsible for the linear 
ME effect Eqn (1) must be replaced by an expression of the 
following form: 

^ M E = yijkLiMjPk . (4) 

We should again underline the fact that since all the 
'perturbers' of the crystal chemical symmetry (L, M, and 
P) appear explicitly in Eqn (4) the form of the tensor y 
should be determined from the requirement of invariance 
of (4) relative to transformations of the crystal chemical 
symmetry. 

However, we now find a very important difference from 
the previous case. From the standpoint of the magnetic 
symmetry the invariant of (1) could be determined simply 
from the elements of the point group, whereas from the 
standpoint of the crystal chemical symmetry allowance for 
the space character of this symmetry is needed to determine 
the invariants of (4). In practice, without going into the 
details of symmetry theory, this can be ascribed to the 
dependence of the transformation properties of the vector 
L, which reflects the sublattice structure of the antiferro-
magnetic, upon the distribution in space of the symmetry 
elements relatively to the magnetic atoms (or ions) which 
compose the magnetic sublattices.| In the colinear AFM 
structures (with which we are not concerned) if all the 
magnetic sites belong to the same crystallographic position 
(as in the trirutiles, position 4e) we have two possibilities: 
either the symmetry element gs = g(+) of the space group 
Gp interconverts the magnetic sites with the same magnetic 
sublattice (or in a different sublattice, but with equally 
oriented magnetisations), or gs = g(—) correlates the 
f A more detailed definition of the magnetic sublattice concept is given in 
§2.2 of Ref. [8]. 
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magnetic moments of sublattices with oppositely oriented 
magnetisations. In the first case the element gs has exactly 
the same effect on L as the corresponding element of the 
point group g (even when gs is a screw axis or a glide plane), 
and in the second case L additionally changes sign, so that 

g ( ± ) L = ± g L . (5) 

For the other vectors (M and P) the action of g(+) and 
g(—) does not differ from the same action for the elements 
of the point group: 

g ( ± ) M = g M and g (± )P = gP . 

In the author's monograph [9] in which these concepts were 
first formulated, and in some later books [2, 8, 10], the 
symbol g ± was used in place of g(±), and the elements were 
called even (+) and odd (—) respectively. It is not clear 
whether this terminology is successful: the only indisput­
able fact is that all the crystal chemical symmetry elements 
should be classified into two types (in the above sense) 
according to their distribution in space relative to the 
magnetic sublattices. 

4. Code of the exchange magnetic structure 
Since we are discussing antiferomagnetism in a system of 
magnetic sites belonging to the same crystallographic 
position there will be at least one among the elements of 
the group Gp which relates any two arbitrarily chosen sites 
of this position in the unit cell. (It should not be forgotten 
that sites at a mutual distance equal to the translation 
period of the lattice are effectively the same site.) For 
example, sites 1 and 2 (or 3 and 4) in Fig. 1 are related by 
the centre of symmetry 1 and by the axis 2d, whereas the 
site 4 is obtained from 1 by the consecutive action of 4 2 and 
1, i.e. by the transformation equal to the product of these 
elements. It follows that in this antiferromagnetic at least 
one odd element g(—) should be found among other 
independent elements of the group GF (group generators). 

In order to underline the fact that g(+) and g(—) are the 
same element of crystal chemical symmetry depending on its 
position in space we shall in what follows apply the term 
even or odd with respect to g to the magnetic structure 
itself. 

If the elements Gp include a space inversion 1 (as in the 
CS crystals with which we are concerned) it is important to 
specify whether the magnetic structure becomes even or odd 
after ordering. Thus, in Table 1 the structure (a) corre­
sponds to 1(+), and the structures (b) and (c) to 1(—). From 
the point of view of the magnetic symmetry in the magnetic 
group in the first case we have, as in the crystal chemical 
case, a centre of symmetry 1, and in the second case we have 
a centre of antisymmetry V (CS and CAS antiferromag­
netics). 

It should be noted that T(—) cannot coincide with l ' , 
since T(—) is an element of crystal chemical symmetry (the 
index ' —' bears only the essential information on its 
distribution in space), and V is a magnetic symmetry 
element. Even with respect to their action on the vectors 
L and M the two elements are markedly different: 

1 ( - ) M = M, 1 ( - ) L = —L , 

I'M = —M, l ' L = L . (7) 

Furthermore, in order to characterise the exchange 
magnetic structure fully it is sufficient to establish its 
parity with respect to other elements taken as group 
generators. This is done in the second column of 
Table 1. If necessary, the parity of the structure can be 
obtained against all the other elements of the group by 
using the rules 

g l ( ± ) g 2 ( ± ) = g 3 ( + ) , g l (± )g 2 (=F) = g 3 (~) • 

As a result, by writing the group generators G F with an 
indication of their parity we obtain a notation which can be 
called the code of the exchange magnetic structure.! In 
Table 1 we show the codes of all four possible colinear 
structures (three AFM and one ferromagnetic) in the crystal 
of interest. 

Generally speaking, the order in which the discussion is 
carried out differs from the example given above. First of 
all, all possible combinations of parities for the elements 1, 
4 2 , and 2d are selected (by inspection) from Fig. 1. It must be 
remembered that the parities of the elements 1 and 2d can 
only be equal, because in this case they express identical 
rearrangements of the sites in the position of interest (4e). 
Only the four combinations of parities which appear in the 
codes in the second column of Table 1 are obtained in this 
way. 

We should stress once again that the spatial character of 
the symmetry elements included in a code is defined by 
indicating their parity: once this is done there is no longer 
any need to state whether simple or screw axes are involved, 
and whether the planes are mirror or glide planes. They act 
as symmetry elements of the point type, additionally 
accounting for (5). The subscript defines the direction of 
the axis of symmetry (or of the normal to the plane of 
symmetry). 

5. Code and properties 
The information contained in the code is fully sufficient for 
a symmetry treatment of a wide range of properties in the 
thermodynamics, kinetics, optics, acoustooptics, etc. of 
antiferromagnetics [2]. If the code is given, the type of 
exchange magnetic structure can be obtained immediately 
from it: this requires treating as parallel the magnetic 
moments related by even symmetry elements and as 
antiparallel those related by odd elements. Thus, the 
structures shown in Table 1 (first column) can be obtained 
independently from their codes (second column). Further­
more, this information is necessary and sufficient for writing 
the corresponding invariants in the thermodynamic (terms 
in the thermodynamic potential), antiferromagnetic (i.e. 
depending on the vector L) terms in the electric resistance 
or the dielectric permittivity, or corresponding elastic 
moduli in kinetics, optics, or acoustics [2]. However, if 
Dr N, when writing out the thermodynamic potential 
required for his calculation, were to indicate each time 
the code of the AFM (exchange) structure being considered 
it would be a simple matter for each reader to satisfy 
himself of the invariance of this potential. Thus, if we are 

f The number of generators is usually not more than three, but for centred 
lattices the centring translations (which do not affect the nominal size of 
the unit cell) may also appear. Under A F M ordering they may be 
converted into antitranslations, as in La2CuC>4, for example (see 
appendix 2 of Ref. [2]). 



Can the magneto electric effect coexist with weak piezomagnetism and ferromagnetism? 307 

studying the ME effect due to invariants of type (4) it is 
clear that these invariants are possible only in the ASC of 
antiferromagnetics, for example in the structures (b) and (c) 
of Table 1. According to (7) applying 1(—) to these 
structures changes the sign of the vector L(=Lb or L c ) , 
but it also changes the sign of P as a polar vector"}". 
(Throughout this article La^b^c =L 1 ; 2 , 3 - )> 

At the same time there is no ME interaction of type (4) 
in the CS antiferromagnetics [(I = !(+)] , for example, in 
the structure (a) in Table 1. The vectors L =La and M do 
not vary, and the vector P changes sign under the influence 
of 1(+). Then in antiferromagnetics of this type (which 
include the fluorides mentioned above) we find a weak 
ferromagnetism (WF) and piezomagnetism (PM), described 
respectively by the invariants 

F W F = DyLiMj (8) 

and 

^ P M = n^LiMjekn . (9) 

[In this case both vectors as well as the tensor ekn are 
invariant with respect to !(+).] 

Thus we seem to have answered the question formulated 
in the title of this paper: the ME effect exists in the CAS 
antiferromagnetics, whereas the WF and PM effects exist in 
the CS antiferromagnets, so that the first and the second 
effect are mutually exclusive. 

However, this conclusion calls for some important 
stipulations. First, all these remarks relate to centrosym-
metric crystal groups. Otherwise neither T(+) nor T(—) will 
appear after the magnetic ordering. 

Second, we had been considering the antiferromagnet­
ism in a system of magnetic sites belonging to a single 
crystallographic position, as in the case of the trirutiles 
quoted above as an example (see Fig. 1). 

A different situation arises when the magnetic ions are 
arranged in two (or more) different crystallographic 
positions (no symmetry transformations able to convert 
the system from one position into another should be 
available to the system). Under these conditions in one 
position the magnetic moments can become ordered so that 
1 = T(+) , and in the other position for 1 = T(—). In this 
case antiferromagnetism is compatible with WF and PM in 
the first subsystem, and with the ME effect in the second. In 
this way the two can coexist. A real example is provided by 
the rare-earth orthoferrites and orthochromites, in which the 
iron (or chromium) ions are ordered centrosymmetrically 
while their magnetic moments can be distributed centro-
antisymmetrically [2]. But this situation is trivial, and a 
theoretically more interesting case of 'coexistence' is 
provided by the superposition of two (or more) structures 
in a system of magnetic sites from a single position. 

6. Structure superposition caused by the electric 
field (polarisability) 
Let us go back to the third column of Table 1, which lists 
the corresponding antiferromagnetism vectors (or ferro­
magnetism vectors, for structure / ) . So far we have 
effectively assumed that one of the three {a, b, c) AFM 

fThe explicit form of the invariants (4) for rhombohedral and for 
tetragonal crystals with respect to other symmetry elements in the code 
is given in Refs [11 - 14]. 

structures is realised: the structure for which the exchange 
parameter Jl9 J2, or J3 in the exchange energy 

Fex = \jx\La\2 + \j2\Lb\2 + \J3\LC\2 + \J,\M\2 (10) 

become negative upon lowering the temperature (all the 
Jn > 0 in the paramagnetic region). It was assumed, 
effectively, that the other two Lt fall to zero and that 
the problem reduces to its two-sublattice modifications. 
For example, for La ^ 0, Lb = Lc = 0 we find that 

Mx = M2 = \MY, M3 = M4 = \Mn , 

La=L = Mi - Mu and M = Mx+Mn . 

However, allowing for the relativistic (magnetically 
anisotropic) interaction shows that the vectors 
Ln{n = 1, 2, 3) and M are no longer mutually indepen­
dent, and that the appearance of one of them (as a result of 
the exchange interaction) during the phase transition can 
spontaneously introduce a small impurity of the other to 
satisfy the symmetry requirements. Generally speaking the 
WF induced by the interaction (8) is at the same time a 
manifestation of the admixture of one structure (M) with 
another (L =La). For the AFM compounds the structure 
(<z)l(+)4z(—)2j(+) the expression (8) takes the specific form 

Dl2(LaxMy+LayMx) , (11) 

which also accounts for the appearance of WF for this 
structure. 

The fact that both the structures (a)(La) and (f)(M) are 
odd with respect to 1 has a strong relevance upon the 
existence of invariants of the type of (8) [or (11)]. By making 
use of their codes (given in Table 1) the reader can easily 
confirm whether a mixed code of the form 

Lbx^cy ~l~ LbyLcx (12) 

can exist in these systems. In this calculation it should be 
remembered that the vectors Lb and Lc are interconverted 
in accordance with the code of their structure. 

Invariants of the type of (12), responsible for the 
addition (relativistically small, in our case) of one AFM 
structure to another, give a resulting structure of the 'cross' 
type. (These structures and the NMR studies which have 
been reported on them are discussed in detail in §3.8 of 
Ref. [8].) 

It should also be stressed that mixing of the structures 
can also occur as a result of antiferromagnetically elastic 
invariants of the type 

Lbi Lcj &kn •> 

whose role has not yet been investigated as far as the writer 
knows. The effect is to some extent analogous to the 
piezomagnetic interaction (9), the only exception being that 
here two AFM structures of identical parity with respect to 
1 are mixed instead of L and M. 

However, we are at present interested in the mixing of 
CS structures [1 = !(+)] with CAS structures [1 = 1(-)] . A 
direct link between them could be given by invariants of the 
type CijLaiLbj, but for reasons which are now well under­
stood these invariants do not exist [as can be shown by 
using the expression (5) in I ] . Then the application of an 
electric field E and/or the presence of a spontaneous 
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polarisability P for the vectors La and Lb produce the 
invariants 

fi (Lax Lby + Lay Lbx)Pz +f2(Lax Py + LayPx)Lbz 

+f3(LbxPy+LbyPx)Laz . (13) 

Thus if we have, for example, an AFM structure with 
La^0 [for Jx < 0 in (10)], which allows WF, a vector 
Lb ^ 0 is induced by an interaction of the form of (13), i.e. 
we observe an additional structure displaying the ME effect. 

In order to make the problem more precise we should 
note that since the induced vector Lb ~ PLa the replace­
ment of L by Lb in (4) gives an expression proportional to 
P 2 , i.e. this ME effect is quadratic with respect to P rather 
than linear. Thus we have identified one possible mecha­
nism of this latter effect. 

In a similar way we can identify from La and Lc the 
variants associated with P. Although the structure corre­
sponding to Lc differs from that corresponding to Lb only 
by the parity of the 4Z axis (see Table 1) these invariants 
differ very markedly from (13). We shall not list them all, 
but only refer to the one responsible for this difference in 
principle: 

fPz(La'Lc) . (14) 

This is a nonrelativistic invariant, given as the exchange 
interaction induced by the polarisation P (electric field E), 
which must be added to the exchange energy (10) 
(quadratic in Ln). If this interaction is large enough, 
which can be established either experimentally or from the 
microscopic theory, it should manifest itself in the 
appropriate magnetoelectric properties and also in all the 
other physical properties of an antiferromagnetic: its 
kinetics, its optics, its acoustics, etc. 

I have not seen any publications in which allowance is 
made for these interactions in one-position AFM structures 
induced by an electric field E (or by a polarisability P): 
neither of the magnetically anisotropic type (13) nor of the 
exchange type (14)|. Because this paper appears under the 
heading "Methodological Notes" I shall not discuss the 
physical consequences of applying this approach. This is the 
object of a special investigation. The topic of this section 
emerged during the writing of the paper, offering new 
opportunities of demonstrating the usefulness of this 
approach by using the parities of the AFM structure (or 
the symmetry of the elements indicated in the code). 

7. About noninvariant 'invariants' 
And now I shall demonstrate in the present section the 
depth of misunderstanding reached in the forgetting by 
Dr N of the basic propositions of crystal physics which 
were mentioned above. I do not mean to rely on the 
concrete approach (with parity structures etc.) which is 
used above, but I do rely on the basic propositions 
themselves, which were first formulated almost 35 years ago 
in Dzyaloshinskii's earlier papers [16-18]. Dr N must be 
either so old that he has forgotten them or so young that he 

fFor the case in which the interacting vectors Ln belong to different 
crystalline positions [as in the orthoferrites, discussed at the end of 
Section (5)] invariants of the type (13) and (14) are discussed by 
Stefanovskii and Yablonskii [15]. 

has not yet read them. We shall once again briefly 
summarise these propositions. 

(1) Invariant expressions for the energy, material 
equations (linking equations), and others, presented as 
an expansion over the dynamic variables which are known 
to perturb the crystal chemical symmetry (L, M, P, etj, etc.) 
i.e. the parameters identified from the requirements of 
invariance of this crystal chemical (spatial) symmetry. 

(2) The essential feature of the system is that the same 
elements of symmetry when in different positions in space 
relative to the magnetic sites (the magnetic sublattice) may 
lead to entirely different (and even mutually exclusive) 
properties. 

This is specially true of the centre of symmetry, if such a 
centre is present in the crystal chemical group, and divides 
all the one-position antiferromagnetics into two principally 
different groups: centrosymmetric [1 = !(+)] and centro-
antisymmetric [1 = 1(—)]. As was pointed out in Section 5 
WF and PM are possible for the former, and the linear ME 
effect is impossible; whereas for the latter the linear ME 
effect is possible and the WF and PM are excluded. 

This description of the exchange AFM structure with 
the help of a code containing all the information required 
for a symmetric description of the properties of an 
antiferromagnetic offers only a moderately helpful formal-
isation of the above statements. If the positions of the 
magnetic sites are known, the form of the exchange 
magnetic structure can be calculated from the code, 
producing all the invariants needed to describe the proper­
ties of the ferromagnetic under study. 

All these spatial considerations of the exchange AFM 
structure are so elementary as to raise doubts in the writer's 
mind of the wisdom of publishing it. However, there is no 
alternative but to go ahead, because Dr N ' s papers are 
published and they are exerting a confusing influence on the 
work of experimenters and, to some extent, on the work of 
some theoreticians. Their results and conclusions are being 
constantly quoted even in the most recent publications. 
Someone should take upon himself the thankless task of 
attempting to evaluate them. 

First of all, let us look again at the invariants which 
happen not to be invariant. 

(1) In many reports the thermodynamic potential for 
an antiferromagnetic with a CS crystal chemical structure 
described by a single vector L is described simultaneously 
by singe invariants of the type (4), responsible for the ME 
effect, and invariants of the type (8) and (9), responsible for 
WF and PM respectively. (Similar attempts were made at 
the recent MEIPIC-2 Conference.) However, as was pointed 
out above, the first and the second attempts were mutually 
exclusive. 

(2) We can expect, in CS crystals in both cases of T(+) 
and I(—), that invariants of the following form cannot exist, 
though some are found in Dr N ' s publications: 

PtLjLk . (15) 

(3) In discussions of the ME properties of antiferro­
magnetics, when T = I(—), 'simplified' or 'general' 
invariants of type (4) can be written: for example 

P(MX x M2) = \ P{L x M ) , (16) 

or 

Pz(Ml x M2)z = \ PZ(L x M ) z . (17) 
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These would seem to be consistent with any symmetry in 
the case of (16) and with all uniaxial crystals in the case of 
(17). 

And, of course, with respect to 1(—) they are invariant, 
so that all is in order for the triclinic group 1. The 
in variance is retained also for the mono clinic group 2/m 
if 2 = 2Z = 2(+), and m = mz = m(—). But for the recipro­
cal parities 2Z = 2(—) and mz = m(+) the invariances (16) 
and (17) are perturbed with respect to both these elements. 
However, these elements cannot have identical parities 
because their product is 2zmz = 1(—). And, in general, 
for any given plane of symmetry m(+) or any axis of 
symmetry N(-) invariants of the type (16) or (17) do not 
exist. They can be formed only when all the other elements 
in the code complementary to T(—) are either even axes or 
odd planes of symmetry. In any case, the expressions (16) 
and (17) are not general invariants. There are no such 
invariants even for the best known ME, which has the 
structure T(—)3Z(+)2JC(—). And generally speaking there are 
no officially reported antiferromagnetics which comply with 
the conditions mentioned above for the existence of the 
invariants (16) and (17). 

8. Is there an exchange-increased band in the 
spin wave spectrum due to the ME interaction? 

The assertion by Dr N that in ME antiferromagnetics there 
exits an ME band for magnons (MEIs), increased by 
exchange and completely analogous to a magnetoelastic 
(MU) band, is widely quoted in publications [3, 4]. 

Let us first consider the analogy aspects. The magne­
toelastic band exists by virtue of the fact that the elastic 
(ionic) subsystem is slower than the spin subsystem. Thus 
the oscillations of the spins (vectors L and M) are 
controlled by the 'frozen lattice' model [19], according to 
which the 'frozen' deformations e\n generate an effective 
anisotropy field through an MU energy of the type 

Bijkn Li Lj ekn 

for the vector L (and it must be L !). The latter determines 
the MU band, increased by exchange, because the 
contribution to the frequency of uniform magnons (wave 
vector k = 0) after magnetic ordering all lie in two 
different groups in the form co0 oc (2HEHMl])1^2, where HE 

is the exchange field. It is important to note that the MU 
band is observed even in a fully isotropic antiferromag­
netic. 

For the ME interaction the situation is just the reverse. 
The polarisability P (the optical part of the frequency 
region) is a faster subsystem than the spin subsystem, so 
that at antiferromagnetic resonance frequencies corre­
sponding to the magnon bands, P follows the 
oscillations of the spins in a quasiequilibrium way. And 
if P were not retained by the anisotropy (for ferroelectrics) 
or by the electric field there would be (in general) no 
magnetoelectric effect of the band with the magnons. Thus, 
everything is just the other way round even from the point 
of view of analogy. 

Let us now examine the linear magnetoelectric effect of 
the type of (4). In the presence of a constant polarisability P 
(spontaneous, or induced by the external field £ ) we can 
effectively include it into the constant y and produce an 
expression of the type of (8), characteristic of WF. And, 
though this interaction produces a contribution to the 

magnon band [9], the magnetisation M remains inversely 
proportional to the change in the exchange field HE, 
whether monitored in static or in dynamic experiments. 

A different state of affairs is found for the interaction in 
quadratic (with respect to P or E) magnetoelectric effects of 
the type 

PiPjLkLn . 

For this the constant vector P (once again, spontaneous, or 
induced by the field E) generates an effective anisotropy 
for L, and this can lead to an ME band that is actually 
increased by exchange interaction. 

Lastly, if the crystal and its crystal chemical group do 
not contain a CS even after separation of the 'disturbing 
factors' L, M, and P, invariants of the type (15) can give an 
exchange-increased magnon band, linear in P (or E) and 
having an ME origin. 

9. Conclusions 
This paper offers a critique and a discussion of some 
inconsistent assertions and conclusions in our field of 
physics (especially with relation to ME crystals). It is 
undeniably biased, in the present troubled atmosphere, in 
favour of the methodological approach to the discussion of 
AFM phenomena proposed above in terms of the exchange 
magnetic structure code. When the position of the magnetic 
ions is known, this code for the exchange AFM can play 
the same role in the symmetrical description of these 
phenomena as does the international symbol for the 
crystallographic space group (again with a statement of 
the crystallographic position). Furthermore, a well defined 
terminology associated with this code allows scientists not 
sufficiently aware of the apparatus of abstract group theory 
to find a common language. For the same reason the writer 
did not use the representational analysis methods, and 
started from simple notions of symmetry transformations, 
invariance, etc. 

It should be emphasised that the main object of the 
article was to deal with the electromagnetic thermody­
namics of antiferromagnetics. But one can use the same 
approach to the kinetics, optics, acoustics, etc [2] in 
conjunction with the AFM structure code to obtain the 
same benefits. This makes it possible to formalise simply 
and easily (up to automation if required) the description of 
the appropriate properties. The same is true of the 
symmetrical description of the frequency spectrum of the 
NMR frequencies in antiferromagnetics [8]. 

R e m a r k . Readers interested in the effect of the 
induction by an electric field of the exchange interaction 
of type (14) between the antiferromagnetism vectors La and 
Lc (even and odd respectively) should note that the effect is 
seen also in rhombohedral crystals with an RIc^D1^ 
symmetry. The magnetic structures (a)T(+)3z (+)2 J C (—)(a-
F e 2 0 3 ) and ( c ) l ( - ) 3 z ( + ) 2 J C ( - ) ( C r 2 0 3 ) (see p. 13 of 
Ref. [2]) can exist for them. An interaction of the 
type (14) should take place between the appropriate 
vectors La and Lc. 

In conclusion we note that the colinearity of the AFM 
exchange structures proposed in this review is due to the 
fact that in our case all the Jt constants are different, and 
only one of them changes sign upon going through the 
NeOel point. The difference in Jt is attributed to the absence 
in group G¥ of elements capable of converting into each 
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other different Lt. If such elelments existed (as is the case, 
for example, in neodymium cuprate [21]) the corresponding 
Jt constants would be equal, possibly leading to an 
exchange superposition of different L*, capable of giving 
an exchange non-colinear AFM structure [21]. 
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