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Bell’s theorem without the hypothesis of locality
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Abstract. One of Bell’s assumptions in the original
derivation of his inequalities was the hypothesis of
locality, i.e. of the absence of the influence of two remote
measuring instruments on one another. That is why
violations of these inequalities observed in experiments
are often interpreted as a manifestation of the nonlocal
nature of quantum mechanics, or a refutation of local
realism. In this paper, Bell’s inequality is derived in its
traditional form, without resorting to the hypothesis of
locality, the only assumption being that the probability
distributions are nonnegative. These probability distribu-
tions are calculated, for a specific optical experiment, in the
framework of quantum theory and it is shown that they
can take on negative values. This can therefore be regarded
as a rigorous proof that the hypothesis of locality is not
relevant to violations of Bell’s inequalities. The physical
meaning of the obtained results is examined.

1. Introduction

Despite the fact that the questions associated with the
Einstein —Podolsky—Rosen (EPR) paradox [1] and Bell’s
theorem [2] appear to have been largely elucidated, the
stream of publications on this topic has recently appre-
ciably increased (see, for example, Belinskii and Klyshko
[3] and the literature quoted therein). The failure of Bell’s
inequalities predicted by quantum theory and frequently
tested experimentally is treated by the vast majority of
investigators as the manifestation of the nonlocality of
quantum theory. The point is that Bell [2] derived the
original inequalities on the basis of the theory of hidden
variables [1], one of the assumptions of which is the
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hypothesis of locality, i.e. of the absence of the influence of
two remote measuring instruments on one another. The
logical inconsistency of the need to resort to the concept of
nonlocality in order to account for the failure of Bell’s
inequalities has been demonstrated in a recent review [3]
(see also Refs [4—7]). My aim in the present study is to
formulate a rigorous proof of Bell’s theorem without
resorting to the hypothesis of locality.

2. Bell’s inequality

Using an algorithm analogous to that described by
De Muynck [6], T shall derive Bell’s inequality in its
traditional form

(AB) + (AB) + (AB") — (A'B")] < 2 ()

without the assumption of locality. Another form of the

inequality has been obtained by De Muynck [6]. Here A, A,

B, and B’ are dichotomous variables assuming unit values:
A,A', B, B’ = £1. )

The averaging is carried out with respect to events in the
experiment described below. In order to demonstrate the
validity of inequality (1), it is only necessary that the
normalised probability distribution functions are non-
negative:

W(A,A',B,B") >0, W(A,B,B')>0,etc, (3

W(A,A',B,B") =1
A,A',B,B'

Z W(A, B,B') = 1, etc. 4

A,B,B’

Naturally,
W(A,A',B,B") + W(=A,A’, B, B)

=W(@A',B,B") > W(A, A", B,B), (5)
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similarly to other variables and distributions of lower or, taking into account inequality (9),
dimensions. , ,

According to the property defined by Eqn (5), one can —1 < AA, A7, B,B") < 0. (17

write
W(A,B,B')=W(A,A’,B,B"Y)+W(A, -A', B, B’)
< W(@A',B") + W(-A', B)
=WA',B')+ W(B) —W(@A',B). (6)
Similarly
0 < W(A, —-B, —B')
= W(A, —-B) — W(A, —B, B')

= W() - W(A,B) — W(A,B') + W(A, B, B').
O

Let us transfer the last term of inequality (7) to the left-
hand side (to zero) and add the resulting relation to
inequality (6). We obtain as a result

0 < W(A) + W(B) — W(A, B)
~W(A',B) — W(A,B") + W(A', B'), (8

or
AA,A',B,B") = W(A,B)+W(@A',B)+W(4A, B)
—-W(A',BY—W(@A)-W(B) <0. (9
Further
W(B,B') = W(B) —W(B, —B’). (10)
Similarly
W(-B, —-B') = W(-B')—W(B, —B’)
=1-W(B')-w(®B, -B"). (11)

If we subtract Eqn (10) from Eqn (11) we obtain as a

result
W(-B,—-B') = 1-W(B)—-W(B')+W(B,B'). (12

Let us substitute this relation, together with Eqn (7), in
the following inequality:

0<W(-A,-B,—B')=W(-B,-B')—W(A,—B,—-B").

(13)
Then

0<1-W(@A)-W(B)-—W(B')+W(A,B)+W(4,B)
+W(B,B")—W(A,B,B') = 1—-W(A)— W(B)

~-W(B')+W(A,B)+W(,B')+W(-A, B, B").
(14)

The last term is in this instance subject to the inequality
W(-A,B,B")=W(-A,A’, B, B")

+W(-A,-A',B,B") < W(A',B)+W(=A', B

:W(A’7 B)+W(B’)_W(A’7B’)’ (]5)
whence
0<1-WA)—W(B)+W(A,B)+W(A', B)
+W(A, B ) -W(A', B'), (16)

We shall now express the averages in inequality (1) in
terms of combined probabilities, for example:
(AB) = Wap (++) + Wap(——) = Wy (+—) — Wap (—+),
(18)
where
Wap(++) = W(A =

+1,B= +1),etc.

As a result of direct substitution, one can show that

(ABY+(A'B) +(AB"Y — (A'B") = A(+ + ++)

FA(= = —=) = A+ — +=) = A(=+—+). (19)
According to inequality (17), we have
=2 < A(++++) +4(--—) L0, (20)

0 < —A(+—+-)—A(—+—+) < 2. (21

After adding together inequalities (20) and (21) and
taking into account Eqn (19) we obtain the final result (1).
We emphasise that the hypothesis of locality was not used
in this derivation.

3. An example of the failure of Bell’s inequality
(1) and its cause

The question arises why inequality (1), which is based on
extremely general postulates, is violated in practice. The
lack of an answer to this question in De Muynck’s
communication [6] apparently led to this work being
undeservedly ignored.

We shall consider the scheme for the simplest experi-
ment designed to test inequality (1) [3, 8, 9]. Two observers
(Fig. 1) A and B each record simultaneously one photon on
‘+’ or ‘=’ detectors assigning to these events the values A,
B = +1or —1. By changingthe phase delays o by a’ and/
or f by B, a transition from the variables A and B to A’
and/or B’ is achieved. Numerous repetitions of the
measurements make it possible to calculate the averages
in inequality (1).

The quantum state of the photons reaching the
observers is described by the wave vector [3]

Figure 1. Schematic illustration of the intensity interferometer with
parametric sources of radiation for two observers A and B. The
correlated photons are created simultaneously in the nonlinear elements
I or 2under theinfluence ofthe pumping P and are directed to A and B via
two modes, one of which undergoes a phase delay (circles). The modes are
mixed in 50% light dividers (dashed lines) and are detected.
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W) = (1/V2)(al b} +a3b7)|0)

(1/v2)(]10),]10), + [01),]01),), (22)

where af and b,+ are the photon generation operators in
two signal (received by the observer A) and idler (received
by the observer B) modes; j= 1, 2 corresponds to the
number of the crystal emitting the given mode (Fig. 1); and
|0) denotes the vacuum state.

The photon number operators recorded by the detectors

‘+” and ‘=’ in channel A assume the form
ni = alay = (1/2)[nf +n§ £ (6™ +0%e™)],  (23)
where nf =afa;, 6> =ajaf, and ¢} =(c")", j=1,2

Similar relations define ni in channel B.

We now find the distribution function W(A, A’, B, B")
having calculated the combined probabilities as quantum
moments:

Waa g (++++)

=WA=+41,A"=+1,B=+1,B" = +1)
= (Ylnsnt nlnl 1),

Wan g ( -+ +-) = @lnnd wln’ 1) ete, 24)

The primes denote here the replacement of o by o’ in
Eqn (23) and/or B by B’ in channel B.
We establish the following phases in the channels:

a'=n/2, B=-m/4, B =n/4,

which corresponds to failures of inequality (1). As a result,
we obtain the matrix elements (the lower indexes are
omitted)

o =0, (25)

WH+++)=WH—-—+)
=W(—+4+-)=W(-——-)=v2/16,
WHt+-—=)=WH—-+-)=W(-=+-+)
=W(——++4)=-V2/16,
WH+—-+)=WH—-——)=W(=+++)
= W(-—+-)=@2-V2/16,
WH++-)=WH—-—++) =W(—+--)

=W(-—-+)=Q2+V2)/16. (26)

Some three-dimensional probabilities are also negative,
for example

Was (+++) =W(—++)
=WH--)=W(--)=1/s,
Wagp(——+)=WH+-)=( +\/§)/8’

Wagp(+—+)=W(—+-)=(1-v2)/8. @7

Thus the only cause of the failure of inequality (1) is the
negative sign of the probability distribution functions, i.e.
failure of inequality (3) and hence of inequality (5).

According to Eqns (26) and (27), the normalisation con-
ditions (4) and equations of type (5) hold in this situation.

4. Conclusion

In connection with the EPR paradox and Bell’s theorem,
negative probability distributions have been encountered in
the literature [10—15]. However, the definition of the
distribution function in the form W(A, A’, B, B') makes it
possible to reach an unambiguous conclusion concerning
the role of locality or, more precisely, the absence of such
in the failure of inequality (1) by comparing directly the
results (26) and (27) with the initial postulates (3)—(5).
There is also no need to resort to ‘hidden variables’.

The probability distribution function W(A,A’, B, B') is
analogous to the Wigner distribution. Not all the observ-
ables in it are described by commutating operators, for
example A and A'. They cannot be measured in a single
event (the observer A can in no way record a single photon
at different phase delays « and a«’). Consequently, direct
measurements of W(A, A’, B, B’) are impossible.
However, indirect methods for the measurement of dis-
tribution functions of this type are nevertheless permissible.
Thus a novel method, admittedly designed for two-dimen-
sional continuous Wigner distributions, including negative
ones, has been proposed [16] and applied experimentally.
Perhaps one should become recon-ciled to a negative
probability, regarding it, after Dirac [17], as a well-defined
mathematical analogue of a negative sum of money (see
also Muckenheim [12]).

Indeed, by following the proof of inequality (1) in the
opposite direction, from the experimentally recorded
averages, we obtain joint probabilities of types (26) and
(27); although they do not have concrete values, never-
theless some of them are bound to be negative.

We have yet another analogy. Negative temperatures
do not exist on the Kelvin scale, but a formal description of
the inversion of population with the aid of a negative
temperature is widely used in quantum electronics. A
negative temperature cannot be measured with a therm-
ometer, but it can be calculated and the state of the active
levels can be elucidated. Thus the formal recognition of the
existence of the distribution function W(A, A’, B, B") does
not leave room for the requirement that it should be
nonnegative.

The present study does not claim to embrace all possible
quantum effects and to elucidate the problem of nonlocality
in quantum theory in general. For example, the behaviour
of a single photon in a Mach—Zender interferometer can be
treated as nonlocal in the sense that it belongs simulta-
neously to two modes (arms) of the interferometer
separated in space (see also Belinskii and Klyshko [3]).
The present study nevertheless makes it possible to claim
that the violation of Bell’s inequalities does not provide
grounds for the invocation of the inexplicable nonlocality as
a characteristic of quantum mechanics and for seeking help
from mysticism in this connection.
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