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Abstract. The computer ab initio simulation and analytical
theory that revealed unexpected nonergodic properties in a
classical Coulomb plasma are reviewed. The results of a
many-charged-particle system simulation predict the pos-
sible existence of a real metastable plasma, supercooled
with respect to its degree of ionisation. The existence of
such a plasma state is a consequence of the entropy
conservation in isolated Hamiltonian systems free from
any stochastic action from outside. The occurrence of a
metastable supercooled plasma similar to a supercooled
vapour or superheated liquid depends on two conditions.
Firstly, all the charged particles should be have exactly
according to the laws of classical mechanics (hence, most
negatively-charged particles should preferably be heavy
ions). Secondly, the plasma ionisation degree should be
sufficiently high (x> 107%). It is shown from thermody
namic considerations that a mixture of a supercooled
plasma with an ideal gas might form a plasmoid of the
ball lightning type.

1. Introduction

Our studies [1-5] by many-particle dynamics (MPD)
computation methods of the electron total-energy distribu-
tion function used computer solutions of the MPD
equations describing the many-body interactions of
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classical particles (i.e. electrons and ions) to demonstrate
the relaxation of the charged-particle ensemble towards
some quasistationary distribution, radically different from
both the Boltzmann equilibrium distribution and the
distributions characteristic of recombination. The kinetic
energy distribution was found to be Maxwellian. This was
used to define the electron temperature, and the free
electron density and temperature were both found to be
time-independent.

The energy distribution was observed to relax towards
the distribution based on the conventional kinetic theory
(involving the detailed balancing principle) only when we
artificially subjected the ensemble of classical charged
particles to a stochastic action from outside [1, 3—-5]. (In
this context ‘outside’ means external respective to the
dynamic equations that describe the motion of the particle.)

We were able to obtain an explicit expression for the
energy distribution function in an isolated plasma free from
any external stochasticaction [1] only by rejecting the
principle of detailed balancing. Our distribution function
not only confirmed the MPD simulation results but also
enabled us to derive several thermodynamic formulae [6, 7],
consistent with those of the Debye theory within the validity
domain of the latter, i.c., for an ideal plasma. On the other
hand the traditional approach, based on the detailed
balancing principle, was shown [l, 8] to be unable to
account for our MPD simulation results.

Thus, the computer simulation results showed the need
to reconsider one of the fundamental principles of statistical
mechanics and physical kinetics: thelaw of entropy-risein
its present formulation, which is often accepted with out
adequate justification. It is usually postulated that the
entropy of a system of many mutually interacting particles
should rise, even in the absence of any stochasticaction
upon the system. The entropy is expected to rise to its
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maximum value, corresponding to the Gibbs microcanon-
ical distribution.

One of the main conclusions of our research [1-5] is
that the increase in the entropy of the ensemble of charged
particles can be due only to some external stochastic action
upon the system, external with respect to the dynamic
equations of motion of the particles. This conclusion is in
full agreement with the well known theorem on entropy
conservation in a Hamiltonian system, usually treated as a
paradox [9, 10]. It seems to us more logical to regard this
theorem as the law of entropy conservation in Hamiltonian
systems rather than as a paradox.

However, one should keep in mind that for real-life
macroscopic objects (especially for gases) a very weak
stochastic action upon the system is sufficient to make
the system impossible to describe with the Hamilton
equations and to induce the relaxation of the system
towards the microcanonical distribution (see [4, 5, 11, 12]).

Nevertheless it is possible in general to find macroscopic
systems for which the stochastic action needed to ensure
relaxation towards thermodynamic equilibrium is rather
strong. According to our MPD computations an ensemble
of nonrelativistic charged particles, namely a classical
Coulomb plasma supercooled with respect to its degree
of ionisationt, is an example of such a macrosystem.

As we have shown [2, 4—7] a supercooled metastable
plasma may, in principle, have an anomalously long lifetime
and possess—in mixtures with electrically neutral gases —
some elastic properties. In order to create an anomalously
long-lived plasmoid one needs to prepare a highly ionised
ion—ion plasma with most of the electrons attached to the
electronegative heavy particles [17]. In principle, a negative
ion may be very stable when located at the centre of a
cluster (e.g. a solvated ion).

The basic propositions from our previous work [1—8]
formulated above will now be examined in more detail.

2. Three-body recombination and electron
energy distribution

2.1 Recombination coefficient

In order to describe the totally ionized Coulomb plasma
recombination and to find the electron total energy e
distribution function f(g), one uses the Fokker—Planck
equation
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Here A =lim,_(A¢/t), B = lim,_ (Ae?/21) and

A=A —0B/de are the coefficients representing the
mobility and diffusion along the energy axis, and the
modified mobility, respectively; I' is the flux along the
energy axis. Evidently, in the course of recombination
Ir<o.

Further, one uses the traditional concept of electron pair
collisions and cuts off the diverging kinetic cross-sections at
an aiming distance of the order of the Debye radius. As a

+Supercooled plasmas tend to recombine (a property used, in particular,
in plasma lasers, [13—16]). In this work we consider the possible existence
of such a metastable plasma state, similar to a supercooled vapour or a
superheated liquid.

result, it is possible to obtain the ‘collisional’ diffusion
coefficient [1, 4, 5, 18, 19]. Then one solves the diffusion
equation in the quasistationary approximation 9f/0r =0,
matches the solution to the equilibrium distribution at
¢ — —0, and obtains the recombination flux

4 2Pp? JON2A

r=- :
5.004 om'2 "

where A= (1/2)1In[l 4+ (9/4wd)] is the so-called Coulomb
logarithm, originating due to the above mentioned cut-off
of the diverging cross-sections; & = 2¢°N,/T ¢ is the gas
parameter, characterising the degree of ideality of the plasma;
N; and N, represent the ion and electron densities
respectively (N; = N,).

In the domain of negative values ¢ < 0, the total energy
distribution of the electrons is expressed [1, 4, 5] as follows:

F©) =ra@l = (el ] - O]
Here
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_ J 006013 (1 +%x),  x<1,
1 —0.06661x° exp(—x), x> 1,
is the probability that an electron occupying a state with

binding energy |¢| will recombine (i.e. that it will experience
an ¢ — —oo transition),

fo(e) = (&) exp (=)

¢

is a Boltzmann distribution with T, representing the
electron temperature and finally,
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is the energy density of states (we integrate over the
coordinate r; and the velocity v; of a test electron).

The often used three-body recombination coefficient f
obeys the well known ‘9/2 law’: the recombination rate is
inversely proportional to the electron temperature to the
power 9/2:

| = B(TINE, B=Cpx 107771, Cpa2734

Here we use the following units: s~ for I', eV for T., cm ™

for N.. To within the precision of the coefficient Cg the 9/2
power law directly follows from the Thompson three-body
recombination theory. Following Thompson, we multiply the
Coulomb collision frequency (o V)N, ~
()T (T./m)'*N, by the probability (¢*/T.)°N; of a
collision occurrence at a distance (¢?/T.) from the ion,
sufficiently close to form a deep-lying bound state. The
resulting expression is a recombination flux, identical (but
for the numerical factor) with the corresponding formula of
the diffusion theory.
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The recombination time can be expressed as
Tree = 117 = (BN = 13677 A ey,

where 7, = Ni]/3(mc/2Tc)]/2 represents the time of flight of
the electron over a mean inter-ion distance.

We have shown [1, 2] that 7, is a measure of time,
necessary for the establishment of the Debye screening and
the Coulomb interaction energy of the electron. Of course,
this characteristic time does not appear in the traditional
approach to kinetic problems based on a cut-off Bogolyu-
bov chain.

2.2 Energy distribution when the principle of detailed
balancing is rejected
As we have shown [8], rejecting the entropy growth law and
therefore also the principle of detailed balancing allows
some electron distribution properties [6], previously
discovered in our numerical computations [1] to be
derived analytically from general considerations.

Starting from the entropy conservation law, one
assumes I' = 0. Hence, the distribution function becomes
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In order to normalise the distribution function we must
satisfy the conditions
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and this imposes the following requirements on the ratio of
diffusion and mobility coefficients:
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This means, in particular, that this ratio must be positive in
the case of a large and negative total energy of the particle,
and negative for large positive energies.

We note that these consequences of the entropy
conservation law directly contradict the detailed balancing
principle, which is usually included in the initial Fokker—
Planck equation. The detailed balancing principle provides
the following link between the coefficients of mobility and
diffusion along the energy axis
/s

_ dB(e)fs
de '
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In this case, at zero flux I' = 0, a Boltzmann distribution
function is obtained. If one starts from the usual quasi-
binary concepts and uses the Fokker—Plank collision
coefficients, obtained on the basis of diverging Coulomb
cross-sections, the detailed balancing principle will be
automatically satisfied.

However, strictly speaking, the traditional procedure of
obtaining the diffusion and mobility coefficients is not
justified in the negative energy domain. The reason is
that the logical chain from the equations of mechanics
to the Fokker—Plank equations has been checked only for
positive total energies. Indeed, in case of positive energies
the Bogolyubov chain leads to the Boltzmann-—Vlasov
equation. If the mutual collisions of nonequilibrium
particles can be neglected one can use the Landau
collisional integral and obtain the initial diffusion equation

with collisional coefficients. But at negative energies and
within the domain of plasma nonideality, where
le] < &N, the diffusion and mobility coefficients may
be quite different. In particular, they may be of a type which
satisfies the conditions specified above.

3. Simulation of Coulomb plasma by many-
particle dynamics

3.1 Stochastically isolated plasma

We define as a stochastically isolated plasma an ensemble
of charged particles governed exclusively by the laws of
dynamics, as opposed to the case when the system is
subjected to some stochastic action which violates the
‘system memory’. Of course, the stochastically isolated
plasma is only an idealised concept, since no absolutely
isolated system exists either in Nature or in a computer
simulation. Nevertheless, by comparing the properties of a
stochastically isolated system with the results of a specially
organized external stochastic action upon this system one
can study some fine-grained properties of the classical
Coulomb plasma.

Method of Particles. This method [20] consists of the
numerical solution of Newton’s equations of motion for an
ensemble of particles, interacting mutually and with the
walls. In the case of short-range particle forces, the
original term molecular dynamics method is generally
accepted. In the case of long-range Coulomb forces the
appropriate term is the many-particle dynamics method
(MPD method).

The method of particles is based on the concept of an
ab initio simulation. We believe the method to be very
fruitful for studying the fundamental properties of many-
particle systems. However, so far, the main directions of
new developments in the method were concerned with the
creation of modified versions, dedicated to specific applied
research programs. The aim of these developments was
often an efficient description of systems with as many
particles as possible by stipulating various simplifications
(smoothing out the effects from distant particles, arbitrary
assumption of periodic plasma boundary conditions, etc.),
amounting in some cases to substantial departures from the
initial dynamic equations. This is, inadmissible when
investigating the fundamental properties of the Coulomb
plasma and, in particular, when the aim of the work is to
establish how an external stochastic action makes the
Coulomb particle system lose its ‘dynamic memory’ (for
more details see Ref. 1).

Therefore, we developed an algorithm for the solution
of the MPD equation for Coulomb particles. Its advantage
is that an increase in the number of particles requires only a
moderate increase in the number of operations. The basic
idea was to improve the accuracy of the calculation of the
time dependence of the interaction forces between nearest
neighbours. This offered the possibility to perform many
calculations and to discover unexpected properties in
systems consisting of classical charged particles [1—5].

Equation set. We considered the time-evolution of a fully
ionised plasma, confined within a cubic volume with walls
impenetrable to the particles. The trajectories of n
positively charged particles (ions) and zn negatively
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charged particles (electrons) were calculated by numerically
solving the Newton equations

d2rk E< (z4+1)n
=* F = k=1,2,...,(z+ 1)n,
df2 mk7 k ;ﬁl’ Pt} 7(Z+ )I’l

qxqu(r — 1)
Ire —rf”
qkqu(ry —rl)G(|rk —r

3 "

Here r (t) = {x;(t), v« (t), z¢ (1)} is the radius vector of the
kth particle; m, is its mass (either the electron mass or the
mass of an atomic nucleus with atomic number z); ¢, is its
charge (|¢i| = e for an electron and ¢, =ze for an ion);
G(x) = 8 —9x +2x° is a matching function assuring the
continuity and smoothness of the force at |r, —rj| =r.
This function describes the interaction of uniformly
charged mutually penetrable spheres of diameter ry. The
size a of the cube edge was chosen to ensure the necessary
electron density N, = zn/a’ and ion density N; = n/a’, the
total density being (z + 1)n/a’. In the calculations reported
here ry was chosen to be small enough not to influence the
results. The validity of this condition was verified by
varying r, between runs.

We started our computations with a relatively small
number of particles: 2n = 54. At present we consider up to
2n = 8000 particles. Over this range of n we were never able
to observe any dependence of a substantially important
calculated average physical quantity on the choice of n. This
enabled us to limit the number of particles to 2n = 1024 in
most of the calculations.

) e — 1| =g,

Ju =

)’ e —r| <7p.

Initial conditions. At the initial moment 7=10 the
coordinates and velocities of all the particles were assigned
by a quasi-random number generator. In most cases the
coordinates and the velocity directions corresponded to a
uniform distribution; the velocity moduli satisfied a
Maxwell distribution for an initial temperature 7. The
initial velocities of the electron and ion were normalised to
make the mean kinetic energy per particle 7/2 along each
of the three coordinate axes.

Different versions of the initial conditions were used in
some test runs, for example: all the particles are concen-
trated in a part of the cube volume; the coordinates of the
electrons coincide with those of the nuclei; all the particle
velocities point in the same direction; all the particles have
the same energy.

Boundary conditions. In the stochastically isolated plasma
calculations the cube walls were assumed to be perfect
reflectors. The appropriate boundary conditions were
imposed as follows. If at some time a particle falls out
of the cube volume, the component of its velocity normal
to the cube wall changes sign. It is worth noting that there
are periodical boundary conditions, very convenient for
computations and often used in molecular-dynamic
numerical calculations. Unfortunately, these boundary
conditions are inappropriate in our computations: they
are inadmissible in studies of the fundamental properties of
plasmas (see Ref. [1]).

On the numerical solution technique. We have tried various
standard methods for the solution of dynamic equations:

the over-stepping scheme and the Euler, Verlet, and
Runge—Kutta methods. Substantial progress in carrying
out an enormous work-load of calculations was achieved
by creating an original method, consisting of identifying
the closest neighbours of each particle and in calculating
more accurately the forces contributed by these neighbours.
The method which we developed made it possible to reduce
the size of the calculations by several orders of magnitude
as compared with the standard procedures. Furthermore, it
does not introduce uncontrollable additional errors, apt to
change the physical properties of the system. Let us briefly
describe this algorithm.

Assume that at the initial moment ¢, all the coordinates
ri(ty) and velocities v (fo) of the particle are known. The
quantities ry(fo + Ar) and vi(fy + Af) (where Az is an
external time step) are determined as follows.

The r,(co) (to +1Ar) coordinates corresponding to a
rectilinear motion of the particle are calculated. Then
the values of the forces acting upon the particles are
calculated. In order to reduce the size of the computa-
tion, when calculating the forces, one takes into account
Newton’s third law: f; = —f;. One then finds for each
particle its two closest neighbours (one of them positively
and the other negatively charged); one also finds the
distance to each of these neighbours.

The force acting on each particle is calculated as a sum
of two forces. The first is due to the interaction of the given
particle with its closest neighbours and with the particles of
which the given particle is the closest neighbour. The second
force is due to the interaction with all the rest of the
particles.

Then the Newton equations are integrated, using the
Runge—Kutta fourth-order of accuracy procedure with a
Tt = At/N, step, where N, represents the number of internal
steps. In the course of the integration, only the interaction
with the closest particles is treated as a variable. Having
evaluated r(to + Ar) and v (fo + Af) one should verify
whether there are particles outside the cube volume.
Particles having penetrated through the cube wall are
treated according to boundary conditions formulated
above.

3.2 External stochastic actions upon the system

We considered several kinds of action making the motion
of the plasma particles indeterminate: rough-wall effect,
constant-temperature wall effect, permutation stochastisa-
tion effect, inelastic collision stochastisation effect.

Numerical calculation errors. The precision of the calcula-
tions was controlled mainly according to the error in the
total energy of the system. In some cases appreciable
deviations were observed in the tail of the electron
distribution at negative total energies. Their contribution
to the calculated total energy of the system was small and
they appeared to be due to particle reflections from the
walls. The contribution of the computation error was
identified by comparing the results of calculations for
different time steps and numbers of particles [1, 3, 5].

Rough wall surfaces. In the case of diffuse reflection of a
particle from a wall in accordance with the energy
conservation law the velocity of the particle was directed
within the cube at a random orientation.
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Plasma in a thermostat. The particles reflected from
thermostated walls return back into the cube volume
with a random direction of motion and a Maxwell
distribution of kinetic energy for a wall temperature Ty.
It was specially verified that this procedure did not distort
the Maxwell distribution substantially.

Permutation stochastisation. The procedure consisted of
redistributing the velocities of all the electrons at given time
intervals. The velocity of one electron was assigned to
another, the velocity of the latter being assigned to yet
another, etc., while all the coordinates were left unchanged.
Such an action cannot simulate any real physical process,
but nevertheless the permutation stochastisation effect is
interesting because it changes the total energy of individual
particles while keeping the energy of the whole system
constant.

Stochastisation by inelastic collisions. Imagine a space filled
with a hypothetical gas of two-level atoms. The gas is
characterised by its number density N, the population of its
levels Ny and N, (so that N =N;+N,), and the ¢,
transition energy. The two-level gas can be regarded as a
thermostat with temperature T, = &,/ In(N{/N,). This is
equivalent to assuming the lack of dependence of N, , and
N upon the properties of the plasma.

On a path [ an electron has a probability
p=1—exp(=l/ly) of experiencing an elastic collision.
Here Iy = 1/04N is the mean free path, and o, is the
elastic collision cross-section.

After establishing that the electron has had an elastic
collision with a two-level atom, one determines the probability
of occurrence of one of the two atomic states w; = N /N,
Wy = N2/N and the probablllty Wiy = W]O']2(V)/O'c],
Wa = wyay (v) /oy of a corresponding inelastic transition,
where v is the electron velocity. Note that for the 1 — 2
transition there is an &, threshold, and that the 1 — 2 and
2 — 1 cross-sections are related, according to the detailed
balancing principle, by the expression

2 1/2 2
mgv 2e myv
o12(v) ; =07 [(VQ——mu) ]( ; —812> .
c

In elastic collisions the electron always experiences a
random change in direction of its velocity. In the case of an
inelastic collision the velocity modulus is either lowered or
increased by an amount corresponding to the energy &;,.

4. Some results of MPD calculations

4.1 Quasistationary state

Our MPD calculations for a stochastically isolated plasma
have shown that a stationary (or quasi-stationary) total-energy
electron distribution function is established during the time of
flight 7,; of an electron over the mean distance between
particles. In the negative total energy domain, the distribution
found by MPD calculations shows an exponential decay
(instead of the exponential growth in the thermodynamic
equilibrium case). Consequently the recombination flux is zero
or near-zero. These results cannot be attributed to insufficient
observation time of the system evolution. The times used in
the simulations were sufficient for the recombination
distribution to be formed (see Fig. 1 and for more details
Refs[1, 8]).

Inf(e/T.)
0

|
2 4 ¢/T,

Figure 1. Comparison of two kinds of data on the recombination
distribution function: traditional theory formulae (solid curves) and
MPD computation results [1] (open circles). Curves /-5 represent the
distribution function at reduced times 7/7y equal to 1, 2, 5, 10, 20,
respectively. The MPD simulation data correspond to © =1/75 = 30.
Here 75 = 3m'/2Tc3/2/8\/ﬁe4ANc represents a characteristic Coulomb
collision time for electrons. According to the MPD simulation results, the
distribution function shape plotted here is finally established at time
t ~ 14 = 13/1.7 and keeps this shape throughout the calculation. Initially
the distribution function is zero at negative electron total energies.

In computations simulating various kinds of stochastic
action upon the systems it was found that the Coulomb
system began to follow the basic laws of statistical
mechanics if the stochastic action was sufficient to change
the energies of individual electrons. These are three
examples of this type of action: (1) thermostatic wall
reflection [1], (2) permutation velocity stochastisation [I,
3-5]; (3) random inelastic collisions with atoms [3—5].

The MPD calculations of permutation stochastisation
[3, 5] are of outstanding interest. The permutation stochas-
tisation produced a distribution function (see Fig. 2) close to
the diffusion distribution obtained using the principle of
detailed balancing, whereas the MPD calculations without
permutation stochastisation gave a radically different
distribution.

Theinvestigation ofour MPD algorithm demonstrated its
ability to monitor the evolution of several thousands of
Coulomb particles over times of the order of the inter-particle

Inf(e/T,)
0
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-8 -6 -4 -2 0 2
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Figure 2. Electron distribution function over total electron energy in the
case of clectron stochastisation by permutation (filled circles) for the
following plasma and calculation parameters: N, = 10'7 em™3,
T.=0.35¢eV; n=512; t = 50t,;. The full curves 1, 2, 3 represent the
Boltzmann distribution, the Fokker —Planck distribution with a specially
accurate diffusion coefficient [1, 4, 5], and a distribution calculated by
MPD (with no stochastisation), respectively.
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timeofflight and with the conservation ofdynamicmemory of
the initial coordinates and velocities of all the particles.
However, at times exceeding the interparticle time of flight
thenumerical solution isno longer quite determinate, i.e. after
time reversal the system does not return to its initial point in
phasespace. Thenumericalcomputation errorsplaytheroleof
a stochastic action external to the dynamic equations, which
endows the system with some statistical properties. Owing to
this, inour opinion,atimeoftheorderoftheinterparticletime-
of-flight is enough for the distribution function to relax to a
Maxwell distribution with a new temperature value.

However, the numerical solution does not ‘forget’ the
initial dynamic parameters completely. This is shown, at least,
by the high accuracy of the energy conservation (to better
than 0.1%) for times much longer than the Coulomb collision
time. We believe that the observed recombination ‘freeze-in’ is
due to the conservation of the dynamic memory of the
system. This idea is confirmed by the fact that when a
specially programmed stochastic action was introduced in our
calculations the recombination took place. It was also shown
[3] that when the calculations were performed at a substan-
tially lower accuracy level a recombination relaxation was
observed.

4.2 Anomalous drift towards positive energies

In order to interpret reasonably the results of the ab initio
simulation we had to postulate a strong drift along the energy
axis from the zone of negative to the zone of positive electron
energies. This drift is due to microfields produced by all the
charged particles. In the negative energy domain we find the
following microjump characteristic energy and time, as well
as the following mobility coefficient:

EN(E)WNeZNim, T~ Ty, A~f~e2Nil/3t;'.

Starting with these expressions and allowing for the
entropy conservation law for Hamiltonian systems we
derived the following expression [1] for the ratio of the
electron diffusion coefficient to the coefficient of electron
mobility along the energy axis

~ —14+T./2e, €To'> '3,
—— =0 Dy + Dyl el < b,
ps~'/3, eTo < —ad'.

This formula was derived without making use of the
detailed balancing relation in the negative energy domain
(see Section 2.2). Here the subscript f denotes the micro-
field origin of the corresponding quantities. D; and D, are
factors which ensure continuity of the ratio A;T./B¢ upon
transit from the negative to the positive energy domain [11]
and depend only on 4, a and f. « and f are numbers which
can be regarded as adjustable parameters: they define the
width of the domain of nonideality of the plasma (where
the electron energy is determined by the Coulomb
interaction with other particles) and the diffusion coeffi-
cient modulus in the negative energy domain, respectively.
Accordingly, the distribution function becomes

24 yl/2 exp(—y), 5 y > (xél/?t‘
y):T—ﬁ Dyexp(Dyy +1D5y7), |y| <08, (2)
VT Dyexp(Bys'), y < -8,

where y = ¢/T, is the dimensionless energy; D3, Dy, A are
quantities dependent exclusively on 8, « and § [1].

f(

Inf(e) 0

3 ¢/T,

Figure 3. Electron distribution over total energies. The points are the
MPD computation data [1]: Computation run 35—N, = 10% em~3,
T.=1.7¢V (temperature defined as a parameter of the Maxwell
electron velocity distribution), n =512, observation time = 461,
6=0.12; Computation run 36—N,= 10'7 ¢m 3, To=0.2¢V,
T.=028¢V, n=512; =591, 6=0.027, Computation run
37—N.=10" ecm™, Ty=0.1¢V, T,=0.1¢V, n=512, t=501,
6 = 0.0006. The full curves represent the microfield distribution (2) at
a=15 =04

An accurate comparison of the distribution (2) with the
MPD computation results for a stochastically isolated
plasma showed that the agreement was very good for
oa=1.5 and B=0.4. This single set of two constants
gave an excellent description of the MPD calculation
results over a wide range of plasma parameters (see Fig. 3).

4.3 On the relationship with the conventional view-point
Given the results of charged particle dynamics simulation,
and the fact that these results can be theoretically
accounted for only by rejecting the principle of detailed
balancing, we conclude that the classical Coulomb plasma
is nonergodic [1]. Let us briefly consider how this
conclusion relates to the modern concepts concerning the
stochasticity of dynamic systems [21].

The entropy is known to be conserved in Hamiltonian
systems [9, 10]. In order to reconcile this fact with the well
known entropy rise in real physical processes the dynamic
equations can be averaged in different ways. The averaging
procedures produce irreversible kinetic equations. This
averaging is often justified by adopting the mixing concept
introduced by Gibbs. Consider a phase volume occupied by
an ensemble of identical systems mixing with the whole
volume of the energy surface (the phase space region
accessible to these systems according to the energy con-
servation law). According to the Liouville principle the phase
volume of mixing systems remains constant; however, in the
course of the ensemble evolution this volume is seriously
deformed and develops a progressively more intricate surface
tending to an everywhere dense ensemble over the energy
surface.

In order to establish a law of entropy rise for the mixing
systems one introduces the Kolmogorov (or K-) entropy.
When defining the K-entropy one divides the phase space
into cells and makes the cell size tend towards zero,
ensuring a limiting transition to the infinite-time limit
and a complete mixing in every cell. The entropy defined
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in this way increases in time, although the phase volume of
the ensemble is conserved.

In our opinion, this approach is no more than a
mathematically sophisticated description of the original
Gibbs idea. It seems more important to establish the
physical reasons which allow the generally adopted averag-
ing procedure to reflect the physical reality.

We believe that the loss of dynamic memory in a many-
particle system actually occurs in physical phenomena (i.e.
the entropy rise occurs not in Hamiltonian but in relaxing
systems). This memory loss is always due to some external
stochastic action upon the system, always present in real
conditions. Evidently, for systems with a dynamic motion
mixing mechanism, a very weak (in the limiting case of
infinite time, an infinitesimal) external stochastic action is
sufficient to make the evolution irreversible due to full
mixing.

On the other hand, one can imagine many-particle
systems that mix in the course of an evolution governed
by dynamic motion laws, though for some reason not all the
energy surface but only a part of it is accessible to them. In
this case a finite (sufficiently intense) stochastic action is
required to direct the relaxation towards the thermodynamic
equilibrium.

The classical Coulomb plasma seems to be an example
of such a piecemeal mixing system. The translational
degrees of freedom of a many-charged-particle system
lose some of their dynamical memory simply because of
the limited accuracy of the numerical solution of the
dynamic equation. On the other hand, the phase transition
(recombination) does not occur. Seemingly, the transla-
tional degrees of freedom are able to mix even during the
evolution of the system governed by the laws of dynamics.
However, no transition to the region of phase space
corresponding to the occurrence of numerous bound
particles is observed. The probable reason is that no
mixing of these particles in phase space takes place
when the system is moving according to the laws of
dynamics. The transition requires a relatively strong
external stochastic action upon the system.

In our opinion, the piecemeal mixing property should be
found not only in systems of Coulomb particles but, in
general, in systems with possible phase transitions. More-
over, we believe that the different phases (states of
aggregation) correspond to phase space regions, where
the dynamical mixing of the phase volume takes place.
Mixing over the whole energy surface takes place only in the
simplest systems with no bound states (e.g. elastic spheres).

The absence of dynamical mixing between states
belonging to different phase regions may account for the
existence of metastable phase states (e.g. superheated liquid
and supercooled vapour). We believe that our results
suggest the existence of such a metastable state in a
supercooled plasma.

4.4 Collisions with atoms and microfield drift

Kinetic model. In order to demonstrate the stochastisation
effect of random electron collisions with neutral species we
have constructed and analysed a kinetic model of a plasma
mixed with two-level atoms. The results obtained from this
kinetic model were compared with the ab initio MPD
simulation data [4, 5].

We assigned
A‘V:A"a +A~f7 B:Ba +Bfa

in the electron diffusion equation, where

A, =KT, Gx'ﬂ —x'ﬂ%), B, =KTZXx'?,
a

- . T 1/2 T 1/2
Ar=G B NP (<) | By=GN (=) .
21/3 me me

Here the quantities marked with the subscripts ‘a’ and ‘f’
depend on collisions with two-level atoms and on the
interaction with microfields respectively; x = —¢/T,, and

K 4 €12 2 ZTC 12

“5 ()~ G)

represents the effective rate of inelastic collisions, g is the
cross-section of inelastic electron collisions with a two-level
atom; &, is the transition energy in the two-level atom.
Finally, G is a dimensionless constant, that cannot be
determined from stochastically isolated plasma calculations
which can offer the A¢/B; ratio but not the two quantities
separately. The comparison with MPD simulation results
showed that G =~ 0.7—0.8.

Expressing both the diffusion and the mobility coeffi-
cients as a sum of collision and microfield terms implies the
mutual independence of the two mechanisms. A compar-
ison with the MPD simulation results showed that this
assumption is satisfied, at least at small ¢/, values, when the
diffusion model is applicable.

Diffusion model results. An analysis of the diffusion
equation has shown that the role of collisions is
characterised by the following parameter

. 4 O-ON‘d
= 3G (#/FN,

When ¢; — 0, the microfield drift prevails. For an ideal
plasma with approximately equal temperatures 7./T, ~ 1,
the recombination time is expressed as

2
e

eX
Nccl

€1

Tree X pm .

The collisions predominate at low ionisation degrees

a :1]:,'— <2 x 107%,.

This expression was obtained by putting g, = 107" cm?
and G = 1; g, is expressed in eV. At a characteristic energy
& :4(cha/maTc)]/2Ta the efficiencies of elastic and
inelastic collisions are the same. So we should assume
gy ~ 1073 eV and, consequently, o ~ 107¢. According to
the present model, if o > 107°, the three-body recombina-
tion should be seriously suppressed. But this is inconsistent
with experimental data. For example, noble-gas plasmas
exhibit recombination even at high ionisation degrees, the
experimentally observed recombination rate agreeing with
the conventional theory.

One could suppose that this contradiction was due to
the unjustified assumption of mutually independent colli-
sion and microfield relaxation mechanisms. In order to
clarify this point we performed a careful comparison with
the MPD simulation results.



286

S A Mayorov, A N Tkachev, S Yakovlenko

Comparison of MPD computations with the diffusion model
results. In the MPD calculations the initial conditions,
plasma parameters, and two-level atom characteristics were
chosen so that the calculations with widely differing plasma
densities and temperatures had the same dimensionless
parameters 0, ¢; and T,/T,. This choice was due to the fact
that according to the above diffusion model the recombi-
nation characteristics should depend exclusively on these
parameters. This statement was confirmed by the compar-
ison with our MPD calculation data.

Hence, the diffusion model and MPD calculations are
mutually consistent but they both contradict the experi-
mental data. This contradiction could not be explained by
imperfections in the diffusion model, e.g., by the wrong
assumption of independent collision and microfield contri-
butions to electron relaxation. This made us look for some
additional mechanisms of recombination stimulation in real
conditions. A solution was found by allowing for the
discrete spectra of the bound states [4, 5]

5. Quantum effects

5.1 Kinetic barrier

It is well known that the spectrum of discrete states in a
Coulomb field become increasingly condensed on the
approach to the continuum boundary. The electron—ion
binding energy is given by the formula ¢, = Ry/nz, where
Ry = rl1ce4/2ﬁ2 =~ 13.6 eV and n is the principal quantum
number. At large quantum numbers both the quasiclassical
approach and the diffusion model are valid.

However, there are reasons to believe that the simple
condition n > 1 is not sufficient to bring about the effects
depending on the nonergodicity of the classical Coulomb
plasma. In fact, the microfield drift is observable when the
characteristic drift-produced energy jump Ag~ ech]/3
exceeds the energy distance between the closest levels
Ag, = 2Ry/n3. Hence, the energy of the domain boundary
is expressed by the formula

- PN _ . -

—E= Ry( Z ) =~ (2x 107N’ eV (N, is in em ™) .
2Ry

For electrons with sufficiently high negative energies

& < &, the usual concepts of binary Coulomb collisions are

valid. Thus, the diffusion B and mobility coefficients A, in

this energy range, are mutually related by the detailed

AT /B

- 5/51/3

Figure 4. Kinetic barrier: qualitative energy dependence of the coefficients
of mobility and diffusion along the energy axis.

balancing relation. On the other hand, the MPD calculation
results suggest that within the energy range

E<e< —g =a(2N)"?

the plasma particle interaction is substantially nonbinary,
and there are microfield effects to be included in some of
the relations. In this case the dependence of AT./B on
energy has the shape of a barrier (see Fig. 4).

5.2 Three-body recombination in e—i- and i-i-plasmas

In order to demonstrate directly the effect of the microfield
drift we tabulated the 7., and 1522 plasma recombination
times (7, with, and 7 without, allowing for the kinetic
barrier, respectively [4, 5]). For ¢ < & we used [13—16] the
single-quantum approximation, while & was expressed by
the above formula.

For testing purposes, the results of 1:522 calculations,
ignoring many-particle effects, were compared with well-
known tabulations (for example Ref.[15]), based on the
impact-radiation model. Within the plasma parameter
range, where the radiative transitions can be neglected
we found a good agreement. Note that in the rS‘c’g
calculations the recombination distribution was matched
with the Boltzmann distribution at |¢] — —O0.

The computation results for an electron—ion plasma
gave T, and rS‘ig values differing by a factor of two to three.
This was due to the use of a boundary condition more
accurate than the generally accepted one when calculating
Trec. Although this difference is relatively small, it could be
responsible for the spread in the experimental data con-
cerning the numerical coefficient of the ‘9/2 law’ (see
Section 2.1).

There are more significant differences at very low or
very high electron densities. However, the e—e—i-recombi-
nation at low plasma densities is weak as compared with the
radiation recombination mechanism, which obscures the
retardation of the three-body recombination. At high
densities the recombination time becomes extremely short
(< 10710 s). Both the formation and diagnostics of such
plasmas pose serious problems.

Altogether, these considerations show that the feasibility
of observing diffusion-barrier effects in electron—ion plas-
mas is problematic. The above reasoning excludes any
significant manifestation of the recombination retardation
effect due to the appearance of nonergodicity in the
Coulomb system under ordinary conditions, for example
in a gas discharge afterglow.

It is natural to look for observable recombination
retardation in systems of charged heavy particles. It is
immediately clear that for heavy particles the concepts of
classical physics are more justified than for electrons, the
discrete spectrum structure being much less pronounced.

Our expectations were confirmed by computation
results. Thus, the calculated i—i—i-recombination rate
was found [4, 5] to be 10—15 orders of magnitude smaller
than the rate predicted by either the conventional theory or
the Thompson theory (see Section 2.1).

For example, at densities NiNIOIX—IOIQ cm™~ and
0.2 eV temperature the i—i—i-recombination time 7, is in
the range 1075 —10s, although the normal theory predicts
rrﬂc <1072,

3
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6. Thermodynamics of metastable plasma mixed
with ideal gas

6.1 Thermodynamic parameters

One can calculate the thermodynamic characteristics of a
stochastically isolated plasma mixed with an ideal gas [6, 7]
by starting from the distribution function (2) and using
standard thermodynamic relations: the total energy, free
energy, entropy, and some other quantities derived from
those listed above. We shall quote only the expression for
the total energy:

E= 2niT[23—a+ u(é)] .

We regard the plasma as a uniform mixture of 2n; ions and
n, neutral particles. The total number of ions of each sign
is n; =N;V in the V volume under study. The following
additional notation is used: & = 2n;/(n, + 2n;) is the degree
of ionisation of the plasma (not to be confused with the
distribution function parameter a); u is the temperature-
normalised mean potential energy (# < 0) per particle. The
quantity

(o) =1 “+:yf(y) o 3]

is tabulated [6]. Its extreme-case expressions are

ux=1.882 if 60,

ue —§\/3 “ﬂz—;lg —26'3 if 6500 .

Note that in the ideal-plasma limit 6 — 0 there are
two numerically identical potential energy constants.
The first was determined by the theory [6] based on
formula (2) for the electron distribution function. The
second, (u= —4/nd =2 —1.774/n) comes from the Debye
theory, in which the interaction energy of the screened
charges is found by expanding the Poisson equation in a
power series of the ratio of potential to kinetic energy. This
coincidence demonstrates the appropriate choice not only
of the distribution function shape, but also of the &« and
constants. It is difficult to believe that such a numerical
coincidence is purely accidental.

6.2 Equation of state and isotherms

From the free-energy expression (or from the Clausius
virial theorem) we obtain the equation of state of the
mixture of a gas and a metastable plasma

P:2NJE+@], p=5[£+@] :

Here p=P/P, is the reduced pressure, Py = T4/e(’; the
plasma ideality parameter & can be regarded as the
reciprocal of an appropriately normalised volume V
occupied by the ensemble of particles.

S=V, V7, Vy=2nT .

The shape of the isotherm following from theory [6, 7]
does not differ significantly from the Debye isotherm shape
(see Fig. 5). This is surprising because the Debye theory is
valid only in the case of 1/d — oo. With decreasing volume
the pressure passes through a maximum and then decreases,
becomes negative, and finally tends to —oo.

P/P,
1.0

0 1
-1 0 1 2

logo(V/Vy)

Figure 5. Universal isotherm of a fully ionised metastable plasma
(reduced pressure versus reduced volume). Curves 1, 2, 3 represent our
theory, the Debye theory, and the ideal plasma theory, respectively.

The parameter domain in which the pressure falls as the
volume decreases, is unstable. The force acting upon a
plasma fluid element is equal to the pressure gradient with a
negative sign. Consequently, a plasma cluster with a
positive pressure derivative with respect to volume should
not expand towards decreasing pressures. Instead, it will
become compressed. The negative pressure domain
(6 > 8.34) corresponds to the development of compressive
elastic forces. The Coulomb forces will compress such a
plasma even in the absence of pressure gradients.

The limiting value of the nonideality parameter for the
case when a fully ionised nonideal plasma can be neverthe-
less thermodynamically stable, is d., = 3.5. This value
corresponds to a pressure p, = 0.96p,. At 0 > . the
plasma collapses.

In plasma—gas mixture isotherms the pressure max-
imum is shifted towards the region of small 1/6 values with
decreasing degrees of ionisation. This is accompanied by the
expansion of the region of thermodynamic stability of the
mixture. For example, at « = 0.1, we have J., = 2000 and
Per = 5400p,. For room temperature (7 =£0.03 eV), the
critical density and pressure are Nj =~ 10"” em™ and
P, =23 atm. The degree of ionisation should be suffi-
ciently high (« > 107?), otherwise the plasma would not be
metastable (for further details see Refs[4] and [5] and
Section 3).

Within the d, > d > 3.5 parameter range the plasma
component already has anomalous properties, but its
mixture with the ideal gas is stable. In these conditions,
a plasma cluster immersed in plasma tends to adopt a
spherical shape. At d, > > 8.35 the plasma—ideal-gas
mixture exhibits significant elastic properties: the Coulomb
compression predominates over the plasma pressure, but
not to the extent of making the gas collapse. Such a plasma
cluster —being in pressure balance with the surrounding
nonionized gas—should behave like a light-weight elastic
game ball.

Of course, one should not forget that the expansion of the
region of thermodynamic stability of the mixture (as
compared with the stability region of a metastable
plasma) is based on the assumption of uniform intermixing
of gas and plasma. In reality, a plasma cluster inside a gas
cloud tends to be compressed because of its anomalous
properties, while the neutral gas pressure suppresses this
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compression. During a time of the order of the diffusion time
the plasma and the gaseous components should separate,
resulting in the collapse of the metastable plasma.

6.3 Adiabatic characteristics

Considering the adiabatic (isentropic) processes in a
mixture of a metastable plasma and an ideal gas one
can express some dependences in a parametric form. For
example, it is possible to express in terms of J the
interdependence of the thermodynamic parameters N;, T
and P if at least two of the three initial values N;y, T, Py,
are given.

We tabulated the corresponding functions [7]. It is
interesting to note that in the 6 > d., = 8.35 region the
pressure becomes negative, as in the case of evolution of
the system along an isotherm. However, in adiabatic
processes the transition to negative pressures occurs before
the sign change of the derivative.

As in the case of isothermal processes, a decrease in the
ionisation degree results in an extension of the thermody-
namic stability zone of the plasma—gas mixture. In
particular, the J, value for these processes—correspond-
ing to a zero pressure—increases rapidly (o< o) with
decreasing degree of ionisation. For instance, for & =~ 0.1 we
have &, ~ 10*. In the &, > > 8.5 range the plasma
component already possesses anomalous properties but
its mixture with the ideal gas is stable.

The dependence on the plasma parameters of the
pressure derivative with respect to density is of special
interest because it is related to the velocity of sound. The
ratio of the velocity of sound in a fully ionised metastable
plasma to the velocity of sound in a monoatomic ideal gas
at the same temperature can be expressed as a function of a
single variable: the ideality parameter 6. This quantity is
tabulated [7]. The velocity of sound in a slightly nonideal
plasma is a little smaller than in a perfectly ideal gas. With
increasing ideality degree parameter d the velocity of sound
diminishes and even becomes imaginary (for & > 14.5).
However, as mentioned above, the pressure becomes
negative at smaller values of 9.

At low ionisation degrees the influence of the plasma
component upon the velocity of sound in plasma—gas
mixtures becomes weak. Nevertheless, for ¢ > 14.5 the
velocity of sound in such a mixture can be imaginary. If
this is the case the coupling of the sound and ion—sound
oscillations can be very strong.

7. Conclusion

The reported [1—-5] anomalous retardation of the three-
body recombination in a classical Coulomb plasma is
interesting in two respects: firstly as a fundamental result,
requiring the abandonment of long-held views on the
statistics of isolated (microcanonical) systems and secondly
as an applied research result promising, in principle, the
eventual formation of long-lived plasmoids. However, we
should note that the thermodynamic theory developed in
Section 6 is based on formula (2) for the total energy
distribution function of the charged particle. The formula
was verified by direct numerical calculations only for an e—
i-plasma at rather moderate values of the perfection
parameter up to d ~ 1. A verification of the reliability of
the results in the case of § > 1 would require additional
experimental and computer studies. It is also necessary to

investigate the mechanism of the drift along the energy axis
caused by the microfield, discovered during MPD com-
puter simulations.

Our overview of recent work [1—8] shows that the
metastable plasma has properties close to those assigned
to the ball lightning phenomenon (see Ref.[22] and
references therein). However, we cannot be sure that ball
lightning is a cluster of metastable plasma —air mixture until
the phenomenon has been reproduced in the laboratory.
The main problems in the formation of a metastable plasma
are due to the need for a relatively high degree of ionisation
(according to our theory, a > 10_3) in a quasiabsolute
absence of free electrons. The search for conditions in
which all the electrons are attached to an electronegative
gas, is itself a difficult problem [17] The work was supported
by the Russian Fundamental Research Foundation, grant
93-02-16872.
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