Physics— Uspekhi 37 (3) 229246 (1994)

©1994 Jointly Uspekhi Fizicheskikh Nauk and Turpion Ltd

REVIEWS OF TOPICAL PROBLEM S

PACS numbers: 72.15.Eb; 74.70.Ad; 61.72.Bb; 72.10.Fk

Transport phenomena in metals with quantum defects

AT Morozov, AS Sigov

Contents

1. Introduction 229

2. Infrared renormalisations 230
2.1 Infrared renormalisations in an ideal crystal; 2.2 Infrared renormalisations in the case of localised defecton states;
2.3 Infrared renormalisations for a two-level system

3. Clustering of mobile defects in metals 236
3.1 Long-range part of defecton —defecton interaction and the existence of bound states; 3.2 Clustering of defects

4. Transport coefficients in metals with quantum defects 239
4.1 Metal with free defectons; 4.2 Metal with localised defecton states; 4.3 Metal with two-level systems

5. Summary 244
5.1 Conclusions; 5.2 Proposals
References 245

Abstract. The interaction of quantum defects (defectons)
with the conduction electrons is considered. A systematic
allowance is made for infrared renormalisations which are
due to this interaction and which influence significantly the
width of the energy band of defectons and their
contribution to the physical properties of a metal. An
analysis is made of the interaction of defectons with one
another and with other defects of the crystal lattice of a
metal. The processes of quantum defect clusterisation due
to this interaction are studied. The temperature depend-
ences of the transport coefficients are derived both for a
metal containing both free defectons and two-level
systems, which appear in a number of cases when a
quantum defect is captured by a heavy immobile impurity.

1. Introduction

It is well known that many low-temperature physical (for
example, transport) properties of a metal are governed by the
nature and concentration of impurities. Interstitial impurities
may undergo transitions from interstices they occupy initially
to adjacent ones and, in general, this can occur by above-
barrier and tunnel processes. Since the tunnelling probability
decreases exponentially on increase in the impurity mass, it is
negligible for heavy impurities, so that a transition of this
kind requires an activation energy ofthe order of 0.1 —10 eV.
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At low temperatures the probability of such a jump is
negligible during a typical measurement time. This is the
reason why such point defects are regarded as frozen-in at
certain positions when theoretical calculations are made of
the properties of a metal. The defects essentially create a
static field acting on electrons. The relevant ‘cross’ technique
of calculation of the impurity scattering time is well-known
(see, for example, Ref. [1]). A system of defects of this kind is
very far from equilibrium.

However, some light interstitial impurities (hydrogen
isotopes, helium) remain mobile even at low temperatures
and they tunnel from one equivalent interstice to another.
Such quantum defects will be called defectons. In contrast to
frozen-in defects, they should be regarded as the internal
degrees of freedom of a crystal and they can reach an
equilibrium during the duration of an experiment.

This difference in the behaviour of defects makes the
interaction of electrons with defectons very different from
the interaction with frozen-in heavy defects. In the former
case the interaction leads to infrared divergences in the
calculation of renormalised parameters of the defecton
subsystem, as first pointed out by Kondo [2]. The first orders
of perturbation theory are insufficient in the calculation of
such renormalisations. A consistent allowance for the
renormalisations within the framework of the parquet
approximation leads to a nontrivial temperature
dependence of the electron-subsystem relaxation time,
because of the electron—defecton interaction: .4 o< T 7%,
where 7 is the temperature, g ~ 2N 2(0)V 2N (0) is the density
oftheelectron states on the Fermisurface, and Vg isthe ‘bare’
amplitude of the scattering of an electron by a defecton. A
typical value of gis ~0.1 -1 and it varies from metal to metal.

This temperature dependence of 7. 4, related to the evolu-
tion of the electron cloud around a defecton, is the origin of
the nontrivial temperature dependences of the transport
coefficients of a metal containing quantum defects in that
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temperature range in which the scattering by defectons is the
main mechanism of relaxation of the electron subsystem.

The most promising objects for the detection of such
dependences are dilute transition-metal hydrides. Experi-
mental observations of these dependences are hindered by
the clusterisation of defectons which occurs at low tempera-
tures and which is due to their interaction with one another or
with heavy immobile impurities. However, in some cases the
capture of a defecton by such a heavy impurity gives rise to a
two-level system and a defecton partly retains its mobility
even below the clusterisation temperature. Nontrivial
temperature dependences can be observed in this case as well.

This review is divided into three parts. The first part
(Section 2) deals with infrared renormalisations of the
parameters of the defecton subsystem and of the potential
of the electron —defecton interaction.

The second part (Section 3) discusses the clusterisation of
mobile defects.

The third part (Section 4) is devoted to studies of anomalies
of the transport coefficients of metals with quantum defects.

The summary completes the review with our conclusions
and proposals.

2. Infrared renormalisations

2.1 Infrared renormalisations in an ideal crystal

The fundamental problems of quantum diffusion were
discussed in the pioneering paper of A F Andreev and
[ M Lifshitz [3] published in 1969. In particular, they drew
attention to the circumstance that at low temperatures a
quantum defect in an ideal crystal is completely delocalised
and can be described by a Bloch wave function. Such a
description is valid in the range of temperatures in which the
mean free path [y of defectons exceeds considerably the
interatomic spacing d. If the opposite is true, the
quasimomentum becomes a ‘poor’ quantum number and
the coordinate representation is more acceptable.

We shall consider a quantum defect in an ideally periodic
potential of the crystal lattice. An interstice then represents a
potential well for a defecton. As a rule, such a well contains
several local vibrational levels of quantum defects. Each such
level creates a narrow defecton band because of tunnelling.
The small mass of a quantum defect means that the first
excited level is separated from the ground state by an energy
ofthe order of 0.1 eV [4], so that it is permissible to ignore the
influence of higher levels in studies of low-temperature scat-
tering processes. We shall understand the ‘defecton band’ to
be a band which is formed from the ground vibrational level.

In bee, fee, and hep metals there are several tetrahedral
interstices for every site atom and in bce metals there may be
also several octahedral interstices. Therefore, a local energy
level creates several defecton bands [5]. However, allowance
for several defecton dispersion laws, separated from one
another by an energy ofthe order of (or less than) the defecton
band width, complicates greatly the calculations without
altering the physical nature of the phenomena. We shall
therefore consider just one nondegenerate defecton band.

The Hamiltonian of free defectons is

Ho=Y wk)ct (k)c(k),

where w(k) is the dispersion law and ¢t (k) and c(k) are the
defecton creation and annihilation operators. Summation
over k is carried out in the first Brillouin zone.

Q.1

Defectons interact with phonons, electrons, with one
another, and with other lattice defects. We shall consider
first the infrared renormalisations in an ideal crystal with an
extremely low concentration of quantum defects when their
interaction with one another and with other defects can be
ignored.

The interaction of defectons with phonons causes
defecton damping and gives rise to the polaron effect, which
is the narrowing of the defecton band because of the
deformation of the crystal lattice around a defect. The new
width of the defecton band g is [6]

g =g0e 1), (2.2)

where gy is the width of the defecton band in the absence of
strains and S is of the order of § ~ ué/wé , where ug is the
displacement of the site atoms nearest to a defect and wy is the
amplitude of the zero-point lattice vibrations. At temperatures T
much lower than the Debye temperature 6 the value of S(7)
becomes constant. We shall consider only that range of tempera-
tures, because if T > 6, the phonon contribution to relaxation of
the electron subsystem exceeds the corresponding contribution
of quantum defects. Therefore, we may assume that gy = const
at T < fand w(k) in Eqn (2.1) is the dispersion law of defectons
which allows for the defecton —phonon interaction.

In normal metals at temperatures 7 <6 the main
contribution to the damping of defectons comes from their
scattering by the conduction electrons [7] and the phonon
contribution to relaxation of the defecton subsystem
considered earlier [3] may become important only in a
super-conductor at temperatures T <T. (T, is the
superconducting transition temperature), when the number
of electronic excitations is exponentially small.

We shall now consider the electron —defecton interaction.
We shall investigate the range of low temperatures when
quantum defects in a metal are delocalised and are described
by the Bloch wave functions.

The Hamiltonians of the conduction clectrons H, and of
the electron — defecton interaction H,_q are

He = elk)at (k)alk), (2.3)
k

Hea= Y Volg)a*(k' = g)c* (k +q)c)a(k"), 4)

kk',q

where ¢(k) is the dispersion law, a® (k) and a(k) are the
second-quantisation operators of the conduction electrons,
and V(q) is the bare amplitude of the scattering of an
electron by a defecton.

The total Hamiltonian of the system under discussion is
the sum of Hy, He, and He_q.

We shall consider the electron —defecton interaction on
the basis of the temperature diagram technique [1]. We shall
assume that defectons obey the Fermi statistics. This
assumption is not essential, because we shall as a rule
consider a nondegenerate gas of defectons and the
Boltzmann limit is the same for the Fermi and Boltzmann
statistics.

The zeroth-order Green functions of electrons and
defectons, which will be represented by thin continuous and
dashed lines, are respectively:
Golk, &) = [isk —¢(k) +u]7] ,

q’o(k, Ek) = [iEk 7(1)(]() +c]_] }

2.5)
(2.6)
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where g = nT(2k + 1) is the Matsubara frequency, and u
and { are the chemical potentials of electrons and defectons.
The interaction V((q) is represented by a wavy line.

We shall first discuss the defecton self-energy part y(k, &)
on the assumption that the reaction of the defecton on the
electron subsystem can be ignored because of the low
concentration of defectons.

The graph shown in Fig. 1a shows only the renormalisation
of{, whereas the graph in Fig. 1b gives not only the renormalisa-
tion of {, but also the contribution made to the defecton
damping [7]. The contribution of this diagram to y(k, &) is

dg dk’
GRS A V@ Gulk 4,20~ 02)
Emy Wn

XGO(kI7 8"1)q10(k —q, & — wn) .

2.7

Figure 1. Diagrams of the self-energy part of the defecton Green function
X(k7ek)'

After summation over the frequencies we find that

1k, &) =2J%|VO(Q)|2
§ n' — ) [1 — n(k")]
iey —e(k) +e(k' —q) — ok —q) +¢

, (2:8)

where

n(k) = {1 +exp[(e(k) — w)T ']}

is the Fermi electron distribution function.

The imaginary part of x; can be found by analytic
continuation of ¥, (k, &) from points & = ig; to the real part
and integration near a pole. If T > g, the value of w(k) can
be ignored in comparison with the characteristic values
le(k’) —e(k’ —q)| ~ T, so that

2.9)

Imy, = —ngT. (2.10)
where
/ _ 12
o Jdk gk|Vo(k K| .11
(2n)°|Ve(k)| - [Ve(k')]

and integration with respect to k and k’ is carried out over the
Fermi surface.

If T <eg, the imaginary part is of the order of
Im g, = —mgT ? /g, since the electron quasimomentum can
change only by the value k ~ kg(T/e)"/%, which is the
quasimomentum of a defecton with a thermal energy T (kg
is the Brillouin quasimomentum). This leads to a reduction in
the phase volume of the final states of an electron and to a
faster fall of Im y; with temperature.

In a superconductor the number of electronic excitations
decreases rapidly as a result of cooling. At temperatures
T <T., where T, is the superconducting transition
temperature, this number is exponentially small. We can
calculate y; (k, &) for a superconductor if, in addition to the
loops formed by the normal Green functions of electrons
Go(k,&,) (Fig. 1b), allowance is made for the loops with the
anomalous Green functions of electrons F(k,s,) and
F*(k,e,). In the absence of an electromagnetic field the
Green functions of electrons in a superconductor are

_ A4

& + (e(k) — p)’ + 47

igy +e(k) —p
2 9

& + (s(k) — p)* + 4°
where A4 is the gap in the spectrum of electronic excitations
[1]. The anomalous Green functions make a contribution to
%1 (k, &) shown in Fig. 1cand the continuous curves with two
incoming and outgoing arrows correspond to the anomalous

Green functions F(k,é,) and F+(k,&,).
The value of x; (k, &) for a superconductor is [8, 9]

F(k, &) =F(k, &)

. (212

Golk, &) =—

2.13)

dk dk,|Vo(k, — k)| JE

nilk, &) = ZJ (20) V()| - [Ve(ko)]

A4

n(en) [1 — n(e2)] (e12 — 4%)
g —(,O(k + k; —kz) +& —&

<[ detavien |

n(e2) [1 = n(e))] (182 — 4°)
iﬁk —(D(k +k] —kz) —& + &

n(8| ) n(Sz) (8]82 + Az)
iSk —w(k +k| —kz) +é& +&

(1 —n(e)] [ —n(e)] (8182 + 4‘2)}
iﬁk—(l)(k+k1—k2)—8|—82 ’

(2.14)

where v(e) = (8 — 4%)7'/* and Ey is the half-width of the
electron band.

Ifthe imaginary part x5 (k, ¢) is obtained from Eqn (2.14),
the result is

Im y3(T) = —2mgT {1 +exp [A(T)T ~']}". (2.15)

We are continuing to assume that max(T,4) > g. We
shall now consider the real part of x(k,g). Integration in
Eqns (2.8) and (2.14) over the range of values ofk and k» far
from the Fermi surface, in combination with the
renormalisation of #, gives—as demonstrated by Kondo
[2]—also the real part y; (k, &) dependent on k and & and the
nature of this function is largely determined by the dispersion
law of defectons. Here yx,(k,¢) is the result of analytic
continuation of the function y, (k, &) from the points & = ig
to the real axis.
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IfT > &), the answer isreadily obtained by expanding the
denominator of Eqn (2.8) in powers of ¢ and of [w(k) — {].
With logarithmic accuracy, i.e. if we allow only for the terms
leading in In(Eo/T ), the result is

Rey(k, &) =80 —[g(e+{) — ] In (BT '),

where 8 is the result of renormalisation of the chemical
potential and

(2.16)

ok —ki +k»),

2
. Jdkl dks|Vo (ki — k)| (2.17)

(2m)°[Ve(k:1)| - [Ve(ks))|

where integration over k| and k, is carried out over the Fermi
surface.

If the dispersion law w(k) is quadratic, the integral is
I = gw(k), and in the tight-binding case [2] it becomes
I = mo(k), where m is given by [2, 10]

o ZJdk dk/|[Vo(k — k') cos [(k —k')-a] (2.18)

(2n)°|Ve(k)| - |Ve(K')|

and a is the position vector connecting two nearest interstices
ofa given type. A more rigorous calculation in the case of an
arbitrary relationship between & and T gives, instead of
In(Eog/T) in Eqn (2.16), In[Eq/ max(T,&)] for a normal
metal and In[Eo/ max(T, g, 4)] for a superconductor. The
logarithmic divergence for a superconductor is related to the
last term in the braces in Eqn (2.14). Similar logarithmic
terms appear also when corrections to V(q) are calculated.

In general, the logarithm does not contain g but
go(kr /kp)?, where ky is the Fermi momentum, but for metals
we have kr ~ kg, so that we can drop the factor (kF/kB)2.

If the scattering of an electron by a defecton is
accompanied by the transition of the latter to the next
vibrational level, the logarithmic divergence in Eqn (2.16) is
cut off not at max (7, &), but at the difference %iw, between
the vibrational energies. Since temperatures T < 6 we have
In(Eo/fiwg) < In[Eo/ max(T,g)], we shall ignore the
contribution made to Rey(k,¢) by transitions between the
vibrational energy levels of a defecton.

The infrared divergence of x(k, &) is related to the
presence of a steep edge of the Fermi electron distribution,
i.e. it is related to the existence of electron —hole pairs with a
low energy, and is cut off at a value corresponding to
spreading of this edge T or at &. The energy of electron —
hole pairs and, consequently,the logarithmic divergence are
limited from below by the value of 24 in the case of
superconductors.

The strong renormalisation of the defecton Green
function is a consequence of the electron polaron effect: the
existence of an electron cloud around a defecton alters
considerably its characteristics.

It seems desirable to sum up all the most divergent terms
of the perturbation theory series and go beyond the
constraints set by gIn[Eq/ max(T,&)] < 1. An attempt to
carry out such summation was undertaken in Refs [11, 2].
However, the treatment given there suffers from a number of
serious shortcomings. It is well known that the parquet
diagrams contain the largest degree of a diverging
logarithm. The first parquet diagrams which dominate the
contribution to y(k,¢) and the renormalisation of V(q) in a
normal metal are shown in Figs 1b, 1d, le, and Fig. 2,
respectively.

T e

Figure 2. Diagrams of the vertex of the electron—defecton interaction
V(g).

In calculation of the total amplitude of the scattering of
an electron by a defecton V(q) in Ref. [11], which has been
used in later papers, it is assumed that the main contribution
to the renormalisation of Vo(q) is made by the diagrams in
which all the electron loops enclose a ‘bare’ vertex.
Allowance is made for nonparquet diagrams of the type
shown in Fig. 3, but not for parquet diagrams of the type
shown in Fig. 2b [9].

Figure 3. Nonparquet diagram for the vertex of the electron —defecton
interaction V(q).

A consistent allowance for the parquet diagrams has been
made [12—14] in a similar, in respect of the technique, problem
of calculation of the anomalies of the absorption of X-rays in
metals and their emission from metals. As demonstrated in
these papers, logarithmically diverging corrections of the
order of g'/?In[Eo/max(T,e&)] to Vo(g), which originate
from the diagrams shown in Fig. 4, compensate one another.
Such compensation occurs in all the orders of perturbation
theory. Therefore, the first nonvanishing terms containing a
large logarithm are of the order of g In[Ey/ max(T, &)].

Summation of the parquet diagrams, carried out in a
manner similar to that adopted in Refs [12—14], yields the
following expressions for the renormalised Green function of
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Figure 4. Diagrams leading to logarithmically diverging corrections of the
order of g'/2 In[Ey/ max (g, T )] to the vertex Vo(g).

defectons Y (k, &) and for the total vertex of the electron—
defecton interaction V(q):
max (T, &)]*

Pk, &) = [iex — k) + ] [ Eq )]A , (2.19)

where @(k) is the renormalised dispersion law of defectons and

The diagrams for the self-energy part of the defecton
Green function y(k, &) and V(q) are plotted in Figs 5 and 6,
respectively. The double dashed line corresponds to ¥(k, &),
and the wavy line with a black triangle at its end is V(q).

Vig) = (2.20)

Figure 5. Diagram of the self-energy part of the defecton Green function

1k, ex).
\ S
pz

Figure 6. Diagram of the complete vertex of the electron—defecton
interaction.

ps

7

In these calculations we need to allow for the fact that the
divergence is cut off at max(7, &y, %), where 7 is the highest of
the frequencies that occur in the Green function vertex,
measured from the level of the corresponding chemical
potential. We shall be interested in the values of the Green
function near the mass surfaces wherey ~ T

In spite of the fact that not all the parquet diagrams are
summed in Refs [2, 11], the final result is correct.

The analysis reported in Refs [12—14] applies to a
dispersion-free hole (electron) at a deep level, so that
renormalisation of the dispersion law has not been
considered. Since the width of the defecton band is the most
important parameter in an investigation ofthe behaviour ofa
quantum particle, we shall deal in greater detail with the
renormalisation of the dispersion law.

The Ward identity makes it possible to find the
relationship between the quantity

ax(k’ 8’71) =y ax(k7 8’71)
ok (k)
and a certain vertex 4 (k, &, ), which differs from V(g) because

instead of the ‘bare’ vertex it contains the defecton velocity
v = 0w(k)/0k (see, for example, Ref. [15]):

SO0}

D) .21

The Bethe—Salpeter equation for A(k,e,) shown
graphically in Fig. 7 is

Ak, sk)_v—ZTQZJdp 7 Voo —p)P

Ak, &) = v(l +

&) en)’
XGO(p78m)GO(p,73n)ql(2)(k 4 +P,7 & —&m T En)
XA(k —p +p', & — &m + &) . (2.22)

N\ AN
AN AN

/ /
// /
AN
AN
AN
\X\Q\

7’
/

Figure 7. Diagram of a vector vertex.

Allowance is made here for the fact that the renormalisation
of the defecton Green functions compensates for the
renormalisation of Vo(gq) and, as shown below, we can ignore
the change in the dispersion law of defectons in the
denominator of y,(k, &) when the parquet approximation
isused.
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We shall now compare the ladder diagrams for the vertex
A(k, &) with the corresponding diagrams for V(k), [they are
obtained after compensation for the renormalisations of
Yo(k, &) and Vo(k); see Fig. 6].

If the dispersion law of defectons is quadratic, the terms
in the series for A(k, &) are proportional to the terms of the
corresponding series for V(k):

A(k,&k) v
=—. 2.23
VK Vo®) 229
We finally obtain
aX(kasm) _ EO &
T+ dw(k) [max(T,so)] ' 229

It therefore follows that if the dispersion law of defectons
is quadratic, there is no renormalisation of this law and the
electron —defecton interaction changes only the residue of the
Green function of defectons [2].

In the tight-binding approximation, which corresponds
to a real situation, each integration with respect to p and p’
gives a factor m in the series for A(k, &) and a factor g in the
series for V(k). Therefore, the quantity A(k,e) can be
obtained from V(k) by the replacement of Vo(k) with v and
of g with m:

! +ag((1])€(71f;) - [max?;’,so)] (2.25)
The final result obtained subject to Eqn (2.19) is

@(k) = (k) [%:80)] ﬁ, (2.26)
where

B=g—m. (2.27)

Kondo [2] gave the correct final expressions for w(k), but
a rigorous derivation of this result is missing.

As expected, the polaron effect reduces the width of the
defecton band:

max(T,so)]p

’50 =& [ E() (228)

At T =0, on the assumption that all the electrons can
match adiabatically the motion of a quantum defect, we find
that g, vanishes. This is what is known as the Anderson
‘orthogonalisation catastrophe’ [16]. However, electrons of
energy less than g, cannot follow adiabatically the motion of
a defecton and, therefore, the width of the defecton band
remains finite.

Experimental results discussed later can be used to
demonstrate that the value of g for hydrogen in some
transition metals is of the order of 1—-10 K. The value of &
for deuterium is approximately an order of magnitude less.

In some cases a self-consistent solution has been obtained
[10, 17, 18] by replacing & in the expression (T, &) with &,
which corresponds to allowance for the renormalisation of
the dispersion law in the Green functions of defectons when
integration is carried out in Eqn (2.22) and is equivalent to
the replacement of f with /(1 — B) in Eqn (2.28) if T < &.
However, this replacement exceeds the precision of the
parquet approximation which is valid in the range where

¢*/* In{Eo[max(T,&)] '} < 1. (2.29)

Yu M Kagan and N V Prokof’ev used the adiabatic
approximation to obtain the following estimate of the

renormalised width of the defecton band [S1]:

%) = g [max(%, T ) (fiwo) ', (2.30)

where m is the local frequency of vibrations of a defect at an
interstice. The apparent discrepancy between Eqns (2.28)
and (2.30) is due to the different selection of the initial
approximation for the defecton band width. If &
corresponds to defectons that do not interact with electrons,
the adiabatic approximation allows for the interaction with
electrons the energy of which exceeds fiwy. Therefore, (see,
for example, Ref. [19])

ead = &0 (igE 3")P 2.31)

and Eqns (2.28) and (2.30) are equivalent within the range of
validity of the parquet approximation.

Yamada and his colleagues [18, 20, 21] have investigated
the probability of a transition of a quantum defect, localised
(in the absence of disorder) at the moment r = 0 in a given
interstice, to a state which is localised in the next interstice. By
analogy with Ref. [14], the dependence of the probability ofa
jump on the phase shift of the scattered wave of an electron
on the Fermi surface is found for the case when there is only
s-scattering of electrons by defectons. This is done for an
arbitrary strength of the defecton —electron interaction. In
the range where the interaction is weak [N(0)Vy < 1] the
expression obtained is similar to Eqn (2.28). Taken as a
whole, this dynamical problem is not equivalent to that
discussed here.

The above discussion is based on the assumption of the
band nature of defecton motion. The condition Iy > d is
equivalent to 74gy > 1 (it is assumed that i = 1), where 4 is

the mean free time of a defecton given by
17! = —21Imy(k,e). (2.32)

We can easily see that this condition is satisfied by normal
metals at temperatures

(2.33)

which for real values of g corresponds to T < &.

In the superconducting phase we have 148y > 1 at
temperatures T < T.. In this temperature range the phonon
contribution to Tg' may predominate. The order of
magnitude of this contribution is

Ton =T(T67")°. (2.34)

The temperature dependence of the corresponding time was
found by Andreev and Lifshitz [3].

On increase in temperature the mean free path of a
defecton becomes less than the interatomic spacing and the
motion of a defecton becomes of hopping nature.

A satisfactory microscopic description of defectons with
controlled parameters of the adopted approximations is not
yet available for this range of temperatures.

We shall now consider the infrared renormalisations in
the simpler case when the defecton states are localised
because of statistical disorder associated with the nonideal
nature of a crystal.

2.2 Infrared renormalisations in the case of localised
defecton states

The presence of defects in a crystal gives rise to random shifts
of the energy levels at interstices. We shall consider the
situation when the shift & is much greater than &; in this
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case a defecton is localised to a good accuracy in a specific
interstice. We shall also assume that & < E, and that
electrons in a metal are delocalised and can be described by
the Bloch functions [22, 23].

The Hamiltonians Hy and H._4, considered in the site
approximation for defectons, are

=Y W) ctm)cm) +io Y cn+d)c(n), (2.35)
n n,o

S VO s e —K)at (k) ct(n+6) c(n) a(k')

k,k',n,o
+ ) VO (k —K')a* (k) ¢ (n) c(m) a(K'), (2.36)
k,k' n
where
VO, (k — k') = (n|Vo(k — k) exp[i (k — K')R]n'), (2.37)

nis a three-dimensional vector which is an integer and which
specifies the position of an interstice; W (n) is the energy of a
defecton at an interstice; ¢*(n) and c(n) are the second-
quantisation operators of defectons in the site representa-
tion; 7o is a matrix element of the tunnelling process; d has a
range of values for the nearest neighbours; |n) is the ¥
function of a defecton at an interstice n, specified in the
coordinate space R.

The Hamiltonian Hy allows for the presence of diagonal
disorder. In the absence of disorder, when W (r) = const and
all the interstices are equivalent, Hy becomes diagonal in the
Bloch function representation. This case is discussed in the
preceding section.

The typical value of £ is

={(|W(n) —W(n+9d)

where the angular brackets denote averaging over nand é. In
view of the inequality & > 7y, to the overlap integral for the
functions of the states, centred at adjacent interstices,
contains a small parameter 7o/, and V:(u)ms (k) is of the
order oftOVS,,,(k)/C

Therefore, the main contribution to the infrared
renormalisation of Vf,n,(k) and to the Green function of
defectons

w0 () = liex — W (m) + {7

ismade by the term in Eqn (2.36) which is diagonal in n. Asin
the absence of disorder, the first terms of the perturbation
theory series for ¥, ,(er) and V,,,/(k) are represented by the
diagrams in Figs 1 and 2, where all the wavy lines (with the
exceptlon of the ‘bare’ vertex in Fig. 2) correspond to
v Q).

An analysis similar to that given in the preceding section

and carried out in the parquet approximation shows that, to

(2.38)

(3.29)

within (7,/€)?, we have
Vauk) =V O (k) (Eo T, (2.40)
_ v E, 1"
Vn,n+5 (k) - Vn,n+5 (k) [max(T, C):| s (241)
W, n(ex) = YO (e) (TE )", (2.42)
T=1 [M] (2.43)
Eg

Calculation of the infrared renormalisations in the
intermediate case tr~ & and the system is close to the
Anderson localisation threshold is a very difficult

mathematical task, but we can assume that in this range of
values the renormalisations are of the same nature as in the
two limiting cases.

It is moreover reasonable to assume that the infrared
renormalisations of a system of defectons localised not
because of statistical disorder, but because of strong
dissipation, are similar to those discussed above.

We shall now consider the special case of localised
defecton states, i.e. we shall consider a two-level system
which has been studied on very many occasions.

2.3 Infrared renormalisations for a two-level system
Kondo began his investigations from a two-level system
(TLS) in which a quantum defect tunnels between two
equivalent equilibrium positions [24]. The expression for the
tunnel matrix element is then similar to Eqn (2.28). The
dynamics of such a TLS interacting with a dissipative
environment has been investigated extensively by the
functional integration methods (for a review see Ref. [19]).
It has been assumed that the dissipative environment
represents a set of independent harmonic oscillators which
interact linearly with the TLS. The Hamiltonian of such a
‘spin —boson’ system is

1 1 1

—JO &X +§ 66} +§ ;(mawijﬂ

Hsb:_z oc+p§m(;])

la&zzcaxa,
o

where J is the ‘bare’ splitting of the levelsin a TLS as a result
of the tunnelling; & is the TLS asymmetry; 6, and &, are the
Pauli matrices; the eigenvalue o, = 1 corresponds to a
defect localised in the right (left) minimum of the TLS; m,,
Xo, Pa, and w, are the mass, coordinate, momentum, and
frequency of a given harmonic oscillator; the summation is
carried out over all the oscillators; a is the distance between
the potential energy minima of the TLS. The quantity C,
describes the coupling between the TLS and an oscillator. It is
usual to assume that the environment can be described by a
spectral function of the type

. C,
1555

where A =const, @, is the limiting frequency of the
oscillators, and the power exponent s is selected from
physical considerations. In the case of the interaction with
phonons in a three-dimensional crystal, we have @, = 6, and
s = 5or 3, and the tunnelling occurs between crystallographi-
cally equivalent or inequivalent interstices, respectively.

[t follows from perturbation theory that the interaction of
a quantum defect with electrons is equivalent to the
interaction with bosons when we have w, = Ey and s = 1
(Tomonaga bosons) [17]. The case s =1 is known as the
ohmic dissipation.

Functional integration with respect to variables of the
dissipative environment yields the effective action on a
quantum defect, which determines its behaviour.

Calculationsshowthat at 7 = 0 a defect remains localised
in one minimum if s < 1 and also for s =1, provided the
parameter B’ =Ad?/h exceeds unity. If B'<1, a
renormalised tunnel matrix element J/2 is given by

J=Jo(Jo EGHYF0R

(2.44)

— Awre ol

3w — wy) (2.45)

(2.46)
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However, as shown earlier [25, 26], the above scheme
does not allow for the reaction of a TLS on the thermostat,
although such neglect is permissible only if 8/ < 1. The actual
localisation of a particle in one of two equivalent minimal
finite depths is unlikely even in the strong dissipation case.

We shall now consider the interaction of electrons with
two-level systems.

The Hamiltonian of an isolated TLS is

Hris = < el +é

3 3 (c a+cfa),

g —I— (2.47)

where Jg and ¢ are defined above, whereas ¢, ¢; are the
second-quantisation operators for a defecton in the j-th
potential well.

Theinteraction ofa TLS with electronsis described by the
Hamiltonian

HetLs = Z Volk — k')a* (k")a(k)
V%
x expli(k —k')-R)]c/¢;, (2.48)

where R; are the coordinates of the TLS minima.
After diagonalisation of the Hamiltonian Ht g we have

Hrrs = Z(—l cj,

j=12

(2.49)

where
E=(@E+J})",
G =dci — bea, & =acy +bey, a=1[0,5(1+EE)]V2,
b=1[0,5(1—-¢EN". (2.50)

In the new basis the Hamiltonian H._t. g becomes

Heoris = 3 Volk —K)a* (€)a(k) {expliCk — K')-R1]

Jiok K
X[a2EHE +b2CTE, +ab(cie + 81 E)
+expli(k —K')-Ry) [a2CF & + b2CHE

—ab(cie +ct o)}, (2.51)

Calculation of the infrared renormalisations of the ‘bare’
Green function of defectons and of Vo(k) for an arbitrary
relationship between Jo and £ simplifies only in the case when
kra <1 and a=R, —R,, when we can assume that
expli(k —k’)-(R, —R;)] = 1. The renormalisation of the
Green functions of a defecton, corresponding to two energy
levels, and of the diagonal matrix element V;(q) is described
by Eqns (2.42) and (2.40), and the difference between m and g
(i.e. the quantity f) can be neglected.

If |1) and |2) are understood to be the ¥ functions of a
defect localised in the left- and right-hand minima ofa TLS,
respectively, then the order of magnitude of the matrix
element is

Vi) ~REG'Y ), (2.52)
so that it has been ignored in our calculations of the infrared
renormalisations.

Vladar and Zawadowski [27, 28] have shown that
allowance for V E ;(k) in the ‘noncommuting’ case, when

Z{[V(O)(k k1)
—vﬁ?;(k —k) [V ks — k) —

1 — ne(k)]

—s(k) #0, (2.53)
leads to the appearance of additional infrared divergences,
since now in the absence of the translational invariance the
diagrams shown in Fig. 4 do not compensate one another
fully. This case is similar to the strongly anisotropic Kondo
model. Additional renormalisations may become significant
at the Kondo temperature

0.5+{1/12(2¢)]}
)

— v Ok — k)Y O(kz — k)

v (ks — k)]

E, , (2.54)
if it exceeds E.

Since the magnitude of the infrared renormalisations
varies with temperature down to 7 ~ E, it follows that
when Tk < E such additional renormalisation cannot reach
the required quantity.

An estimate of Tk obtained in Refs. [27, 28] corresponds
to the most optimistic selection of the parameters and gives
Tx ~ 1K, ie. of the order of E. However, more realistic
estimates give Tx < 0.1E.

Therefore, throughout the investigated range these
additional renormalisations can be ignored.

3. Clustering of mobile defects in metals

3.1 Long-range part of the defecton— defecton interaction
and the existence of bound states

The problem of the interation of hydrogen atoms in a metal
matrix has been the subject of many investigations (see, for
example, the monograph of Alefeld and Volkl [29]). All these
investigations have been concerned with just one type of the
long-range interaction between defects, which is the elastic
interaction representing an indirect interaction via acoustic
phonons. The energy of this interaction is described by the
expression

Wclas(R) (3])

where R is the distance between the defects, € is the unit-cell
volume, and b = R/R. Depending on the orientation of the
vector b relative to the axes of the crystal lattice, W(b) can
assume both positive or negative values.

The important role played by another long-range
interaction, which is the indirect interaction via the Friedel
oscillations of the electron density, is pointed out in Ref. [7].
In the case of a spherical Fermi surface the potential energy
of this interaction is [30]

=W(®B)QR™3,

QN (0)|Vo(2ks )| cos(2kp R)
21E2(2kg, 0)R3 ’

Wa(R) = (3.2)

where £(2kg, 0) is the permittivity.

In dealing with the interaction between defects of
different type, we should replace the term |(Vo(2kg)|* with
the term [Vo,1(2kr)V§,(2kr) + c.c.]/2, where the indices 1
and 2 apply to impurities of different types. As a result of the
thermal smearing out of the Kohn singularity & (k,0)the
interaction W¢(R) falls exponentially over distances
Ry =dep /T, where d is the lattice constant and & is the
Fermi energy [31]. This effect is unimportant in the range of
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low temperatures under discussion. The statistical disorder
does not result in exponential damping of W (R) [32, 33].

The resultant long-range interaction between impurities
is given by

W(R) = Wes(R) + Wa(R) . (3.3)

The value of W (b) varies from 1 eV for heavy interstitial
impurities, down to 1072 eV for hydrogen in a metal [34]. The
quantity N(0)|Vo(2kg)|*/2ne?(2kg,0) for values of the
parameters typical of a metal amounts to 1072-1 eV,
W (R) is of the same order of magnitude as Weras(R). In the
case of substitutional impurities an indirect interaction via
the conduction electrons may predominate.

In addition to the interaction of defects with one another,
there is also the interaction with the crystal matrix which has
minima at the interstices (for interstitial impurities). We shall
assume that these minima are sufficiently steep and that the
potential of the matrix is much stronger than W(R). This
makes it possible to ignore the displacements of the
equilibrium positions in interstices caused by the action of
W(R), compared with a, and consider the problem of the
distribution of a small number of defects between interstices
subject to allowance for the pair interaction between the
defects [35, 36]. Naturally, in the case when R ~ d, we need to
allow for the short-range part of the defecton—defecton
interaction.

3.2 Clustering of defects

Since W (b) and W(R) can be either positive or negative,
there is a set of interstices with W(R) < 0 and the state with
the lowest energy —W corresponds to Rg ~ d for kgd ~ 1.
The short-range part of the interaction between defects may
alter the sign of the interaction, even in the most
unfavourable case, only for several defect positions closest
to one another. Therefore, all the mobile point defects in a
metal and neutral mobile impurities in an insulator should
form clusters as a result of cooling [35, 36].

The clustering may result in stratification into phases
with high and low defecton concentrations and clusters may
form from a finite number of particles.

A typical clustering temperature found from a simple
statistical calculation has the following value at low defecton
concentrations such that x < 1:

Ta = Wo|lnx|™", (CR)

where Wy is the specific binding energy of defectons in a
highly concentrated phase or in a cluster.
The proportion of free (unclusterised) defectons « is

Wo\ ™
K= 1+yxexp7 s

where y ~ | if we assume that there is only one bound state
with a specific binding energy Wy or

| T\ W™
K= [ +yx<W0> exp T] R
ifweallow for the presence of a large number of bound defect
states [36].

In any case, the value of xk falls exponentially at
temperatures T < T.

In the majority of cases the phase with clusters formed

from a finite number of particles is metastable compared with
large-scale stratification in the phase with high and low defect

3.5)

(3.6)

concentrations. However, these metastable states occur
relatively frequently, since the binding of mobile defects
into clusters reduces strongly their mobility and increases
the time taken to reach an equilibrium (relaxation time).

The presence ofan interaction W (R) oscillating with the
distance in a metal can make the following clustering scenario
energetically favourable: at some characteristic temperature
Taa the clusters form  from  several particles
(quasimolecules), but at lower temperature T, the
quasimolecules become clustered. A typical distance
between quasimolecules in a growing second-generation
cluster is much greater than the distance between defects in
a quasimolecule, which is the reason for the low specific
binding energy in a cluster compared with the specific
binding energy of defects in a quasimolecule (and,
consequently, the reason why T2 is lower than T1). [f the
number of molecules in a second-generation cluster is also
limited, then the next stage of the clustering process begins at
a lower temperature T3, etc.

The formation of quasimolecules is not a phase transition
in the true sense of the word, since this process occurs in a
temperature range defined by

AT =Ty|Inx|™", (3.7

and all the thermodynamic characteristics of the system vary
continuously.

Quasimolecules formed from two hydrogen (deuterium)
atoms have been observed by the method of diffuse elastic
neutron scattering in the hydrides of metals of the third
group: LuD, [37, 38], YH(D), [39, 40], ScD. [41]. The
hydrogen isotopes occupy the tetrahedral pores of the hcp
matrix of the metal. When a quasimolecule is formed, the
second hydrogen atom occupies the second-nearest
tetrahedral pore along the hexagonal axis, which is
symmetric relative to the nearest site atom (Fig. 8).

O-1LA-2,A-3

Figure 8. Tetrahedral interstices in the hep matrix of a metal: (/) site
atom; (2) tetrahedral interstice; (3) interstices occupied by the formation
of a quasimolecule.

The phase diagram of the hydrides of scandium, yttrium,
and some rare-earth elements is shown in Fig. 9 [36]. The
fraction of quasimolecules at 400 K is fairly high to prevent
splitting into high- and low-concentration phases in the range
X < x¢r [39] The value of x ¢ varies from 0.03 for ErH, [42]to
0.35 for ScH, [43]. In the range 150—200 K there are
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Figure 9. Phase diagram of the hydrides of yttrium, scandium, and some
rare-carth clements.

anomalies of the electrical resistivity and specific heat of the
hydrides, indicating clustering of quasimolecules [42—45].

Neutron measurements indicate the absence of a long-
range order in the phase with a high concentration of the
hydrogen pairs. Therefore, the transition from a lattice gas to
a lattice liquid occurs in the system of quasimolecules at
150-200 K.

When the concentration of immobile defects exceeds
greatly the concentration of mobile defects, the formation
of clusters from one immobile and one mobile (or several
mobile) impurities becomes possible. Then x in Eqns
(3.4)—(3.7) should be replaced with the concentration of
immobile defects and Wy is the binding energy between
mobile and immobile defects. The example of such clustering
isthe capture of hydrogen by O, N, and C atoms in niobium.
These atoms occupy octahedral interstices in the bee lattice of
niobium and hydrogen atoms are at tetrahedral interstices.
Asaresult of an interaction with a heavy impurity C, N, or O
at T < 150K a hydrogen atom occupies one of two
equivalent equilibrium positions corresponding to the two
nearest tetra-hedral interstices (Fig. 10) [4]. The tunnelling
between these two equilibrium positions gives rise to a two-
level system (TLS).

o
F/Z_TTV—/‘_*//
I\ 2
|\ /

I\ //

X

® | 7/ \
/__l\_ L
-
\

O-1,@—-2,x =3

Figure 10. Two-level system in a niobium single crystal: (/) niobium
atoms; (2) atom of a heavy impurity; (3) equilibrium positions of the
hydrogen atom.

Anomalies of the specific heat associated with such two-
level systems were first reported in Ref. [46] and they have
since been investigated by measurements of the specific heat
[47, 48], thermal conductivity [49], internal friction [50 —52],
and ultrasonic parameters [53 —56]. The fullest information is
provided by the inelastic neutron scattering method [57—62].

I | Nb(NH)o.0005
A=59A

T =15K

{
Y

0 b
—0.6 0 0.6
Figure 11. Dependences of the intensity of inelastic neutron scattering in
Nb(NH)o.000s on the change in the energy (meV) at different
temperatures.

At low temperatures there is a clear side peak in the inelastic
scattering intensity (Fig. 11). The results of these measure-
ments give J =226 £ 4 peV for Nb(OH),, J = 165 4 peV
for Nb(NH), and J =162 =4 peV for Nb(CH,) [61] and
T — 0 in the superconducting phase. The dependence of the
value of J on the nature of the heavy impurity is evidence of
different strains in the niobium lattice around impurities of
different types [62].

In the absence of such strains the width of the free-
defecton band in niobium would have been zJ, where z is
the number of the nearest equivalent interstices. In the
presence of lattice strains this relationship can be used as an
order-of-magnitude estimate.

At temperatures T > 10K, when t4J < 1, instead of a
side peak the scattering spectrum has a quasielastic central
maximum of width proportional to the frequency of
hydrogen jumps between the TLS minima.

The value of J for deuterium captured by a nitrogen
impurity has been found as a result of ultrasonic
investigations [56] and has proved to be J =0.18 £ 0.01 K.
Similar two-level systems appear also in tantalum, but their
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characteristics have been investigated much less thoroughly
[46, 63, 64].

The asymmetry of the resultant two-level system is
associated with the influence of the remaining systems of
this kind and other crystal lattice defects. We shall estimate
this asymmetry on the assumption that it is due to the action
of ‘frozen in’ and randomly distributed defects whose
concentration is ¢ and that the contribution of mobile
defects to the asymmetry is small compared with the
contribution of heavy impurities. In the opposite case the
collective effects in the system of mobile defects become
important.

Since both contributions to the long-range interaction
between the defects fall with the distance r between them as
r=3, it follows that in the range ¢ < 1 the distribution of the
quantity & becomes Lorentzian with the characteristic width
o of the order of

s=cW(d). (3.8)

On the other hand, the scatter ofthe values of J in a crystal
with a low defect concentration (¢ < 1072) can be ignored [65].

An analysis of the data on quasielastic neutron scattering
hasbeen used [60, 62]to calculate the frequency v(0) of jumps
from one interstice to another in the absence of asymmetry.
The temperature dependence of this quantity is plotted in
Fig. 12 for Nb(OH), and NB(NH),.

v/s7!
2.10!
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C &‘ \i\ i3
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oo | & NbOHGm,
-~ &  —Nb(NH)o.o00s,
L A,® —NbNH )00 (pc, 50)
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Figure 12. Temperature dependences of the frequency of jumps of
hydrogen between minima of two-level systems in Nb(OH), and
Nb(NH),; here, pc is a polycrystalline sample and sc is a single crystal.

Below 60 K the dependence of v(0) on 7T is approximated
satisfactorily by the law v(0) oc 7 ~! and a comparison with
the expression for the jump frequency

J 2
0)=—+

V() AnBTh

(see Refs [17, 10]) has made it possible to obtain the value
B = 0.055 for hydrogen in niobium [60]. Moreover, the ratio
of the jump frequencies for Nb(OH), and Nb(NH), is in
good agreement with the ratio of the values of J? deduced
from inelastic neutron scattering.

It follows that below 60 K the quantum diffusion of
hydrogen in niobium is governed by the processes of
defecton scattering on electrons, whereas below 60 K the
interaction with phonons begins to play a significant role.

Two-level systems appear readily also in the hydrides of
metals of the third group mentioned above. Unpaired
hydrogen atoms are more likely to tunnel to the nearest
interstice located on the hexagonal axis (Fig. 8) than to other
equiva-lent interstices. There is also some similarity between
two-level systems formed by such two interstices.
Investigations of scandium hydrides by quasielastic neutron
scattering [66, 67] have yielded a curve similar to that shown
in Fig. 12. The value of 74/ has been compared with unity at
15.7 K and the values of J and B have been found to be
0.32 meV and 0.039, respectively. The high value of J is
associated with shorter, com-pared with niobium, distance
between the TLS minima. A mini-mum of the jump frequency
v(0) has been observed at T = 100K..

4. Transport coefficients in metals with
quantum defects

4.1 Metal with free defectons

4.1.1 Electrical conductivity

We shall now consider the influence of quantum defects on
the electron subsystem of a metal. We shall first investigate
the case of free defectons described by the Bloch wave
functions. We shall begin with the Hamiltonian of Eqns (2.1),
(2.3), and (2.4), used in Section 2.1 to study the infrared
renormalisations in an ideal crystal. However, whereas in the
case of the infrared renormalisations we have been interested
primarily in the defecton Green function, we shall now
concentrate our attention on the contribution of defectons
to the self-energy part of the electron Green function
2 (k7 Ek)'

Diagrams of the type shown in Fig. 13a lead only to
renormalisation ofthe chemical potential of electrons and the
contribution of defectons to the imaginary part of X (k, &)
considered within the framework of the parquet
approximation is described by the diagram shown in
Fig. 13b [9, 68] (the notation is the same as in Section 2). It
corresponds to the expression

e ) =2 [0 e [T

s N[N p)][1=n(k-+p'—p)|+N (p) | =N (p)|n(k+' —p)
iex—a(p)+o(p’)—ek+p'—p)+n (41)

where

N(p) = {exp[(@(p) — T ']+ 1}

is the Fermi distribution function of defectons.

4.2)
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Figure 13. Diagrams for the self-energy part of the electron Green function.
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After analytic continuation from the points & = ig to the
real axis, the integration over regions far from the pole of
Eqn (4.1) yields a constant renormalisation of u and a
negligibly small (of the order of xg) renormalisation of the
defecton path, whereas integration near the pole gives
Im X14(k,€). On the mass surface the result is

Vo(p —p)I

ImZ4(k,¢) = —sgnsJ B )5

X[M] (NPT = N(p)I[1 =l +p' —p)]

+N(p)[1 = N(p)|n(k +p' —p)}

x3[e(k) —o(p) + o(p') —elk +p' —p)].  (43)

In the temperature range T > &, when w(p) and w(p’)

can be ignored in the argument of the & function in Eqn (4.3)

and we can assume that N(p)=const<1, the
corresponding result is

sgn g TY
Im24(k,e) = — — 4.4
m X4(k, &) 2Tea s (E0> ’ @9
where Te,d, st is []]
B x [|Volk — &) dk’
oo k) =5 J'O(z—)', *3)
(2m)”|Ve(k")|

and integration is carried out over the Fermi surface.

The rate of relaxation of electrons, governed by their
scattering of defectons, is T L and it differs from the
corresponding value rc’lj’m in the case of scattering of
electrons by randomly distributed ‘frozen-in’ (static) defects
of the same chemical nature: the difference is a factor of
(T/Eo)®.

In exactly the same way we can show that if T > g, such a
relationship applies also to the electron transport time
governed by the scattering of defectons, i.e. when T > &, the
contribution of the scattering by defectons to the electrical
resistivity is

p=po(TE ¢')*.

where p, is the residual resistivity in the case of randomly
distributed ‘frozen-in’ impurities of the same chemical nature
[9, 68].

Kondo [69]has attempted to calculate the contribution of
quantum defects to the resistivity of metal. The
renormalisation of the defecton Green functions has been
ignored and the replacement of the ‘bare’ vertex of the
electron —defecton interaction with the complete vertex has
been carried out for both vertices in Fig. 13b. The result is an
increase in the resistivity when the temperature is lower in
accordance with the law p = po(Eo/T )**.

The fall of the resistivity with the fall in temperature is
natural, since an increasing proportion of electrons can
match adiabatically the motion of defectons. In fact, at
T = 0 the nonadiabatic behaviour is exhibited by electrons
which are in a narrow belt of width €, near the Fermi surface.
These electrons are not sufficiently fast to match the defecton
motion. As the temperature is increased, the appearance of
electronic excitations makes the width ofthis belt of the order
of T.

We must make two important methodological comments
before we consider low temperatures. At first sight it seems
essential to review the results of calculations of the infrared
renormalisations allowing for Im X4(k,¢). However, this
cannot be done because ladder-type corrections to the

(4.6)

Figure 14. Corrections to the vertex compensating for the damping of the
electron Green function.

electron —defecton vertex Vo(q) containing new defecton
loops (Fig. 14) compensate for the appearance of the self-
energy part X4 in the electron Green function and the
expression for the electron loop is not affected.

The second comment refers to going over to the limit
g — 0. We can see that Eqn (4.6) does not contain the
tunnelling matrix element (width of the defecton band)
which characterises the quantum properties of a defect.
Therefore, the same temperature dependence of the
resistivity should be observed also for a metal with heavy
thermalised defects. In other words, in the limit &g — 0 the
results of our analysis do not agree with those obtained by the
‘cross’ technique [1]. This is because in this technique the
‘frozen-in’ impurities as regarded are an external field acting
on electrons and we consider them to be the internal degrees
of freedom of a crystal and we deal with the scattering of
electrons by an equilibrium system of defects. However, the
relaxation time ¢ of the defecton subsystem is governed by
the value gy and it increases exponentially with increase in the
mass defect. Measurements are, however, made after a
considerable time ¢ > T, after a change in temperature,
which in reality requires a very long wait. Therefore, at the
usual rates of measurements the system of heavy defects
cannot reach an equilibrium and it can be regarded as
‘frozen-in’. The presence of these ‘frozen-in’ defects in a real
sample gives rise to a residual resistivity. When the
concentration of ‘frozen-in’ defects is c¢>x the
temperature-dependent contribution of defectons can easily
be separated from the background of this residual resistivity.

We shall now turn back to the contribution of defectons to
the electrical resistivity at temperatures T < €. In the case of
an open Fermisurfaceit followsreadily from Eqn (4.3) that the
relaxation time of electrons due to their scattering by defectons
is inversely proportional to temperature, 7o g < T —1, since the
electron momentum now changes as a result of the scattering
by an amount of the order of the thermal momentum k of a
defecton, which reduces the phase volume of the final states of
an electron by the factor (k/kg)®. The contribution of
defectons to the resistivity is of the order of [9]

_ &y N T .
P =Po EO ’EO ’

since p includes the transport scattering time and the factor
(1 —cos¢), where ¢ is the angle of the scattering of an
electron by a defecton, contributes an additional smallness
of the (k/kr)* ~ T/ % type. As before, we are assuming that
kg ~ kg.In the case ofa closed Fermisurface the resistivity p,
like that for the scattering by phonons, falls exponentially
with temperature, although not at 7 < 6 but at T <. In

4.7
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Figure 15. Temperature dependence of the defecton contribution to the
resistivity: (/) in the absence of clustering; (2, 3) after allowing for
clustering.

accordance with our hypothesis, the defecton gas still
remains nondegenerate.

A typical temperature dependence p(T ) is shown in Fig. 15.

We have ignored so far the process of defecton clustering.
If the concentration of heavy immobile impurities is ¢ < x,
either separation into phases with high and low defecton
concentrations takes place or clusters with a finite number of
particles are formed. When a multiphase system is formed,
the transport coefficients of a metal depend on the
dimensions of single-phase regions and on their
configuration. The thermo-dynamic equilibrium of a crystal
at T — 0 corresponds to the existence of an ultrapure phase
and a phase with a high con-centration of impurities
(distributed in an ordered manner) in the form of two
domains, but the establishment of such a state requires an
enormous time on the geological scale.

When clusters form from a finite number of defectons,
their mobility can beignored, i.e. we can regard as ‘frozen-in’
that fraction of defects which forms clusters. In this case the
relaxation time of electrons ¢, imp is

T tmp (T) = k(T )T 4 (T) + [1 — (T )]z Y

where the dependence k(T ) is given by Eqn (3.6) and the time
To,d corresponds to the scattering by defects which have not
formed clusters (x = 1) and the time 7., o corresponds to the
scattering on ‘frozen-in’ clusters when x = 0.

It follows from Eqn (4.8) that at T < T the values of
r;}mp(T) and, consequently, p(T ) become constant and are
governed by the nature of the clusters that are formed. In the
region of T either a rise or a fall of p(T ) may take place (see
Fig. 15).

In exactly the same way Eqn (4.8) describes the case of
capture of defectons by immobile defects when the
concentration is ¢ > x.

We shall conclude by considering the temperature range
in which it should be possible to observe the temperature
dependences of the resistivity found above. First, this is the
range T < 0 where the impurity scattering plays a significant
role. However, on the low-temperature side this range is
limited by the value Ty which for x ~ 1072 —~10~3 amounts to
tens or hundreds of kelvin. If the specific binding energy of
defects with one another is low, there is a range
10K < T < 100K in which the nontrivial dependence p(T)
should be observed because the defecton contribution to the
resistivity is comparable with the phonon contribution. In

fact, the order of magnitude is 1:;11 o« =XE (I)_"T“' and the

(4.8)

characteristic relaxation rate of electrons due to their

interaction with phonons, rg:)h «» can be estimated as

7l w~0.1T in the range where the dependence
Te.ph,tr X T becomes the dependence rc_llah o X T5 [70]. We

can easily see that for x ~ 1073, g~03, Eg =3 X% 104K,
T ~ 30K, the value of 7]} , is of the order of 77}, ..

4.1.2 Thermal conductivity

It is natural to expect a considerable contribution of the
scattering by defectons to electron relaxation to result in
nontrivial temperature dependences also of other transport
coefficients of a metal in the same temperature range. The
thermal conductivity of a crystal includes contributions of
the electron, phonon, and defecton subsystems which
interact with one another.

It has been shown [71] that in the range T <0 the
transport of heat is mediated primarily by electrons, exactly
as in the case of metals with ‘frozen-in’ impurities. Since a
change in the electron energy due to the scattering by a
defecton does not exceed g, it follows that at 7 > &, the
scattering is practically elastic. In this range of temperatures
the Wiedemann —Franz law is obeyed [70] and the electron
contribution to the thermal conductivity is

2 2 g
T 1 T E()
=— = — . 4.9
=32 P 3e2p, (T) “9)
The order of magnitude is
Ko =T(xgd )™ (EoT ") xx T'-%. (4.10)

At temperatures T <& the Wiedemann—Franz law is
disobeyed because the scattering of electrons by defectons
becomes inelastic. The energy relaxation time 1., 4 is then

To.q = 0 (TxgE )~ (Eog5')* . (4.11)
Therefore, at T < gy, we have
Ko =% (xgd )" (Eoey')* = const . (4.12)

Since 7.4 increases as a result of cooling, at some
temperature T < gy it becomes equal to the relaxation time
of electrons governed by their scattering on static heavy
defects which are always present in a real crystal. Below this
temperature the main role is played specifically by such
scattering and we have k(T ) o T.

In fact, the clustering of defectons begins at T > & and
this results in their effective ‘freezing’ and then the rate of

Ke

A\

) Tcl T

Figure 16. Temperature dependences of the thermal conductivity of a
metal with thermalised defects: (/) in the absence of clustering;
(2, 3) allowing for clustering.
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relaxation of electrons assumes a constant value r;'c] at
T < T, [see Eqn (4.8)]. In this case the order-of-magnitude

expression is
K= TEorchd" x T.

Depending on the type of cluster, we can expect a rise or a fall
of k. at T (Fig. 16).

4.1.3 Absorption of sound by electrons

It is well known that at low frequencies when the wavelength
of sound As is much greater than the mean free path of
electrons /. the coefficient o, describing the absorption of
sound by electrons is directly proprotional to the electron
relaxation time [72—74]. A more careful analysis shows that
the quantity a is proportional to the time 72 which differs
from the usual relaxation time by the factor [1 — P,(cos ¢)]
when integration is carried out over the scattering angle ¢,
and P»(y)is a Legendre polynomial [75]:

nEF 0> Toe
O = ———=
© S3p*

where n is the electron density; ¢ is the Fermi energy of
electrons; w and s are the frequency and velocity of an
acoustic wave; p is the density of the metal.

At temperatures T < 0 the defect contribution to 72
predominates for x ~ 1073 —1072. When the scattering is on
static defects, the relaxation time is 7,, = const and the
temperature dependence of the absorption of sound is
related solely to the small contribution made to the
relaxation processes related to the electron—phonon and
electron —electron interactions.

If the scattering is on mobile defects, the temperature
dependence of a. is due to the temperature dependence of
Tae.d [76]. In the range T > & the main contribution to Tz_c],d
comes from the scattering through large angles and the time
Tae, q differs from 1¢ g only by a numerical factor of the order
ofunity. Therefore, the absorption coefficient of sound obeys
the following temperature dependence

(4.13)

e = ag(Eo T ~1)*, (4.14)

where o is the absorption coefficient of sound in the case of
‘frozen-in’ defects.

In the range T < & the main role is played by the low-
angle scattering and we have Tz_c]d = 310‘11 o> Where the
transport scattering time of electrons rc,d,1; is given by the
following order-of-magnitude expression in the case of an

open Fermi surface:

EoY (%Y
Te, d, tr = Te,d, st <8_(;)> (%) . (4]5)
Consequently, we have
EoY (%Y
= — = . 4.16
w=a(Z) (7 @10

Even in the absence of clustering and heavy immobile
defects such a dependence is not observed right down to
absolute zero, but only to a certain finite temperature at
which the inequality A > [, breaks down. If Ay < [, the value
of a. is completely independent of 1, [72—74]. Therefore,
below this temperature the coefficient a. should assume a
constant value. However, as pointed out already, this occurs
earlier because of the clustering of defects at T'¢1. Below T,
the coefficient o reaches a constant value which depends on

Oe

O e —— —
N — =

=3

Figure 17. Temperature dependence of the absorption of sound in metals
with quantum defects: (7)in the absence of clustering; (2, 3) after
allowing for clustering.

the nature of the clusters that form. The dependence ac(T ) is
plotted in Fig. 17.

In addition to the absorption mechanism investigated
above, crystals with quantum defects may exhibit a
relaxation mechanism of the absorption of sound, but this
mechanism is outside the scope of the present review.

4.2 Metal with localised defecton states

We shall now study the nature of the change in our results as
we go over from the defecton states described by the Bloch
wave functionsto localised states. We shall do this by discuss-
ing the case when the statistical scatter & of the energies of
defectons in adjacent interstices, due to an inhomogeneity of
the crystal, exceeds greatly &, i.e. when the states of a
defecton can be regarded with a high degree of accuracy as
localised in a given interstice. This disorder is weak in the
electron subsystem (£ < E) and the conduction electrons are
described by the Bloch wave functions [22, 23]. The infrared
renormalisations applicable to this case are considered in
Section 2.2 on the basis of the Hamiltonian of Eqns (2.35) —
(2.37).

In the case considered earlier, when a defecton is
described by a Bloch wave function, diagrams of the type
shown in Fig. 13a make no contribution to the electron
damping. In the present case, i.e. when there are localised
defecton states, the scattering process shown in this figure
alters the electron momentum. Its contribution is

Golk,&)G(K',6c) > N(m)V O (k — k') expli(k — K')-R,] ,
" (4.17)

where N (n) is the Fermi distribution function of defectons in
localised states. The renormalisation of the vertex of the
electron —defecton interaction of Eqn (2.40) compensates for
the renormalisation of the defecton Green function of Eqn
(2.42).

We can readily see that, with the exception of the factor
N(n), Eqn (4.17) is identical with the equation obtained for
the scattering of electrons by ‘frozen-in’ impurities
considered by the ‘cross’ techniques [1]. In the latter case the
summation is carried out over impurities.

[f we assume that the deviations of W (n) from the average
value at different interstices are not correlated, the averaging
over realisations of the statistical disordering is carried out by
analogy with the averaging in the ‘cross’ technique. Within
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Figure 18. Additional contribution to the damping of electrons which
appears in the case of localisation of defecton states.

the framework of our approximation, the contribution of
diagrams of this type to the electron damping is described by
the diagram in Fig. 18. The chain oval shows that all the
defecton loops surrounded by it belong to the same |n).

The second contribution to the damping of electrons is
due to the processes described by the diagram in Fig. 13b. In
addition to the elastic processes, when both defecton Green
functions in a loop correspond to the same n, a contribution
to the electron damping comes also from the inelastic
processes for which the defecton Green function
corresponds to different n. The contribution of the inelastic
processes is small in accordance with the parameter (7/£)*. If
we ignore this contribution, we find that the expression for

1 s
Tc,d 1S

S WOk -k k',
t“’d(k)_gj oo veiy @

+N(n) [1 = N(m)] (TE;")*}, (4.18)
where integration is carried out over the Fermi surface.

If V,,f),, (k) for different interstices are quite similar, so that
the differences between them can be ignored, the expression
for 7, 4 assumes its simplest form

ot = Toud | Y AN @) FN@)[1 = Nm)(TE 7')*} . (4.19)

In exactly the same way we find that the transport
electron time and the resistivity are related by [22, 23]

p=pox”' D _{N?(m) +Nm)[1 - Nm)(TE ')} . (4.20)

If the temperature of a metal is sufficiently high and the
occupation numbers N(n) are so small that

> N (n) <x(TE §1)*,

the transport coefficients are described by Eqns (4.6), (4.9),
and (4.14) obtained in the preceding sections in the absence of
diagonal disorder. This is evidence ofthe universal validity of
this temperature dependence and is the main result of the
present section.

Subsequent behaviour of the transport coefficients as the
temperature is lowered will be considered by taking the example
of the contribution of quantum defects to the resistivity. At
T =T/, there is a reversal of the sign of the inequality (4.21).
Further cooling is then accompanied by an increase in the
resistivity which continues down to the temperature 74 of
degeneracy of the defecton gas. At T < Ty the resistivity is
p = p,- A typical temperature dependence of the resistivity p(7')

.21)

0 T4 T!

min

Figure 19. Temperature dependence of the defecton contribution to the
resistivity in the presence of disorder.

is plotted in Fig. 19. The values of 7/, and Tq4 are determined

by the nature of the density-of-states function v[W (n)].

Since in a real crystal the disorder is created by crystal
lattice defects, the fact that cooling causes the probability of
occupancy of the deep defecton levels to approach unity
corresponds to the capture (clustering) of defectons by these
lattice defects. The equality p(0) = p, is a consequence of the
model representation of the nature of disorder.

Moreover, the relaxation time of the defecton subsystem
rises strongly at 7 < T' . because the probability of the
excitation of a defect from a deep level falls exponentially
with temperature. In a real experiment the defecton system is
shown to be ‘frozen-in’ at low temperatures.

It therefore follows that the behaviour of the transport
coefficients of a metal with localised defecton states does not
differ from the behaviour in the case of free defecton states.

4.3 Metal with two-level systems
It is clear from the foregoing discussion that the clustering of
defectons, leading to their ‘freezing’ prevents the observation
of nontrivial temperature dependences of the transport
coefficients of a metal containing quantum defects. In
Section 3 we have considered the situation when the capture
of a defecton by an immobile heavy impurity creates two-
level states. A quantum defect frequently remains mobile also
below the clustering temperature. It is therefore natural to
expect to observe in this case nontrivial temperature
dependences of the transport coefficients even at T < T.
We shall consider the contribution of two-level systems to
the transport coefficients of a metal on the basis of the
formalism developed in Section 2.3 [77]. This contribution
is still described by the diagrams in Figs 13b and 18. If the
two Green functions in a defecton loop shown in Fig. 13b
correspond to states of different energy, the corresponding
inelastic contribution to the resistivity contains an additional
small term (kra)?, which should be compared with the elastic
contribution (when both Green functions correspond to the
same state), and the inelastic contribution can be ignored.
By analogy with Eqns (4.18) —(4.20), we now obtain the
following expression accurate to within terms of the order of
(kra)*:

oy [ Volk — K
i) = ZJ Q(2n)’ |Ve(l)|

X[l + 2N, (1 = N,) (TE 31)*], 4.22)
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2Q

XTLSV

ZNm(l _Nm)(TE al)g s

m

p=po [1 + (4.23)

where v is the volume of the system and N,, is the population
of the lowest level of the m-th TLS
-1
Ny =P ET ) (4.24)
exp (EmT _I) +1

We have ignored here the contribution made to the
scattering of electrons by immobile heavy impurities. In
addition to their additive contribution to 7. 4 and p, there is
also an interference contribution to the scattering shown in
Fig. 20. The cross in this figure corresponds to the scattering
by an immobile defect and the chain oval shows that the
quantum and immobile defects belong to the same TLS. This
contribution is independent of temperature and it alters the
constant component of p.

e —
/ N
(~ >ﬁ l\\\ /’/I }
N

N ~

Figure 20. Interference contribution of two-level states to the self-energy
part of the electron Green function.

We shall now find the coefficient in front of (7/E¢)® on the
assumption that the distributon of £ is Lorentzian. If § > J,,
then

Q

XTLSV

D> Nw(1=Nn) = (N(1—N))

5 [ dé v
:Ejm {cosh[(&® +J)" (27}
=025, T >0,
=T@0) ™", 6>T>J,
= 2JoT )67 exp(=JoT1), Jo > T ; (4.25)

here (...) denotes the averaging of two-level systems.
IfJy > 0, then

(N(1 =N))
=0.25{cosh[Jo(2T )"} %, T » 8*(2Jo) "',
= (21,7 )67 exp(=JoT 1), 6(2J0) "' >T. (4.26)

It  therefore  follows that in the range
Ta> T > max(d,Jo) the dependence 7. =A + B(T/R)*
is obeyed by 7¢ 4; here, A and B are constants of the same
order of magnitude. Since at temperatures much below the
Debye value the contribution of two-level systems to the rate
of relaxation of electrons is the dominant one, such a
dependence of 7.4 leads to anomalous temperature
dependences of the transport coefficients of a metal
containing two-level systems.

In particular, the contribution of these systems to the
resistivity is

p = py +po[l +0.5(TE ¢')°], (4.27)

Jo ) T

Figure 21. Temperature dependence of the contribution of two-level
systems to the resistivity.

where p, is the contribution to the static (immobile) defects
and the interference contribution to the resistivity. The
temperature dependence of p is plotted in Fig. 21. For
g~03, Eg~3x10*K, and T ~30K the temperature-
dependent term in p amounts to just a few percent.

It would undoubtedly be of interest to investigate
experimentally the temperature dependences of the resistivity
of the compounds Nb(OH),, Nb(NH),, and Nb(CH),.

5. Summary

We shall now formulate our conclusions and proposals.

5.1 Conclusions

1. The interaction of defectons with electrons leads to major
infrared renormalisations of the defecton Green function and
of the vertex of the electron—defecton interaction. The
renormalised quantities acquire an additional temperature
dependence ofthe T 8 type, where g depends on the properties
of a given material, i.e. it is not universal.

2. The interaction with electrons gives rise to an electron
cloud around a defect (electron polaron effect). This results in
an additional narrowing of the defecton band and this
narrowing depends on temperature as T#. In the case of
localised defecton states the electron polaron effect reduces
the probability of a transition to an adjacent interstice.

3. The long-range part of the interaction between defects
in the matrix of a metal is due to both the elastic interaction
and the indirect interaction mediated by the Friedel
oscillations of the electron density. In the case of light
interstitial impurities this indirect interaction may be of the
same order of magnitude as the elastic interaction between
defects.

4. Since these two interactions can have either sign, a large
number of bound defect states appears irrespective of the
nature of the short-range interaction between defects. When
temperature is lowered the unavoidable effect is the
clustering of all mobile defects in a metal and of neutral
mobile impurities in an insulator. The final result is either
separation into phases with high and low defect
concentrations or the appearance of clusters made up from
a finite number of particles.

5. The formation of clusters reduces strongly the defect
mobility and this in turn prevents the attainment of a
thermodynamic-equilibrium state. Consequently, instead of
impurity clusters with a large number of particles, only small
clusters consisting of two or three particles are formed.
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6. At temperatures T, < T <6 the main electron
relaxation mechanism in metals with quantum defects is the
scattering of electrons by defects.

7. The infrared renormalisations due to the electron—
defecton interaction lead to mnontrivial temperature
dependences of the rate of relaxation of the electron
subsystem and, consequently, of the transport coefficients
of a metal, including the electron contribution to the
absorption coefficient of sound.

8. The clustering of defects hinders the appearance of such
dependences and reduces the range of temperatures in which
they are observed.

9. Nontrivial temperature dependences of the transport
coefficients of a metal may be observed also at T < T if the
capture of defectons by heavy immobile defects gives rise to
two-level systems.

10. The distribution of the asymmetry of such two-level
systems is Lorentzian with a characteristic width propor-
tional to the defect concentration. The scatter of the values of
the tunnel matrix element of two-level systems in a crystal
with a low defect concentration (¢ ~ 1072) can be ignored.

5.2 Proposals

Unfortunately, in the literature we have reviewed there are no
reports of experimental investigations of the temperature
dependences of the transport coefficients of dilute hydrides of
metals (x ~ 0.1 -1%) at low temperatures.

On the basis of the theory proposed above it would be of
great interest to investigate such dependences for single-
phase (in respect of composition) dilute metal hydrides with
a low temperature of splitting into phases with high and low
hydrogen concentrations.

Moreover, it would be very desirable to carry out
investigations of the transport coefficients of niobium and
tantalum crystals, which contain two-level systems, and to
search and study similar two-level systems in other metals.

Acknowledgement

We are grateful to A P Zhernov for valuable discussions.

References

1. Abrikosov A A, Gorkov LP, Dzyaloshinskii 1E Methods of
Quantum Field Theory in Statistical Physics (Englewood Cliffs,
N1I: Prentice-Hall, 1963)

2. Kondo J Physica B (Ut recht) 123 175 (1984)

3. Andreev AF, LifshitzIM Zh. Eksp. Teor. Fiz. 56 2057 (1969) [Sov.
Phys. JETP 29 1107 (1969)]

4. Magerl A, Rush JJ, Rowe J M, et al. Phys. Rev. B 27 927 (1983)

5. Zaitzev R O, Malkin I A Fiz. Nizk. Temp. 2 69 (1976) [Sov. J. Low
Temp. Phys. 2 35 (1976)]

6. Zyryanov PS, Klinger M1 Kvantovaya Teoriya Yavlenii
Elektronnogo Perenosa v Kristallicheskikh — Poluprovodnikakh
(Quantum Theory of Electron Transport Phenomena in
Crystalline Semiconductors) (Moscow: Nauka, 1976)

7.  Morosov Al Zh. Eksp. Teor. Fiz. 77 1471 (1979) [ Sov. Phys. JET P
50 738 (1979)]

8. YuCC, Granato AV Phys. Rev. B 324793 (1985)

9.  Morozov A1, Sigov A S Fiz. Nizk. Temp. 13 606 (1987) [Sov. J. Low
Temp. Phys. 13 341 (1987)]

10.  Kagan Yu, Prokof’ev N V Zh. Eks p. Teor. Fiz. 902176 (1986) [Sov.
Phys. JETP 63 1276 (1986)]

11.  Kondo J, Soda T J Low Temp. Phys. 50 21 (1983)

12. Roulet B, Gavoret J, Nozieres P Phys. Rev. 178 1072 (1969)

13.
14.
15.
16.
17.
18.
19.
20.

21.
22.

23.
24,
25.
26.
27.
28.
29.
30.
31.
32.
33,
34,
35.
36.
37.
38.
39.
40.
41.
4.
43,
44,
45.
46.
47.
48.
49,
50.
s1.
52.
53.
54,
s5.
56.
57.
58.
59.
60.

61.

Nozieres P, Gavoret J, Roulet B Phys. Rev. 178 1084 (1969)
Nozieres P, De Dominicis C T Phys. Rev. 178 1097 (1969)
Yamada K Progr. Theor. Phys. 75 1044 (1986)

Anderson PW Phys. Rev. Lett. 18 1049 (1967)

Kondo I Physica B (Ut recht) 126 377 (1984)

Yamada K, Sakurai A, Miyazima S, Hwang HS Progr. Theor.
Phys. 751030 (1986)

Leggett A J, Chakravarty S, Dorsey A T, et al. Rev. Mod. Phys. 591
(1987)

YamadaK, Sakurai A, Takeshige M Progr. Theor. Phys. 7073 (1983)
Yamada K, Sakurai A, Miyazima S Progr. Theor. Phys. 73 1342 (1985)
Morozov A, Sigov AS Izv. Akad. Nauk SS SR Ser. Fiz. 54 1432
(1990)

Morozov A1, Sigov A S J. Phys. Cond. M atter 3 2867 (1991)
Kondo J Physica B (Ut recht) 84 40 (1976)

Tsuzuki T Solid State Commun. 69 7 (1989)

Tsuzuki T Progr. Theor. Phys. 81 770 (1989)

Vladar K, Zawadowski A Phys. Rev. B 28 1564, 1582, 1596 (1983)
Vladar K, Zawadowski A, Zimanyi G T Phys. Rev. B 37 2001, 2015
(1988)

Alefeld G, Vokel J (Eds) Hydrogen in Metals 2 vols (Berlin,
Springer, 1978)

Harrison W A Solid St ate Theory (New York: McGraw-Hill, 1970)
Beal-Monod M T J. Phys. Chem. Solids 28 1261 (1967)

Zyuzin A Yu, Spivak BZ Pis‘'ma Zh. Eksp. Teor. Fiz. 43 185 (1986)
[JETP Lett. 43 234 (1986)]

Bulaevskii L N, Panyukov SV Pis‘ma Zh. Eksp. Teor. Fiz. 43 190
(1986) [JETP Lett. 43 240 (1986)]

Somenkov V A, Shil‘shtein S Sh Fazovye Prevrashcheniya Vo doroda
v Metallakh (Phase Transitions of Hydrogen in Metals) (Moscow:
Institute of Atomic Energy, 1978)

Morozov A1, Sigov A S Solid State Commun. 67 841 (1988)
Morozov A1, Sigov AS Zh. Eksp. Teor. Fiz. 95 170 (1989) [Sov.
Phys. JETP 68 97 (1989)]

Blaschko O, Krexner G, Daou J N, Vajda P Phys. Rev. Lett. 552876
(1985)

Blaschko O, Krexner G, Pleschiutschnig J, et al. Phys. Rev. B 39
5605 (1989)

Bonnet JE, Ross D K, Faux D A, Anderson IS J. Less-Common
Met. 129 287 (1987)

McKergow M W, Ross D K, Bonnet JE, et al. J. Phys. C 20 1909
(1987)

Blaschko O, Pleschiutschnig J, Vajda P, et al. Phys. Rev. B 40 5344
(1989)

Daou JN, Vajda P J. Phys. F 12 L13 (1982)

Jensen C L, Zalesky M P J. Less-Common Met. 75 197 (1980)
Bonnet JE, Juckum C, Lucasson A J. Phys. F 12 699 (1982)
Vajda P, Daou JN, Burger K, et. al. Phys. Rev. B 34 5154 (1986)
Sellers G J, Anderson A C, Birnbaum H K Phys. Rev. B102771 (1974)
Morkel C, Wipf H, Neumaier K Phys. Rev. Lett. 40 947 (1978)
Wipf H, Neumaier K Phys. Rev. Lett. 52 1308 (1984)

O’Hara SG, Sellers G J, Anderson A C Phys. Rev. B 102777 (1974)
Poker D B, Setser G G, Granato AV, Birnbaum HK Z. Phys.
Chem. ( Frankfurt am Main) 116 39 (1979)

Cannelli G, Cantelli R, Vertechi G J. Less-Common Met. 88 335
(1982)

Cannelli G, Cantelli R, Cordero F Phys. Rev. B 34 7721 (1986)
Bellessa G J. Phys. Lert. 44 L-387 (1983)

Poker D B, Setser G G, Granato AV, Birnbaum H K Phys. Rev. B
29 622 (1984)

Huang K F, Granato AV, Birnbaum H K Phys. Rev. B 32 2178
(1985)

Morr H, Muller A, Weiss G, et al. Phys. Rev. Lett. 632084 (1989)
Richter D, Topler J, Springer T J. Phys. F 6 L-93 (1976)
Wipf H, Magerl A, Shapiro SM, et al. Phys. Rev. Lett.
(1981)

Wipf H, Steinbinder D, Neumaier K, et al. Europhys. Lett. 4 1379
(1987)

Steinbinder D, Wipf H, Magerl A, et al. Europhys. Lett. 6 535
(1988)

Neumaier K, Steinbinder D, WipfH, et al. Z. Phys. B 76 359 (1989)

46 947



246 A1 Morozov, A S Sigov

62.  WipfH Ber. Bunsenges. Phys. Chem. 95 438 (1991)

63. Maschhoff K R, Granato AV J. Phys. (P aris) 46 Collog. 10,
C10-87 (1985)

64. Cannelli G, Cantelli R, Cordero F Phys. Rev. B 35 7264 (1987)

65. Morozov Al,Sigov A S Fiz. Tverd. Tela (L eningrad) 331772 (1991)
[Sov. Phys. Solid St ate 33 996 (1991)]

66.  Anderson IS, Berk N F, Rush I1J, ct. al. Phys. Rev. Lett. 65 1439
(1990)

67. Berk NF,RushJJ, UdovicTI, Anderson 1S J. Less-Common Met.
173 496 (1991)

68. Morozov Al Sigov A S Physica B 169 481 (1991)

69. Kondo I Physica B+ C 132 303 (1985)

70.  Lifshitz EM, Pitacvskii L P Physical Kinetics (Oxford: Pergamon
Press, 1981)]

71, Morozov A1, Sigov A SFiz. Tverd. Tela (L eningrad) 323234 (1990)
[Sov. Phys. Solid State 32 1874 (1990)]

72.  Pippard A B Philos. Mag. 46 1104 (1955)

73.  Kittel C Quantum Theory of Solids (New York: Wiley, 1963)

74.  Abrikosov A A Osnovy Teorii Metallov (Fundamentals of the
Theory of Mctals) (Moscow: Nauka, 1987)

75. Bhatia A B, Moorc R A Phys. Rev. B 121 1075 (1961)

76. Morozov A1, Sigov AS Zh. Eksp. Teor. Fiz. 98 1454 (1990) [Sov.
Phys. JETP 71 813 (1990)]

77. Morozov A1, Sigov AS Zh. Eksp. Teor. Fiz. 104 2872 (1993) [Sov.
Phys. JETP 77 324 (1993)]



