
Physics-Uspekhi 31(3) 2 2 9 - 2 4 6 (1994) ©1994 Jointly Uspekhi Fizicheskikh N a u k and Turpion Ltd 

REVIEWS OF TOPICAL PROBLEMS PACS numbers: 72.15.Eb; 74.70.Ad; 61.72.Bb; 72.10.Fk 

Transport phenomena in metals with quantum defects 

A I Morozov, A S Sigov 

Contents 

1. Introduction 229 
2. Infrared renormalisations 230 

2.1 Infrared renormalisations in an ideal crystal; 2.2 Infrared renormalisations in the case of localised defecton states; 
2.3 Infrared renormalisations for a two-level system 

3. Clustering of mobile defects in metals 236 
3.1 Long-range part of defecton-defecton interaction and the existence of bound states; 3.2 Clustering of defects 

4. Transport coefficients in metals with quantum defects 239 
4.1 Metal with free defectons; 4.2 Metal with localised defecton states; 4.3 Metal with two-level systems 

5. Summary 244 
5.1 Conclusions; 5.2 Proposals 
References 245 

Abstract. The in teract ion of q u a n t u m defects (defectons) 
with the conduc t ion electrons is considered. A systematic 
a l lowance is m a d e for infrared renormal i sa t ions which are 
due to this in teract ion and which influence significantly the 
width of the energy b a n d of defectons and their 
con t r ibu t ion to the physical p roper t ies of a meta l . A n 
analysis is m a d e of the in teract ion of defectons with one 
ano the r and with other defects of the crystal lattice of a 
meta l . The processes of q u a n t u m defect clusterisat ion due 
to this in teract ion are studied. The t empera tu re depend­
ences of the t r anspor t coefficients are derived b o t h for a 
meta l con ta in ing b o t h free defectons and two-level 
systems, which appear in a n u m b e r of cases when a 
q u a n t u m defect is cap tured by a heavy immobi le impur i ty . 

1. Introduction 
It is well k n o w n tha t m a n y low- tempera ture physical (for 
example, t r anspor t ) proper t ies of a meta l are governed by the 
na tu re and concent ra t ion of impuri t ies . Interst i t ial impuri t ies 
m a y undergo t rans i t ions from interstices they occupy initially 
to adjacent ones and, in general , this can occur by above -
barr ier and tunne l processes. Since the tunnel l ing probabi l i ty 
decreases exponential ly on increase in the impur i ty mass , it is 
negligible for heavy impuri t ies , so tha t a t rans i t ion of this 
kind requires an act ivat ion energy of the order of 0.1 - 10 eV. 
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At low tempera tu res the probabi l i ty of such a j u m p is 
negligible dur ing a typical measurement t ime. This is the 
reason why such poin t defects are regarded as frozen-in at 
certain pos i t ions when theoret ical calculat ions are m a d e of 
the proper t ies of a metal . The defects essentially create a 
static field act ing on electrons. The relevant 'c ross ' t echnique 
of calculat ion of the impur i ty scattering t ime is wel l -known 
(see, for example, Ref. [1]). A system of defects of this kind is 
very far from equil ibrium. 

However , some light intersti t ial impuri t ies (hydrogen 
isotopes, hel ium) remain mobi le even at low tempera tu res 
and they tunne l from one equivalent interstice to another . 
Such q u a n t u m defects will be called defectons. In contras t to 
frozen-in defects, they should be regarded as the internal 
degrees of freedom of a crystal and they can reach an 
equil ibrium dur ing the dura t ion of an experiment . 

This difference in the behaviour of defects makes the 
interact ion of electrons with defectons very different from 
the interact ion with frozen-in heavy defects. In the former 
case the interact ion leads to infrared divergences in the 
calculat ion of renormal ised pa rame te r s of the defecton 
subsystem, as first po in ted out by K o n d o [2]. The first orders 
of pe r tu rba t ion theory are insufficient in the calculat ion of 
such renormal i sa t ions . A consistent a l lowance for the 
renormal i sa t ions within the f ramework of the pa rque t 
approx ima t ion leads to a nontr iv ia l t empera tu re 
dependence of the electron-subsystem relaxat ion t ime, 
because of the e l e c t r o n - d e f e c t o n interact ion: ocT ~8, 
where T i s the t empera tu re , g ~ 2N2(0)VQN(0) is the density 
of the electron states on the F ermi surface, and Vo is the ' ba r e ' 
ampl i tude of the scattering of an electron by a defecton. A 
typical value of g is ~ 0 . 1 - 1 and it varies from meta l to metal . 

This t empera tu re dependence of Te,d> related to the evolu­
t ion of the electron cloud a r o u n d a defecton, is the origin of 
the nontr iv ia l t empera tu re dependences of the t r anspor t 
coefficients of a meta l conta in ing q u a n t u m defects in tha t 
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t empera tu re range in which the scattering by defectons is the 
main mechanism of re laxat ion of the electron subsystem. 

The mos t p romis ing objects for the detection of such 
dependences are dilute t rans i t ion-meta l hydr ides . Exper i ­
men ta l observat ions of these dependences are h indered by 
the clusterisation of defectons which occurs at low t empera ­
tures and which is due to their interact ion with one ano ther or 
with heavy immobi le impuri t ies . However , in some cases the 
capture of a defecton by such a heavy impur i ty gives rise to a 
two-level system and a defecton par t ly re tains its mobil i ty 
even below the clusterisation t empera tu re . Nont r iv ia l 
t empera tu re dependences can be observed in this case as well. 

This review is divided into three par t s . The first pa r t 
(Section 2) deals with infrared renormal i sa t ions of the 
pa rame te r s of the defecton subsystem and of the poten t ia l 
of the e l e c t r o n - d e f e c t o n interact ion. 

The second pa r t (Section 3) discusses the clusterisation of 
mobi le defects. 

The third part (Section 4) is devoted to studies of anomalies 
of the t ranspor t coefficients of metals with q u a n t u m defects. 

The summary completes the review with our conclusions 
and proposa l s . 

2. Infrared renormalisations 
2.1 Infrared renormalisations in an ideal crystal 
The fundamenta l p rob lems of q u a n t u m diffusion were 
discussed in the p ioneer ing paper of A F Andreev and 
I M Lifshitz [3] publ ished in 1969. In par t icular , they drew 
a t tent ion to the c i rcumstance tha t at low tempera tu res a 
q u a n t u m defect in an ideal crystal is completely delocalised 
and can be described by a Bloch wave function. Such a 
descript ion is valid in the range of t empera tu res in which the 
mean free p a t h Id of defectons exceeds considerably the 
in tera tomic spacing d. If the opposi te is t rue , the 
q u a s i m o m e n t u m becomes a ' poo r ' q u a n t u m number and 
the coord ina te representa t ion is m o r e acceptable. 

W e shall consider a q u a n t u m defect in an ideally per iodic 
poten t ia l of the crystal lattice. A n interstice then represents a 
po ten t ia l well for a defecton. As a rule, such a well conta ins 
several local v ibra t ional levels of q u a n t u m defects. Each such 
level creates a n a r r o w defecton b a n d because of tunnell ing. 
The small mass of a q u a n t u m defect means tha t the first 
excited level is separated from the g round state by an energy 
of the order of 0.1 eV [4], so tha t it is permissible to ignore the 
influence of higher levels in studies of low- tempera ture scat­
ter ing processes. W e shall unde r s t and the 'defecton b a n d ' to 
be a b a n d which is formed from the g round vibra t ional level. 

In bcc, fee, and hep metals there are several t e t rahedra l 
interstices for every site a tom and in bcc metals there m a y be 
also several oc tahedra l interstices. Therefore, a local energy 
level creates several defecton b a n d s [5]. However , a l lowance 
for several defecton dispersion laws, separated from one 
another by an energy of the order of (or less than) the defecton 
b a n d width, complicates greatly the calculat ions wi thout 
altering the physical na tu re of the phenomena . W e shall 
therefore consider just one nondegenera te defecton band . 

The Hami l t on i an of free defectons is 

Hd = ^CD(k)c+(k)c(k) , (2.1) 
k 

where co(k) is the dispersion law and c+(k) and c(k) are the 
defecton creat ion and annihi la t ion opera tors . Summat ion 
over k is carried out in the first Bril louin zone. 

Defectons interact with p h o n o n s , electrons, with one 
another , and with other lattice defects. W e shall consider 
first the infrared renormal i sa t ions in an ideal crystal with an 
extremely low concent ra t ion of q u a n t u m defects when their 
interact ion with one ano ther and with other defects can be 
ignored. 

The interact ion of defectons with p h o n o n s causes 
defecton damping and gives rise to the po la ron effect, which 
is the na r rowing of the defecton b a n d because of the 
deformat ion of the crystal lattice a r o u n d a defect. The new 
width of the defecton b a n d £o is [6] 

eo = £ o o e - 5 ( r ) , (2.2) 

where eoo is the width of the defecton band in the absence of 
strains and S is of the order of S ~ W Q / W Q , where uo is the 
displacement of the site a toms nearest to a defect and wo is the 
amplitude of the zero-point lattice vibrations. At temperatures T 
much lower than the Debye temperature 6 the value of S(T) 
becomes constant. We shall consider only that range of tempera­
tures, because if T ^ 0, the phonon contribution to relaxation of 
the electron subsystem exceeds the corresponding contribution 
of quantum defects. Therefore, we may assume that So = const 
at T <̂  6 and co(k) in Eqn (2.1) is the dispersion law of defectons 
which allows for the de fec ton -phonon interaction. 

In n o r m a l metals at t empera tu res T <̂  6 the main 
cont r ibut ion to the damping of defectons comes from their 
scattering by the conduct ion electrons [7] and the p h o n o n 
cont r ibut ion to re laxat ion of the defecton subsystem 
considered earlier [3] m a y become impor t an t only in a 
super-conductor at t empera tu res T <^TC (Tc is the 
superconduct ing t ransi t ion tempera ture ) , when the number 
of electronic excitat ions is exponential ly small. 

W e shall n o w consider the electron - defecton interact ion. 
W e shall investigate the range of low tempera tures when 
q u a n t u m defects in a meta l are delocalised and are described 
by the Bloch wave functions. 

The Hami l t on i ans of the conduct ion electrons He and of 
the electron - defecton interact ion He-d are 

He = Y^ s(k)a+(k)a(k), (2.3) 
k 

ne-d= ^ V0(q)a+(kf-q)c+(k+q)c(k)a(kf), (2.4) 
k,k',q 

where s(k) is the dispersion law, a+(k) and a(k) are the 
second-quant isa t ion opera to r s of the conduct ion electrons, 
and Vo(q) is the ba re ampl i tude of the scat tering of an 
electron by a defecton. 

The to ta l Hami l ton i an of the system under discussion is 
the sum of Hd, 7~te, and 7Ye-d-

W e shall consider the e l e c t r o n - d e f e c t o n interact ion on 
the basis of the t empera tu re d iagram technique [1]. W e shall 
assume tha t defectons obey the F e r m i statistics. This 
assumpt ion is no t essential, because we shall as a rule 
consider a nondegenera te gas of defectons and the 
Bo l t zmann limit is the same for the F e r m i and Bo l t zmann 
statistics. 

The zeroth-order Green functions of electrons and 
defectons, which will be represented by thin con t inuous and 
dashed lines, are respectively: 

G0(k, ek) = [isk -E(k)+v\-\ (2.5) 
W0(k, ek) = [ i f i * - G ) ( * ) + C ] " \ (2.6) 
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where sk = %T(2k + 1) is the M a t s u b a r a frequency, and \i 
and £ are the chemical potent ia ls of electrons and defectons. 
The interact ion Vo(q) is represented by a wavy line. 

W e shall first discuss the defecton self-energy pa r t sk) 
on the assumpt ion tha t the react ion of the defecton on the 
electron subsystem can be ignored because of the low 
concent ra t ion of defectons. 

The graph shown in Fig. l a shows only the renormalisation 
of £, whereas the graph in F ig. lb gives not only the renormalisa­
t ion of £, bu t also the contr ibut ion m a d e to the defecton 
damping [7]. The contr ibut ion of this d iagram to sk) is 

Xl(ksk) = -2T: 
dqdk' 

~(2nf 
\Vo(q)\2G0(k'-q,em-mn) 

xG0(k', em)W0(k - q, ek - con). (2.7) 

Figure 1. Diagrams of the self-energy part of the defecton Green function 

After summat ion over the frequencies we find tha t 

Xi (*, ek)=2\*^\Vo(q)\ 
J ( 2 7 1 ) 

n(k' -q)[l- n(k')} 
O (2.8) 

isk - s(kf) + s(kf-q)-<o(k-q) + C 

where 

n{k) = {1 +exp[(e(fc) - ^ T " 1 ] } - 1 (2.9) 

is the F e r m i electron dis t r ibut ion function. 
The imaginary par t of X\ c a n D e found by analytic 

cont inua t ion of Xi(k, sk) from poin ts s = isk to the real pa r t 
and integrat ion near a pole . If T e 0 , the value of co(k) can 
be ignored in compar i son with the characterist ic values 
\e(k f)-s(kf -q)\~ T, so tha t 

I m x i = -ngT, (2.10) 

where 

dk dkf\V0(k -k')\2 

J ( 2 7 1 ( 2 7 C ) 6 | V e ( * ) | . | V e ( O I 
(2.11) 

and integrat ion with respect to k and k' is carried out over the 
F e r m i surface. 

If T <̂  So, the imaginary par t is of the order of 
Imxi = —KgT2/so, since the^electron q u a s i m o m e n t u m can 
change only by the value k ~ kB(T/so)1/2, which is the 
q u a s i m o m e n t u m of a defecton with a the rmal energy T (&B 

is the Bril louin quas imomen tum) . This leads to a reduct ion in 
the phase vo lume of the final states of an electron and to a 
faster fall of I m ^ i with t empera tu re . 

In a superconduc tor the number of electronic excitat ions 
decreases rapidly as a result of cooling. At t empera tu res 
T <^ TC9 where Tc is the superconduct ing t ransi t ion 
t empera tu re , this number is exponential ly small. W e can 
calculate %i(k, sk) for a superconductor if, in addi t ion to the 
loops formed by the n o r m a l Green functions of electrons 
Go(k, sm) (Fig. lb ) , a l lowance is m a d e for the loops with the 
a n o m a l o u s Green functions of electrons F(k,em) and 
F + (k,sm). In the absence of an electromagnet ic field the 
Green functions of electrons in a superconductor are 

F(k, sk)=F + (k, sk) 
e> + (e(k)-ii)2+A2 

G0(k, ek) = 
isk + s(k) - \i 

'sl + (s(k)-n)2 + A2 

(2.12) 

(2.13) 

where A is the gap in the spectrum of electronic excitat ions 
[1]. The a n o m a l o u s Green functions m a k e a cont r ibut ion to 
Xi(k, sk) shown in Fig. l c and the con t inuous curves with two 
incoming and outgoing a r rows cor respond to the a n o m a l o u s 
Green functions F(k, em) and F + (k, em). 

The value of X\ (k, sk) for a superconductor is [8, 9] 

tfi(k, sk 

<t t id* 2 |Vo (* i ~k2)\2 

( 2 7 C ) 6 | V S ( * 1 ) | • |Ve(* 2 ) | J 

X j ^ d£ 2 v(£i )v(£ 2 ) 
(ei) [ 1 - / 1 ( 6 2 ) ] (Sis2-A2) 

- co(k + k\ — # 2 ) + £ 1 — £ 2 

+ 

+ 

+ 

w ( e 2 ) [1 - w ( e i ) ] ( e i e 2 - A 2 ) 

ifi£ — co(k + k\ — k2) — £ 1 + £ 2 

w ( e i ) w ( e 2 ) (siS2 + A2) 

isk — co(k + k\ — k2) + £ 1 + £ 2 

[ l - / l ( f i l ) ] [1 -n(s2)} ( £ i £ 2 + ^ 2 ) l ^ 

-I -k2) - f i i - £ 2 J ' ifî  — co(k +k\ 

A2)~l/2 and E0 is the half-width of the where v(e) = (fi2 

electron band . 
If the imaginary pa r t x\ (k, fi) is ob ta ined from Eqn (2.14), 

the result is 

I m x i ( r ) = - 2 T U ^ { 1 + exp [A(T)T ~l]yl . (2.15) 

W e are cont inuing to assume tha t m a x ( r , / l ) > e 0 . W e 
shall n o w consider the real pa r t of x(ki8)- In tegra t ion in 
E q n s (2.8) and (2.14) over the range of values of A: 1 and &2 far 
from the F e r m i surface, in combina t ion with the 
renormal i sa t ion of rj, gives — as demons t ra ted by K o n d o 
[2] — also the real pa r t Xi(k,e) dependent on k and s and the 
na tu re of this function is largely determined by the dispersion 
law of defectons. He re Xi(kis) is the result of analytic 
cont inua t ion of the function Xi(k, ek) from the po in ts s = isk 

to the real axis. 
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If T > 80, the answer is readily obta ined by expanding the 
denomina to r of Eqn (2.8) in powers of s and of [co(k) — £]. 
With logar i thmic accuracy, i.e. if we al low only for the te rms 
leading in \n(E0/T), the result is 

R e * i ( * , 8 ) = 5 C - [ ^ ( 8 + 0 - / i ] l n ( £ 0 r - 1 ) , (2.16) 

where 8£ is the result of renormal i sa t ion of the chemical 
po ten t ia l and 

J (2ri 
d * i d * 2 | V o ( * i - * 2 ) f 

(2nY\We(kl)\'\We(k2)\ 
co(k-ki +k2), (2.17) 

where integrat ion over k\ and k2 is carried out over the F ermi 
surface. 

If the dispersion law co(k) is quadra t ic , the integral is 
I\ = gco(k), and in the t ight-binding case [2] it becomes 
I\ = mco(k), where m is given by [2, 10] 

AkAk'\Vo{k-k')\2 cos [(A: -k')-a] 

(27i)6|V£(fc)|-|V£(fc')l 
(2.18) 

and a is the posi t ion vector connect ing two nearest interstices 
of a given type. A m o r e r igorous calculat ion in the case of an 
a rb i t ra ry relat ionship between 80 and T gives, instead of 
\n(E0/T) in Eqn (2.16), l n [ £ 0 / m a x ( r , 8 0 ) ] for a n o r m a l 
meta l and \n[E0/m&xfT, 80, A)] for a superconductor . The 
logar i thmic divergence for a superconductor is related to the 
last te rm in the braces in E q n (2.14). Similar logar i thmic 
te rms appear also when correct ions to Vo(q) are calculated. 

In general , the logar i thm does no t conta in 80 bu t 
8 O ( ^ F A B ) 2 J where kF is the F e r m i m o m e n t u m , bu t for metals 
we have &F ~ &B> so tha t we can drop the factor (&F /kB)2. 

If the scattering of an electron by a defecton is 
accompanied by the t ransi t ion of the latter to the next 
v ibra t ional level, the logar i thmic divergence in E q n (2.16) is 
cut off no t at m a x ( r , 8 o ) , bu t at the difference Ha>o between 
the v ibra t ional energies. Since t empera tu res T <̂  9 we have 
\n(E0/hcoo) <^ \n[E0/m&xfT, 80)], we shall ignore the 
cont r ibut ion m a d e to Re#(A;,8) by t rans i t ions between the 
v ibra t ional energy levels of a defecton. 

The infrared divergence of e) is related to the 
presence of a steep edge of the F e r m i electron dis t r ibut ion, 
i.e. it is related to the existence of e l e c t r o n - h o l e pai rs with a 
low energy, and is cut off at a value cor responding to 
spreading of this edge T or at 80. The energy of e l e c t r o n -
hole pai rs and, consequent ly , the logar i thmic divergence are 
limited from be low by the value of 2A in the case of 
superconductors . 

The s t rong renormal i sa t ion of the defecton Green 
function is a consequence of the electron po la ron effect: the 
existence of an electron cloud a r o u n d a defecton alters 
considerably its characterist ics. 

It seems desirable to sum up all the mos t divergent te rms 
of the pe r tu rba t ion theory series and go beyond the 
const ra in ts set by g\n[E0/max(r,80)] <̂  1. A n a t t empt to 
carry out such summat ion was unde r t aken in Refs [11, 2]. 
However , the t rea tment given there suffers from a number of 
serious shor tcomings . It is well k n o w n tha t the pa rque t 
d iagrams conta in the largest degree of a diverging 
logar i thm. The first pa rque t d iagrams which domina te the 
cont r ibut ion to x(&,e) and the renormal i sa t ion of Vo(q) in a 
n o r m a l meta l are shown in Figs l b , Id , l e , and Fig. 2, 
respectively. 

Figure 2. Diagrams of the vertex of the electron - defecton interaction 
V(q). 

In calculat ion of the to ta l ampl i tude of the scattering of 
an electron by a defecton V(q) in Ref. [11], which has been 
used in later papers , it is assumed tha t the main cont r ibut ion 
to the renormal i sa t ion of Vo(q) is m a d e by the d iagrams in 
which all the electron loops enclose a ' ba re ' vertex. 
Al lowance is m a d e for n o n p a r q u e t d iagrams of the type 
shown in Fig. 3, bu t no t for pa rque t d iagrams of the type 
shown in Fig. 2b [9]. 

Figure 3. Nonparquet diagram for the vertex of the electron-defecton 
interaction V(q). 

A consistent a l lowance for the pa rque t d iagrams has been 
made [12-14] in a similar, in respect of the technique, problem 
of calculation of the anomal ies of the absorp t ion of X-rays in 
metals and their emission from metals . As demons t ra ted in 
these papers , logari thmically diverging correct ions of the 
order of g1/2 \n[E0/max(T, 80)] to Vo(q)9 which originate 
from the diagrams shown in Fig. 4, compensate one another . 
Such compensat ion occurs in all the orders of per turbat ion 
theory. Therefore, the first nonvanishing terms containing a 
large logar i thm are of the order ofg\n[E0/max(r,£o)]. 

Summat ion of the pa rque t d iagrams, carried out in a 
manne r similar to tha t adop ted in Refs [ 1 2 - 1 4 ] , yields the 
following expressions for the renormal ised Green function of 
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Figure 4. Diagrams leading to logarithmically diverging corrections of the 
order of G 1 / 2 l n [ £ 0 / max(s 0 , T)] to the vertex Vo(q). 

defectons \l/(k,ek) and for the to ta l vertex of the electron-
defecton interact ion V(q): 

Y(k, ek) = [\Bk-a>(k)+Q-
m a x ( r , SQ) 

(2.19) 

where co(k) is the renormalised dispersion law of defectons and 

Eo 
V(q) = V0(q) 

m a x ( r , e 0 ) 
(2.20) 

The d iagrams for the self-energy pa r t of the defecton 
Green function %(k, ek) and V(g) are p lo t ted in Figs 5 and 6, 
respectively. The double dashed line cor responds to W(k, ek), 
and the wavy line with a black tr iangle at its end is V(q). 

In these calculat ions we need to allow for the fact tha t the 
divergence is cut off at m a x ( r , e 0 , rj), where rj is the highest of 
the frequencies tha t occur in the Green function vertex, 
measured from the level of the cor responding chemical 
potent ia l . W e shall be interested in the values of the Green 
function near the mass surfaces where r\ ~ T. 

In spite of the fact tha t no t all the pa rque t d iagrams are 
summed in Refs [2, 11], the final result is correct. 

The analysis repor ted in Refs [ 1 2 - 1 4 ] applies to a 
dispersion-free hole (electron) at a deep level, so tha t 
renormal i sa t ion of the dispersion law has no t been 
considered. Since the width of the defecton b a n d is the mos t 
impor t an t pa ramete r in an investigation of the behaviour of a 
q u a n t u m part icle, we shall deal in greater detail with the 
renormal i sa t ion of the dispersion law. 

The W a r d identi ty makes it possible to find the 
relat ionship between the quan t i ty 

dx(k, em) = dx(k, em) 
dk dco(k) 

and a certain vertex A (k, sm), which differs from V(q) because 
instead of the ' ba re ' vertex it conta ins the defecton velocity 
v = dco(k)/dk (see, for example, Ref. [15]): 

dxik.Sm)^ 
A(k,sm) = v 1 + 

dco(k) 
(2.21) 

The B e t h e - S a l p e t e r equat ion for A(k,em) shown 
graphical ly in Fig . 7 is 

' dp dp' 
A(k, ek) 2 T 2 ^ f\\2 -\v«{p-p')\ 

xGo(p,sm)Go(pf,sn)¥2

0(k -p+pf,sk -8m+sn) 

xA(k-p+p', 8k-8m+8n). (2.22) 

Figure 5. Diagram of the self-energy part of the defecton Green function 

x(M*)-

Figure 6. Diagram of the complete vertex of the electron-defecton 
interaction. 

Figure 7. Diagram of a vector vertex. 

Al lowance is m a d e here for the fact tha t the renormal isa t ion 
of the defecton Green functions compensa tes for the 
renormal i sa t ion of Vo(q) and, as shown below, we can ignore 
the change in the dispersion law of defectons in the 
denomina to r of i / ^ 0 ( A : , ) when the pa rque t approx imat ion 
is used. 
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W e shall n o w compare the ladder d iagrams for the vertex 
A(k, Sk) with the cor responding d iagrams for V(k), [they are 
obta ined after compensa t ion for the renormal i sa t ions of 
Y0(k,Sk) and Vo(k); see Fig. 6]. 

If the dispersion law of defectons is quadra t ic , the te rms 
in the series for A(k, Su) are p r o p o r t i o n a l to the te rms of the 
cor responding series for V(k): 

A(k,sk) v 
V(k) V0(k)' 

W e finally obta in 

1 + -
dco(k) [max(r ,8o)_ 

(2.23) 

(2.24) 

It therefore follows tha t if the dispersion law of defectons 
is quadra t ic , there is no renormal i sa t ion of this law and the 
electron - defecton interact ion changes only the residue of the 
Green function of defectons [2]. 

In the t ight-binding approx imat ion , which cor responds 
to a real s i tuat ion, each integrat ion with respect t o p a n d p ' 
gives a factor m in the series for A(k,Sk) and a factor g in the 
series for V(k). Therefore, the quant i ty A(k,Sk) can be 
obta ined from V(k) by the replacement of Vo(k) with v and 
of g with m: 

1 + dx(Mfc) 
dco(k) m a x ( r , eo) 

The final result obta ined subject to E q n (2.19) is 

m a x ( r , £o)l ^ 
co(k) = co(k) 

where 

P = 

(2.25) 

(2.26) 

(2.27) 

K o n d o [2] gave the correct final expressions for co(k), bu t 
a r igorous derivat ion of this result is missing. 

As expected, the po la ron effect reduces the width of the 
defecton b a n d : 

s0 = s0 

m a x ( r , SQ) 
(2.28) 

At T = 0, on the assumpt ion tha t all the electrons can 
ma tch adiabat ical ly the mo t ion of a q u a n t u m defect, we find 
tha t 8o vanishes. This is wha t is k n o w n as the Ande r son 
'o r thogonal i sa t ion ca t a s t rophe ' [16]. However , electrons of 
energy less t han 8Q cannot follow adiabat ical ly the mo t ion of 
a defecton and, therefore, the width of the defecton b a n d 
remains finite. 

Exper imenta l results discussed later can be used to 
demons t ra t e tha t the value of 8o for hydrogen in some 
t rans i t ion metals is of the order of 1 - 10 K . The value of 8o 
for deuter ium is approximate ly an order of magn i tude less. 

In some cases a self-consistent solution has been obta ined 
[10, 17, 18] by replacing So in the expression ( r , 8o ) with £o> 
which cor responds to al lowance for the renormal isa t ion of 
the dispersion law in the Green functions of defectons when 
integrat ion is carried out in E q n (2.22) and is equivalent to 
the replacement of ft with j8/(l - j8) in E q n (2.28) if T < e 0 . 
However , this replacement exceeds the precision of the 
pa rque t approx ima t ion which is valid in the range where 

^ l n j ^ o l m a x ^ ^ o ) ] " 1 } < 1 . (2.29) 

Yu M K a g a n and N V P r o k o f 'ev used the adiabat ic 
approx ima t ion to obta in the following est imate of the 

renormal ised width of the defecton b a n d [51]: 

8o = fiad[max(8o,7,)(^fi)o)"1]/,

J 
(2.30) 

where coo is the local frequency of v ibra t ions of a defect at an 
interstice. The apparen t discrepancy between E q n s (2.28) 
and (2.30) is due to the different selection of the initial 
approx ima t ion for the defecton b a n d width. If 8o 
cor responds to defectons tha t do no t interact with electrons, 
the adiabat ic approx imat ion allows for the interact ion with 
electrons the energy of which exceeds hcoo. Therefore, (see, 
for example, Ref. [19]) 

8 a d = So(HcD0E0-lf, (2.31) 

and E q n s (2.28) and (2.30) are equivalent within the range of 
validity of the pa rque t approx imat ion . 

Y a m a d a and his colleagues [18, 20, 21] have investigated 
the probabi l i ty of a t ransi t ion of a q u a n t u m defect, localised 
(in the absence of disorder) at the m o m e n t t = 0 in a given 
interstice, to a state which is localised in the next interstice. By 
analogy with Ref. [14], the dependence of the probabi l i ty of a 
j u m p on the phase shift of the scattered wave of an electron 
on the F e r m i surface is found for the case when there is only 
s-scattering of electrons by defectons. This is done for an 
a rb i t ra ry s trength of the d e f e c t o n - e l e c t r o n interact ion. In 
the range where the interact ion is weak [N{0)VQ ^ 1] the 
expression obta ined is similar to Eqn (2.28). Taken as a 
whole , this dynamica l p rob lem is no t equivalent to tha t 
discussed here. 

The above discussion is based on the assumpt ion of the 
b a n d na tu re of defecton mot ion . The condi t ion l& > d is 
equivalent to Tdfio ^ 1 (it is assumed tha t H = 1), where Td is 
the mean free t ime of a defecton given by 

- 2 I m x ( * , e ) . (2.32) 

W e can easily see tha t this condi t ion is satisfied by n o r m a l 
metals at t empera tu res 

T < 
80 

2ng 
(2.33) 

which for real values of g cor responds to T <^ 8Q-
In the superconduct ing phase we have Tdfio > 1 at 

t empera tu res T <^ Tc. In this t empera tu re range the p h o n o n 
cont r ibut ion to T ^ 1 m a y p redomina te . The order of 
magn i tude of this cont r ibut ion is 

1 \ 6 (2.34) 

The t empera tu re dependence of the cor responding t ime was 
found by Andreev and Lifshitz [3]. 

On increase in t empera tu re the mean free p a t h of a 
defecton becomes less t h a n the in tera tomic spacing and the 
mot ion of a defecton becomes of hopp ing na tu re . 

A satisfactory microscopic descript ion of defectons with 
control led pa rame te r s of the adop ted approx ima t ions is no t 
yet available for this range of t empera tures . 

W e shall n o w consider the infrared renormal i sa t ions in 
the simpler case when the defecton states are localised 
because of statistical disorder associated with the nonidea l 
na tu re of a crystal. 

2.2 Infrared renormalisations in the case of localised 
defecton states 
The presence of defects in a crystal gives rise to r a n d o m shifts 
of the energy levels at interstices. W e shall consider the 
si tuat ion when the shift { is much greater t han So; in this 
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case a defecton is localised to a good accuracy in a specific 
interstice. W e shall also assume tha t £ <̂  E0 and tha t 
electrons in a meta l are delocalised and can be described by 
the Bloch functions [22, 23]. 

The Hami l t on i ans Hd and He-d, considered in the site 
approx ima t ion for defectons, are 

nd = Y^ w(n) c+(n)c
 w + ? o Yl c+(n+6)c (*)' (2-35) 

O a + ( * ) c + ( i i + a)c(ii)a(*') 
« e - d = X) V ( 0 ) ft 

k,k' ,n, S 

+ £ (2-36) 
k,k'\n 

where 

V{Z>(k-k') = {n\Vo{k-k') exp[i ( * - * ' ) * ] 1*0, (2.37) 

n is a three-dimensional vector which is an integer and which 
specifies the posi t ion of an interstice; W(n) is the energy of a 
defecton at an interstice; c + (n) and c(n) are the second-
quant i sa t ion ope ra to r s of defectons in the site representa­
t ion; to is a mat r ix element of the tunnel l ing process; 6 has a 
range of values for the nearest ne ighbours ; |w) is the xjj 
function of a defecton at an interstice n, specified in the 
coord ina te space /? . 

The Hami l t on i an Hd allows for the presence of d iagonal 
disorder. In the absence of disorder, when W(n) = const and 
all the interstices are equivalent , Hd becomes d iagonal in the 
Bloch function representa t ion. This case is discussed in the 
preceding section. 

The typical value of £ is 

Z = (\W(n)-W(n + S)\), (2.38) 

where the angular b racke ts denote averaging over n and 6. In 
view of the inequali ty { > to, to the overlap integral for the xjj 
functions of the states, centred at adjacent interstices, 
conta ins a small pa rame te r to/£, and Vnl+s(k) is of the 
order of 70V®(k)/Z. 

Therefore, the main cont r ibut ion to the infrared 
renormal i sa t ion of V^(k) and to the Green function of 
defectons 

V{:Uzk) = [iek-W(n) + Q - 1 (3.29) 

is m a d e by the term in E q n (2.36) which is d iagonal in n. As in 
the absence of disorder, the first t e rms of the pe r tu rba t ion 
theory series for ipnn(sk) and Vny(k) are represented by the 
d iagrams in Figs 1 and 2, where all the wavy lines (with the 
exception of the ' ba re ' vertex in Fig. 2) cor respond to 

A n analysis similar to tha t given in the preceding section 
and carried out in the pa rque t approx imat ion shows tha t , to 
within {toI£)2, w e have 

Vn,n(k) = V^(k)(E0T-lY, 

Vn,n+s(k) = V^n+s(k) 
Eo 

_max(r, £). 

t = t0 

m a x ( 7 \ {)• 

E0 

(2.40) 

(2.41) 

(2.42) 

(2.43) 

Calcula t ion of the infrared renormal i sa t ions in the 
in termedia te case t ~ and the system is close to the 
Ande r son localisation threshold is a very difficult 

ma themat i ca l task, bu t we can assume tha t in this range of 
values the renormal i sa t ions are of the same na tu re as in the 
two limiting cases. 

It is moreover reasonable to assume tha t the infrared 
renormal i sa t ions of a system of defectons localised no t 
because of statistical disorder, bu t because of s t rong 
dissipation, are similar to those discussed above. 

W e shall n o w consider the special case of localised 
defecton states, i.e. we shall consider a two-level system 
which has been studied on very m a n y occasions. 

2.3 Infrared renormalisations for a two-level system 
K o n d o began his invest igations from a two-level system 
(TLS) in which a q u a n t u m defect tunnels between two 
equivalent equil ibrium posi t ions [24]. The expression for the 
tunne l mat r ix element is then similar to E q n (2.28). The 
dynamics of such a T L S interact ing with a dissipative 
envi ronment has been investigated extensively by the 
functional in tegrat ion m e t h o d s (for a review see Ref. [19]). 
It has been assumed tha t the dissipative envi ronment 
represents a set of independent h a r m o n i c oscillators which 
interact linearly with the T L S . The Hami l ton i an of such a 
' s p i n - b o s o n ' system is 

(2.44) 

where JQ is the ' ba re ' splitting of the levels in a T L S as a result 
of the tunnell ing; { is the T L S asymmetry ; ax and az are the 
Paul i matr ices; the eigenvalue oz = ± 1 cor responds to a 
defect localised in the right (left) m i n i m u m of the T L S ; m a , 
x a , p a , and (Da are the mass , coordina te , m o m e n t u m , and 
frequency of a given ha rmon ic oscillator; the summat ion is 
carried out over all the oscillators; a is the distance between 
the potent ia l energy min ima of the T L S . The quant i ty C a 

describes the coupl ing between the T L S and an oscillator. It is 
usua l to assume tha t the envi ronment can be described by a 
spectral function of the type 

f H =^V] — 5 ( r a - w « ) = Arte"*'*'. (2-45) z a macoa 

where A = const, coc is the limiting frequency of the 
oscillators, and the power exponent s is selected from 
physical considerat ions . In the case of the interact ion with 
p h o n o n s in a three-dimensional crystal, we have coc = 6, and 
s = 5 or 3, and the tunnel l ing occurs between crys ta l lographi-
cally equivalent or inequivalent interstices, respectively. 

It follows from pe r tu rba t ion theory tha t the interact ion of 
a q u a n t u m defect with electrons is equivalent to the 
interact ion with bosons when we have coc = E0 and s = 1 
( T o m o n a g a bosons) [17]. The case s = 1 is k n o w n as the 
ohmic dissipation. 

Func t iona l integrat ion with respect to variables of the 
dissipative envi ronment yields the effective act ion on a 
q u a n t u m defect, which determines its behaviour . 

Calcula t ions show tha t at T = 0 a defect remains localised 
in one m i n i m u m if s < 1 and also for s = 1, provided the 
pa ramete r P'=Aa2/h exceeds uni ty . If fi' < 1, a 
renormal ised tunne l mat r ix element J/2 is given by 

y = / o ( W ) / , 7 ( w , ' ) . (2.46) 
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However , as shown earlier [25, 26], the above scheme 
does no t al low for the react ion of a T L S on the the rmos ta t , 
a l though such neglect is permissible only if fi' <̂  1. The actual 
localisation of a part icle in one of two equivalent min imal 
finite depths is unlikely even in the s t rong dissipation case. 

W e shall n o w consider the interact ion of electrons with 
two-level systems. 

The Hami l t on i an of an isolated T L S is 

^ T L S = - \ 4ci +1 c+c2 +
 Jj- ( C + C 2 + c+a), (2.47) 

where JQ and £ are defined above, whereas C + , q are the 
second-quant isa t ion opera to r s for a defecton in the j-th 
potent ia l well. 

The interact ion of a T L S with electrons is described by the 
Hami l t on i an 

fte-TLS = ^2v0(k-kf)a+(kf)a(k) 
k,k' 

xexp[i(k-k'yRj]c+cJ9 (2.48) 

where Rj are the coordina tes of the T L S min ima. 
After d iagonal isa t ion of the Hami l ton i an 7 Y T L S we have 

J =1,2 Z 

where 

(2.49) 

E=(e+J2

0y/2, 

c\ = ac\ — bc2, c2 = ac2 + bc\, a = [0, 5 (1 + £E )] 

b= [0 ,5(1 -£E~l)]l/2 . (2.50) 

In the new basis the Hami l ton i an 7Y e -TLS becomes 

fte-TLS = y^{k -k')a+{k')a{k){QxV[i{k -k'yR{\ 
j,k,kf 

x [ a 2 c J" c\ - \ - b 2 C 2 + ab{c\c\ + c \ c2)\ 

+ exp[i(A; - kfyR2] [a2 C + c2 + b2 c + c\ 

-ab(c + ci+c + c2)]}. (2.51) 

Calcula t ion of the infrared renormal i sa t ions of the ' ba re ' 
Green function of defectons and of Vo(k) for an arb i t ra ry 
relat ionship between J0 and £ simplifies only in the case when 
k?a <̂  1 and a=R2—R\, when we can assume tha t 
exp[i(A: — k f)'(R2 — R\)] = 1. The renormal i sa t ion of the 
Green functions of a defecton, cor responding to two energy 
levels, and of the d iagonal mat r ix element Vjj(q) is described 
by E q n s (2.42) and (2.40), and the difference between m and g 
(i.e. the quan t i ty fi) can be neglected. 

If |1) and |2) are unde r s tood to be the xjj functions of a 
defect localised in the left- and r igh t -hand min ima of a T L S , 
respectively, then the order of magn i tude of the mat r ix 
element is 

vf}{k)~7oE?VY>{k), (2.52) 

so tha t it has been ignored in our calculat ions of the infrared 
renormal isa t ions . 

Vladar and Z a w a d o w s k i [27, 28] have shown tha t 
a l lowance for V f\(k) in the ' n o n c o m m u t i n g ' case, when 

I > - y 2 > - * i ) M > 2 - k ) 

-yf^k-k,) [V™(k2-k) - V™(k2-k)]} r(0) (0 ) / 

1 - n[e(k)] , ^ 
x l-4rr1^ 0 , (2.53) 

co — s(k) 
leads to the appearance of addi t ional infrared divergences, 
since n o w in the absence of the t rans la t iona l invar iance the 
d iagrams shown in Fig. 4 do no t compensa te one another 
fully. This case is similar to the strongly anisot ropic K o n d o 
model . Add i t iona l renormal i sa t ions m a y become significant 
at the K o n d o t empera tu re 

x 0 . 5 + { L / [ 2 ( 2 g ) 1 / 2 ] } 

(2.54) 

if it exceeds E. 
Since the magn i tude of the infrared renormal i sa t ions 

varies with t empera tu re down to T ~ E, it follows tha t 
when r K <̂  E such addi t iona l renormal i sa t ion cannot reach 
the required quant i ty . 

A n est imate of T K ob ta ined in Refs. [27, 28] cor responds 
to the mos t optimist ic selection of the pa rame te r s and gives 
T K ~ 1 K, i.e. of the order of E. However , m o r e realistic 
est imates give T K ^ 0.1 E. 

Therefore, t h r o u g h o u t the investigated range these 
addi t iona l renormal i sa t ions can be ignored. 

3. Clustering of mobile defects in metals 
3.1 Long-range part of the de fec ton-de fec ton interaction 
and the existence of bound states 
The p rob lem of the interat ion of hydrogen a t o m s in a meta l 
mat r ix has been the subject of m a n y invest igations (see, for 
example, the m o n o g r a p h of Alefeld and Volkl [29]). All these 
invest igations have been concerned with jus t one type of the 
long-range interact ion between defects, which is the elastic 
interact ion represent ing an indirect interact ion via acoust ic 
p h o n o n s . The energy of this interact ion is described by the 
expression 

W D A S W = W(b)QR~\ (3.1) 

where R is the distance between the defects, Q is the unit-cell 
volume, and b = R/R. Depend ing on the or ienta t ion of the 
vector b relative to the axes of the crystal lattice, W(b) can 
assume bo th posit ive or negative values. 

The impor t an t role played by another long-range 
interact ion, which is the indirect interact ion via the Fr iedel 
oscillations of the electron density, is poin ted out in Ref. [7]. 
In the case of a spherical F e r m i surface the poten t ia l energy 
of this interact ion is [30] 

Wd(R) = 
QN(0)\V0(2k¥)\2 cos(2k¥R) 

2 7 T 8 2 ( 2 £ F , 0 ) / ? 3 5 

(3.2) 

where ? ( 2 ^ F , 0) is the permitt ivi ty. 
In dealing with the interact ion between defects of 

different type, we should replace the term | ( V 0 ( 2 £ F ) | 2 with 
the term [V0ji(2k¥)V*02(2k¥) + c.c.]/2, where the indices 1 
and 2 apply to impuri t ies of different types. As a result of the 
the rmal smear ing out of the K o h n singularity ?(A:,0)the 
interact ion Wei(R) falls exponential ly over distances 
Ro =ds?/T, where d is the lattice cons tant and 8 F is the 
F e r m i energy [31]. This effect is u n i m p o r t a n t in the range of 
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low tempera tu res under discussion. The statistical disorder 
does not result in exponent ia l damping of We\(R) [32, 33]. 

The resul tant long-range interact ion between impuri t ies 
is given by 

W(R) = Welas(R) + Wel(R). (3.3) 

The value of W(b) varies from 1 eV for heavy intersti t ial 
impuri t ies , down to 10~ 2 eV for hydrogen in a meta l [34]. The 
quant i ty N(0)\V0(2k¥)\2/2%s2(2k¥ ,0) for values of the 
pa rame te r s typical of a meta l a m o u n t s to 1 0 — 2 — 1 eV, 
We\(R) is of the same order of magn i tude as Weias(R). In the 
case of subst i tu t ional impuri t ies an indirect interact ion via 
the conduct ion electrons m a y p redomina te . 

In addi t ion to the interact ion of defects with one another , 
there is also the interact ion with the crystal mat r ix which has 
min ima at the interstices (for intersti t ial impurit ies) . W e shall 
assume tha t these min ima are sufficiently steep and tha t the 
poten t ia l of the mat r ix is much stronger t han W(R). This 
makes it possible to ignore the displacements of the 
equil ibrium posi t ions in interstices caused by the action of 
W(R), compared with a, and consider the p rob lem of the 
dis t r ibut ion of a small n u m b e r of defects between interstices 
subject to a l lowance for the pair interact ion between the 
defects [35, 36]. Na tura l ly , in the case when /? ~ d, we need to 
al low for the shor t - range pa r t of the de f ec ton -de fec ton 
interact ion. 

3.2 Clustering of defects 
Since W(b) and WG\(R) can be either posit ive or negative, 
there is a set of interstices with W(R) < 0 and the state with 
the lowest energy —Wo cor responds to Ro ~ d for k?d ~ 1. 
The shor t - range pa r t of the interact ion between defects m a y 
alter the sign of the interact ion, even in the most 
unfavourab le case, only for several defect posi t ions closest 
to one another . Therefore, all the mobi le po in t defects in a 
meta l and neut ra l mobi le impuri t ies in an insulator should 
form clusters as a result of cooling [35, 36]. 

The clustering m a y result in stratification into phases 
with high and low defecton concent ra t ions and clusters m a y 
form from a finite number of part icles. 

A typical clustering t empera tu re found from a simple 
statistical calculat ion has the following value at low defecton 
concent ra t ions such tha t x <̂  1: 

Tc] = Wo\\nx\ (3.4) 

where Wo is the specific b ind ing energy of defectons in a 
highly concent ra ted phase or in a cluster. 

The p ropo r t i on of free (unclusterised) defectons K is 

K = I 1 + yx exp 
Wo 

(3.5) 

where y ~ 1 if we assume tha t there is only one b o u n d state 
with a specific b ind ing energy Wo or 

1 +yx 
T 

W~0 

exp -
Wr 

concent ra t ions . However , these metas tab le states occur 
relatively frequently, since the b inding of mobi le defects 
into clusters reduces strongly their mobil i ty and increases 
the t ime taken to reach an equil ibrium (relaxation t ime). 

The presence of an interact ion We\(R) oscillating with the 
distance in a meta l can m a k e the following clustering scenario 
energetically favourable: at some characterist ic t empera tu re 
r c i . i the clusters form from several part icles 
(quasimolecules) , bu t at lower t empera tu re T&2 the 
quasimolecules become clustered. A typical dis tance 
between quasimolecules in a growing second-generat ion 
cluster is much greater t han the distance between defects in 
a quasimolecule, which is the reason for the low specific 
b inding energy in a cluster compared with the specific 
b inding energy of defects in a quasimolecule (and, 
consequently, the reason why Tci2 is lower than r c i . i ) . If the 
number of molecules in a second-generat ion cluster is also 
limited, then the next stage of the clustering process begins at 
a lower t empera tu re T&3, etc. 

The format ion of quasimolecules is no t a phase t ransi t ion 
in the t rue sense of the word , since this process occurs in a 
t empera tu re range defined by 

A r = r c i | l n j c | - 1 , (3.7) 

and all the t h e r m o d y n a m i c characterist ics of the system vary 
cont inuously . 

Quasimolecules formed from two hydrogen (deuter ium) 
a t o m s have been observed by the me thod of diffuse elastic 
neu t ron scat tering in the hydr ides of metals of the thi rd 
g roup : L u D x [37, 38], Y H ( D ) X [39, 40], S c D x [41]. The 
hydrogen isotopes occupy the te t rahedra l pores of the hep 
mat r ix of the metal . W h e n a quasimolecule is formed, the 
second hydrogen a tom occupies the second-nearest 
t e t rahedra l po re a long the hexagona l axis, which is 
symmetr ic relative to the nearest site a tom (Fig. 8). 

(3.6) 

O —h A - 2 . 

Figure 8. Tetrahedral interstices in the hep matrix of a metal: (7) site 
atom; (2) tetrahedral interstice; (3) interstices occupied by the formation 
of a quasimolecule. 

if we al low for the presence of a large number of b o u n d defect 
states [36]. 

In any case, the value of K falls exponential ly at 
t empera tu res T < Tc\. 

In the major i ty of cases the phase with clusters formed 
from a finite number of part icles is metas tab le compared with 
large-scale stratification in the phase with high and low defect 

The phase d iagram of the hydr ides of scandium, y t t r ium, 
and some rare-ear th elements is shown in Fig. 9 [36]. The 
fraction of quasimolecules at 400 K is fairly high to prevent 
splitting into h igh- and low-concent ra t ion phases in the range 
x < xcx [39]. The value o f x c r varies from 0.03 for E r H x [42] to 
0.35 for S c H x [43]. In the range 1 5 0 - 2 0 0 K there are 
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0.1 0.3 

Figure 9. Phase diagram of the hydrides of yttrium, scandium, and some 
rare-earth elements. 

anomal ies of the electrical resistivity and specific heat of the 
hydrides , indicat ing clustering of quasimolecules [ 4 2 - 4 5 ] . 

N e u t r o n measurements indicate the absence of a long-
range order in the phase with a high concent ra t ion of the 
hydrogen pairs . Therefore, the t rans i t ion from a lattice gas to 
a lattice liquid occurs in the system of quasimolecules at 
1 5 0 - 2 0 0 K. 

W h e n the concent ra t ion of immobi le defects exceeds 
greatly the concent ra t ion of mobi le defects, the format ion 
of clusters from one immobi le and one mobi le (or several 
mobile) impuri t ies becomes possible. Then x in E q n s 
(3 .4 ) - (3 .7 ) should be replaced with the concent ra t ion of 
immobi le defects and Wo is the b inding energy between 
mobi le and immobi le defects. The example of such clustering 
is the capture of hydrogen by O, N , and C a toms in n iob ium. 
These a t o m s occupy oc tahedra l interstices in the bcc lattice of 
n iob ium and hydrogen a toms are at t e t rahedra l interstices. 
As a result of an interact ion with a heavy impur i ty C, N , or O 
at T < 150 K a hydrogen a tom occupies one of two 
equivalent equilibrium positions corresponding to the two 
nearest tetra-hedral interstices (Fig. 10) [4]. The tunnelling 
between these two equilibrium positions gives rise to a two-
level system (TLS). 

O -L • - 2 , x -3 

Figure 10. Two-level system in a niobium single crystal: (7) niobium 
atoms; (2) atom of a heavy impurity; (3) equilibrium positions of the 
hydrogen atom. 

Anomal ies of the specific heat associated with such t w o -
level systems were first repor ted in Ref. [46] and they have 
since been investigated by measurements of the specific heat 
[47, 48], t he rma l conduct ivi ty [49], in ternal friction [ 5 0 - 5 2 ] , 
and u l t rasonic pa rame te r s [53 - 56]. The fullest informat ion is 
provided by the inelastic neu t ron scat tering me thod [ 5 7 - 6 2 ] . 

6 

- 0 . 6 0 0.6 
Figure 11. Dependences of the intensity of inelastic neutron scattering in 
Nb(NH) 0 .ooo5 on the change in the energy (meV) at different 
temperatures. 

At low tempera tu res there is a clear side peak in the inelastic 
scattering intensity (Fig. 11). The results of these measu re ­
ment s give / = 226 ± 4 |ieV for N b ( O H ) x , J = 165 ± 4 |ieV 
for N b ( N H ) , and J = 1 6 2 ± 4 | i e V for N b ( C H x ) [61] and 
T —> 0 in the superconduct ing phase . The dependence of the 
value of / on the n a t u r e of the heavy impur i ty is evidence of 
different strains in the n iob ium lattice a r o u n d impuri t ies of 
different types [62]. 

In the absence of such strains the width of the free-
defecton b a n d in n iob ium would have been zJ, where z is 
the number of the nearest equivalent interstices. In the 
presence of lattice strains this relat ionship can be used as an 
order -of -magni tude est imate. 

At t empera tu res T > 10 K, when t^J <̂  1, instead of a 
side peak the scat tering spectrum has a quasielastic central 
m a x i m u m of width p ropo r t i ona l to the frequency of 
hydrogen j u m p s between the T L S minima. 

The value of / for deuter ium captured by a ni t rogen 
impur i ty has been found as a result of u l t rasonic 
invest igations [56] and has proved to be / = 0.18 ± 0.01 K. 
Similar two-level systems appear also in t an ta lum, bu t their 
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characterist ics have been investigated much less tho rough ly 
[46, 63, 64]. 

The asymmetry of the resul tant two-level system is 
associated with the influence of the remain ing systems of 
this kind and other crystal lattice defects. W e shall est imate 
this a symmet ry on the assumpt ion tha t it is due to the action 
of 'frozen in ' and r a n d o m l y distr ibuted defects whose 
concent ra t ion is c and tha t the cont r ibut ion of mobi le 
defects to the asymmetry is small compared with the 
cont r ibu t ion of heavy impuri t ies . In the opposi te case the 
collective effects in the system of mobi le defects become 
impor tan t . 

Since b o t h cont r ibu t ions to the long-range interact ion 
between the defects fall with the distance r between them as 
r - 3 , it follows tha t in the range c <̂  1 the dis t r ibut ion of the 
quan t i ty { becomes Lorentz ian with the characterist ic width 
3 of the order of 

S = cW(d). (3.8) 

On the other hand , the scatter of the values of / in a crystal 
with a low defect concentrat ion (c <̂  10~ 2 ) can be ignored [65]. 

A n analysis of the da ta on quasielastic neu t ron scattering 
has been used [60, 62] to calculate the frequency v(0) of j u m p s 
from one interstice to ano ther in the absence of asymmetry . 
The t empera tu re dependence of this quant i ty is p lot ted in 
Fig . 1 2 f o r N b ( O H ) x a n d N B ( N H ) x . 

v/s~l 
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• -Nb(NH)0.ooo5, 
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Figure 12. Temperature dependences of the frequency of jumps of 
hydrogen between minima of two-level systems in N b ( O H ) x and 
N b ( N H ) x ; here, pc is a poly crystalline sample and sc is a single crystal. 

Below 60 K the dependence of v(0) on T is approx ima ted 
satisfactorily by the law v(0) oc T _ 1 and a compar i son with 
the expression for the j u m p frequency 

(see Refs [17, 10]) has m a d e it possible to obta in the value 
fi = 0.055 for hydrogen in n iob ium [60]. Moreover , the rat io 
of the j u m p frequencies for N b ( O H ) x and N b ( N H ) x is in 
good agreement with the rat io of the values of J2 deduced 
from inelastic neu t ron scattering. 

It follows tha t be low 60 K the q u a n t u m diffusion of 
hydrogen in n iob ium is governed by the processes of 
defecton scattering on electrons, whereas be low 60 K the 
interact ion with p h o n o n s begins to play a significant role. 

Two-level systems appear readily also in the hydr ides of 
metals of the thi rd group ment ioned above. U n p a i r e d 
hydrogen a toms are m o r e likely to tunne l to the nearest 
interstice located on the hexagona l axis (F ig. 8) t han to other 
equiva-lent interstices. There is also some similarity between 
two-level systems formed by such two interstices. 
Invest igat ions of scandium hydr ides by quasielastic neu t ron 
scattering [66, 67] have yielded a curve similar to tha t shown 
in Fig. 12. The value of T&J has been compared with uni ty at 
15.7 K and the values of / and fi have been found to be 
0.32 meV and 0.039, respectively. The high value of / is 
associated with shorter, corn-pared with niobium, distance 
between the TLS minima. A mini-mum of the jump frequency 
v(0) has been observed at T = 100 K. 

4. Transport coefficients in metals with 
quantum defects 
4.1 Meta l with free defectons 
4.1.1 Electrical conductivity 
W e shall n o w consider the influence of q u a n t u m defects on 
the electron subsystem of a metal . W e shall first investigate 
the case of free defectons described by the Bloch wave 
functions. W e shall begin with the Hamil tonian of Eqns (2.1), 
(2.3), and (2.4), used in Section 2.1 to s tudy the infrared 
renormal isa t ions in an ideal crystal. However , whereas in the 
case of the infrared renormal isa t ions we have been interested 
pr imari ly in the defecton Green function, we shall n o w 
concentra te our a t tent ion on the contr ibut ion of defectons 
to the self-energy par t of the electron Green function 
Zi(k,ek). 

D i a g r a m s of the type shown in Fig. 13a lead only to 
renormal i sa t ion of the chemical po ten t ia l of electrons and the 
cont r ibu t ion of defectons to the imaginary pa r t of Ii(k,Sk) 
considered within the f ramework of the pa rque t 
approx ima t ion is described by the d iagram shown in 
Fig . 13b [9, 68] (the no ta t ion is the same as in Section 2). It 
cor responds to the expression 

Eid(k, sk 

dp dp' 

~(2nf 
\V0(P-P')\2 

m a x ( r , £o) 

X 

where 

Njp') [l-N(p)\ [1 -n{k+p'-p)\+N(p) [1 -N(p')]n{k+p'-p) 
i ek -co(p)+co(p')-e(k+pf -p)+}i 

7V(p) = { e x p [ ( 5 3 ( p ) - O r - 1 ] + l } - 1 

is the F e r m i dis t r ibut ion function of defectons. 

(4.1) 

(4.2) 

Figure 13. Diagrams for the self-energy part of the electron Green function. 
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After analytic cont inua t ion from the po in t s s = isk to the 
real axis, the integrat ion over regions far from the pole of 
E q n (4.1) yields a cons tant renormal isa t ion of fi and a 
negligibly small (of the order of xg) renormal i sa t ion of the 
defecton pa th , whereas integrat ion near the pole gives 
Im Iu(k, s). On the mass surface the result is 

' dp dp' 
ImZid^jf i ) = —sgne 

"max (r , £o) 
W ) [ i 

\v0(P-P')\2 

-N(p)][\-n(k+p'-p)] 

+N(p) [\-N(p')}n(k+p'-p)} 

x8[e(ft) - co(p) + (o(p') - e(k +p' -p)]. (4.3) 
In the t empera tu re range T g> SQ, when co(p) and a>(p') 

can be ignored in the a rgument of the 8 function in Eqn (4.3) 
and we can assume that N(p) = const <̂  1, the 
cor responding result is 

lmZld(k,s) = - ^ ( P \ , (4.4) 
2 T , e, d,st 

where T P is [1] 

(*) - Q 

\V0(k-k')\2dk' 

(2nY\VE(k')\ 
(4.5) 

and integrat ion is carried out over the F e r m i surface. 
The ra te of re laxat ion of electrons, governed by their 

scattering of defectons, is and it differs from the 
cor responding value s t in the case of scat tering of 
electrons by r a n d o m l y dis tr ibuted 'frozen-in' (static) defects 
of the same chemical nature: the difference is a factor of 
(T/Eof. 

In exactly the same way we can show tha t if T > 80, such a 
relat ionship applies also to the electron t r anspor t t ime 
governed by the scattering of defectons, i.e. when T 8Q the 
cont r ibu t ion of the scattering by defectons to the electrical 
resistivity is 

p = Po(TE^Y, (4.6) 

where p 0 is the residual resistivity in the case of r a n d o m l y 
dis tr ibuted 'frozen-in' impuri t ies of the same chemical n a t u r e 
[9, 68]. 

K o n d o [69] has a t t empted to calculate the cont r ibu t ion of 
q u a n t u m defects to the resistivity of meta l . The 
renormal i sa t ion of the defecton Green functions has been 
ignored and the replacement of the ' ba re ' vertex of the 
e l e c t r o n - d e f e c t o n interact ion with the complete vertex has 
been carried out for bo th vertices in Fig. 13b. The result is an 
increase in the resistivity when the t empera tu re is lower in 
accordance with the law p = p 0 (Eo/T ) 2 § . 

The fall of the resistivity with the fall in t empera tu re is 
na tu ra l , since an increasing p r o p o r t i o n of electrons can 
ma tch adiabat ical ly the mo t ion of defectons. In fact, at 
T = 0 the nonad iaba t i c behaviour is exhibited by electrons 
which are in a n a r r o w belt of width 80 near the F ermi surface. 
These electrons are no t sufficiently fast to ma tch the defecton 
mot ion . As the t empera tu re is increased, the appearance of 
electronic excitat ions makes the width of this belt of the order 
of 7\ 

W e must m a k e two impor t an t methodologica l commen t s 
before we consider low tempera tures . At first sight it seems 
essential to review the results of calculat ions of the infrared 
renormal i sa t ions al lowing for Im £id(&, s). However , this 
cannot be done because ladder- type correct ions to the 

Figure 14. Corrections to the vertex compensating for the damping of the 
electron Green function. 

e l e c t r o n - d e f e c t o n vertex Vo(q) conta in ing new defecton 
loops (Fig. 14) compensa te for the appea rance of the self-
energy pa r t Zid in the electron Green function and the 
expression for the electron loop is no t affected. 

The second comment refers to going over to the limit 
80 —> 0. W e can see tha t Eqn (4.6) does no t contain the 
tunnel l ing mat r ix element (width of the defecton b a n d ) 
which characterises the q u a n t u m proper t ies of a defect. 
Therefore, the same t empera tu re dependence of the 
resistivity should be observed also for a meta l with heavy 
thermalised defects. In other words , in the limit 80 —> 0 the 
results of our analysis do no t agree with those obta ined by the 
'cross ' technique [1]. This is because in this technique the 
' frozen-in' impuri t ies as regarded are an external field acting 
on electrons and we consider them to be the in ternal degrees 
of freedom of a crystal and we deal with the scattering of 
electrons by an equil ibr ium system of defects. However , the 
re laxat ion t ime £0 of the defecton subsystem is governed by 
the value 80 and it increases exponential ly with increase in the 
mass defect. Measu remen t s are, however , m a d e after a 
considerable t ime t T0 after a change in t empera tu re , 
which in reality requires a very long wait . Therefore, at the 
usua l ra tes of measurements the system of heavy defects 
cannot reach an equil ibrium and it can be regarded as 
'frozen-in' . The presence of these ' frozen-in' defects in a real 
sample gives rise to a residual resistivity. W h e n the 
concent ra t ion of ' frozen-in' defects is c x the 
t empera tu re -dependen t cont r ibu t ion of defectons can easily 
be separated from the b a c k g r o u n d of this residual resistivity. 

W e shall n o w turn back to the contr ibution of defectons to 
the electrical resistivity at temperatures T <̂  SQ. In the case of 
an open F ermi surface it follows readily from Eqn (4.3) that the 
relaxation t ime of electrons due to their scattering by defectons 
is inversely propor t iona l to temperature , T e , d °c T - 1 , since the 
electron m o m e n t u m n o w changes as a result of the scattering 
by an amoun t of the order of the thermal m o m e n t u m k of a 
defecton, which reduces the phase volume of the final states of 
an electron by the factor (k/k?)2. The contribution of 
defectons to the resistivity is of the order of [9] 

\ 2 

P = Po (4.7) 

since p includes the t r anspor t scattering t ime and the factor 
(1 — coscp), where cp is the angle of the scat tering of an 
electronjDy a defecton, cont r ibutes an addi t iona l smallness 
of the (k/k?)2 ~ Tfeo type. As before, we are assuming tha t 
&F ~ kB. In the case of a closed F e r m i surface the resistivity p , 
like tha t for the scattering by p h o n o n s , falls exponential ly 
with t empera tu re , a l though not at T < 6 bu t at T < 8Q . In 
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Figure 15. Temperature dependence of the defecton contribution to the 
resistivity: (7) in the absence of clustering; (2, 3) after allowing for 
clustering. 

accordance with our hypothesis , the defecton gas still 
remains nondegenera te . 

A typical temperature dependence p(T) is shown in Fig. 15. 
W e have ignored so far the process of defecton clustering. 

If the concent ra t ion of heavy immobi le impuri t ies is c <̂  x, 
either separa t ion into phases with high and low defecton 
concent ra t ions takes place or clusters with a finite number of 
part icles are formed. W h e n a mul t iphase system is formed, 
the t r anspor t coefficients of a meta l depend on the 
dimensions of single-phase regions and on their 
configurat ion. The the rmo-dynamic equil ibr ium of a crystal 
at T —> 0 cor responds to the existence of an u l t r apure phase 
and a phase with a high con-cent ra t ion of impuri t ies 
(distr ibuted in an ordered m a n n e r ) in the form of two 
domains , bu t the establ ishment of such a state requires an 
e n o r m o u s t ime on the geological scale. 

W h e n clusters form from a finite number of defectons, 
their mobil i ty can be ignored, i.e. we can regard as ' frozen-in ' 
tha t fraction of defects which forms clusters. In this case the 
relaxat ion t ime of electrons T e , i m P is 

\L P (n = K(T)T-1

a(T) + [1 - KfT^z-y, , (4.8) 

where the dependence K(T ) is given by Eqn (3.6) and the t ime 
T e , d cor responds to the scat tering by defects which have no t 
formed clusters (K = 1) and the t ime T e , c i cor responds to the 
scattering on 'frozen-in' clusters when K = 0. 

It follows from E q n (4.8) tha t at T < Tc\ the values of 
T ~ | m p ( r ) and, consequently, p(T) become constant and are 
governed by the na tu re of the clusters tha t are formed. In the 
region of Tc\ either a rise or a fall of p(T) m a y take place (see 
Fig. 15). 

In exactly the same way E q n (4.8) describes the case of 
cap ture of defectons by immobi le defects when the 
concent ra t ion is c x. 

W e shall conclude by considering the t empera tu re range 
in which it should be possible to observe the t empera tu re 
dependences of the resistivity found above. First , this is the 
range T <̂  6 where the impur i ty scattering plays a significant 
role. However , on the low- tempera ture side this range is 
limited by the value Tc\ which for x ~ 10~ 2 - 10~ 3 a m o u n t s to 
tens or h u n d r e d s of kelvin. If the specific b ind ing energy of 
defects with one ano ther is low, there is a range 
10 K < T < 100 K in which the nontr iv ia l dependence p(T) 
should be observed because the defecton cont r ibu t ion to the 
resistivity is comparab le with the p h o n o n cont r ibut ion . In 
fact, the order of magn i tude is T~\ t r = xE l~8T8 and the 

characterist ic re laxat ion ra te of electrons due to their 
interact ion with p h o n o n s , z~l

ph t r , can be est imated as 
T ~ L t r ~ 0 .17 in the range where the dependence 
T ~ p h t r oc T becomes the dependence z~l

ph t r oc T5 [70]. W e 
can easily see tha t for x w 10~ 3 , g w 0.3, E0 w 3 x 1 0 4 K , 
T w 30 K, the value of T ~ ^ t r is of the order of T ~ p h ) t r . 

4.1.2 Thermal conductivity 
It is na tu ra l to expect a considerable cont r ibu t ion of the 
scattering by defectons to electron re laxat ion to result in 
nontr iv ia l t empera tu re dependences also of other t r anspor t 
coefficients of a meta l in the same t empera tu re range . The 
the rmal conduct ivi ty of a crystal includes cont r ibu t ions of 
the electron, p h o n o n , and defecton subsystems which 
interact with one another . 

It has been shown [71] tha t in the range T <̂  9 the 
t r anspor t of heat is media ted pr imari ly by electrons, exactly 
as in the case of metals with ' frozen-in' impuri t ies . Since a 
change in the electron energy due to the scattering by a 
defecton does no t exceed ej), it follows tha t at T 5> 8o the 
scattering is practical ly elastic. In this range of t empera tu res 
the W i e d e m a n n - F r a n z law is obeyed [70] and the electron 
cont r ibut ion to the the rmal conduct ivi ty is 

The order of magn i tude is 

KE = T(xgdyl (E0T~1)8 ocTl~z. (4.10) 

At t empera tu res T the W i e d e m a n n - F r a n z law is 
disobeyed because the scattering of electrons by defectons 
becomes inelastic. The energy relaxat ion t ime T e , d is then 

T e , d = 8 0 ( r x ^ o ) _ 1 (^oeo-1)* • (4.11) 

Therefore, at T <̂  £o> we have 

KE = 8 0 (xgd ) _ 1 (E0 SQ1)8 = cons t . (4.12) 

Since T e , d increases as a result of cooling, at some 
t empera tu re T < 8o it becomes equal to the re laxat ion t ime 
of electrons governed by their scat tering on static heavy 
defects which are always present in a real crystal. Below this 
t empera tu re the main role is played specifically by such 
scattering and we have Ke(T) oc T. 

In fact, the clustering of defectons begins at Tc\ > 8Q and 
this results in their effective 'freezing' and then the ra te of 

So Tci T 

Figure 16. Temperature dependences of the thermal conductivity of a 
metal with thermalised defects: (7) in the absence of clustering; 
(2, 3) allowing for clustering. 
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re laxat ion of electrons assumes a cons tant value z~l

d at 
T < Tc\ [see E q n (4.8)]. In this case the order -of -magni tude 
expression is 

K = TEQTq: c\d~l O C T. 

Depend ing on the type of cluster, we can expect a rise or a fall 
of KE at Tci (Fig. 16). 

4.1.3 Absorption of sound by electrons 
It is well k n o w n tha t at low frequencies when the wavelength 
of sound Xs is much greater than the mean free p a t h of 
electrons / e the coefficient a e describing the absorp t ion of 
sound by electrons is directly p r o p r o t i o n a l to the electron 
relaxat ion t ime [ 7 2 - 7 4 ] . A m o r e careful analysis shows tha t 
the quant i ty a e is p ropo r t i ona l to the t ime T2E which differs 
from the usua l re laxat ion t ime by the factor [1 — P2(coscp)] 
when integrat ion is carried out over the scat tering angle cp, 
and P2(y) is a Legendre po lynomia l [75]: 

a e 

HSy CO T2E 

s3p* 
(4.13) 

where n is the electron density; e F is the F e r m i energy of 
electrons; co and s are the frequency and velocity of an 
acoust ic wave; p is the density of the metal . 

At t empera tu res T <̂  6 the defect cont r ibut ion to z2e 

predomina tes for x w 10~ 3 - 1 0 ~ 2 . W h e n the scat tering is on 
static defects, the re laxat ion t ime is T2E = const and the 
t empera tu re dependence of the absorp t ion of sound is 
related solely to the small cont r ibut ion m a d e to the 
relaxat ion processes related to the e l e c t r o n - p h o n o n and 
e l e c t r o n - e l e c t r o n interact ions. 

If the scat tering is on mobi le defects, the t empera tu re 
dependence of a e is due to the t empera tu re dependence of 
T2e ,d [76]. In the range T 8o the main cont r ibut ion to d 

comes from the scattering th rough large angles and the t ime 
?2e , d differs from Te, d only by a numer ica l factor of the order 
of unity. Therefore, the absorp t ion coefficient of sound obeys 
the following t empera tu re dependence 

a e ^ a o ^ o ^ - 1 ) ^ , (4.14) 

where ao is the absorp t ion coefficient of sound in the case of 
' frozen-in' defects. 

In the range T <^ 8o the main role is played by the low-
angle scat tering and we have = 3 r ~ d t r , where the 
t r anspor t scattering t ime of electrons T e , d , t r is given by the 
following order -of -magni tude expression in the case of an 
open F e r m i surface: 

T e , d , t r = T e , d , s t | — I [ j ) • (4-15) 

Consequent ly , we have 

a e = a 0 (4.16) 

Even in the absence of clustering and heavy immobi le 
defects such a dependence is not observed right down to 
absolute zero, bu t only to a certain finite t empera tu re at 
which the inequali ty As > / e b reaks down. If As <̂  / e , the value 
of a e is completely independent of T2E [ 7 2 - 7 4 ] . Therefore, 
be low this t empera tu re the coefficient a e should assume a 
cons tant value. However , as po in ted out already, this occurs 
earlier because of the clustering of defects at Tc\. Below Tci, 
the coefficient a e reaches a cons tant value which depends on 

Figure 17. Temperature dependence of the absorption of sound in metals 
with quantum defects: (7) in the absence of clustering; (2, 3) after 
allowing for clustering. 

the na tu re of the clusters tha t form. The dependence ae(T) is 
p lo t ted in Fig. 17. 

In addi t ion to the absorp t ion mechanism investigated 
above, crystals with q u a n t u m defects m a y exhibit a 
re laxat ion mechanism of the absorp t ion of sound, bu t this 
mechanism is outs ide the scope of the present review. 

4.2 Meta l with localised defecton states 
W e shall n o w study the na tu re of the change in our results as 
we go over from the defecton states described by the Bloch 
wave functions to localised states. W e shall do this by discuss­
ing the case when the statistical scatter { of the energies of 
defectons in adjacent interstices, due to an inhomogenei ty of 
the crystal, exceeds greatly ej), i.e. when the states of a 
defecton can be regarded with a high degree of accuracy as 
localised in a given interstice. This disorder is weak in the 
electron subsystem <̂  E0) and the conduct ion electrons are 
described by the Bloch wave functions [22, 23]. The infrared 
renormal isa t ions applicable to this case are considered in 
Section 2.2 on the basis of the Hami l ton ian of Eqns (2.35) -
(2.37). 

In the case considered earlier, when a defecton is 
described by a Bloch wave function, d iagrams of the type 
shown in Fig. 13a m a k e no cont r ibut ion to the electron 
damping . In the present case, i.e. when there are localised 
defecton states, the scattering process shown in this figure 
alters the electron m o m e n t u m . I ts cont r ibu t ion is 

G0(Jfc, 8k)G(k',8k) N{n)V $ ( * - * ' ) e x p [ i ( * - * ' ) • * . ] , 
n 

(4.17) 

where N(n) is the F e r m i dis t r ibut ion function of defectons in 
localised states. The renormal i sa t ion of the vertex of the 
e l e c t r o n - d e f e c t o n interact ion of Eqn (2.40) compensa tes for 
the renormal isa t ion of the defecton Green function of E q n 
(2.42). 

W e can readily see tha t , with the exception of the factor 
N(ri), E q n (4.17) is identical with the equat ion obta ined for 
the scattering of electrons by 'frozen-in' impuri t ies 
considered by the 'cross ' techniques [1]. In the latter case the 
summat ion is carried out over impuri t ies . 

If we assume tha t the deviat ions of W(n) from the average 
value at different interstices are no t correlated, the averaging 
over real isat ions of the statistical d isorder ing is carried out by 
analogy with the averaging in the 'c ross ' technique. Wi th in 
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Figure 18. Additional contribution to the damping of electrons which 
appears in the case of localisation of defecton states. 

the f ramework of our approx imat ion , the cont r ibut ion of 
d iagrams of this type to the electron damping is described by 
the d iagram in Fig. 18. The chain oval shows tha t all the 
defecton loops su r rounded by it be long to the same |w). 

The second cont r ibut ion to the damping of electrons is 
due to the processes described by the d iagram in Fig. 13b. In 
addi t ion to the elastic processes, when b o t h defecton Green 
functions in a loop cor respond to the same n, a cont r ibut ion 
to the electron damping comes also from the inelastic 
processes for which the defecton Green function 
cor responds to different n. The cont r ibu t ion of the inelastic 
processes is small in accordance with the pa rame te r (t/£)2. If 
we ignore this cont r ibut ion , we find tha t the expression for 

(k) 
n J 

V^„{k-k')\2Ak' 

fl(2n)2|Ve(*')| 
{N\n) 

+N(n) [l-N(n)] (TE^f}, (4.18) 

where integrat ion is carried out over the F e r m i surface. 
If Vn®l(k) for different interstices are qui te similar, so tha t 

the differences between them can be ignored, the expression 
for Te,d assumes its simplest form 

\ \ = T - 1

d , s t x - 1 ^ { 7 V 2 ( « ) + 7 V ( « ) [ L -N(n)](TE^Y}-(^9) 
n 

In exactly the same way we find tha t the t r anspor t 
electron t ime and the resistivity are related by [22, 23] 

p = p 0 x " 1 ^ { i V 2 ( n ) + 7 V ( « ) [ l -N(„)](TE^)g}. (4.20) 
n 

If the t empera tu re of a meta l is sufficiently high and the 
occupat ion n u m b e r s N(n) are so small tha t 

J2N2(n)<x(TE^y, (4.21) 

the t r anspor t coefficients are described by E q n s (4.6), (4.9), 
and (4.14) obta ined in the preceding sections in the absence of 
d iagonal disorder. This is evidence of the universal validity of 
this t empera tu re dependence and is the main result of the 
present section. 

Subsequent behaviour of the transport coefficients as the 
temperature is lowered will be considered by taking the example 
of the contribution of quantum defects to the resistivity. At 
T = TF

MIN there is a reversal of the sign of the inequality (4.21). 
Fur ther cooling is then accompanied by an increase in the 
resistivity which continues down to the temperature Td of 
degeneracy of the defecton gas. At T <̂  the resistivity is 
p = Po. A typical temperature dependence of the resistivity p(T) 

Figure 19. Temperature dependence of the defecton contribution to the 
resistivity in the presence of disorder. 

is plotted in Fig. 19. The values of TF

MIN and are determined 
by the nature of the density-of-states function v[W(w)]. 

Since in a real crystal the disorder is created by crystal 
lattice defects, the fact tha t cooling causes the probabi l i ty of 
occupancy of the deep defecton levels to app roach uni ty 
cor responds to the capture (clustering) of defectons by these 
lattice defects. The equali ty p(0) = p 0 is a consequence of the 
mode l representa t ion of the na tu re of disorder. 

Moreover , the relaxat ion t ime of the defecton subsystem 
rises strongly at T < TF

MIN because the probabi l i ty of the 
excitation of a defect from a deep level falls exponential ly 
with t empera tu re . In a real experiment the defecton system is 
shown to be 'frozen-in' at low tempera tures . 

It therefore follows tha t the behaviour of the t r anspor t 
coefficients of a meta l with localised defecton states does no t 
differ from the behaviour in the case of free defecton states. 

4.3 Meta l with two-level systems 
It is clear from the foregoing discussion tha t the clustering of 
defectons, leading to their 'freezing' prevents the observat ion 
of nontr iv ia l t empera tu re dependences of the t r anspor t 
coefficients of a meta l conta in ing q u a n t u m defects. In 
Section 3 we have considered the si tuat ion when the cap ture 
of a defecton by an immobi le heavy impur i ty creates t w o -
level states. A q u a n t u m defect frequently remains mobi le also 
be low the clustering t empera tu re . It is therefore na tu ra l to 
expect to observe in this case nontr iv ia l t empera tu re 
dependences of the t r anspor t coefficients even at T < TC\. 

W e shall consider the cont r ibut ion of two-level systems to 
the t r anspor t coefficients of a meta l on the basis of the 
formalism developed in Section 2.3 [77]. This cont r ibut ion 
is still described by the d iagrams in Figs 13b and 18. If the 
two Green functions in a defecton loop shown in Fig . 13b 
cor respond to states of different energy, the cor responding 
inelastic cont r ibut ion to the resistivity conta ins an addi t iona l 
small te rm (k^a)2, which should be compared with the elastic 
cont r ibu t ion (when b o t h Green functions cor respond to the 
same state), and the inelastic cont r ibut ion can be ignored. 

By analogy with E q n s (4 .18) - (4 .20) , we n o w obta in the 
following expression accura te to within te rms of the order of 
(k^a)2: 

\dkf\V0(k -k')\2 

x e , d V " 
m J Q(2n)z\Ve(k')\ 

x[l+2Nm{l-Nm){TE^l)g]., (4.22) 
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P = Po 
9 0 

1 + y^Nm{\-Nm){TE-Q

lf (4.23) 

where v is the vo lume of the system and Nm is the popu la t ion 
of the lowest level of the m-th T L S 

exp(EmT 
'exp(EmT-l) + l' 

(4.24) 

W e have ignored here the cont r ibu t ion m a d e to the 
scattering of electrons by immobi le heavy impuri t ies . In 
addi t ion to their addit ive cont r ibut ion to T e , d and p, there is 
also an interference cont r ibu t ion to the scattering shown in 
Fig. 20. The cross in this figure cor responds to the scat tering 
by an immobi le defect and the chain oval shows tha t the 
q u a n t u m and immobi le defects be long to the same T L S . This 
cont r ibut ion is independent of t empera tu re and it alters the 
constant componen t of p. 

/ 

\ 
¥ 
1 
1 

Figure 20. Interference contribution of two-level states to the self-energy 
part of the electron Green function. 

W e shall n o w find the coefficient in front of (T/E0)8 on the 
assumpt ion tha t the d is t r ibuton of { is Lorentz ian . If 3 5> Jo, 
then 

Q 
* T L S V 

^ N m ( \ - N m ) = (N(\-N)) 

4 T I J r + * 
{ c o s h [ ( ^ + / 2 ) 1 / 2 ( 2 r - 1 ) ] } 

(4.25) 

= 0.25, T > 3, 

= T(nS)~\ 3 > T > J 0 , 

= (2J0TTZ-1)1/23-1 Qxp(-J0T-1), J0 > T 

here ( . . . ) denotes the averaging of two-level systems. 
If JQ 3, then 

(N(\-N)) 

= 0.25 { c o s h [ / 0 ( 2 r ) - 1 ] } - 2 , T > 32(2Jo)-\ 

= (2JoTn-l)l/23-1 e x p ( - / 0 r - 1 ) , 32(2Jo)~l>T. (4.26) 

It therefore follows tha t the range 
Tc\$> T max((5,/o) the dependence =A + B(T/R0)8 

is obeyed by T e ,a; here, A and B are cons tan ts of the same 
order of magn i tude . Since at t empera tu res much be low the 
D e b ye value the cont r ibut ion of two-level systems to the ra te 
of re laxat ion of electrons is the dominan t one, such a 
dependence of T e , d leads to a n o m a l o u s t empera tu re 
dependences of the t r anspor t coefficients of a meta l 
conta in ing two-level systems. 

In par t icular , the cont r ibu t ion of these systems to the 
resistivity is 

Jo 3 T 

Figure 21. Temperature dependence of the contribution of two-level 
systems to the resistivity. 

where pst is the cont r ibut ion to the static ( immobile) defects 
and the interference cont r ibut ion to the resistivity. The 
t empera tu re dependence of p is p lot ted in Fig . 21. F o r 
g ~ 0 . 3 , £ 0 ~ 3 x l 0 4 K , and T - 3 0 K the t empera tu re -
dependent te rm in p a m o u n t s to just a few percent . 

It would undoub ted ly be of interest to investigate 
experimentally the tempera ture dependences of the resistivity 
of the c o m p o u n d s N b ( O H ) x , N b ( N H ) x , and N b ( C H ) x . 

5. Summary 

W e shall n o w formulate our conclusions and proposa l s . 

5.1 Conclusions 
1. The interact ion of defectons with electrons leads to major 
infrared renormal i sa t ions of the defecton Green function and 
of the vertex of the e l e c t r o n - d e f e c t o n interact ion. The 
renormal ised quant i t ies acquire an addi t iona l t empera tu re 
dependence of the T8 type, where g depends on the proper t ies 
of a given mater ia l , i.e. it is not universal . 

2. The interact ion with electrons gives rise to an electron 
cloud a r o u n d a defect (electron po la ron effect). This results in 
an addi t ional na r rowing of the defecton b a n d and this 
na r rowing depends on t empera tu re as T^. In the case of 
localised defecton states the electron po la ron effect reduces 
the probabi l i ty of a t ransi t ion to an adjacent interstice. 

3. The long-range pa r t of the interact ion between defects 
in the mat r ix of a meta l is due to b o t h the elastic interact ion 
and the indirect interact ion media ted by the Fr iedel 
oscillations of the electron density. In the case of light 
intersti t ial impuri t ies this indirect interact ion m a y be of the 
same order of magn i tude as the elastic interact ion between 
defects. 

4. Since these two interact ions can have either sign, a large 
number of b o u n d defect states appears irrespective of the 
na tu re of the shor t - range interact ion between defects. W h e n 
t empera tu re is lowered the unavo idab le effect is the 
clustering of all mobi le defects in a meta l and of neu t ra l 
mobi le impuri t ies in an insulator . The final result is either 
separat ion into phases with high and low defect 
concent ra t ions or the appea rance of clusters m a d e up from 
a finite number of part icles. 

5. The format ion of clusters reduces strongly the defect 
mobil i ty and this in tu rn prevents the a t t a inment of a 
thermodynamic-equi l ib r ium state. Consequent ly , instead of 
impur i ty clusters with a large number of part icles, only small 
clusters consist ing of two or three part icles are formed. 

p = p s t + P o [ i + o . 5 ( r e 0 - 1 ) « ] , (4.27) 
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6. At t empera tu res Tc\ < T < 6 the main electron 
relaxat ion mechanism in metals with q u a n t u m defects is the 
scattering of electrons by defects. 

7. The infrared renormal i sa t ions due to the e l e c t r o n -
defecton interact ion lead to nontr iv ia l t empera tu re 
dependences of the ra te of re laxat ion of the electron 
subsystem and, consequently, of the t r anspor t coefficients 
of a metal , including the electron cont r ibut ion to the 
absorp t ion coefficient of sound. 

8. The clustering of defects hinders the appearance of such 
dependences and reduces the range of tempera tures in which 
they are observed. 

9. Nont r iv ia l t empera tu re dependences of the t r anspor t 
coefficients of a meta l m a y be observed also at T < Tc\ if the 
capture of defectons by heavy immobi le defects gives rise to 
two-level systems. 

10. The dis t r ibut ion of the asymmet ry of such two-level 
systems is Lorentz ian with a characteris t ic width p r o p o r ­
t ional to the defect concent ra t ion . The scatter of the values of 
the tunne l mat r ix element of two-level systems in a crystal 
with a low defect concent ra t ion (c ~ 10~ 2 ) can be ignored. 

5.2 Proposals 
Unfor tuna te ly , in the l i terature we have reviewed there are no 
repor t s of exper imental invest igations of the t empera tu re 
dependences of the t r anspor t coefficients of dilute hydr ides of 
metals (x ~ 0.1 - 1 % ) at low tempera tures . 

On the basis of the theory p roposed above it would be of 
great interest to investigate such dependences for single-
phase (in respect of composi t ion) dilute meta l hydr ides with 
a low t empera tu re of splitting into phases with high and low 
hydrogen concent ra t ions . 

Moreover , it would be very desirable to carry out 
invest igations of the t r anspor t coefficients of n iob ium and 
t an t a lum crystals, which contain two-level systems, and to 
search and s tudy similar two-level systems in other metals . 
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