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Abstract. The review is devoted to theoretical and experimental
problems in the study of liquid crystals by light scattering
methods. Nematic, cholesteric, and smectic liquid crystals in the
isotropic and ordered phases are considered. The possible types of
fluctuations are discussed for each phase. In the isotropic phase,
special attention is devoted to pretransition phenomena. The
influence on light scattering by umisual properties of liquid
crystals such as the marked anisotropy, gyrotropy, and the
presence of a regular periodic structure is examined in detail.
The characteristic features of Green’s function of Maxwell’s
equations for such media are discussed. The influence of the finite
size and of the surface effects in the liquid crystal on the
fluctuations and light scattering is considered. The problem of
taking into account multiple scattering is discussed. The theo-
retical results are illustrated by the available experimental data.
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1. Introduction

After the invention of lasers, the light scattering method
became one of the most effective procedures of the
investigation of condensed systems. It has been thoroughly
developed both experimentally and theoretically and is used
successfully in the study of a wide variety of physical systems
[1-3]. Since the medium is then subjected to a minimal
external influence, this method is particularly promising for
systems with a high susceptibility, for example a liquid near
second-order phase transition points, liquid crystals, etc.
However, when light scattering methods were applied to
complex objects such as liquid crystals, a whole series of
problems arose which had not been previously analysed in
detail. These are related primarily to the necessity to consider
the fluctuations ofthe tensor order parameter and sometimes
of two and more interacting order parameters [4, 5]. Large
scale fluctuations are usually analysed for variables of the
scalar type, for example the density or concentration near the
critical points [6] or for a vector n-component order
parameter [7, 8]. For liquid crystals, the fluctuations of the
order parameter are frequently anomalously large and the
intensity of scattering by them can exceed the scattering
intensity in the usual organic liquids by several orders of
magnitude [9—11]. Another problem is associated with the
unusual optical properties ofliquid crystals. The large optical
anisotropy, the presence of a regular periodic structure, the
characteristic size of which may be of the order of magnitude
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of the light wavelength, and the anomalously large optical
activity may be regarded as such properties [9—14]. Finally,
surface effects play a significant role for liquid crystals in
small volumes [15]. All these features lead to major
complications in the solutions of light scattering problems
and to difficulties in the analysis of experimental data.

From the general statistical point of view, the order in
liquid crystals is described by the distribution function of
molecules with respect to angles and by the microscopic
function of the density of molecules. If one is interested
solely in the Rayleigh light scattering, then, in describing the
order in main types of liquid crystals, one can restrict the
treatment to a parameter representing a second rank tensor
R,p(r,t). The tensor R,g can be constructed on the basis of
any physical quantity with the same tensor dimensions (for
example, the magnetic susceptibility, the relative
permittivity, etc.) [9, 16].

It is convenient to consider separately the orientation
order parameter

Sa/}(r7 t) = Raﬁ(rv t) _%SaﬁRw("v t)
which is a traceless tensor, and a scalar parameter
p(r, 1) =1R,,(r, 1),

characterising the microscopic density.

Since we are interested in the problem of light scattering,
we shall select henceforth the traceless component of the
relative permittivity g,5(r,7) at an optical frequency w, as
Sqp(r,t), neglecting the time and spatial dispersions of the
tensor & In the absence of intrinsic absorption, the tensor
Syp(r,t) can then be regarded as real and symmetrical.

The equilibrium values of (Sys(r)) =S g4(r) and
(p(r)) = po(r), where the (...) denotes statistical averaging,
are related directly to the type of phase of the liquid crystal.
The symmetrical tensor Sgp(r) can be diagonalised in the
local coordinate system e} (r), e5(r), e3(r):

550 = 3L, (L1
Jj=1

where s?, sg and sg are the eigenvalues of the tensor
Sgﬁ ) —i—sg—i—sg =0.

In the isotropic phase (I-phase), =)= sg.

The case ofa nonzero s; corresponds to the ordered phase
of the liquid crystal. If two of the three eigenvalues s), s, s5
are identical, then such a phase is locally uniaxial. Otherwise
itislocally biaxial. [fthe system is spatially homogeneous, i.e.
po(r), s)(r), and €] (r) are independent of the point r, then it
constitutes a uniaxial (N-phase) or a biaxial (Na-phase)
nematic liquid crystal (NLC).

In cholesteric liquid crystals (CLC), the e_?(r) axes rotate
helicoidally:  e)(r) = [cos(p, -r),sin(p,-r),0], e (r) =
[—sin(po-r), cos(py-r),0], and e3(r) =po/po = (0,0,1),
while the values of s\ (r) and p,(r) are constant. The quantity
27 /p, represents the pitch of the cholestric helix. Cholesteric
liquid crystals are usually locally uniaxial: 50 = s3.

In smectic liquid crystals (SLC), the density p,(r) is one-
dimensionally periodic in space. In the simplest version,

Po(r) = poo + Yo cos(qo-r — up), (1.2)

where 271/qq is the period of the smectic layers of the order of
magnitude ofthe molecular size, e = g,/qo is the direction of
the normal to the layers, and ug represents the initial phase. [f
s1(r) = s3(r) = const # 0, €} (r) = const, and ej = e, then

such a phase corresponds to the smectic A phase (Sa-
phase). lf.sf)(r) = const and e;)(r) = const but none of the e})
(j=1,2,3) axes coincides with e, then the corresponding
phase is a smectic C phase (Sc-phase).

Even more complex liquid crystal phases— smectic B, C*,
F, and H phases, discotic phases, etc. exist [4, 5, 9, 10], but
we shall not consider them here. For uniaxial liquid crystals,
such as smectic A liquid crystals, and also for the vast
majority of nematic and cholestric liquid crystals, the
equilibrium value of the tensor order parameter S 2/3 can be
conveniently written in the form

Sap = So(nanp —184p): (1.3)

where Sy = —3s) = —3s(3) and n® = €Y. The scalar So has the
significance of the average degree of order of the long axes of
the molecule along the director vector n° [9].

The fluctuations of the order parameter

(paﬂ(r7 t) = Socﬂ(r7 t) _Sgﬂ(r)y
(1.4)

generate in the medium fluctuation inhomogeneities of the
relative permittivity e,p, which scatter light.

The principal contribution to the light scattering in liquid
crystals comes from the orientation fluctuations ¢@,g(r,?).
This is associated with the fact that the fluctuations 8p in
cases where p,(r) = const (nematic and cholesteric liquid
crystals) have the same order of magnitude in liquid crystals
as in the usual liquids. On the other hand, in smectic liquid
crystals, where po(r) is periodic, there are appreciable
fluctuations 8p but their characteristic scale g5 < A (the
light wavelength) and they are hardly manifested in the usual
light scattering. We shall therefore henceforth consider only
the scattering by orientation fluctuations ¢, unless
otherwise stipulated. The tensor @,g has in the general case
five independent fluctuation modes &,,...,&s.

The space time pair correlation function

Gaﬂyp(rly ryt =)= <(poc/3(rla tl)(pyp(r27 1))

3p(r, t) = p(r, t) — po(r)

(1.5)

is used in the statistical description of the fluctuation
8¢, = @,p. In particular, the intensity of single light
scattering is expressed in terms of this function [1—3]:

1(eY, e®) :J (;—f: 1Y, e, ), (1.6)

—00
where the spectral intensity of the scattering at the point r is

1V, ¥, w) = YO_[ drdr, egf)eg)Tay(r, ri; o+ )

XT;ié(r7 ry; o+ wO)Gy,u(Sv(rI: ra; ('0)
(1.7)

Yo is a constant linked to the definition of the intensity, and
Vs is the scattering volume. This formula refers to the case of
a harmonic incident wave.

E(()i)(r7 t) = E(()i) (P = eVE (()i) (r)e @’ |

XEQ(r)E " (r)eflel)

(1.8)

where  T,g(r,r’;w) is Green’s function of Maxwell’s
equations at the point r in the w-representation, ) and e®
are the polarisation vectors of the incident and scattered
light, and G(r,r,; ®) is the frequency Fourier transform of
the correlation functions (1.5).
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Formula (1.6) defines the integral intensity of the
scattered light. In the description of a real experiment on
light scattering, it is usually sufficient to use for Green’s
function T(r,r'; @ + w,) its asymptotic form in the remote
region |r—r’| > 1. Bearing in mind that the characteristic
hydrodynamic frequencies @ of the correlation function
G(r,r'; w) are much smaller than the optical frequencies wo,
the frequency shift may be neglected in Green’sfunctions 7' in
Eqn (1.7), ie. T(r,r'; o+ wy) may be replaced by
T(r,r’; ®,). The integral intensity defined by Eqn (1.6) is
then defined by the spatial correlation function

Gaﬂyp(rly r2) = <(paﬁ(rl7 t)qoyp(rb t))

* dw
:J %Gapyp(r],rz; (D) (19)

In this case the argument ¢ of the function @(r,f) can be
omitted bearing in mind that the corresponding correlators
are simultaneous. R

For the calculation of the correlation function G(r,r’), it
is essential to know the contribution of the fluctuations @(r)
to the thermodynamic potential of the liquid crystal @. The
deviations of Sup(r) from the state of equilibrium (S 2ﬁ)
require an expenditure of energy. The magnitude of this
distortion energy actually determines the probability of the
given fluctuation [18].

From the standpoint of the general principles of the
continuum theory of liquid crystals [4, 9, 10, 17], the
quantity @ is a functional of the invariants of the parameters
Sap(r) and p(r) and their gradients. If one is interested solely
in fairly smooth distortions of the orientational structure of
the liquid crystal, then one need retain in @ only gradient
termsofan order in Vnot higher than the second. In nematics
and cholesterics, where p,(r) = const, the interaction of the
fluctuations in p and S,gis insignificant and the contribution
dp to the thermodynamic potential may be disregarded. The
expansion of the thermodynamic potential includes in this
case invariants of the type

Sopr--esSyss (1.10)
Sapy--+r SysVpSuw VeSaa s (1.11)
euvaaﬂ7---7Sy6V§Sms (]]2)

contracted over all pairs of indices; here ey, is a fully
antisymmetric third rank unit vector. It follows from
symmetry considerations that the invariants (1.12) in V can
exist only for chiral liquid crystals (cholesteric, smectic C*,
etc. liquid crystals) [9, 18]. We may also note that invariants
of the type Sp(S") are expressed, for any n, in terms of two
independent invariants Sp(S ?) if Sp(S ?) as a consequence of
the recurrence relation

SpS™! =1Sp§?sps " +1sp§ispSnt. (1.13)
This approach constitutes in fact an extension of the Oseen —
Frank continuum theory [9, 10] to the case where liquid
crystals are described not in terms of the director vector n(r)
but in terms of the tensor order parameter.

In smectic liquid crystals, it is essential to take into
account both the orientation order parameter Sqg(r) and the
structural parameter po(r). Since po(r) is not a smooth
function of the coordinates, it is necessary, strictly speaking,
to take into account arbitrarily high orders of the spatial
derivatives of po(r). However, in order to obtain the
principal characteristics of smectic liquid crystals, it is

sufficient to take into account the spatial derivatives of po(r)
up to the fourth order inclusive [19]. In particular, Eqn (1.2)
is then obtained from the condition for a minimum in the
corresponding potential. An alternative approach [20], in
which Eqn (1.2) is postulated and the smooth complex
amplitude Y (r),

Y(r) = [ ()| e,

is adopted as the order parameter, is more common. The
quantity u(r) has the significance of the projection onto gy of
the vector u(r) of the displacements of the smectic layers,
while /(r)| is the amplitude of the density wave. [y, (F)| = ¥,
corresponds to the equilibrium value of the parameter (r)
and u(r) = ug in Eqn (1.2).

The present review is devoted to the problem of the study
of fluctuations and light scattering in liquid crystals.
Theoretical and experimental results are described in
parallel. The theoretical consideration is fairly detailed. The
final expressions are quoted, so far as possible, in a form
permitting direct comparison with experiment. The principal
types of liquid crystals—nematic, cholesteric, and
smectic—are considered. Both the ordered and isotropic
phases of the liquid crystals are discussed. A brief resume¢ is
presented at the end of each section and the possible
prospects for further research are discussed.

(1.14)

2. The isotropic phase of nematics

2.1 Fluctuations and light scattering intensity

The properties of liquid crystals in the isotropic phase do not
differ from those of the usual organic liquids with anisotropic
molecules. However, the nature of the behaviour associated
with the correlations in the orientations of the molecules and
in particular with the fluctuations of the tensor order
parameter @up(r) are in the present instance completely
different. In the vicinity of the point corresponding to
transition to the ordered phase, the amplitude of the
fluctuations increases sharply and the fluctuation kinetics
exhibit a critical retardation. The characteristic features of
the behaviour of a liquid crystal in the region of the phase
transition can be obtained with the aid of the model proposed
by de Gennes [9, 16, 17, 21]. The Landau expansion of the
thermodynamic potential is used as a basis [18]:

di(f) :qj(o)+%AOSP§2_%B(JSP§3+£C(J(SP§2)2’

where @(0) is the contribution to the potential not associated
with the orientation and By and Cy are positive constants. In
Landau’s theory, Ag =A o1, A >0, 7= (T —T*)/T*, and
T* is the temperature at which the isotropic phase loses its
stability. In the isotropic phase, the average value of S is zero.
A characteristic feature of the above expansion is the
presence of a third order term in S. The cubic term is
introduced because states with +S and —S are physically
completely different: S, >0 describes the preferred
orientation along n°, while S, < 0 describes the preferred
orientation in the plane perpendicular to n® [9].

This model predicts a first-order phase transition at a
temperature T, = T *[1 + (B§/27A (,C,)], the difference
T.—T* is usually approximately 1 K, while the heat of
transition Q = A (B (2)/27C(2) isvery low (~11] cm73) [9, 22].

The phase transition is a weak first-order phase transition
over a wide range in which free transition phenomena,
characteristic of second-order transitions, are observed [22].
A detailed description of the behaviour ofthe liquid crystal in



142

A Yu Val’kov, VP Romanov, A N Shalaginov

the region ofthe phase transition requires the introduction of
an effective Hamiltonian [7, 18]. When account is taken ofup
to sixth-order terms in S, it assumes the following form:

H.p = Jdr[%A SpS? +1L1(V,S) +1 Ly(V,Sy)
—1BspSi4+1lc(spS?)’ +LESpS?spS?

+1D(SpS?)° +1Dy(SpS7), Q.1
where A =A'r, A’,L,,L,,B,C,D,, and D, are constants,
Ly >0, and L, +(2/3)L, > 0 [4, 17]. Usually A’ > 0 and
B >0.

We shall wuse below the Fourier
transformations defined by the relations

spatial-time

1

-7 J:‘;_;’ Fy(@) exp[ilg-r —o1)].

F(r,1)

F,(0) = Jvdrjio A F(r, Dexplilg-r—on], (22

in a finite system with a volume V, in which the substitutions
vl Y (2m)~* [dq and F, — F(q) are carried out in the
case of an unbounded system.

We introduce the coordinate system {e;,e,,p}, where
p =¢q/q is a unit vector along ¢, e; and e> are unit vectors
orthogonal to the vector ¢q, and e; = e, X p to make the
treatment concrete. In this coordinate system, the tensor @,
can be conveniently parametrised in the form [23, 24]

Pup.q = E1.4(Pueip T Ppern) + E2g(Patap + Ppera)
+&34(e1neap + e1pen) + Eaglernerp — exeap)
+&5,4V3(ngng — 18,5) . 2.3)

Consider the fluctuations of the modes éj(_Lz 1-5) in

the Gaussian approximation. On substituting § = ¢ from
Eqn (2.3) in Eqn (2.1), we have

Y= Z{[A + (L1 +3L))q ](|Cl,¢l| + |€2,q| )

eff =

A+ L) (&, + 1)

+A + (L) +2L2)¢)|Es 7} (24)

Evidently the parametrisation ¢g4 introduced is convenient
because the fluctuations of the modes &, ,,...,¢5, are
independent. The mean squares of the fluctuation modes
can be easily found from Eqn (2.4):

(€)= ksTV(A +Lijd*)™", j=1-5, 2.5)

where
3 1 2
!(])_l@)_l(), !(3)_l(4)_l(), l(s)_l()’

LO =L, 43L,, LO=L,+1L, LY=L,
and kg is the Boltzmann constant.

It is seen from Eqn (2.5) that the fluctuations of all five
modes &; behave in a critical manner at 7 — T, but their
growth is limited by the interruption due to the first-order
phase transition at a temperature T, # T *. It is interesting to

note that, in contrast to the scalar order parameter, here we

have not one but three correlation lengths ry; = (L(j)/A)'/2
(j = 1-3), which depend on two parameters, L, and L», and
they are linked to one another by the relation
4}"%2 =r§3+3r§|.

The correlator defined by Eqn (1.9) in an unbounded
spatially homogeneous medium depends solely on the
difference between the arguments G(ry,r,) = G(r; —r,).
From Eqns (2.3) and (2.5), we find in the g representation
[23, 25]

Gupyp(@) _kBTZBQ;)W p)A +LYg)", (2.6)
where
B3, (p) =1 (82 Pppp + Bap PpPy + 8y Pay + 85, Pab
—4papp Py Pyp)
Sﬁ)w(p) 3 5 (Purp — %5043)(!’)'!’;) - %Sw) )
FO@) =T-500) 5 0).
and the tensor
Loy = % (savsﬂp + 5a98ﬁv) - %Eaﬁésyp > @7

plays the role of a unit tensor for the given symmetry.

We shall now consider the intensity of the light scattered
by these fluctuations. In terms of the Born’ approximation, it
can be written in the form [1-3]

[(e(i)7 e(S)) = Z(()I)e—o'L" eé)eé)cavﬂu(qsc)esgef:) s
where Z (()') = I(()')Vs(w%/4nc R)?, 1(()') is the intensity (the
modulus of the Boynting vector) of incident light, ¢ is the
velocity of light in a vacuum, R/R is the direction towards the
observation point, R is the distance from this point to the
scattering volume Vg, V! /> R, Ly is the path traversed by
light in the medium, o the extinction coefficient (linked to the
energy lost in the scattering process), e® and e® are the
polarisation vectors, k) and k® are the wave vectors for the
incident and  scattered waves respectively, and
q = k® — kD is the scattering vector.

The scattering intensity for arbitrary polarisations e® and
e® can be found from Eqns (2.6) and (2.8):
3 v(j)(e(i), e(S))

:AZ

j=1 1+ (qSCrQ/)2

(2.8)

1(e®, ) 2.9)

where
A=1DVR R 2,

VD0, 60y =14 122 @ 0y (e, o0y,

N (e(i), e(‘“)) -

v(3) (e(i), e(S)) — %xf)i + %xf)s +xisxpixps

%(xpixps - %xis)2 5

222 (2.10)

ps 3
here x;, = e(i) 'e(S)» Xpi =P 'e(i)» Xps =P 'e(S)’ andp = qsc/‘/sv
The quantity R is the scattering constant defined as follows
[26]:

n a)(z) ’ kgT
R§ :— .
sC 5}, aﬁaﬁ(q ) 47[( A

In terms of the mean field approximation, A~ 17, y=1,
while all the correlation radii r; ~ 7" and v =0.5. When
account is taken of Eqns (2.9) and (2.10), formula (2.8)
makes it possible, in particular, to formulate expressions for

@.11)
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the scattering intensities corresponding to all the
polarisations usually employed in the experiment:

v _A [ L 1
\Y% ey ~ ’
2 _] + (qSC rcl)2 3 I+ ((150 rc2)2

v A[cos’(8./2)  sin*(6,/2)
Iy = 2 7t 7|
_1 +(qSC rcl) 1 +(qsc rc2)
[ 4 . 4
[S :4 cos (esc/2)2 +l sin (050/2)2 , (212)
2 _1+((15ch1) 3 ]+(q$crc2)

where Oy is the scattering angle, ¢, = 2kqsin(0,./2) and
ko = k9| = || are the wavenumbers in the medium. It is
seen from these formulae that by studying the light scattering
indicatrixes for different components, it is possible, in
principle, to determine all three correlation radii rc;.

Hitherto there have been no experimental independent
determinations of all three correlation radii r.;. This is
associated with the fact that, owing to the interruption by
the first-order phase transition, it is impossible, in principal,
to carry out measurementsatt < 107, Hence the asymmetry
arising in the light scattering indicatrix is very small [27, 28].
The fact that this asymmetry is nonzero has been noted by
Chu et al. [29]. The first fairly reliable data have been
obtained by Stinson and Litster [30]. Very careful
measurements have been made by Gulary and Chu [31] for
MBBA. They measured the light scattering intensity to
within 0.1% for two fixed angles 6, = 21.4° and 158.6°.
The components of the scattered light I3 and I were
measured. It follows from Eqn (2.12) that the first order of
the asymmetry of the scattering indicatrix in these
components is defined by the expressions qfc(?,rg] + r§2)/4
and ¢4 [r? cos?(0s/2) + r2 sin® (6. /2)] respectively. Gulary
and Chu [31] did not observe a difference between these
quantities. This justifies the use of the single correlation
radius r; = r, approximation for the description of the SLC
isotropic phase, which corresponds to the condition L, = 0 in
Eqn (2.1). It follows from Eqn (2.2) that in this case the
scattering depolarisation coefficient 1 /I, = 3/4, which has
been confirmed experimentally [26—31]. The maximum
angular asymmetry, measured by Gulary and Chu [31], was
1%, which corresponds to r,~ 120 A. The temperature
dependence of r, = ryt™" with v = 0.5 has been confirmed
[30, 31]. Gulary and Chu [31] and Stinson and Litster [30]
found that the parameter ry = 5.5+0.2A and 6.8+ 1.0A
respectively.

The extinction coefficient g, characterising the decrement
in the decay of normal waves propagated in the medium, is
determined by the imaginary components of the effective
relative permittivity [32]. For the calculation of the extinction
coefficient in terms of the lowest order in fluctuations, it is
usually sufficient to integrate the total relative scattering
intensity per unit volume over all the directions k® [32, 33].
When kyr; €1 (it was found in the above investigations
[30, 31] that kor,; < 0.1), we have

2.13)

An expression for g corresponding to arbitrary kor.;hasbeen
published [26].

2.2 Pretransitional phenomena in the isotropic phase
Thel — N phase transition is a first-order transition, but it is
accompanied, as in second-order transitions, by an increase
in the intensity of the scattered light [26—31], an increase in
the magnetic birefringence [27], an anomalous behaviour of
the heat capacity [34, 35], and a critical retardation of
fluctuations [27, 36 —38]. This is associated with the fact
that the phase transition entails a small jump in the specific
volume [39] and an insignificant heat of transition [40—42]
(see also Anisimov [22]) and should be accompanied by an
increase in the fluctuation order parameter in the vicinity of
T..

In the early studies of Stinson and Litster [27, 36], it was
already shown that the reciprocal of the light scattering
intensity I ~'(T') in a MBBA nematic, with the experimental
accuracy specified a priori, varies linearly with temperature
over a fairly wide range of the latter (T — T, ~ 20 K)
(Fig. 1), which corresponds to the critical susceptibility
index y = 1.0. Subsequently this conclusion was confirmed
in experiments both on light scattering [28—31] and on
birefringence (the Cotton—Mouton effect) [43]—in the
latter case for five different nematic liquid crystals. The
correlation radius index v proved to be 0.5 [30, 31]. The
most natural explanation of these facts is that in the given
instance there is a region where the Landau theory applies
[9, 16]. However, the hypothesis of the possible tricritical
nature of the I/ +» N phase transition has also been put
forward [35, 44].

1 _'/rcl. units

g
1.6 — /
/
/
/
/
1.2+ /
>
/
/
0.8 — /o
s
4
s
0.4 — /
S
/ (=]
0 V4 | | | ]
45 49 53 57 61
T/°C

Figure 1. Temperature variation of the reciprocal of the scattering
intensity in MBBA at a scattering angle 6 = 21.4° [31].

Nevertheless, as can be seen from Fig. 1,2-2.5 K beyond
the point corresponding to the transition to the ordered
phase T. a deviation from the I~'(T) linear relation is
observed and the light scattering intensity begins to increase
faster with temperature. Thusin the study of Gulary and Chu
[31]the inclusion of the experimental points in the immediate
vicinity of T in the interpretation of the results altered the
index y from 1.0 to 0.85+£0.05. This phenomenon is of
special interest because deviations from universal laws over
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a wide temperature range are not observed in the majority of
physical systems [6—8].

The simplest cause of the observed anomaly in the
behaviour of the scattering intensity as a function of
temperature may be of purely ‘apparatus’ origin—an
increase in the contribution of multiple scattering in the
immediate vicinity of 7c. The characteristic features of the
behaviour of the susceptibility in the vicinity of T have been
analysed in detail in a BMOAB liquid crystal by light
scattering methods [26]. The measurements were performed
for two polarisations Ix and IX at a fixed scattering angle
0f 90°. The error of all the measurements was ~0.7%. Their
results are presented in Fig. 2. The I~'(T) relation is
represented by a straight line. A deviation from linearity is
observed only 1.5-2.5 K beyond the transition point T,
reaching 30 —40% in the immediate vicinity of 7. The degree
of depolarisation over the entire range of the measurements
was close to 3/4. Calculation of the contribution by double
scattering to the total intensity, carried out [26] by the
method of Adzhemyan et al. [46], showed that even in the
immediate vicinity of T its contribution was ~3%. This
means that the observed deviations from universal laws
cannot be accounted for by multiple scattering. The
nonuniversality of the temperature variation of the
susceptibility of an isotropic nematic liquid crystal near T
has been confirmed also in experiments on magnetic
birefringence [47].

Together with the increase in the scattered light intensity,
an anomalous rise in the heat capacity C, is also observed in
the vicinity of the transition point 7'¢ [22]. The reason for this

is the increase in fluctuations at 7T — T.. Since
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Figure 2. Temperature variation of the reciprocal of the scattering
intensity in BMOAB: (1) the Iy components; (2) the Iy component;
dashed lines— linear fits to remote points; the continuous line passing
through experimental points for the Iy component was fitted by
Eqn (1.15) taking into account terms as far as 772 [26].

formulae (2.11) and (2.12) can in fact be regarded as
representing the lowest (Gaussian) fluctuation contribution
to the scattered intensity, it is of interest to consider the
analogous Gaussian fluctuation contribution also to the heat
capacity C,. The corresponding formula for nematics can be
obtained directly from the known scalar fluctuation
contribution [8, 18], provided that one takes into account
the number of fluctuations modes ij(j: 1-5) and the
difference between their correlation radii r¢;:

C,=Cy* +]k6—‘3n(2r5]3 + 1 4 2r3)e 2, (2.14)
where C,® is the regular component of the heat capacity,
usually fitted by the linear function X + YT, r%j = L(-’)/A !
(j = 1-3). Interpretation of the experimental heat capacity
data for BMOAB and MBBA [34, 48] by Adzhemyan et al.
[26] showed that here the situation is the same as for the
light scattering intensity. In the temperature range
4<T—-T,<20K, Eqn (2.14) describes the results to
within ~0.05%, which is close to the experimental
accuracy. When points with 7, — T < 4K are included in
the treatment, the agreement with experiment is sharply
impaired. This is illustrated in Fig. 3. The effective
parameter Foeff = (2rg +rpp +2r3) /5" ~ 524,
obtained for MBBA in the range 4K < T — T, agrees well
with the independent valuery = 5.54+0.2 A found [31] for the
same liquid crystal by optical methods on the assumption of
the equality ro; =ry (j=1-3). The latter confirms, in
particular, that the single correlation length approximation
can be used also for the heat capacity.
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Figure 3. Temperature variation of the heat capacity C, in the isotropic
phase of BMOAB [34, 48]: dashed line /—Eqn (1.14) fitted to theremote
points; dashed line 2—a formula of type (1.17) fitted taking into account
terms as far as 7~/ [26, 54].

These results show that there is a large range of
temperatures for the isotropic phase of nematic liquid
crystals, where the behaviour of the system (at least its
susceptibility and heat capacity) is described within the
framework of the mean field approximation, but
appreciable deviations from this approximation are
observed in the vicinity of 7.

Various explanations for these characteristics of the
behaviour of a nematic liquid crystal have been proposed.
One of them is that the nonuniversality of the behaviour
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indicates a transition to the fluctuation region, where the
interaction of the order parameter fluctuations becomes
significant [21, 26, 49]. Other hypotheses are based on the
necessity to take into account the interaction of @.g with
other order parameters, for example the smectic order
parameters [50, 51].

The attempts to describe the behaviour of the system in
the immediate vicinity of 7. by the renormalisation group
methods [52, 53] lead to results inconsistent with experiment
[22]. This apparently means that the first-order phase
transition takes place before the attainment of the region of
intense fluctuations. In such a situation, it is natural to
employ the perturbation theory in terms of non-Gaussian
terms [Eqn (2.1)] for the calculation of the characteristics of
nematics near 7.

The temperature dependences of the susceptibility the
x(t) =1/A'T [21, 26, 49, 54], the correlation radius
r, = r(ﬁ_'/z [21, 54], and the heat capacity [26, 54] were
calculated on the basis of this approach:

T=1(l +yp — ¢ - (%yzc _)’BE)T_] Int”!

—yp1 P4, (2.15)

for the susceptibility,
~2 .2 1.2 1 —1 1 -3/2
Fo=roll + (s ye +1yee)T +ypT T+ ](2.16)

for the correlation radius, and

. Sk _ 1
Cp:Crcg,_'_ B T I/2[1 +=yp

P l67'cr8 2
1/1 2
o syt —yue Jr T Sy ], (217
2\7 3
for the heat capacity, where
c 7  B®
Ye=TMo75, y5 =15 Mo775.
77 , BE 7M3G
)’BEng%W, yL):EA—,O(D]—l—18D2),
My=—-. 2.18
O 4mAr3 (2.18)

The calculations were performed in terms of the one-loop
[21, 49] and three-loop [26, 54] approximations. We may
note that, owing to the differences in the procedure used to
eliminate divergences, the results of studies described in
Refs 21 and 49 and in 26 and 54 differ somewhat. In the
former [21, 49], the divergences in the diagrams were
eliminated by introducing a limiting cut-off momentum gm,
which became an additional model parameter. In the second
group of studies [26, 54], the parts of the diagrams diverging
at ¢, — oo were included in the renormalised model
constants [Eqn (2.1)], while in the finite parts of the
diagrams the limiting transition ¢, — oo was carried out.
Eqns (2.15)—(2.17) are consistent with the second set of
results [26, 54]. The region of the applicability of
Eqns (2.15)—(2.17) as asymptotic expansions is determined
by the decrease in the corresponding terms. The inequalities

yer P <1,y <yt T <0y <1
are in this instance an analogue of the Ginzburg criterion

[6—8, 18]. The convergence of the series (2.15)—(2.17) can be
significantly = accelerated, = weakening  thereby  the

requirements of the Ginzburg criterion by changing from 7
and ry in Eqns (2.16)—(2.18) and in the correction terms
(2.15)—(2.17) to a description in terms of the quantities T
and 7, [54].

The experimental data were interpreted in terms of
formulae of the type (2.15)—(2.17) [21, 26, 54]. Gramsbergen
et al. [21] interpreted data for the intensity of the scattered
light in 8CB liquid crystals using the known parameters of the
latter in the nematic phase. By varying T* and the limiting
wavenumber ¢m, they were able [21] to describe the behaviour
of the scattering intensity as a function of temperature over
the entire experimental range of the latter (admittedly the
natural values of ¢m were not then always obtained).
Adzhemyan et al. [26] subjected the heat capacity and
scattering intensity (more precisely Rg) data for the
BMOAB liquid crystal to a joint treatment. The parameters
ofthe Landau—de Gennes model [Eqn (2.1)] were determined.
It was found that the coefficient C of S* is negative for the
given liquid crystal, which made it necessary to take into
account in Eqn (2.1) higher-order terms in S. The parameters
obtained [26] agree with the experimental latent heat of
transition Q = 1.17J cm™ in BMOAB [42] when fluctuation
corrections are applied to this quantity [54]. The parameter ro
for BMOAB provedtobe 6.0+ 0.5A andA’ =39 +2Jecm™>.
The agreement between the theory and experiment is illustrated
in Figs 2 and 3. We obtained similar results also for MBBA.
Hereit wasalso found that C < Oand ry = 5.7 A, which agrees
with direct measurements [31; A’ ~33Jem™>. The (2.1)
model together with the parameters obtained describe
satisfactorily also experimental data [55, 56] for the tempera-
ture dependence of the scalar order parameter S (7'), which
determines the degree of order in the nematic phases of BMOAB
and MBBA. Here one should note that the experimental index 8
of the order parameter is close to 0.25 [44, 57], which Kyes [44]
used as a basis for the hypothesis that the I — N transition is
tricritical. On the other hand, when the sixth-order term in S is
taken into account, the (2.1) model yields the index § = 0.25 but
this time in terms of the mean field approximation.

In order to account for the deviation from the mean field
behaviour of a nematic liquid crystal in the isotropic phase, it
has been suggested [50, S1] that account be taken of the
interaction of the nematic order parameter Sqg with the
smectic parameter . For example, when account is taken
of the expression for the thermodynamic gotential with the
smectic invariants ||, [Vi/|>, and |[V2y|*, the interaction
terms Vi V* S,p and Vo Vg* S, S5, and the invariants
defined by Eqns (1.10) and (1.11), the temperature
dependence of the susceptibility in terms of the one-loop
approximation assumes the form

T= r+a1(r+173N)_l/2 —dz(T+TSN)_3/2»

(2.19)
where a;, are constants, a, >0, the parameter
ten = (T*—T3)/T* has the significance of the relative
width of the nematic phase, and T§ is the temperature of
the divergence of the smectic fluctuations in the absence of
the interaction of S and y [50].

A somewhat different model of the interaction of nematic
and smectic fluctuations was proposed in another study [S1].
Instead of the scalar order parameters ¥/, a second rank tensor
was employed [51]. The fluctuation corrections to the
susceptibility, to the correlation radius, and to the heat capacity
were calculated in terms of the one-loop approximation:
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T=1+a;(T+ ‘CSN)_]/2 —02(?+TSN)_3/2 )

7o =ril +3a)(T+ 1TSN)_S/z],
Sk (072

C :Crcg B i ~_|/2.

P = O e <8‘c) !

The expression for 7 in Eqn (2.20) differs from Eqn (2.19) by
the replacement T — 7 in the correction terms, i.e. it actually
represents an equation for 7 and effectively takes into account
higher-order terms in the perturbation theory than Eqn (2.19).

The temperature variation of the scattering intensity in the
homologous series of 7O 4 (n = 1—8) liquid crystals, in which
the width of the nematic phase varies from ~40 K (n = 2) to
~25K (n=7), has been measured [50]. A correlation was
observed between the deviation of/ ' (7') from linearity and the
width of the nematic phase tsn: the smaller the width of the
nematic phase, the greater the nonlinearity of I7'T (Fig. 4).
Quantitative treatment of the experimental data for the 704
liquid crystal demonstrated a satisfactory agreement with
Eqn (2.19). Joint treatment of the scattering intensity [58] and
heat capacity [41]data for the 8CB liquid crystal, carried out [51]
in terms of Eqns (2.20) with variable parameters T*, a,
ay, Ten » and ro, also demonstrated agreement with experiment.

Experiments [59] involving the measurement of the
temperature variation of the light scattering intensity in a
mixture of two liquid crystals, 506NO2 and 6010, with a
variable concentration x are of interest in this connection.
When x was varied from 1.00 to 0.60 in this system, the width
of the N-phase changed from 7 K to zero, which made it

(2.20)

possible to vary continuously the parameter Tsy from 0.006
to —0.02, passing through zero in the vicinity ofthe N — S, —1
triple point. A satisfactory agreement between the experi-
mental data and the first formula in Eqn (2.20) was obtained.
On the other hand, a study [21] of the light scattering
intensity [21] for the nCB homologous series of liquid crystals
(n = 5—12) with the width of the nematic phase varied from
~11 K (n=5)to ~1.7 K (n =9) did not reveal an explicit
correlation between the deviation of I ~'(T') from linearity
and the width of the N-phase tsn despite the fact that the
deviations of I ~'(T') from linearity were considerable.

2.3 Kinetics of the fluctuations of the order parameter
In describing the kinetics of the fluctuations in the isotropic
phase of a liquid crystal, we shall choose, as before, the
fluctuating component of the relative permittivity tensor de,g
as the order parameter.

De Gennes proposed a system of phenomenological
equations describing the kinetics of the fluctuations [9]:

A '"t8eyp = 2plyp + VBEyg
Oup = 27”:‘051} + 2/15&‘“5 P

aaw i

iy = ; 2.21
iy oy (2.21)
where 7 is the shear viscosity at zero frequency, v and pu are
phenomenological coefficients having the dimensions of

viscosity, u,g = (1/2)(0u,/0rg 4 Oug/0r,) is the deforma-
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Figure 4. Temperature variation of the quantity T/]l\.,/ (a) and deviations d of the quantity (]:,')_1 from linearity (b) for the homologous series of liquid

crystalsnO 4 (n=1-8) [50].
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tions tensor, u is the displacement tensor, and oup is the
stresses tensor. Eqns (2.21) describe purely transverse
motions and do not include volume terms. The quantity
7, = v/A 't has the significance of the relaxation time of the
variable gy, while 2u*/v represents the orientation
contribution to the shear viscosity.

Experimental study of the kinetics of the order parameter

in liquid crystals on the basis of the depolarised light
scattering spectra, of the kind carried out for ordinary
organic liquids, is extremely difficult owing to the range of
frequencies in which the relaxation times 1, are located: in the
region 20—30 K beyond T., these frequencies are of the
order of magnitude of several tens of megahertz [37] and they
can be investigated with the aid of single pass Fabry—Perot
etalons in which the distance between the mirrors is up to
10 cm.
A single-frequency laser must be used as the light source. As
T. is approached, the frequency v, = 1/2znt, diminishes to
several megahertzand in the immediate vicinity of 7' it can be
ofthe order of magnitude or lessthan 1 MHz. In this case, the
resolving power of the usual etalons is insufficient and it is
necessary to employ spectroscopic instruments with a greater
resolution, for example confocal Fabry—Perot interferom-
eters with a base of several tens of centimetres [27, 36].
Additional difficulties in such experiments are associated
with the instability of the emission from the lasers, which in
the case of single-frequency ionic lasers is 5—10 MHz s7h
On the other hand, this frequency range is rather large for
optical mixing spectroscopy owing to the limitations imposed
by the time resolution of the electronic hardware used in the
standard correlators [60].

Apparently owing to experimental complexities, the
amount of data on the kinetics of the order parameter in
nematic liquid crystals, obtained from light scattering
spectra, is much smaller than in the numerous studies on the
edge of the Rayleigh line in the usual liquids. The studies by
Stinson and Litster [27, 36] in MBBA were performed in the
immediate vicinity of 7. [t was shown that the spectra of the
1\\5 and IX components are identical and that the distribution
of intensities in them is described by the Lorentz line. It was
found that experimental data satisfy the empirical relation
v, = (T°—40.58)"**MHz After the inclusion of the
temperature variation of the shear viscosity, the variation of
v, can be fitted satisfactorily by a linear function of T — T,
Gierke and Flygare [37] investigated in detail the spectrum of
the depolarised scattering in MBBA and in its solutions in
carbon tetrachloride with the aid ofa confocal interferometer
with a 2 GHz dispersion region. For pure MBBA, the
measurements were performed in the region not closer than
27 K toT., wherev, =25+ 2MHz.

A complete quantitative comparison between de Gennes’
theory and experiment is an important experimental task.
This permits the determination ofthe nature of the relaxation
of the shear viscosity # and the study of the behaviour of the
parameters u and v. Together with light scattering spectra, in
this case it is necessary to employ also other experimental
data. This is associated with the fact that in liquid crystals in
the vicinity of the I — N transition there is no fine structure
and the distribution of intensities in the spectrum is close to
the dispersion distribution because 1/, < g2 /p.

The Maxwell effect contains additional information. In
an experiment on birefringence in a flow, optical anisotropy
arises owing to the rate of deformation gradient, so that the
first of Eqns (2.21) assumes the form

—A 18,5 = 2puityp . (2.22)
[fthe flow is directed along the x axis and the velocity gradient is

directed along the z axis, then the optical anisotropy is given by

U Ou,

on=— ,
" A'tii 0z

(2.23)

where n = ¢,/27 (e, = g — &1, ¢ and &, being the lengths
of the principal axes of the relative permittivity tensor €) and
7 the average refractive index.

The scattered light spectrum is given by the following
formula at the limit gr,; < 1:

I ;! 0,
I (@) ~= {41:, sinzf

7 | w? + 172
2
‘L'_I w2+((1§c’1//’) (1 _Rr) COSQ%}
T 2 _ 2 9
(gn/p: — 0*) +@’[t7 " + (1 = R.)gzen/p) :
2.24)

whereR, = 2u2/w1 istherelative contribution of orientations
to the shear viscosity.

The most complete analysis of the spectrum of the
depolarised scattering in MBBA has been carried out by
Alms et al. [61]. The measurements were performed using a
laser with a wavelength A = 5145A and a power of 1 W ata
fixed scattering angle of 90°. The scattered radiation was
recorded with a Fabry—Perot interferometer having a
dispersion range of 7.4 GHz. The measurements were
performed in the temperature range 150-230 °C. The

intensity/rel. units

frequency/rel. units

Figure 5. Spectrum of the /3; component in the isotropic phase of MBBA
in terms of arbitrary scales at different temperatures: (/) 7 = 150 °C;
(2) T =180 °C; (3) T =210 °C; (4) T =230 °C. The continuous lines
have been fitted by Eqn (1.24) using 7., qfcn/p, and R, as the adjustable
parameters [61].
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temperature was maintained with an accuracy to within
40.5 °C. Fig. 5 presents the spectrum of the I}, components
for four temperatures. Evidently, all the spectra exhibit a fine
structure. The distortions introduced by the apparatus
function of the etalon were excluded with the aid of the
deconvolution procedure described by Alms et al. [62].
The quantities R, qfcn/p, and 1, were determined from the
spectra obtained. Within the limits of experimental accuracy,
R. =0.36 £ 0.02 does not vary in the measured experimental
range. On the basis of this experimental fact, it was
postulated that R, remains unaltered up to the transition
temperature T, which was 45 °C for the given MBBA
specimen.

The ratio v,/A’ was determined from the temperature
variation t.. For this purpose, the data [37, 61] on the half
width of the contour of the IX component were extrapolated
to the I — N transition point. An empirical expression was
used for A’, which yields A’ =75.4Jcm™ in the vicinity of
the transition point, exceeding by a factor greater than 2 the
experimental value A’ =32.6] em™  obtained from
measurements of the integral scattered light intensity.

This led to the calculation of the parameters v and u for
several temperatures near the [ — N transition point. Since it
had been postulated earlier that R, is independent of
temperature, the relaxing component of the viscosity
An :2u2/v remained constant as the transition point 7.
was approached and was of the order of 6 cP.

When Zubkov et al. [63] formulated their experiments
designed to investigate the kinetics of the fluctuations of the
order parameter, their main task was to perform experiments
in the immediate vicinity of 7. This makes it possible to
avoid hypotheses of different kinds concerning the
temperature dependence of the parameters of the
phenomenological theory.

Since there is no fine structure in the 7 }; component of the
scattered light near T, data on the Maxwell constant M were
resorted to. The measurements were performed for two liquid
crystals— MBBA and BMOAB. The behaviour of the
relaxa-tion time as a function of temperature was
investigated on apparatus in which the spectroscopic
instrument was a three-pass Fabry—Perot interferometer.
The temperature range in which the measurements were
performed was limited by the instability of the laser
radiation as regards frequency. In MBBA, the point closest
to T at which measurements were made was at a distance of
T—-T.,=7K, while in BMOAB the above temperature
difference diminished to 7 —7,=5K. The measured
relaxation times were fitted by the expression

1, =Jo(T —T*) 7'/,

where Jy = 4.99 x 1072 sK and T, = 3750K in MBBA and
Jo =4.06 x 107" sK and T, = 4700K in BMOAB.

As in the case of the Maxwell constant, in fitting the
temperature variation of 7, it was assumed that 7 * does not
differ greatly from the value obtained from the integral light
scattering intensity.

Using experimental data for 7, and M, the coefficients p
and v were calculated. It was found that, as assumed by Alms
et al. [61], the quantity An depends only slightly on
temperature, whereas the characteristic frequency of this
contribution varies almost critically. The calculated value of
An is approximately 3.5 cP for MBBA, i.e. is smaller by a
factor of 2 than in the study of Alms et al. [61].

Finally, it is important to emphasise that Ay = 2u2/v isof
course independent of the choice of the order parameter,
although the coefficients u and v are wholly determined by
this choice.

Formally a nematic liquid crystal in the isotropic phase is
an ordinary organic liquid. Light is scattered in such systems
both by scalar density fluctuations and by tensor anisotropy
fluctuations. However, as a result of the similarity to the
ordered liquid crystal phase, tensor fluctuations, which
almost wholly determine the light scattering by the system,
predominate under these conditions. The integral scattering
intensity in the isotropic phase of nematic liquid crystals has
been investigated in very great detail and there is in this
instance a satisfactory agreement between theory and
experiment. The spectral composition of the scattered light
has been thoroughly investigated only in the region remote
from the phase transition point. In the immediate vicinity of
T., the number of reliable results is small owing to the
experimental  difficulties  described in  Section 2.3.
Improvement of the correlation spectroscopic technique
gives rise to the hope for a considerable progress in this field
in the immediate future.

As regards the critical behaviour of fluctuations in the
[-phase, here are at present at least two alternative
approaches whereby the experimental x(7) and C,(T)
relations in the isotropic phase of nematic liquid crystals
can be described satisfactorily—the model of the interaction
of nematic fluctuations and the model of the interaction of
nematic and smectic fluctuations. Apparently the first and
second mechanisms operate in nematic liquid crystals with
broad and narrow nematic phases respectively. It is fairly
difficult to separate these two effects because the temperature
variations defined by Eqns (2.15) —(2.17) and by Eqns (2.19)
and (2.20) are similar. Evidently, in order to throw light on
the situation it is necessary to include in the joint treatment a
greater number of various independent experiments, for
example additional data on R¢(7T ) in the [-phase and T, Q,
Cy(T), x(T), and r(T ) in the N-phase. In the N-phase, it is
essential to take into account the corresponding fluctuation
corrections.

3. The ordered phase of nematics

3.1 Fluctuations of the order parameter in the ordered
phase of nematics

In the study of fluctuations in the ordered phase of a nematic,
the treatment is usually restricted to the consideration of the
fluctuations of the director dn = n — n’ [9, 10]. The Oseen —
Frank continuum theory, operating with the directors’ field
n=n(r), is used to describe the distorted state of nematics.
The corresponding potential @ (the Frank energy) assumes
the form

1
&= Ejdr[l(”(divn)2 + Ky (- curln)?

3.1

where Kj; (j=1-3) are the Frank moduli, y, is the
anisotropy of the magnetic susceptibility, and H is the
magnetic field strength. For low values of dn, the
fluctuations may be assumed to be transverse relative to the
director: dn ~ dn, . For y, > 0, when n0||H, the mean square
of their Fourier components is [9]

+K33|n x curlnf’ —xa(n-H)2] ,
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(I8n;,*) = VkpT (g1 K} + fiﬁK33 +xH?), (3.2)
where

Ony , =0n e(qy) +3nm,e(q.),

e(q.)=q./9., e(q.) =n" x ei(q.), j=1,2. (33

Here ¢) and ¢, are components of the wave vector ¢ along
and across n'.

These fluctuations are anomalously large and in the
absence of an external field with ¢ — 0, the Fourier com-
ponents dn;, increase without limit. However, the integrals
with respect to d3¢, which determine the mean square of the
fluctuations in the r-space, remain finite [18]. Typical values
of the nematic parameters are y, ~ 107" and Kj; ~ 107° dyn
for H < 10° Oe [9]. Therefore, for the characteristic optical
values of the wave vector g ~ kg = w/c ~ 10° cm ™', we have
a small parameter 4 = y,H 2/k(2)KU <107 and the ‘field’
term y.H 2 in Eqn (3.2) may be neglected.

The order parameter S,g(r), which is described at each
point r by Eqn (1.3) with S, =const and the director
n =n(r), corresponds to the Oseen—Frank theory. This
implies the conservation of uniaxiality and of the degree of
order Sp in the system subjected to fluctuations. If, apart
from fluctuations of the director, one is also interested in
local changes in S and in the appearance of local biaxiality,
then the distorted state of the nematic must be described in
terms of the tensor order parameter Sqp(r) [24, 25]. In the
uniaxial phase with the equilibrium director n’, it is
convenient to use the parametrisation proposed by
Pokrovskii and Kats [24] for fluctuations of the tensor

order parameter @qp(r):

L(1)

12
(ptzﬁ(r) :(paﬂ 2

(r) + ¢y (C)

(") + @ls(r).
where

90:[/3(])(") =& (r)(ngew + n%ela) + 52(")(”232/3 +n2{62a)7
P 2(r) = E5(r)(e1xe2p + €1pen) + Ea(r)(€raers — eapens),

Php(r) = V3Es(r)(nony — 1 8,p) . (3.5)
Here ey, €2, and n° are a set of three orthogonal unit vectors.
The tensors (pi(]), (pi(z), and (plo! are defined invariantly in
Eqn (3.2) in the sense that for any other choice of auxiliary
axes e; and e, corresponding to a fixed nY, each of these
tensors is conserved and only the pairs of variables &, » and
&3 4arealtered. In terms of the terminology of Pokrovskii and
Kats [24], the modes &, are referred to as transverse
uniaxial, &34 are transverse biaxial, and &s is longitudinal.
The quantities &,/Sy and &»/S¢ have the significance of
projections of the vector of the fluctuations of the director
dn onto the axes e; and ex:

s, (r) = S1L)e1 + Ea)es

3.6
Sg (3.6)

It is usually understood that the fluctuations occur
spontaneously—as a result of the random thermal move-
ment of the molecules of the system. Such are, for example,
the density or anisotropy fluctuations in the isotropic
medium and all the types of fluctuations & (j=1-5)
introduced in the ordered and isotropic phases may also
have the same origin. However, in the ordered phase the
specific symmetri-cal properties of the nematic liquid
crystal —the degeneracy of its continuous symmetry
group —lead to the possibility of yet another mechanism

for the generation of the fluctuations &3 4 5 as a result of the
large scale fluctuations of the director [23, 24]. In order to
demonstrate this, we shall consider the change in the tensor
Sap following an arbitrary finite, but not infinitesimal,
rotation of the director n®:

n:no-|—5n:no(l—|—5n")+éel+§—2€2, (363)
0

S(J

where 8n)| = n’ - dn. Taking into account the retention of the
length n* = () = 1 (‘the principle of the conservation of
the modulus’ [7]),

28n) + 8nf + (& + &)Sg ' =0, G.7)

we find that the fluctuation of the order parameter in this
rotation is

Pup(r) = Solna(r)ng(r) —18,5] = 5% = @ (K (1 + Bny)

+&3(r) (er1ae2p + €1p€24) + Ea(r) (e1015 — €2p24)

+VIE(r) (nang —1849) 3.3)
where
5 _ & (r)é(r)
&(r) = T >
_ 20N 22
E(r) = fl(r)zsfz(r) i

Thus, according to the second-order terms in &), the fluctua-
tions of the director generate longitudinal (£5) and biaxial (&5 4)
fluctuations. The appearance of nonclassical longitudinal fluc-
tuations &5 ofthis nature is associated with the fact that the local
deviations of the director lead to a decrease in the average degree
of order in the system along n’. The appearance of nonclassical
biaxial fluctuations &; 4 can be easily understood in relation to
the uniaxial ellipsoid: when this axis deviates from n, the cross-
section in the plane orthogonal to n® becomes noncircular.

In order to calculate the correlation function of the
spontaneous fluctuations ¢, it is essential to have the
corresponding expression for the fluctuation contribution to
the thermodynamic potential ofthe nematic liquid crystal 3. By
virtue of the symmetry ofthe nematic liquid crystal relative to the
reflection of all the coordinate axes, r — —r, only invariants of
the types defined by Eqns (1.10) and (1.11) contribute to ®.

The density of the homogeneous component of the
potential @, determined by invariants of type (1.10), can be
conveniently regarded, by virtue of Eqn (1.13), as a function
®(x,y) of two independent invariants of the order parameter
Sup:x=SpS? y=8pS°, x’<6y’ [24] Taking into
account the interaction with the external field H, we have in
terms of the lowest order in S

QO = ¢(xa y) - (XaSmﬂHmHﬁ/ZSO) . (3]0)

For the case y, > 0, when n°|| H, the equilibrium condition

09, 200, 1 2

280—+So—=—1. s 3.11
0 3x +50 o 28, Xa (3.11)

which is a consequence of the uniaxiality ofthe nematic liquid
crystal, leads to

800 =1 (E+ &) +ALE+E) 8. (G1Y)

where
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Ay =g, HS¢g?, AL =A, —2Ay,

A=Ay +2Ay, Alzlz%,
0’ 00, 4,00,
A":3as—z:4(‘a+§ e
+isga2‘p° ! 3%). (3.13)
37 %x 0y 370 0y2

All the derivatives in Eqn (3.12) are calculated subject to the
condition x* = 6y” [23, 24]. The conditions for the stability
of the ordered phase are specified by the inequalities A; > 0
and A I > 0.

Analysis similar to that specified by Eqns (3.10)—(3.13)
shows that, in the case where y, < 0, that state of the nematic
with n° L H, minimising the Frank energy specified by
Eqn (3.1), is unstable in relation to the biaxial fluctuations
&34. As a result, a weak biaxiality proportional to y.H >
should arise in the nematic for y, < 0.

The inhomogeneous part of @ can be constructed from
invariants of type (1.11) having generated all possible
contractions of two tensors V,@g, and an even number of
vectors n®. There are 11 such invariants. As a result we have
the following expression, in the Gaussian approximation, for
the fluctuation contribution to the thermodynamic potential
of the nematic by the modes ¢, 4, ..., &5 , with the given wave
vector g [23]:

1
st oy i + 168 +CL(E + &)+

F2D(&1 &4 + E&s) + 2HE & +2FE LS| (3.14)
where
K:j = SEQ(QQLK// +QﬁK33 +XaH2)7 ,: ]7 Zs

CL=A,+q (b, +cicos’Y),
Cj = Ay +4 (b +cpeos’y),
D =g*dsin2y, H=qg hsin2y, F=q'fsin’y; (3.15)

here b, ||, ¢1 |, d, f, and h are independent coefficients and
is the angle between ¢ and n®. Eqn (3.14) refers to the
selection of the auxiliary axes e¢; and e; in Eqn (3.5) in
conformity with Eqn (3.3). Designations of the type
5/2 =&48e 288 = &48iq8jq + &g, Where the asterisk
denotes complex conjugation, are implied in Eqn (3.14).

In the case of not very strong fields H, only the
coefficients A, can exhibit a pronounced temperature
dependence in Eqn (3.14). For the weak first-order
transition I — N, only the & mode exhibits a critical
behaviour among the &; modes. The second-order transition
N — N, is characterised by a critical behaviour of the &; and
£4modes, while both &3 4 and &5 exhibit a critical behaviour in
the transition in the region of the | =N — N tricritical point. It
is of interest to note that, as a consequence of Eqn (3.13), A |
can become zero for fairly strong fields H, and hence a
transition to a biaxial phase with a critical behaviour of the
&34 modes should be observed.

In the usual Landau—de Gennes model [Eqn (2.1)] with
E=D,=D,=0,C>0, and H =0, there is a first-order
[ — N transition. T,=T*[1+ (B?/27A'C)] for this
transition, while the temperature corresponding to the loss

of stability by the N-phase is T** = T *[1 4+ (B?/24A'C)).
The coefficients A | and A then assume the following form in
the vicinity of 7 **:

2 A/ 1/2 T _T 1/2 T _T
Ay =2p(2) (L) T
I 3 2C T ** T **

A (T™)=B?*/2C>0. (3.16)

Attention may be drawn to the identity T,—T" =
8(T*™ —T,), i.e. this model predicts that T** is much closer
to T than T * and the observation of critical phenomena on
the side of the nematic phase might be of interest. The
quantity

1
30(¢, &) = v (’CI |él,q|2 + ’C2|fz,q|2)

in Eqn (3.14) is the fluctuation analogue of the Frank energy
defined by Eqn (3.1).

We may note that this method for the derivation of the
elastic distortion energy makes possible certain conclusions
of a general nature concerning the behaviour of the Frank
moduli Kj; as functions of So, which follow from the general
symmetrical considerations. In particular,

Ki=kS§+kSo+...,

(3.17)

Kp=kiSG+ksS3+...,

Kyy =kiS3+ksS3+.... (3.18)

where k|, ..., ks are constants, i.e. K;; — K33 ~ S(3)+ R

Ifit is assumed that the terms containing ¢* in Eqn (3.15)
are small compared with the constants A, and A, then, to
within second-order terms in ¢, the following expressions
follow from Eqn (3.14) for the quadratic correlators of the
fluctuations &, 4,...,&s

(&g = knTS §(41K; + qjKs + H?) ™', j=1,2,
<§§)q = kBT{AVJ_ + @by +cy cos’y
—q*d?sin*(29) KT}
<€421>,, = kBT{AVL +¢*[by + ¢, cos’ Y
—q*d? sin*(2y) ICT]]}_I ,
<€§>q = kBT{Av" + 4 (b + ¢ cos’ Y
—g’d”sin?(2y) K71} (3.19)

Attention should be drawn to the fact that the fluctuations
(€1) and (&3) expressed in terms of this approximation agree
with the familiar results of de Gennes [Eqn (3.2)][9].

_ The_ correlators of the nonclassical quantities
(ég)q, (éi)q, (é?)q, and (&,¢s), have singularities ~ g for
H = 0. In particular,

~ 1 ~ kT VS0 .
@= 3 @,= 2 KK W)
+K 5K P W),

(ksT)?S,
16gK /7

KK

(&), =V3 K%K (¥)

(3.20)
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where K;(y) = K;; cos”y + K33 sin’ . The correlation i=(2 ) Sy +52+§251 —252+ 22851 =5,

function Gyg,p(q) in the N-phase can be easily found from IS, — S 3 S,

Eqns (3.19) and (3.20). In particular, when account is taken 5 -

of the fluctuations of the director, we have X [2(5 1 —Si1S2+S 2)] >
=3(E+E+E)/25T =515, +53). (3.24)

2
Gupyp(q) = Z C/ (e/a"ﬁ + e/ﬁ”a)( "o b+ CjpMt 1?) (3:2D

The complete expression for Gugy, taking into account all the
modes ; and £; has already been published [23].

3.2 Fluctuations in biaxial nematics

Apart from theisotropic and uniaxial nematic phases, there is
also a biaxial phase in nematic liquid crystals. [t was observed
experimentally in lyotropic nematic liquid crystals [64].
Theoretical studies on this phase and the corresponding
phase transitions have been carried out also in terms of
lattice models [65, 66], the Maier —Saupe mean field theory
[67], and the Landau theory [52, 66]. An analogue of the
Frank energy has been formulated [68] for the N>-phase and
in other studies [69] its hydrodynamics were established. The
fluctuations in this phase have been considered within the
framework of the Landau theory [70] and from a general
symmetrical standpoint [71].

The corresponding analogue of Eqn | (l 3) for the
equilibrium value of the order parameter SO assumes the
following form in this case [9, 52]:

Sep = Singnf + Somymp — (S| +5,)8,5 (3.22)
where n® and m® are mutually orthogonal unit vectors S; # 0,
S, +0, and S| #5,. Eqn (3.22) corresponds to the choice
n’ :e?, m’ :eg, S = ZS? +sg, and S, = s? +2sg in
Eqn (1.1). In the biaxial phase, described by the order
parameter defined by Eqn (3.22), the fluctuation tensor @,g
can be conveniently expressed in the form (3.4), using the
parametrisation

9o (r) = & () (miely £+ mie) + E(r) (e + nfel)
+&5(r) (ngmig + ngms)
9o (1) = Ea(r) [(255 — S0 + (S5 — 28 Y
+(Sl - S2)5tz/3]7
Ply(r) = &5(r)S (3.23)
where ” = m® x n° is a unit vector orthogonal to n® and m°

We may note that an infinitesimal rotatlon of the tensor
59 o corresponds to the fluctuations q) . In this sense, they
can be regarded as fluctuations of the directors n® and m°.
Here it must be emphasised, however, that the quantities n°
and m°® are not independent, since they are linked by the
orthogonality condition n’-m°® = 0. Asin a uniaxial nematic,
these are the most intense fluctuations in the limit ¢ — 0
because uniform rotations of the nematic liquid crystal as a
whole do not require an energy expenditure.

As for the uniaxial phase, fluctuations of this type (&3, &,
and &;) contribute in terms of second-order terms to the
remaining modes &4 and &s by virtue of the principle of the
conservation of the modulus:

In considering the density of the uniform component of
the energy of the dlstortlon ofa biaxial nematic liquid crystal
@y (x,y) (x =Sp 5% y=Sp§ %), one must take into account
the fact that the equilibrium conditions have in this case the
following form (for H = 0):

o0, 0®,
ox Oy

To within terms of the order of @2, we have

=0. (3.25)

SO = Al + 24458485+ AssEd (3.26)
where A44, Ass, and Ass are constants, Ay >0, and
D :A44A55 _AiS > 0

The nonuniform component of the fluctuation
contribution to the energy of the distortion of a biaxial
nematic can be derived by setting up all possible invariants
comprising the vectors m°® and n° and two tensors V,¢g,. The
number of such invariants is 37. Certain invariants are then
interdependent by virtue of the orthogonality condition
m’-n’ =0. As a result, the complete expression for the
distortion energy 8PN contains 27 phenomenological
coefficients when account istaken ofall the modes &, ..., ¢&5.

The contribution to the thermodynamic potential of a
biaxial nematic liquid crystal associated with the principal
Goldstone modes &4, &4, and &34 contains 12 elastic
moduli (cf Trebin [68]):

(N2)
8¢ (Cla €2a 63 vV ; ’CUC é ’ (327)
where
Ki = (K cos” + K P cos’ gy + K ) cos” ),
K;= 2q2K,:, cosy; cosy;, iFj. (3.28)

Here y; (i = 1-3) are the angles formed by the wave vector ¢
with the axes n%, m°, and €° respectively. The fluctuations of
the modes &, &>, and &; are of the Goldstone type:

(Eg~a (E&)y ~a (i j=1-3).

Correlators of weaker classical fluctuations of type €4 and
&s permit going to the limit ¢ — 0 and are given by

and (3.29)

@ =l gy s
(&) = —kBTA 2 (3.30)

when g = 0. The mode &4 behaves critically in the transition
to the N-phase and all the correlators (£3), (¢2), and (£4&5)
diverge at ¢ — 0 in the region of the N,—N -1 tricritical
point.

The correlators of the nonclassical fluctuations 64 and 65
have a singularity ~ ', as in a uniaxial phase.



152

A Yu Val’kov, VP Romanov, A N Shalaginov

3.3 Light scattering in the ordered phase of a uniaxial
nematic

One of the main problems in the theoretical description of
light scattering in the ordered phase of a nematic is
associated with the fact that, in terms of its optical
properties, this phase is an anisotropic crystal. In uniaxial
nematics, to which we shall confine ourselves in this section,
the equilibrium relative permittivity tensor assumes the form

Eap = €1 0,5 + £anynj (3.31)

where &, = & —¢y; | and ¢, are the relative permittivities
along and across n® respectively. Since the optical anisotropy
of the majority of nematics is not small (it reaches 0.3 and
more [14] at an optical frequency &,/¢,), it follows that, in
any theory of the propagation and scattering of light in
nematics claiming to allow a quantitative comparison with
experiment, it is essential to take into account the anisotropy.

Lax and Nelson constructed a logical general theory of
light scattering in anisotropic media [72—74]. Its principal
results reduce to the following. Green’s function for an
electromagnetic field in a uniaxial medium has the following

3 4 el’e

Tocﬁ(k7 60) = ZkZ _ k(ZII') —i0 (e(.i) @ﬂe(.i)) ’ (3.32)
Jj=1 () ’

where e/) are the vectors of the polarisations of the normal

waves in the medium [et" is an ordinary wave (0), e® is an

extraordinary wave (e), and e® is a longitudinal wave] and

k(;)are their wavenumbers ( j = 1-3):

8L£||

1/2
_ 120 _ _
kay=¢€/ = k(= )2] , k@ =00, (3.33)

g, +e,n-s

where s =k /k; eV, @, and e® are unit vectors determined
by the following conditions: eV 1L n°, (") L s;e® L g?o)_]s
with e® located in the plane of the vectors s and n°; e

The asymptotic form of Green’s function (3.32) in terms
of the r, o representation has the following form for large
distances R [73]:

) =y,

@ egj)egj) 0.k
Top(R, @) = 2 og FZ]”(” @), 300y W T (3
where
m_ ok
kst _EJ_ ¢ R’
1/2
g€ 1)
k52): I _’E\O*IR’
Cwe) )
"%1) =g, "%1) = snal/(s,’éos) ,
~0 ~0v2.7) 172
. _ 5, 2°8)[s, (2°)s
fo =l fo= 5:e sl 5V 2( sl ; (3.35)
8||8J_

Here s =k(;y/k(;) and k(;) = kgf) for all the quantities.
(Cfalso Motulevich’s earlier results [1, 75]).

Eqn (3.34) makes it possible to find an expression for the
intensity of single light scattering in a uniaxial anisotropic
medium [73]:

. ; n(g /'2
[(e(l)7 e(‘\')) — Z(()l) )/ ()

n(;) cos 8 cos3 80)

(1) o)

xe{)el) Gy (@ )el el (3.36)

Here the notation is the same as in Eqn (2.8); k9 = kgf),
c0s8) = (e, 3% 2 /. (3.37)

04 is the angle between the electric field vector /) and the
electric induction vector %) (for an ordinary ray 8 = 0).
In the derivation of Eqn (3.36), use was also made of the
formula

1S D] = (c/4m)[EY))” gy cos 8V (3.38)
for the modulus of the Poynting vector in an anisotropic
medium, where E (/) is the amplitude of a jth type wave.

Eqn (3.36) refers to the case where the incident and
scattered rays are propagated within the medium. The
effects associated with allowance for the influence of the
refraction of the incident and scattered rays at the boundary
of the specimen have already been examined [73, 74].

As already stated above, the main contribution to the
scattering in nematic liquid crystals comes from the
Goldstone modes &; and &,. Scattering by these modes is
particularly pronounced for low values of gsc, i.e. close to the
forward direction. Since in terms of lowest-order terms in Sgo
it follows from Eqn (3.18) that K;; ~ S 2, the quantities (éiz)q
depend only weakly on Spat H — 0 according to Eqn (3.19).
Therefore, the quantity kg7/I should be virtually
independent of temperature throughout the region of the
existence of the N-phase up to the phase transition point 7.

If one is interested in comparatively weak biaxial and
longitudinal fluctuations & and &; (j = 3—5), then, in order
to isolate them against the background of intense
fluctuations of the director, it is desirable to have
experimental geometries in which the contribution of the
modes &> to the scattering is minimal. It is found that
experimental geometries exist in which single scattering by
the modes &2 is altogether absent. This question has been
considered in a number of studies [9, 17, 2325, 76]. Taking
into account the optical anisotropy, all such geometries have
been found [76]:

(1 el =n’.e =0,

@) n || e || e Lk, kD

(3) n |l g =k — &1,

@) n° || k) + k@ (3.39)
In geometries (3) and (4), the polarisation vectors e') and e®
should lie in the scattering plane k), k@), Geometry (1) refers
to scattering of the (0) — (0) type, while geometries (2)—(4)
refer to the (¢) — (e) type. The scattering intensities in these
geometries, containing only the contributions by the &345
modes, have been calculated [76]. It is interesting to note that,
according to geometry (1), when an ordinary ray is incident
on an ordered nematic liquid crystal the intensity of its
scattering by the fluctuations of the director is zero, i.e. the
entire singly scattered light (scattered at any angles) has the
polarisation of the extraordinary wave.

The first experiments on light scattering in the ordered
phase of a uniaxial nematic were carried out fairly long
ago [77]. It was found that the characteristics of the
polarisation and angular intensity distributions and their
behaviour as a function of temperature found [77] for the
PAA and PAF liquid crystals can be satisfactorily accounted
for by the theory of light scattering by the director
fluctuations &;,> described above [9, 12, 78]. This was
confirmed also in subsequent experiments on MBBA [79].
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Measurement of the angular dependence of the scattering
constitutes at the present time a widely used and convenient
method for the determination of the ratio of the Frank
moduli. For example, in the geometry where k), k9 1 n°
(i=1,s=2),wehave from Eqn (3.36)at H =0

) kBTf)iS"

He®. ) — 70
( ’ ) 0 Elqgc

2 .2
o | cos (050/2)+sm (6,./2) :
Ky Ky

(3.40)

where ¢, = (a)/c)2[£|| +e — ng,”sl)'/z cosf]. It s
significant that in this geometry 6'” = 0 and n(;) = elll/z(a)/c),
i.e. the anisotropy is hardly manifested in the angular factors
with the exception of the refraction at the boundary of the
specimen. Eqn (3.40) makes it possible to find the ratio
Ki1/K» [10, 77, 80]. A fairly complete analysis of the
problem of the determination of K;;/K;; has been carried out
[187].

The light scattering method has been applied [81] to the
determination oftwo ratios ofthe Frank moduli: K»3/K», and
K33/K11. The measurements were performed in a polymeric
nematic with a very low optical anisotropy &, =~ 0.001. This
made it possible to neglect multiple scattering and to use the
formulae for scattering in an isotropic medium. The source of
light was a 100 mW argon laser (A=25145A) and the
thickness of the specimen was L =40 pm. For each
scattering angle (2.5° < 6, < 65°), two scattering geom-
etries were considered—one geometry described by
Eqn (3.40) and another with i =1, s =2, and g|[n°. In the
latter case, 1 (e(i),e(")) ~ c0s? (0, /2)K33¢2. Fig. 6 illustrates
the angular dependence of the ratio of the intensities J in
these geometries as a function of tan(6./2). The theoretical
curve is a parabola: J = (K33/K»,)tan*(0,./2) + K33/K ;.
Interpreta-tion of the data in Fig. 6 yielded
K33/K22 =13.0+0.4 and K33/K” =1.174+0.03 for the
given nematic.

In spectroscopic measurements of light scattering, one can
obtain information about the Leslie coefficients in addition to

2.5° <0 <65°

| | 1 | | L !
0.1 0.2 0.3 0.4 0.5 0.6 0.7

tan(6/2)

Figure 6. Angular dependence of the scattering intensity ratio J, one
intensity being described by Eqn (2.40) and the other corresponding to
the case with i = 1 and s = 2 and ¢ || ry for a polymeric liquid crystal [81].
Circles—experimental data; the continuous line was fitted by the
theoretical relation J = K33 /Ky + (K33/K2) tan2(0/2).

the ratio of the Frank moduli. The formula for the spectral
intensity of the scattering by director fluctuations in terms of the
hydrodynamic approximation is given by Eqns (3.36), (3.21),
(3.19), and (3.2), where, for the correlators (|&|*) = S §(|n;|*)
(j=1,2), account should be taken of additional cofactors
which are proportional to ;/ (0* +‘c]2) in spectroscopic
measurements and to exp(—t/t;) in measurements by the
methods of correlation spectroscopy; here we have [82]

o' =K W) + st H ]
y { 11 [1+ 4 cos(2y)]* }
7 2 2v3c082(2Y) + (v 4 v,) sin?(2¢) |’

I/em™!
103
o
102
o
o
o o
o o
10
o
1 =
(e) = () () = (0) (0) — (e)
10—] L 1 111 1 111 1 1
—6 0 6 —6 0 6—06 0 6
0, — 0;,/10~* rad

Figure 7. Angular dependence of the normalised intensity / of the
scattered light for three types of scattering [(¢) — (e), (¢) — (0), and
(0) — (e)] in a MBBA specimen 1 mm thick; 6, and 65 are the angles
between the directions of the wave vectors of the incident and scattered
light and of the director. The angle 6; is fixed at 25°. Circles—
experimental data; the continuous lines were calculated by Eqn (2.36)
using the known values of the Frank moduli [84].

I''Hz

e

8 —6 —4 -2 0 2
0, —0,/10™* rad

Figure 8. The line half-width I’ for scattered light for the type (¢) — (0) in
MBBA as a function of the difference 6, — 6; for the fixed angle 6; = 25°.
Crosses— experimental — data; continuous line—calculation by
Eqns (2.4) [84].
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I''Hz
300

200

0, = 5°

100

1
70 0i/deg

1 | | 1
50 30 40 50 60

Figure 9. Dependence of the half-width I' for scattered Iight in oriented
MBBA on the angle 6; between the direction of incident light and the
director for a fixed scattering angle 65 between k® and n of the order of 7°.
Continuous lines— calculation for the angles 6, = 5° and 7° [85].

0 =K W) + 21

X { . + (Lt 4 }

v 4atan®(2¢) +vs]

where A1, y1, vi, v2, and v3 are kinetic coefficients. The

corresponding spectrum of nonclassical fluctuations ¢; has a

non-Lorentzian form. The quantity (ig)q’w has been
calculated by Kamenskii and Kats [83].

Fig. 7 illustrates the experimental angular dependence of

the integral intensity of the scattered light in MBBA for three

types of polarisations of the incident and scattered light

(3.41)

using the known values of the Frank moduli are also
presented. Fig. 8 illustrates the angular dependence of the
effective frequencies w; = 1/7.5 obtained by the methods of
correlation spectroscopy. As in Fig. 7, the continuous line
represents the values calculated using the experimental
kinetic coefficients and the Frank moduli. Both figures
show a satisfactory agreement between the theory and
experiment, which confirms the possibility of determining
the parameters for liquid crystals from light scattering data.

A method hasbeen proposed [85] for the determination of

the viscoelastic constants of nematics from measurements of
the spectral line width (LW) of the light scattered by the
fluctuations of the director as a function of the angle )
between n® and k®. The scattering angle 0, ~7° was
constant in the above study [85] and only the orientation of
the cell was varied, while the receiver and the emitter were
stationary. The geometries of the (0) — (e), (¢) — (0), and
(e) — (e) scattering were considered. Fig. 9 illustrates the
dependence of the half-width I' on the angle 6;y,. The
continuous line corresponds to the theoretical calculation
for the scattering angles 8, = 7° and 5°.

Measurements of the dependence of the relaxation times
7; and 72 on qzc have made it possible to determine [81] the
ratios ofthe viscosity coefficients in a polymeric nematic. The
absolute values of the Leslie coefficients were determined by
resorting to the quantity K33 determined on the basis of the
Fréedericksz transition.

Measurements have been made [86] of the absolute light
scattering intensities corresponding to different polarisations
and all three Frank moduli have been determined for MBBA.
The results are K1, = (5.7 4 0.3) x 1077, K5, = (4.0 £0.2)x
1077, and K33 = (7.3 £ 0.5) x 10”7 dyn.

Light scattering methods are used to determine the Frank
moduli also by indirect measurements. Thus a novel method
has been proposed [87] for the determination of the critical

[(0) — (e), () — (0), (¢) — (¢)] [84]. Curves calculated magnetic field strength H. in the Fréedericksz effect, from
0 20 40 60 ms In[V(r) — V(c0)]
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Figure 10. Decay of the time correlation function V() in the 5CB liquid crystal at 29.9 °C for different applied field strengths. The logarithmic scale

illustrates the purely exponential nature of the decay process [87].
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which it is possible to find the Frank modulus
Ky = XH(HCL/n)2, L being the thickness of the specimen.
The idea of the method is as follows. A cell with an oriented
nematic was charged with a small admixture of extraneous
particles. The rate of diffusion of these particles was
measured by light scattering methods. For a zero magnetic
field strength, the diffusion across the director was measured.
In an external field, where the Frcedericksz transition
occurred and the director at the centre of the cell began to
undergo a pole reorientation, the parallel component of the
diffusion coefficient began to influence the diffusion
relaxation time, the diffusion process was accelerated and
the relaxation time diminished. Fig. 10 presents the variation
of the rate for different field strengths H. Fig. 11 illustrates
the threshold nature of the variation of the relaxation time as
a function of H. The above measurements [87] were
performed on a 5CB liquid crystal containing 0.1% of an
admixture. The results of the measurement of K>, agree with
the results of other workers within the limits of experimental
accuracy (to within about 10%). A similar idea for the
determination of the critical field strength H. by a light
scattering method was applied by Galatola [183]. However,
the determination was based not on the spectrum but on the
distortion of the symmetry of the angular distribution of the
intensity.

T./ms
20 Lee®®®e%e® '.“.'...'o
..
.
e o,
L ]
..... °
......'
0 0.5 1.5 H/kOe

Figure 11. Dependence of the relaxation time 7, in the SCB liquid crystal
on the applied magnetic field H at 31.7 °C [87].

Apart from the integral and spectral intensities, the
statistics of photocounts during scattering by the
fluctuations of the director has been investigated in nematics
[88]. For the usual Gaussian fluctuations involving very short
measurement times, the photocount distribution function
should be exponential. The experiment carried out on 5CB,
MBBA, and DIBAB liquid crystals showed that the
distribution function has a Gaussian—Lorentzian form
(Fig. 12). According to the authors, the deviations from the
Gaussian behaviour can be explained by the nonlinear
interaction of the modes &4 (j = 1,2) with different wave
vectors q.

The light scattering in biaxial nematics has been
considered in terms of the optical isotropy approximation
[70]. A detailed study taking into account the optical
anisotropy has not been carried out hitherto so far as we are
aware. From the purely optical point of view, the study of
light scattering in these systems is of interest, in particular, in
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Figure 12. Distribution function P(n,t) for photocounts expressed in
terms of the numbers of channels n detected during a period £ = 107> s for
light scattered by a homeotropically oriented specimen of a DIBAB
nematic liquid crystal at 7 = 0.9897T [88].

connection with the familiar phenomena of the external and
internal conical refraction in biaxial crystals [33, 89].

3.4 Fluctuations of the director and light scattering in a
bounded nematic

The previous discussion concerned the case of an unbounded
nematic, so that only bulk phase contributions to the energy
were taken into account. On the other hand, real experiments
are carried out in small cells where the surface energy may
play a significant role. The presence of boundaries alters the
nature of the fluctuations ofthe director. One of the methods
for the measurement of the energy of the anchoring of the
director to the support is based on this effect [90].

Suppose that the liquid crystal is enclosed in a cell with a
thickness L between plane-parallel plates and that the origin
of coordinates is located at the centre of the cell, the z axis
being directed along the normal to the plates. We shall
assume that the interaction of the director with the support
is taken into account in terms of the Rapini potential [15, 91].
The surface contribution to the thermodynamic potential
then assumes the form

1
Dt ==V 5 [Erib2 s, L/2) 412, ~L/2)] G42)
for the homeotropic orientation (z|[n”) and
1
B =5 | CrLIW e, L/2)+ Wi, —L)2)

AW nl(ry, L/2) + W n2(ri, —L/2)] (3.43)

for the planar orientation (z L n°); here W, W, and W are
the surface densities of the anchoring energy and x is the light
orientation axis. The total thermodynamic potential, linked
to the director field, is
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¢ = Qbulk + ¢surf9 (344)

where the bulk phase energy @y« is the Frank energy defined
by Eqn (3.1).

As an example, we shall consider the fluctuations of the
director in a homeotropically oriented cell. The standard
computational method involves the expansion of the
fluctuations in terms of intrinsic modes. The solution is
formulated as an infinite series, the determination of each
member of the series involving the solution of a
transcendental equation [90, 92, 93]. A method permitting a
solution in a closed form has been proposed [94].

We shall now proceed to the two-dimensional Fourier
spectrum dn(q,,z) with ¢, 1 z. The contribution of the
fluctuations with the given ¢, to 8@ [Eqn (3.44)]is

\S] |

Z { j dz (K 8, (2)* + K[ 8, (2)

WL/ + oL /DF]}. (345
Here the modes 3n; (j = 1,2) are defined by Eqn (3.3) and
the argument ¢ in the function dn(q ,z) has been omitted.
In an unbounded medium, the procedure used to find the
correlation function is as follows. Differentiation by parts
in the formula for 8@ and neglect of the terms outside
the integral expression lead to an expression of the type
= (8n,Adn)/2, where A is a self-adjoint differential
operator while the scalar product implies integration with
respect to continuous variable and summation over the
indices. The correlation function is then obtained in the
form G =kgTA ~'. A characteristic feature of bounded
media is that 8@ contains terms outside the integral
expression, which must be taken into account in the
inversion of the operator A. In this case, the task may be
reduced to the selection of boundary conditions for the
functions dn(q,,z) such that, firstly, 8¢& has a quadratic
form and, secondly, the corresponding operator A is self-
adjoint over the subspace dense in terms of L2
In this case, the boundary conditions are

W on+Ky30,0n =0, z==%L/2. (3.46)
Then
2 (L/2 .
=5 Z jf dz8nf (g, 2)A;8n;(g., 2) (3.47)
where
A;=Kyqh — K530 . (3.48)

Thus the boundary conditions (3.46) make it possible to
eliminate the terms outside the integral in the expression
for 8@. Since the operators A; are symmetrical and the
adjoint operators A have been defined for the same class
of functions, it follows that the A are self-adjoint [95]. Thus
the correlation functions of the dlrector fluctuations in the
g,z representation, ie. Gj(g.32,2") = (dn;(2)dm(z’)),,
must satisfy the equations

AG = kgT8(z —2), (3.49)

i.e. it is necessary to invert the operators A takmg into
account the boundary conditions (3.46). For z#z', the
differential equations (3.49) are homogeneous and can be
readily solved. By joining the solutions for the regions z > z’
and z <z’ taking into account the boundary conditions

(3.46), we obtain

Gilgi;2,2") = 2K~3Auﬁ, {(B7 — w?) cosh[B(z +2")]

+4;cosh[B;(z —z")] — 4y sinh(B;|z — z'|) } ; (3.50)

where AI, (B} +w?)sinh(B,L )+2ijcosh(ﬁ/ ), Ay =
(ﬁj +w )COSh(Bj )+2ﬁ_/wsmh(ﬁ_/ ) qL(KI//K33)
(j=1,2), and w = W /K33 is the inverse length characterising
the anchoring of the nematic crystal to the substrate [15].

The series expansions of the correlation function in the
intrinsic modes of the fluctuations taken from Refs 90, 92,
and 93 can be obtained, provided that Eqn (3.50) is expanded
as a meromorphic function of ¢, into simple fractions.

The correlation functions of the director fluctuations for
a planar cell can be calculated in a similar although
technically actually a more complex way [94].

It is of interest to compare the correlation functions
GjL (q.;z,z') in a bounded cell having a thickness L
[Eqn (3.50)] with the corresponding inverse Fourier
transform GJH (¢;z—2z") of the quantity defined by
Eqn (3.2) in an unbounded specimen subjected to an
external field H. In terms of the notation of Eqn (3.50), we
have

1/2

kT
1(33(312 + W%q)m

x exp[—(8] +wiy)' |z

Gilgy2-2)=
'], 3.5

where wy = H(xa/K33)]/2 is the inverse magnetic coherence
length. The director fluctuations in an unbounded specimen
for H = 0 are of the Goldstone type: G;(q) ~ g2 — oo for
g — 0. When H # 0,

00
Gf(q=0):J dz'G(q1=0;2-2") =
—00

For the correlation function (3.50) in a bounded cell, the
analogous integral has the following form after the removal
of the indeterminacy atg, — 0:

L/2 kT 1 L?
dz' Gt g, =0;z,7) = L — -2
JﬁL/z 2 Gjqy 72,2 )= Xy 2w +w 7 C

(3.53)

For L — oo and wy — 0, both equations, (3.52) and (3.53),
diverge quadratically, which reflects the Goldstone nature of
the director fluctuations for L = oo and H = 0. However, it is
significant that, for a finite L, the quantity defined by
Eqn (3.53) diverges (albeit linearly) if w — 0. Thus not only
in a bounded medium but also in thin nematic liquid crystal
films the director fluctuations are singular in the absence of
anchoring to the support.

Since the definition of the vectors e; and e in Eqn (3.23)
is based solely on the transverse component of g, ofthe wave
vector ¢, the correlation function Gyvlv(q;z',z") of the
relative permittivity fluctuations in the ¢,z representation
isagain defined by Eqn (3.22), in which it is only necessary to
replace (&), by SG,(g.;2,2”) (where Sg=g,). The
intensity of light singly scattered by director fluctuations in
a planar cell is then given by
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. ! 1 L/2
I(e(’), e(s)) ~ _J

L/2
dz /J dz" exp [_iquc 72—z /I)]
L) _1p

L2

e e G (gt 27, 2")elDel) (3.54)
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Figure 13. Angular dependence of the intensity of the (¢) — (e) scattering
in MBBA specimens 20— 100 pm thick and oriented planarly on several
surfaces: (1) poly(vinyl alcohol) coating; (2) rubbed glass; (3) PAC
varnish coating; continuous lines— calculation using the anchoring
energies (from above downwards) W, =5 x 107,107, 2 x 107, and
5x 10~ ergem ™. The polarisation vector of the incident radiation
makes an angle of 20° with the director [90].

I/rel. units
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12 @/mrad

Figure 14. Angular dependence of the intensity of the (¢) — (e) scattering
in MBBA specimens planarly oriented by PAC varnish for different
thicknesses of the cell: (/) L =80 pm; (2) L =50 pm; (3) L =35 pm.
Continuous lines— calculation for W, =5x 10~ ergem =2
(1)L =80 pm; (2)L =50 pm; (3)L =35 pum; (4) L =65 pm. The
polarisation vector of the incident light makes an angle of 20° with the
director [90].

where quc and g3 are the longitudinal and transverse, relative
to the z axis, components of the scattering vector gs.. The
integrals in Eqn (3.54) are evaluated analytically [94].

The results of measurements of the intensity of the
scattering of the extraordinary ray in an unusual cell with a
planarly oriented nematic liquid crystal have been published
[90]. The radiation from helium-neon (4= 6328A) and
argon (A = 5145 A) lasers was used. The polarisation vector
of the incident radiation made an angle of 20° with the
director. The anchoring energy was determined for MBBA
in glass cells having a thickness L =20—-100 pm with
oriented coatings of poly(vinyl alcohol) [PVAL
(Translator)] and PAC [poly-acrylic? (Translator)] varnish
or with supports rubbed in one direction. Figs 13 and 14
present the angular dependences of the scattered light intensities
for different anchoring energies and thicknesses of the specimens
[90]. Evidently the angular distribution is sensitive both to the
thickness of the specimen and to the anchoring energy, the latter
eliminating the divergence of the intensity in forward scattering.
The anchoring energies were found by comparing the theory
with the experimental results: W ~ (2 4 0.05) x 10~* ergem ™
for glass rubbed in one direction, W = (5 £ 2) x 10™* ergem ™
for the PAC varnish, and W ~ (1 £0.2) x 10 ergem ™ for
PVAL.

Fig. 15 illustrates the dependence of the intensity of the
(e) — (e) scattering calculated by Eqn (3.54) for a
homeotropically oriented nematic liquid crystal cell in the
case of normal incidence. It is of interest to note that, in
contrast to the inclined incidence, here there is a dip
corresponding to the zero angle, its width being greater the
greater the anchoring energy.

3.5 The effective relative permittivity and the extinction
coefficient

As a result of the presence of fluctuations, the effective
relative permittivity of the medium sﬁ% becomes nonlocal
[32] In terms of the lowest-order terms, the nonlocal
component ofegg is given by

dg
Ezg(lﬂ (1)) - Egﬁ = J—3Gavl3u(k —-4q, w)Tvu(qy (1)) -(3-55)

(27)

1(0)/10(6)

0/deg

Figure 15. Angular dependence of the intensity of the light scattered by a
homeotropically oriented liquid crystal cell referred to the intensity in an
unbounded medium I,(0) for different values of o = W /Kk: (1) o = 0;
(2) «=10.001;(3) a =0.01; (4) «=0.01; (5) & = 1; kL = 100 [94].
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Corrections to the real (2’) and imaginary (2") components
of 2% may be found from Eqns (3.55) and (3.32) and
Sokhotskii’s formula (x —i0)™" = P(1/x) 4 id(x), where P
is the symbol denoting the principal value of the integral.
The imaginary component then reduces to a double
integral and determmes the extmctlon coefficients
gy = (w/c)ng) cos™ 25(){)gn ek, a))e Ji=1,2) for the
ordinary and extraordmary waves [76]:

( 2 >2 e.g)eg)
o = 4

2 4mc? n(;y cos’ 5
(5)

(5)
n( )e ey
XZJko” : 50

where d@, () denotes integration over all the directions k®.
Eqn (3.56) represents the anisotropic version of the
optical theorem [32] the attenuation of the mean field in a

Gy k) — k), (3.56)

randomly inhomogeneous medium without intrinsic
absorption is due to the loss of light in scattering:
oG = E(i) COS_] 5(i) ) (3.57)

where X is the overall scattering cross-section—the
integral of the relative scattering intensity per unit volume
with respect to all the angles [Eqn (3.36)]. The corresponding
formula for ;) has been obtained by Langevin and Bouchiat
[96].

Since the main contribution to the scattering and hence to
the extinction in nematics is associated with the director
fluctuations &;,, calculation of o), can be restricted to
fluctuations of only one type (estimates have shown that the
contribution of the &345 modes to gy is 2—3 orders of
magnitude less than the contribution of the &; » modes [76]).

We now introduce the designation o, for the
contribution to o(;) due to the scattering of a (s)th type
wave: gy =01 +032. It follows immediately from
Eqn (3.57) and geometry 1 in Eqn (3.39) that o(;,;) = 0 and
o) = 001,y

The exact analytical calculation of the double integral
(3.56) with the correlation function (3.22), (3.2) is fairly
cumbersome. Numerical calculations of 2(;) have been
carried out [84]. The problem may be significantly
simplified by employing the fact that the parameter

A=yH 2/k%Kj_», <107° (see Section 3.1) is small. In
particular, in the limit 4 — 0 we have
1 2
l —u
oy (0) =0 J dy———
(I)( ) 0 . (] +a0u2))/2
X[(1 =) (ty, 1) + D(12)]. (3.58)

ooniy (6) sin” @
0(2,1)(0) = @ 3/2
&)

1
xj Q[ — @), ) + ()], (3.59)
-1

where
o’ kgT si
87'5(,‘2 K33 (8l8“)]/2 5

gy =

o(l)(O)/cm_l a
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Figure 16. Angular dependence of the extinction coefficients of the
ordinary ray o(y(6) (a) and the extraordinary ray o) (6) (b) calculated
by Eqns (2.58) and (2.61) for the PAA (curves 1) and MBBA (curves 2)
in liquid crystals [76].

I(t) = (P%+2fP|P2+t2P§)7I/2,
Lo(ty, 1) = L(t) = 11 (11)
() =tP '[Py +tPy+ 1507,

= (v cosG—u)z, Py =vysin?0+1—u?,
Py=vsin?0+u>—1, v, = [(l + agu?) /(1 +a0)]]/2,

vo=m(0)/e*, a==e/eL, tj = Kj/Ks; (3.60)

0 is the angle between k) and n°, v = v, in Eqn (3.58), v = v,
in Eqn (3.59). Assuming that kpT ~4 x 10~ “erg, K~
1076 dyn, o/c ~ 10°em™!, g, ~ 1, and g | ~3, we find
that o ~5cm”! and, bearing in mind that the integral
multipliers in Eqns (3.58) and (3.59) are of the order of
magnitude of 2.5 and 0—5 in the first and second integrals,
we find respectively gy ~10-20 em™' and o1~ 0-
20 cm~'. Fig. 16a presents the angular dependence of
01)(0) calculated by Eqn (3.58).

However, the contribution of g2 2) cannot be calculated

diverges logarithmically at 4 — 0. The reason for the
divergence is the Goldstone nature of the correlator of the
director fluctuations at H # 0 : (6ﬂf)q ~ ¢, which leads to
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an anomalously pronounced scattering at low angles 0Oy
when ¢, =k® —k® — 0. There is no divergence in the
quantities o1y and o) = g1 since generally speaking
kM| £ k@] in an anisotropic medium and the scattering
vector ¢sc does not become zero. For 6 =0° or 90°, the
quantity limy_ 0@y is finite because it follows from
Eqn (3.39) that under these conditions the (e) — (e) type
forward scattering intensity becomes zero due to the presence
of the angular multipliers.

A method hasbeen proposed [96] for the determination of
the absolute values of all three Frank moduli from measure-
ments of the extinction coefficient in the three experimental
geometries in which the limiting transition limy_q o is
permissible: k(’)||n0[a(|)(00)]; KD 1 n’ O 1 n’[a(1)(90°));
kD 1 n, e(i)||n0[0'(2)(0)]. The measurements were
performed in MBBA specimens with thicknesses L =1, 1.5,
and 2 mm oriented by a magnetic field with a strength H
ranging from 103 to 3 x 10° G. The values of the Frank
moduli obtained agreed well with the results of
measurements by other methods. This procedure for the
determination of the Frank moduli is convenient and is
widely used nowadays. In particular, K;(j=1-3) have
been determined [97] for the 8CB monomer in the
temperature range —I0K <7 —-T7,<0K and for the
lyotropic polymer PBLG at a fixed temperature and two
concentrations.

The author [97] notes an appreciable influence of the size of
the specimen employed on ;). Thus, when the thickness of
the cell L was varied from 2 to 0.2 mm in 8CB, the quantity
01)(0) varied from 2.35 to 3.05 cm™', while 6(2)(0) varied
from 2.86 to 3.85 cm™' (Fig. 17). The values of Kj; found
proved to be systematically larger than those derived from
data for the Fréedericksz transition, which has been
explained [97]by the influence of the orienting magnetic field.

In the calculation of o)(f) in the range 0 < 6 < 90°,
account must be taken of the finite nature of the small
parameter 4. The asymptotic expansion of (2 in terms of
the parameter Ly /A ~ A%, where L, = 27[(1(33/)(2}1H2)]/2
is the magnetic coherence length, is of the form [76]

oo)(0) = UOU(G)% nlzl—z
+0 3N (0) + 00,1 (0) +0(4'7), (3.61)
where
ue) = (8l8||)3/2 sin” 20/(g, cos’ 0 + g sin® 0)?,
F; = (t}sﬁ cos’ 0+ tjsi sin’ oﬁ?)'/2 , (3.62)

(j=1,2), and ¢ {35} (6) is the contribution to 622 in terms
of zero order in 4. The quantity ¢ (3% is of the order of
magnitude of o,y and o) and its angular variation is
smooth over the entire range 0 <8 < 90°. For typical
nematics with &) ~ I, Kj~ 108 dyn, H ~ 10° Oe, and
Xa~ 1077, we have Ly/A~3x10° and o) ~ 60cm™".
Evidently 0(2)(0) depends greatly on the angle 8 and is several
times greater than the extinction coefficient for the ordinary
ray. Fig. 16b presents plots of the angular dependence gy(6)
calculated by Eqns (3.61) and (3.59) [76]. A fit linear in 6 was
used for o (35} (6) between a(52)(0) = a(12)(0) and 62,2,(90°),
which permits the limiting transition 4 — 0. Plots similar to
that in Fig. 16 have been obtained [84] on the basis of
numerical calculation of the double integral (3.56).

[fthe nematic liquid crystal is considered in the absence of
an external field, then the problem of the divergence of 0(2,2)
remains. We may note that the logarithmic ‘infrared’
divergence of the extinction coefficient for correlators of the
Goldstone type for light scattering at the second-order phase
transition point, where the correlation radius of the
fluctuations r¢ is infinite, was noted a very long time ago
[98, 99]. [Under these conditions, ¢ ~ In(r./kg).] According
to Placzek [98] and Rocard [99], the divergence can be
eliminated if account is taken of the finite size of the
scattering system L. On the one hand, the correlation radius
is in this case actually limited by the size of the specimen:
ro <L [98]. On the other hand, the divergence of o is
eliminated after the introduction of L < oo if account is
taken of the diffraction effects in scattering at low angles
0 ~ A/L [99]: in the calculation of the extinction coefficient
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Figure 17. Temperature variation of the extinction coefficient o(1)(0) (/) and 6y(0) (2) for the 8CB liquid crystal (Ty; = 314.5 K) and different
thicknesses of the specimen: (a) L = 0.2 cm; (b) L = 0.1 cm; (¢) L = 0.04 cm [97].
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by Eqn (3.57), the integral with respect to d€, must be
truncated at scattering angles 05, of the order of magnitude of
the angle of diffraction ;s = A/L by the specimen asa whole.
(See the first edition of the book by Landau and Lifshitz [33]
and also Fabelinskii [1].) In the first case, the truncating
parameter L isthe transverse dimension and in the second it is
the longitudinal dimension of the specimen relative to the
direction of propagation of the incident wave.

It is remarkable that, in the course of the development of
the theory of critical phenomena, it was discovered that the
total scattering cross-section at the second-order phase
transition point is nevertheless finite also for L — oo
because, instead of the Goldstone spectrum G(q) ~q_2,
there is at this point a weaker singularity G(g) ~ ¢ >,
where #n is the Fisher exponent [6—8]. However, for
nematics, the reasoning employing the finite size of the
system L is entirely applicable [33]. In terms of the main
orders in the parameter A/L, both approaches [98, 99] yield
the same result, namely Eqn (3.61), where it is sufficient to
replace Ly by L.

These results are sufficient for the description of
extinction in real optical experiments. However, the
fundamental question of the behaviour of the extinction
coefficients o(2) in an unbounded nematic in the absence of
an external field remains obscure. This question proved to be
related to the problem of confinement in the field theory and
hasbeen analysed in a series of studies [100 — 103], initially for
the case of scalar waves and the correlation function
G(q) ~ g% [100—102], and then for electromagnetic waves
and the real correlator (3.21) [103]. It was found that the
divergence of the extinction coefficient () for H =0 and
L = ocoisdueto the fact that the true asymptotic behaviour of
the mean field in such systems involves a superexponential
attenuation:

(EV(r)) = eVE (().i) exp[ik) r] exp[—k" +r In(kD) - r) + (],
(3.63)

where { is a constant of the order of unity. The physical sig-
nificance of the appearance of the unusual superexponential
attenuation in such systems is that, in anomalously intense
forward scattering, yet another mechanism —the super-
position of waves with randomly displaced phases scattered
almost in the forward direction — arises apart from the usual
mechanism of the attenuation of the mean field as a result of
the sideways escape of the scattered radiation [which leads to
the exponential Bouguer law (E ) (r)) ~ exp(—k” - r)] [102].
For a correct calculation of the field parameter in directions
close to 6, = 0 in such systems, it is essential to use methods
taking into account in the diagram series for the mean field all
the diagrams and not only those least connected, as is usually
done in methods based on the Dyson resummation [32]. It has
been shown [101] that the simplest method of this kind is the
eikonal method. The eikonal approximation makes it
possible to derive correctly the principal logarithmic term of
the asymptotic expression (3.63). However, the constant { is
then found to diverge in the limit ¢ — oo (‘ultraviolet
divergence’). In order to eliminate the divergence, it is
necessary to achieve a certain improvement of the eikonal
approximation, for example one must use the method for the
separation of the degrees of freedom of the fluctuating field
into ‘fast’ and ‘slow’, applying different types of perturbation
theory to them [104, 105], which has been used by
Adzhemyan [101], or an alternative method [102] which
does not require the separation of the modes.
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Figure 18. Dependence of the term added to the real component of the
wave vector 8k = ((x)/c)Rc5[—;°ff/251|/2 on the angle § between ko and the
director. The quantity ok (cm") is obtained by multiplying 8knorm by
ksT/A*K, where K is the effective value of the Frank modulus [106].

The fluctuation contribution to the real part of the
effective relative permittivity, which is determined by the
integral in the sense of the principal quantity in Eqn (3.56),
renormalises the real part of the wavenumber k). We may
note that the correct calculation of this contribution usually
requires the elimination of the ultraviolet divergence of the
integral. This small contribution, which is usually neglected,
leads in the case of a uniaxial nematic to an interesting
qualitative effect —the wavenumber of the ordinary wave
k™ begins to depend, albeit only weakly, on the direction of
its propagation [106]. Fig. 18 illustrates the calculated [106]
angular dependence of the correction to k() for the 5CB
liquid crystal.

3.6 Multiple light scattering in nematics

The appreciable, compared with o(;), extinction coefficient of
the extraordinary ray o) can, at first sight, lead to the
conclusion that the extraordinary ray decays much faster
than the ordinary one. Thus the cause of such a large
extinction coefficient o) is random phase shifts of the
extraordinary waves scattered almost in the forward
direction; virtually the entire light is concentrated in the
region 6, =0 and has the same polarisation of the
extraordinary ray. Thus the extraordinary coherent laser
ray in an ordered nematic is transformed as a result of
multiple forward rescattering into a diffuse beam with a
relatively small expansion without a significant change in the
total intensity and polarisation. The ‘extinction coefficient’
of this diffuse beam is of the same order of magnitude as o(1)
owing to scattering at large angles. This effect has been
confirmed  experimentally  (Fig. 19) [107]. Direct
determination of g2y from the attenuation of the transmitted
ray therefore presents considerable difficulties. The method
for the determination of ooy based on the measurement of the
degree of coherence of the wave transmitted through the
specimen can apparently prove effective here.

It is seen from the effect described that theoretical study
of the angular dependence of the multiple scattering in an
ordered nematic (in the first place for the extraordinary ray is
of considerable interest. For H — 0 in the region 6, ~ 0, it is
then necessary to take into account all the scattering multi-
plicities. Examination ofthe analogous scalar problem by the
eikonal method [102, 108], by the Glauber method [109],
and on the basis of the radiation transfer equation (RTE)
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Figure 19. Image of the ray which has passed through a cell with a planarly
oriented H-106 liquid crystal 2 mm thick for two angles of incidence 0
[107] of the ordinary (a) and extraordinary (b) rays.

is the low angle approximation [110], showed that the
multiple scattering indicatrix Iyyui(0) in the region of small
angles 0 = 0, differs significantly from the single scattering
indicatrix ~ 072. Thus, according to the literature
[102, 108 —110], the singularity in Imu(6) at 8 — 0 has the
form

L (6) ~ 07C/0) (3.64)

where z is the path traversed by light in the medium and zg is
the length parameter of the order of 0'(_&. The result
[Eqn (3.64)] has been recently extended [111] to the case of
real nematics, where it is necessary to take into account the
vector nature of the electromagnetic field E and the tensor
nature of the correlation function Gug,p. The nature of the
singularity defined by Eqn (3.64) in the multiple scattering
indicatrix at z/z¢ < 2 isretained in this case also. The point is
that the anomalously intense forward scattering is associated
solely with the extraordinary wave and that, when scattering
at low angles is considered, the presence of the ordinary wave
may be neglected, i.e. one can proceed in fact from t he vector
to the scalar problem.

On the other hand, ifthe problem of multiple scattering in
an ordered nematic liquid crystal in the presence of an
external field H is considered, whereupon the correlation
radius of the fluctuations becomes finite, then strictly
speaking the ordinary ray cannot be neglected. The principal
problem consists in this instance in the fact that a direct
extension of the eikonal approximation does not exist for
such a bimodal problem because the so-called linear
interaction of the modes arises [112]: waves with one type of
polarisation enter the medium but, after repeated
rescattering by tensor fluctuations, waves with both types of
polarisation are present at the exit from the medium.

There exists another approach to the description of the
angular distribution of the scattered radiation which is

closely related to the eikonal approximation in the unimodal
problem [32], but, in contrast to the latter, it permits a direct
extension to the multimodal case. This approach is based on
the use of a system of radiation transfer equations for the
description of the simultaneous process involving the
propagation of the extraordinary and ordinary rays. For
the radiation transfer equation to apply, it is necessary that
the inequality (;)r, < 1should hold [32, 113]. Ifaccount was
taken of the fact that, in experiments with nematic liquid
crystal specimens having a thickness of the order of 1 cm a
magnetic field is used to orient the single crystal [96, 97, 107],
then the extinction coefficient can be calculated by
Eqn (3.61) and the magnetic coherence length Ly can be
used as r.. Estimates have shown that, for typical nematics in
a field H ~ 10° G, these inequalities do hold. The radiation
transfer equation for a scalar field in the stationary case has
the following form [32, 113]:

[(m, V) + o]a(r, m) = Jde/F(m, ma(r, m') + b(r, m);
(3.65)

where m is a unit vector, ¢ the extinction coefficient, F the
scattering indicatrix, a(r, m) the intensity at the point r of the
waves propagated in the direction specified by m, and b the
radiation source. The coherence function characterising the
radiation [32] has in the case of an electromagnetic field four
independent components by virtue of the transverse nature of
the waves [114]. Instead of these, four Stokes parameters are
usually employed [115]. One then obtains, instead of
Eqn (3.65), a system of four equations. In an anisotropic
medium, where there are two types of waves with their own
polarisations and wave vectors, the number of independent
components of the coherence function reduces to two [116]:

[(S(i), V) + o)) ag(r, m)

2
- ZJ dQ,, Fiy(m, m')ag;(r, m') + by (r, m),
=
(3.66)

(i =1,2); here s is the direction of the group velocity of a
wave of type (i) [identical? (Translator)] with the direction of
the wave vector m, F(;)(m,m') is the indicatrix of the
scattering of a type (j) wave to give a type (i) wave, and b,
is the source of emission of type (i) waves. We may draw
attention to the fact that, in contrast to an isotropic medium,
in Eqns (3.66) account is taken of the difference between the
directions ofthe group velocity and the wave vector. Ifa wave
of type (j) having an intensity I(()’) is propagated in the
medium in the direction of my, then scattering by random
inhomogeneities results in the conversion of its energy into
the energy of incoherent radiation. If the incoherent
component is considered as a;)(r,m), then the source is
given by the quantity

by(r, m) = Igj)F(ij)(m, mg) exp[—o;ymg-r]. (3.67)

For known values of a;)(r,m), it is easy to find the
experimental average Poynting vector and the
electromagnetic energy density [116].

Eqns (3.66) have a simple physical significance. The
variation of the energy of type (i) waves along the ray [the
term (s, V)a)(r,m)] takes place, firstly, as a result of losses
on scattering in other directions and in the form of other
types of waves [the term o(;)a(;(r,m)] and, secondly, as a
result of the scattering of type (j) waves with the wave
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vectors k(_,)m' in the form oftype (i) waves with the wave vector
kym (the integral term) and also as a result of emission from the
source b).

A characteristic feature of this system for a nematic liquid
crystalis that the indicatrixes F;) for different types of waves
(i and j) are significantly different. The indicatrix F», has a
sharp peak at m ~ m’, since the extraordinary ray is scattered
mainly in the forward direction with a polarisation e®. The
indicatrixes F(i2) and F(21y do not have such a maximum for
forward scattering because the wavenumbers k(1) and k(2) are
different. The quantity F(;1) is identically equal to zero, since
the scattering of the ordinary ray by the fluctuations of the
director to give another ordinary ray does not occur.
Eqns (3.66) allow a description of the joint propagation of
the ordinary and extraordinary waves in nematics taking into
account multiple scattering. However, in the general case
integration of Eqns (3.66) is possible only by numerical
methods because the extinction coefficients depend on the
direction m, while the indicatrixes F(;) are functions of m and
m’ and not only of the angle between them.

The problem simplifies significantly when the
extraordinary ray is incident on the specimen, whereupon
the source by (r,m) has a sharp maximum in the direction of
propagation mg of the incident ray. Then in the region of low
scattering angles Fyy) > F(31) and the term in the equation for
ap) (r,m), taking into account the scattering of the ordinary
wave to give the extraordinary wave, may be neglected.
A closed equation is obtained for ap(r,m), which can be
considered in terms of the low angle approximation [32, 113]
i.e. with the replacement (s, V) — (m,, V).

The angular distribution of the intensities of the
extraordinary waves for different depths of penetration z,
obtained [116] on the basis of the low angle approximation, is
presented in Fig. 20. Evidently, for z less than several
extinction lengths, the angular intensity distribution is
approximately the same as for single scattering. For higher
values of z, appreciable broadening of the ray begins. This is
associated with the fact that the indicatrix for the scattering
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Figure 20. Angular distribution of the intensity of scattered light with
polarisation of the extraordinary ray for different lengths of the traversed
path [ = g5z, where o) is the extinction coefficient of the extraordinary
ray calculated by Eqn (2.61) in the presence of an external field: (/) [ = 2;
2)l=4,3)1=6;(4)1=28;(5) =10 (dashed line—single scattering
intensity) [116].

of the extraordinary ray to give another extraordinary ray is
very greatly extended in the forward direction, so that its
variation in the region of low angles is appreciable only after
several scattering steps. For large values of z, the low angle
approximation becomes inapplicable. In this case, it is
essential to employ the complete system of transfer
equations.

From the standpoint of fluctuations and light scattering,
the ordered nematic phase is a very interesting and fairly
complex object. A complete description of the fluctuations is
complicated by the multicomponent nature of the order
parameter. A correct description of the scattering requires
in its turn allowance for the anisotropy. The most interesting
feature of the ordered phase is the presence of singular modes
ofthe director fluctuations leading to an anomalously intense
light scattering in the vicinity of the forward direction. On the
one hand, this leads to the diffuse regime in the propagation
of the extraordinary ray in nematics and also to a very
unusual superexponential decay of the mean field. On the
other hand, the usually weak effect of the finiteness of the
system and its interaction with the bounding surfaces become
significant under these conditions.

The problem of the study of the critical behaviour of the
system in the transition to the isotropic phase should be
regarded in the first place as one of the future fundamental
problems concerning the ordered nematic phase. In this
connection, there are experimental data on the temperature
variation of the heat capacity, the order parameter, and the
Frank moduli but a detailed combined treatment of
experimental data taking into account fluctuation
corrections, of the kind carried out for the isotropic phase,
has not yet been performed.

Information about the critical behaviour of the system
can be obtained also from light scattering data, provided that
one isolates the contribution of longitudinal fluctuations
from the total intensity. An attempt to carry out these fairly
difficult measurements has been undertaken [162]. The
measurement of the angular dependence of the extinction
coefficient of the ordinary ray is of interest. This will make it
possible to determine the Frank moduli by optical methods
with a higher accuracy than the determination based on the
Fréedericksz transition or from measurements of three values
of the extinction coefficient in the method of Langevin and
Bouchiat [96].

Experiments on the multiple scattering of the extra-
ordinary ray in nematic liquid crystals and the study of the
kinetics of the fluctuations of the director on the basis of low
angle multiple scattering data have also been of interest. In
thin nematic liquid crystal specimens, it is necessary to
investigate the influence of the surface Frank moduli (of the
K>4and K3 type) on the fluctuations and to take into account
the boundaries of the system in the scattering problem.

For biaxial nematics, the theory is still far from perfect:
the study of the angular dependence of the scattering taking
into account the anisotropy and the calculation of the
extinction coefficient are required. We may note that
Green’s function for the electromagnetic field in a biaxial
medium with allowance for external and internal conical
refraction phenomena, which is essential for the description
of the scattering, has been recently obtained [163]. The
correlation function for the fluctuations of singular modes
in a bounded cell has not been calculated either. In this
connection, we may draw attention to the effect recently
predicted theoretically—the phase transition of a uniaxial
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nematic to the biaxial state under the influence of the Zé(/) (/) (4.2)
bounding surface [179, 180]. Sapg = q .

It has been found that the interaction with the substrate
under special conditions can lead to fully biaxial ordering in
the surface layer of a nematic liquid crystal. Such quasi-two-
dimensional ordering is found to be stable for a fairly strong
interaction with the substrate, whereupon the bounding
surface tends to orient the molecules along the layer also
at temperatures T, <T <T,, where T, is the phase
transition temperature in an unbounded nematic and 7T is
the tempera-ture of the transition to the biaxial state. For
anchoring energies greater than a certain critical value, this is
a second-order phase transition. Pretransitional phenomena
may be investigated by the light scattering method. The
correspond-ing experiments have not apparently been
carried out, but the problem has been considered
theoretically in detail in a study [180] where both the integral
and spectral characteristics of the scattering of light were
calculated within the framework of a two-dimensional
model.

4. The isotropic phase of cholesteric liquid
crystals (CLC)

The so-called chiral liquid crystals occupy a special place in
the optics of liquid crystals. They include cholesteric liquid
crystals, chiral smectic liquid crystals, as well as the blue
phases of liquid crystals. The high-temperature cholesteric
phase is structurally simplest. The properties of this medium
have a number of characteristic features associated with the
chirality of the molecules. The normal waves are circularly
polarised and the wave vectors corresponding to the right
and left circular polarisations are different. As a result of this,
a linearly polarised wave is subjected to the rotation of the
plane of polarisation. In the pretransitional region, the
magnitude of this rotation exceeds by a factor of hundreds
the intrinsic molecular rotation [117, 118]. There is also a
possibility of the temperature-induced inversion ofthe sign of
the optical activity [119]. The right- and left-polarised waves
have different extinction coefficients, i.e. circular dichroism
is observed [120]. The relative permittivity tensor for the
medium has a nonzero antisymmetric component, which like
the symmetrical component, may fluctuate and lead to
antisymmetric light scattering [121].

4.1 Fluctuations of the order parameter

The absence of inversion in the symmetry point group of the
cholesteric liquid crystal leads to the existence of an
additional invariant (the Lifshitz invariant) in the expansion
of the thermodynamic potential [Eqn (2.1)] in powers of the
order parameter [9, 18]. In the Gaussian approximation, the
expansion has the form [16]

1
®= EJdr[ASaﬁSw +L,(V,Sp,)’

+L3(VyS )’ + 2dens,SupVySpy] » .1

where d is a pseudoscalar and the remaining notation is the
same as in Eqn (2.1). In order to determine the correlation
function, it is convenient to carry out the Fourier
transformation and to express the order parameter by a
linear combination of five traceless tensors niﬁ)(p)
(j=0,£1, £2)[122])

j=—2

where p =¢/q. The tensors n (p) are defined by the
equations

) (p) = \/g(papp - %5043) ,
n (p) = ma(p)mp(p) .
my(P)pp + mﬂ(P)Pa] )

) (p) =

i
i (p) = (—=1)'n) (-p).

wherem(p) = (e, + ie,)/+/2 isa complex vector and e; and e,
are unit vectors which form a right-handed triad with
p:e Xe =p. )

In terms of the basis comprising the tensor n&k)(p), the
thermodynamic potential (4.1) has the form

4.3)

=5y S ILLEL (44)
=-2 q
where
5 1°d?
l(l)(ﬁl) =h+4(qg—q), h=A———,
44,
1 2 Id

A[—L|+6L2(4—l ), ql_2—Al (45)

With the aid of Eqn (4.4), it is easy to find, in terms of the
Gaussian approximation, the mean square fluctuations of the
mode £@ and the correlation function for the fluctuations of
the order parameter:

kT

ey _—
€)= o (4.6)
G (q)zfj 55T n0(p)ald (). 4.7
T a0 (g) '

The stability condition consists in the fact that the
quantities A¢)(g) must be positive for all wave vectors ¢, i.e.
A >0and 4, > 0. If 4, = 0, then 4)(g,) = 0 and arbitrarily
large fluctuations, with a wave vector ¢ (|g| = ¢;), of the
mode assigned the number [ are possible. The temperature T}
at which this occurs is the temperature of the absolute
instability of the / mode. In the model defined by Eqn (4.1),
we have

1?d?

T!=T" .
! +4A’A,

4.8)
It follows from the identity 445" — A7 = 344(4,4,)”" and
the stability conditions 4; >0 that the inequalities
To=T*<T{=T* <T7;=T*, hold. However, the
temperature T is not attained because the break due to a
first-order phase transition occurs at a temperature T, > T'3.
Since the modes with / = £2 have the highest temperature of
absolute instability, effects associated primarily with the
fluctuations of precisely these modes are manifested in the
vicinity of the phase transition point.
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4.2 The effective relative permittivity

In the propagation of light in a cholesteric liquid crystal, the
influence of fluctuations leads, firstly, to the attenuation of
light as a result of scattering by inhomogeneities, secondly, to
the appearance of fluctuation-induced rotation of the plane
of polarisation, and, thirdly, to the manifestation of circular
dichroism associated with the fact that the right- and left-
polarised waves have different extinction coefficients. All
these effects can be described with the aid of the effective
relative permittivity saﬂ(q,a)). In an isotropic gyrotropic
medium, it can be expressed in the form [33, 123]

8ocﬂ(q7 CO) = SJ_(q7 w)(ﬁaﬂ _pocpﬂ) + Ell(q7 w)pocpﬂ

+2iv(q, 4.9

m)qeaﬁy py 5

where &), ¢, and v are even functions of ¢ by virtue of the
Onsager symmetry principle [18], vbeing a pseudoscalar. Asa
result of the presence of the last term in Eqn (4.9), the
eigenwaves in such a medium have a circular polarisation.
Indeed, the equation for planar waves assumes the form

(,02 (,O2
[(% — PaPp) (612 = &1(q, w)> —Z (4,

2
w
_qu(q7 (D) 6_2

)Py Pp

ieaﬁypy] Ep(q, CO) =0. (4]0)
The operator on the left-hand side of this equation has the
eigenvectorsp, m, and m*. The condition that the eigenvalues
are zero determines the corresponding dispersion equations
for normal waves:
2
0]
c—2£"(q, ) =0 4.11)
for a longitudinal wave with a polarisation vector p and
2
w w
Q%il) + 26/(i1)v((1(i1), (0)7 - gi(q(il)y w)c—z =0 (4.12)
for a wave with circular polarisations m and m", q0)
corresponding to the right polarisation and ¢(_;y to the left
polarisation.
In the absence of spatial dispersion, when
g =€ = ¢ = const and v =0, Eqn (4.12) has the solutions
a1y = £k, where k = (& )! 2a)/c The effects associated with
spatial dispersion are usually small (s > vk) [123], so that
one can put &) (q(+1), ®) = &1 (k, ) and v(q(41), ) = v(k, ®)
in Eqn (4.12). In terms of this approximation, the
wavenumbers are defined by the expressions [33]
w w
g = {le(k, )] 2 F = vk, @)} (4.13)
The quantities &, (k, ) and v(k, ®) are complex in the general
case. The real component v(k,®) determines the difference
between the wavenumbers of the right- and left-polarised
waves and is responsible for the rotation of the plane of
polarisation (optical activity). The angle of rotation per unit
wavelength is (w/c)” Rev(k,w). The quantities Im g(k,®)
and Imv(k,w) are associated with the attenuation of the
waves because they determine the imaginary component of

the wave vector:
0] Ime, (k, w
Im g =2 { 1 (k, )]/ﬁ Imv(k, @}.(4.14)
2[Reey (k, w)]

If there is no energy absorption in the system, then

the attenuation of the wave is fully associated with the
scattering by random inhomogeneities. In this case, we
obtain o) =2Imgq,) for the extinction coefficients of
the right-polarised wave (o(1)) and the left-polarised wave
(6(-1))- When Imv #0, the extinction coefficients o4,
are different and circular dichroism is manifested in the
medium.

The antisymmetric component of the effective relative
permittivity tensor is defined by the following expression
according to Eqn (3.55):

an(q, ) — gya(% o) = ® J(2d’€)3 137( K+q)

X [Gapys () — Goprs(—x)] . (4.15)
On substituting the correlation function G [Eqn (4.7)] in
Eqn (4.15), we obtain v(k, ) = v, (k,®) + v, (k, ), where

(,02

(27‘6)3 G2

K

vi(g, ®) = -
(4, ) (g+x) —k*—i0

Coyudy de

454
1(/)((1)1(—/)(6{)

xIm [x) (m)7§) ()] .

[8aﬁ (et q)zgk + 4)5]

(4.16)

(j=1,2); here n =x/xk, 4;, AV and g; are defined by
Eqns (4.5) and (4.13). The term v; in Eqn (4.16) represents
the sum of the contributions of the modes designated by
numbers 1 and —1, while the term v, represents the sum due
to the modes designated by 2 and —2. The zero mode does not
contribute to the antisymmetric component of the relative
permittivity tensor. After evaluating the integrals in
Eqn (4.16) for g = k, we obtain [119, 124]

q1
Rev(k, 0) =————, Imv; =0, 4.17)
24614, 7\
q1 172
Rewy(k, 0) = —————— Re{(q +i4,"7)
2T a0, P

x[%—l—Z(az—i— 1) — (& +a)In(o — l)]},(4.18)

wherer =X/4;, 0= (g, + i2,)/2k, and

Imv,(k, @) =

4 j 4E(E +&)

321cA k
Ay 9 ? j:2 9 n
- == — = . (4.19
x{[4k2+( o) |ae T (¢ (“.19)
The integral in Eqn (4.19) can be expressed in terms of
elementary functions [124]._If the system is fairly close to

the phase transition point (AQ < ¢3), one can put o = g,/2k
and Eqn (4.18) assumes the following form:
o+ IH
In .
a—1

- N E Y - B
_481-5304'2]:;/2 [2 (OC +3> 4(OC +“)

The sign of the contribution of the modes with / = £2 to the
optical activity depends on a. For fairly large values of a, the
signs of the contributions of the modes with [ =42 and

Rev,
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Figure2l. Temperature dependence of the angle of rotation ¢ per unit length for CE2 solutions; concentration (wt%): (1) 40; (2) 60; (3) 80; (4) 100 [125].

| = +£1 are different, the contribution Re v; predominating in
the region remote from the phase transition temperature. As
can be seen from Eqns (4.17) and (4.18), at temperature close
to the phase transition point we have Rev; ~ (T — Tf)_'/Q,
and, since T > T}, the contribution Re v, becomes decisive.
The nonmonotonic temperature variation of the optical
activity, caused by the competition between the contribu-
tions Rev; and Rev;, has been predicted [119]. The optical
activity of a solution of the highly chiral 4”(2-methylbutyl-
phenyl)}-4'-(2-methylbutyl)biphenyl-4-carboxylate (CE2) cho-
lesteric liquid crystal in a nonchiral liquid crystal has been
measured in the region of the phase transition [125]. By
varying the concentration, it was possible to regulate the
chirality of the solution and for pure CE2 the quantity ¢> in
Eqn (4.5) was 100 nm, whereas the value for a 40% solution
(by weight) was 250 nm. The temperature dependence of the
optical activity was investigated. The difference between the
temperatures at different points in the specimen did not
exceed 0.03 K. The accuracy of the measurement of the
angle of rotation of the plane of polarisation was to within
+0.01°. The He—Ne laser (4 =633 nm) was chosen as the
source of light. Fig. 21 presents the variation of the angle of
rotation per unit length as a function of temperature at
different concentrations. Least squares treatment of the
results yielded the following values for pure CE2:
A'=0.92 x 10%ergem K, L =62x10""ergem™>,
molecular rotation ¢ = —4.8degem™', T} = 389.28K, and
T5=390.17K.

In contrast to the optical activity, only the modes with
| = £2 contribute to the circular dichroism. A qualitative
conclusion concerning the temperature variation of the
circular dichroism can be reached on the basis of
Eqn (4.19). The integrand expression has poles at the points
E= (g, £ ily2). If ¢,/2k < 1, then a singularity arises at
Ay — 0 (near the phase transitio yoint) alongthe integration
path. Im v then increasesas 4, /*, i.e. Imv, ~ (T — T;)_'/z.
On the other hand, if ¢,/2k > 1, i.e. half the wavelength is
greater than the pitch of the helix formed in the transition,

n
1/

then there is no such singularity. In the region remote from
the phase transition point, Imv decreases as (T — T*)72.
Thus the temperature variation of the circular dichroism in
the pretransitional region is nonuniversal and depends
significantly on the parameters of the medium. For
example, the (T — T ")7'/2 regime cannot be observed owing
to the break due to the first-order transition.

The pretransitional behaviour of the circular dichroism in
cholesteryl nonanoate has been studied experimentally [120]. It
was shown that, in the region |T — T| < 1.5K, thisrelation is
described satisfactorily by the formula AD = A (T ) /A%, where
the exponent a =5.4+0.2and A(T)=A,o/(T —T"). The
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20 A(T) % 10°
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Figure 22. Temperature variation of the circular dichroism in cholesteryl
nonanoate in the region preceding transition to the blue phase [120].
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A(T) and AI_'(T) relations are illustrated in Fig. 22 and
correspond to the temperature T* =90.76 £0.01 and
T.=190.85=+0.01 °C. These results do not conflict with
theoretical predictions because the power exponent in the
temperature variation of the dichroism varies from —1/2 to
—2 and a relation of the (T — T*)fl type is possible over a
narrow temperature range.

The symmetrical part of the relative permittivity tensor
also yields the imaginary component, which determines the
extinction coefficient. As can be seen from Eqn (4.14), it is
sufficient to calculate ¢, (k,w) in order to determine the
extinction coefficient. According to Eqns (3.55) and (4.1),
we have

2
@ 9adq
EJ_(q7 (1)) = 4C2 (Say - ;;’)

X J(;Txf Tp5(q + K)[Gapy5(K) + Gapys(—K)] . (4.20)
Having put |g| = k in Eqn (4.20), it is possible to obtain with
the aid of Sokhotskii’s formula the final expression for the
imaginary component &, (k,w). We may note that, in the
re%ion remote from the phase transition point, where
A ~1/A, we have Ime, (k,0) ~|T —T*". If the
wavelength is less than twice the pitch of the helix formed
(g2/2k < 1), then, for T = T3, there is a singularity in the
integral defined by Eqn (4.20). In this case,
Ime, (k,w) ~ (T —T3) "/

Thus in the vicinity of the phase transition point, the
circular dichroism, the optical activity, and the extinction
coefficient increase as (T — T;)_'/z, provided that the
wavelength of light is less than twice the pitch of the helix.
The optical activity in the pretransitional region may change
sign for highly chiral cholesteric liquid crystals.

4.3 The scattering intensity

In calculating the scattering intensity in gyrotropic media,
account must be taken of the fact that Green’s function in
Eqn (1.7) must be calculated taking into account the
gyrotropy. Furthermore, apart from the relative permittivity
fluctuations, there is also a possibility of gyrotropy fluctua-
tions in such a medium.

In media with natural gyrotropy, the electromagnetic
induction vector D(r) depends not only on the field strength
E(r) at a given point but also on its spatial derivatives.
In an isotropic homogeneous nonmagnetic medium with
gyrotropy, the material equation assumes the form [33, 123]

Dy (r) = (8094 + 2V0eup, V) E, (r) (4.21)

where €° and vo are constants and the coefficient 2 of vo has
been introduced for convenience. Green’s function for the
electromagnetic field 7 in a medium with the material
equation (4.21) has been obtained [126]. In particular, in
terms of the r, w representation in the remote zone
approximation, we have

1
anr(w/c) e + vo(w/e)!]'?

Tocﬂ(r7 (1)) =

x 3 &0 g mPm (4.22)
j

where ¢¢;) are defined by Eqn (4.13) for v(k,w)=v,
(j==1). Eqn (4.22) represents the sum of two diverging
spherical waves with circular polarisations m() and the
wavenumbers ¢(;). The term with j = —1 corresponds to the
left-polarised wave and that with j =1 corresponds to the
right-polarised wave. It is convenient to describe the
scattering in terms of these waves.

In the calculation of the scattering intensity, one should
take into account the fact that the presence in the medium of
spatial dispersion and in particular of gyrotropy leads to an
additional contribution to the expression for the Poynting
vector [33, 123]:

2 Ogp,(k, @
- Re[ExH*]a—iM
W

E*
l6n ok, F=w

where in our case we have according to Eqn (4.21)
eup(k, ) = sOSaﬂ + 2ivge gk, -
The material equation assumes the following form when

account is taken of the relative permittivity and gyrotropy
fluctuations [121, 123, 127]:

Dy (r) = [eap(r) + Vo 7upo(r) |Ep(r) + 2745, (r)V, E(r) ,
(4.23)

where 748, is a tensor antisymmetric with respect to o and
and

Eocﬂ = 805#} =+ 58‘“«; N

Yapp = Vo€upp + CapuKyp -

The tensor x,p determines the gyrotropy fluctuations. The
presence in Eqn (4.23) of a second term containing spatial
derivatives yqg, is associated with allowance for the Onsager
symmetry principle [121, 128, 129].

We obtain in this case the following expression for the
scattering intensity [121]:

1(a, B) =15 C oy (—iBeyyiss + 8y — 5,5,)
X (—ioey iy + 8y, — iviy)
X [<58ﬂ788"1)q + ihp((ﬁyum,ﬁsvx)q — <8vax58m,)q)
+ 1o (87,001 | » (4.24)
where
Co = 2(1)2 V.,.kfi) ’
(8mcR)[e* + (w?v5/c?)]

h=h + kY the unit vectors i and s are the directions
of propagation of the incident and scattered waves, and «
and B are numbers characterising the circular polarisations
of the incident and scattered waves (a,f==%1),
g =g, =k —k¥, and the remaining notation is the same
asin Eqn (2.8). We may note that, regardless of the polarisa-
tion of the incident light, waves having both polarisations are
formed on scattering. Both the fluctuations of the
symmetrical component of the relative permittivity 8¢ and
the fluctuations of the gyrotropy K (antisymmetric scattering
[33]) contribute to the scattering intensity.

In the isotropic phase of cholesteric liquid crystals, the
fluctuations of the order parameter @.p are most
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pronounced. In the linear approximation, one can assume
that K,p =g@,s where g is a constant. Under these
conditions, the first term in the square bracket in
Eqn (4.24), which is not associated with the gyrotropy
fluctuations, makes the main contribution to the scattering.
The contributions of the remaining two terms are of the order
of magnitude of rm/4 and (rm/A)? respectively, where ry, is a
dimension of the order of magnitude of the molecular
dimension [33, 123]. However, allowance for the gyrotropy
fluctuations can lead in certain cases to qualitative changes in
the scattering pattern, for example to a difference between the
intensities I (+1,—1) and 7 (—1,+1) [121]. The contribution
to the scattering intensity associated with the relative
permittivity fluctuations [the first expression on the right
hand side in Eqn (4.24)] has the form

2
I(O(, ,B) :IOC(,‘) Zf(l)<é(l)é(l)*>q,

(4.25)
1==2
where
FO=1[1+cos’y)(1 — af +cos’y) + 1],
FO=3(1—ap)cos’y,
@ =1dasin® ¢y + [2(a + B) siny + 1 + sin Y]
x[1 +sin’y]}, (4.26)

£, ) =V (=, —B) (1=1,2) and Y = 0,./2 (Bsc is the
scattering angle). The complete expression for 7 («, f), taking
into account both the d¢ and dy fluctuations, has been
published [121]. In the vicinity of the point of transition to
the ordered phase, the £® or 6(72) mode is manifested most
intensely in the scattering depending on whether a right-
handed or left-handed helix is formed after the transition.

The contributions of these modes depend on the polarisation
of the incident and scattered light. For example, for a
right-handed cholesteric liquid crystal the contribution to the
intensity by the ¢® mode, when the incident and scattered
waves are right-polarised, greatly exceeds the scattering
intensity for other polarisations at almost all scattering
angles. The scattering under these conditions is
predominantly in the backward direction [121]. This effect
is similar to the reflection of waves in an ordered cholesteric
when the direction of the polarisation of the wave is the same
as the direction of the helix in the cholesteric.

There have been comparatively few experimental studies
on light scattering in the isotropic phase of a cholesteric.
Measurements have been carried out under the conditions of
both circular [130] and linear [131] polarisations. The first
measurements with circular polarisations were carried out in
a study [132] where right as well as left circular polarisations
of'the exciting light were used. The measurements were made
for the angles O, ranging from 30° to 130°. The interpretation
of the above experimental data [132] involved certain
difficulties because all five modes contributed to the
scattering. Detailed studies have been made [130] on the
light scattering in a mixture of a chiral CE2 liquid crystal and
the nonchiral 7S5 nematic. By varying the concentration of
the mixture, it was possible to vary the parameter
po = 4nL/d, which determines the pitch of the cholesteric
helix. The measurements were carried out at a fixed scattering
angle 6, =170°. Such measurements are convenient
because, as follows from Eqn (4.26), the modes with [ = £1
do not contribute to the scattering for 6,, = 180° (¥ = 90°).
The linearly polarised light of the He—Ne laser was passed
through a quarter-wave platerotated about 45° relative to the
plane of polarisation. The light back-scattered from the
specimen passed through the same plate and another
polariser and entered a photomultiplier. Two positions of
the quarter-wave plate were used. For one position, the right-

(I —Iy)™" /rel.units

92 93

94 T/°C

Figure 23. Temperature variation of the reciprocal of the scattering intensity (I — 10)_1 for a 40% solution of CE2 in 7S5. The data for different modes
have been obtained with the aid of different orientations of a quarter-wave plate. Continuous lines were fitted by Eqn (3.27) using the least squares

method [130].
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Figure 24. Temperature variation of the reciprocal of the scatteringi ntensity in pure CE2. The continuous lines were fitted by Eqn (3.27). In the case

where [ = =2, only the high-temperature data were used [130].

polarised light was incident on the specimen and the
right-polarised [left-polarised? (Translator)] light was
incident on the photomultiplier. For the second position,
the polarisations of the two beams were reversed. Thus, it
follows from Eqn (4.26) that these two positions yielded
information about the contributions of the modes with
[ =2 and -2 respectively. The nonuniformity of the
temperature in the specimen did not exceed 0.01 K. The
measurements were performed at CE2 concentrations in the
solvent ¢, =40, 60, 80, and 100 wt% . The results of the
measurements for the 40 wt% (po = 250nm) and 100 wt%
(po =100nm) solutions are presented in Figs 23 and 24.
Evidently, as in the isotropic phase of a nematic, the
reciprocal of the intensity varies linearly with temperature
over a fairly wide range. The difference consists in the fact
that a specific temperature of the loss of stability T’(‘,)
corresponds to each mode. In the immediate vicinity of T,
a deviation from linearity is observed in pure CE2 after a
change in temperature of ~1 K. The experimental data were
treated by the method ofleast squares in terms of the formula

I(£2, £2) = Iy + Ko [T — T5a(q)] (4.27)

where T5,(q) = T* — (L,/A")(¢32¢d/L ) and Iy and Ko are
adjustable parameters (¢ is the modulus of the scattering
vector). The dependence of  the difference
T_ g — Taq) = —4qd/A’ on the concentration c¢o is
presented in Fig. 25 [130]. The theoretical difference
between these temperatures must be proportional to the
reciprocal of the pitch of the cholesteric helix if it is assumed
that all the remaining parameters remain unchanged.
Although the experimental data do not demonstrate a linear
relation, nevertheless an increase in the temperature
difference with increase in concentration is clearly seen.

In the case of experiments using linear polarisations, it is
necessary to take into account the rotation of the plane of
polarisation before and after scattering. The corresponding
expressions have been obtained [126]. The temperature
variation of the polarised and depolarised components of

T2,(q) = T3(q)/K
0.9 r

0.5 {

3

0.1 | | | |
40 60 80 100 c

Figure 25. The difference between the temperatures T 2, (g) and T3(g) in
CE2 solutions at the concentrations ¢ =40, 60, 80, and 100 wt%
corresponding to different chiralities [130].

the integral scattered light intensity in the isotropic phase of
cholesteryl oleate (T, = 308.1 K) has been investigated [131].
The intensity was measured at a scattering angle of 90° to
within 1% . The source of light was a He—Ne laser. The
temperature was varied in the range 308.2-325.0 K. The
accuracy of the measurement and of the stabilisation of
temperature was at least to within 0.01 K. The results of the
measurements are presented in Fig. 26. Interpretation of the
experimental data shows that, if 7 > 310 K, the reciprocal of
the intensity for an experimental accuracy specified a priori
behaves as const x (T —T%), where T*=307.1K. At
T < 310K, a deviation from the linear relation is observed.
In contrast to the situation which obtains with a nematic
liquid crystal, this deviation can be due not only to the
interaction of the fluctuations but also to the difference
between the temperatures corresponding to the breakdown
of stability T}, since at 8, = 90° several modes contribute to
the scattering: the modes with / = +2, £ 1 contribute to the
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Figure 26. Temperature variation ofthe (1v) ™" and (13{)”' components of
the scattered light and of the degree of depolarisation 4 = ]\H’/1¥ (O) in
the isotropic phase of a cholesteric liquid crystal—cholesteryl oleate.
Extrapolation of the remote points for the quantity (IX)_I along straight
line 7 affords T* = 307.1K. The discrepancy between the experimental
values of the (13)7' component and the dashed straight line directed
towards the same temperature demonstrates the contribution to the
scattering by the fluctuations of other thermodynamic quantities, in
particular the density [131].

I component and the modes with / = £2, 0 contribute to
thelx component [122, 126].

Thus measurements under the conditions of both circular
and linear polarisations confirmed the applicability of the
Landau theory over a wide temperature range in the isotropic
phase of cholesteric liquid crystals. The deviation of the
temperature variation of the reciprocal of the scattering
intensity from linearity in the critical region may be
described with the aid of the theory taking into account the
fluctuation-dependent corrections due to the interaction of
the fluctuations of the type examined in Section 2.2 [133].

Thus the principal studies on the isotropic phase of a cho-
lesteric have been devoted to the effects distinguishing
cholesterics from nematics: the anomalously large rotation
(compared with molecular rotation) of the plane of
polarisation and circular dichroism. It was shown that these
effects are caused by fluctuations and are particularly large in
the vicinity of the transition to the ordered phase. The
difficulty of describing these effects in the case of highly
chiral cholesterics is associated with the existence of an
intermediate fog phase [164] (see Section 5.3 below), the
structure of which has been only slightly investigated. This
may account for the lack of studies in which combined
investigations of the phase transition are made by measuring
the temperature variation of the heat capacity and
susceptibility (as has been done in the isotropic phase of
nematics) and the results are subjected to a joint
interpretation. Such studies would be of great interest.

Measurements under the conditions of circular
polarisations, which makes it possible to isolate
pseudoscalar parameters of cholesteric liquid crystals,
constitute a method which is not traditional for molecular
optics. These measure-ments have been performed only for
the integral intensity of the scattered light. Measurements of
the spectral intensity, which would make it possible to obtain
information about the kinetics of the fluctuations of the
order parameter, are of considerable interest.

5. The ordered phase of cholesterics

In an ordered cholesteric liquid crystal, the equilibrium
director n® is not a constant vector, as in nematic liquid
crystals, but rotates as the given point migrates along the axis
of the helix (the z axis). Thus these crystals are homogeneous
in the plane orthogonal to the z axis and periodic along it with
the period equal to the pitch of the helix. Such a structure
leads to completely unique optical properties. Firstly, light is
reflected selectively [12]. Secondly, the rotation of the plane
of polarisation observed in the ordered phase of cholesteric
liquid crystals attains several thousand degrees per millimetre
[13]. The eigenwaves in such a medium have a periodic
amplitude (Bloch waves) determined in the general case by
an infinite set of F ourier coefficients [12]. An exact expression
is available only for waves propagated along the optical axis
[134]. In the case of an inclined incidence, fairly effective
approximate methods have been developed for the
description of the propagation of light in a cholesteric
[12, 13, 134, 165], using the anisotropy & as a small
parameter. The complexity of the eigenwaves hinders the
description ofthe scattering by the fluctuations ofthe medium.

As in other homogeneous media, both the field of the
point source and the correlation function of the relative
permittivity fluctuations must be known for the
determination of the scattering intensity. Each of these
problems is of independent interest. A characteristic feature
of Green’s function and the correlation function for an
ordered cholesteric is that they are translationally
noninvariant. In particular, the field of the point source
depends not only on the distance from it but also on its
position [135]. This leads to significant mathematical
difficulties and the analytical expressions for them can be
obtained only in the presence of small parameters [136 — 138].
In the case of Green’sfunction, the optical anisotropy &,/¢, is
such a parameter [12], while in the case of the correlation
function the parameter is the ratio ¢, /p, [136, 138], where ¢
isthe component of the wave vector at right angles to the axis
of the helix and 2n/py is the pitch of the helix.

5.1 Fluctuations of the director in an ordered cholesteric
All the known cholesteric liquid crystals are uniaxial and
their equilibrium order parameters S aﬁ(r) is determined by
the director n° = n°(r):

Sap(r) = Solna(r)np(r) — 18,p]

where the vector nO(r) rotates as the given point migrates
along the axis of the helix:

n’(r) = n°(z) = [cos(poz), sin(poz), 0]

As in the case of a nematic liquid crystal, the fluctuations
8S =5 — §° can be divided into three groups: longitudinal
fluctuations (one mode), fluctuations of the director (two
modes), and biaxial fluctuations (two modes). In order to
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find the correlation function for the fluctuations, it is
necessary to formulate an expression for the thermodynamic
potential, which is the sum of all the possible invariants made
up of the order parameter and its derivatives. Assuming that
the inhomogeneities are fairly smooth, one can restrict the
treatment to derivatives not greater than those of the second
order [Eqns (1.10)—(1.12)]. In the Gaussian approximation,
this expression has a quadratic form in 8S. The correlation
function is obtained by inverting the operator which enters
into this quadratic form.

The local order in the majority of the known cholesteric
liquid crystals is fairly close to the nematic local order. This
factor makes it possible to reach a conclusion about the
magnitude of the longitudinal and biaxial fluctuations. The
biaxial fluctuations in nematics are small and their correlation
radius r,; is of the order of magnitude of the intermolecular
distance rm,. The longitudinal fluctuations behave critically on
passing to the isotropic phase. However, owing to the break
caused by the first-order transition, their correlation radius Toll is
also small, although it can be appreciably greater thanr,, . Since
rci and ry are much smaller than the pitch of the cholesteric
helix, it follows that in a cholesteric these fluctuations remain
virtually the same as in nematics. As regards the fluctuations of
the director, the situation is different. In an unbounded nematic
in the absence of an external field, both modes have an infinite
correlation radius and their amplitudes exceed by several orders
of magnitude the amplitudes of the longitudinal and biaxial
modes. In cholesterics, one of the director modes is singular and
the other has a finite correlation radius of the order of magnitude
ofthe pitch ofthe helix, which is large compared with 7., and r|
[17]. Therefore we can limit the treatment, to a first
approximation, to the allowance for only the director
fluctuations. (The biaxial and longitudinal fluctuations in
cholesterics have been considered elsewhere [136].) The relative
permittivity fluctuations are related to the director fluctuations
by the expression

e, (r) = o [B1a(r) my(2) + Sy () my(2)] 5.1)

For the relative permittivity fluctuation correlation function
Gupsy(r —r',z+2"), one can write

Gopsy(r — 1", 2+ 2") = &, [n3(2)n3(2) G, + ny(2)ny(2) Gas
+ng(2)nd (2)Ggs + ng(2)ng(2) Gy . (5.2)

where Gy is the correlation function for the director
fluctuations:

Gap(r —r', z+2") = (Bny(r)Bny(r')) . (53)

By virtue of the symmetry of the medium, Gygsy and Gag are
periodic functions of the second argument.

In order to determine the correlation function Gug, we
make use of the expression for the thermodynamic potential
of the cholesteric as a functional of n(r) [9]:

1
Q: @0+§Jdr{K||(V-n)2+K22[n X (VX")+[)0]2

+K33[(n- V)] 2} : (5.4)

This expression differs from Eqn (3.1) by the presence of a
pseudoscalar po. The field n = n°(z) in Eqn (5.1) is known to
ensure a minimum in the free energy defined by Eqn (5.4).
The free energy change associated with a small deviation
dn(r) of the director field from n%(r) assumes the following
form in the quadratic approximation:

3P = %Jdr{K” (V-8n)* + Ky, [ (V x an)]2

+K 33 [(3n - V)n® + (n° -V)Sn]z} . (5.5)
The correlation function Gus(r —r’,z+2z") is the kernel of
the operator equal to the reciprocal of the operator of the
quadratic form defined by Eqn (5.5). The most logical
calculation of the director fluctuations has been carried out
in a study [138] where the zero harmonic in terms of the
second argument of this correlation function was found in
terms ofthe single constant approximation K; = K (j = 1-3):

Goplg)=V"" Jdrdr'exp[—iq- (r—r))Guy(r—r', z+2").

In the x, y, z coordinate system, it has the form

kT
Gl(q) = —2——
o#(7) PiKe(q)
o q.1po 0
x| —igipo q1po +5(q)/2 0 , (5.6)
0 0 g(q)/2
where
1 q 2 3 q 2 -1
2(q) ={qﬁ+ [5 (p—ﬂ) +§(i> R (5.7)

Eqns (5.6) and (5.7) are valid only subject to the condition
q1 < po. We may draw attention to the unusual nature of the
correlation function (5.6). For g = 0, it has a singularity qf.
This is a manifestation of a general property of one-
dimensionally periodic systems—the Landau—Peierls
instability [18]. Such dependence on ¢ leads to an infinite
mean square fluctuation at a point and a crystal with an
infinite volume cannot therefore exist. However, the
smearing of the crystal by fluctuations would occur only for
astronomical dimensions [138].

5.2 Green’s function of the electromagnetic field

The equilibrium relative permittivity tensor 82/3 for an
ordered cholesteric can be resolved into longitudinal and
transverse components relative to the director:

95() = eynd(nY(c) + e 8,5 — n(I(2)]

Since the direction of the vector n® varies as the given point
migrates along the z axis, it follows that instead of the basis
vectors ey, ez, e3, it is more convenient to go over to a triad of
unit vectors:

m&E) = (e) £ie))/V2, n’ =e;.

(5.8)

In terms of this basis, the relative permittivity tensor has the form

g 0 %saeﬁ”“z
e,p(2) = 0 g 0 , (5.9
1 —2ipgz 5
7 8a€ 0 €

where & = (e, +¢))/2. Evidently the period of the variation

ofthe relative permittivity tensor is smaller by a factor of two

than the pitch ofthe helix. Thisis associated with the fact that

the directions of the director nand —n are equivalent.
Green’s function T must satisfy the equation

2
V x V x J:’—ZE(Z) T, r')=8(r—r). (5.10)
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The differentiation in the left-hand side of this equation is
carried out with respect to the components of r. Like the
correlation function for the director fluctuations, the
propagator T depends not only on r —r’ but also on z +z’
and is a periodic function of z +z’ with the period 27/py.
According to Peterson [135], the two-wave approximation
[12, 13], which was effective in the propagation problem, is
unsuitable for the determination of Green’s function in the
scattering problem.

In Peterson’sstudy [135], the problem of finding the prop-
agator reduces to the determination of the eigenwaves in the
medium and an effective numerical method is proposed for
this purpose. In following the procedure in the above study,
we shall consider the operator L=%" '(z)V x Vx, acting in
the space of the functions E (r) with the scalar product

1 J '
—— | drE,  (r)e,p(z)Es(r) .
a7 ) 4B e ES()
This is a Hermitian operator. We shall designate by E*, (r) the
eigenfunctions of this operator. The discrete index j numbers
the types of waves in the medium. If the normalisation
conditions (Ek,, /y=8,/(k—k') holds, then Green’s
function can be represented in the form
Eo’d( (r) D’* (! )

ZJ w; (k) /c] —

where D} =%EY}, y= (a)/c)2, and w;(k) satisfies the
dispersion relation. By virtue of the transverse nature of the
field D, there exist only two types of waves (j=1,2). For
large distances r, the propagator can be found by the
stationary phase method [139]:

(E'E),= (5.11)

Toup(r, v’ (5.12)

Top(r,r') =Y M'EL (D (), (5.13)
J
where
o] oK\ |'?
M =4z ‘ak2 kJ_St (ﬂ) ry. (5]4)
X

The derivatives are calculated at the point kg on the surface
,2(k) = yc? , where the external normal is directed along r.

The eigenwaves E* (r) in Eqn (5.13) are of the Bloch type.

Their amplitudes can be sought in the form of a Fourier
series. The problem is how to solve the sequence of recurrence
relations for the coefficients of the series. A numerical
algorithm has been proposed [135] for the calculation of
these coefficients, based on the ideas usually employed in the
solution of the M athieu equation [140].

One of the characteristics of the propagation of waves in
periodic media is the existence of forbidden gaps [12]. This
leads to the situation where at a fixed frequency w the
dispersion surface k = k") (k, ) is nonconvex [141]. As a
result of the presence of points of inflection, M ;in Eqn (5.14)
becomes zero for certain directions. This means that in these
directions the field of the point source decreases more slowly
than r~'. This behaviour of Green’s function has been
considered [142] for the case of a scalar field and it has been

shown that in these directions the field decreases as r~>/°.

5.3 Blue phases of cholesterics

For cholesterics with a high degree of chirality over a narrow
temperature range between the isotropic and the usual helical
phases, the so-called blue phases are observed. At the present
time not less than three phases are distinguished: BPI, BPII,

and the fog phase BPIII. They appear in the above sequence
as the temperature is raised [164]. The structures of BPI and
BPII have been thoroughly investigated both theoretically
[164, 166, 167] and experimentally [168], while the structure
of the fog phase still remains a subject of investigation. The
symmetry of the BPI and BPII phases is characterised by the
cubic groups O® and O? respectively. The fog phase
apparently constitutes an amorphous macroscopic
nonordered state of the substance with a large correlation
length in the orientation order. We shall discuss below the
properties of BPI and BPII. The blue phases possess
interesting optical properties: a selective light scattering
(which usually in fact leads to the blue colour), a marked
optical activity, circular and linear dichroisms, and the
absence of linear double refraction. We may note that, in
contrast to the ordered phase of cholesterics, here one
observes not one but several comparable Bragg reflections.
The presence of these reflections permits the conclusion that
the blue phases have a periodic structure.

The nature of the polarisation dependence of the
diffraction leads to the conclusion that this periodicity is
associated primarily with the orientation degrees of freedom
[164]. Therefore, the symmetrical traceless tensor S
[Eqn (1.1)] can be used for the description of the order in
blue phases. The equilibrium order parameter S '(r) can be
expressed in the form

Z §1(') eir'r ,
T

where © =2n(hx +ky +1z})/d, x,y, and z are the unit

vectors of the axes, A, k/,\and lare integers, and d is the lattice

constant. The tensors S, are Fourier coefficients, which can

be expanded in terms of the tensors basis (4.3):

50 = ZSO(T DRV (2 /7).
j=—2

The periodic order defined by Eqn (5.15) leads to Bragg
peaks on diffraction of light by the structure, the peaks
corresponding to the scattering vector ¢ =t. However,
apart from the scattering by regular structural
inhomogeneities 50 (diffraction), scattering by the thermal
fluctuations ofthe order parameters 85 also occurs. Since the
shift of the system as a whole takes place without the
expenditure of energy, fluctuations corresponding to the
shear deformations of the lattice are the most intense. The
presence of fluctuations should lead to the ‘spreading’ of the
Bragg peaks.

The scattering by fluctuation-induced lattice deformation
has been examined theoretically [169]. The change in the
thermodynamic potential @ associated with the deformation
in the crystal is

1
b = EJdI‘ /loc/}ypuaﬁuyp N
where
1 (Ou,  Oug
b =3 (ar,, o
is the deformation tensor, u the displacement vector, and
Awpys the tensor of the moduli of elasticity [170]. The

correlator of the fluctuations of the displacements can be
easily found from Eqn (5.17):

-1
<uaLty>q = kBT(A-ﬁ»prQp)w :

§°r) = (5.15)

(5.16)

(5.17)

(5.18)
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The Goldstone nature of the displacement fluctuations
(Quu), ~ ¢~ % at ¢ — 0) makes it possible to use the principle
of the conservation of the modulus [7] (cf Sections 3.1 and
3.2):in large scale slow fluctuations u, there is sufficient time
for the fast degrees of freedom S°(z, j) to attain the
equilibrium and to become adjusted to the new state of the
system. This leads to the appearance of a contribution to the
fluctuations of the order parameter tensor by the
displacement fluctuations: 8S(r), = S°(r+u) —S°(r). In
terms of the lowest orders in u, we have from Eqn (5.15)

8§(r)u = iu, Z‘taﬂ)ei"' .
T

We may draw attention to the fact that in the given instance
the contribution of the ‘principle of the conservation of the
modulus’ is of first order in terms of the Goldstone variable
and not the second, as was the case in nematics (and also in
magnetic materials [7]). The reason for this is the spatial
inhomogeneity of the blue phase. As a result, the correlator
(85,8S,), is also of the Goldstone type.

Naturally, apart from the displacement-induced
fluctuations 8S,, there is a possibility in the blue phase also
of the usual spontaneous fluctuations 3S. However, they are
not of the Goldstone type and we shall not be interested in
them.

The single scattering intensity in the lowest approxima-
tion in terms of § °(z, j? can be found from Eqn (2.8). For
the wave vector k) — k() = ¢ + p near the reflection 7 (for
p <1),wehave

(5.19)

1 (e(i), e(s)) = Z(()’)|e(i)§fe(s)*|2rary(l.ﬁ.p pﬁpp);y] . (5.20)
Here the notation is the same as in Eqn (2.8). This formula
shows that, by measuring the distribution of the intensity in
the vicinity of the Bragg reflection, it is possible to determine
the moduli of elasticity of the blue phase. It is noteworthy
that, according to Eqn (5.20), the intensity in the vicinity of
the peak falls as p72.

If, following Qmitrienko [169], one postulates that the
entire change in S is associated with the shear deformation
r—r+u(r) in Eqn (5.15), then the Landau theory
[Eqn (4.1)] makes it possible to express the modulus of
elasticity tensor Aqpys in terms of the coefficients of the
expansion of the thermodynamic potential A, Ly, L», d, and
the amplitude of the harmonics of the equilibrium order
parameter S,0 in Eqn (5.16). Allowance for the principal
modes ( j = £2) leads to the expression

Aapyp = 2L1Do Z 1S Oz, 2)|21:731:a1ﬁ1:y1:p. (5.21)

T
The broadening of the Bragg peaks was apparently first
observed experimentally by Marcus [171].

The light scattering by fluctuations in BPII has been
investigated [172] in a 27.5% solution of 60CB in the CN
cholesteric. A laser with a frequency of 5145 A was
employed. Interpretation of experimental data led to the
following dependence of the scattering intensity on the
scattering vector gy, and the frequency w:

(e, ©) = A(gyc)s(@) (5.22)
where in the frequency range 4—3500 Hz the quantity s(w) is
the sum of two Lorentzians plus a constant:

0.214
1 + (w/360)

s(w) = const[ +0.0013].

1+ (w/125)
(5.23)

Therefore, according to Marcus [172], the fluctuations in BPII
do not constitute a simple diffusion mode. Asregards the behav-
iour of A(gsc), Marcus’s data [172] demonstrate the presence of a
certain characteristic dimension of the order of 8 um (i.e.
approximately 50 times greater than the lattice constant), in
terms of which the fluctuations are correlated throughout the
frequency range investigated. The scattering in BPII has also
been investigated [173] both for light and for soft X-rays. It was
shown that the structure constants defining the positions of the
maxima in the dependence of the intensity / (gsc) on the scatter-
ing vector gy are the same in the optical and X-ray experiments,
although the causes of the scattering are different. According to
Aliev et al. [173], the size of the uniformly ordered regions in
BPII amounts to 8—10 lattice periods. A similarity of the gy
dependence of the scattering intensity in the blue phase of liquid
crystals and in microporous glasses has also been observed.

Very interesting results have been obtained in a study [174]of
the influence of smectic fluctuations on the structure of
supercooled BPI with the aid of the scattering of X-rays and
visible light. [t was shown, in particular, that, as the temperature
is induced, the Bragg scattering pattern reveals the appearance,
apart from the main peak, of an additional peak associated with
processes involving a rearrangement of the lattice. Furthermore,
a new BPS phase was observed between BPI and the cholesteric
phase. It exhibits two types of order: chiral long-range BP order
and smectic short-range order. The BPS phase is regarded as a
candidate for an analogue of the smectic A* liquid crystal (a
liquid crystal analogue of the Abrikosov lattice in
superconductors observed by Goodby et al. [175]).

Thus the zero harmonic in terms of the z + z parameter of
the correlation function for the director fluctuations
(3ny(q,,2)dnp(g,,2")) in the case where ¢, < p, has now
been calculated. The correlator for one of the modes (the
so—called umbrella mode 8n||z) has a singularity of the type
~ (fiz)” + constq}) ™.

A detailed analysis of the scattering intensity taking into
account the real correlation function for the fluctuations of
the relative permittivity in cholesterics has not been carried
out. This is apparently due to the fact that, firstly, there is no
analytical expression for Green’s function and, secondly,
only the zero harmonic of the correlation function in terms
of the argument z + z’ has been calculated, although higher
harmonics may also contribute to the scattering. Thereareno
fundamental difficulties in a logical analysis because there
exists an effective numerical algorithm for the evaluation of
Green’s function [135] and the method employed [138] to
determine the zero harmonic makes it possible to find also
harmonics of higher orders.

Studies on cholesterics with a very large pitch of the helix
(twisted nematic liquid crystals) are promising. In the
calculation of Green’s function for the electromagnetic
field, it is possible to employ in this instance the ‘adiabatic’
approximation [9, 10, 176]and the problem consists solely in
the evaluation of the correlation function for the fluctuations
in the limit ¢; > pg.

We may note that the presence ofthe director fluctuations
in an ordered cholesteric should lead to the smearing of the
Bragg reflections due to diffuse scattering. M easurements of
this effect would make it possible to determine the elastic
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constants of cholesterics and also to obtain information
about the dynamics of the fluctuations. It would be of
interest to elucidate the role of the scattering by fluctuations
in the experimentally observed deviation of the transmission
coefficient from unity for a wave propagated along the axis
of the helix and not diffracted by the structure of the
cholesteric.

Additional studies are apparently still required for the
blue phases. In particular, more detailed investigations of the
dynamics of the BPI and BPII fluctuations are necessary. For
a final conclusion concerning the nature of the fog and the
new BPS phases, more detailed measurements of the X-ray
structure factors are required.

6. Smectic liquid crystals (SLC)

6.1 Fluctuations of the director in an ordered smectic A
From the optical point of view, the equilibrium smectic A
liquid crystal is an anisotropic medium with the relative
permittivity tensor defined by Eqn (3.31). From the
microscopic point of view, smectics are layered systems with
a one-dimensionally periodic structure along a specified z
axis. The structure period 2m/go is of the order of magnitude
of the intermolecular distance. In a smectic A, the long
molecular axes in the state of equilibrium are directed along
the normal to the layers, i.e. the director vector my|z.

If one is interested in light scattering, only the
fluctuations of the relative permittivity tensor 8% need be
investigated. This tensor has six fluctuation modes of the
symmetrical fluctuations. Firstly, the scalar mode [Sp(8%)
fluctuations], the allowance for which in a smectic is essential,
in contrast to a nematic, because the equilibrium periodic
structure (1.2) is described in a smectic precisely by a scalar
degree of freedom —the density. Secondly, as in nematics,
there are orientation degrees of freedom here: one
longitudinal mode, two biaxial transverse modes (director
fluctuations), and two biaxial transverse modes. However,
the scattering by scalar, longitudinal, and biaxial fluctuations
in the ordered phase of the smectic liquid crystal should be
comparatively small—of the order of magnitude of the
scattering in the usual organic liquids. For biaxial and
longitudinal fluctuations, this claim appears evident (the
scattering by longitudinal fluctuations in the A — I transition
and by biaxial fluctuations in the A — C transition may be an
exception). For a scalar mode, this follows from the fact that the
period of the equilibrium structure is much smaller than the
wavelength 4 and the long-wave fluctuations of the smooth
complex amplitude [Eqn (1.14)] of the density wave are hardly
manifested in light scattering with a transmitted momen-tum
qsc < 2k (see also Lyuksyutov [143]). Therefore in the case of
smectics A the treatment is usually restricted to the con-
sideration of only the scattering by the director fluctuations dn.

We spoke above about spontaneous fluctuations. In a
smectic A, which is a degenerate system, there is also a
possibility of nonclassical fluctuations due to the principle
of conservation of the modulus, of the type considered in
Sections 3.1 and 3.2 for nematics and in Section 5.3 for
cholesterics. The nonclassical contribution to the scalar
mode is most specific for smectics [143].

For smectics A, the fluctuations of the director can arise
due to two physically different causes. Firstly, these are purely
spontaneous thermal fluctuations of the long molecular axes.
In contrast to nematics, the appearance of these fluctuations
requires a fairly large amount of energy, because they are

associated with deviations of the local director from the
normal to the layer (the so—called tilt mode). Secondly, the
director fluctuations can arise owing to a change in the
direction of the normal to the layer in local displacements of
the layers u(r) (the dilation mode). We may note that the latter
mechanism constitutes in a certain sense allowance for the
‘principle of the conservation of the modulus’: for sufficiently
smooth and slow displacements u(r), the director has sufficient
time to become arranged along the new local direction of the
normal to the layer. The only component of the displacement
vector u(r) the fluctuations of which in smectics A arenot small
is the component u., henceforth designated by u [9].

From this point of view, the elastic energy ofthe distortion of
the smectic A contains contributions of three types. Firstly, this
is the Frank elastic energy @&y = @ in Eqn (3.1), which takes
into account the deviations of the field of the director n(r) from
the homogeneous state with n’ = const. The second
contribution is the elastic energy @s in the layered structure
proper ofthe smectic and, thirdly, it is the energy dsn associated
with the deviations of the director from the normal to the layers.

The following model is most often used for the sum ofthe
second and third contributions [20]:

1 1
Ds + Dy = Ejd' (“|¢|2 + 5ol + Ly [Vl

+LJ_|(V+iq0-5n)1//|2>. 6.1
Here the parameter ¥ has been defined in Eqn (1.14).
A special form of'the formulation of the interaction of ¥ and
on in the fourth term of Eqn (6.1) takes into account the
constancy ofthe energy in the simultaneous uniform rotation
of the layers and of the field of the directors and also the
energy equivalence of the uniform rotations of the layers or
the director relative to the equilibrium configuration.

It is also possible to take into account an additional
contribution to ®@g associated with the higher-order gradients

of Y
|
Py = EJclr [\ [VIY ] +d'|Viy +d"|V . Viyl]. (62)

In Eqns (6.1) and (6.2), a=a'(T —Txa), Tna is the
temperature of the N — A transition, and a’, b, Ly, Ly,d,
d’, and d” are constants which are assumed to be positive
with the exception of d”; djd’ > (d")*.

In the Gaussian approximation in terms of small
deviations from equilibrium #(r) — [¥/(r)| = ¥, and u(r), we
have from Eqn (6.1), (6.2) and (1.14)

I
Dg + Dgy + Py = EJdr [An* +Ly(Vyn)* +L . (Vin)®

+B(Vju)* +D(Vyu+n)’ + Ks(Viu)

+K§(Viu) + K §ViuViu] . (6.3)
where
A =-2a, B=Lyq3, D=L, g3,
Ks=digypg, Ks=d'qws, K$=d"q5; (6.4)

here Y, = (|Y(r)]) is the equilibrium value of the order
param-eter, which in the mean field approximation has the
form y§ = —a’(T — Txa)/b. In Eqn (6.4), we neglected the
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fourth-order term in V as a function of #. It follows from
Eqn (6.3) that in the given model #(r) does not interact with
the displacement fluctuations wu(r) and the director
fluctuations dn(r).

In the limit D — oo, we can assume the identity

dn(r) = -V u(r) 6.5)
in Eqn (6.3). This approximation corresponds to the
situation usually considered where the local director is
rigorously perpendicular to the layers and its fluctuations
are determined solely by the fluctuations of the layered
structure [9, 11]. According to Eqns (3.1) and (6.3), in this
case the total contribution to the elastic energy of the smectic
A liquid crystal @, = &y + Og + Pgy + P, associated with
the fluctuations of the displacements of the layers, has the
following form with an accuracy to within surface terms:

D, (u) = %Jdr [B(V”u)2 + K, (VAu) + K'(Vﬁu)2

+2K "V uViu] (6.6)

where

Ki=Kny+Ks, K'=Kgs, K"=K3 +K5. 6.7)

The term Kax|n-curln> from Eqn (3.1) does not then
contribute to @4.

For finite values of D, Eqn (6.3) makes it possible to
consider the deviations of the director from the normal to the
layer. On substituting the director fluctuations &n in
Eqns (3.1) and (6.3), as in the case of nematics in the form
(3.3), we obtain the contribution to the elastic energy @, by
the modes with the given ¢:

Dy (1, g ng) =1 [(A +Lygj +L.a2)n,I*
+(B+Knqi + Kssﬂiﬁ)|5’11q|2
+ (D + Knql + Kssﬂlﬁ)|5”2q|2
+ (Bqf + Dq + Ksq' + Ksqj + K $qiq)|u,
+iDq ) (u,0n7, — uzﬁn]q)] .
(6.8)

Only the terms in the first nonvanishing orders in ¢ have been
left here in the coefficients of dn;, and #7,. Evidently, only the
on; mode interacts with the displacement fluctuations u.
From the quadratic form (6.8), it is easy to find all the
nonzero correlators for the fluctuation modes:

('), =BA +Lygj +L.ql)",
<6”./2>q =B(A;+Kn) ™
(W), = BAs +Ks)™,

(udnt), = ifq. D [BDg} + DKs + (Baf + Dad)kni] ™
(6.9)

where

D(Bqj + Ks)

=kpgT, A =A,(q) =—— "2
ﬁ B 1 I(q) B({ﬁ'f'D(Ii'f'K:s

Ay=D,

A3 =As(q) =Bqj+q1.(D7' +K5)) ™, j=1,2,
Ks = Ks(q) = Ksq' + K sqj + K $qjq’. .

Ky; = K@) = Kjqi +Kssqj, j=1,2. (6.10)

(cfBrochard’s study [144] where is was assumed that Kg = 0.)

The typical values of the parameters of smectic A liquid
crystals in the region remote from the transition point
T =Typare B~2x10"gem™s™", Ky, ~ 10~dyn [9, 10],
and K33 ~ 1021(” [145, 146]. For estimates, one may assume
that D ~ B, Ky, ~ K33, and K§ ~ K¢§ ~ Ks3. In the usual
situation in smectics A with the optical values of the wave
vectors g ~ 10°cm™', the contributions to the elastic energy
associated with the changes in the interlayer distance (the
coefficient B ) and with the deviations of the director from the
normal to the layer (the coefficient D ) are much greater than
the energy associated with the deviation of the field of the
directors from the homogeneous state n° (the coefficients Ky,
K>>,and K33) and with the distortion of the form ofthe layers
(the coefficients Ks, K §, and K §). This indicates the validity
of the inequalities

B, D > Kyi(q), (6.11)

Bgj + Dq’ > Ks(q) - (6.12)

Asaresult, in terms of the lowest orders in B and D, we have
(571%)[] = ﬁ(Biniq"*z + Dfl), (5/1%){) = BDfl R
(), = BB~ 'q)?, (udni), =ipB~'q.q>.

For g — 0, Eqns (6.13) (except the (Sng)q equation) cease to
apply. In this case, it is necessary to take into account the
correction terms qui and K”qi in Eqns (6.9) and (6.10).
For q| — 0, we have

(dn1), = B(Bajai” + K1q1)™" .
(), = B(Bqj + K1q1) ™",

(udnt), = B(Bqj + K1g1)~".

(6.13)

(6.14)

The first two equations (6.14) are frequently used in a
simplified description of the displacement and director
fluctuations in smectics A on the basis of expressions of the
type (6.5) and (6.6) [9, 10]. The only difference between
Eqn (6.14) and the results in the literature [9, 144] consists
in the fact that K is determined by Eqn (6.7) and is not fully
identical with the Frank modulus K.

The previous discussion referred to an unbounded
smectic A. The fluctuation-induced displacements of the
layers u in the case of a thin smectic film have been analysed
in a study [177], where a numerical algorithm for the
calculation of the correlation function was proposed. An
analytical expression, obtained by a method analogous to
that described in Section 3.4, has been published [178]. The
influence of the boundary conditions, in particular of the
surface tension, on the fluctuations and scattering was
studied in the above investigation, the case of different
boundary conditions on the surfaces of the film being
examined.
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We shall now discuss the region of the T = Ty, phase
transition. Although a considerable number of experimental
and theoretical studies have been devoted to the N — A
phase transition, its nature has still not been ultimately
elucidated. Various theoretical models for this transition
have been analysed in Lubensky’s review [147]. The presence
of two correlation radii of the fluctuations of the ordered
parameter # is characteristic of smectic A liquid crystals:

rog = (Ly/A)'?, r=(LL/A) (6.15)

Their behaviour as a function of temperature in the vicinity
of the transition point 7 = Ty, is described by the power
laws

=V -V
I ory ~TE,

rC” ~T (6]6)

where T = |T — T'ya|/Tna- The behaviour of the coefficients
B and D as a function of temperature is also described by
power laws:

B~1®, D~1v. (6.17)
In addition, singular contributions to the Frank modulus
arise in the N-phase as a result of the fluctuation corrections

arising from the smectic fluctuations #:

8K22 ~ .L.—Pz7 5K33 ~1 P (6]8)

The existing theoretical models predict different values of
the indices. In the mean field model [Eqn (6.1)],
vy=v, =05 ¢= ¢’ =1.0, and p, = p; = 0. The scaling
relations yield

p=py=2v v, ¢ =py=v, 2—a=v+2v,
(6.19)

where a is the heat capacity index. If the N — A transition
belongs to the same class of universality as the three-
dimensional inverse XY model [148] or an isotropic type II
conductor [20], then vy=v, =0.67. In the case of
anisotropic scaling [149], v = 2v,. The numerical values of
the indices v and v, are not then predicted. There is also a
possibility of versions of the anisotropic scaling model with
the nonuniversal relation v > v, .

Experiments (see below) yield ¢, ¢’ > 0 and hence near
the T = Ty transition point we have B, D — 0. In this case,
inequality (6.11) becomes invalid. If inequality (6.12)
continues to hold [as happens, for example, in the mean
field theory, where according to Eqn (6.4) the coefficients B,
D, Ks, K§, and K¢ exhibit the same temperature
dependence], we obtain

A1(q) = BDqjj(Bgj +Dgl)™"

and the temperature dependence of A (q) is determined by
the behaviour of the coefficients B and D. In particular,

Ai(q)

(6.20)

= Bqjq1’, if ¢ <q.,

=D, if q > 9L - (6.21)
Otherwise the temperature dependence of A is determined
by the entire set of coefficients B, D, Ks, K§, and K &.

The correlation function for the relative permittivity
fluctuations, determined by the director fluctuations, can be
found, as in the case of a nematic, from Eqn (3.21), in which it
is sufficient to put & = ¢,8n;. It follows from the previous
discussion that, under conditions remote from the 7 = Ty,

transition point, both modes of the director fluctuations, (Sn%)q

and (5112) are of the same order of magnitude, pr0v1ded that
q) ~q.- However when g — 0, the correlator (8112) hardly
changes, while the correlator (Sn])q increases sharply In the
vicinity of 7' = Ty for g = 0, both correlators increase in a
critical manner. If ¢ — 0 under these conditions, then the
behaviour becomes of the Goldstone type: (Sn%)q ~q12.

6.2 Light scattering by director fluctuations in smectics A
The intensity of light scattering in smectics, which constitute
an optically anisotropic medium is determined by Eqn (3.36).
Convolution of the correlation function (3.21) with the
polarisation vectors is of the form

= (817),0,(e", e, q)

j=1,2

5) () _

esi)el(f)Gvaﬂpe ep

(6.22)

where

i s i 2
Qi(e()7e()7q) = e_,)(e()ono)] .

(6.23)
As already mentioned in Section 6.1, under conditions

remote from the phase transition point the mode (Sn%)q
increases sharply when ¢ — 0:

[(e)- ) (e-n") + (-

nkgT
" (k,B)"?

kBT(12L
BC/” +KI‘1J_

In this region, the mode (Sng)q ~ kgT /D may be neglected.
Eqn (6.24) implies that during light scattering in a smectic A
an interesting effect should be observed: virtually the entire
scattered light is concentrated in the region of the k(,) direc-
tions, for which ¢ = 0, where g = K9 —k® e k”) kl(l .
The latter condition has the geometrical implication that
k® should be located on the surface of one of two coaxial
circular cones with the axis n’(s = 1,2). This effect was first
predicted theoretically by de Gennes [150]. It follows from
the analysis of the angular factors Q; in Eqn (6.23) that only
the depolarisation contributions to scattering of the
(0) — (e) or (¢) — (0) types are nonzero for ¢ = 0.

The theoretical prediction reduces to the fact that, when
observations are made in a plane perpendicular to n°, a
relatively bright narrow ring of scattered light with the type
of polarisation opposite to that of the incident light should be
observed. The distribution of intensity along the ring is of the
form

1{) ~ sin*(9) (3 (9).
where the azimuthal angle 0 < ¢ <2 isreckoned from the
plane {n°,k)} and f ;((p is a smooth function which does
not become zero. F(or @ =0° or 90°, the intensity is

(go) =0 and we have the so-called sickle-shaped
dlstrlbutlon [9, 150] of the intensity along the ring.

An experimental test of this effect has been carried out
[151=153]. In the first studies [151, 152], scattering by static
inhomogeneities associated with the displacement of the
layers caused by the imperfection of the orienting substrate,
was observed. The angular distribution pattern of the
scattering should then be the same as in scattering by the
thermal fluctuations of the layer displacements, i.e. it should
be described by Eqns (6.22) and (6.24). In particular, a study
was made [152] of the scattering of a laser beam with
A =6328A in a homeotropically oriented specimen of a
BBAA (p-butoxybenzylidene-N-anilinoacetophenone) smectic
A liquid crystal at 7 = 89 °C. The thickness of the specimen
varied from 50 to 500 um. The substrate was polished to

(6.25)
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within 4/10. The angle between the direction of the incident
ray and the director was varied in the range 0°-70°. The
(0) — (e) and (e) — (0) types of scattering were observed.
Fig. 27 presents a photograph of the sickle-shaped scattering
pattern. In a subsequent study [153], the sickle-shaped distri-
bution of the intensity of scattering by thermal fluctuations
was observed by correlation spectroscopic methods in
N-(p-cyanobenzylidene)-p-octyloxyaniline smectic A liquid
crystals with a thickness d from 200 to 800 pm and a
substrate polished to within A/30 at T = 75 °C.

a b

Figure 27. The sickle-shaped distribution of the scattered light in a BBAA
smectic liquid crystal: (a) (¢) — (0) scattering; (b) (0) — (e) scattering [152].

In light scattering by a thin film ofa smectic liquid crystal,
the problem arises of taking into account the boundary
conditions not only in the calculation of fluctuations but
also for the electromagnetic field. Multiple reflection and
refraction of the incident and scattered rays at the boundaries
may prove significant in such a specimen. Green’s function
for the electromagnetic field, taking into account also
reflections at the boundary with an optically uniaxial
medium, has been obtained in a study [178] where the
intensity of the light scattered by a smectic film in the case
of normal incidence was also calculated.

6.3 Scattering in the vicinity of the N — A phase transition
At the present time, the majority of experiments on light
scattering in smectic A liquid crystals are devoted to the
investigation of the vicinity of the T = Ty, phase transition
point in order to obtain information about the indices ¢ and
@' in Eqns (6.16)—(6.18). For this purpose, use is usually
made of the experimental geometries permitting the separate
observation of scattering by the dni4 and dn>, modes. These
isolated geometries are determined by the condition that one
ofthe two geometrical factors Q;in Eqn (6.22) becomes zero.
Complete analysis of such geometries, similar to that
specified by Eqns (3.39) for nematics has not been carried
out yet. We may note that, as in nematics, the (0) — (0) type
scattering intensity is zero. Special cases of the following
geometries have been used:

G1: (0) — (e) scattering; the vectors k), k@, and n’
belong to one plane (in this geometry, Q; = 0).

G2: (0) — (e) scattering; the projections of the vectors
k@ and k@ onto the unit vector perpendicular to n° and
located in the plane {n’,k)} are equal (Q, = 0).

G3: (e) — (0) scattering; the projections of the vectors
k® and k@ onto the unit vector perpendicular to n® and
located in the plane {n’,k®)} are equal (Q, = 0).

The G1 geometry was applied, for example by Fromm
[146], Huang and Ho [154], and Lewis et al. [155], the G2
geometry was used by Fromm [146] and Lewis et al. [155],
and the G3 geometry was also employed by Lewis et al. [155].
[The (e) — (0) type geometries with Q; =0 and also the
(e) — (e) type geometries have not been used in the
experiments known to us.] Furthermore, a ‘degeneracy
geometry’, in which g, = 0(g||n"), has been used [145, 146].
In this case, the formal definition of the vectors e; and of the
modes dn; in Eqn (3.3) loses its significance, but it follows
from Eqns (6.9) and (6.10) that, for g, — 0, we have

(3nt), = (dn3), = kpT(D + K33(1ﬁ)71 :

When Eqn (6.26) is substituted in Eqn (3.21) taking into
account the identity ey eip+ exerp = Syp — ngnfé, the
degeneracy is eliminated. In this geometry, the scattering
intensity is determined by the parameters D and K33 .

Before discussing the results of experiments on light
scattering in smectics A in the vicinity of 7 = T, we may
note that, according to Eqns (6.18) and (6.19), information
about the critical indices is contained also in the behaviour of
the Frank moduli K»»> and K33 asa function oftemperature at
T — Tya on the side of the N-phase. In numerous
investigations, the scattering intensities have been measured
in the vicinity of T =Ty in both A- and N-phases.
Therefore here we shall consider simultaneously the
scattering at T — Ty, in both phases. We may note here
the Janing—Brochard cross-over formula [156], taking into
account the interaction of the fluctuations of the smectic
order parameter Y and the director n, which is frequently
used in the interpretation of experiments on the temperature
variation of the light scattered by the dn, mode:

(6.26)

(812, ~ {K;zqﬂ + K

kpTqiX
+B(1()

—1
-2 -1 -1
pr [1+X)tan™' X —X ]} , (6.27)

where X = [(rc”q”)2 + (re1q1)?]/2 and K9, and K 5 are the
components of the Frank moduli which are regular with
respect to temperature.

In the discussion of experiments on light scattering in
smectics and nematics, the following terminology, associated
with the names of the types of distortions corresponding to
the Frank moduli has been adopted: K1, (splay), K2 (twist),
and K33 (bend). dn, is a bend-splay mode and dn, is a bend-
twist mode. In the case where ¢ = 0, the on; and dn, modes
are referred to respectively as the splay and twist modes and,
when ¢, =0, both modes are bend modes according to
Eqn (6.26).

The thickness of smectic specimens usually employed is of
the order of 25—-250 pm. The following data provide an idea
about the level of current experiments on light scattering in
smectics A. In interpreting the experimental results, account
is taken of the discrete nature of the Fourier spectrum
g =ml/d (l=+%1,%2,...) in a finite system [153, 157]. In
order to check the influence of the size of the specimen,
measurements have been frequently performed for two
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Table 1. The indices p2(K22), p3(K33), (B ), and (p'(D) obtained for smectic A liquid crystals with different widths of the nematic phase (the table from
Lewis et al. [155] and the data of Fromm [146],> Huang and Ho [154], Vithana et al. [157],° and Solomon and Litster [160]9 have been used).

SLC p2 o p3 @ Tna/Tni
CBBOA 0.47 £0.07 0.33+£0.05 0.65 £0.05 0.50£0.02 0.94
— — 0.74 £0.04 —
80CB 0.35+0.05 0.33 £0.04 0.67 £0.05 0.50 £0.05 0.96
0.47 £0.11 — 0.75 +£0.04 —
— 0.26 £0.08 0.66 +0.04 —
0.67 £0.06? — 0.71 £0.04 2 0.524+0.042
8CB 0.34+0.13 0.26 £0.06 0.72 £0.05 — 0.977
— — 0.62 +£0.03 —
0.534 0.724
9CB 0.45¢ 0.60°¢ 0.993 ¢
40.8 — 0.32 £0.02 0.69 +0.03 0.54 +£0.04 0.96
— 0.44 £0.04 — —
8S5 0.37 £0.06 0.44 £0.02 0.68 £0.03 — 0.94
0.57+0.13 — 0.89 £0.05 —
— — 0.8240.02° —
609 0.46 £0.03 0.44 £0.05 0.66 £0.02 — 0.93
0.48 £0.03 — — —
DHAOB 0.66 £0.03 ¢ — — — 0.885

specimens with different thicknesses d: 25 and 50 pm in the
study of Huang and Ho [154], 125 and 250 pm in the study of
Lewis et al. [155], and 58.4 and 216 um in the study of
Vithana et al. [157]. The purity of the specimens reaches
99.99% and above [157]. The accuracy of thermal
stabilisation exceeds 107*K [155, 157]. Account was taken
of the drift of the transition temperature Tna as a function of
time which reached 107K h™' (in the study of von Kanell
and Litster [145], while in that of Vithana et al. it was
0.3mK dayfl for d=584pm and 0.4mK dayfl for
d =216 pm) and the corrections were applied for it.

The incident laser beam is centred on the symmetry point
of the temperature gradient of the cell in order to reduce to a
minimum the nonuniformity of the temperature across the
beam (the nonuniformity in the study of Vithana et al. [157]
was 0.03-0.04 mK). The heating ofthe specimen by the laser
beam is monitored [155, 157]. Correlation spectroscopy isthe
most frequently used experimental technique.

Despite such high sophistication of the experiments, an
appreciable scatter of the indices obtained for different
smectic A liquid crystals is characteristic of the N — A
phase transition. A clear idea about this is provided by
Table 1. Tt shows that the inequalities ¢’ > ¢ and p; > p,
hold for the experimentally measured indices. The quantities
¢ and ¢ are very different from the values obtained by
analogy with superconductors: ¢ = ¢’ =0.67. Generally
speaking, the scaling relations (6.19) do not hold either.

The nonuniversality of the indices is most strikingly
manifested in experiments on mixtures of two smectic liquid
crystals with a variable concentration. In particular, Huang
and Ho [154] found that p3 varied from 0.82 £0.02 to
1.00 & 0.03 in the 7S5,_,8S5, mixture for x varying from 1
to 0.638) and from 0.8+£0.04 to 0.88£0.01 in the
S5,_,80CB, mixture (for x varying from 0.0473 to 0.0232),
while Fromm [146] found that the index p3; varied from
0.71 £0.04 to 0.78+0.04 and the index ¢’ varied from

0.524+0.04 to 0.56 £0.04 in the 60CB,80CB,_, mixture
fory =x/(1 — x) varying from 0 to 0.4046.

Fig. 28 illustrates the temperature dependence of the
scattering intensity for the ¢, = 0 geometry [i.e. according
to Eqn (6.26), the temperature variation of the quantity
(D +K33qﬁ)7'] [146]. Under these conditions, above T, we
have the coefficient D = 0 and the scattering intensity in

I/rel. units

] | | |

T, T, +2 T, +4

T/°C
Figure 28. Temperature dependence of the intensity / of the scattering by
the bend mode in the vicinity of the N « A transition point for the
60CB,80CB,_, mixture for different values of y=x/(1 —x):
(1)y=0.2;(2)y=0.3327;(3) y = 0.4046 [146].
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Fig. 28 determines directly the temperature variation of K33,
i.e. the index p3. A similar situation [145] occurs also for the
pure smectic liquid crystal 40.8. Evidently the value of K33 at
T =T, exceeds the values of this quantity characteristic of
the bulk of the N-phase by approximately two orders of
magnitude. The comparative roles of D and K33qﬁ in the
denominator of Eqn (6.26) can be inferred from Fig. 28 —
the role of the term K33qﬁ in the A-phase becomes significant
only in the region |T — T | < 107> K. Unfortunately, such
direct measurement of the index p, from the temperature
variation of the mode (5/1%),1 in the N-phase at T — Ty, is
made difficult by the fact that the fluctuation correction 8K»»
in Eqn (6.18) is approximately 50 times smaller than K33
and it is difficult to isolate it against the background of the
regular contribution to K. This difficulty has been
overcome [146] by virtue of the fact that the mixture used in
the above study has the phase diagram illustrated in Fig. 29.
The presence of the reentrant N-phase at low temperatures
made it possible to determine the regular components of K2
and Ki3 with a sufficiently high accuracy by interpolation
between the two N-phases (Fig. 30). As a result, the index p»

T/°C
Isotropic phase
80
nematic

60
40 smectic A
20 -

- nematic

| | | | |
0 0.1 0.2 0.3 | 0.5

Ymax

Figure 29. Phasc diagram for the 60CB,80CB,_, mixture at variable
temperatures 7',y = x /(1 — x) [146].

I/rel. units
3 —
2 -
1+ P
-ﬁ.":.. ..0'
. 3
< ]
H b
L] ®
30 40 50 60 70

T/°C

Figure 30. Temperature variation of the intensity / of the scattered light
for the twist mode in the presence of a reentrant nematic phase. Dashed
line—interpolation of the intensity between two nematic phases;
y = 0.4243 [146].

varied from 0.67 & 0.05 to 0.62 £ 0.06 as the concentration x
varied from 0 to 0.4046, while the index ¢’ varied from
0.60 £ 0.05 to 0.55 £ 0.05 as x varied from 0.3327 to 0.4243.

The modulus K; does not manifest a pronounced
temperature variation in the N — A transition. The result
obtained by von Kanell and Litster [145], who investigated a
monolayer smectic (the majority of smectics are of the bilayer
type, i.e. the period of their structure is approximately equal
to two molecular lengths) is an exception.

The absence of the universality of the exponents shows
apparently that only certain effective indices are actually
measured. The view that these exponents describe the cross-
over behaviour between critical and tricritical behaviour is in
our view fairly realistic [146, 155, 157]. In order to diminish
the influence of the tricritical behaviour, it is necessary to
carry out experiments on specimens with a wide range of
existence of the nematic phase. Such an experiment has been
carried out [157] on a DHAOB (dihexylazoxybenzene)
specimen for which 174 = (T1xy — Txa)/Tna = 0.115, where
T~ is the N — I transition temperature. An important
feature is that measurements of the magntic anisotropy
[158] did not reveal in this liquid crystal any kind of
anomalies of the nematic order parameter So in the N — A
transition. The correlation time function of the number of
photons was measured. Fig. 31 presents a plot of the
scattering intensity as a function of temperature.
Interpretation of the experimental data yielded
p, = 0.66 = 0.03 over a range corresponding to four decades
of the temperature © = (T — Tya)/Tna, in agreement with
the helium analogy. The values of p, obtained are greater
than those found for specimens with a narrower nematic
phase. This is illustrated in Fig. 32, where the index p» is
plotted as a function of the width of the nematic zone. The
authors’ principal conclusion [157] is as follows: all the
previous experimental studies were performed under
conditions where the interaction of the nematic (S) and
smectic (|¢|) order parameters is significant. For this
reason, the measurements in these investigations yielded
effective exponents associated with the tricritical —critical
Cross-over.

We shall discuss briefly the pretransitional effect
associated with the presence of the smectic C phase. Above
the A —C transition, in the region remote from the N-A-C
tricritical point, the experimental temperature dependence of

17" /rel. units

107
107
1075
1076 |
-7 1 1 1 | | l
1077 10 107 10 107 1072 107!

Figure 31. Temperature variytqio_nTgf* Il/llcNf?‘cciprocal of the scattering
intensity in a specimen of the DHAOB smectic 216 pum thick
(Tna =289.7966K) on the logarithmic scale. The data were interpreted
in terms of the formula I~'=Ar" + B, where B is a constant
component: (1) experimental values; (2) result of the exclusion of B
[157].
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1.0
-
P2
0.8 -
0.6 - (DHAOB)
(Co)
04 L
(8CB) (8s5) (BOCB)
02+
! ! 1 1 I
0 0.03 0.06 0.09 0.12 0.15
Ti—a

Figure 32. Dependence ofthe index p, on the thickness of the nematic zone
ti_a = (Tn1 — T'na)/Tna for different liquid crystals [157].

the scattering intensity agrees with the prediction of the mean
field model: D ~ (T — Tac)" with y=1.0 (Fig. 33) [159].
Above the N —C transition, the experimental behaviour of
I agrees [154] with the predictions of the Chen —Lubensky
model [19] (Fig. 34). In particular, according to estimates the
absolute value of 8K;; was ~2% of 8K3; under these
conditions.

The most interesting effects are observed at the N—A -C
tricritical point. The scattering intensity in a series of nCB
homologues has been investigated [160]. With increase in n,
the width of the N-phase diminishes and the system
approaches the tricritical point. By selecting appropriate
mixtures of different homologues, it was possible to obtain
effectively fractional values of n. According to the authors’
estimate [160], the tricritical point corresponded to n =9.1.
Eqn (6.27) was used in interpreting the experimental data.
A decrease in the indices p, and ps3 was observed —from
p; =0.72and p5 = 0.53 forn = 8to p; = 0.50 and p = 0.34
for n =9.07. The behaviour of scattering by bend, bend-
twist, and splay modes of fluctuations has been investigated
for the 7S5,_,8S5, and 7S5,80CB, mixtures in which it was
possible to approach the concentration of N—A —C point
(Fig. 35). It was found that, in the vicinity of this point, the

17! /rel. units

100 r -
I/rel. units
2
1
50 -
0

T —Tyc/K

Figure 33. Temperature variation of the intensity 7 of the scattering by the
bend mode and ofiitsreciprocal abovethe A — C transition in a 8S5 liquid
crystal; continuous line—linear fit [154].
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Figure 34. Temperature variation of the intensity / of scattering by the
bend and splay modes in a 7S5 liquid crystal above the N «» C transition:
(1) splay mode; (2)) bend mode [154].
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T/°C

60 +—

50 |- smectic A
nematic

smectic C

40
| ] | |

30
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Figure 35. Phasc diagram for the 7S5,_,8S5, mixture [154].

integral intensity of the light scattering by the bend and bend-
twist modes has an anomalous minimum as a function of
temperature. For the splay mode, the behaviour of the
intensity is normal (Fig. 36) [154]. The kinetics of the
fluctuations have been investigated [161] for the same
mixtures by correlation spectroscopic methods. No
anomalies were observed in the kinetics of the splay mode.
On the other hand, it was found for the bend mode that the
time correlation function requires two relaxation times for its
description. The amplitude of the unusual ‘fast’ contribution
had an unusual minimum 0.5 °C before the transition point.
The authors [161] attribute the presence of this ‘fast’
contribution to scattering by smectic-like tilt-fluctuation
formations.

A smectic liquid crystal is of interest primarily as a layered
one-dimensionally periodic system with strongly developed
fluctuations of the layer displacements and the Landau-—
Peierls instability. However, fluctuations of the director and
not those of the displacements are most strongly manifested
in light scattering. The former fluctuations can be of two
types: those induced by the displacements of the layers and
spontaneous fluctuations (deviations ofthe director from the
normal to the layer). The induced director fluctuations are
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Figure 36. Temperature variation of the light scattering intensity / in the 7S5,_,8S5, mixture at different concentrations x: (a) splay mode; (b) bend

mode; (¢) bend-twist mode [154].

the most intense. The indicatrix of the light scattering
associated with these fluctuations has a strikingly
pronounced sickle shape in the region remote from the
point of transition to the nematic phase. Near the A—N
critical point, both modes of director fluctuations become
comparable in magnitude.

Much interest has been shown in the behaviour of
smectic A liquid crystals near the N —A transition to the
nematic liquid crystal. Numerous careful studies on the
scattering of light and X-rays and studies involving the
measurement of the heat capacity have been carried out in
this field. As a result, the absence of universality in the values
of the critical exponents for different smectics A can be
regarded as firmly established.

We shall list certain problems which, in our view, need to
be tackled in the case of smectic liquid crystals. In the first
place this is allowance for the interaction of the tensor
nematic order parameter S with the smectic density wave
in the description of fluctuations and also allowance for the
finiteness of the system and the Landau — Peierls instability in
the interpretation of experiments in the vicinity of the A—N
transition point. In smectic A liquid crystals, it is easier than
in nematics to isolate experimentally the scattering by biaxial
and longitudinal fluctuations against the background of the
weaker, than in nematics, scattering by director fluctuations.
The use of the light scattering method for thin layers of a
smectic as a procedure for the investigation of surface
phenomena and, in particular, as a method for the
determination of the surface tension of smectics appears
promising.

Successive calculation of the contribution of
displacement fluctuations to density and biaxial and
longitudinal fluctuations on the basis of the principle of
conservation of the modulus and the observation of this
contribution in light scattering experiments are also of
interest.

7. Conclusions

From the standpoint of the study of light scattering in liquid
crystals, the latter proved to be unique objects. In order to
obtain results for liquid crystals permitting a quantitative
comparison with experiment, it was necessary to take into
account a whole series of additional factors which have been
almost always neglected in the scattering theory. These are, in
the first place, optical anisotropy (both uniaxial and biaxial),
optical activity, the presence of a regular periodic structure,
and the influence of the finite nature of the specimen. On the
other hand, fluctuations in liquid crystals are frequently
anomalously large, resembling critical phenomena in this
respect but with the difference that the parameter kr. for
liquid crystals can reach 104 and above, which is much greater
than the value experimentally attainable in the critical region.

Although the light scattering method has proved useful in
many instances as an effective procedure for gaining
information about the system, it is still used insufficiently
widely for liquid crystals. Apparently one of the significant
reasons for this is the existence of numerous complicating
factors in the light scattering process. In the present review,
we have endeavoured to show that these complexities can be
overcome both by the appropriate modification of the theory
and by using in certain cases nontraditional experimental
methods (such as measurements of the scattering intensity
under the conditions of circular polarisations or the
determination of the extinction coefficient from the degree
of coherence of the transmitted ray.

The selection of the subject was associated primarily with
the choice of those objects where, in the authors view, the
problems of fluctuations and light scattering have been
developed in greatest detail. The range of the authors’
scientific interest naturally played a by no means subsidiary
role in such selection.

In particular we were not concerned with scattering in
smectics C [181], the scattering in exotic smectics, and also in
discotics [182]. The optical properties of ferroelectric liquid
crystals, the characteristics of the scattering in the vicinity of
instability thresholds of the type of the magnetic or optical
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Freedericksz transitions [183], and the influence of all
possible distortions of liquid crystals on light scattering
were not discussed. Nor were lyotropic and polymeric liquid
crystals considered, because the symmetry of the liquid
crystal and not the nature of its molecular structure is
important for our purposes.

Physical phenomena observed comparatively recently,
the study of which is being actively prosecuted and in which
fluctuations play an undoubtedly important role—the
formation of the twist-grain-boundary (TGB) phases near
the nematic—smectic A —smectic C tricritical point—also
remained outside the limits of our discussion. A theoretical
analysis of the TGB phases has been carried out with the aid
ofthe Landau theory [184]and was based on the analogy with
the phase transition to the Abrikosov superconducting eddy
lattice [185]. Such a phase has been observed experimentally,
for example in the studies of Goodby et al. [175] and [hn
et al. [186]. The influence of the fluctuations of the order
parameter in TGB phases has apparently not been studied in
detail.

From the standpoint of the general physical picture of
liquid crystals, in which the difficulties associated with both
liquid phases, involving large fluctuations of various types,
and with solid phases, involving complex optical properties,
are combined, liquid crystals constitute very convenient
objects for the development of both theoretical models and
new methods in light scattering. Although the first
quantitative measurements of the scattering intensity in
liquid crystals were performed more than 50 years ago (see,
for example, Chatelain [77]), serious studies on scattering
have still not been performed for a whole series of different
types of liquid crystals and a wide field for further
investigations exists.
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