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Abstract. Possible methods are discussed for describing
structures localised in finite region (solitons, vortices,
defects and so on) within the framework of both integrable
and nonintegrable field models. For integrable models a
universal algorithm for the construction of soliton-like
solutions is described and discussed in detail. This
algorithm can be generalised to many-dimensional cases
and its efficacy for several examples exceeds that of the
standard inverse scattering transform method. For non-
integrable models we focus mainly on methods of studying
the stability of soliton-like solutions, since stability
problems become essential when one turns to a description
of many-dimensional solitons. Special attention is paid to
those stable localised structures that are not endowed with
topological invariants, since for topologically nontrivial
structures there exist effective methods of stability analysis,
based on energy estimates. Here the principal topic is that
of Lyapunov’s direct method as applied to distributed
systems are discussed. Effective stability criteria for
stationary solitons, endowed with one or more charges,
(the Q-theorem) are derived. Several examples are
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presented that illustrate the applicability of the method
of functional estimates, and the stability of plasma solitons
of the electron phase hole type is discussed.

1. Introduction

Localised structures, or soliton-like excitations arise in
dynamical systems either under the influence of sufficiently
strong external forces, or as a result of nonlinear self-
interaction effects. Indeed, under weak influence (or,
equivalently, when it is possible to ignore self-interaction
effects), the evolution of the system is well described by
linear relationships. But linear equations yield only
spreading wave packets as solutions for the Cauchy
problem with regular boundary conditions, localised in a
small space region. The basis for this spreading is the
superposition principle, which is characteristic of linear
systems. However, under sufficiently strong perturbation,
or under non-negligible self-interaction effects, this prin-
ciple breaks down, since further evolution of the system is
governed by substantially nonlinear relations. As a result,
structures with properties unfamiliar to linear physics are
derived. In particular, these objects might be incredibly
stable. Studies of such localised structures became the
subject of soliton physics.

In connection with an intensive development of soli-
tonic themes, starting in the late 1960s, the problem of the
description of localised structures (vortices, defects, textures
and so on) at a new qualitative level has again arisen, as
well as the description of particles as extended objects in
condensed matter physics, in astrophysics and cosmology,
and in particle and nuclear physics. In time this coincided
with the appearance of experimental proof of the existence
of an internal structure for strongly interacting particles: in
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the experiments of R Hofstadter (1956) on elastic scattering
of electrons on protons, the electric charge distribution
within the proton was found; in the experiments of
E Blume et al. (1969) on the deep inelastic scattering of
electrons on nucleons, the scaling phenomenon was dis-
covered, that is the scale invariance of the scattering cross-
section. The latter observation served as a basis for the
parton model, suggested by R Feynman, the model which
provided an explanation why, in elastic scattering experi-
ments nucleons manifest themselves as extended objects,
whereas for deep inelastic processes this picture is no longer
valid. Indeed the results for an inelastic process are
analogous to scattering on a pointlike (structureless)
object [1]. In such modern theories as quantum chromo-
dynamics, electro-weak and standard models, the role of
partons is played by quarks. This means that the particle
structure is described within the framework of the so-called
composite models, when extended particles are constructed
from pointlike ones. On the one hand, it is clearly hard to
imagine a logical completion for this process, and, on the
other hand the presence of structureless particles in a model
leads to the appearance of divergences. The elimination of
these divergences requires ever more ingenious schemes at
each successive level of the theory.

For this reason, alternative approaches to the descrip-
tion of particles as extended objects, i.e. beyond the
framework of composite models, deserve special atten-
tion. It is appropriate here to note that a search for
such an alternative description is in a sense traditional
in the evolution of ideas in physics. Very similar considera-
tions led Lord Kelvin (W Thomson) at the end of the last
century to suggest the existence of ‘vortex atoms’ of finite
extension instead of pointlike atoms. Similar ideas were
proposed by O Heaviside, J J Thomson and G Mie. In a
more concrete form these ideas have been formulated by
A Einstein, who suggested describing particles in terms of
regular solutions of field equations, as, in effect bunched
fields that occupy ‘“...a bounded region in space, where the
field strength and the energy density are particularly
high...”” ([2], p. 725). The notion of a particle as a regular
physical field, localised in a small region of space and
endowed with finite energy and all other dynamical
attributes appeared in the literature under several names:
particle-like solutions in articles by N Rosen, R Finkelstein,
Ya P Terletskii et al.; le champ a bosse in L de Broglie’s
papers; kinks as named by D Finkelstein, and lumps by
S Coleman. The concept of a many-dimensional soliton
endowed with nontrivial topological structure arose in the
late 1950s in T H R Skyrme’s papers (see Ref. [3] and
original papers cited therein), and one can consider this as
an appropriate generalisation of all these earlier notions. It
might be well to point out a beautiful (nontopological)
concept, introduced by T D Lee [4], which in a particular
form combines the approaches listed above into a descrip-
tion of particle structure. As the basis for this concept a
nonlinear mechanism of quark confinement was chosen,
whereby bosons strongly interacting with quarks form a
confining potential of a solitonic bag type. Recent trends are
toward the development of this concept in the framework of
the so-called hybrid bag models, where an external soliton (a
topological one, as a rule, and providing the correct spectral
data) is used for the confinement of quarks inside the bag.
In the present review the current status of the problem of
the description of localised coherent structures is discussed,

and, in particular, a description of particles as extended
objects on the basis of integrable as well as nonintegrable
field models is given. In doing this we are restricting
ourselves to problems of constructing explicit solutions
for integrable models, and to studies of stability problems
for nonintegrable models which possess many-dimensional
localised structures. We intend to discuss in a separate
publication the problems of the existence and stability of
topologically nontrivial localised structures.

PART I. INTEGRABLE MODELS

A dozen or so substantial monographs and reviews [S—15]
are devoted to integrable dynamical systems. Therefore we
feel free here to limit ourselves to mentioning only some
aspects of this theory (those most important for the
following presentation). Since in the existing literature
there are some disagreements on the very definition of
integrable systems (as well as that of solitons), in what
follows we shall use the definitions:

1. Integrable systems— systems which possess a Lax
representation (or, in a more recent sense, a zero curvature
representation), which have a countable number of integrals
of motion, and for which in the investigation of their
dynamics one can apply the inverse spectral transform
method, the Riemann problem, the d-problem, and the
finite-zone integration method. This is called S-integrability.
To a similar category belong dynamical systems which one
can integrate by a change of variables or by means of an
ansatz (C-integrability).

2. Completely integrable systems—Hamiltonian integra-
ble systems, for which one can find action-angle variables
and rewrite the Hamiltonian of the system in terms of these
variables.

Let us list without exhaustive details, which one can find
in monographs [9, 14], some properties of integrable
systems using as an example the nonlinear Schrodinger
equationt (NSE) pursuing the twofold aim of defining
the terminology to be used later and of reminding the
reader of some facts on NSE properties, which might be
useful in what follows. A dynamical system associated with
the NSE

0 + 0%y + 2y = 0., @
where ¥(x, ) is a complex-valued function, is classified as a
Hamiltonian system, since it is provided with a set of
canonically conjugate variables ¥, (here the bar means
complex conjugation). Consequently, for the system (2.1)
the Poisson bracket (in its generalised form for the
continuous case) is defined as

V. ¥} = id(x —y) . 2.2)
and Hamiltonian
i = | a0 - sur]. @3)

for which the Hamiltonian equations hold

fNote, that this name given to Eqn (2.1), has in fact nothing to do
with (fundamentally lincar!) quantum mechanics, but was given to it
only because in its linear limit g = 0 it coincides with the Schrddinger
equation for the wave function of a free particle.
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o = {H, y} = —ii—g,
o = {H,y} = ii_le' (2.4)

Taken together the facts (2.2)—(2.4) prove that the system
(2.1) is Hamiltonian. Note that to define the dynamical
system one must also specify boundary conditions. In the
following discussion we will mainly consider rapidly
decreasing cases, i.e. where

Y(x,t) =0 for |x|—o0.

2.5)

In addition we will assume that ¥(x,¢) is an infinitely
smooth function, decreasing at spatial infinity, together
with its derivatives, faster than any power of |x|™".

One can also represent equation (2.1) as the consistency
condition for the following overdetermined system of linear
matrix equations

Oy = Ag(x, 15 A)y,

Oy = Aq(x, t; A)y (2.6)

on the vector-function

_ (N
Y <y2> ’

which one can derive from Eqn (2.6) by equating the cross
derivatives 0,0,y = 0,0,y. As a result one obtains the zero
curvature conditiont

A =0, Ag+[A1,A] =0, 2.7

which is one of the principal relations in the inverse
spectral transform method. Note that the 2 x 2-matrices
Ay,A; in Eqns (2.6) are dependent on an arbitrary
complex-valued parameter A, known as the spectral
parameter of the problem, and condition (2.7) has to be
valid for all As. The explicit form for matrices Ay,A,| is
given as:

. (1 o0 _ (0 ¥
A, = —ilo; + P, 63—<0 _1>,P—1<l// 0>,

. 2 T
B — 24P +2ii’0y, B = (“"“ _ax‘@) . @8
_ax‘p 1|¢|
It is known, that a system possessing the zero curvature
representation is endowed with an infinite (but countable!)
set of additive integrals of motion (or conservation laws),
or, in the presence of internal (isotopic) symmetries, with a
series of such sets. Formally these laws can be written as
the continuity equation

Ay

Py 0, =0, n=12,.., 2.9)

where the functionals p, and j, are polynomials in the field
function and its spatial derivatives, associated with the
‘densities’ and ‘currents’ of the system, respectively.f On
integrating Eqn (2.9) over x we obtain the integrals of
motion

FThis name is related to the geometrical interpretation of the system
(2.6) together with condition (2.7) in terms of fibre-bundle spaces (see
[9)).

fThese densities are referred to as local ones. In a number of models
along with local conservation laws there are also nonlocal
conservation laws, with ‘densities’ as integrals over x.

+00

I, = p,(x,)dx, j,—0 when [|x|] >00. (2.10)

—00
If the integrals I, are in involution with respect to the
Poisson bracket (2.2) and one is able to introduce angle
variables canonically conjugate with them, then the
corresponding system would be completely integrable,
and the integrals (2.10) would play the role of the action
variables.

In some cases, one can solve the inverse scattering
problem for the operator L =ig3(0, +idas —A), i.e. via
scattering data to find an explicit form of the potential, the
required function ¥(x,¢) playing its role. This means that
for the situation discussed here one can solve the Cauchy
problem, so that the behaviour of this integrable system will
be strictly determined. The localised regular solutions to
integrable systems (if they exist), which correspond to the
discrete part of the spectrum of the operator L are usually
called solitons. For integrable systems the quantum inverse
scattering method has also been developed, which enables
one to find the ground state and excitation spectra [17, 18].

Here we have sketched a rough outline of the current
possibilities of describing localised structures as solitons in
integrable models. It should be noted at once that in spite of
intensive efforts undertaken in the development of this
approach, the scheme presented may be successfully realised
only in the case of (1 + 1)-dimensional completely integrable
models, such as the Korteveg—de Vries (KdV) equation,
NSE, sine-Gordon, and so on. This restricts the range of
possible applications, but at the same time it prompts an
active search for other methods of studying integrable
models, which would enable one to describe many-dimen-
sional solitons. Among them should be mentioned the
Riemann problem [5, 6] and the finite-zone integration
methods [5, 8, 19], the Darboux transformation method
[20], and various methods of group-theoretical and alge-
braic —geometric analysis [8, 15, 21]. In what follows we will
consider only one of the possibilities listed above of
extending the methods for studying integrable models to
many-dimensional cases, choosing as the basic model the
nonlinear Schrodinger equation.

2. Multisoliton solutions to Schrodinger-type
nonlinear equations

The nonlinear Schrodinger equation (NSE) is one of the
fundamental equations of nonlinear mathematical physics,
describing the evolution of a weakly nonlinear and strongly
dispersed quasimonochromatic wave. In particular, NSE
describes the evolution of hydrodynamic waves in deep
water, that of optical waves in nonlinear crystals and light
guides, that of Langmuir waves in plasma and heat waves
in solids, the evolution of spin waves in magnets, and so
on. For a number of reasons, partly outlined in
monographs [9, 11, 14], NSE might be considered as
exceptional among integrable models. Strictly speaking, the
fact that ¥(x,7) in Eqn (2.1) is a complex, instead of a real-
valued function as in the KdV or sine-Gordon equations
distinguishes the NSE among integrable equations. On the
other hand, this exceptionality of NSE is related to the
quadratic form of its dispersion, which in the vacuum state
coincides with that of a free nonrelativistic particle. At the
same time, for strongly nonlinear states, for example for a
condensate, NSE provides the correct expression for linear
excitations (first obtained by N N Bogolubov). One of the
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most attractive features of the NSE is that it enables us to
describe the evolution of wave packet envelopes for carrier
waves in media with quadratic dispersion. Thus, NSE
allows one to rehabilitate the L de Broglie idea of
representating of particles as wave packets, which has
not met with success in linear theories, where the wave
packets spread out owing to dispersion.

2.1 Nonlinear Schrodinger equations and envelope
solitons

The NSE arises, as a rule, when one describes nonlinear
phenomena in various circumstances where solutions in the
form of harmonic wave packets are found to be acceptable

W, 1) = A exp{ifkr — o(k)r]} @.1.1)

with a sufficiently small amplitude A. Nonlinearity of the
medium manifests itself in a back action on the amplitude
in Eqn (2.1.1). As a result, the wave envelope slowly
(compared with the carrier wave) varies in space, as well as
in time, i.e. it modulates the fast (high-frequency) carrier
wave. The key point of the NSE approach consists in
finding weakly nonlinear expansions of the dispersion
relationst, which, in contrast to the pure linear state, can
take into account the dependence on the amplitude. Two
different specifications of the problem are frequently given:

o=w(k;|A[), k €R, initial-value problem , (2.1.2a)

or

k =k(w;|A|"), ®€R, boundary-value problem .

(2.1.2b)
A Taylor expansion of Eqn (2.1.2) in the vicinity of some

(wo, ko) gives
Ow 10%w
w= w0+6k (k — Zakz‘(k
Ow 2
+ + .,
or
Ok 1 0%k )
k—ko+% 0((0 0)+§6w2 ‘O(w @)
ok
SLIAP + ...
olA[™ 1o

In Fourier-transform space for the waves (2.1.1), this
expansion might be represented in operator form by the
relations

(W—wo)—’ia’
.0
(k—ko)—’—la’
62
2
(k — ko) _’—ax—z,

i.e. in the form of a NSE operator, acting on amplitude A:

FIn physics this corresponds, for example, to the observation that the
refractive index in nonlinear optics or the dielectric constant of a
plasma can be represented as polynomial functions of electric field
strength.

[i(ﬁﬁ_w 3)+162_w o }
ot Ok loox 20k2 loox? a|A|
(2.1.3a)
or as
2 2
(2 rila) sarhae bt | 0.
(2.1.3b)

Equation (2.1.3a) describes the time evolution of an
envelope for a narrow packet of carrier waves with real-
valued k. The crude way of deriving of the latter equation
displayed here has been generalised to the method of
multiscale (or two time variables) decomposition, where
together with the ‘fast’ variables x,t for the carrier
wave, a set of ‘slow’ variables X, =¢&"x,T, =¢"t, (¢ < 1)
is introduced for a description of the envelope motion (see
detailed description of the multiscale expansion methods
with a number of references in Ref. [11], Ch. 8). Equation
(2.1.3b) describes the propagation in space (for example, in
a waveguide) of a narrow wave packet with a given carrier
wave frequency w = @, € R.

Equations of the type (2.1), (2.1.3), also called scalar
nonlinear Schrodinger equations, themselves represent the
simplest mathematical models for a description of weakly
nonlinear wave packets of high-frequency, and, in partic-
ular, models for self-interacting spin waves (magnons) in
ferromagnets, for excitations in molecular crystals, for the
Langmuir waves in plasma, for two-body interactions of
boson gas particles at zero temperature and so on. Detailed
derivations of the NSE together with a description of the
models listed above can be found in Refs [11] and [14].

As a natural generalisation for Eqn (2.1) one can
consider the system which describes the interaction of
high-frequency wave packets Y(x,7) with low-frequency
waves U(x, ). For this type of situation a complex function
Y(x,t) is subject to the same scalar NSE

0 + Y + Uy +gly[Yy =0,

with a low-frequency wave U(x,t) as potential, the latter in
turn beingdescribed by one of the following self-consistency
equations:

(2.1.4)

OU = —2(|Y|°) (Zakharov, 1972) , (2.1.4a)
U +0.(U—|y]*) =0 (Yajima-Oikawa, 1976), (2.1.4b)

@, +od)U +0,(BU> — [W|* +U) =0 (2.1.4¢)
(Nishikawa, et al., 1974) ,

(O+ @)U +32(BU> + [Y*) =0 (2.1.4d)

(Makhankov, 1974) .

Of the systems listed above, in the first two cases (2.1.4a,b)
the low-frequency excitations are described by linear
equations, but only the second is integrable (for g =0).
The remaining two equations are nonlinear. The integra-
bility of Eqn (2.1.4d), with an appropriate choice of
parameters « and f, has been established by I M Krichever
[22], and in turn the non-integrability of Eqn (2.1.4c) has
been proved by E S Benilov and S P Burtsev [23]. Systems
like (2.1.4a—d) with g = 0 occur in plasma physics, where
they serve as a basis for the description of coupled
Langmuir and ion-acoustic waves. In general, for g #0
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they appear in the description of spin waves and phonon
interactions in ferromagnets [24], and in a description of
excitons and phonons in molecular crystals [25], and so on.

Another natural generalisation of NSE (2.1) is related to
its transformation into a vector version by the rule:
W — (Yy,¥,,...,1,)" along with a simultaneous replace-
ment of |[|> in (2.1) by the inner product

(‘Py ‘P) & Z gij%‘ﬁj >

i,j=1

where g; is the metric tensor in some internal symmetry
space of the model under investigation [26] and [37]
Applying the hermiticity condition to the Hamiltonian of
the system, we arrive at non-compact groups of internal
symmetry U(p,q). Physical models of this type are used to
describe the dynamics of a boson gas with internal
quasispin (or ‘coloured’) degrees of freedom or that of
boson gas mixtures (related to the superconductivity
phenomenon at T #0), as well as to describe the
propagation in plasmas of high-frequency plane waves
with circular polarisation and that of spin waves in
multilayered ferromagnets. (For details and references
one may consult Ref. [14], Ch. 2). The integrability of
some systems described by the vector NSE has been
established in [26] and [35]. Finally, if we combine the
generalisations listed above, we obtain the vector NSE

0,y + W+ Uy + g )y =0, 2.1.5)

with a self-consistent potential (the low-frequency mode),
which in turn is governed by one of equations (2.1.4 a—d).

A whole range of applications is associated with the
so-called derivative NSE (i.e. NSE with a potential that
contains a derivative):

[—i0, + & +iU(x, )0, Jy(x,t,k) =0,

which has attracted considerable interest in relation to the
study of (2 + 1)dimensional systems, such as the modified
Kadomtsev—Petviashvili and Ishimori equations [27].

[t is a remarkable fact that for all the variants of NSE
enumerated above a general-purpose algebraic method of
constructing exact solitonic solutions exists and was first
propounded in Ref. [12] (see also Ref. [14], Ch. 8).

2.1.6)

2.2 Algebraic method of constructing exact solitonic
solutions for Schrodinger-type nonlinear equations (D = 1)
Conceptually the method outlined below is a specific case
of the general algebraic—geometric scheme of finite-zone
integration, as described in Ref. [5]. Contrary to the
standard inverse scattering problem method, where for
each equation considered there is its inherent auxiliary
linear spectral problem, in the proposed construction a
universal auxiliary role is played by a linear Schrodinger
equation with a time-dependent potential U(x,t):

0, + 01 4+ U(x, )W (x,1,k) =0 . (2.2.1)

It should also be noted, that the method presented proves
effective in those cases where the inverse scattering method
fails to be helpful. In particular this is the case for the
boson-gas models with non-compact internal symmetry
groups, for the isotropic Landau —Lifshitz model with the
SU(1,1) group, for nonlinear o-models, and others (see
Ref. [14], Part III). In further discussion, the problem will

be considered at two levels: the linear and the nonlinear
one.

At the linear level for given spectral data (SD) we find a
special class of localised reflectionless (Bargman) potentials
U(x,t) along with the corresponding wave functions
V(x,t,k). The spectral data consist of a set of complex
numbers «;, i=1,N, and a complex-valued-constant
N X N-matrix ¢y, i.e. these SD in fact provide a solution
for a specific inverse problem. Furthermore, we derive the
conditions which k; and c¢; have to satisfy in order to
provide the real value and regularity of the obtained
potentials U(x,?) together with the corresponding wave
functions (x,z,k). We also discuss the degeneracy of
solutions with respect to the SD and note two possible
representations for wave functions: the polynomial and the
rational (pole-type) one. Investigations of the asymptotic
behaviour of the solutions allows us to find explicit
expressions for structural units (‘bricks’), of which the
potentials and wave functions are composed.

At the nonlinear level, self-consistency conditions are
found that relate the potentials to the wave functions and
their residues. Here a choice of boundary conditions for
nonlinear fields plays a crucial role and the fields are
expressed in the form of direct sums of the aforementioned
structural units.

2.2.1 Linear level The potential U(x,f) in the nonstation-
ary Schrodinger equation will be called the integrable
potential (associated with a rational algebraic curve) if
equation (2.2.1) admits solutions in the form of the plane-
wave ansatz:

Y(x,t,k) = Py(x,t,k) exp [ik(x + kt)]
= (kN +ay_1 (x, )N L
et ag(x, 1)) exp [ik(x + k)] .

Let us introduce, as the free parameters of our construc-
tion, the complex numbers ki,...,k;; with nontrivial
imaginary parts and a matrix of coefficients
o, i=1,N,j=1,M. For any set of these parameters
we can uniquely determine the function y(x,7,k) having
the form (2.2.2) with the help of the following system of
linear conditions

(2.2.2)

M
Zafi‘p(x’t7k)‘k_,c =0, i=1,N. (2.2.3)
= =K;

The conditions (2.2.3), which themselves represent a system
of N linear inhomogeneous algebraic equations, are
solvable, if the corresponding matrix of coefficients
A(x,t) =[oy] is nonsingular, or, in other words, if
rank[o;] =N. The search for the potential U(x,r) is
based on the theorem, proved in Ref. [12]:

Theorem?2.1. If the matrix A(x,t) of the system
(2.2.3) is not identically singular (in x,t), then the function
V(x,t,k) of the form (2.2.2) under conditions (2.2.3) satisfies
Eqgn (2.2.1) with the potential

U(x,t) = 2id,ay_; (x,1) = 207 Indet A (x,1) . (2.2.4)

In general, potentials U(x,?), corresponding to an
arbitrary set of parameters x; and [«;], will be complex
meromorphic functions of (x,7). In order to obtain real-
valued and regular potentials as functions of the real
variables x,t, one needs to put some restrictions on the
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choice of parameters. Let us assume that M = 2N and that
it is possible to subdivide the parameter set ki, ..., Koy into
complex conjugate pairs of the type ky,; =k;, i=1,N. We
can further assume, and without loss of generality, that the
minor of the matrix [b;] = [o], consisting of the columns
with indices j = N + 1, ...,2N, is nonsingular (in general this
minor can be reduced to the unit matrix). In this case the
conditions (2.2.3) take the form

N
Y(E) == b(x), i=T,N, (2.2.5)
=

where b; is a constant N x N matrix . The ansatz (2.2.2)
gives a polynomial representation for the wave function of
the NSE (2.2.1), and when coupled with the condition
(2.2.5), it can be regarded as a generalisation of the
Beiker — Akhiezer function [5].

The rational or pole-type representation for the wave
function of Eqn (2.2.1) may be given in the form

W(e, k) = L00K)

H(k —Ki)

i=1

N
= <l +
=

In this case, the condition (2.2.5) may be rewritten as

’fi(x7t)
k —

) exp [ik(x +k1)] . (2.2.6)

N

ql(xytﬂ_ci) = _chquj(xat) ’

=1

(2.2.7)

where

Wi(x,1) =resp— P(x,1,k) = klim [k —x;))¥(x,t,k)] (2.2.8)
. i —kK; K

with the introduction of the matrix

., R'g)
Cii = [),“ —
y I R(Kj)

d
R'=—R 2.2.
) K (k) , (2.2.9)

by means of the function

N

R(k) =[]k —x) .

=1

Theorem 2.2. In order for the potential U(x,t) of the
NS E (2.2.1) to be a real and non-singular function of the real
variables x,t, the following conditions are sufficient: (1) The
matrix c¢; in (2.2.9) should be skew-Hermitian: [c;] = —[cij]T;
(2) On the assumption that for parameters K; the following
conditions hold: Imx; >0 for i=1,p and Imk; <0
forj=p+1,N, the Hermitian matrix i lc;] for i,j=1,p
should be positive definite whereas i~' [ejl fori,j=p+1,N it
should be a negative definite matrix.

This is proved in Ref. [12]. In practice the conditions of
Theorem 2.2 contain the first substantial limitations on the
location of poles k; of the sought-for function, related to the
form of the matrix ¢; from (2.2.9).

Let us enumerate some properties of the solutions
obtained.

1. The degenerate case. In the polynomial
representation (2.2.2) both the wave function (x,?,k),
and the potential U(x,7) are 2V-fold degenerate with
respect to SD changes. At the same time in the pole-

type representation (2.2.6) only the potential U(x,t)
remains 2"-fold degenerate, i.e. for 2V different sets of
the SD we obtain one and the same potential U(x,?).

Here we point out the explicit form of transformations
from one set of SD to another. Let the matrix b;; be given in
the block form:

b= (% F).

where the square matrices o, and «_ are p xp and
(N —p) x (N —p) matrices, respectively (recall, that
Imk; >0 for i=1,p, and Imxk; <0 for j=p+1,N) and
deta_ # 0. Then the transformations from one set of SD to
another {x;, b;}=>{x';,';} are written in the form

(2.2.10)

! . T .
K;=k; for i=1,p,

=k for i=p+1,N, (2.2.11)
and
—1 —1
[l)’ij] = (“+ ;ﬁ;‘— v _fixr ) . (2.2.12)

2. Asymptotic behaviour. Let us consider the
asymptotic behaviour of the solution in x and ¢ for various
N.

(a) In the simplest case for N =1, k =a+if, the
potential U(x,r) assumes a soliton-like form (for details
consult Ref. [14], Ch. 8):

U(x,1) = —2p%cosh 2 [B(x — xo + 2at)] , (2.2.13)
while the wave function is
P = [1 +ki{1 + tanhB(x — x, +2at)}]
—K
x exp [ik(x + k)] , (2.2.14)

where it is assumed that
2ife = —ero .

For N > 1 and for all x; with Imx; > 0 and Rex; # Rek;
for i#j, the potential asymptotically decays to a direct
sum of the potentials (2.2.13). Hence, such N = 1 potentials
can be regarded as simple building bricks for complexes
with N > 1. Below we call them solibricks.

(b) Another fundamental type of building brick of which
NSE potentials for more complicated systems are con-
structed, are breathers, or string-like solutions, arising for
N > 1, Rek; = Rexk;, periodic or quasiperiodic in time [29].

(c) Now we proceed to a new type of building bricks for
NSE potentials, called bions. This type of solution is defined
by the off-diagonal matrices [c;]; for example, for N =2 we
have

[ey] = (_Og 5) -

The wave function for this case is given in Refs [33, 36]:

(2.2.15)

¢5 cos(qé + Qt + 0;) + ¢,

Y —
cycosh(BE + 0,) + ¢; cos(¢€ + Qrt + 0;)

x exp [ik(E+K't)] , (2.2.16)

where the coefficients are
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~ 1/2
_ | K2 ‘( 1 >/
—— s
CK1p T \K11K2

1/2
¢y = ‘C’Cm ( 1 ) Q20 C’Clz
K1y 1\K11K ’ Ky
e =—le|( - 1 2 o2t — _C(k — k)
3 k—x)k—1)) clk — 1)’

4= 1 [ K| Ky ]
2 [(k =)k (k —10)Ky Ky

The solution (2.2.16) is defined by the following para-
meters:

K=o+if, g=wm—a, Q=w—gv,
kl:k_v7 B:ﬁl+ﬁ27

2 2,2 2
w=w -0+ —p, v=2

E=x+vt,

o By +wpy
Bi+B
R: kl‘—K

il K;

i = =K K
Here o; may be interpreted as velocities of the constituents
(bions), and f; as their ‘masses’.

Note that the bionic solutions (2.2.16), as well as
breathers, are formed from two ‘solibricks’ and both types
of solution are periodic (or quasiperiodic) functions with
respect to time. Nevertheless, the nature of breathers and
bions is substantially different in accordance with their
interpretation in physics. This will be clearly shown at the
nonlinear level. Here we simply note that breathers can be
easily broken down into their constituents, whereas for
bions such a process is strongly forbidden. In this sense, the
constituents of the bion behave like quarks in a meson.
Therefore one can say that there are three types of building
bricks: solibricks, breathers, and bionsf, and the NSE
potentials asymptotically assume the following symbolic
form:

Ux,1), 00 Z solibricks + Zbreathers

+ Zbions + ...

One can use the scheme given above to construct
soliton-like solutions for (2 + 1)-dimensional Kadomt-
sev—Petviashvili (KP) and Davey—Stewartson-I (DS-I)
equations. As is known, attempts to find such solutions
in Refs [31] and [32] have led to the discovery of dromions.
The scheme given above has been applied to the DC-I
equation in Ref. [33]. In this sense one can consider the
above technique as a constructive way for producing
solitonic solutions for (2+ 1)-dimensional KP and DS-I
models. It can also be easily generalised to relativistic
models of the Dirac type, in particular, to the Wax—
Larkin and Thirring models [41]. Let us now consider a
modification of the present scheme in order to study the
derivative NSE (DNSE) (2.1.6).

(a) Solutions of the derivative NS E. Below we primarily
follow the arguments in papers [33] and [39]. Let us consider
equation (2.1.6) with a potential of arbitrary sign i.e.

[(—i0, + 02 £iU(x,)d, | (x,1,k) =0 . (2.2.17)

FIn doing so, we do not deny the possible existence of other building
bricks.

Accordingly, we choose the plane-wave ansatz in a form
slightly different from (2.2.2), namely:

U(x,t,k) = On(x,t,k)exp [ik(x + k)], (2.2.18)
with
On = ay(x, )K" +ay_ (e, KN + o4 a (x, )k + 1 .
(22.19)

If we specify again the location of N poles k; on the
complex plane, as well as the complex N X N matrix by, it
is not difficult to check the validity of Theorem 2.1, with

the only difference that now
U(x,t) = 2i0, Inay(x,t) . (2.2.20)

We write down the pole-type representation for the wave
function in the form

W(x,1,k) = (uN + Z ) exp [ik (x + kt)]

_ Ylx,5k)

v , (2.2.21)
[ =)
J=1

so that we have N + 1 unknown functions ag,ay, ...,ay (or

ay and N functions 7;) and N additional equations (2.2.5)
[or (2.2.7)].

Theorem 2.3. The potential U(x,t) of the equation
(2.2.17) is a real-valued nonsingular function of arbitrary real
variables x and t under conditions (2.2.26).

Proof We define an additional condition for £k =0 as

N .
=1 K
I I Kj

J=1

(2.2.22)

We now have a complete system of equations for ay,7;:

(2.2.23)
j=1"7
¥(x,1,K;) Zc,,qf (x,1) (2.2.24)
Consider a meromorphic function
Q=Y t,k)¥P(x,t,k)/k . (2.2.25)
Applying the residue theorem, we obtain
¢ cp
o= (24 ) o0,
Z,: K K
whence subject to the condition
K;
we have
lay|> =1, (2.2.27)

to maintain the real-valuedness and nonsingularity of the
potential U(x,?) for arbitrary real x and r.
When N =1, from formula (2.2.5) one finds



120

V G Makhankov, Yu P Rybakov, V I Sanyuk

_ <_l> 1 +bexp[i(f — é)]_
k) 1 +b(x/k)exp [i(6 —0)]

The potential U will be a real function on condition that
|a| = const or, bearing in mind that k=a+if,
b=b; +ib,, one can rewrite this condition in an
equivalent form

(2.2.28)

bk =bk, or bjf+ba=0.

By differentiating (2.2.28) and
condition (2.2.29), we find

8% sgn b,

(2.2.29)

taking into account

- byl =e 2P0 (2230
2B cosh 2y — a2 — (a/B)e™1]’ [ba] = ( )
or for by,o # 0:
2
___ SldB sgna by=eP0 50, (2231a)
402 cosh?n + fre2’ ! ’ o
2
=0 8"’;'5 Sg"ﬁlf = hi=—eP <0, (2231b)
o sinh™n + p~e™
whereas for a =b; =0
4B sgn by —2px
—_apsenby e 2231
cosh 2B(x + xg)’ [ba] = ( ©)
where
1= Blx +2at +xg) . (2.2.32)

In turn, the wave function
_ k{1 +bexp[—2(n — Bxo)]}

Y — = _ exp[ik (x + kt))
k{1 + bexp[-2(n — Pxo)]}
(2.2.33)
for the case k = i takes the form
RVCPR
p o bk 0 =iox +i(® — f)r .  (2.2.34)

20.coshy +ife™’

A similar expression (up to a constant factor) is obtained
for the case k = k. Note that expression (2.2.33), which is
dependent on five real parameters (a,f,D,k,k,), itself
represents a general formula for the wave function of the
derivative NSE for an arbitrary complex number k.

(b) Solutions of the Ishimori-11 equations. The solution
obtained for the DNSE allows us in particular to find
solitons in the (2 + 1)-dimensional Ishimori-II model,
which is described in [27], with the following equations

9,S(x,y,t) + 8 A (835 +;S) +8,¢0,S +0,40,S =0,
(2.2.35a)

0 —d+250,SAS) =0 (2.2.35b)

where § = (S,,S,,S;) is a vector of unit length $?=1and
¢(x,1) is a real function. On passing to the cone variables

=1(x+y), n=4%(x—y), solving the problem (2.2.35)
may be reduced, following Ref. [34], to a solution of the
linear system of equations

i0,X (£,1) + 303X +1U,(&,1)0:X =0,
i0,Y (n,1) +58,Y —iU,(n,1)8,Y =0,

(2.2.36a)
(2.2.36b)
with real-valued potentials U; = U;. Solutions of the type

(2.2.33), related to degenerate spectral data (factorised), in
accord with the results of Ref. [34] are written as:

2XY =
S, +iS, =S, =—— _(14+AB), 2.2.37a
) y + |1—AB|2( ) ( )
=5,
A+A)B+B
( +A)(B +B) , (2.2.37b)
|l —ABJ

¢(&,n, 1) =2(ilndet 4 +07'Up(&,1) +0, Ui (n,1)] , (2:2.37)
where
n _
A= J dyY (y,1)0,Y (y,1) , (2.2.38a)
—00
¢ _
B = —J dx X (x, )9, X (x, 1) , (2.2.38b)
—00
1 —AB
4= . (2.2.38¢)
1+ AB
Taking into account (2.2.36), we find
Y(y,t) :X(y7_t) .
When by > 0, k =k, we obtain the solutions
exp{ifox + (B — o))}
X(x,t) = 2.2.39
(1) 20 coshz; +ife™@ ( 2)
21 =Bilx =27 +x0) ,
- exp {—ifoy — (B3 — 03)]}
Y =X(v,—t) = 2.2,
() =Xl =) = =5 S (2239%)
23 = Bo(y + 205t + y0),
and, accordingly, the expressions
. 1 2z,
'(“2/2’32)( ) (2.2.402)
T2 4oc2cosh 2 + Pre*e
11—i 1 4%
p—_L1=i/B)0+e) (2.2.40b)

2 403cosh’z; + fie 2

Solutions (2.2.37)—(2.2.40) describe a soliton which moves
with velocity v =2(a; —a,). To obtain solutions corre-
sponding to solitons at rest, it is sufficient to proceed to a
moving frame. Note that obtaining two-soliton solutions
on the basis of Eqns (2.2.26) and (2.2.27) presents no
special problems. In particular, an expression for ¥ will be
just a slightly modified expression (2.2.16).

2.2.2 Nonlinear level Let us now consider the results
obtained in the light of paper [12], where the main problem
of the suggested algebraic method for constructing solitonic
solutions has been emphasised. This problem resides in
pinpointing the connection between the potential U(x,t)
and the wave function Y(x,t,k) (or its residues ¥;(x,?)).
Since in calculating the solution we deal with meromorphic
functions, it seems natural to solve this problem by
applying the residue theorem. This suggests the form of
a rational function E(k) allowing us to find the self-
consistency conditions by calculating the residues of some
auxiliary function

Q = E()W(x,t,k)(x,t,k) .

In particular, if we specify E(k) as the polynomials

(2.2.41)
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i E =k,
(i) E, = k> + ak ,

(iii) E5 = k> + 2bk* + 2dk , (2.2.42)

we arrive at the following relations between the potential
U(x,t) and the wave functions Y(x,t,k):

(i) U= —-2F(x,t),

(i) 0,U+ad,U =20,F(x,1),

(i) (87 —1ON)U + 20t U +8 (b0}, +d U

=—30]F(x,1) , (2.2.43)
where F(x,t) denotes the quadratic form
N —
Fx,t) =) PE;¥ (2.2.44)
ij=1
with Hermitian matrix

The matrix (2.2.45) along with the set of poles k;
completely defines the solutions of the nonlinear equation

[i0, + 07 + Ulx, )| Pi(x,1) =0 (2.2.46)

with a corresponding self-consistency condition from
(2.2.43). The role of nonlinear field variables in
Eqn (2.2.46) is played by the residues ¥; of wave functions
V(x,t,k), that possess the ‘correct’ asymptotic behaviour at
spatial infinity x — £oo for certain sets of the SD (see
Theorem 2.2). In these cases

¥,(x — +00) = 0 (2.2.47)

and we have nonlinear problems with trivial boundary
conditions (TBC). For other sets of the SD, the residues ¥;
grow infinitely and are not usually of interest in problems
of physics (at least for homogeneous systems).

In order to use this approach for problems with
nontrivial or, as they are frequently called, condensate

boundary conditions (CBC)
|®;(t,x — £o00)| — const , (2.2.48)

instead of functions (2.2.42) one has to consider functions
E = E of the type

= " gb? .
E:;k l_’ki+Ej7 J=123, (2.2.49)

where ¢ = =+1,b; and k; are arbitrary real constants.
Calculating the residues of the function €, defined in
(2.2.41), we again find conditions (2.2.43), where now,
instead of F(x,7), we have

N n
Fx,t) =Y WEY; + > en(|90l’ — b7) . (2.2.50)
i,j=1 m=1

with nonlinear fields

®,(x,1) = b(x,t,k =k,) , (2.2.51)

themselves representing wave functions at fixed points
k = k;. Studies of asymptotic behaviour at x — £oo show
that Y(¢,k;x — +oo) =1, and as a result we have CBC
(2.2.48) for the nonlinear fields @;(x,?).

In general one can consider a (n + m)-component vector
field

¥

o= o |- (2.2.52)

P

satisfying the equation
[i0, +3 + Ux,1)]o(x,1) =0

with self-consistency conditions of the form (2.2.43) and
(2.2.50). It is clear that in the case of pure condensate fields
the quadratic form F(x,t) = Efvj ¥.E;¥; must be equal to
zero for every nontrivial ‘solibrick’ ¥;. This puts some
extra (nonlinear) restrictions on the choice of SD, namely,
on the location of the poles. Let us illustrate this taking as
an example the scalar NSE [40]

[0, + 02 + (|9 — b)] B(x,1) = 0.

(2.2.53)

(2.2.54)

for N =1 and subject to condensate boundary conditions
(2.2.48). From formula (2.2.45) we find in this case

E(®)—E(@) =0, (2.2.55)
or in a more particular form
b
(%) — K])(S—— l> =0. (2.2.56)
lic) — k[

One can easily see from the above that the equation
c b _
lic) — k[

has a solution when &£=1, i.e. when the NSE has a
repulsive potential, while the allowed poles are located on
the circle |i; — k;|* = b%. As for the NSE with an attractive
potential (when ¢ = —1), one-pole condensate solutions are
absent.

As another example, we consider a two-pole solution of
the bion type (2.2.16). In this case, instead of (2.2.56) we
have

E(f)) — E(ky) =0,

1 (2.2.57)

or
c b’
(Ry — k1) (rcy — ky)

The first solution &; = k, coincides with the well-known
Zakharov—Shabat breather (or string-type) solution [29],
so we pass at once to the second solution

2

b
lie) — k[ =k
From formula (2.2.59) it follows that the condition
Imx, x Imx; < 0, which is required for the nonsingularity
of the solution in accordance with Theorem 2.2, is valid for
€ < 0, i.e. it is permissible only within the framework of the
NSE with an attractive potential.

Summing up we come to the following conclusion:

Proposition 2.1. In systems with condensate
boundary conditions and with a plane-wave ansatz, one-
pole solutions (kinks) for the repulsive type of interactions
exist which are otherwise absent. Meanwhile, two-pole

-1 =0.

(I_C] - K2) (2258)

Ky =k +e (2.2.59)
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solutions (bions) appear within the framework of the NSE
with an attractive potential as elementary nonlinear
excitations, composed of invisible (quark like) constituents
called ‘solibricks’.

Let us point out, that the method considered is
applicable as well to other versions of the nonlinear vector
Schrodinger equation [12, 26], including those with off-
diagonal potentials [37]. Consider as an example the
following simple system

i0,¢; + ¢ + Ulx,1)p; =0, i=1,2, (2.2.60)
U=+ ¢10, . (2.2.61)
which has the solution [40]
¢ = Aie™ cosh €, + ?"emz cosh . (22.62)
C; coshyt + C,cosh ™ + C; cos(¥ + )
where the following notations is used
0, =B(x +vit) +b; U =qx +awt
= +vE) by, i=1,2,
and TBC are imposed in the form
(d)' > = (g) , (2.2.63)
¢2 x—+o00

with the coefficients in (2.2.62) analogous to those given in
(2.2.16). Equations of the type (2.2.60) with the potential
(2.2.61)

2 2
Ui =[¢]" £1¢,]

occur in nonlinear optics (laser beams in light-guides), as
well as (for U_(x,t)) in the phenomenological description
of superconductivity when T # 0. In the latter case we have
a system of two coupled components: a normal and a
superfluid one, such that their density ratio is defined by
the temperature [38]. The two-pole solutions found
correspond to a new type of localised excitations in this
system, known as [Sov. Phys. Solid State 30(12) 2119
(1989)]double vortices (endowed with the topological
charge Q =2 or Q =0).

2.3 Many-dimensional systems and how they relate to the
nonstationary SchroSdinger equation

Another feature of the nonstationary SchroSdinger
equation, is that it can be generalised to include the
many-dimensional variants, which allow for localised
solitonic solutions [42]. The point of the suggested
constructive algorithm is to consider linear Schrddinger
equation of the type (2.2.1) in N 4+ 1 dimensions:

[ia, + A+ U(x,t)]t//(x,t) =0; x=(xq,..,xy) €ERY,
2.3.1)

where A is the N-dimensional Laplace operator. Solutions
are found in the standard form

YU(x, 1) =A(x,t)exp [i(p(x,t)] , (2.3.2)
which leads to the system of equations

0A+2Vp-VA+AAp =0, (2.3.3a)

DA + (Ufa,(p—V(wﬁqo)A -0 (2.3.3b)

with the assumption that the potential U(x,?) is a real-
valued function. Noting that the potential U(x, ) does not

enter the equation (2.3.3a), one can easily finds that in the
new variables

®=¢, R=A/F(w) (2.3.4)

the arbitrary positive definite function F(w) > 0 satisfies
the equation

OR+2Vp-VR+RAp=0, (2.3.5a)

analogous to (2.3.3a), if the auxiliary function w = w(x, )
is a solution of the first-order homogeneous equation

ow+2Vp -Vw=0. (2.3.6)

For any given solution w = w(x,t) of equation (2.3.6) the
function R(x,r) is obtained from (2.3.4) and the equation

AR+ (V -8, — V& -VO)R =0, (2.3.5b)
where the new potential V(x,¢) is defined by the relation
V=U+AImFw)+VinF(w)-VIn[A>/F(w)] . (23.7)

Equation (2.3.5) implies that the new complex wave
function

¥(x,t) = R(x,t)exp [iD(x,1)]
satisfies the equation
i0,W(x,1) + AV(x,1) + V(x,)¥P(x,1) =0

with potential (2.3.7).

In the next step of the algorithm one arrives at a
solution of the equation (2.3.6) for the auxiliary function
w=w(x,?). To this end separability conditions are intro-
duced for the solutions Y(x,t) of equation (2.3.1) in the
form

(2.3.8)

U(x7t) = Ul(xht) +“'+UN(XN7t) s
W(x7t) :llll(xl7t)+"'+l//N(xN7t) °

(2.3.92)
(2.3.9b)

whence from Eqn (2.3.2) the separation of the phase and
amplitude of the wave function follows

P(x,1) = 9y (x1, ) + e + Py (s 1) (2.3.102)
Ax,t) =A1(x1,1) .. Ay(xy, 1), (2.3.10b)
where the components are related by
U (xn, 1) = Ap(xn, 1) exp [iQ,(x,,1)],  n=T,N. (23.11)

In the case considered, a separable solution of equation
(2.3.6) in the form

wx, 1) =wi(xq, 1) .o wy(xy, 1), (2.3.12)

exists, if each of its factors satisfies the (1 +1)-dimensional
equation

ow, +20, 9,0, w,=0, n=1N. (2.3.13)
By using the expressions for the conservation laws
A, +20, 0, 9,A7)=0; n=1,N, (2.3.14)

one can easily write down an explicit form of solutions for
equations (2.3.13)

W (T, 1) = + ﬁ"dmg(g,t)

t
—2J dtd, @(Fn T)AR(T,, 7)o (2.3.15)

1y
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where ¢, X,, ty are real-valued arbitrary constants. A
further observation is that 0, w, = Aﬁ; therefore equations
(2.3.12), (2.3.10b) and (2.3.4) imply the equation

) w=F(w)|?|.

X1 Xy

(2.3.16)

Next, following the line of arguments in paper [43], one
can introduce the notion of A C-integrability¥.

Definition 2.1. A nonlinear evolution equation (or
a dynamical system) is called A C-integrable if it possesses
an infinite class of multisoliton-like solutions, which can be
obtained by a change of variables from the solutions of an
integrable equation. In particular this includes the well-
known Davey-Stewartson equation (DS-I) [28], which
describes quasimonochromatic wave packets on the surface
of a liquid with small depth:

i0,%(x,1) + A¥P(x,1) + V(x,)¥(x,1) =0, x €R?,
(2.3.17a)
B, Vi, 1) =26 AP, (2.3.17b)
which in the given scheme corresponds to the case N = 2.
Indeed, a simple choice F(w) = 1 + ew in equation (2.3.16),
and taking into account the separability conditions (2.3.12)
and the form of solutions (2.3.15) of the corresponding
equation from (2.3.16), leads to the expression for the
potential

V=U(xy,t) + Us(xz,t) + 2 AIn(1 + ew) ,

which  coincides with the result of integrating
Eqn (2.3.17b). The known result, obtained in Refs [30]
and [31], is that soliton solutions of the DS-I equation arise
if one chooses for U;(x,t) and U,(x,,t) in Eqn (2.3.18)
appropriate potentials of the linear nonstationary Schro-
dinger equation

O + AY + [Uy(x1,1) + Up(x2,0)]y =0,

Y =VY(x,1), x ER?, (2.3.19)
which appears to be the linear limit case of the DS-I
equation for ¢ — 0. From this it follows; in particular, that,
contrary to the (1 +1)-dimensional case, the solitons of the
DS-I equation remain well localised objects even in the
linear limit as ¢ — 0. However, in this limit they behave like
free particles, and the nonlinearity for ¢ # 0 leads to the
establishment of a nontrivial interaction among them. A
detailed description of the DS-I soliton interaction, based
on numerical experiments can be found in Ref. [44].

In order to complete the presentation of the Degasperis
scheme for the (N + 1)-dimensional case, let us write down
the general expression for the new potential

V=U +..+Uy+AInF(w)
+VIn F(w) - Vin[F(w)| ]

(2.3.18)

(2.3.20)

which results in the system of equations (2.3.8) and (2.3.16)

with respect to the functions ¥(x,f) and w being
AC-integrable, since on changing the variables in the form
Y(x,1)
Y(x,t) = 2.3.21
() =08 CEED

its solutions can be obtained from the solutions (2.3.9b) of
the linear equation (2.3.1) with the potential (2.3.9a).

It is clear, that the scheme presented here substantially
widens the possibilities for constructing integrable many-

TAlmost C-integrability.

dimensional models, which could be of use for the
description of localised objects existing in reality. Never-
theless, in practice, we more often come across models
which arise from various concepts in physics and which, as
a rule, belong to the class of nonintegrable models.

PART II. STABLE STRUCTURES IN
NONINTEGRABLE MODELS

The widespread use of nonlinear equations in contempo-
rary physics has revealed an important characteristic
property of nonlinear wave processes: when a nonlinear
dynamical system is strongly excited, it produces stable
localised structures, known as solitons. It is precisely these
structures which survive as the evolution of the system
progresses and which define the principal features of the
dynamics of the system (see, for example, Refs [13, 14, 45]).

3. The Lyapunov direct method in the theory of
soliton stability

One of the most important problems in the theory of
solitons is the study of their stability. The customary
approach to this problem is to consider small initial
perturbations of solitons that permit us to linearize the
equations of motion. However, this method does not
always lead to the correct answer, as has been shown by
A M Lyapunov [46], who developed a rigorous method of
treating stability, the so-called direct method. The main
point of this method consists in choosing some special
functions whose properties allow us to draw conclusions on
the character of the evolution of the system. An extension
of this method to distributed systems (in particular, to the
field models) is presesnted in Refs [47]—[49]. Several
modifications of the Lyapunov method as applied to the
theory of solitons are known: the method of functional
estimates of Zakharov and Kuznetsov [50), the Arnold energy
method [51, 52], the method of Shatah and Strauss [53], the
Benjamin method [54], etc.

[t is our aim to apply the Lyapunov method to the
treatment of soliton stability in some physical field models.
To this end, we begin with the analysis of the stability
concept in the general theory of dynamical systems, and
then shall concentrate on the special aspects of its
application to soliton physics.

3.1 Definition of stability and the principal theorems of
the direct method

Stability is one of the important concepts in practice which
arises when studying real dynamical systems. As a
qualitative notion, stability can be associated with the
continuity of the motion with respect to perturbations of
unknown origin. Depending on the type of these
perturbations we can distinguish a few kinds of stability.
We shall consider mainly the stability of many-dimensional
solitons, that is of regular solutions to nonlinear field
equations, localised in space with dimension D > 2. Let
¢(t,x) be a many-component field function with values in
R", which is considered as an element of some Banach
space B and which satisfies an evolution equation

ar(i):ﬁ(d)) s

with £ a nonlinear operator. Suppose that for an initial

G.1.1)
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condition of the type ¢,_) = ¢(x) equation (3.1.1) admits
the unique soliton-type solution

$(t,%) = Si[by] -

where S, denotes an evolution operator with semigroup
properties, i.e.

§r. [§r3[¢0]] = §r,+r2[¢o]7 t;=0.

There is a very close relationship between the concept of
stability for the given unperturbed motion ¢ = u = u(t,x)
and that of the correctly posed Cauchy problem in the sense
of Hadamard. To define the latter notion, let us introduce
two functional metrics which describe field perturbations

E(t,x) = ¢(t,x) —u(t,x) . (3.1.4)

Namely, let the metric p,(&y) determine the distance in the
space of initial perturbations &;, while the metric p(&)

(3.1.2)

(3.1.3)

measures that in the space of current perturba-
tionst £.Under the standard assumptions
po(&o) = p(8) , (3.1.5)

that is, the metric py(&,) is stronger than the metric p(&).

Definition 3.1. The Cauchy problem for equation
(3.1.1) is said to be correctly posed in the sense of Hadamard,
if Vi €[0,T], T < oo, py(&y) — 0 implies p(&) — 0.

To illustrate this definition, consider the well-known
example of Hadamard:

Example 3.1. The ill-posed Cauchy problem for the
equation

O p(t,x) +0ip(r,x) =0, 120, x€[-n/2,n/2].
(3.1.6)

Consider the following initial and boundary conditions:
o(t,x =xn/2)=¢(t=0,x) =0,
6f¢|f:0 = e"/’;cosnx, n=2k+1.

The corresponding solution to problem (3.1.6) reads

1 .
o(t,x) = —e V" cosnx sinhnt . (3.1.7)
n
If one chooses two coincident metrics p=p,=
sup, (|€] +10,¢]) then putting n — oo one finds that the
metric for initial perturbations behaves as follows:

Po(d) = sup (e_‘/ﬁ| cosnx|) =e V"0,

while for the current metric V¢t > 0, n — oo (3.1.7) implies

(@) = sup Ee*‘/ﬂ cos nx|(sinh nt + ncoshnr)| — oo .
X

Definition 3.2. A soliton solution u(f,x) is called
stable in the Ly apunov sense with respect to the metrics py, p,
if Ve > 0 there exists d(¢) > 0 such that py(&)) < é implies
the inequality p(&) <e, Ve > 0.

Therefore, the correctly posed Cauchy problem in the
sense of Hadamard is equivalent to stability over the finite
time interval T.

Finally, the following typical problem is encountered
when the perturbation appears on the right hand side of
equation (3.1.1), i.e. when one assumes

tAs will be shown later (cf. Example 3.3), the introduction of two
metrics seems to be necessary to pose correctly the stability problem
for distributed systems.

0. — E(¢) =F(9) - (3.1.8)
If one introduces the special metric p, to measure the
perturbation f(¢), i.e. p;=p;[f(¢)], then the following
definition seems to be reasonable.

Definition 3.3. The solution u(f,x) to equation
(3.1.8) is called stable with respect to the metrics pg, p, p;
under the action of permanent perturbations f(¢), if Ve > 0
there exist d,(g) > 0,0,(¢) > 0 such that p,(&y) <&, and
p_,-[f(d))] < 8, imply the inequality p(&) <eg, Vt>O0.

A coarser stability definition given by Lagrange should
also be mentioned.

Definition 3.4. The solution u(f,x) to equation
(3.1.1) is stable in the sense of Lagrange, if there exists § > 0,
such that p(&) < oo,V¢ > 0 under the condition py(&,) < 4.

Hence the boundedness of the perturbations at any
instant is sufficient for stability in the sense of Lagrange.
Note that a finer concept of asymptotic stability is often
used in practice.

Definition 3.5. The solution u(t,x) is called
asymptotically stable in the sense of Lyapunov, if it is
stable according to Definition 3.2 and also if p(£) — 0
as t — oo.

However, in soliton physics one frequently deals not
with a single soliton solution «(¢,x) but with a set U = {u}
of such solutions, usually labelled by some group para-
meters o, i.e.

U= {fg(a)u

gEG},

with G being the symmetry group of the dynamical system.
In this case, the stability is called orbital, with the current
metric being inf,c; p(¢ — u), that is the distance between
the field ¢ and the set U which is the orbit of group G. One
should also distinguish between stable sets and attractors
(attracting sets), for which p(&) — 0 as t — oo. It is obvious
that an asymptotically stable set is both attracting and
stable set. Note that a set might be attracting and unstable
since p(€) can increase in a finite time interval, though
p(&) = 0 as t — oo.

In view of the complexity of a rigorous treatment of the
stability problem, in practice one is restricted to the
linearised equations

0, E=A)=F (e . (3.1.10)

The stability for the linear problem (3.1.10) is called
linearised stability, or stability to the first approximation
(or to the first order), and that for the original equation
(3.1.1) is called nonlinear stability. 1t is clear that nonlinear
stability implies first order stability, though generally with
respect to a weaker metric. The converse is valid if only
Red < 0VA € a(A), where o(A) stands for the spectrum of
the operator A (which is called dissipative in this case).
More precisely, the spectrum Reld <0 corresponds to
spectral stability, and ReA =0 in its turn to neutral
stability. (A typical example is provided by stable
Hamiltonian systems.) Note that spectral stability follows
from linearised stability owing to the fact that RedA >0
implies the existence of increasing modes. The converse is
not valid as one can see from the following problem in
mechanics.

Example 3.2. Consider a mechanical system with the
Hamiltonian

(3.1.9)

2 4
H=3p"+1q

and the relevant equation of motion
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3

4g=—q .
The linearised equation reads
£=0

and corresponds to the spectrum A =0 which indicates
neutral stability. However, the solution & =ar+ b to the
linearised equation is linearly increasing. Thus we infer
linearised instability, though the original system is stable in
the nonlinear sense. Note that the linearised system turns
out to be stable with respect to the velocities only, that is in
the weaker metric.

It is a well-known fact [55] that for a relatively wide class
of dynamical systems spectral instability implies nonlinear
instability. In fact, let us rewrite the equation (3.1.1) as
follows

0,6 =AE+BF(¢), SF=F—A , (3.1.11)

assuming that || F(&) || < C || &, where || - || denotes the
norm in the space B. Let the operator A have an
eigenvector y with ||y || =1, corresponding to an eigenva-
lue A having a maximal real part RedA=1. Let also
& =9, || & ||= 6 be an initial perturbation. To prove the
instability we argue by a reductio ad absurdum assuming
that the motion in question 1is stable, that is
|| €() ||< & Vt > 0. Rewriting equation (3.1.11) in integral
form
. t
£(r) = A’60+J AI5E 2(5)] ds | G.1.12)
0
we infer the validity of the following estimate for the
perturbation norm

L& < e |+ sp enas

!
< de' +J ‘e’l(’_“')| | SE[ECS)] || ds
0

!
<o + cJ e EGs) |12 ds .
0

It can be seen from the above expression, that there exists
T, > 0, such that V¢ € [0, T] the inequality || £(¢) | < 2d¢'
holds . In fact, the latter can be deduced if one supposes,
that

!
o' + 4Ce’52j e'ds < 26¢"
0
whence

(3.1.13)

However, equation (3.1.12) implies the validity of yet
another inequality:

LEO) I > e e =] ¢ srEen as

> 8¢’ [1 —4Cs(e' —1)] ,
that permits us to choose T, from the equality

S (3.1.14)

and to conclude, by comparing expression (3.1.13) with

expression (3.1.14) that T,<T,, and
| €(t) || = €'6/2Vt < T, or equivalently
T 1
T,
IET) | > 3e0 =30+
Thus, choosing &< 1/16C,| & ||=0, we infer that

|| €(T5) ||> 1/16C = e ¥é > 0, which implies instability.

Let us formulate the main theorem of the direct method.

Theorem 3.1 (The Lyapunov—Movchan stability
theorem). A solution u € U is stable with respect to the
metrics py,p, if and only if there exists, in some vicinity
po < the Lyapunov functional V [p] with the following
properties:

(i) V is positive-definite with respect to p(&),

(i1) V is continuous in p,

(iii) V is nonincreasing in time.

The conditions of the theorem mean that there exist two
continuous monotonic functions m(p) > 0 and M (p,) > 0,
m(0) = M (0) =0, called the lower and upper comparison

functions respectively, such that

m(p) < V[p] —Vu <M(p,y) . (3.1.15)
Let p,<d; then inequality (3.1.15) implies that
M(8) > M(p,) = m(p), whence p <eg, ie. the motion is
stable.

The choice of the metrics p and p, is distorted by the
structure of the Lyapunov functional. For example, let V be
an additive functional of the form

Vgl =de F(¢,$,V¢) . (3.1.16)

One can use the Taylor expansion with integral remainder:
1
Flx+8=fx)+f'(x)¢ —i—J dsf"(x +sE)(1 —s) .
0

In the case considered 3V[u] =0 which implies

Vit = Ve + J‘”J; ds(1 =) [Fosl + Fyi

+F g (VE) +2F, q-b;&
+2F gy EVE + 2F 4y, éVC]

=V + L]) ds(1 — )8 V[u+ s¢] .

If V[p] is a globally convex functional, then
8%V [u+ s& > 0, which allows us to choose the current
metrics as follows

P(E) = J;ds(l — ) V]u+sE] .

This particular choice of metric forms the foundation of
the method of V I Arnold [36, 40, 41], who assumed that
V¢l =H + C, with H being the Hamiltonian, and C an
integral of motion (the Casimir invariant) specified by the
condition 8V [u] = 0.

The notion of formal or energetic stability is also often
used when the conservation law

E = de F(¢,$, V) = const ,
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or the evolution law E < 0 holds such that 8E =0, 8°E > 0
in the vicinity of the solution in question. It is clear that
from energetic stability one can derive linearised stability,
because the linear equations of motion imply the inequality
8’E <0, and stability follows if one takes p* = pj = &°E.
The converse does not hold, which can be ascertained by a
simple counter-example from classical mechanics, with
Hamiltonian of the form

H=%(pl +4i —p2 — 43 — qiq3) =E = const .

Since in linearisation we are dealing here with two
independent harmonic oscillators, linearised stability is in
this case obvious. On the other hand, the quadratic form

8°E = 8pi + 841 — 8p3 — 8¢

is sign-indefinite, that
unstable.

Remark 3.1. It should be emphasised that in a finite-
dimensional theory (mechanical systems with a finite
number of degrees of freedom) both energetic stability
and the analyticity of the Hamiltonian imply Lyapunov
stability in the small, as can be deduced from the Lyapunov
stability theorem. Under these conditions, the inequality
E > E (here E, is the unperturbed value of energy) is valid
in some vicinity of the unperturbed solution which stems
from from &°E > 0. However, in an infinite-dimensional
theory (for distributed systems), this is not the case since
then &°E >0 does not necessarily imply that E > E, in
some vicinity of the solution. A typical counter example is
given by:

£ = |ax[Vaf - vl + 4]

is, the system is energetically

Finally, the notion of global stability is used, when the
system turns out to be stable for values of p however large.
This is the strongest possible stability one can define.

To illustrate the peculiarities of stability analysis for
distributed systems, let us consider the following simple
example.

Example 3.3. The stability of a homogeneous
unloaded string with fixed end points. Let us solve the
wave equation

r(t,x) —ap(t,x) =0,
with the boundary conditions

o(1,0) =¢(t,1) =0, t=0, x€]0,1],
and initial conditions

0,0(0,x) =v(x), ¢(0,x)=u(x) .

The solution to this familiar problem is given by the
d’Alembert formula:

(3.1.17)

2¢0(x, 1) = ulx —t) +u(x +1) + .rHv(s)ds ,

x—t

(3.1.18)

with functions u,v being skew-symmetrically extended over
the whole real axis. To treat the stability of the steady state
of the string ¢ =0, the following metrics may be
introduced:

pr = j;qszdx, p= | ¢+ @) ]ar.

1
0

p3 = J:) [(ax¢)2 + (ard’)z] dx, py=p +p;.

As follows from the solution (3.1.18), the equilibrium
¢ =0 is stable with respect to the metrics p,,p3,p,
separately (here p; is the integral of motion), and to the
pairs of metrics (p,,p1), (03,02), (P4, p3)- However, it is
unstable with respect to the metric p; (the ill-posed
problem in the Hadamard sense), because the fixing of
p; imposes no constraints on the velocity 0;¢.

In the light of the aforesaid, it is clear that stability anal-
ysis of many-dimensional distributed systems requires a
very careful selection of metrics, given the fact that
formulae of the kind of (3.1.18) do not work in this
case and the smoothness of the initial data proves to be
of critical importance. That is why from the outset a
stronger metric should be taken.

Now let us formulate the main instability criterion which
is given by the following theorem:

Theorem 3.2. (The Chetaev—Movchan instability
theorem). A solution u € U is unstable with respect to the
metrics pgy, p, if and only if there exists a Chetaev functional
W [@] with the following properties: (i) W [@] is continuous
with respect to pgy; (i) W [@] is bounded with respect to p;
(iil) W [@] increases in time in the domain W > 0.

3.2 Energetic instability of many-dimensional stationary
solitons

Once Lyapunov’s functional V [¢] has been chosen, it is
necessary to verify its global convexity, i.e. the validity of
the inequality &V [u+ & > m(p). However, in practice
only the local inequality 8*V [u] > 0 is verifiable and even
this not always. Thus, in all cases the structure of the
second variation of the Lyapunov functional needs to be
studied. To this end, some virial theorems, similar to those
established by Hobart and Derrick [56, 57], [though limited
to the case of static soliton configurations u(x)] might be
useful (for the exposition and development of this
approach see Refs [3], Ch. 3; and [14], Ch. 9). Let the
functional V [¢] possess the critical point ¢ = u(x), that is
8V [u] = 0. Consider the simplest perturbation of the
soliton, generated by the scale transformation ¢; = u(Ax).
Then we get

Ou
d¢p =& =20A (ﬁ)

Let us assume that the functional V [¢] can be represented
as the sum

Vig] = Z ve(2) .

v=—n,

=1

(3.2.1)

where V(")(/l) is a homogeneous function of the scale
parameter 4 of order v. In view of Eqn (3.2.1) we find

n

=2 v
i=1 £
v=—n,

The identity (3.2.2) is known as the first virial theorem of
Hobart and Derrick. Calculating the second variation 8V,
taking into account the identity (3.2.2), we obtain:

Vi & oavt
3 0

=0. (322
i (3:22)

SV & vy

N
L U0
v=Z;]v(v 1904 i
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_ Z V(")

v=—n,

(3.2.3)

The identity (3.2.3) is known as the second virial theorem of
Hobart and Derrick.

Example 3.4. Consider the following functional
defined in a space of dimension D:

Vg = J d’x Ve[ +J dPxF () . (3.2.4)
Then, in accordance with (3.2.1), we have
Vgl = J d?x|Vo|? +J dPxF (¢) . (3.2.4)

The virial identities (3.2.2) and (3.2.3)
relations:

imply the

1%

= 2-D)yeD _pyP) g,

82

=H = 2-D)*’ve D) 4 p2y(P) —202 D)V D)
Thus we infer from the first equation that for

D=3, VD) <« 0; and from the second one, that
8’V < 0 for scale deformations (dilatations). This means
that for the models described by functionals of type (3.2.4)
the static solitons are unstable for D > 3.

Remark 3.2. As already noted by Hobart [56], this
situation can be improved by inserting into the functional
(3.2.4) terms containing higher degrees of field derivatives.
This remedy was employed in the models of Skyrme and
Faddeev (cf. Ref. [3], Ch. 3), which are usually associated
with the notion of topological stability. Moreover, solitons
with neutral scaling behaviour can be realised in ‘exotic’
models with functionals of the form

?[9] = J &x(Ve- V) + ...,

where the power 3/2 was chosen in order to satisfy the
Hobart—Derrick criterion [58].

Definition 3.6. The soliton solution u(¢,x) is called
stationary if it satisfies the equations

(3.2.5)

where V [¢] is an additive functional of the form (3.1.16),
(3.2.4) [to meet more general requirements, we consider
here equations of the second order in time derivatives, in
contrast with (3.1.1), while first-order equations emerge if
one chooses F = F(¢,V$)] in (3.1.16). In what follows all
the soliton solutions u(t,x) are supposed to decrease at
spatial infinity according to the law

Vu| = o(r*[(“/z)ﬂ]), 2>0.

Then the following theorem is valid
Theorem 3.3. The second variation of an additive
Ly apunov functional is sign-indefinite in the neighbourhood of
stationary soliton solution for a spacedimension D = 2.
Proof. For the sake of convenience we choose D = 3.
Let us write down equation (3.2.5) for the field u with
components u®, s =1,n,

F\" :07 F\'_aiE\'i:O7 i= ]7273 s
where the derivatives are as follows
oF : oF oF
F=——, Fl=——, E=—.
Y oooat Y d(wt) T out

Let us now calculate the second variation of the functional
V at the point u:

8V = jd%c (Fob'& vorsbre +REE

(3.2.6)

+ 2, E0E + FARERE + 2FBETE) .
E =)o,

with account of

Now insert the special perturbations
& =fl(x)ou’ in 8V transforming it,
Eqn (3.2.6), to the form

3'V[f] =J x[of Ao + @uf' - —auf B |
(3.2.7)
where the following notation is used:
Al =0u'F{du’, 2Bj=-2Bj=0,Fdu . (328)

Note that the second term in Eqn (3.2.7) is obviously sign-
indefinite, and, owing to Eqn (3.2.6), the following equality
holds

9.8 =0, (3.2.9)
whence we obtain the representation
2B} = ¢""0pay (3.2.10)
with the notation
Bj(x")
Apji = 2 mklak J dSX’m . (32] ])

Taking into account Eqn (3.2.10) and integrating by parts
in Eqn (3.2.7), we get
&V If] =J [6/‘ (A + & ;)0 ] (3.2.12)

Now verify the sign-definiteness of the integrand in
(3.2.12). Consider, in particular, the asymptotic region

r— o0, r=|x|, where, in accordance with expres-
sions (3.2.8),
B =0(r ), (3.2.13)

showing that amj,:O(r_3). To prove this asymptotic
behaviour we first deduce from expressions (3.2.9) and
(3.2.13), through integration by parts, the identity

Jd3xBj') =0.

Taking the latter into account, one can rewrite Eqn (3.2.11)
as follows

! k| 43 i 1 1
Apjt = 2 I7lkla J d x,le[(xl) <m — ;> .

By using the mean value theorem one now easily finds from
expressions (3.2.13) and (3.2.14) that

(3.2.14)

!
X —x x| 3
|am| < C]|m—r—3 =0(r7) . (3.2.15)

Finally, comparing Eqn (3.2.15) with the estimate
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A;f =0 [r—(3+2|x)] ,

emerging from expressions(3.2.8), we infer
quadratic form in (3.2.12) is sign-indefinite.
The proof given above can easily be extended to the case
of solitons with the spatial dimension D =N 42 > 2. The
only modification concerns the expressions (3.2.10) and
(3.2.11) which should be replaced by the following ones:

i ke
2B ;= &"M " Oray, . ayji »

that the

2 .
Ay, ..onjl = mgika]..,a,vak J dN+2xl G(x _xl)B_;l(x,) s

where G(x —x') stands for the Green function of the
D-dimensional Laplace operator. Thus, the Hobart—
Derrick theorem can be extended to the case D =2, so
that only one-dimensional solitons are excluded. The proof
of Theorem 3.3 was first given in Ref. [59], and then cited in
Refs [3, 60, 61].

Proposition 3.1. Nontopological many-dimen-
sional (D >2) stationary solitons are energetically
unstable. Therefore, within the scope of additive Lyapunov
functionals of the form (3.1.16), only conditionally-stable
many-dimensional stationary solitons may exist i.e. those
stable under certain subsidiary conditions on the initial
perturbations &.

As is known, all possible conditions on the perturba-
tions can be included in the definition of the metric, though
this procedure makes the stability analysis more compli-
cated. To treat the conditional stability of a set U of
stationary solutions it proves convenient to pick out a single
solution u (or any narrow subset of these solutions, labelled
with param-eters w), and to consider all the rest as
generated by transformations which form the invariance
group G of the equation (3.1.1)1. Let G, be the invariance
group of the functional V in expressions (3.1.16) and (3.2.4),
with group parameters ag, so that Gy is a subgroup of a
group G parametrised by @ = {a,f}, where  stands for
the complementary parameters. In general, the stationary
solution might depend both on group parameters a, and on
some nongroup parameters @ (frequencies), that is
u=u(t,xla,w) € U. If one takes f = B, one now obtains
the stationary solutions to Eqn (3.2.5), which form a subset
Uy C U. Let us denote the set of stationary solutions with
fixed parameters f =y, ® =w,, by U, CU,. The
soliton configuration will be called perturbed, if ¢ ¢ U.

The treatment of orbital stability, or the stability of any
set of solutions, requires a particular choice of the current
metric p. If one fixes the Banach norm d = ||@ — u/|, then it
is possible to define the following metrics:

=inf =inf = inf 2.1
p lgwd, P '3(,‘1’ py =infd, (3.2.16)

p; = infd,

ao

py =infd, ps=infd . (3.2.17)
a a,0

It is worth emphasising the difference between the
metrics (3.2.16) and (3.2.17). In version (3.2.16) the
minimisation procedure is carried out within the class of
stationary solutions to the equation of motion, which is
equivalent to fixing the parameters a,®. In contrast, in
version (3.2.17) the parameters prove to be functions of

1To define such a group it is enough to specify relations of the type
(3.1.9).

time; consequently the comparison function u is not forced
to belong to the manifold of solutions of the equations of
motion. This fact distinguishes, in any case from the
physical point of view, the choice of (3.2.16) as the
preferred metric. Then the minimisation in the metrics
p, and p, is carried out at some fixed moment of time
t =T, thus permitting us, as will be shown later, to get rid
of undesirable zero perturbative modes (8*V = 0) as well as
of negative (8*V < 0) ones .

By virtue of Theorem 3.3, for many-dimensional
solitons, there are no additive Lyapunov functionals which
are positive-definite with respect to the metric p = infy_d,
and according to Proposition 3.1 only conditionally stable
solitons can be realised. In other words, stable localised
structures in many-dimensional dynamical systems can exist
only if some subsidiary physical conditions are imposed on
the initial perturbations &,. In many cases the conditions
mentioned here can be formulated as fixing certain integrals
of motion (generalised charges) Q,. The corresponding
conditional stability is known as Q-stability [14, 45, 61].
Noting that Q, = Q,(w), one concludes from defini-
tions (3.2.16) that the charges Q, can be fixed if one
uses the metrics p; or p,. The latter choice is equivalent,
in turn, to studying nonadditive Lyapunov functionals,
such as those quadratic in the charges.

Thus we have extended the domain of validity for the
Hobart—Derrick energetic-instability theorem [56, 57] to
the case of stationary solitons, the model-independent
character of the results having also been established.
However, for static solutions the result proves to be
even stronger when energetic instability is replaced by a
linearised one. In particular, the following theorem [61] is
valid.

Theorem 3.4.In any local model possessing a transla-
tionally invariant Lagrangian, which is positive-definite with
respect to velocities ¢, static, topologically trivialf many-
dimensional solitons are linearly unstable.

Proof. Suppose that the equation of motion for the
real n-component field ¢ admits a static soliton solution
u(x). Define the perturbation & = ¢ — u and metrics p,, p in
the form

polo) = l&oll + el p(&) = inf (1€l + 1)

where || - || denotes the norm in the Hilbert space L,(R "),
and |-||' is that in the Sobolev space W, (R”), ie.
€I = IVE|l + |I€|l. The metric p, can also correspond to
a narrower space, defined by the continuity requirements of
the functional under consideration with respect to p,.
Let us write down the second variation of the energy
functional, denoting the scalar product in L,(R”) by (, ):

8E = (§,A) + (&,BY) (3.2.18)
where A is a positive symmetric matrix and B a Hermitian
operator, both local in u. Let us introduce the Chetaev
functional

W =—1(n¢)(E-E), (3.2.19)

whereA_E():E[u] denotes the unperturbed energy and
n=2A¢&. Taking into account that, by virtue of the

fIn what follows the solitons will be called ropologically trivial if their
topological charges are equal to zero (see Ref. [3], Ch. 2).
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linear-ised equations of motion 7 = —38E /8¢, in the vicinity
of the solution u one gets

W = (C7éé)2 - (€7A€)2 .
According to the statement of Theorem 3.3, one deduces
from (3.2.18) that , given a number § > 0, there must be an

initial perturbation &, and a number 6;(4) > 0, such that at
the initial moment the following inequalities hold:

po(&o) <68, (mo, &) >0, (8°E), < -8, <0.

Now the positivity of the matrix A implies that in the
domain W > 0, determined by the conditions (3.2.21), the
following inequality holds

I(&,BE)| = — (¢,BE) > (E,A8) + 0, .

From relations (3.2.20), (3.2.21) and the last inequality, it
follows that W > (3% > 0 in the domain W > 0. Therefore,
the conditions of the Chetaev—Movchan theorem will be
satisfied if one proves the boundedness of the functional
(3.2.19) with respect to the metric p in some neighbour-

(3.2.20)

(3.2.21)

hood p<e To this end notice that for the initial
conditions (3.2.21) the following estimate is valid
sup W < [(8E),| - I sup (1]- el - (32.22)
p<e p<e

Furthermore, as é: ¢ is independent of u, for p < ¢ the
following estimate applies:

€]l = inf | <p<e. (3.2.23)
uel,
Moreover, the triangle inequality gives us
lloll = llull < llo — ull < lloll + [lull .
whence
sup [|l¢ —ul| — inf [lo — ul| < 2ull ,
uel, uel
and therefore
€l < sup [l —ull < 2flull + inf [|E]] < 2[|ul] +¢.
uely uelo (3.2.24)

Inserting the estimates (3.2.23) and (3.2.24) into (3.2.22),
we get

sup W] < IBE)ol - A llellull +&) =W .
p

Making the natural assumption of the boundedness of the
norm ||u|| together with that of ||A||, we infer that W is
bounded, which proves the theorem.

Using the inequalities obtained while proving the
theorem, one can easily estimate the time 7 for the
perturbation to reach the sphere p =¢:

<L (W-w).

91

3.3 Stability of scalar charged solitons (Q -theorem)

We begin with the case that is simple to analyse, when the
soliton is described by a complex scalar field ¥, defined in
four-dimensional Minkowski space—time}. Let the non-
perturbed soliton be

fOne can find an alternative account of the Q-stability theory in
monographs [3], §3.3.3 and [14], Ch. 10, 14. Our version is close to
that in the review [61], §3.

Vo = u(x) exp(—iwt), u* =u, (3.3.1)

where the function u(x) is assumed to decrease sufficiently
fast at r = |x| — oo. Consider the class of models given by
the U(1)- and Lorentz-invariant Lagrangian density

L =—F(p,q,s) .
Here the following invariants are introduced
pP= _au‘p*aﬂl//7 q :juj”7 § = l//*l// s

where j, stands for the ordinary 4-current expression

Ju= %i "0 — Y0,¥*]. Now construct the invariant set Uy

of nonperturbed soliton solutions, that is the variety of
orbits for the group G =T(3) ®, SO(3) ® U(1), where ®; is
a semidirect product. In other words,

Uy = {u(Ox + a;0)e*} (3.3.2)

where O  denotes the matrix of 3-rotations,
@ €R’, Be[0,2n). It should be emphasised that the
frequency w in set (3.3.2) is not fixed. The perturbed
soliton can be described by the field

¥ = o(t,x) exp(—iwr), ¢ ¢ Uo,
with the perturbation & being defined as follows

E=p—u=¢+i&, &=¢.

We now choose the metrics pg, p as

po(&o) = Z(”fo:” + ”COi”l)

i=1

2
(@) = jnf S (I&N-+1c)

where the subscript C denotes the common norm in L, N C.

As it turns out, for the soliton solutions (3.3.1),
Theorem 3.3 also proves to be valid in the one-dimensional
(D =1) case [63]. To support this argument, first recall a
useful Lemma in the calculus of variations. Let the
functional

Vigl= | axs@.4)

P
C

(3.3.3)

be determined in the class of piecewise smooth functions
¢: R® — R",¢(c0) =0, and admit the field of extremals
u(a;x) given by the set of continuous parameters
o;, i =1,1. Then the following Lemma is valid.

Lemma 3.1. There exist constants c;, not all equal to
zero, and such that the function

!
.f:Zci%

i=1

(3.3.4)

a =0

vanishes on a surface X, which encloses in R” a domain Q

with nonzero measure, and where Vf|Z #0, then 3%V s

sign-indefinite in the neighbourhood of the extremal u(0;x).
Proof. Consider the particular perturbation

(xeQ)=0, (xgQ)=f.

Then, owing to the properties of extremal fields,
8*V[¢] = 0. However, the perturbation (3.3.5) is not an
extremal of the functional 52V, as it violates the matching
conditions on the boundary X. Hence, one can find
perturbations, close to (3.3.5), such that 8’V takes values
of either sign.

(3.3.5)
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Theorem 3.5. The stationary soliton solutions (3.3.1)
cannot be energetically stable.

Proof [63]. Let the Lyapunov functional V be of the
form (3.1.16). Then it admits the field of extremals

Vo = u(x + a)exp(—iwt) .

Taking into account that |u| < oo, u(oco) =0, we infer
that the equation f = 0,u(x) = 0 is satisfied on some surface
2. Hence, the conditions of Lemma 3.1 are fulfilled, and
%V s sign-indefinite for any dimension D.

In view of the aforesaid statements, let us study the
Q-stability of the soliton solutions (3.3.1), under the
assumption of fixed charge, which was already presupposed
in the definition (3.3.3) of the metric p:

0 = € (£, = Fys)in = Ol = 0o (33.6)
Let us write condition (3.3.6) in a linear approximation:

(hu,&,) = (3,¢)) (3.3.7)
with the following notation

h = —20"5(Fpy — 2F,ys + Fuu8”) + F, — Fs

= div(ua) + uc,
a = w(F,,s — F,,)Vs,

¢ =20[F, 4 s(F,, — 2F, — Fs)

F,, — 3F,,s +2F,, s)]

—a)2s(
[t turns out that under condition (3.3.7) the non-nodal
solitons (u > 0) can become stable (in fact Q-stable). As for
the nodal solitons, the following theorem is valid.
Theorem 3.6. Nodal solitons of the form (3.3.1) are
energetically Q-unstable.
Proof In line with Kumar et al. [64], assume that the
Lyapunov functional V admits a field of extremals of the
form

Vo(B) = uexpli(h — o1)] .

Since for the nodal solitons u = 0 on a certain closed nodal
surface 2, the function (3.3.4) takes the form

f= ‘Vo(ﬁ)h}:o = iy, (0)

and satisfies the condition of Lemma 3.1. Therefore 8%V is
sign-indefinite in a neighbourhood of perturbations

éizilzoy 52214,

that is for ||&;]| < ||& || As can be easily verified, condition
(3.3.7) can also be satisfied in this class of perturbations.
In view of the aforementioned results, all that is left is to
obtain the conditions of Q-stability for the non-nodal
solitons. To this end choose the following integral of

motion as the Lyapunov functional
V = E—0Q =Elg], (3.3.8)

where E is the field energy. The second variation of V has
the form

3V = (&,,pr]) + (&mhéz) +i(éi7£i§i> )
i=1

where the following self-conjugated operators are intro-
duced:

(3.3.9)

L, =20"(F,, Fpys) + Fy +2F s
+ @’ (—F, + 6F,s — 4F s + 8F ,5°)
+div{—F,V — 2F,,Vu - (VuV)

+ [02(Fy = 2Fps) = Fp ]V}

L, :F,—w2F +F, (s — p)

—div[(F, — F,s)V + F,uVu] .

It follows from (3.3.9), that for 8’V to be positive-definite
the inequalities F, > 0, h > 0 must hold. Here and later
on the following theorem of R Courant [65] will be of help.

Theorem 3.7. The first eigenfunction of a self-
conjugate elliptic differential operator of the second order
has no zeroes and the corresponding eigenvalue is non-
degenerate.

Notice that the spectrum of the operator lj2 is non-
negative, because, owing to the field equation 1:2u:0,
where u >0, and therefore, according to the Courant
theorem, the function u is the first eigenfunction of the
operator 1:2. At the same time the zero mode & = u is
excluded because of the choice of the metric p.

Using the Schwartz inequality and the condition (3.3.7),
we get the constraint

(&) > (0081 ()™

which permits us to obtain the estimate

Vo> (élanél) + (é2,/’lé2) + (élakél) >

where the self-conjugate operator K is given by:
K& = Li& +g(g, &) (u, hu)™

We shall now specify the conditions for the spectrum of the
operator K to be positive or, in other words, for the
quadratic form

(éa Ieé) = (éyilé) +a_l(g7€) ’

to be positive-definite. Here a = (u, hu).

Consider first the case when a > 0. The case a =0,
relevant to nonrelativistic systems, will be studied sepa-
rately. We now calculate the action of the operator (3.3.10)
on the function

o
T dw

+ 4Fq‘\.s2

(3.3.10)

(3.3.11)

(3.3.12)

After cumbersome calculations, taking into account the
field equations for u, differentiated with respect to w, one
finds

Ry = gaQ

St (3.3.13)

Via the inner product of Eqn (3.3.13) with v we obtain

. l
v, Rv) = (b—a)=, (3.3.14)
a
with b =00 /0w.
Clearly, if A(w) is the minimal eigenvalue of the operator
, the boundary of the stability domain is given by the

eq uatlon

Mw)=0. (3.3.15)
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However, as one can see from Eqn (3.3.13), if the condition

00
-

is fulfilled, then the operator K has a zero eigenvalue, with
the eigenfunction given by the expression (3.3.12). Let us
verify the equivalence of conditions (3.3.15) and (3.3.16). It
should be noted that if the operator L, has two or more
negative eigenvalues, then the equality

(gaé):()»

can always be satisfied by taking as a perturbation the
linear superposition of the corresponding eigenfunctions.
This results in the sign-indefinitness of the quadratic form
(3.3.11). Therefore to ensure stability under the singlet
subsidiary condition (3.3.6) it is necessary to impose the
requirement that in the stability domain (i.e. for the
corresponding values of the parameter ), the operator L,
has a single negative eigenvalue. Let us denote the
corresponding eigenfunction by ¥_. If now

(&¥_)#0,

the operator K will have a positive spectrum in some
w-domain. As follows from expressions (3.3.14) and
(3.3.16), this domain is determined by the condition

00

% <0,
because its boundary is determined by the equation (3.3.15)
and at interior points (v,Kv) > 0 must be true. Thus, we
arrive at the following sufficient criterion for the condi-
tional stability of non-nodal stationary solitons, which is
known as the Q-theorem [3, 14, 45, 63, 64, 66—72].

Theorem 3.8. (The Q-theorem). Non-nodal stationary
soliton solutions (3.3.1) are Q-stable in the Ly apunov sense in
the domain (3.3.19), if for all ® taking values within this
domain the operator [] has a single negative eigenvalue and
the corresponding eigenfunction satisfies the condition
(3.3.18).

Remark 3.3. The operator K has zero eigenvalue
corresponding to translations of the solution (3.3.1) by the
parameters of the invariance group G of the model (the
zero-modes). Under such a perturbation the solitons do not
leave the invariant set U, and therefore the corresponding
perturbations must be excluded by the choice of the current
metric p in the form (3.3.3).

Remark 3.4. It is not difficult to demonstrate the
limits of the applicability of the O-theorem, if one takes into
account the particular dependence of the Lagrangian
density on the parameter w, as this dependence was crucial
to the proof. For instance, this w-dependence changes its
form when one incorporates the gauge vector fields via the
covariant derivative. Furthermore the Q-theorem cannot be
applied if the solutions (3.3.1) exist only for some discrete
values of w, since in this case the differentiation with respect
to @ cannot be performed.

Now consider the very important particular case ¢ =0
corresponding to nonrelativistic models. It turns out that
the Q-theorem proves to be valid in this case and the
stability domain is still determined by the inequality
(3.3.19). In fact, condition (3.3.7) reduces to (3.3.17) as
a — 0, and thus the problem comes down to finding the
spectrum of the operator il under condition (3.3.17).
Introducing the Lagrange multiplier y, we get the following

b(w) = (3.3.16)

(3.3.17)

(3.3.18)

(3.3.19)

representation for the minimal eigenvalue 4 of the operator
LI:

A= min [(l//aljll//) +X(gal//)] .

= 3.3.20
lll=1 ¢ )

Using the condition (g,¥) = 0 and the eigenvalue equation
2L + g =24y

we obtain the Lagrange multiplier

o, L
¥ = ) (4(.7 lz‘p) .
llgll
Inserting it into expression (3.3.20), we obtain
R o [
A= min |(Y,L ) —2(g, W)L];P) = min P[y]. (3.3.21)
lwll=1 llell llwll=1

Thus, we have reduced the problem to the unconditional
minimisation of the functional P[y]/||y||*. Let us prove that
the new and the old problem are equivalent. Minimising the
functional (3.3.21), we obtain the equation

Loy — [g(g, L) + Lig(g, )] llgl* = 4 . (3.3.22)

Note that the possible solution {y = g to Eqn (3.3.22) has to
be excluded as it violates the condition (3.3.17). Therefore,
putting ¥ = g into Eqn (3.3.22), we obtain

g £ >
g[(”’ ‘2”)+/1] £0 (3.3.23)
llgll
Finally, the scalar multiplication of both sides of

Eqn (3.3.22) by g leads to

|:(<§aLI2$) +/l:| (g,lﬁ) =0,

llgll

whence in view of the inequality (3.3.23), we deduce that
(g,¥) = 0. This proves the equivalence of problems (3.3.20)
and (3.3.21).

Now for the particular substitution ¥ = v in accordance
with the definition (3.3.12) we find ilv = —g, thus deriving
from Eqn (3.3.21) the equality

0Q

P = —(g) =~ oo -

The minimisation in expression (3.3.21) then leads to the
equation

_l:]g(g’VQ) =v,
llgll
from which it follows that the eigenvalue A =0 still
corresponds to the surface (3.3.16) in the w-space, and
the stability domain, where P[] > 0, is determined by the
inequality (3.3.19) in the following explicit form:

00 0 3 N
3%~ 30 [wjd x(F, —Fqs)s] <0.

As will be shown later, the conditions of Theorem 3.8
appear to be necessary for the Q-stability of non-nodal
solitons [62, 73].

Theorem 3.9. The conditions of Theorem 3.8 are
necessary and sufficient for the Q-stability of scalar non-
nodal solitons.

Proof. Let us show that a violation of the conditions
of the O-theorem implies the linearised instability of non-
nodal solitons with respect to the metrics (3.3.3). To this

(3.3.24)
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end, consider the following Chetaev functional:
W= (E~0 - E) I:(éthé]) - (527/’!&2)

+ (&1,¢8) — (éz,a-Vél)] : (3.3.25)

Using the ellipticity of the operators L;, which is necessary
for the positive definiteness of 8*E, one can establish that
the functional (3.3.25) is bounded with respect to the metric
p in the domain W > 0, where 8E < —0; < 0. In fact, in
such a domain (&,L,&) < —d;, whence, in view of the
general structure of the operator

Ly =-0[A;0,]+8B,
we obtain

(0:81,A30:8)) < =8, — (&,BE) <M|& |

where max(—B) = M. The latter inequality, together with
the ellipticity condition

(0:81,A40,&)) = m||V¢, ”

and with the inequality (3.2.24) yields finally the desired
estimate. Therefore, to verify the applicability of the
Chetaev—Movchan instability theorem (Theorem 3.2), it
remains only to calculate the time derivative W. From the
linearised equations of motion

Fpél +c&, +div(aéy) + L& =0,
héy — &+ (a-V)E + Ly, =0

m>0,

(3.3.26)
we get
= (Bo— B)[(&1, &) — (60, h)
+ (&1, ¢8) - (fzya'Vfl)] :

However, in the domain 8%E < —0,, in accordance with
Eqn (3.3.9) the following inequality obtains:

—(éz,h@) - (éla[lél) >0+ (élanél) + (5271:252) .
Therefore
W > 6, 6 +2(é]7Fpé]) +2(§27£2¢:2)] >01>0.

Now to complete the presentation we come back to
studying the nodal solitons for which the following theorem
is valid [61]:

Theorem 3.10. The nodal stationary solitons are
linearly unstable.

Proof For the nodal solitons, it follows, on the basis
of Lemma 3.1 and the Courant theorem (Theorem 3.7),
from the zero mode equations

1:214:0, I:IVu:O

that the operators L, and L, have negative eigenvalues.
Solving the equation (3.3.26) with respect to &,, regarding

& as a given source, we get & =n+A(&), where 5
satisfies the homogeneous equation
hij+ Ly =0, (3.3.27)

admitting the sign-indefinite ‘energy’ integral
Constructing the Chetaev functional

W= _E(”7h7’) ’

we infer that its time derivative W is positive in the domain
E<—0,<0:

W = E[(’LLAz”I) - (’1’ h”)] > 5% .

Notice that Theorem 3.10 deals in fact with the stronger
spectral instability.

It would also be of interest to consider the limiting (non-
relativistic) case, when in the equations of motion (3.3.26)
F,=h=d=0, c¢=1.To prove instability in this case it is
convenient to use the spectral decomposition

A A ) -
L,=L, " +L,", €1=C$+)+C§),
with respect to the sign (=

operator L,.
The equation thus arising is

(+) L L (§(+)+§( ))
and admits a solution of the form
~(+)]1/2 N
&9 =[] Te+s (&)

where the function ¢ satisfies an equation similar to
(3.3.27):

E— [0 "0 [157]) e

for which the instability has been already established.

For the application of the Q-theorem it is necessary to
make sure that the operator il possesses only a single
negative eigenvalue (negative mode).

Lemma 3.2. For spherically symmetric solitons the
nega-tive mode is unique if and only if the function
u(r), r=|x|, is a monotonically decreasing one, and the
solution w(r) of the equatmn Li(w/r) =0, with the boundary
conditions w(0) = 0, w'(0) = 1 has a single internal zero ( for
r > 0).

Proof [62]. For spherically symmetric solitons the

operator l?] commutes with the generators J of the rotation
group and therefore can be expressed in terms of the
Casimir operator J? with eigenvalues [(I+ 1). Further-
more, the ellipticity of the operator [] implies that its
spectrum (/) increases with /. At the same time from
Ldu=0 it follows that the zero mode du = u'(r)x;/r
orresponds to the angular momentum [=1, or
(1) =0. Now, since u’(r) <0, in accordance with the
Courant theorem (Theorem 3.7), =0 is the minimal
eigenvalue for /= 1. Thus, the states with 4 <0 cannot
be other than spherically-symmetrical, and their number
will be equal, in accordance with the Sturm comparison
theorem [65], to that of the internal zeros of the solution
w(r) to the equation L,(w/r)=0 with the boundary
conditions w(0) = 0, w'(0) = 1.

Consider some simple physical models for which the
conditions of Lemma 3.2 are satisfied, that is, the negative
mode is unique and the Q-theorem is applicable.

Example 3.5. The power model. In this case the
Lagrangian function can be written as F=p+s—s"/n
and admits a soliton-like solution, determined as the field
function u(x) satisfying the equation

[A -1+ —|—u2("_])]u =0.

Equation (3.3.28) admits, in particular,
solution u(r) if the conditions

,<) of the spectrum of the

(3.3.28)

the non-nodal
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lo| <1, 0<1—1/n<2/D (3.3.29)

are fulfilled. After a change of variables in Eqn (3.3.28)
rzs(l —(,02)7]/27 u= V(] _m2)|/[2(n7|)] ,

the charge Q(w) of the nonperturbed soliton can be found
as

0(0) = ol|u|)’ = Ca(l — *)!/=D=PA (3.3.30)

As follows from (3.3.30), condition (3.3.24) is satisfied for
frequencies in the interval

| —1/2
1>|co|><"Jr —D> .

(3.3.31)

n—1
Condition (3.3.18) is also fulfilled since g = 2wu # 0, and
the eigenfunction ¥_ # 0 (recall that ¥_ is the first
eigenfunction of the operator l:]). Thus we infer that the
inequality (3.3.31) determines the domain of Q-stability for
the non-nodal solitons in the model.

Example 3.6. The logarithmic model [74]. This model
is determined by the Lagrangian function
F=p+s(l —Ins), admitting soliton solutions (3.3.1) of
the form

u(r) =exp[}(D — o’ — r2)] )
The expression for the charge

0() = Coexp(~?)
determines the domain of Q-stability for the non-nodal
solitons of the model [64], [75] through the inequality

lo| > 1/v2 . (3.3.32)

Example 3.7. The nonlinear Sc hrodinger equation. We
shall consider it here in its most general form (see Part I)

0,y = —[A+ lez(”_')]n//, n>1. (3.3.33)

It admits the soliton solutions (3.3.1) with the amplitude u,
subject (in turn) to an equivalent equation one can derive
from expression (3.3.28) by substituting o’ —1—-w>0.
Performing the change of variables

r= s|w|_'/2; u= v|w|'/2("_])

we can reduce the aforementioned equation to the form
(3.3.28) with @ = 0, which gives an explicit expression for
the charge

0(w) = ||u||2 — C|w|{[l/("—|)]—(0/2)} )

As follows from expression (3.3.34), the stability domain is
determined by the conditions

(3.3.34)

2
1 I1+—=, 33.35
<n<l+s ( )
and the instability domain can be characterised by the
inequalities

2 D
I+ 5 <n<m—s (3.3.36)

®-2)

stemming from conditions (3.3.29) and having a meaning
when D > 2. The instability of the non-nodal solitons in
the domain (3.3.36) can be established by means of the
Chetaev functional

W= (Eo —E)(fhfz) >
which is the limiting case of the functional (3.3.25) (the

non-relativistic limit). Instability of the nodal solitons with
respect to the metrics

2 2
Po :Z”fion’c: p=ui€n,f02||éill
i=1 i=1

is a consequence of Theorem 3.8.

3.4. Stability of multiply charged solitons
Let us consider a natural generalisation of the Q-theorem
for many-component fields ¥'(x,), s =1,n, with the
Lagrangian density

L =—F(yv o) , (3:4.1)
admitting the internal symmetry group G of rank [ In
other words, in the group G one has [ diagonal generators
Iy, o =T1,1, corresponding to the conserved charges Q,,
and the stationary (in this case, multiply charged) solitons
are described by the functions

YO (x, 1) = [exp(@0)ux)],, &= aw,l, . (3.4.2)

This allows us to use in the expression for density (3.4.1)
more appropriate field variables ¢(x,), by means of the
ansatz

¥ =exp(@)o ,

and the Lagrangian density in terms of the new variables
reads

L — _F((pX’ ('pAY + (d)(p).\', al(p\‘) .
For the Lyapunov functional we choose the integral
V = E - waQa b

where
E= J dx{F = F{[¢" + (@9)']}, Q.= —j dx F; (I,0)".

The second variation &V and conditions 8Q, =0 are
written in the form:

8V = —(Fu&' &) + (€, Lng") | (3.43)

80, = — (& Fullu)’) = (5, ¢ =0

Since the quadratic form with respect to the velocities in
equation (3.4.3) should be positive definite, we introduce
the positive-definite matrix

Aocﬂ = —(FA.}(IA"KM)“, (f‘ﬁl/t)r)
and, taking into account equation (3.4.4) with the help of

t‘}ge Lagrange multiplier method, we eliminate the velocities
& from Eqn (3.4.3):

FV > (A (850 EN (g5 E") + (6, L,,8") = (&KE) .
(3.4.5)

From expression (3.4.5) it is obvious that the stability
condition reduces to the requirement that the spectrum of
the operator K should be positive, i.e. dg = Ay, > 0. In
order to define the boundary of the stability region, let us
differentiate the equation in u® with respect to w,, leading
to the relation

(3.4.4)

2 K r
Loy =—g4 »
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where
u‘y _ auﬁ‘
* 7 dw,
In view of the identity (3.4.6), the condition Ay =0, or
equivalently K& =0, takes the form
LE+ (A" ,5(Luy) (& Lug) =0 . (3.4.7)

In turn, from expfession (3.4.7) it follows that
& =&y +auu,, where LE =0. On the other hand, by
virtue of the identity (3.4.6) we have

00,
a(Dﬂ ’

(3.4.6)

(g;ﬂ/tgc) :Aaﬂ + Faﬂ7 Fa/} =—- (348)
and therefore equation (3.4.7) is equivalent to the algebraic
system

-1
(A )aﬂaYF}’ﬂ =0,

possessing the nontrivial solution a, # 0 only under the
condition

det[Fug] = 0. (3.4.9)

Hence, the condition 4 =0 holds along with the condition
(3.4.9). At the same time, from the identity (3.4.6) we
deduce that

Kap = (g, Kug) = Fop+ (A7), FuuFpy -

and therefore the range of stability is located inside the
region where the matrix F,p is positive definite, or in brief
F>0.

We represent the Hilbert space H of the functions ¢ as:
’H:N@Kerl:@P, where N and P correspond to the
negative and positive eigenvalues of the operator L,
respectively. Eqn (3.4.5) leads to a further necessary
condition for A, > 0:

Lin{g,} =H, DN,

and, in particular, dimN =v <.

Let us demonstrate that the conditions F >0 and
(3.4.10) are necessary and sufficient for 2, >0 to hold.
Indeed, let us assume that u, = x, +y, +2,, E=a+b+c,
where x,,a € N; y,,b € Ker[; Zqy¢ € P. On minimising
Eqn (3.4.5) with respect to ¢, we find

8V > (a,l?xa)(A —I—B);ﬁ] (a,ljxﬁ) + (a,lju) = (a,A;Ia) ,
3.4.11)

where B,p = (za,ﬁzﬁ). Furthermore, by virtue of condi-
tion (3.4.10) the following decomposition a = s*x, holds,
and therefore from expression (3.4.11) we derive the
estimate

(3.4.10)

3V > s"‘Maﬁsﬂ =s"Ms ,
where M, = (x,, Mx g). Observing that
Bug = (1 Litg) = (xa, Lix )

is a non-negative matrix, we find in accordance with
expression (3.4.8),

A+ Bog = —Fop — (xa, Lx g) = —Fop + Cop .

where C,p = —(xa,ixﬂ) is a positive matrix. Thus, from
Eqns (3.4.11) and (3.4.12) we deduce that

M=-C-CF-C)'C=FI-C'F)",
or M >0, if F>0.

(3.4.12)

Consider now an important special case, when only one
negative mode occurs, with v=dim N = 1. Then, instead of
expression (3.4.5), it is more appropriate to use the estimate

8V za'(s,0)+(ELE) = (§K'E) (3.4.13)

where g = ,8y, @ = Aggw,wg. As a result, instead of
relation (3.4.6), we arrive at the relation

i(”aawa) =8,

and the condition for the spectrum of operator K’ to be
positive-definite can be expressed by the inequality

30,

—>0.
awa>

Fopw,mp = —wy0p (3.4.14)
Thus, the following generalisation of the Q-theorem for
multiply charged solitons holds [3, 59, 61, 70, 73, 76, 77]:
Theorem 3.11. The stationary solitonic solutions
(3.4.2) are Q-stable in the region F >0 [see Eqns (3.4.8)
and (3.4.14)], if the condition (3.4.10) is fulfilled, i.e. if the
space spanned by the vectors g, contains negative modes.

3.5 The method of functional estimates for studying
stability problems

The idea of conditional stability for many-dimensional
solitons has been developed by V E Zakharov and
E A Kuznetsov, who demonstrated that in various situa-
tions one can with relative ease be assured of the existence
of a lower bound for the energy functional of the system
subject to the condition that some additional integrals of
motion are fixed [78], [79]. It is true, that in so doing some
delicate questions on the attainability of the lower bound,
on the convergence of the minimising sequence, and on the
regularity and smoothness of the minimal energy config-
uration are left open. Nevertheless such an approach fulfills
the requirements of the so-called ‘physical level of rigour’
and is found to work efficiently in various applications.
Since there are excellent descriptions of this method in the
literature (see, for example, Refs [50], [80]), we shall
confine ourselves to just one demonstration of the method
for some physical models.

Example 3.8. The nonlinear Schrodinger equation.
Using the definitions of the dynamical variables of this
model, already introduced in Example 3.7, we shall
demonstrate that the energy E in R® is estimated from
below by the charge Q as defined in (3.3.34). In fact,

£ = [ (v L) = I9WIE P
Introducing the notation I, = ||n//’<||27 k=1,2,... , and
making use of the wellknown inequalities:

IV =, a=3(n/2)",
3—n)/2,(n—1)/2
Ly < 1T

we arrive at the estimate

1 o2 (e
1:"[n//]>oc16'/3—;12(3 202 (3.5.1)

If 5 > 3n, then the right-hand side of expression (3.5.1)
attains its minimum for

;- 3(n—1) 6/(5_3")13(37,1)/(573”)
6 2an 2 '
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Therefore the energy functional E[if] for the fixed value of
charge (or that of a number of particles) I, = Q attains its
minimum as well, which is realised in some stable
configuration.

Example 3.9. The Korteveg—de Vries equation in R!
reads

0,0+, + 690, 0 =0,

and describes waves in shallow water. As is known, this
model assumes the energy conservation law

(3.5.2)

1 3 1

lg) = [ a5 @07~ o'] = 50001 1
and also the momentum conservation law

P = de (p2 = 12 .
Making use of the Gagliardo —Nirenberg—Ladyzhenskaya
inequality

I; < C125/4||6X(p||]/2, C = const ,
we obtain an estimate of the energy functional from below:

5/4
Elg] > 1[0.0l* — 5" [0c0ll” - (353)

Minimising the right hand side of expression (3.5.3) with
respect to ||0,¢||, we get a new estimate

Elg] > C0[25/37 Cy = const .

Thus, for a fixed value of momentum P =/, the energy
appears to be bounded from below and therefore it has a
minimum, which is realised in some stable configuration.

Example 3.10. The Kadomtsev— Petviashvili equation
in the space R* has the form

0. (0,0 + 09 + 600.0) = 35,0

and is commonly considered as a two-dimensional general-
isation of the Korteveg—de Vries equation. It also assumes
conservation of energy

£lgl = [ax 5 @07 430 7]
ow=g9,

and of momentum
P= de o’ =1 .

Here we use the HoSlder inequality
< (L)'

together with the obvious inequalities:
I, < 4Jd2x |0, ¢| szx 90, | ,
szx |90, | = Jd2x |3, wl
< [ ol vl <00l - o,

On combining them, we arrive at the relation

3/4
13 < 212/ ”axq)” . ”aywlll/2 ’

which allows us to derive an estimate for the energy
functional from below:

Elp] = 310.0lF +3 0,0 — 250, - 0,0 . (3.5.4)

On minimising the right hand side of expression (3.5.4)
with respect to [|0,¢| and [|9,w]||, we obtain the following
inequality

Elp] > —3I5,

which means that for a fixed value of momentum P =1,
the energy minimum is realised in a stable solitonic
configuration.

3.6. Stability of plasma solitons (BGK-structures)

Here we use the direct Lyapunov method to investigate the
stability of plasma solitons of the electron-phase-hole type,
known also as Bernstein—Greene—Kruskal waves [81],
[82]. To this end we give the Vlasov—Poisson equation with
the electron distribution function f(#,x,v) and the electric
field strength E(¢,x) in plasma in the heavy-ion approx-
imation:

O, f+Vv0,f—EQ,f=0, (3.6.1)
0LE=1-— Jdvf. (3.6.2)
Taking account of the boundary conditions
E(t,£00) =0, f(t,£00,v) =fu(v),
Jdeoo(V) =1,
corresponding to an electrically neutral system, and

choosing a frame of reference tied to the centre of the
distribution f,,, one can eliminate the electric field with the
help of Eqn (3.6.2):

E(t,x) = —r dx'Jdvf(t,x', V) —fo (V)

on rewriting Eqn (3.6.1) in the form
O, f+vo,f+ 6‘,]’[ dx'J dv' [f(t,x', V) —foo (v )] =0.
(3.6.3)

Let us assume that the Eqn (3.6.3) has the stationary
solution

fo=row,n), Eo(x) =—¢'o(x +a), a=const,

where w = %v2 — ¢o(x + a) is the electron energy, p = sgnv.
Since the distribution function is a positive-definite one, one
can put f= x2, fo= X%, where it is assumed that the
function yo(x +a,v) is a solution to the equation
Doxo =0, (3.6.4)
where the stationary Liouville operator
DAO = —Vax + anv .

has been used. Let us now introduce the perturbation
& =y — o, and take into account that it has to satisfy the
linearised normalisation condition

dejdvxof =0;

it proves convenient to present the perturbation & in the
form

(3.6.5)
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&=Do[SCf) " el, S =0.fo]"*.

It is then easy to ascertain that Eqn (3.6.5) is satisfied in
view of Eqn (3.6.4). The new unknown function ¢(t,x,v)
satisfies the linearised equation

Lop=Ho, (3.6.6)

in which the following operators

L :EDAOa € =sgnd,fy ,
H= sDA(z) +vS Jdv’v’S(x, VY,

have been introduced. Observing that [dxdv % = 0o, and
taking into account Eqn (3.6.4), we verify that Ly, =0,
and therefore that the zero eigenvalue of the operator L
belongs to the continuous part of the spectrum. This allows
us to invert of the operator L and to reduce Eqn (3.6.6) to
its normal form:
X
0,0 =Dy — ssJ dx’ [dVv's'g’ . (3.6.7)
—00
From Eqn (3.6.7) it follows that the integral of motion
exists

V= J dx [—J dvs(50¢)2+<J dvaqo) 2} , (3.6.8)

which for monotonic distributions, i.e. for ¢=—1, is
positive definite. Therefore, it is reasonable to choose the
metrics p,, p as follows:

2
ps = J dx J dv(ﬁ0¢)2+<J dva(p) }, p =infp, .

In this case for ¢ = —1 the functional V = p(z) > inf, pé =p
can be regarded as a Lyapunov functional. Therefore the
stability of the electron distributions in the Vlasov—
Poisson plasma is established when they are monotonic
with respect to the energy w. The result obtained is known
as  the Newcomb—Gardner theorem for homogeneous
distributions (i.e. for 0, f, = 0).

Let us show that the monotonic distributions are not
only locally but also globally stable. To this end, we choose
as Lyapunov functional

v, :Jdx{%EQ—f—Jdv[%f‘\/2+l(f’—f;o)+G(f‘)]} :

2

where 4 = G'(f,) —w is a Lagrange multiplier, found from
the condition 38V (f;) =0. Since A =const, on differ-
entiating 4 with respect to w, one finds

ol 2~

aW—S G'(fo))—1=0.
Eqn (3.6.9) allows us to obtain an expression for the
function G(f) and to conclude about the convexity of the
functional V[ f], and in so doing on the stability of the
monotonic distributions.

However, if the distribution is not monotonic, i.e. when
¢ is sign-indefinite, then the functional (3.6.8) is also sign-
indefinite and this indicates instability. Indeed, considering
the Chetaev functional

(3.6.9)

W = VJ dx dveF(x,v)(Doo)’ , (3.6.10)

where F(x,v) is a solution of the auxiliary equation, we
have

DoF =1 +¢F? J dvv?s?. (3.6.11)
Making use of equations (3.6.7), (3.6.11) and expression
(3.6.10), we obtain

dd_v:/ - —V{—V + J dx U dvvS(p — FDA()GD)]2
n J dx [(J dvv2S2> J dvF2(Dyo)’
— <J dv vSF50¢> 2] } )

whence it is evident that in the region where V <0 the
inequality
dw

—>V2
dt

holds. The latter statement means that the conditions of the
Chetaev—Movchan theorem (Theorem 3.2) on instability
with respect to metrics pg,p’ are satisfied, where

2 ~ 2 .
plo=p;+ de dv[F|(Dog)", o' =infp.

It should be emphasised, that the known frequency criteria
of instability [83] are not applicable here owing to the
substantial inhomogeneity of the distributions.

References

1.  Feynman R P Photon—Hadron Interactions (Reading, MA:
Benjamin, 1972)

2. Einstein A Collection of Scientific Papers Vol. 2 (Moscow:
Nauka, 1966)

3. Makhankov V G, Rybakov Yu P, Sanyuk V I The Skyrme
Model: Fundamentals, M ethods, Applications (Berlin: Springer,
1993)

4. Lee T D Phys. Scr. 20 440 (1979); Particle Physics and
Introduction to Field Theory (London: Harwood Academic,
1985)

5. Novikov S P , Manakov S V , Pitaevskii L P, Zakharov V E
Theory of Solitons. The Inverse Scattering Met hod (New York:
Consultants Burcau, 1984)

6. Bullough R K, Caudrey P I (Eds) Solitons (Berlin: Springer,
1980)

7. Calogero F, Degasperis A Spectral Transform and Solitons: Tool
to Investigate and Solve Nonlinear Evolution Equations
(Amsterdam: North-Holland, 1982)

8. Dubrovin B A, Krichever I M, Novikov S P, in Sovremennye
Problemy Mat ematiki. Fundamental’nye Nap ravleniya T.4 Seriya
Itogi Nauki Tekhniki (Modern Problems in Mathematics.
Fundamental Problems. Vol. 4. Series Advances in Science and
Technology) (Moscow: VINITI, 1985) p. 179

9. Faddeev L D, Takhtadjan L A Hamiltonian Met hods in the
Theory of Solitons (Berlin: Springer, 1987)

10.  Ablowitz M I, Segur H Solitons and the Inverse Scattering
Transform (Philadelphia, PA: SIAM, 1981)

11. Dodd R K, Eilbeck J C, Gibbon J D, Morris H C Solitons and
Nonlinear Wave Equations (London: Academic Press, 1982)

12.  Dubrovin B A, Krichever I M, Malanyuk T G, Makhan-
kov V G Fiz. Elem. Chastits At. Yadra 19 252 (1988)

13.  Newell A C Solitons in Mat hematics and Physics (Philadelphia,
PA: SIAM, 1985)



Localised nontopological structures: construction of solutions and stability problems 137

18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.

36.

37.

38.

39.

40.

41.

42.

43.

45.

46.

47.
48.

49.
50.

SI.

Makhankov V G Soliton Phenomenology (Dordrecht: Kluwer,
1990)

Zakharov V E (Ed.) What Is Integrability? (Berlin: Springer,
1991)

Antoniou I, Lambert F I (Eds) Solitons and Chaos (Berlin:
Springer, 1991)

Sklyanin E K Zapiski Nauchnykh Seminarov Leningradsko go
Otdeleniya Mat ematicheskogo Instituta im. V. A  Steklova AN
SSSR Vol. 95 (Leningrad: Nauka, 1980), p. 55;

Izergin A G, Korepin V E Fiz. Element. Chastits At. Yadra 13
501 (1982)

Thacker H B Rev. Mod. Phys. 53 253 (1982)

Krichever I M Usp. Mat. Nauk 32 184 (1977)

Salle M A Teor. Mat. Fiz. 53 227 (1982)

Olshanetsky M A, Pereclomov A M Phys. Rep. 71 313 (1981)
Krichever I M Funkts. Anal. Prilozh. 20 42 (1977)

Benilov E S, Burtzev S P Phys. Lett. A 98 256 (1983)
Kundu A, Makhankov V G, Pashaev O Physica D 11 375 (1984)
Davydov A C Solitons in Molecular Systems (Dordrecht:
Kluwer, 1985)

Makhankov V G, Pashaev O K Teor. Mat. Fiz. 53 55 (1982)
Ishimori Y Progr. Theor. Phys. 72 33 (1984)

Davey A, Stewartson K Proc. R. Soc. (London) A 338 101
(1974)

Zakharov V E, Shabat A B Zh. Eksp. Teor. Fiz 61 118 (1972)
[Sov. Phys. JETP 34 62 (1972)]

Boiti M, Leon J, Martina L, Pempinelli F Phys. Lett. A 132 432
(1988)

Fokas A, Santini P M Phys. Rev. Lett. 63 1329 (1989)

Boiti M, Martina L, Pashaev O, Pempinelli F Phys. Lett. A 160
55 (1991);

Santini P M Physica D 41 2 (1990)

Makhankov V G, JINR Preprint E4-92-208 (Dubna: JINR,
1992)

Konopelchenko B, Dubrovsky V Physica D 48 367 (1991); 55 42
(1992)

Manakov S V Zh. Eksp. Teor. Phys 65 505 (1974) [Sov. Phys.
JETP 38 248 (1974)]

Makhankov V G, Slavov S I, in Proceedings of the IVth
International Wo rkshop ‘Solitons and Applications’ Eds

V G Makhankov, V K Fedyanin, O K Pashaev (Singapore:
World Scientific, 1990) p. 107

Fordy A, Kulish P Commun. Math. Phys. 89 427 (1988)
Bogolyubov N N, Bogolyubov N N (Ir) Wedenie v Kvantovuyu
St atisticheskuyu M ekhaniku (Introduction to Quantum Statistical
Mechanics) (Moscow: Nauka, 1984)

Dubrovin B A, Makhankov V G, Preprint, University of
Colorado (Boulder, CO: University of Colorado, 1993)
Makhankov V G, Preprint LANL (CNLS) LA-UR-93-1331
(Los Alamos, NM: LANL, 1993)

Hronek J, Makhankov V G, Preprint University of Rome, No.
851 (Rome: INFN, 1992)

Degasperis A, in Nonlinear Evolution Equations and Dynamical
Systems Eds V G Makhankov, O K Pashaev (Berlin: Springer,
1991) p. 61

Degasperis A, in Inverse Method in Action Ed. P C Sabatier
(Berlin: Springer, 1990)

Boiti M, Leon J, Martina L, Pempinelli F, Perrone D, in
Nonlinear Evolution Equations and Dynamical Systems Eds

V G Makhankov, O K Pashaev (Berlin: Springer, 1991) p. 47
Makhankov V G Phys. Rep. 35 1 (1978)

Lyapunov A M Obshchaya Zadacha po Ustoichivosti Dvizheniya
(The General Problem of Stability of Motion) (Leningrad:
ONTI, 1935)

Arnold V 1 Prikl. Mat. Mekh. 29 846 (1965)

Zubov V 1 Metody A. M. Lyapunova i Ikh Primenenie
(Lyapunov’s Methods and Their Applications) (Leningrad:
Leningrad University Press, 1957)

Movchan A A Prikl. Mat. Mekh. 24 988 (1960)

Kuznetsov E A, Rubenchik A U, Zakharov V E Phys. Rep. 142
103 (1986)

Arnold V I Dokl. Akad. Nauk SSS R 162 273 (1965)

52.
53.
54.
55.
56.
57.

58.
59.

60.

61.

62.

63.

65.

66.

67.
68.

69.

70.

71.

72.
73.

74.
75.
76.
77.
78.
79.

80.

81.

82.
83.

Holm D D, Marsden J E, Ratiu T, Weinstein A Phys. Rep. 123
1 (1985)

Shatah J, Strauss W Commun. Mat h. Phys. 100 173 (1985)
Benjamin T B Proc. R. Soc. (London) A 328 153 (1972)
Grillakis M Commun. Pure Appl. Math. 41 747 (1988)
Hobart R H Proc. Phys. Soc. (London) 82 201 (1963); 85 610
(1964)

Derrick G H J. Math. Phys. 5 1252 (1964)

Duff M I, Isham C J Nucl. Phys. B 108 130 (1976)
Rybakov Yu P, in Problemy Teorii Gravitatsii i Elementarnykh
Chastits (Problems of the Theory of Gravitation and Elementary
Particles) Vol. 14 (Moscow: Encrgoatomizdat, 1983) p. 161
Makhankov V G, Rybakov Yu P, Sanyuk V I Model’ Skirma i
Solitony v Fizike Adronov (The Skyrme Model and Solitons in
Hadron Physics) Lecture Notes for Young Scientists Series, No.
55 (Dubna: JINR, 1989)

Rybakov Yu P, in Klassicheskaya Teoriya Polya i Teoriya
Gravitatsii T.2, Seriya Itogi Nauki Itekhniki (Classical Field
Theory and Theory of Gravitation, Vol. 2, Series Advances of
Science and Technology) (Moscow: VINITI, 1991) p. 56
Rybakov Yu P, in Problemy Teorii Gravitatsii i Elementarnykh
Chastits (Problems of the Theory of Gravitation and Elementary
Particles) Vol. 16 (Moscow: Energoatomizdat, 1986 ) p. 174
Rybakov Yu P, in Problemy Teorii Gravitatsii i Elementarnykh
Chastits (Problems of the Theory of Gravitation and Elementary
Particles) Vol. 10 (Moscow: Atomizdat, 1979) p. 194

Kumar A, Nisichenko V P, Rybakov Yu P Int. J. Theor. Phys.
18 425 (1979)

Courant R, Hilbert D Methods in Mat hematical Physics Vol. 1.
(New York: Interscience, 1953)

Vakhitov N G, Kolokolov A A Izv. Vyssh. Uchebn. Zaved.,
Radiofizika 16 1020 (1973) [Radiophys. Quantum Electron. 16
783 (1973)]

Zastavenko L G Prikl. Mat. Mekh. 29 430 (1965)

Rybakov Yu P, in Problemy Teorii Gravitatsii i Elementarnykh
Chastits (Problems of the Theory of Gravitation and Elementary
Particles) (Moscow: Atomizdat, 1966) p. 68

Friedberg R, Lee T D, Sirlin A Phys. Rev. D 13 2739 (1976)
Grillakis M, Shatah I, Strauss W J. Funct. Anal. 74 160 (1987);
94 308 (1990)

Laedke E W, Spatchek K H Phys. Rev. Lett. 52 279 (1984)
Weinstein M I Commun. Pure Appl. Math. 39 51 (1986)
Rybakov Yu P Struktura Chastits v Nelineinoi Teorii Polya
(Particle Structure in the Nonlinear Ficld Theory) (Moscow:
People’s Friendship University, 1985)

Bialynicki-Birula I, Mycielski J Ann. Phys. (N.Y. ) 100 62 (1976)
Simonov Yu A Yad. Fiz. 30 1457 (1979) [Sov. Phys. Nucl. Phys.
30 755 (1979)]

Oh Y-G J. Geom. Phys. 4 163 (1987)

Rybakov Yu P, Chakrabarti S Int. J. Theor. Phys. 23 325 (1984)
Zakharov V E, Kuznetsov E A Zh. Eksp. Teor. Fiz. 66 594
(1974) [Sov. Phys. JETP 39 285 (1974)]

Kuznetsov E A, Turitsyn S K Zh. Eksp. Teor. Fiz. 82 1457
(1982) [Sov. Phys. JETP 55 844 (1982)]

Kingsep A S, Chukbar K V, Yan’kov V V Voprosy Teorii
Plazmy (Problems in Plasma Theory) Vol. 16 (Moscow:
Enecrgoatomizdat, 1987) p. 209

Bernstein T B, Greene J M, Kruskal M D Phys. Rev. 108 546
(1957)

Turikov V. A Phys. Scr. 30 73 (1984)

Ecker G Theory of Fully Ionized Plasmas (New York: Academic
Press, 1972)



