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Abstract. The history and physical prerequisites for the Its origins typify the wide interest in the ‘ether’ problem at

realisation of the Sagnac experiment, that is of the ‘vortex
optical effect’ in the frame of a rotating interferometer, are
considered. General relativity is used to develop the theory of
propagation for electromagnetic waves in a noninertially
moving material medium. The theoretical analysis of the
peculiarities of the X-ray and gamma-radiation diffractions
has been performed within the system of the three-mirror
monoblock crystalline interferometer and resonator, while
taking into account their rotations. Experimental studies of
the X-ray ‘vortex optical effect’ were performed on a specially
designed autonomous X-ray apparatus (commonly used for
X-ray interference investigations), which was put on the
rotating platform. A series of fluctuation effects (the
temperature drift, the field of random deformations, etc.),
which keep the Sagnac experiment out of reach of the limiting
accuracy, have been revealed and investigated. The
experimental data, obtained in the investigation of the
‘vortex optical effect’, are compared with the results of the
theoretical analysis.

1. Introduction

The Sagnac experiment deserves a special place among the
classical experiments in optics which have laid the founda-
tions of the theory ofrelativity and of modern electrodynamics.
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the beginning of the 20th century, and the setting up of
fundamental optical experiments in many countries. The
possibility of detecting absolute rotary motion by using
electromagnetic effects of the first order (with respect to v/c)
was first suggested by Michelson [1]in 1904.

In 1913 Sagnac constructed an apparatus for studying the
propagation of light waves in a rotating ring interfero-
meter [2, 3]. These experiments showed that the rotary
motion of the apparatus did not result in the dragging and
rotation of the ‘ether’. During this work Sagnac discovered
the ‘vortex optical effect’, consisting in effect of the rotary
motion of the interferometer on the phase characteristics of
waves travelling in opposite directions.

Without going into details the essential aspects of this
effect can be described by referring to the diagram of
Sagnac’s apparatus shown in Fig. 1. Radiation from the
light source (/) (an incandescent lamp) passes through the
semitrans-parent plate 2 which produces two mutually
coherent waves. These are circulated by the mirrors (3)
round the perimeter of the interferometer, of area S, in
opposite directions. The same half-silvered mirror (2) then
adds the waves and produces a system of interference bands
on a photographic plate. The rotation of'the platform (which
supports the interferometer) at an angular velocity  induces
a phase difference

8nSQ
P =@y = e

(1.1)

between the waves, with an associated shift in the position of
the interference bands on the photographic plate (4):
45Q
o = + .

c

(1.2)

Plots of ¢ — @, and of dx were obtained [2, 3]as functions of
wavelength A by the use of the formulae of the special theory
of relativity, though the rotating platform was a noninertial
system and an exact description of the processes on this plat-
form can be provided only by the general theory of relativity.


mailto:kuzmin@runar.phys.msu.su

290

V I Vysotskii, ct al.

Figure 1. The Sagnac experiment in visible radiation.

Nevertheless by using the postulate of pseudo-Euclidicity
of the space —time geometry we can treat the motion of the
noninertial system (though without allowing for the disper-
sion properties of the material media along the path of the
rays) within the framework ofthe special theory of relativity.

In 1925 Michelson and Gale [4, 5] built an apparatus on
the principle used in Sagnac’s experiment to determine the
rate of rotation of the Earth. This required the construction
of an interferometer in the form of a rectangle with sides
613 m and 339.5 m.

In 1949 Bershtein [6] produced a variant of Sagnac’s
experiment using a radio-frequency signal with a frequency
of w = 30 MHz as the information carrier, and a multiturn
structure of coaxial cable wound on a drum as the inter-
ferometer contour. Because of its essentially novel approach
—the replacement of a single circuit of a large system by a
multiple circuit of a small system —this work can be
considered to be a precursor of the method of realising the
Sagnac experiment by using fibre-optical systems (developed
in the 1970s) which led to the development of a whole class of
phase gyroscopes (fibre-optical detectors) [7].

In 1979 the Sagnac experiment was successfully modified
with the aim of determining the rate of rotation of the Earth
by means of a purely quantum phenomenon: the phase
interference of thermal neutrons circulating (after an initial
splitting of the wave function) round a three-mirror
interfero-meter of area S = 9 cm?. The Bragg diffraction
phenomenon in monocrystalline mirrors was used to produce
a closed trajectory for the moving neutrons. Allowing for the
form of the de Broglie wave for a moving neutron with
A= 2mh/mv and for the fact that the trajectories of the two
oppositely moving beams in a three-mirror interferometer
cover only one half of the total perimeter, one finds that the
final expression for the quantum mechanical phase difference
becomes

01—, = 28 (13)
and is independent of the velocity and of the energy of the
neutron.

The same expression is valid for rotating phase-sensitive
interferometers which use the interference of coherent elec-
tronic states in superconducting quantum interference devices.

Even when arranged in chronological order the most
characteristic models of the Sagnac experiment all have the
following features: (a) the use of beams of mutually coherent
radiation travelling in opposite directions; (b) systems for
forming closed trajectories for these beams; (c) very sensitive
phase-sensitive apparatus for detecting rotation.

On purely logical considerations of experiment design
these studies of the Sagnac experiment should now be carried
out with X-rays or with gamma radiation [9—12].

In addition to offering a more complete methodological
approach, i.e. a test for the effect over the whole of the
frequency spectrum, these modifications would give (in
principle), as a result of the decrease in A, much more precise
characteristics than those obtained in the visible range with
an interferometer of the same area. On the other hand the
change to electromagnetic radiation of shorter wavelength is
technically simpler than using the phenomenon of neutron
interference, both for quanta and for monochromatic
thermal neutrons of wavelength typical of Bragg diffraction
(A~ 0.5-2 A), which can be obtained in reasonable
quantities only by monochromatising the flux from nuclear
reactors.

Nevertheless, as was shown by calculations and experi-
ments in our laboratories, the formulation of the Sagnac
experiment in terms of X radiation meets some very serious
difficulties, usually associated with fluctuation effects.

In this review we shall discuss the theoretical aspects of
the Sagnac experiment with X radiation and the results of
recent experimental studies using a specially constructed
apparatus.

Section 2 contains a detailed discussion of the metro-
logical aspects of the noninertial motion of interferometers
and resonators, and ofthe electrodynamics of the wave fields
in them, which calls for the use of the elements of general as
well as special relativity.

In Section 3 we shall examine the propagation of charac-
teristic waves in the X-ray band and their interaction with a
system of monocrystalline mirrors as a function of the
determined or fluctuating phase relationships (including
those caused by rotation) in the interferometer system.

Sections 4 and 5 are devoted to the formulation, pro-
cedure, and results of the experimental realisation of the
Sagnac experiment using X radiation.

2. Electrodynamics and metrics of rotating
optical systems

Because of the essentially noninertial character ofthe motion
in rotating systems such as that displaying the Sagnac effect a
more detailed discussion of the effect should be developed in
theoretical terms using the general as well as the special
theory of relativity. By adopting this more general approach
we shall present the results of studies of the electrodynamics
of material media in nonstationary frames of reference
specially aimed at detecting the ‘vortex optical effect’ in the
X-ray region.

A clear presentation of the general features of the Sagnac
effect, not limited to any particular region of wavelength of
the chosen radiation, is obtained by the use of the following
model. Let the light from a source be propagated along a
circular path in two opposite directions after passing through
a splitter (Fig. 2). A suitable ring system can be constructed
as a multiple-mirror interferometer, a fibre-optical system, or
a closed resonator. If the ring system is at rest relative to the
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Figure 2. Annular interferometer in a rotating coordinate system.

inertial laboratory frame of reference the two light beams
find identical propagation conditions and return to the initial
splitter in identical phases. During rotation the propagation
conditions of the waves travelling in opposite directions are
changed: their velocities are now different, and an additional
phase incursion takes place [13].

We shall demonstrate this effect by considering a rotating
disc. Let the system K’ be the inertial laboratory system with
coordinates r’, and the system K be the rotating disc with
coordinates r. Let us establish the metrics of the rotating
disc [14]. The element of length in the radial direction of the
discisidentical in the two systems, but the element tangential
to the circumference is different. From the point of view of
the inertial observer in the system K’ the element along the
linear velocity of rotation of the disc should be contracted
according to the Lorentz transformation

' =di(1 =), p=wc!, @.1)

where v is the linear velocity, 2 is the angular velocity of the
rotation, and ¢ is the velocity of light in a vacuum. The
concentric paths of the two systems coincide, but their
lengths are different:

29 -1/2
[ = 2nr, l':ffdl':%tr[l—(g>] >1.
¢

Thus, since the familiar expressions of Euclidean geo-
metry are not obeyed on the rotating disc, we must change to
a covariant formulation in order to describe adequately the
behaviour of an electromagnetic wave. To simplify the
calculations we shall consider the propagation of light along
the circumference of the rotating disc.

The 4-interval ds for light travelling on the circumference
in the inertial system can be written as follows in cylindrical
coordinates:

ds? =c*dt’? —r'2de’ =0 .

v=0Qxr,

(2.2)
We shall apply a change of coordinates for the rotating disc:
dt' =vydt, do' =de+yQdt,

y=0-p)"% r=r. (2.3)

Inserting (2.3) into (2.2) gives
ds? = [yedt + r(de + yQd1)][ycdt — r(de + yRdr)] = 0 .

As a result we find

-1
dr = rdqo[yc(l qi%)] .

Integrating over the whole central angle of the circle gives
the change in the time needed by the light beams to circle the
perimeter in opposite directions on the rotating disc. The
difference between the circulation times of the beams along
the perimeter of the rotating disc is defined to first order in
angular velocity by the expression
4n?Q  4SQ

2 T T2

2.4)

At=1t —t, = 2.5)

C C

(We note that this result has also been obtained by other
workers [16, 33, 35].) The relative change in the velocity of
the wave round the perimeter is v/c = Qr/c. In the linear
approximation, Eqn (2.5) for optical beams can be obtained
for any form of flat contour by starting from the vector form
of Eqn (2.4):

2 2
At22£0°dr:cjjj(v X'U)'”dS

== (2.6)

wherenisthe outward normal to the surface S ofthe contour,
in accordance with the right-hand drillrule V x v = 2. For
two types of ring system (resonator, with full access of both
beams travelling in opposite directions to the contour; and
the interferometric, with half access) the difference between
the times needed for the beams to circle the perimeter
produces a change in the phase difference.

The metric of a rotating disc differs from those of inertial
systems. In a Cartesian system of coordinates the rotated
3-interval given by

dr:l?dr'—i—'vdt,

_ cosQr, —sinQt, 0
R =1]sinQt, cosQt, O 2.7

0, 0, 1

leads to the following expression for the 4-interval:
P — ()
s = - 1——2( |4
c
+2|2 x r|drdr +dr? = gupdx®dx?

800 = _(1 - ﬁz) 5 8ok = ﬁk 5 8mn = 5mn . (28)

The resulting equation (2.8) shows that in order to describe
the conditions under which electromagnetic waves are
propagated on a rotating platform we must adopt the
metrics of noninertial frames of reference. Furthermore the
kinematic approach described here is valid only for systems
in which the optical channel does not contain additional
elements. In the majority of interferometers or resonators the
optical channel includes optical elements (plates, phase
shifting devices, crystalline structures). Also, since the
diffraction is a volume effect in the X-ray region, the
substance of the crystal mirrors is unavoidably a component
of the optical path. Obviously, however, the initial equations
used to describe the state of the electromagnetic waves in
rotating systems can only be the Maxwell equations in
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covariant form and the corresponding material equations.
We introduce the bivectors of the electromagnetic field [15]

F”v:{FOk, F"m}:{D,H},

Euv = {EkOa Emn} = {Ea B} 5

whose components are the 3-dimensional vectors of the
electromagnetic displacement and of the field strength. In
our notation the Greek indices correspond to the values
a= 0,1,2,3, and m = 1, 2, 3. The Maxwell equations can
then be written in terms of the 4-dimensional divergence or
the curl of the bivectors of the electromagnetic field:

Vo FH#* = Ak, V[].Euv] =0,

2.9)

(2.10)

where the 4-dimensional current density vector is related to
the electrical charge density and to the 3-dimensional current
density by the expression

=0, = {p, JZ}

In the system of equations (2.10) the covariant derivatives are
defined in terms of the connection coefficients, which can
themselves be expressed by derivatives of the metric tensor
[including the case of rotating systems, Eqn (2.8)]. In the
electrodynamics of inertial and of noninertial systems the
relationship between the contravariant and covariant
bivectors [Eqn (2.9)] is obtained by using the metric tensor,
and in electrodynamic media by using the Tamm-
Mandelshtam dielectric and magnetic permeability tensor
(the D —M tensor). For isotropic media in the characteristic
system of a medium inertially at rest this 4-dimensional
tensor takes the form

@.11)

—en, 0, 0, O
ﬂV:L 0, 1, 0, 0
ul/? 0, 0, 1, 0
0, 0, 0, 1
Euat™ =0, ; (2.12)

Here ¢ and p are the dielectric permittivity and the magnetic
permittivity respectively. The usual 3-dimensional linking
equations D = ¢E and B = pH in 4-dimensional form are
replaced by the so—called material equations

e L (2.13)

which are valid in any frame of reference. Only specific
information on the fluctuational dependence of the elements
ofthe D —M tensor on the parameters of the medium and of
its motion are now required. To determine the form of the
components of the D —M tensor it is convenient to apply the
conformal dyadic transformations to the metric tensor:

e = o0 (guy + qupity) ,  (2.14)
where u* is the 4-velocity of an element of the medium,
a~?= pu, k= gu—1, y= k/(1 +x). The linking equations
(2.13) can be rewritten in terms of the 4th-rank D-M
tensors:

F¥ = %E”V’aﬁEal} s

et = a(g" —xutu'),

Lomn e, ., = o8 (2.15)

where

ghvio — pglulighe — 0g2 (g[um 2" 4 Diculigal [uuv}) ,

The 4th-rank D —M tensors (2.15) are very cumbersome.
However, if we allow for their symmetry only 36 of their 256
elements remain linearly independent. To simplify the
discussion it is convenient to describe the material equations
(2.15) in the 6-dimensional space of the electromagnetic field
bivectors. We shall introduce the collective indices of the
6-dimensional (configurations) space [14], A = {01; 02; 03;
23, 31, 12}. After this the bivectors of the electromagnetic
field (2.9) can be represented in the 6-dimensional space by
means of a single-row column or a six-row line:

EA — {EOk’ Emn} — {D, H} ,

Ey = {EOk P Emn} = {_E’ B} . (2.16)

As a result the 4th-rank D —M tensors in the 4-dimen-
sional space become 2nd-rank in the 6-dimensional bivectors
space. This simplifies the formulation of the material
equations. In the corresponding system composed of even
an anisotropic medium the 6-dimensional D —M tensors take
a simple form, convenient for comparisons with the usual
3-dimensional tensors of the dielectric constant (&) and the
magnetic permeability (u)

T 0
o | E)
—&1 | 0
A, B = - =)
0 [

Here the 6-dimensional matrices are broken down into four
3-dimensional blocks. The constraint equations (2.13) on the
bivectors of the electromagnetic field finally take the form

EA = eMBEy, (2.18)

s B

(2.17)

SA’BSB’C = 5‘2 .
The conformational dyadic transformations (2.14) for the

metric tensor in 6-dimensional form do not undergo marked
changes and now become

B = (g0 8 —xutB),

By using the definitions (2.19) and (2.17) we can calculate the
6-dimensional D —M tensor in the corresponding rotating
disc system:

utB = 2ultgdlll (2.19)

G T D
sB e ,
av | 'z
_ 0, 0, B,
V= 0, 0, -B.1,
_ﬁ}s Bx, 0
-z '% ! _3-ly
ap= ——————————— s
BV AR -8
2
_ ]_ﬁ’ Bﬁya 0
§= B}cﬁy’ 1_ z’ 0 )
0, 0, 1-p
2
= 1 ﬁ" 7ﬁxﬁ)s 0
B=—=| -BB,. B. 0 (2.20)
1-p 5
0, 0, B
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The block structure of the 6-dimensional matrices allows
us to pass relatively easily from the bivector form of the
material equations (2.18) to the 3-dimensional (vector) form.
In the special case of isotropic media these equations for the
electric displacement and the field intensity simplify to

D=¢g 'E—y’BxH, B=pug 'H+y’BxE. (2.21)

Analogous expressions can be obtained not only for material
media but also for material systems in the field of rotating
masses. For example, for the Kerr metric [16]and for the case
ofa field far from the centre of mass, when r > r, = 2ym/c2,
the 4-interval in the local Cartesian system of coordinates
becomes

ds? = —c2(1 — rgr*')dt2 + dx2(l — rgr*])_]

+dy? +d% + 2rgr_2a,ct dz, (2.22)
wherethe constant a, = asin @is proportionalto the angular
momentum component. By using the metric tensor of (2.22)
we can obtain its 6-dimensional construction. Material
equations of the type of (2.18) produce the following 3-
dimensional equations similar to (2.21):

D=NE-WH), B=NH+WE),

_ 1, 0, 0
N=[0, (1=ra)", 0 ,
0, 0, (1 —rgr*‘)_I
e Os —1 s 0
wW=w|1, 0, 0|, W=rar”> (2.23)

In the case of a nonrotating gravitational mass the corre-
sponding angular momentum |M | = mca — 0, and the Kerr
metric is replaced by the Schwartzchild metric while the
3-dimensional tensors W — 0. As a result the constraint
equations (2.23) reduce to the usual material equations only
for electrical or only for magnetic field vectors. Thus, the
effect of rotation in the first order of angular velocity can be
obtained in the final formulae by using the constraint
equation for the electric displacement and field intensity
with the additional terms (2.21) or (2.23).

In the general case the system of Maxwell
equations (2.10) with the material equations (2.21) is
unwieldy because of the dependence of the permittivity
tensors in the rotating system on the coordinates. In many
cases the system can be simplified. Thus, in the geometrical
optics approximation we can ignore the changes in the field
parameters and in those of the medium in the transverse
plane of the wave fronts of the electromagnetic waves. Then
in the local region of waves propagated along the linear
rotation velocity the solutions for plane waves remain valid:

E =Ejexpli(wr —k-r)],

_cw
=
where k is the wave vector and & are the vectors of normal
refraction, equal in modulus to the refractive index.

The differential equations for the free electro-magnetic
field take the vectorial form

D=-¢xH, B=E¢EXE,
¢&D=0, &B=0,

|Eg| = const, k (2.24)

(2.25)

with the material equations (2.21). Simultaneous solution of
(2.25) and (2.21) gives the effective dielectric and magnetic
permittivity tensors

D =¢exE, B=pugH,

G = (- BE V", Hg=(A—-BE)e", (2.26)

where the following 3-dimensional tensors have been used:

axb=db

(en—B) = Bien—1),  —(en—1)BB,, 0
=y’ —(en—1)Bipo (en—F)—Ben-1, 0 |
0, 0, en— B>
0, —das, as
U = as, 0, —d) . (2263.)
—day, ap, 0

The ordinary refraction vector is found by solving the
equation when the determinant of the uniform system of
equations for the strength of the electromagnetic field
vanishes:

(658 +enz ™ +7BF) - (E6+6¢)[=0. @2
In the special case of the propagation ofa wave along the ring
system, when the wave vector is parallel to the linear velocity
of rotation in every local region, we obtain a solution for a
plane wave with a wave resistance R = |E|/|H | = (/,t/z»;)]/2 ,
for which the ordinary refraction vector is transformed
according to the law

E=G+HAU—F) " &= (228
The result (2.28) is the basis for the determination of the
phase difference between waves travelling round the
perimeter in opposite directions in the Sagnac experiment in
the case of a resonator and an interferometer respectively:

0o = £4nSQAc(1 — ] ",
@ = £21SQ[Ac(1 — ] . (2.29)
This same change in the effective refractive index |€| for two
waves circulating in opposite directions leads (as a result of
the difference in the optical lengths of the resonator
perimeter) to a difference in the characteristic resonance
frequencies:

w:wo(l i%r)(l -8 (2.30)

In an actual annular interferometer or resonator a
transverse mode structure which makes the wave inhomoge-
neous and different from the solution (2.24) can be formed.
This phenomenon can be allowed for by solving the system of
Maxwell equations (2.10) simultaneously with the material
equations in the quasioptical approximation [17].

In a rotating system with a 3-dimensional formulation in
Cartesian coordinates the Maxwell equations stay the same
as in an immobile system if all four vectors of the electro-
magnetic field remain in their places. Allowing for the
material expressions (2.21) the system of Maxwell equations
reduces to equations for the electric and magnetic field
intensity vectors:
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ag xH: EEE,

0
§>XE tH’
d .j
a‘)E (7)’
10

_a_> H=0.

For a toroidal regular resonator the solution with a
slowly varying field amplitude is

<

!
C

V+8

(
(
(o
(

a|—

<
+
=

r«|._.

(2.31)

E,(r) = e,(r) exp(—ihq) , (2.32)

in which ¢ is the longitudinal coordinate along the perimeter
of the toroid and 4 is the longitudinal wave number. This
solution leads to the following equation for the spectrum of
characteristic frequencies:

K} =n — (h, — wpBc")’ (2.33)
Here K is the transverse wave number, determined by the
transverse mode structure of the field and the transverse
dimensions of the waveguide part of the resonator.

In the geometrical optics approximation, in which the
transverse structure can beignored, wehave K; — 0, and for
the longitudinal wave number we obtain the expression

hy = w,[(ew)* + Ble (2.34)
the analogue of (2.28) for plane waves with a uniform
structure in the first order of the linear velocity of rotation.

For a quasioptical annular resonator of radius ro, in
which the oscillatory field is limited by caustics of size d, the
dispersion relationship for the characteristic waves and
frequencies takes the form

2K d = mn+ (2n+ 1) arcsin (tanhn) , (2.35)
where
2
K2 —p [ _@
L P (ro c ’
1/2 J\\2
h, = M s tanhy = (—) s (2.352)
C ro

and the integers p, m, and n define the number of wave or
half-wave oscillations of the field (respectively) along the
perimeter and in the transverse direction.

Thus, the existing equations of the electrodynamics of
media in rotating frames of reference can be used to calculate
the phase changes in interferometers or the frequency beats in
annular resonators with an active medium produced by the
rotation of the platform, and also parameters such as the
dielectric constant and magnetic permeability in the optical
channels or in the design ofthe system. In particular the effect
of rotation is seen not only in the phase (2.29) and the
frequency characteristics (2.30) but also in the effective
susceptibility of the medium, obtained from (2.28) and
given by

1= —-1=2y+28. (2.36)

Xeff = Eeff —

In the X-ray region ye effectively determines all the
characteristics of the Bragg diffraction (the fundamental
effect in the X-ray analogue of the Sagnac experiment). It
can be seen that in the X-ray region, which is characterised by
a very low value of || < 1, the effect of the relativistic factor
is observed at lower values of f < 1 and becomes
predominant for f > |x|/2, whereas in the optics of the
visible region a comparable effect is obtained only in
motions whose velocity approaches the speed of light. In the
, discussed below, we shall assume

that yeer = .

3. Electrodynamics of the characteristic waves
in a crystalline X-ray resonator or
interferometer allowing for rotation

All the conditions stipulated for the realisation of the Sagnac
experiment in the X-ray region (formation of coherent waves,
formation ofa closed ring trajectory, effective phase-sensitive
detectors) can be satisfied automatically in a multimirror
crystalline interferometer or resonator.
Let us examine the special features of the electrodynamics
of characteristic waves in crystalline periodic structures.
The solution of the wave equation
19 4n &
V2E(r,t) — Faa ) =775 [%(NE(r.1)] 3.1
in crystalsis a set of characteristic waves correspondingto the
expansion of E(r,t) into a Fourier series of the reciprocal

lattice vectors K, = nKk:

E(r,t) = Zef;

wherek, = ko + K,, ® = 2mc/A, and e, is the unit vector of
the polarisation of the electromagnetic wave travelling in the
direction of the vector k.

By ignoring the small longitudinal components of E(r, )
in the crystal [18]and using the expansion (3.1) we can easily
convert Eqn (2.1) into

> (ki — @ )E ) exp [i(wt — k1))

n

E!expli(wt —k,-r)] , (3.2)

4na)

Zx”(r exp[(wt kg-r)],

B,1

where y(r) is the tensor of the local susceptibility of the
crystal. Multiplying this equation by exp[—i(wt—k, - r)]and
integrating over the volume of the unit cell Vo of the crystal
we obtain

(3.3)

n

ZA’ Ep,
4

g :V—“J 2'(r) exp [i(ky — k) 1] AV, (3.4)
0Jv,

where 8;’ is a tensor with components proportional to the

Fourier density of the local susceptibility of one unit cell, and

k= w/c. The quantity gjj corresponds essentially to the

amplitude scattering of the wave E, into the wave Eé for one

unit cell.

Allowing for the specific parameters of the y transition in
the nucleus and of the electronic transition in the atom the
explicit expression for g’p can be converted into the general
form [19]
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Xfxﬁ + X“ﬁ ’
Kify = roFsp(les — kp|)p" (O 9, Gp. 0p) -

Ky = o 3 C

M C
JoLM (M —M o)™~ JLM (M o—M )
M bl MO

(X" (6, ,)es) (X" (85, wp)ep]
i+[2(w_wM3Mo)/F] .

3.5)

Here ro is the classical radius of the electron; Fg is the
atomic factor; p? is the polarisation factor for electron
scattering; C 7, L%](m ) are the Klebsch—Jordan coefficients;
XM’_M'(GOL, qoa) is the vectorial spherical harmonic for the
electromagnetic transition of the multiplicity L between the
hyperfine sublevels of the nucleus with spin projections on the
quantisation axis M| and M; €’ are the polarisation vectors of
the characteristic waves E. lying in the scattering plane
(i= 2)orin a plane at right angles to it (i = 1); 0, and @4
are spatial angles describing the orientation of the vector ky;
Xoop is @ parameter which allows for the relative concentration
ofresonance nuclei, the M dssbauer factor, and the position of
the resonance nucleus in the unit cell [20].

Forresonance processes involving the Mdossbauer gamma
radiation we have [Fy5] > [xipl-

In the cases of greatest practical importance the system of
linear equations (3.4) is greatly simplified.

If the direction k¢ of the wave E/ falling on the crystal
does not satisfy the Bragg condition,which in this case
corresponds to the requirements that k, — ko = £K,, the
integral over the volume of the unit cell in the expressions for
g’p is different from zero only in the case of scattering without
change in the direction of the wave. As a result the problem
reduces to the rectilinear propagation of a wave in an
anisotropic medium.

The next simplest case, which is very important in
practice, is when the Bragg condition is obeyed for only one
of'the scattered waves with wave vector k1 = ko £ K. Under
these conditions only the amplitudes of the characteristic
waves E} and El’ are different from zero. These waves are
related by the system of four equations

2 1
=D gk
=1 f=0
i=1,2, a=01 (3.6)

Putting, asusual [18], kg = k(1 +¢&),k1 = k(1 + be + 8/2),
where |¢| € 1, b= cosfy/cosf,and 6 = K- (K + 2k) /x> is
a small angular deviation of the direction of incidence of the
wave on the crystal from the exact Bragg condition, we
obtain from the condition that the determinant of the
system (3.6) must be zero a fourth-order dispersion equation
which defines the complex quantity & (which characterises, in
particular, the absorption of the waves). In general this
solution cannot be obtained in an explicit form. Some
special cases in which & can be found have been
discussed [18 —20]. The equation for & can be simplified
substantially in the simplest case of external fields acting on
the scattering nucleus or atom, or in the presence of an
internal perturba-tion having an energy whose eigenvalues
are independent ofthe sign of the projection ofthe spin ofthe
scattering nucleus on the quantisation axis. For example, the
latter condition is satisfied by the quadrupole interaction of
the momentum of the nucleus with the electrostatic field of
the lattice. Under these conditions the expression for g;’ﬁ

(k2 —2

~

[Eqn (3.5)] is diagonalised with respect to the polarisation
indices, and 8ap = 8apdy Asaresult the system (3.6) is split
into two independent subsystems containing two equations
each for different polarisations of the field:

ZgaﬁEﬁ’

and the solution of the dispersion equation for this system is

(ki — a=0,1, (3.7

&, =7 (gd + bgiy — bd)
3 (60 + bsiy — b0)” +4b(sfd — 47]

A" = gogli — 201810 -
The appearance of two wave vectors k(g!),k(ei) for the
refracted as well as for the reflected wave is associated with
the relief of the degeneracy in wave number space, owing to
an interaction of the waves in the crystal. The explicit form of
&, depends on the characteristic parameter 4. It follows
from (3.5) that in the case of an E1 electrical dipole transition
(g(‘)(') = g} } = g(‘)} = g}(') in the scattering nucleus, and 4° for
a wave polarised at right angles to the scattering plane,
whereas, as in the case of the wave polarised in the scattering
plane, we have

1/2
9

(3.8)

&00 = g1 = g3 (c0s260) ™" = gio (c0s260) ™"

= (goo) sin” 26, . (3.8a)
For a magnetic dipole transition of the M1 type involving
Mdssbauer radiation with [fgg| > [x4s| we have 4= 0,
A" = (gio)sin?26,.

In both these types of transition with a wave E/} incident
on the crystal in the exact Bragg direction for which 6 = 0
and with a polarisation corresponding to the condition
Ai= 0wehave

g =0, &=1gl(1+b).

The vanishing of one of the roots, &, (which defines the
imaginary part ofk,) showsthat a wave with this polarisation
creates, as a result of diffraction in the bulk of the crystal, a
coherent superposition of a refracted (wave vector ko) and a
diffracted wave [wave vector k;, Eqn (3.3)], which passes
through the crystal (case of diffraction in the Laue geometry)
or is reflected from it (diffraction in the Bragg geometry)
without loss in either case. At the same time the second root
& >g '” for the Laue diffraction (b > 0) corresponds to a
superposmon of the waves which is strongly absorbed in the
crystal.

Comparing the latter root, &, with the solution (3.8),
obtained for angles differing substantially from the Bragg
angle but equal (¢ = gif;/2), we can see that this form of the
solution predicts a spatial attenuation of the superposition
with a decrement (1 + b) times greater than for a wave
propagated outside the limits of the Laue diffraction region.

However, in the case of Bragg diffraction the second root
of the dispersion equation is &, < g{,/2, and in the case of
symmetrical diffraction with b = —1 it vanishes. This result
suggests the possibility of the almost complete exclusion of
bulk absorption for the whole of the incident radiation with a
given polarisation for symmetrical reflection from the
surface, and the realisation of this effect for only part
(approximately one half) of the incident radiation, corre-
sponding to the & (first) root for the Laue diffraction, when
the incident wave and the sum of the refracted and the

(3.8b)
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diffracted waves lie on different sides of the crystal.
Obviously, the Bragg diffraction can be used to create a
very efficient reflecting mirror with a reflection coefficient
R ~ 1, whereas the Laue diffraction can be used in a coherent
splitter of short-wave radiation, and also (in many cases) to
produce a reflecting mirror.

Let us examine in an explicit form the structure of the
field in the Laue geometry. In this case we obtain from (3.7)

E{(Eé,2) = [(284,2 _836)(831)_]]E6(3ﬁ,2) . (3.8¢)

From this expression we find, for waves being propagated in
the exact Bragg direction with 4= 0, one obtains

E{(e)) = —Ej&). Ej(&h) = Eg(e) ,

Eg(el) = Eg(e) = - (3.9)
where E is the amplitude of the wave incident on the crystal.
Allowing for (3.9) gives the following solution of (3.3):

Ei(r, 1) = [E{(e}) + E{(e}) exp(iK )]
X exp [i((ut —ko(sﬁ)-r)] + [E(')(Eﬁ) + E{(&3)
x exp(iK -r)] exp[i(wt —ko(&h)-r)] . (3.10)

resulting from the presence of two types of superposition of
the characteristic waves.

The first superposition of the refracted and the diffracted
wave, which corresponds to the root &, vanishes in the
regions of the crystal associated with the crystal planes, for
which K-r = 2n. Since the great majority of the atomic
electrons and all the nuclei are located close to these planes
this produces a very marked suppression of the absorption
process, analytically displayed by the form of the decay to
zero of the imaginary part of the wave vectors ko(g))
and k;(g).

For the second superposition with K-r = 2n the ampli-
tude of the combined fields (for symmetrical diffraction) is
equal to double the amplitude of each of the waves, which
doubles the absorption coefficient for this pair of waves,
leading to its complete decay in a layer 1—10 pm thick (for
Mssbauer radiation) or hundreds of micrometres thick (for
an X-ray wave).

The final conclusion, as in the qualitative considerations
examined above, is that the initial incident wave is split in the
crystal into two very slowly decaying coherent waves having
half their previous amplitude and diverging at double the
Bragg angle (20).

At low deviations (6 #0) of the direction of the incident
wave from the exact Bragg angle the condition (3.9) no
longer applies, and the amplitudes of both diffracted waves
E{(g) ,) and refracted waves E(e} ,) increases, ultimately
leading to incomplete compensation of the first superposition
within the plane and to an increased absorption. In the limit
of a very large angular deviation the amplitudes of the
diffracted waves become negligibly small and the problem
reduces to the single-wave case. This effect (suppression of
the absorption near the Bragg direction) was first detected by
Borman [21] in the case of X-rays, and predicted by Kagan
and Afans’ev [18] for Mossbauer radiation.

By using these features of the electrodynamics of short-
wave radiation in monocrystals we can analyse proposed
[9—11]schemes for setting up the Sagnac experiments, one of
which has been realised in practice.

Figure 3. Path of the rays in a three-mirror crystal interferometer with
reflecting mirrors in the Bragg (/) and the Laue geometry (2); (3) shows
the structure of the interference field in the volume of the emergence
mirror.

The initial radiation from the source through a system of
collimating diaphragms falls on a monocrystalline plate fixed
in the Bragg position with respect to the direction of the
source. The formation of a weakly absorbing wave
superposition leads to the creation within the crystal of two
coherent waves of equal amplitude emerging from the crystal
in the k and k; = k + K directions:

Ei(r,t) = E{(&}) exp [i(wt — K-r)]
+Ei(g)) exp[i(wr —#; -1)] ,

K:k0(8|’2=0) . (3]03)

Crystalline reflecting mirrors in the Bragg [Fig. (3a)]or in the
Laue geometry [Fig. (3b)] are used to ensure the spatial
convergence of these waves. In the latter case each of the
incident waves (in turn) is split on this mirror into a coherent
pair identical to the initial pair. Only one wave from each of
these pairs is used in the subsequent interference in the third
crystal. The two unreflected waves can be used in a control
(monitoring) channel after passing through the reflecting
mirror.

We note that for very thin crystals of thickness L = L,
in which

Ly = (2p+ )mcos b [Re[kh (&) — k()] | .

L, <cosfo [Imkj(el )|, p=0,12.... (3.10b)
the incident wave is completely transferred into the diffracted
wave in the case of Laue diffraction. This effect is associated
with the interference of two pairs of coherent waves with
ki(e)) and ki(g)), and also with ki(¢}) and ki(s)), each
travelling in its direction and differing in their wave vectors
by a small amount. The resulting ‘pendulum effect’ (the
spatially periodic conversion of the refracted wave into a
diffracted wave and vice versa) can be observed only in a very
thin layer of crystal, where absorption effects can legitimately
be ignored and the amplitudes of all four waves have
comparable magnitudes. Furthermore, in order to form a
diffracted wave with a uniform cross-section the crystal must
have a strictly constant thickness L, over the whole aperture
of the beam.

A wave field at the surface of the third crystal, identical
with the first and oriented in the same way, can be obtained
by noting that the rotation of two waves in space leads to the
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replacement of k by x; = x + K and x;—K = k. The result
is

Ei(r,t) = E{(&)) exp[i(wt — K1 -1 + ¢)]

+E{(&}) exp[i(wt — k-r + ¢,)] . (3.11)
We have allowed for the fact that during the propagation of
two waves by different trajectories each wave can experience
an additional phase change ¢ and ¢,, owing to physical
effects, and lying beyond the scope of the theory of
diffraction. In keeping with the special features of the
metrics and electrodynamics of rotating ring structures
discussed above the parameters ¢; and ¢> in the
modification of the Sagnac experiment being discussed are
the result (in addition to possible fluctuation mechanisms) of
the phase difference +¢o [Eqn (2.29)] associated with the
motion of two waves in opposite directions in a rotating
interferometer system. In order to generalise the discussion
we shall assume that in addition to the phase shift + ¢, each
of the waves travelling in opposite directions can experience
during its trajectory an additional phase change 8¢ >, which
allows a unified treatment of the insertion into the
interferometer of corrective phase-shifting elements, and
also of random fluctuations of the phases owing to the
instability of the system parameters. Replacing the phases
®1= @o+ Ap: and 2= —¢@o + A2 in Eqn (3.11) by
their combinations @q. » = (@1 £ ¢2)/2 gives

Ei(rt) = {[E(’) + Elexp(iK -r)] cos @,
+ilE§ — E{ exp(iK -r)] sin @, }

X exp [i(wt—xl or+ (pa)] ) (3.12)

The last expression shows that because of the resulting
phase shift @, the two coherent initial waves Eg (),
incident (symmetrically to the crystal planes with a doubled
Bragg angle) on the surface of a third crystal mirror, form
two coher-ent superpositions. Noting that the amplitudes of
the inter-acting waves are related by Eqn (3.9) Ei = —E}=
&,/2, it is evident that for one of the superpositions (the first)
the total field vanishes within the absorbing planes of the
third crystal, which are an extension in space of the planes of
the first crystal, whereas for the other superposition [the
second in (3.12)] it reaches its maximum value in this region.
As a result the first wave superposition (whose relative
amplitude is cos @) passes through the third crystal, which
plays the part of a phase analyser or a phase—amplitude
converter without substantial absorption. After their passage
through the crystal the two waves of this superposition are
propagated along their independent trajectories and can be
measured by amplitude detectors. At the same time a
photographic plate located directly beyond the emergence
surface of the third crystal can record the interference field of
the waves.

The second wave superposition is strongly absorbed and
decays very rapidly in the crystal: it is undetectable beyond it.

Asaresult of these processes the intensity of the radiation
registered by each of the amplitude detectors located beyond
the third crystal is given by J =J(¢,) = (Jo/4) cos? (¢,),
where Jy = E&oOC/4nﬁw is the intensity of the initial wave
incident on the splitter crystal (first mirror) and g is the cross
section of the beam.

In the modification of the Sagnac experiment which we
are discussing the monocrystalline mirrors simultaneously
solve the three problems which oppose the realisation of the

experiment in the X-ray region: they act as the source of a
pair of coherent X-ray waves (i.e. as the splitter), as very
effective reflectors, and as a phase analyser. The counting
rate of the quanta provides valuable information,
corresponding to the angular rotation velocity Q.

Let us examine the possibility of optimising the experi-
ment. Because of the parabolic dependence of the velocity of
light N = J, on Q at low values of ¢, and Q a significant
increase in precision is possible by moving the working point
@p (2 = 0) along the linear part of the amplitude—phase
characteristic J(¢p). This can be achieved by inserting
additional phase-shifting elements into one or both of the
interferometer arms. If under these conditions Ap =
(Ap, — Ap,)/2 = /4 the J(¢,) dependence becomes

(3.13)

There are several ways of introducing into the interferometer
this additional ‘linearising’ shift (‘phase substitution’). It can
be done by placing phase plates in the apparatus or by
additional rotation of the interferometer at a high angular
velocity Qo, which offers the required value of
Ap, — Ap, = m/2 at Q) = AC/8S.

A morenatural way of introducing the phase substitution
is to use (as was suggested by experiments with an actual
interferometer) the built-in field of small deformations,
which leads to an equivalent additional phase shift
Ap = mAx/d as a result of the displacement of the crystal
planes by Ax from their model position (the same for all three
mirrors). Here d is the interplanar spacing.

In the case of a heterogeneous deformation field the
quantity Ax is a smooth function of the coordinate x, per-
pendicular to the planes. For a relative deformation Ad/d the
overall interference field at the emergence surface of the last
(third) mirror will be characterised by a moire pattern with
period A = d?*Ad. For a strong enough deformation the
spatial period of this moire pattern can be comparable to the
size of the trace of the incident X-ray beam D = Dg/cos 6o,
which requires allowing for the change in phase within the
range of D. This is done by averaging the final expression for
J(¢,) over the whole range of changes in Ap within the region
0p = mD/A. As a result we find

Vi) =22 cos*(Ag + o) d(Ap)

Ap+(3¢/2)
T4 %J

Ap—(89/2)

:J_O[

1 4 Fcos 2(Ag + )] (3.14)

where F = sin(d@)/d¢ is the aperture phase parameter of the
beam.

This averaging produces a large decrease in the contrast
of the structure of the interference field and lowers the
precision of the measurement of angular velocity.

We shall now assess the prospects (in principle) of the
Sagnac experiment carried out with X radiation. [gnoring the
fluctuation processes in the interferometer system, which will
be examined in detail below, we shall determine the
dimensions of an interferometer able to measure the rate of
rotation of the Earth. Tentatively assuming a maximum
precision of the amplitude measurements of AN/N ~ 10—4
by the counting of quanta, we find from (3.13) that the
smallest area of an interferometer able to determine the rate
of rotation of the Earth by means of X radiation of wave-
length A= 0.3 A is Spin & 10 cm?.
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With softer radiation and a smaller interferometer
contour the effect of the rotation of the Earth on the
gyroscopic effect is negligibly small. The experiment with
the apparatus and radiation parameters S ~ 4.28 cm? and
A =~ 1.54 A led to the same conclusion.

A further increase in the sensitivity of the Sagnac experi-
ment can be produced by adopting a resonator scheme with a
closed circular trajectory and multiple circuits.

The main problem met in the realisation of this scheme is
the need to satisfy the requirements of a closed path for the
motion of the quanta [22-29]. Without dwelling on this
specific and complex problem we shall only mention some
attempts to analyse its solution, including the use of a non-
planar trajectory [22], the use of a figure-of-eight trajectory
of the rays [23] (with cross-over), ultrasonic control of the
Bragg diffraction parameters [24, 25], and asymmetric
reflections [26]. The last of these models has already been
realised, and used to construct the first (and so far,
apparently, the only) working resonator in the X-ray
band [27]. We shall not discuss the physical form of this
resonator [28], but merely consider the maximum precision
ofthe measurements of 2 of which the instrument is capable.

Consider the case when the characteristic frequency of
one of the modes of the resonator coincides with the
frequency of the radiation wo applied from the source.
When the system is rotating, the tuning frequency of the
resonator is different for different directions [2, 30], and
equalto w, = wo(l + 25Q/ Ic).

Here [ is the perimeter of the resonator. According to the
theory of resonant systems, waves of identical frequency
propagated in equivalent resonance circuits with different
resonance frequencies acquire additional phase shifts
@o = = arctan (2Qwo/wy), where Q is the quality factor of
the resonator.

For low values of 2QAwo/wo the difference in phase
between waves travelling in opposite directions is

Qo = 4500 : (3.15)
lc

When the appropriate ‘phase substitution’ is used to
linearise the phase-amplitude characteristic of the counting
rate of the quanta the increase in precision of the Sagnac
experiment is determined by the ratio of the differences in
phase for the resonator (3.15) and the interferometric scheme
@o= *+2nSQ/Ac, and is equal to G= 2lQ/ml. The
maximum value of Q (ignoring the diffraction losses, which
are unimportant in the X-ray and gamma regions) is given by

max ~ 27ml/NoA(1 —R), where R is the reflection coefficient
for each ofthe No mirrors ofthe resonator [10]. For this Q ma#*
value we have G ™** =~ 4/No(1 —R).

Using the experimentally accessible value R ~0.95, and
assuming N = 4, we obtain G ™#* &~ 20. We note that in the
case, which has already been realised and experimentally
studied, of a germanium resonator the quality factor Q ~ 2.6
x 10° determined experimentally [27] for a wavelength
A=~ 1.8 A corresponds to an almost three-fold increase in
precision and sensitivity.

We should also note that the use of radiation whose
spectrum occupies a frequency band dw small in comparison
with the intermode separation w; = 2mc/l and with the
transmission band of the resonator Aw= w/Q is a
necessary condition for the accumulation of phase shift
during multiple circuits. For the already implemented and
other possible single-block crystal resonators with

parameters Q > 10°, A~ 10~ 8%cm, [/~ 10 cm we have
w; ~2x 10°Hz and Aw < 2 x 10'° Hz, which is 4-5
orders of magnitude lower than the width of the
characteristic X radiation band. Obviously, only the
Mossbauer gamma radiation satisfies this necessary
condition. The low activity of the isotopic MoOssbauer
gamma sources complicates the construction of resonator
schemes for the Sagnac experiment.

4. Experimental assembly and possible error
sources of the Sagnac experiment with
X radiation

Because of the very high sensitivity of interference
experiments using radiation with a short wavelength in the
X-ray range towards weak perturbations (deformations of
the crystal mirrors in a static position and during motion or
under the influence of angular acceleration, temperature
gradients, etc.) the experiment was planned to include
several ‘rigid’ (m-shaped) interferometers all made from a
single silicon monocrystal by mechanical removal (cutting) of
the unwanted parts followed by annealing, lapping, and
chemical polishing. Additional rigidity was obtained by
designing the single-block interferometers in the form of
three thin mirrors connected by an upper and lower thick
base fastened by four edge pillars (Fig. 4). The interferometer
had external dimensions of 4.5 cm X 3 cm (measured along
the perimeter of the reflecting mirrors), and was designed to
use radiation from the characteristic CuKy1(4 = 1.541 A)X-
ray line in a system of (220) planes perpendicular to the
mirror surfaces and having a period dxno=x1.92 A
corresponding to the diffraction angle 6y & 23.65°, and area
ofthe contour S &~ 4.28 A ¢cm?. Thelength ofeach ofthe split
trajectories was /2 = 6.4 cm.

SIS

Figure 4. Single-block three-mirror crystal interferometer with corner
rigidity pillars.

A preliminary study of the prepared interferometers
confirmed the absence of moiré in the central region of the
interference field (1 cm X 1 cm) on the emergence surface of
the third mirror and a weak moiré (one band) on its
periphery. This observation demonstrated the strict
periodicity and the exact coincidence of the (220) planes in
all three spaced-out mirrors.

A self-contained apparatus weighing 1500 kg and
supported on a rotating platform was assembled in order to
study the gyroscopic effect based on the Sagnac effect with
X radiation. A large opening was provided at the centre of the
platform to allow cooling water to be led to the X-ray tube
and also to provide a three-phase power supply through slip-
ring contacts (Fig. 5). The whole apparatus was rotated from
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Figure 5. Arrangement ofthe Sagnac experiment on a rotating platform,
using X radiation: (/) X-ray tube, (2) collimating tubulation,
(3) diaphragms, (4) three-mirror crystal interferometer, (5) monitor
counter, (6) main (signal) counter, (7) data processing system,
(8) rotating platform. The sizes of the tubulation and of the horizontal
and the vertical slits in the diaphragms are in millimetres.

a low-speed vibration-free (4A 112MV 8UZ) electric motor
through a gear-box.

An X-ray generator and tube (40 kV, tube current 30 mA),
a 12 GUR-8 goniometer, and also a main counter and a
monitoring counter, were placed on the rotating platform.
The main counter was of the BDP 2-02 (proportional) type;
the monitoring counter was a scintillation counter (type SR S-
4-411). The system included electronic means of processing
the signals from the counters. All the control units were
duplicated on a nonrotating panel.

The monitoring counting channel was needed to
eliminate the effects of the fluctuations in the power supply
to the X-ray tube (i.e. of fluctuations in the intensity of the X
radiation) on the results of measurements in the main
channel. This was done by expressing the result obtained in
all the possible measurement regimes (for a given time, for a
given total number of pulses from the monitoring counter, or
for a given number of complete rotations of the whole
platform) as a ratio of the number of pulses from the main
counter N to the number of pulses from the monitor counter
Nwm.

Serious difficulties arose in fixing the crystal interfero-
meter rigidly on the platform of the rotating apparatus. All
the attempts to attach the interferometer directly to the
column of the goniometer head (direct location on a lapped
surface or on a greased support, fixing the picein or plastilin
wax, etc.) produced large deformations of the mirrors. As a
result, because of the large and arbitrarily varying difference
between the phases of the waves in different parts of the
interferometer, the total field was strongly perturbed and was
characterised on the topogram either by a moiré pattern with
a small period or by a chaotic grain structure. One possible
cause of this perturbation stems from the different values of
the thermal expansion coefficient of the interferometer
material, the fixing material, and the surface on which the
interferometer is fixed. In the presence of the unavoidable
instability of the temperature this state of affairs led to
deformations and to a substantial perturbation of the final
interference field [30]. The sensitivity of the structure of the
interference field to deformations can be illustrated by quoting

results similar to ours on the behaviour of a rotational moiré
in a specially deformable three-mirror interferometer [31],
according to which a rotation of one of the mirrors by 10~2
second of arc produces a moiré with a period of 4 mm.

The best method from the point of view of minimising the
imposed deformations was found to be the ‘soft’ fixation of
the interferometer by placing it on a soft cloth support
attached to the stage of the goniometer head. However, this
method of fixing produced inertia effects associated with the
change in state of the system at the beginning and at the end
of the rotation, and also after changes in the rate or in the
direction of rotation of the platform. Preliminary
experiments had shown that in all the changes in the state of
the equilibrium rotation the interferometer was initially
shifted (or rotation) in the direction of the inertia force and
then slowly returned towards its final position (slightly
different from the initial position). This relaxation took
place over a period of several tens of seconds, which is
incompatible with the need (pointed out below) to keep the
measurement times short. The most suitable method of
attaching the interfero-meter was found to be by providing
four locating indentations under the pillars. With this
modification the moiré pattern of the interference field was
so large (3 —5 mm) that a collimated X-ray beam could be
oriented in the region of the local quasi-uniform field.

Another possible origin of uncontrolled deformations
leading to a nonstationary perturbation of the final inter-
ference field is the temperature drift. By usinga photographic
method of multiple recording of the topograms of a given
part of the interferometer it was possible to study the effect of
temperature instability. The magnitude of this effect can be
judged by the fact that changes in temperature of the
surrounding medium of AT =~ 3—4 K produce a change by
1 unit in the number of moiré bands in the interference
pattern associated with the initial deformation.

Temperature drift effects were minimised by means of a
thermal isolation system. The interferometer, made from
sheets of foam plastic 4 mm thick in the shape of a
rectangu-lar box, was placed in a thermally insulated
chamber rigidly fixed to the goniometer head. In order to
even out the temperature field the inner surface of the
chamber was lined with copper plates 0.5 mm thick, and the
outer surface with thermally reflecting aluminium foil.

The effectiveness of these modifications aimed at improv-
ing the thermal insulation and at eliminating uncontrolled
nonstationary deformations by finding a suitable method of
fixing the interferometer was tested during a study of the
deviation of the experimental counting statistics for the
signal channel from the Poisson statistics. A previous study
had been made ofthe count rate statistics of the X-ray quanta
in the monitor channel. The latter differed only very slightly
from the Poisson statistics and was characterised by a root-
mean-square  error  [((Ny — Nu)?)]? ~ 1.766  for
Ny = 2.7 x 106 counts.

The counting statistics for the signal channel were then
investigated by 10 successive measurements (counts) of the
pulses in the signal channel No; with i= 1,2,...,10 and a
mean No(7) for a given count in the monitor channel N;
(circles). For the Poisson statistics the calculated root-mean-
square error o(t) should correspond to the result of
processing the experimental data if there are no additional
(i.e. other than purely statistical) fluctuation mechanisms.
The same method was applied in further studies of the
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Figure 6. Experimental dependence of the root-mean-square counting
error for the quanta ANo(No) and dispersion function of the Poisson
statistics o(No) for the final interference field of the X radiation emerging
from the interferometer.

counting statistics for fixed measurement times ¢ (triangular
signs) on the stabilised quartz generator.

The measurements by both methods were carried out over
a wide range of measurement times (from 10 s to 2 x 103 s),
and they showed (Fig. 6) that as a result of the suggested
modifications the measurement statistics did not differ from
the Poisson statistics for timesup to + = 70—80 s, with most
probable value ofro = 73 s. Thelatter time defines the upper
limit of the reliable measurements in the signal channel, for
which the effect of nonstatistical fluctuations is not
significant. Without these improvements the reliable range
of measurement times falls to a few seconds.

To determine the effectiveness of the action of the
monitor channel separately we studied the effects of changes
in the parameters of the operating regime of the X-ray tube
on the results of the measurements of the Noi/N; ratio.
Changes in the tube voltage from 30 to 40 kV or in the tube
current from 30 to 25 mA produced very large changes in No;
and Ny, but their ratio stayed the same.

Yet another possible source of measurement error could
be the accelerometric effect, which is seen as a nonuniform
deformation of different parts of the interferometer and as a
different shift of the mirrors owing to the nonuniformity of
the centrifugal acceleration and of the corresponding force
F = mQ*rduring the rotation ofthe system. For small values
of Qand r, and also allowing for the rigid construction of'the
interferometer and for the well controlled orientation of the
reflecting planes, this influence appears to be insignificant. It
has also been studied in tests of the gyroscopic effect.

5. Experimental realisation of the Sagnac
experiment with X radiation

Interference measurements ofthe angular velocity of rotation
were carried out by placing the interferometer in a thermally
insulated chamber and fixed to its base with picein wax at the
corners of the rigidity pillars. The steel plinth carrying the
X-ray tube, the goniometer with the interferometer, and

the measurement counters were arranged so that the
reflecting (220) atomic planes of the crystal mirrors were
parallel to the radius of rotation and the central (second)
crystal mirror was located exactly on the axis of the rotating
platform with »; = 0. This choice of orientation for the (220)
planes isnecessary in order to avoid the accelerometric effect,
since in this case the centrifugal deformation shifts the mirror
only along the planes themselves and does not perturb the
phase structure of the wave.

The vertical size of the beam was then substantially
shortened, and the surface of the first mirror was scanned
with a thin beam of X radiation while plotting the charac-
teristics of the signal channel on a recorder chart. From the
diagram thus obtained, which gave the intensity distribution
J(Ap) (3.12), we took the initial phase difference Ap = n/4
for an immobile platform, corresponding to the surface of the
first mirror (which gave an emergent ray of intensity
J = Jmax/2 when the X-ray beam was focused on it). In the
same way the working point with a maximum (linearised)
steepness of the J(Q2) dependence (3.13) was chosen. After
this the measurement was carried out [counting of the quanta
N = J(t)]in this region of space while applying rotations in
the right-hand (R) and in the left-hand direction (L).
Occasional measurements (0) with Q = 0 were made at the
same point as the control. The results of measurements for
Q= 045 s~! (rotation period of 14 s of the platform) are
shown in Fig. 7 from data taken with a KSP-4 x —y recorder.
This series of (R, L, 0) measurements was repeated without
interruption for several hours. During each measurement of
Ngr, Nr, Ny (lasting up to 10 s, the complete series lasting
approximately 30 s) the reproducibility of the results was
very good. The average values Nr, N1, Noliecin an error band
determined only by the laws of statistics. However, during
each sequence of many series of measurements a change in
Nr, Ni, No (usually an increase) was observed, though the
differences Ng — Ny, No— Ny remained constant and equal to
each other. This parallel shift of the whole picture was
ascribed to thermal drift of the interference field structure.

The next step was the detailed quantitative study of the
gyroscopic effect, using the monitor channel with allowance
for the accelerometric effect.

Initially the interferometer was set up so that the distance
from the axis ofrotation to the second mirror wasr, = 5 cm.
Because of the small period of the moiré pattern of the inter-

Figure 7. Dependence of the intensity of the X-ray interference field on
the direction of rotation of the interferometer platform for an optimum
initial difference in phase between waves moving in opposite directions:
R denotes rotation towards the right, L towards the left.
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ference field in the absence of rotation and of the relatively
large size of the trace of the X-ray beam on the crystal the
position of the working point (as was shown by subsequent
studies) did not correspond to the optimum value Ap = /4.
This did not affect the fixation of the gyroscopic effect.

Each series of measurements of the rotation effects
consisted of three subseries, chosen sequentially for
Q= Q, Q)= 0,and Qr = —R. Each subseries consisted
of 10 measurements. In each measurement the number of
recorded pulses (Nr.1.o & 3 x 10%) was found for the given
number of pulses in the monitoring channel Nyy = 4 x 104,
This duration of each separate measurement allows the long-
term temperature drift to be ignored.

An analogous series of measurements with an undeter-
mined initial phase difference Ap was carried out for an
initial displacement of the interferometer to the point
r3 = 25 cm.

The results of these measurements for all the 5 series and
for the rotation of the platform bearing all the measurement
apparatus at a frequency Q ~ 0.6 s~! (rotation period
T = 10.4 s) are shown in Fig. 8, together with data on the
absolute root-mean-square errors for each subseries as well
as for all the 5 series. A statistical treatment of the data
showed that, as in the case of r»= 5cm, even with
r3 = 25 cm the final error in the measurements on the
whole complex 5 series satisfies the condition ANy« =~ o,
which confirms the absence of significant fluctuational error
mechanisms other than the purely statistical mechanisms.

In the lower part of Fig. 8 we show the relative counting
differences in different directions (Ngx — Ni)/N, for each
series of measurements.

We suggest qualitative and quantitative interpretations of
the measurement results. The very strong asymmetry in the
counts Nr and Ny for theright and the left rotation directions
respectively with respect to the state of rest (Vo) shows that

N (Nr = NL)/No
6500 %
Nr
b
6000 -
1y ~ f\70
N ps L
e
5500
K i+ “H
()05" %
1 2 3 4 5 6 7 8 910

t/ series of measurements

Figure 8. Number of counts of the quanta of the X-ray interference field
during rotation of the platform towards the right (Nr) or towards the left
(Nvp), and for an immobile platform (No). Corresponding data for
individual series of measurements are denoted by squares, triangles,or
circles. The series 1-5 correspond to r, = 5 cm, the series 6—10 to
r3 = 25 cm. The circles with a cross describe (Ng — N1.)/No.

the position of the working point did not correspond to the
linear part of the phase characteristic, i.e. the experimental
value Ag differed substantially from A@ope = (n £+ 1/4)m.

The aperture—phase parameter F (3.14), allowing for the
experimentally observed period of the moiré A4 ~ 2.5 mm
and the width ofthe trace of the beam on the horizontal plane
(the length of the intersection of the beam with the surface of
the third mirror) D =~ 0.55 mm was F' = 0.92.

By applying (3.14) to the case of three values of the
angular velocity Qr = —Q, Q)= 0, Q. = Q we obtain
the system of equations

N

—2 =1+ Fcos(2Ag) ,

N

Nr,L

—==1+Fcos2(Ap £ ¢,)] ,

N Z%J()l‘ , (5])

which relates the required parameters of the angular rotation
velocity and of the phase of the working point with the values
of the relative number of counts in these three regimes. This
system is easily converted into

[1 + Fcos(2A@) cos(2¢,)] [1 + F cos(2A¢)] ™
= (Nr +NL)(2No) ™",

Fsin(2A@) sin(2¢,)[1 + F cos(2Ag)] -
= (Nr =NL)(2No)™" .

(5.2)

even for F < 1, and for low rotation rates 2¢o < 1) we have

s o JL=F [N+ NL—2No Nr —NUY 177
P=\TF No No J2F|f ¢

(5.2a)

tan(ZA(p) = —(pO(NR —NL)(NR +NL —ZN())_I

Let us first consider the results of measurements with
rn = 5cm:

(NR—}\_/L)%069(1\_’R +}\7L—21\_’()) . (5.3)

By using the measurement results for (Ng + Ny —2N)
~ 5.15 x 10-2 Ny we find the required difference in phase
between the waves travelling in opposite directions
200 =~ 0.064 £ 0.012, associated with rotation. Under these
conditions the final phase of the working point differed from
(n £ 1.2)r by £0.022.

Similarly, for r3 = 25cm (Ng + N —2Ny) ~
7.11 x 102 N(), and (A_/R —NL)/(A_/r — A_/L — ZN()) =~ 1.33.
In this case 2¢¢ =~ 0.075 + 0.014. In this position of the
interferometer the difference between the phase of the
working point Ag and the same value of (n &+ 1/2)T was
+0.022.

It can be seen that the final position of the working point
for two successive positions of the interferometer was far
from the optimum value (n &+ 1/4)n and close to the least
favourable value (n £ 1/2)m. Nevertheless there was no
obstacle to the observation of the Sagnac effect.

Allowing for the relationship between |@o| = 21S(Q/Ac)
and the angular velocity of the rotation Q for given values of
the parameters S and 4 we finally obtain expressions for the
measured value Q ~(0.55+0.1)s~! for = 5 cm and
Q= (0.64 +£0.12) s—! for r; = 25 cm, which agrees well
with the accurate value found in practice for the rotating
platform Q = 0.604 s—!'. The agreement (allowing for the
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statistical error band) between the experimental values of the
angular velocity for the coordinates r, and r; of the centre of
the interferometer shows that this behaviour is due to the
gyro-scope effect and not to a deformation (accelerometric)
effect.

6. Conclusions

The quantitative agreement between the results of the
theoretical analysis of the electrodynamic process taking
place in the X-ray band in a rotating crystal interferometer
system and the experimental results suggests that the Sagnac
effect can be reliably observed in X radiation.

Some very serious but purely technological difficulties
(including the effects of thermal instability and of the
deformation of the interferometer blocks) have prevented
the achievement (in the first realisation of the Sagnac
experiment in the X-ray band) of all the potential
advantages offered by the use of shorter wavelengths on
going from the optics of the visible region to those of the X-
ray region.

A substantial improvement in the precision of the
characteristics of the experiment can be achieved by
adopting a resonator scheme involving a single pass of the
X-ray beams along coincident trajectories. The resulting
mutual compensation of the fluctuation interactions allows
the theoretical precision limits of the measurement to be
realised: these limits are set (at least in principle) by the
counting statistics only. This optimisation makes possibly
not only a test of the Sagnac effect (which originates from a
change in the metrics of rotating systems without a material
medium) but also a test of the weak effect of the rotation on
the characteristics of the medium itself (in particular, the
susceptibility and its anomalously strong dependence on the
parameters of the nonrelativistic motion). In the optics of the
visible range the effect of rotation on the electrodynamics of
material media can be studied by alternative methods: the
‘passive’ Sagnac experiment and the ‘active’ laser gyroscope.
In the X-ray range, because of the very serious difficulties met
in the construction of X-ray and of gamma lasers [28], there
are no alternative Sagnac experiments. We expect the current
interest in this experiment to continue until the end of the
century [2, 3, 32—-34].
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