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Abstract. Possible m e t h o d s are discussed for describing 
s tructures localised in finite region (solitons, vortices, 
defects and so on) within the f ramework of b o t h integrable 
and nonin tegrab le field models . F o r integrable models a 
universal a lgor i thm for the const ruct ion of soliton-like 
solut ions is described and discussed in detail . This 
a lgor i thm can be generalised to many-d imens iona l cases 
and its efficacy for several examples exceeds tha t of the 
s t andard inverse scattering t ransform method . F o r n o n ­
integrable models we focus mainly on m e t h o d s of s tudying 
the stability of soliton-like solutions, since stability 
p rob lems become essential when one tu rns to a descript ion 
of many-d imens iona l soli tons. Special a t tent ion is paid to 
those stable localised s t ructures tha t are not endowed with 
topological invar iants , since for topological ly nontr iv ia l 
s t ructures there exist effective m e t h o d s of stability analysis, 
based on energy est imates. He re the pr incipal topic is tha t 
of L y a p u n o v ' s direct me thod as applied to dis tr ibuted 
systems are discussed. Effective stability criteria for 
s ta t ionary solitons, endowed with one or m o r e charges, 
(the g - t h e o r e m ) are derived. Several examples are 
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presented tha t i l lustrate the applicabil i ty of the me thod 
of functional est imates, and the stability of p lasma soli tons 
of the electron phase hole type is discussed. 

1. Introduction 
Localised structures, or soliton-like excitations arise in 
dynamica l systems either under the influence of sufficiently 
s t rong external forces, or as a result of nonl inear self-
interact ion effects. Indeed, under weak influence (or, 
equivalently, when it is possible to ignore self-interaction 
effects), the evolut ion of the system is well described by 
linear relat ionships. But linear equa t ions yield only 
spreading wave packets as solut ions for the Cauchy 
problem with regular b o u n d a r y condi t ions , localised in a 
small space region. The basis for this spreading is the 
superposi t ion principle, which is characteris t ic of linear 
systems. However , under sufficiently s t rong pe r tu rba t ion , 
or under non-negligible self-interaction effects, this p r in ­
ciple b reaks down, since further evolut ion of the system is 
governed by substantial ly nonl inear relat ions. As a result, 
s t ructures with proper t ies unfamil iar to linear physics are 
derived. In par t icular , these objects might be incredibly 
stable. Studies of such localised s t ructures became the 
subject of soliton physics. 

In connect ion with an intensive development of soli-
tonic themes, s tar t ing in the late 1960s, the p rob lem of the 
descript ion of localised s t ructures (vortices, defects, textures 
and so on) at a new qual i tat ive level has again arisen, as 
well as the descript ion of part icles as extended objects in 
condensed mat te r physics, in as trophysics and cosmology, 
and in part icle and nuclear physics. In t ime this coincided 
with the appea rance of exper imental p r o o f of the existence 
of an internal s t ructure for s trongly interact ing particles: in 
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the experiments of R Hofs tad te r (1956) on elastic scattering 
of electrons on p ro tons , the electric charge dis t r ibut ion 
within the p r o t o n was found; in the exper iments of 
E Blume et al. (1969) on the deep inelastic scat tering of 
electrons on nucleons , the scaling phenomenon was dis­
covered, tha t is the scale invar iance of the scattering cross-
section. The latter observat ion served as a basis for the 
parton model, suggested by R F e y n m a n , the mode l which 
provided an explanat ion why, in elastic scattering experi­
men t s nucleons manifest themselves as extended objects, 
whereas for deep inelastic processes this pic ture is no longer 
valid. Indeed the results for an inelastic process are 
ana logous to scat tering on a point l ike (structureless) 
object [1]. In such m o d e r n theories as q u a n t u m c h r o m o -
dynamics , electro-weak and s tandard models , the role of 
p a r t o n s is played by quarks . This means tha t the part icle 
s t ructure is described within the f ramework of the so-called 
composite models, when extended part icles are constructed 
from point l ike ones. On the one hand , it is clearly ha rd to 
imagine a logical complet ion for this process, and, on the 
other h a n d the presence of structureless part icles in a mode l 
leads to the appearance of divergences. The el imination of 
these divergences requires ever m o r e ingenious schemes at 
each successive level of the theory . 

F o r this reason, al ternat ive approaches to the descr ip­
t ion of part icles as extended objects, i.e. beyond the 
f ramework of composi te models , deserve special a t ten­
t ion. It is app ropr i a t e here to no te tha t a search for 
such an al ternat ive description is in a sense t rad i t iona l 
in the evolut ion of ideas in physics. Very similar considera­
t ions led Lo rd Kelvin (W T h o m s o n ) at the end of the last 
century to suggest the existence of Vor tex a t o m s ' of finite 
extension instead of point l ike a toms . Similar ideas were 
p roposed by O Heaviside, J J T h o m s o n and G Mie . In a 
m o r e concrete form these ideas have been formulated by 
A Einstein, who suggested describing part icles in te rms of 
regular solut ions of field equat ions , as, in effect bunched 
fields tha t occupy ".. .a b o u n d e d region in space, where the 
field strength and the energy density are par t icular ly 
h igh . . . " ([2], p . 725). The no t ion of a part icle as a regular 
physical field, localised in a small region of space and 
endowed with finite energy and all o ther dynamica l 
a t t r ibutes appeared in the l i terature under several names : 
particle-like solut ions in articles by N Rosen , R Finkelstein, 
Ya P Terletskii et al.; le champ a bosse in L de Broglie 's 
papers ; kinks as n a m e d by D Finkelstein, and lumps by 
S Co leman . The concept of a many-d imens iona l soliton 
endowed with nontr iv ia l topological s t ructure arose in the 
late 1950s in T H R Skyrme's pape r s (see Ref. [3] and 
original papers cited therein) , and one can consider this as 
an appropr i a t e general isat ion of all these earlier no t ions . It 
might be well to poin t out a beautiful (nontopologica l ) 
concept , in t roduced by T D Lee [4], which in a par t icular 
form combines the approaches listed above into a descr ip­
t ion of part icle s t ructure. As the basis for this concept a 
nonl inear mechanism of qua rk confinement was chosen, 
whereby bosons strongly interact ing with qua rks form a 
confining poten t ia l of a solitonic bag type. Recent t rends are 
t oward the development of this concept in the f ramework of 
the so-called hybrid bag models, where an external soliton (a 
topological one, as a rule, and provid ing the correct spectral 
da ta ) is used for the confinement of qua rks inside the bag . 
In the present review the current s ta tus of the p rob lem of 
the descript ion of localised coherent s t ructures is discussed, 

and, in par t icular , a descript ion of part icles as extended 
objects on the basis of integrable as well as nonin tegrab le 
field models is given. In doing this we are restrict ing 
ourselves to p rob lems of const ruct ing explicit solut ions 
for integrable models , and to studies of stability p rob lems 
for nonin tegrab le models which possess many-d imens iona l 
localised s tructures . W e intend to discuss in a separate 
publ ica t ion the p rob lems of the existence and stability of 
topological ly nontr iv ia l localised s tructures . 

P A R T I. I N T E G R A B L E M O D E L S 

A dozen or so substant ia l m o n o g r a p h s and reviews [ 5 - 1 5 ] 
are devoted to integrable dynamica l systems. Therefore we 
feel free here to limit ourselves to ment ion ing only some 
aspects of this theory (those most impor t an t for the 
following presenta t ion) . Since in the existing l i terature 
there are some disagreements on the very definition of 
integrable systems (as well as tha t of solitons), in wha t 
follows we shall use the definitions: 

1. Integrable systems — systems which possess a L a x 
representa t ion (or, in a m o r e recent sense, a zero curva ture 
representa t ion) , which have a countab le number of integrals 
of mot ion , and for which in the investigation of their 
dynamics one can apply the inverse spectral t ransform 
me thod , the R i e m a n n prob lem, the 8-problem, and the 
finite-zone integrat ion me thod . This is called S-integrability. 
To a similar category be long dynamica l systems which one 
can integrate by a change of variables or by means of an 
ansa tz (C-integrabili ty). 

2. Completely integrable systems — Hami l t on i an integra­
ble systems, for which one can find act ion-angle variables 
and rewrite the Hami l ton i an of the system in te rms of these 
variables. 

Let us list wi thout exhaust ive details, which one can find 
in m o n o g r a p h s [9, 14], some proper t ies of integrable 
systems using as an example the nonlinear Schrodinger 
equation^ (NSE) pursu ing the twofold aim of defining 
the te rminology to be used later and of reminding the 
reader of some facts on N S E proper t ies , which might be 
useful in wha t follows. A dynamica l system associated with 
the N S E 

i 8 , ^ + 8 ^ + 2 g M V = 0 , (2.1) 

where t) is a complex-valued function, is classified as a 
Hami l ton i an system, since it is provided with a set of 
canonical ly conjugate variables \j/ (here the ba r means 
complex conjugat ion) . Consequent ly , for the system (2.1) 
the Poisson bracke t (in its generalised form for the 
con t inuous case) is defined as 

\p} = id(x - y) , (2.2) 

and Hami l ton i an 

H = J°° dx [ ( 8 , # • 8 ^ ) " g(Wf] , (2.3) 

for which the Hami l ton i an equa t ions hold 

fNote, that this name given to Eqn (2.1), has in fact nothing to do 
with (fundamentally linear!) quantum mechanics, but was given to it 
only because in its linear limit g — 0 it coincides with the Schro'dinger 
equation for the wave function of a free particle. 
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= {H, XJJ} = - i 
8// 
8# ' 

= {H, = i 
8// 

(2.4) 

Taken together the facts (2 .2 ) - (2 .4 ) p rove tha t the system 
(2.1) is Hami l ton ian . N o t e tha t to define the dynamica l 
system one must also specify b o u n d a r y condi t ions . In the 
following discussion we will mainly consider rapidly 
decreasing cases, i.e. where 

^ ( j t , f )—>0 for (2.5) 

In addi t ion we will assume tha t \l/{x,t) is an infinitely 
smooth function, decreasing at spatial infinity, together 
with its derivatives, faster t han any power of 

One can also represent equat ion (2.1) as the consistency 
condition for the following over determined system of linear 
mat r ix equa t ions 

dty = A 0 ( x , t; X)y, 

dxy = Ax(x, t; X)y 

on the vector-function 

(2.6) 

y = 

which one can derive from Eqn (2.6) by equat ing the cross 
derivatives dtdxy = dxdty. As a result one obta ins the zero 
curvature condition^ 

(2.7) 

which is one of the pr incipal re lat ions in the inverse 
spectral t ransform me thod . N o t e tha t the 2 x 2-matrices 
A0,Ai in E q n s (2.6) are dependent on an a rb i t ra ry 
complex-valued pa ramete r X, k n o w n as the spectral 
parameter of the problem, and condi t ion (2.7) has to be 
valid for all As. The explicit form for matr ices A$,AX is 
given as: 

-Ucr3 + P , cr3 

1 0 
0 - 1 

o iA 
x/j 0 

B - IIP + 2 U 2 ( T 3 , B - # | 2 

(2.1 

It is known , tha t a system possessing the zero curvature 
representation is endowed with an infinite (but countable!) 
set of addit ive integrals of mo t ion (or conservat ion laws), 
or, in the presence of in ternal (isotopic) symmetries, with a 
series of such sets. Fo rma l ly these laws can be wri t ten as 
the cont inui ty equat ion 

Pn+SxJn = 0 , n= 1,2,.. . , (2.9) 

where the functionals p n and j n are po lynomia ls in the field 
function and its spatial derivatives, associated with the 
'densit ies ' and ' cur ren ts ' of the system, respectively.} On 
integrat ing E q n (2.9) over x we obta in the integrals of 
mo t ion 

fThis name is related to the geometrical interpretation of the system 
(2.6) together with condition (2.7) in terms of fibre-bundle spaces (see 
[9])-
jThese densities are referred to as local ones. In a number of models 
along with local conservation laws there are also nonlocal 
conservation laws, with 'densities' as integrals over x. 

In — Pnixi^dx, in ~^ 0 when |x| —> oo . (2.10) 
J —oo 

If the integrals /„ are in involut ion with respect to the 
Poisson bracket (2.2) and one is able to in t roduce angle 
variables canonical ly conjugate with them, then the 
cor responding system would be completely integrable, 
and the integrals (2.10) would play the role of the action 
variables. 

In some cases, one can solve the inverse scat tering 
p rob lem for the opera to r L = \a^x + Ucr3 — Ax), i.e. via 
scattering da ta to find an explicit form of the potent ia l , the 
required function \jt(x,t) p laying its role. This means tha t 
for the si tuat ion discussed here one can solve the Cauchy 
prob lem, so tha t the behaviour of this integrable system will 
be strictly determined. The localised regular solut ions to 
integrable systems (if they exist), which cor respond to the 
discrete pa r t of the spectrum of the opera to r L are usually 
called solitons. F o r integrable systems the q u a n t u m inverse 
scattering me thod has also been developed, which enables 
one to find the g round state and excitation spectra [17, 18]. 

H e r e we have sketched a rough outl ine of the current 
possibilities of describing localised s t ructures as soli tons in 
integrable models . It should be noted at once tha t in spite of 
intensive efforts unde r t aken in the development of this 
app roach , the scheme presented m a y be successfully realised 
only in the case of (1 + l ) -d imens iona l completely integrable 
models , such as the K o r t e v e g - d e Vries (KdV) equat ion , 
N S E , s ine-Gordon, and so on. This restricts the range of 
possible appl icat ions, bu t at the same t ime it p r o m p t s an 
active search for other m e t h o d s of s tudying integrable 
models , which would enable one to describe many-d imen­
sional soli tons. A m o n g them should be ment ioned the 
R i e m a n n p rob lem [5, 6] and the finite-zone integrat ion 
m e t h o d s [5, 8, 19], the D a r b o u x t rans format ion m e t h o d 
[20], and var ious m e t h o d s of group- theore t ica l and alge­
b r a i c - g e o m e t r i c analysis [8, 15, 21]. In wha t follows we will 
consider only one of the possibilities listed above of 
extending the m e t h o d s for s tudying integrable models to 
many-d imens iona l cases, choosing as the basic mode l the 
nonl inear Schro'dinger equat ion . 

2. Multisoliton solutions to Schrodinger-type 
nonlinear equations 
The nonl inear Schro'dinger equat ion (NSE) is one of the 
fundamenta l equa t ions of nonl inear ma themat ica l physics, 
describing the evolut ion of a weakly nonl inear and strongly 
dispersed quas imonoch roma t i c wave. In par t icular , N S E 
describes the evolut ion of h y d ro d y n ami c waves in deep 
water , tha t of optical waves in nonl inear crystals and light 
guides, tha t of Langmui r waves in p lasma and heat waves 
in solids, the evolut ion of spin waves in magnets , and so 
on. F o r a number of reasons , par t ly outl ined in 
m o n o g r a p h s [9, 11, 14], N S E might be considered as 
exceptional a m o n g integrable models . Strictly speaking, the 
fact tha t t) in Eqn (2.1) is a complex, instead of a real -
valued function as in the K d V or s ine-Gordon equa t ions 
distinguishes the N S E a m o n g integrable equat ions . On the 
other hand , this exceptionali ty of N S E is related to the 
quadra t i c form of its dispersion, which in the vacuum state 
coincides with tha t of a free nonrelat ivist ic part icle. At the 
same t ime, for strongly nonl inear states, for example for a 
condensate , N S E provides the correct expression for linear 
excitat ions (first ob ta ined by N N Bogolubov) . One of the 
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most a t t ract ive features of the N S E is tha t it enables us to 
describe the evolut ion of wave packet envelopes for carrier 
waves in media with quadra t i c dispersion. Thus , N S E 
allows one to rehabi l i ta te the L de Broglie idea of 
representa t ing of particles as wave packets , which has 
no t met with success in linear theories, where the wave 
packe ts spread out owing to dispersion. 

2.1 Nonlinear Schro'dinger equations and envelope 
solitons 
The N S E arises, as a rule, when one describes nonl inear 
p h e n o m e n a in var ious circumstances where solut ions in the 
form of h a r m o n i c wave packe ts are found to be acceptable 

t) = A exp{i[£x — co(k)t]} , (2.1.1) 

with a sufficiently small ampl i tude A. Nonl inear i ty of the 
med ium manifests itself in a back act ion on the ampl i tude 
in E q n (2.1.1). As a result, the wave envelope slowly 
(compared with the carrier wave) varies in space, as well as 
in t ime, i.e. it modula tes the fast (high-frequency) carrier 
wave. The key poin t of the N S E approach consists in 
finding weakly nonl inear expansions of the dispersion 
re la t ions! , which, in contras t to the pu re linear state, can 
t ake into account the dependence on the ampl i tude . Two 
different specifications of the p rob lem are frequently given: 

co = co(k; | A | 2 ) , k G R, initial-value p rob lem , (2.1.2a) 

k = k(co; \A | ) , co G R, boundary-va lue p rob lem . 
(2.1.2b) 

A Taylor expansion of E q n (2.1.2) in the vicinity of some 
(co0, k0) gives 

dco I ld2co\ 
W = W o + ^ l o ( " - " o ) + 2 S l o ( " - " o ) 2 

I i . .2 
+ y A 2 + ... 

8 |A | 2 l o ' 1 

0 + 6col(T _ C 0 ° ^ + 

1 &k I ( ,2 

dk 
+ |A| 2 + . . . . 

8 |A | 2 lo 

In Four ie r - t rans form space for the waves (2.1.1), this 
expansion might be represented in opera to r form by the 
relat ions 

(co-co0) -> i: 

( * - * 0 ) - - i 

( k - k 0 ) 2 ^ -

_8_ 

dx ' 

dx2' 

i.e. in the form of a N S E opera tor , act ing on ampl i tude A: 

f in physics this corresponds, for example, to the observation that the 
refractive index in nonlinear optics or the dielectric constant of a 
plasma can be represented as polynomial functions of electric field 
strength. 

or as 

dco I 

8^ dk lo8x 

8_ 8£ I 

dx dcolodt 

\d2co 
+ 2dk2 * ' - 2 ' o 8 x 2 6 | A | 2 lo 

A =0 

(2.1.3a) 

1 d2k I 8 2 

+ -
dk 

2dco2\odt2 6|A| 

(2.1.3b) 

Equa t ion (2.1.3a) describes the t ime evolut ion of an 
envelope for a n a r r o w packet of carrier waves with real -
valued k. The crude way of deriving of the latter equat ion 
displayed here has been generalised to the me thod of 
multiscale {or two time variables) decomposition, where 
together with the 'fast ' variables x,t for the carrier 
wave, a set of ' s low' variables Xn = snx, Tn = snt, (e <̂  1) 
is in t roduced for a description of the envelope mot ion (see 
detailed descript ion of the mult iscale expansion m e t h o d s 
with a number of references in Ref. [11], Ch. 8). Equa t ion 
(2.1.3b) describes the p ropaga t ion in space (for example, in 
a waveguide) of a n a r r o w wave packet with a given carrier 
wave frequency co = co0 G R. 

Equa t ions of the type (2.1), (2.1.3), also called scalar 
nonlinear Schrodinger equations, themselves represent the 
simplest ma themat i ca l models for a descript ion of weakly 
nonl inear wave packets of high-frequency, and, in pa r t i c ­
ular , models for self-interacting spin waves (magnons) in 
ferromagnets , for excitat ions in molecular crystals, for the 
Langmui r waves in p lasma, for two-body interact ions of 
boson gas part icles at zero t empera tu re and so on. Detai led 
der ivat ions of the N S E together with a descript ion of the 
models listed above can be found in Refs [11] and [14]. 

As a na tu ra l general isat ion for E q n (2.1) one can 
consider the system which describes the interact ion of 
high-frequency wave packets \jj(x,t) with low-frequency 
waves U(x,t). F o r this type of s i tuat ion a complex function 
i//(x,t) is subject to the same scalar N S E 

i8?iA + 8 2iA + ^ A + s|iA| iA = 0 (2.1.4) 

with a low-frequency wave U(x,t) as potent ia l , the latter in 
tu rn beingdescribed by one of the following self-consistency 
equat ions : 

UU = - 8 2 ( | i A | 2 ) (Zakharov , 1972) (2.1.4a) 

dtU + dx(U- ) = 0 (Yaj ima-Oikawa, 1976), (2.1.4b) 

(8, + a!bx)U + dx(pu2 - + U) = 0 

(Nishikawa, et a l , 1974) , 

( • + a 8 , 4 ) f / + 8 2 ( ^ 2 + |iA|2) = 0 

( M a k h a n k o v , 1974) . 

(2.1.4 c) 

(2.1.4d) 

Of the systems listed above , in the first two cases (2.1.4a,b) 
the low-frequency excitat ions are described by linear 
equat ions , bu t only the second is integrable (for g = 0). 
The remain ing two equa t ions are nonl inear . The integra-
bility of Eqn (2.1.4d), with an appropr i a t e choice of 
pa rame te r s a and ft, has been established by I M Krichever 
[22], and in tu rn the non-integrabi l i ty of Eqn (2.1.4c) has 
been proved by E S Benilov and S P Burtsev [23]. Systems 
like ( 2 . 1 . 4 a - d ) with g = 0 occur in p lasma physics, where 
they serve as a basis for the descript ion of coupled 
Langmui r and ion-acoust ic waves. In general , for g ^ 0 
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they appear in the descript ion of spin waves and p h o n o n 
interact ions in fer romagnets [24], and in a descript ion of 
excitons and p h o n o n s in molecular crystals [25], and so on. 

Ano the r na tu ra l general isat ion of N S E (2.1) is related to 
its t rans format ion into a vector version by the rule: 
\j/ —> i/f2, * / O t r a long with a s imul taneous replace­
ment of \\//\2 in (2.1) by the inner p roduc t 

n 

OA, <A) d = ' 

where gy is the metr ic tensor in some internal symmetry 
space of the mode l under investigation [26] and [37]. 
Apply ing the hermitici ty condi t ion to the Hami l ton i an of 
the system, we arrive at non -compac t g roups of internal 
symmetry U(p,q). Physical models of this type are used to 
describe the dynamics of a boson gas with internal 
quasispin (or ' coloured ' ) degrees of freedom or tha t of 
boson gas mixtures (related to the superconduct ivi ty 
p h e n o m e n o n at T ^ 0), as well as to describe the 
p ropaga t i on in p lasmas of high-frequency p lane waves 
with circular polar isa t ion and tha t of spin waves in 
mult i layered ferromagnets . (For details and references 
one m a y consult Ref. [14], Ch. 2). The integrabil i ty of 
some systems described by the vector N S E has been 
established in [26] and [35]. Finally, if we combine the 
general isat ions listed above, we obta in the vector N S E 

idrt + d2

xx iA + Ui/f + gty • iA)<A = 0 , (2.1.5) 

with a self-consistent po ten t ia l (the low-frequency mode) , 
which in tu rn is governed by one of equa t ions (2.1.4 a - d ) . 

A whole range of appl icat ions is associated with the 
so-called derivative N S E (i.e. N S E with a po ten t ia l tha t 
conta ins a derivative): 

[ - 1 8 , + 8 2 + iU(x,t)dx]xfr(x,t,k) = 0 , (2.1.6) 

which has a t t rac ted considerable interest in relat ion to the 
s tudy of (2 + l ) -d imens iona l systems, such as the modified 
K a d o m t s e v - P e t v i a s h v i l i and Ish imor i equa t ions [27]. 

It is a r emarkab le fact tha t for all the var iants of N S E 
enumera ted above a genera l -purpose algebraic me thod of 
const ruct ing exact solitonic solut ions exists and was first 
p r o p o u n d e d in Ref. [12] (see also Ref. [14], Ch. 8). 

2.2 Algebraic method of constructing exact solitonic 
solutions for Schrodinger-type nonlinear equations (D = 1) 
Conceptua l ly the me thod outl ined be low is a specific case 
of the general a l g e b r a i c - g e o m e t r i c scheme of finite-zone 
integration, as described in Ref. [5]. C o n t r a r y to the 
s t andard inverse scat tering p rob lem method , where for 
each equat ion considered there is its inherent auxiliary 
linear spectral p rob lem, in the p roposed const ruct ion a 
universal auxil iary role is played by a linear Schro'dinger 
equat ion with a t ime-dependent po ten t ia l U(x,t): 

idt + d2

x + U(x,t)\l/(x,t,k) = 0 . (2.2.1) 

It should also be noted , tha t the me thod presented proves 
effective in those cases where the inverse scattering m e t h o d 
fails to be helpful. In par t icular this is the case for the 
boson-gas models with non-compac t in ternal symmetry 
groups , for the isotropic L a n d a u - L i f s h i t z mode l with the 
S £ / ( l , l ) g roup , for nonl inear cr-models, and others (see 
Ref. [14], Pa r t I II) . In further discussion, the p rob lem will 

be considered at two levels: the linear and the nonl inear 
one. 

At the linear level for given spectral da ta (SD) we find a 
special class of localised reflectionless (Bargman) potent ia ls 
U(x,t) a long with the cor responding wave functions 
\l/(x,t,k). The spectral da ta consist of a set of complex 
n u m b e r s K H i=\,N, and a complex-valued-constant 
N x A/-matrix ctj, i.e. these SD in fact p rov ide a solution 
for a specific inverse p rob lem. F u r t h e r m o r e , we derive the 
condi t ions which KT and ctj have to satisfy in order to 
provide the real value and regular i ty of the obta ined 
potent ia ls U(x,t) together with the cor responding wave 
functions \jj(x,t,k). W e also discuss the degeneracy of 
solut ions with respect to the SD and no te two possible 
representa t ions for wave functions: the po lynomia l and the 
ra t iona l (pole-type) one. Invest igat ions of the asymptot ic 
behav iour of the solut ions allows us to find explicit 
expressions for s t ructura l uni ts ( 'bricks') , of which the 
potent ia ls and wave functions are composed . 

At the nonlinear level, self-consistency condi t ions are 
found tha t relate the potent ia ls to the wave functions and 
their residues. He re a choice of b o u n d a r y condi t ions for 
nonl inear fields plays a crucial role and the fields are 
expressed in the form of direct sums of the aforement ioned 
s t ructura l uni ts . 

2.2.1 Linear level The poten t ia l U(x,t) in the nons t a t i on -
ary Schro'dinger equat ion will be called the integrable 
potent ia l (associated with a ra t iona l algebraic curve) if 
equat ion (2.2.1) admi ts solut ions in the form of the plane-
wave ansatz: 

t,k) = PN(x,t,k) exp [ik(x + kt)] 

= (kN+aN_l(x,t)kN-l+... 

... + a0(x,t)) exp [\k(x + kt)] . (2.2.2) 

Let us in t roduce , as the free pa rame te r s of our cons t ruc­
t ion, the complex n u m b e r s K i , . . . , k m with nontr iv ia l 
imaginary pa r t s and a mat r ix of coefficients 
Ofy, / = 1,N, j = 1,M. F o r any set of these pa rame te r s 
we can uniquely determine the function \jj(x,t,k) having 
the form (2.2.2) with the help of the following system of 
linear condi t ions 

M 

^2oLij\l/(x,t,k)\ = 0, i = TyN . (2.2.3) 
j=i k = K j 

The condi t ions (2.2.3), which themselves represent a system 
of N linear i nhomogeneous algebraic equat ions , are 
solvable, if the cor responding mat r ix of coefficients 
A(x,t) = [ctij] is nons ingular , or, in other words , if 
rank[(Xy] = The search for the poten t ia l U(x,t) is 
based on the theorem, proved in Ref. [12]: 

T h e o r e m 2 . 1 . If the matrix A(x,t) of the system 
(2.2.3) is not identically singular (in x,t), then the function 
\l/(x,t,k) of the form (2.2.2) under conditions (2.2.3) satisfies 
Eqn (2.2.1) with the potential 

U(x,t) =2idxaN_l(x,t) = 2 8 2 I n d e t A ( x , t ) . (2.2.4) 

In general, potent ia ls U(x,t), cor responding to an 
a rb i t ra ry set of pa rame te r s KT and [a^], will be complex 
m e r o m o r p h i c functions of (x,t). In order to obta in real -
valued and regular potent ia ls as functions of the real 
variables x,t, one needs to pu t some restr ict ions on the 
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choice of pa ramete r s . Let us assume tha t M =2N and tha t 
it is possible to subdivide the pa ramete r set Ki,...,k2n into 
complex conjugate pa i rs of the type KN+i = kh i = l,iV. W e 
can further assume, and wi thout loss of generality, tha t the 
minor of the ma t r ix [by] = [(Xy], consisting of the co lumns 
with indices j = N + 1, ...,2N, is nonsingular (in general this 
minor can be reduced to the uni t matr ix) . In this case the 
condi t ions (2.2.3) t ake the form 

J'=I 

(2.2.5) 

where by is a cons tant N x N ma t r ix . The ansa tz (2.2.2) 
gives a po lynomia l representa t ion for the wave function of 
the N S E (2.2.1), and when coupled with the condi t ion 
(2.2.5), it can be regarded as a general isat ion of the 
B e i k e r - A k h i e z e r function [5]. 

The rational or pole-type representation for the wave 
function of E q n (2.2.1) m a y be given in the form 

Y[(k-Ki) 

1 + 1 exp [ik(x + kt)} . (2.2.6) 
. 1 k — Kj I 

J'=I 

In this case, the condi t ion (2.2.5) m a y be rewri t ten as 

Y(x,t,ki) = -Y^cijYj(x,t) , (2.2.7) 
J'=I 

where 

YAx,t) =resk=K.Y(x,t,k) = lim \(k - Kj)Y(x, t,k)] (2.2.8) 

with the in t roduc t ion of the mat r ix 

(2.2.9) 

by means of the function 

R(k) = f [ ( k - K j ) . 
J=I 

T h e o r e m 2 .2. In order for the potential U(x,t) of the 
NS E (2.2.1) to be a real and non-singular function of the real 
variables x,t, the following conditions are sufficient: (1) The 
matrix Cy in (2.2.9) should be skew-Hermitian: [cy] = —[cy]^', 
(2) On the assumption that for parameters KT the following 
conditions hold: ImKt > 0 for i = \,p and Im Kj < 0 
forj = p + 1,N, the Hermitian matrix i~l[cy] for ij = l,p 
should be positive definite whereas i~l [cy] for ij = p + 1, N it 
should be a negative definite matrix. 

This is proved in Ref. [12]. In pract ice the condi t ions of 
Theorem 2.2 contain the first substant ia l l imitat ions on the 
locat ion of poles KT of the sought-for function, related to the 
form of the mat r ix cy from (2.2.9). 

Let us enumera te some proper t ies of the solut ions 
obta ined. 

1. T h e d e g e n e r a t e c a s e . In the po lynomia l 
representa t ion (2.2.2) b o t h the wave function \l/(x,t,k), 
and the poten t ia l U(x,t) are 2N-foId degenerate with 
respect to SD changes. At the same t ime in the po le -

type representa t ion (2.2.6) only the potent ia l U(x,t) 
remains 2 i V -fold degenerate , i.e. for 2N different sets of 
the SD we obta in one and the same poten t ia l U(x,t). 

H e r e we poin t out the explicit form of t r ans format ions 
from one set of SD to another . Let the mat r ix by be given in 
the block form: 

fa] 
P (2.2.10) 

where the square matr ices a + and a_ are p x p and 
(N — p) x (N — p) matrices, respectively (recall, tha t 
Im Kt > 0 for / = l , p , and Im Kj < 0 for j = p + 1,N) and 
det a_ ^ 0. Then the t ransformat ions from one set of SD to 
another {Khby}=>{i<!hb,y} are writ ten in the form 

k t = Kt for / = l , p , 

= Kt for / = p + 1, N 
and 

-PaZ1 

(2.2.11) 

(2.2.12) 

2. A s y m p t o t i c b e h a v i o u r . Let us consider the 
asymptot ic behaviour of the solution in x and t for var ious 
N. 

(a) In the simplest case for N = 1, k = a + i/?, the 
poten t ia l U(x,t) assumes a soliton-like form (for details 
consult Ref. [14], Ch. 8): 

U(x,t) = - 2 £ 2 c o s h " 2 [ £ ( x - x 0 + 2ait)] , (2.2.13) 

while the wave function is 

W 1 + 7 - ^ — { l + t a n h £ ( x - x 0 +2ot f ) | 

x exp [ik(x +kt)] , (2.2.14) 

where it is assumed tha t 

2i£c = - e 2 / k o . 

F o r N > 1 and for all KT with I m ^ > 0 and R e ^ ^ RqKj 
for / ^ j , the poten t ia l asymptot ical ly decays to a direct 
sum of the potent ia ls (2.2.13). Hence , such N = 1 potent ia ls 
can be regarded as simple bui lding bricks for complexes 
with N > 1. Below we call them solibricks. 

(b) Ano the r fundamenta l type of bui lding brick of which 
N S E potent ia ls for m o r e complicated systems are con­
structed, are breathers, or string-like solut ions, arising for 
N > 1, RQKT = R e Kj, per iodic or quasiper iodic in t ime [29]. 

(c) N o w we proceed to a new type of bui lding br icks for 
N S E potent ia ls , called bions. This type of solut ion is defined 
by the off-diagonal matr ices [cy]; for example, for N = 2 we 
have 

0 c 
-c 0 

(2.2.15) 

The wave function for this case is given in Refs [33, 36]: 

c3 cos(q£ + Qt + 0 3 ) + c A S 
Y = 1 + 

c2 cosh(/?£ + 0 2 ) + ci cos(tf£ + Qt + Qx) 

x e x p [\k(€ + k't)] , (2.2.16) 

where the coefficients are 
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C2 = 

I C 

1*12 

I CKU 

I kl2 I \KUK22 

Qe2 = \3l_ 1 1/2 

\CKl2 \\KUK22 

Q2W, =CK12 

ckl2 

c3 = -\c\ 
1 

(k-Kl)(k-K2)J ' 

1/2 
Q2W3 = 

c(k — K2) 

c(k — K\) 

c4 

K21 

• + -
K12 

(k — Ki)kuk22 (k — K2)k2ikn 

The solution (2.2.16) is defined by the following p a r a ­
meters : 

Kj = OLj + i/?y, q = a 2 — VL\, Q = co — qv , 

kf = k - v , j8 = j 8 1 + j 8 2 , £ = x + v ; , 

. a i A + a 2 j 8 2 co = a 2 - af + /Jf - fi2, v = 2-
P1+P2 

Here a, m a y be interpreted as velocities of the const i tuents 
(bions), and fit as their 'masses ' . 

N o t e tha t the bionic solut ions (2.2.16), as well as 
brea thers , are formed from two 'sol ibricks ' and bo th types 
of solution are per iodic (or quasiperiodic) functions with 
respect to t ime. Nevertheless , the n a t u r e of b rea thers and 
b ions is substant ial ly different in accordance with their 
in terpre ta t ion in physics. This will be clearly shown at the 
nonl inear level. H e r e we simply no te tha t b rea thers can be 
easily b roken down into their const i tuents , whereas for 
b ions such a process is s trongly forbidden. In this sense, the 
const i tuents of the b ion behave like q u a r k s in a meson. 
Therefore one can say tha t there are three types of bui lding 
bricks: solibricks, brea thers , and b i o n s | , and the N S E 
potent ia ls asymptot ical ly assume the following symbolic 
form: 

^(*> 0f->oo = 5 ^ s o l i b r i c k s + brea thers 

+ ^ " ^ b i o n s + ... . 

One can use the scheme given above to construct 
soliton-like solut ions for (2 + l ) -d imensional K a d o m t -
sev-Petviashvi l i (KP) and D a v e y - S t e w a r t so n-I (DS-I) 
equat ions . As is known , a t t empts to find such solut ions 
in Refs [31] and [32] have led to the discovery of dromions. 
The scheme given above has been applied to the D C - I 
equat ion in Ref. [33]. In this sense one can consider the 
above technique as a construct ive way for p roduc ing 
solitonic solut ions for (2 + l ) -d imens iona l K P and DS-I 
models . It can also be easily generalised to relativistic 
models of the D i r ac type, in par t icular , to the W a x -
Lark in and Thir r ing models [41]. Let us n o w consider a 
modif icat ion of the present scheme in order to s tudy the 
derivative N S E ( D N S E ) (2.1.6). 

(a) Solutions of the derivative NS E. Below we pr imari ly 
follow the a rguments in pape r s [33] and [39]. Let us consider 
equat ion (2.1.6) with a po ten t ia l of a rb i t ra ry sign i.e. 

[(-idt+d2

x ±iU(x,t)dx]\l/(x,t,k) = 0 . (2.2.17) 

f in doing so, we do not deny the possible existence of other building 
bricks. 

Accordingly, we choose the plane-wave ansa tz in a form 
slightly different from (2.2.2), namely: 

\jj(x,t,k) = QN(x,t,k)exp [\k(x + kt)] , (2.2.18) 

with 

Qn — aN(x,t)kN + aN_i(x, t)kN~l + ... + ai(x, t)k + 1 . 
(2.2.19) 

If we specify again the locat ion of N poles Kt on the 
complex plane, as well as the complex N x N ma t r ix by, it 
is no t difficult to check the validity of Theorem 2.1 , with 
the only difference tha t n o w 

U(x, t) = 2idx I n a N ( x , t ) . (2.2.20) 

W e write down the pole- type representa t ion for the wave 
function in the form 

/ N r(x t)\ 
Y(x,t, k) = \ aN + J2k^J

 exp ^ + 

_ \l/(x,t;k) 

f [ ( * - * i - ) 
J'=I 

(2.2.21) 

so tha t we have N + 1 u n k n o w n functions a0,ai, ...,aN (or 
aN and N functions r}) and N addi t iona l equa t ions (2.2.5) 
[or (2.2.7)]. 

T h e o r e m 2.3. The potential U(x,t) of the equation 
(2.2.17) is a real-valued nonsingular function of arbitrary real 
variables x and t under conditions (2.2.26). 

P r o o f . W e define an addi t iona l condi t ion for k = 0 as 

QN(x,t]k = 0) 
N 

J=I 

• 1 Ki 
J=l J 

(2.2.22) 

W e n o w have a complete system of equa t ions for aN,rj\ 

aN 

j = i 

Y(x,t,Ki) = -^2cyWj(x,t) . 
J'=l 

Consider a m e r o m o r p h i c function 

(2.2.23) 

(2.2.24) 

Q= Y(x,t,k)Y(x,t,k)/k . (2.2.25) 

Apply ing the residue theorem, we obta in 

whence subject to the condi t ion 

Cii+-Cii = 0 , 

we have 

K I = 1 

(2.2.26) 

(2.2.27) 

to main ta in the real-valuedness and nonsingular i ty of the 
poten t ia l U(x,t) for a rb i t ra ry real x and t. 

W h e n N = 1, from formula (2.2.5) one finds 
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1 \ l + f c e x p [ i ( 0 - 0 ) ] 
k) 1 + b(KJK) exp [i(0 - 0)] ' 

(2.2.28) 

The poten t ia l U will be a real function on condi t ion tha t 
\a\ = const or, bear ing in mind tha t k = a + i/?, 
b = bi + ib2, one can rewrite this condi t ion in an 
equivalent form 

Im = Im, or blfi + b2(x = 0 . (2.2.29) 

By differentiating (2.2.28) and tak ing into account 
condi t ion (2.2.29), we find 

8 £ 2 sgn b2 

U 2fi cosh 2rj - a[2 - ( a / ^ ) e - 2 ^ ] ' 

or for a ^ 0: 

8 | a |£ 2 sgn a 

|fc21 = e - 2 ^ 0 (2.2.30) 

U: 

U 

4 a 2 c o s h ^ + j g V 2 1 * ' 

8 |a |£ 2 s g n £ 

-2 /ko 

*1 

\b2\=Q~2^ 

4 a 2 sinh217 + ^ V 2 * ? 

whereas for a = b\ = 0 

4/?sgnfr2 

cosh 2/?(x + x 0 ) ' 

where 

rj = p(x +2oct+x0) . 

In turn , the wave function 

* { l + * e x p [ - 2 ( ! / - / f e 0 ) ] } " 

-2 /ko 

> 0 , (2.2.31a) 

< 0 , (2.2.31b) 

(2.2.31c) 

(2.2.32) 

f c { l + f c e x p [ - 2 ( f / - j f c 0 ) ] } J 
exp[i£(x + kt)] 

for the case k = k takes the form 

Y = 2\ 
2acoshy/ + i ^ e _ , ? ; 

> = ioa + i ( a 2 - p2)t 

(2.2.33) 

(2.2.34) 

A similar expression (up to a cons tant factor) is ob ta ined 
for the case k = k. N o t e tha t expression (2.2.33), which is 
dependent on five real pa rame te r s (a, £ 1 ? & 1 ? &2), itself 
represents a general formula for the wave function of the 
derivative N S E for an a rb i t ra ry complex n u m b e r k. 

(b) Solutions of the Ishimori-ll equations. The solution 
obta ined for the D N S E allows us in par t icular to find 
soli tons in the (2 + l ) -d imens ional Ishimori-II model , 
which is described in [27], with the following equa t ions 

dtS(x,y,t) +S A (d2

xS +d2S) +dx$dyS +dy$dxS = 0, 

(2.2.35a) 

82</> - 82</> + 2S(dxS A d2S) = 0 (2.2.35b) 

where S = (Sx,Sy,Sz) is a vector of uni t length S2 = 1 and 
4>(x,t) is a real function. On passing to the cone variables 
t;=\(x+y), r\ = \(x —y), solving the p rob lem (2.2.35) 
m a y be reduced, following Ref. [34], to a solut ion of the 
linear system of equa t ions 

i 8 , X ( f , 0 + ^ X + i t / 2 ( f , 0 9 { X = 0 : 

i8 , r(f / ,o + 2 - 8 2 y - i ^ f o o e - r = o , 

(2.2.36a) 

(2.2.36b) 

with real-valued potent ia ls Ut = Ut. Solut ions of the type 
(2.2.33), related to degenerate spectral da ta (factorised), in 
accord with the results of Ref. [34] are wri t ten as: 

2XY 

Sx+iSy=S+=——^(1+AB), 

S-=S+, 
1 + 2 

(A + A ) ( S + B ) 

(2.2.37a) 

(2.2.37b) 
\\-ABY 

^ , , / , f ) = 2 ( i l n d e t z l + 6 ^ t / 2 ( ^ f ) + 6 - 1 [ / 1 ( , / ) 0 ] , (2.2.37) 

where 

A = f d y f ( y , 0 8 y y ( y , 0 , (2.2.38a) 
J —OO 

5 = - [ dxX(x,t)dxX(x,t) , 
J —oo 

1 — AS 
zl = -

1 + A 5 

Taking into account (2.2.36), we find 

Y(y,t)=X(y,-t) . 

W h e n bi > 0, k = k, we obta in the solut ions 

= e x p f l f a s + (ff2 - a 2 ) ] } 
' 2a! c o s h z ! + ipxQ~Zl 

Z\ = P\(x - 2u.it + x 0 ) , 

Y(v t) - X(v -t) - " P H ^ - ^ - ^ ) ] } 

z2=P2(y + 2*2t + yo), 

and, accordingly, the expressions 

i = l l - i ( q 2 / f e ) ( l + e 2 ^ ) 

(2.2.38b) 

(2.2.38c) 

(2.2.39a) 

(2.2.39b) 

B = -

2 4 a 2 c o s h 2 z 2 + £ 2 e~ 

l l - i ( a 1 / i g 1 ) ( l + e 2 ^ ) 

2 4 a 2 c o s h 2 z 1 + y??e-2 z i 

(2.2.40a) 

(2.2.40b) 

Solut ions (2 .2 .37)- (2 .2 .40) describe a soliton which moves 
with velocity v = 2(a.\ — a 2 ) . To obta in solut ions cor re ­
sponding to soli tons at rest, it is sufficient to proceed to a 
moving frame. N o t e tha t ob ta in ing two-sol i ton solut ions 
on the basis of E q n s (2.2.26) and (2.2.27) presents no 
special p rob lems . In par t icular , an expression for W will be 
just a slightly modified expression (2.2.16). 

2.2.2 Nonlinear level Let us n o w consider the results 
obta ined in the light of paper [12], where the main p rob lem 
of the suggested algebraic me thod for const ruct ing solitonic 
solut ions has been emphasised. This p rob lem resides in 
p inpoin t ing the connect ion between the poten t ia l U(x,t) 
and the wave function \fj(x,t,k) (or its residues Wt(x,t)). 
Since in calculat ing the solution we deal with m e r o m o r p h i c 
functions, it seems na tu ra l to solve this p rob lem by 
applying the residue theorem. This suggests the form of 
a ra t iona l function E(k) al lowing us to find the self-
consistency condi t ions by calculat ing the residues of some 
auxiliary function 

Q = E(k)\l/(x,t,k)\l/(x,t,k) . (2.2.41) 

In par t icular , if we specify E(k) as the po lynomia ls 

file:////-ABY
http://2u.it
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(0 Ex=k9 

(ii) E2 = k2 + ak , 

(iii) E3 = k3 + 2bk2 + 2dk , (2.2.42) 

we arrive at the following relat ions between the poten t ia l 
U(x,t) and the wave functions \jj(x,t,k): 

(i) U=-2F(x,t) , 

(ii) QtU + ddxU = 2dx F{x, t) , 

(iii) (8? - \ t f x ) u + 2d2

xu2+l(bd2

xt+dd2

x)u 

= - § 8 ^ ( x , f ) , 

where F(x,t) denotes the quadra t i c form 

F(x,t) = YfYiEijYj 

(2.2.43) 

(2.2.44) 

with H ermit ian mat r ix 

Etj= [EiKjl-EiKjflcij. (2.2.45) 

The mat r ix (2.2.45) a long with the set of poles KT 

completely defines the solut ions of the nonl inear equat ion 

[idt+&x- + U(x,t)]Yi(x,t) = 0 (2.2.46) 

with a cor responding self-consistency condi t ion from 
(2.2.43). The role of nonl inear field variables in 
E q n (2.2.46) is played by the residues Wt of wave functions 
\l/(x,t,k), tha t possess the 'correct ' asymptot ic behaviour at 
spatial infinity x —> =boo for certain sets of the SD (see 
Theorem 2.2). In these cases 

Wt(x -> ±oo ) -> 0 (2.2.47) 

and we have nonl inear p rob lems with trivial boundary 
conditions (TBC). F o r other sets of the SD, the residues Wt 

grow infinitely and are no t usually of interest in p rob lems 
of physics (at least for h o m o g e n e o u s systems). 

In order to use this app roach for p rob lems with 
nontr iv ia l or, as they are frequently called, condensate 
boundary conditions (CBC) 

\@i(t,x —> ± o o ) | —• const , (2.2.48) 

instead of functions (2.2.42) one has to consider functions 
E = E of the type 

<k-k 
(2.2.49) 

where ef = ± l , f y and kt are a rb i t ra ry real cons tants . 
Calcula t ing the residues of the function Q, defined in 
(2.2.41), we again find condi t ions (2.2A3), where now, 
instead of F(x,t), we have 

N n 
F(x,t) = %EVV} + ^ > m ( | < P m | 2 - b2

m) , (2.2.50) 
i,j=l m=l 

with nonl inear fields 

$t(x,t) = bi\jj(x,t,k = kt) , (2.2.51) 

themselves represent ing wave functions at fixed po in t s 
k = kt. Studies of asymptot ic behaviour at x —> =boo show 
tha t \jj{t^kiX —> ± o o ) = 1, and as a result we have CBC 
(2.2.48) for the nonl inear fields &t(x,t). 

In general one can consider a (n + m) -componen t vector 
field 

*1 
(2.2.52) 

satisfying the equat ion 

[i9, +d2

x + U(x,t)]<p(x,t) = 0 (2.2.53) 

with self-consistency condi t ions of the form (2.2.43) and 
(2.2.50). It is clear tha t in the case of pu re condensa te fields 
the quadra t i c form F(x,t) = J2fj ^fiij^j m u s t be equal to 
zero for every nontr iv ia l 'solibrick' Wt. This pu t s some 
extra (nonl inear) restr ict ions on the choice of SD, namely, 
on the locat ion of the poles. Let us i l lustrate this t ak ing as 
an example the scalar N S E [40] 

[(18, + d2

x + 8(|<2>|2 - b2j\$(x,t) = 0 , (2.2.54) 

for N = 1 and subject to condensa te b o u n d a r y condi t ions 
(2.2.48). F r o m formula (2.2.45) we find in this case 

E(K1)-E(K1) = 0 , 

or in a m o r e par t icular form 

0 . 

(2.2.55) 

(2.2.56) 

One can easily see from the above tha t the equat ion 

1 (2.2.57) 
l*i ~ k \ \ 

has a solution when 8 = 1 , i.e. when the N S E has a 
repulsive potent ia l , while the allowed poles are located on 
the circle \K\ — &i | 2 = b2. As for the N S E with an at t ract ive 
poten t ia l (when e = —1), one-pole condensa te solut ions are 
absent . 

As ano ther example, we consider a two-pole solut ion of 
the b ion type (2.2.16). In this case, instead of (2.2.56) we 
have 

- £ ( f c 2 ) = 0 , 

or 

(*i - K2) 
. ( * 1 - * l ) ( * 2 ~ k l ) 

- 1 = 0 . (2.2.58) 

The first solution kx = K2 coincides with the wel l -known 
Z a k h a r o v - S h a b a t brea ther (or string-type) solution [29], 
so we pass at once to the second solution 

| 2 
K2 = k\ + 8 - r ( * l - * l ) (2.2.59) 

l*i 

F r o m formula (2.2.59) it follows tha t the condi t ion 
Im K2 x Im K \ < 0, which is required for the nonsingular i ty 
of the solut ion in accordance with Theorem 2.2, is valid for 
8 < 0, i.e. it is permissible only within the f ramework of the 
N S E with an at t ract ive potent ia l . 

Summing up we come to the following conclusion: 
P r o p o s i t i o n 2 .1 . In systems with condensa te 

b o u n d a r y condi t ions and with a p lane-wave ansatz , one -
pole solut ions (kinks) for the repulsive type of in teract ions 
exist which are otherwise absent . Meanwhi le , two-pole 
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solut ions (bions) appear within the f ramework of the N S E 
with an at t ract ive poten t ia l as e lementary nonl inear 
excitations, composed of invisible (quark like) const i tuents 
called 'solibricks ' . 

Let us po in t out , tha t the me thod considered is 
applicable as well to other versions of the nonl inear vector 
Schro'dinger equat ion [12, 26], including those with off-
d iagonal potent ia ls [37]. Consider as an example the 
following simple system 

i 8 , ^ + 8 ^ + tf(x,0& = 0, i = l , 2 , 

^ = 0 1 0 2 + 0 1 0 2 > 

which has the solution [40] 

0 
AtJ*1 cosh @x + B ^ 1 cosh @ 2 

Ci c o s h r j + + C2cosh?/ + C 3 cos ($ + co0) 

where the following no ta t ions is used 

Qi = pt(x + vtt) + bt ^ = qtx + cott 

r j

± = P ± ( < x + v

± t ) + h h i = l , 2 , 
and TBC are imposed in the form 

' M = f°y 

> 2 7 M + n o v ° 

(2.2.60) 

(2.2.61) 

, (2.2.62) 

(2.2.63) 

with the coefficients in (2.2.62) ana logous to those given in 
(2.2.16). Equa t i ons of the type (2.2.60) with the poten t ia l 
(2.2.61) 

U± = \cj>l\2±\cj>2\2 

occur in nonl inear optics (laser beams in light-guides), as 
well as (for U_(x,t)) in the phenomenolog ica l description 
of superconduct ivi ty when T ^ 0. In the latter case we have 
a system of two coupled componen t s : a n o r m a l and a 
superfluid one, such tha t their density rat io is defined by 
the t empera tu re [38]. The two-pole solut ions found 
cor respond to a new type of localised excitat ions in this 
system, k n o w n as [Sov. Phys. Solid State 30 (12) 2119 
(1989)]double vortices (endowed with the topological 
charge Q = 2 or Q = 0). 

2.3 Many-dimensional systems and how they relate to the 
nonstationary SchroS dinger equation 
Anothe r feature of the nons t a t iona ry SchroSdinger 
equat ion , is tha t it can be generalised to include the 
many-d imens iona l var iants , which allow for localised 
solitonic solut ions [42]. The poin t of the suggested 
construct ive a lgor i thm is to consider linear Schro'dinger 
equat ion of the type (2.2.1) in N + 1 dimensions: 

[idt + A + U(x,t)]\l/(x,t) = 0 ; x = (xu...,xN) G RN , 
(2.3.1) 

where A is the A/-dimensional Laplace opera tor . Solut ions 
are found in the s tandard form 

\l/(x,t) =A(x,t)exv[iq>(x,t)] , (2.3.2) 

which leads to the system of equa t ions 

dtA + 2Vcp-VA + AAcp = 0, (2.3.3a) 

AA + (u - Qt<p - Wq> • Wq^A = 0 (2.3.3b) 

with the assumpt ion tha t the potent ia l U(x,t) is a real -
valued function. N o t i n g tha t the poten t ia l U(x,t) does no t 

enter the equat ion (2.3.3a), one can easily finds tha t in the 
new variables 

0 = <p, R = A /F(w) (2.3.4) 

the a rb i t ra ry posit ive definite function F(w) > 0 satisfies 
the equat ion 

dtR + 2Vq> • VR + R A <p = 0 (2.3.5a) 

ana logous to (2.3.3a), if the auxiliary function w = w(x,t) 
is a solut ion of the first-order h o m o g e n e o u s equat ion 

dtw + 2Vcp- Vw = 0 . (2.3.6) 

F o r any given solution w = w(x,t) of equat ion (2.3.6) the 
function R(x,t) is obta ined from (2.3.4) and the equat ion 

AR + (V- dt0 - V<2> • V0)R = 0 , (2.3.5b) 

where the new potent ia l V(x,t) is defined by the relat ion 

V = t / + A l n F ( w ) + V l n F ( w ) • V l n [ A 2 / ^ H ] . (2.3.7) 

Equa t ion (2.3.5) implies tha t the new complex wave 
function 

V(x,t)=R(x,t)exp[i*(x,tj\ 

satisfies the equat ion 

idtV(x, t) + A ^ ( j c , t) + y(jc, t)V(x, t) = 0 (2.3.8) 

with potent ia l (2.3.7). 
In the next step of the a lgor i thm one arrives at a 

solut ion of the equat ion (2.3.6) for the auxiliary function 
w = w(x, t). To this end separability conditions are in t ro ­
duced for the solut ions \jt(x,t) of equat ion (2.3.1) in the 
form 

U(x,t) = Ul(xut) + ... + UN(xN,t) , 

\j/(x,t) = ^ i ( * i , f ) + - + ^ ivCw) > 

(2.3.9a) 

(2.3.9b) 

whence from Eqn (2.3.2) the separat ion of the phase and 
ampl i tude of the wave function follows 

(p{x,t) = (pl(xl,t) + ... + cpN(xN,t) , 

A(x,t) =A1(xut)...AN(xN,t) , 

(2.3.10a) 

(2.3.10b) 

where the componen t s are related by 

^n{xn,t) = A n ( * n , f ) e x p [\(pn{xn,t)], n=l,N . (2.3.11) 

In the case considered, a separable solution of equat ion 
(2.3.6) in the form 

w(x,t) =w1(x1,t)...wN(xN,t) , (2.3.12) 

exists, if each of its factors satisfies the (1 + l ) -d imens iona l 
equat ion 

dtwn +2dXncpndxwn = 0, n = U V . (2.3.13) 

By using the expressions for the conservat ion laws 

8 ^ + 2 8 . ( 8 . ^ ^ 0 . n = ^ N 9 (2.3.14) 

one can easily wri te down an explicit form of solut ions for 
equa t ions (2.3.13) 

wn(xn,t) = c « + j _ d ^ » ( ^ 0 

-2\ dTdXn(p2

n(xn,T)A2

n(xn,T) , (2.3.15) 
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where cm xm t$ are real-valued arb i t ra ry cons tants . A 
further observat ion is tha t dxwn = A2

n\ therefore equa t ions 
(2.3.12), (2.3.10b) and (2.3.4) imply the equat ion 

dx,..xw = F2(w)\Y\2 . (2.3.16) 

Next , following the line of a rguments in paper [43], one 
can in t roduce the no t ion of AC-integrability\. 

D e f i n i t i o n 2 .1 . A nonl inear evolut ion equat ion (or 
a dynamica l system) is called AC-integrable if it possesses 
an infinite class of mult iso lit on-like solut ions, which can be 
obta ined by a change of variables from the solut ions of an 
integrable equat ion . In par t icular this includes the well-
k n o w n Davey-Stewar t son equat ion (DS-I) [28], which 
describes quas imonoch roma t i c wave packe ts on the surface 
of a liquid with small depth: 

idtV(x,t) + AV(x,t) + V(x,t)V(x,t) = 0, x e R2 , 
(2.3.17a) 

QXlX2V(x,t)= 2s A \W\2 , (2.3.17b) 

which in the given scheme cor responds to the case N = 2. 
Indeed, a simple choice F(w) = 1 + sw in equat ion (2.3.16), 
and tak ing into account the separabil i ty condi t ions (2.3.12) 
and the form of solut ions (2.3.15) of the cor responding 
equat ion from (2.3.16), leads to the expression for the 
poten t ia l 

V = Ux(xut) + U2(x2,t) + 2 A l n ( l + ew) , (2.3.18) 

which coincides with the result of integrat ing 
E q n (2.3.17b). The k n o w n result, ob ta ined in Refs [30] 
and [31], is tha t soliton solut ions of the DS-I equat ion arise 
if one chooses for £ / i ( * i , 0 and U2(x2,t) in E q n (2.3.18) 
appropr i a t e potent ia ls of the linear nons t a t i ona ry Schro'­
dinger equat ion 

i8?iA + A i ^ + [Ul(xut) + U2(x2,t)]\l/ = 0 > 

^ = ^ ( j c , 0 , x e R 2 , (2.3.19) 
which appears to be the linear limit case of the DS-I 
equat ion for e —> 0. F r o m this it follows; in par t icular , that , 
con t ra ry to the (1 + l ) -d imens iona l case, the soli tons of the 
DS-I equat ion remain well localised objects even in the 
linear limit as s —> 0. However , in this limit they behave like 
free part icles, and the nonl inear i ty for 8 ^ 0 leads to the 
establ ishment of a nontr iv ia l interact ion a m o n g them. A 
detailed descript ion of the DS-I soliton interact ion, based 
on numer ica l experiments can be found in Ref. [44]. 

In order to complete the presenta t ion of the Degasper is 
scheme for the (N + l ) -d imens ional case, let us write down 
the general expression for the new potent ia l 

V = UX +... + UN + A\nF(w) 

+ V In F(w) • V In [F(w) \ W\2] , (2.3.20) 

which results in the system of equa t ions (2.3.8) and (2.3.16) 
with respect to the functions Y(x,t) and w being 
AC-integrable , since on changing the variables in the form 

< F ( M = ^ 4 (2.3.21) 

its solut ions can be obta ined from the solut ions (2.3.9b) of 
the linear equat ion (2.3.1) with the poten t ia l (2.3.9a). 

It is clear, tha t the scheme presented here substantial ly 
widens the possibilities for const ruct ing integrable m a n y -

fAlmost C-integrability. 

d imensional models , which could be of use for the 
descript ion of localised objects existing in reality. Neve r ­
theless, in pract ice, we m o r e often come across models 
which arise from var ious concepts in physics and which, as 
a rule, be long to the class of nonin tegrab le models . 

P A R T II. S T A B L E S T R U C T U R E S IN 
N O N I N T E G R A B L E M O D E L S 

The widespread use of nonl inear equa t ions in c o n t e m p o ­
ra ry physics has revealed an impor t an t characteris t ic 
p rope r ty of nonl inear wave processes: when a nonl inear 
dynamica l system is strongly excited, it p roduces stable 
localised structures, k n o w n as solitons. It is precisely these 
s t ructures which survive as the evolut ion of the system 
progresses and which define the pr incipal features of the 
dynamics of the system (see, for example, Refs [13, 14, 45]). 

3. The Lyapunov direct method in the theory of 
soliton stability 
One of the most impor t an t p rob lems in the theory of 
soli tons is the s tudy of their stability. The cus tomary 
app roach to this p rob lem is to consider small initial 
pe r tu rba t ions of soli tons tha t permit us to linearize the 
equa t ions of mot ion . However , this me thod does no t 
always lead to the correct answer, as has been shown by 
A M L y a p u n o v [46], who developed a r igorous me thod of 
t rea t ing stability, the so-called direct method. The main 
poin t of this me thod consists in choosing some special 
functions whose proper t ies al low us to d r a w conclusions on 
the character of the evolut ion of the system. A n extension 
of this me thod to dis tr ibuted systems (in par t icular , to the 
field models) is presesnted in Refs [47]-[49] . Several 
modif icat ions of the L y a p u n o v me thod as applied to the 
theory of soli tons are known : the method of functional 
estimates of Zakharov and Kuznetsov [50], the Arnold energy 
method [51, 52], the method of Shatah and Strauss [53], the 
Benjamin method [54], etc. 

It is our aim to apply the L y a p u n o v me thod to the 
t rea tment of soliton stability in some physical field models . 
To this end, we begin with the analysis of the stability 
concept in the general theory of dynamica l systems, and 
then shall concent ra te on the special aspects of its 
appl icat ion to soliton physics. 

3.1 Definition of stability and the principal theorems of 
the direct method 
Stability is one of the impor t an t concepts in pract ice which 
arises when s tudying real dynamica l systems. As a 
quali tat ive no t ion , stability can be associated with the 
cont inui ty of the mot ion with respect to pe r tu rba t ions of 
u n k n o w n origin. Depend ing on the type of these 
pe r tu rba t ions we can distinguish a few k inds of stability. 
W e shall consider mainly the stability of many-d imens iona l 
solitons, tha t is of regular solut ions to nonl inear field 
equat ions , localised in space with dimension D ^ 2. Let 
4>(t,x) be a m a n y - c o m p o n e n t field function with values in 
Rn, which is considered as an element of some Banach 
space B and which satisfies an evolut ion equat ion 

d,<t> = F(<t>) , (3.1.1) 

with F a nonl inear opera tor . Suppose tha t for an initial 
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condi t ion of the type (f>t=0 = 4>0(x) equat ion (3.1.1) admi ts 
the un ique sol i ton-type solution 

<Kt,x)=St[<l>0] , (3.1.2) 

where St denotes an evolution opera to r with semigroup 
proper t ies , i.e. 

Stl[SM] = S , 1 + , 2 0 O ] . t i > 0 • (3.1.3) 

There is a very close relat ionship between the concept of 
stability for the given unpe r tu rbed mot ion </> = u = u(t,x) 
and tha t of the correctly posed Cauchy problem in the sense 
of Hadamard. To define the latter no t ion , let us in t roduce 
two functional metr ics which describe field pe r tu rba t ions 

£,{t,x) = <f>{t,x) — u(t,x) (3.1.4) 

Namely , let the metr ic p 0 (£o) de termine the distance in the 
space of initial pe r tu rba t ions £ 0 , while the metr ic p(£) 
measures tha t in the space of current p e r t u r b a ­
t i o n s ! (^.Under the s t andard assumpt ions 

Po(Z0)>p(Z), (3.1.5) 

tha t is, the metr ic p 0 (£o) is s tronger t han the metr ic p(£). 
D e f i n i t i o n 3.1. The Cauchy p rob lem for equat ion 

(3.1.1) is said to be correctly posed in the sense of Hadamard, 
if W G [0, T], T < oo, p 0 (£o) -> 0 implies p(£) -> 0. 

To il lustrate this definition, consider the wel l -known 
example of H a d a m a r d : 

E x a m p l e 3.1. The ill-posed Cauchy problem for the 
equat ion 

d24>(t,x) +Ql<l)(t,x) = 0, f > 0 , x G [—7t /2 ,7t /2] . 
(3.1.6) 

Consider the following initial and b o u n d a r y condi t ions: 

4>(t,x = ± 7 t / 2 ) = 0(f = 0 ,x ) = 0 , 

cos?zx, n = 2k + 1 . 

The cor responding solution to p rob lem (3.1.6) reads 

1 
4>(t,x)=-Q ^ cosnx s i n h ^ . 

n 
(3.1.7) 

If one chooses two coincident metr ics p = p 0 = 
sup^d^l + then pu t t ing n —> oo one finds tha t the 
metr ic for initial pe r tu rba t ions behaves as follows: 

| ) = e " ^ -> 0 , 

oo (3.1.7) implies 

e~^"\ cosnx\(sinhnt + ncoshnt) —> oo . 

PoW>o) = s u P ( e ^ 
X ^ 

cosnx\ 

while for the current metr ic \/t > 0, n 

"1 

n 
p(</>) = sup 

D e f i n i t i o n 3.2. A soliton solution u(t,x) is called 
stable in the Ly apunov sense with respect to the metr ics p 0 , p, 
if Ve > 0 there exists 3(s) > 0 such tha t p 0 (£o) < <5 implies 
the inequali ty p(£) < 8, Vf > 0. 

Therefore, the correctly posed Cauchy problem in the 
sense of Hadamard is equivalent to stability over the finite 
time interval T. 

Finally, the following typical p rob lem is encountered 
when the pe r tu rba t ion appears on the right hand side of 
equat ion (3.1.1), i.e. when one assumes 

fAs will be shown later (cf. Example 3.3), the introduction of two 
metrics seems to be necessary to pose correctly the stability problem 
for distributed systems. 

8 ,0 - % > ) =/(«/») . (3.1.8) 
If one in t roduces the special metr ic pf to measure the 
pe r tu rba t ion /(</>), i.e. py = py[/(</>)], then the following 
definition seems to be reasonable . 

D e f i n i t i o n 3.3. The solution u(t,x) to equat ion 
(3.1.8) is called stable with respect to the metrics p 0 , p , p y 
under the act ion of pe rmanen t pe r tu rba t ions /(</>), if Ve > 0 
there exist <5i(e) > 0,(5 2 ( e ) > 0 such tha t p 0 (£o) < ^i a n d 
pf [/(</>)] < S2 imply the inequali ty p(£) < 8, W > 0. 

A coarser stability definition given by Lagrange should 
also be ment ioned . 

D e f i n i t i o n 3.4. The solution u(t,x) to equat ion 
(3.1.1) is stable in the sense of Lagrange, if there exists 3 > 0, 
such tha t p(£) < oo,V7 > 0 under the condi t ion p 0 (£o) < <5-

Hence the boundedness of the pe r tu rba t ions at any 
instant is sufficient for stability in the sense of Lagrange . 
N o t e tha t a finer concept of asymptot ic stability is often 
used in pract ice. 

D e f i n i t i o n 3.5. The solution u(t,x) is called 
asymptotically stable in the sense of Lyapunov, if it is 
stable according to Definit ion 3.2 and also if p(£) —> 0 
as t —> oo. 

However , in soliton physics one frequently deals no t 
with a single soliton solution u(t,x) bu t with a set U = {u} 
of such solutions, usual ly labelled by some group p a r a ­
meters a, i.e. 

U={fg(a)u\geG} , (3.1.9) 

with G being the symmetry group of the dynamica l system. 
In this case, the stability is called orbital, with the current 
metr ic being infueU p((f> — u), tha t is the distance between 
the field </> and the set U which is the orbit of g roup G. One 
should also distinguish between stable sets and attractors 
(a t t ract ing sets), for which p(£) —> 0 as t —> oo. It is obvious 
tha t an asymptot ical ly stable set is b o t h a t t rac t ing and 
stable set. N o t e tha t a set might be a t t rac t ing and uns tab le 
since p(£) can increase in a finite t ime interval, t hough 
p(£) —> 0 as t —> oo. 

In view of the complexity of a r igorous t r ea tment of the 
stability p rob lem, in pract ice one is restricted to the 
linearised equa t ions 

8 , £ = A ( £ ) = F ( M ) £ (3.1.10) 

The stability for the linear p rob lem (3.1.10) is called 
linearised stability, or stability to the first approx imat ion 
(or to the first order) , and tha t for the original equat ion 
(3.1.1) is called nonlinear stability. It is clear tha t nonl inear 
stability implies first order stability, t hough generally with 
respect to a weaker metric . The converse is valid if only 
R e A < 0 VA G cr(A), where <t(A) s tands for the spectrum of 
the opera tor A (which is called dissipative in this case). 
M o r e precisely, the spectrum R e A ^ O cor responds to 
spectral stability, and ReA = 0 in its tu rn to neutral 
stability. (A typical example is provided by stable 
Hami l ton i an systems.) N o t e tha t spectral stability follows 
from linearised stability owing to the fact tha t R e A > 0 
implies the existence of increasing modes . The converse is 
no t valid as one can see from the following p rob lem in 
mechanics . 

E x a m p l e 3.2. Consider a mechanica l system with the 
Hami l ton i an 

H hp2-

and the relevant equat ion of mot ion 
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q = -q . 
The linearised equat ion reads 

£ = o 

and cor responds to the spectrum X = 0 which indicates 
neu t ra l stability. However , the solution { = at + b to the 
linearised equat ion is linearly increasing. T h u s we infer 
linearised instability, t hough the original system is stable in 
the nonl inear sense. N o t e tha t the linearised system tu rns 
out to be stable with respect to the velocities only, tha t is in 
the weaker metr ic . 

It is a wel l -known fact [55] tha t for a relatively wide class 
of dynamica l systems spectral instabili ty implies nonl inear 
instability. In fact, let us rewrite the equat ion (3.1.1) as 
follows 

9 , £ = A £ + 8F(£), SF = F - A , (3.1.11) 

assuming tha t || SF(£) || ^ C | K | | 2 , where || • || denotes the 
n o r m in the space B. Let the opera tor A have an 
eigenvector y with \\y \\ = 1, cor responding to an eigenva­
lue X having a max imal real pa r t R e A = l . Let also 
£o — y<*i II £o II— <5 be an initial pe r tu rba t ion . To p rove the 
instabili ty we argue by a reduct io ad a b s u r d u m assuming 
tha t the mot ion in quest ion is stable, tha t is 
|| £(t) | | < e V f > 0 . Rewri t ing equat ion (3.1.11) in integral 
form 

o + [ > -
Jo 

} 5F [£(,)] d s , (3.1.12) 

we infer the validity of the following est imate for the 
pe r tu rba t ion n o r m 

m ii < + e ^ ' - ' ^ F ds\\ 

Jo 1 

SF[i(s)] || ds 

Jo 
ds . 

It can be seen from the above expression, tha t there exists 
Tx > 0, such tha t Vf G [0, Tx] the inequali ty || £(t) || ^ 2def 

holds . In fact, the latter can be deduced if one supposes, 
tha t 

3q* + 4Ce' tS2 [V 
Jo 

ds ^ 23q* , 

whence 

e r i - l 
4C3 ' 

(3.1.13) 

However , equa t ion (3.1.12) implies the validity of yet 
ano ther inequali ty: 

m II > II eA'^o ^'-s)bF[lt(s)] ds\ 

>Se[\ -4CS(e'- 1)] , 

tha t permi ts us to choose T2 from the equali ty 

%C5 ' 
(3.1.14) 

and to conclude, by compar ing expression (3.1.13) with 
expression (3.1.14) tha t T2<TX, and 
|| k(t) || > e'5/2 Vt < T2, or equivalently 

Thus , choosing e < 1/16C, || £ 0 | | = <5, we infer tha t 
II €(T2) \\> V 1 6 C ^ e > 0, which implies instability. 

Let us formulate the main theorem of the direct me thod . 
T h e o r e m 3.1 (The L y a p u n o v - M o v c h a n stability 

theorem) . A solution u G U is stable with respect to the 
metrics p0,p, if and only if there exists, in some vicinity 
p 0 < a, the Ly apunov functional V [</>] with the following 
properties: 

(i) V is positive-definite with respect to p(£), 
(ii) V is continuous in p 0 , 
(iii) V is nonincreasing in time. 
The condi t ions of the theorem mean tha t there exist two 

cont inuous monoton ic functions m(p) > 0 and M ( p 0 ) > 0, 
m(0) =M(0) = 0, called the lower and upper comparison 
functions respectively, such that 

m(p)^V[4l\-V[u]^M{p0) (3.1.15) 

Let p 0 < 3; then inequali ty (3.1.15) implies tha t 
M(3) > M(p0) ^ m(p), whence p < £, i.e. the mot ion is 
stable. 

The choice of the metr ics p and p 0 is dis torted by the 
s t ructure of the L y a p u n o v functional. F o r example, let V be 
an addit ive functional of the form 

v[4] dx F((j), </>, V</>) (3.1.16) 

One can use the Taylor expansion with integral remainder : 

f{x + Q=f{x)+f'(x)Z+ (dsf{x+sZ){l-s) . 
Jo 

In the case considered b*V[u] = 0 which implies 

V [u + = V[u] + J d x £ ds(\ - s) [FHe + Ftfg 

+ 2 F W { V { + 2 F ^ { V { ] 

= V [u] + [ ds(l - s)b2V[u + s£\ . 
Jo 

If V [4>] is a globally convex functional, then 
8 2 V [w + s<f| > 0, which allows us to choose the current 
metr ics as follows 

p 2 ( £ ) = f d s ( l - s ) 5 2 V [ W + ^ ] 
Jo 

This par t icular choice of metr ic forms the foundat ion of 
the me thod of V I Arno ld [36, 40, 41], who assumed tha t 
V[(f>] = H + C, with H being the Hami l ton ian , and C an 
integral of mo t ion (the Casimir invar iant) specified by the 
condi t ion 8V [u] = 0. 

The no t ion of formal or energetic stability is also often 
used when the conservat ion law 

= J d x F ( 0 , 0 , V 0 ) : const 



126 V G Makhankov , Yu P Rybakov, V I Sanyuk 

or the evolut ion law E ^ 0 ho lds such tha t b*E = 0, b2E > 0 
in the vicinity of the solut ion in quest ion. It is clear tha t 
from energetic stability one can derive linearised stability, 
because the linear equa t ions of mo t ion imply the inequali ty 
b2E ^ 0, and stability follows if one takes p2 = pi = b2E. 
The converse does no t hold, which can be ascertained by a 
simple counter -example from classical mechanics , with 
Hami l t on i an of the form 

2 2\ • const . 

Since in l inearisation we are dealing here with two 
independent h a r m o n i c oscillators, linearised stability is in 
this case obvious . On the other hand , the quadra t i c form 

h2E = hp\ + hq\ - hp2

2 - hq2

2 

is sign-indefinite, tha t is, the system is energetically 
uns table . 

R e m a r k 3.1. It should be emphasised tha t in a finite-
dimensional theory (mechanical systems with a finite 
number of degrees of freedom) bo th energetic stability 
and the analytici ty of the Hami l ton i an imply L y a p u n o v 
stability in the small, as can be deduced from the L y a p u n o v 
stability theorem. U n d e r these condi t ions , the inequali ty 
E > E0 (here E0 is the unpe r tu rbed value of energy) is valid 
in some vicinity of the unpe r tu rbed solution which stems 
from from b2E > 0. However , in an infini te-dimensional 
theory (for dis tr ibuted systems), this is no t the case since 
then b2E > 0 does no t necessarily imply tha t E > E0 in 
some vicinity of the solution. A typical counter example is 
given by: 

d*[|V</>|2-|V</>|4 + </>2] 

Final ly, the no t ion of global stability is used, when the 
system tu rns out to be stable for values of p however large. 
This is the strongest possible stability one can define. 

To illustrate the peculiarit ies of stability analysis for 
dis tr ibuted systems, let us consider the following simple 
example. 

E x a m p l e 3.3. The stability of a homogeneous 
unloaded string with fixed end points. Let us solve the 
wave equat ion 

8 2 0 ( ; , x ) - 8 2 0 ( ; , x ) = 0 , (3.1.17) 

with the b o u n d a r y condi t ions 

0(f,O) = 0 ( f , l ) = 0 , f > 0 , x G [0,1] , 

and initial condi t ions 

9 , 0 ( 0 , x ) = v(x), 0 ( 0 , x ) = u(x) . 

The solution to this familiar p rob lem is given by the 
d 'Alember t formula: 

8) 
FX+t 

24>(x,t) = u(x - t) + u(x +t) + v(s)ds , (3.1.1 
Jx—t 

with functions w, v being skew-symmetrical ly extended over 
the whole real axis. To t reat the stability of the steady state 
of the str ing 0 = 0, the following metr ics m a y be 
in t roduced: 

P l = j V d x , p 2 = ^ [ 0 2 + ( 8 , 0 ) 2 ] d x , 

P 3 = j j ( ^ 0 ) 2 + ( 3 ? 0 ) 2 ] d x , p 4 = Pi + P 3 • 

As follows from the solution (3.1.18), the equil ibrium 
0 = 0 is stable with respect to the metr ics P25P35P4 
separately (here p 3 is the integral of mot ion) , and to the 
pai rs of metr ics (p2,Pi), ( p 3 , p 2 ) , (P4, P3)' However , it is 
uns tab le with respect to the metr ic px ( the ill-posed 
p rob lem in the H a d a m a r d sense), because the fixing of 
px imposes no const ra ints on the velocity 9 , 0 . 

In the light of the aforesaid, it is clear tha t stability ana l ­
ysis of many-d imens iona l dis tr ibuted systems requires a 
very careful selection of metrics, given the fact tha t 
formulae of the kind of (3.1.18) do not work in this 
case and the smoothness of the initial da ta proves to be 
of critical impor tance . Tha t is why from the outset a 
s tronger metr ic should be taken . 

N o w let us formulate the main instability criterion which 
is given by the following theorem: 

T h e o r e m 3.2. (The C h e t a e v - M o v c h a n instabili ty 
theorem) . A solution u G U is unstable with respect to the 
metrics p 0 , p , if and only if there exists a Ch eta ev functional 
W [0] with the following properties: (i) W [0] is continuous 
with respect to p 0 ; (ii) W [0] is bounded with respect to p; 
(iii) W [0] increases in time in the domain W > 0. 

3.2 Energetic instability of many-dimensional stationary 
solitons 
Once L y a p u n o v ' s functional V [0] has been chosen, it is 
necessary to verify its global convexity, i.e. the validity of 
the inequali ty 8 2 V [u + <f] ^ m(p) . However , in pract ice 
only the local inequali ty 8 2 V [u] > 0 is verifiable and even 
this not always. Thus , in all cases the s t ructure of the 
second var ia t ion of the L y a p u n o v functional needs to be 
studied. To this end, some virial theorems , similar to those 
established by H o b a r t and Derr ick [56, 57], [ though limited 
to the case of static soliton configurat ions u(x)] might be 
useful (for the exposit ion and development of this 
app roach see Refs [3], Ch. 3; and [14], Ch. 9). Let the 
functional V [0] possess the critical po in t 0 = u(x), tha t is 
8V [u] = 0. Consider the simplest pe r tu rba t ion of the 
soliton, generated by the scale t rans format ion 0^ = u(foc). 
Then we get 

Let us assume tha t the functional V [0] can be represented 
as the sum 

(3.2.1) 

where V^V\X) is a h o m o g e n e o u s function of the scale 
pa ramete r X of order v. In view of E q n (3.2.1) we find 

87 f 
hi E 

8 V ( v ) I 

8/1 L=i 
(v) 

U=l 
0 . (3.2.2) 

The identi ty (3.2.2) is k n o w n as the first virial theorem of 
Hobart and Derrick. Calcula t ing the second var ia t ion 8 2 V , 
t ak ing into account the identi ty (3.2.2), we obta in : 

8 2 y [u] 

hX2 dx2 u=i v=—nY 

E v ( v - l ) V « 
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'-2 (v) 
U=i 

(3.2.3) 

The identi ty (3.2.3) is k n o w n as the second virial theorem of 
Hobart and Derrick. 

E x a m p l e 3.4. Consider the following functional 
defined in a space of dimension D: 

v[4>] dDx\V<j>\2 + dDxF(<p) 

Then , in accordance with (3.2.1), we have 

V [ ^ ] = J d D x | V < / » | 2 + J d ° x F ( ^ ) . 

(3.2.4) 

(3.2.4) 

The virial identities (3.2.2) and (3.2.3) imply the 
relat ions: 

5v 

5 2 y 

(2-D)V (2-D) DV (-D) 

^ 4 = ( 2 - d ) 2 v ^ + d 2 v ^ = 2 ( 2 - d ) v (2-D) 

51 

T h u s we infer from the first equat ion tha t for 
D ^ 3 , y ( _ D ) < 0; and from the second one, tha t 
8 2 y < 0 for scale deformat ions (di latat ions) . This means 
tha t for the models described by functionals of type (3.2.4) 
the static soli tons are uns tab le for D ^ 3. 

R e m a r k 3.2. As al ready noted by H o b a r t [56], this 
s i tuat ion can be improved by insert ing into the functional 
(3.2.4) te rms conta in ing higher degrees of field derivatives. 
This remedy was employed in the models of Skyrme and 
F a d d e e v (cf. Ref. [3], Ch. 3), which are usually associated 
with the no t ion of topological stability. Moreover , soli tons 
with neu t ra l scaling behaviour can be realised in 'exotic ' 
models with functionals of the form 

0[0]= |d 3 x(V(/>-V(/>) 3 / 2 + .. 

where the power 3 /2 was chosen in order to satisfy the 
H o b a r t - D e r r i c k criterion [58]. 

D e f i n i t i o n 3.6. The soliton solution u(t,x) is called 
stationary if it satisfies the equa t ions 

= 0, — = 0 (3.2.5) 
50 ' 50 

where V [0] is an addit ive functional of the form (3.1.16), 
(3.2.4) [to meet m o r e general requi rements , we consider 
here equa t ions of the second order in t ime derivatives, in 
contras t with (3.1.1), while first-order equa t ions emerge if 
one chooses F = F(0 ,V0)] in (3.1.16). In wha t follows all 
the soliton solut ions u(t,x) are supposed to decrease at 
spatial infinity according to the law 

| V w | = 0 ( r - ^ 2 ) + a ] ) , a > 0 . 

Then the following theorem is valid 
T h e o r e m 3.3. The second variation of an additive 

Ly apunov functional is sign-indefinite in the neighbourhood of 
stationary soliton solution for a spacedimension D ^ 2. 

P r o o f . F o r the sake of convenience we choose D = 3. 
Let us write down equat ion (3.2.5) for the field u with 
componen t s us, s = \ ,n, 

F ; = 0 , F , - 8 ; F / ' = 0, f = 1,2,3 
where the derivatives are as follows 

(3.2.6) 

f: = -
6F 6F 

F = 
8F 
du" 

Let us n o w calculate the second variat ion of the functional 
V at the poin t u: 

+ 2F„Z'Zr + FsrZ'Zr 

+ 2F;;t'Hr + %ZS + 2f;mr£') • 

N o w insert the special pe r tu rba t ions =fl(x)dtu\ 
£s =fl(x)dtus in 8 2 y t ransforming it, with account of 
E q n (3.2.6), to the form 

5 2 V [ f ] = | d 3 x [dj'Alfd.f + (pjl -f - Qtf -fl)Bji\ , 

(3.2.7) 

where the following no ta t ion is used: 

A$ = diu'FZdju', 2 5 j = -2Blj = dyFr%]U

r . (3.2.8) 

N o t e tha t the second term in E q n (3.2.7) is obviously sign-
indefinite, and, owing to Eqn (3.2.6), the following equali ty 
ho lds 

whence we obta in the representa t ion 

gikm 

with the no ta t ion 

2#j7 — £* m^kamjl 

1 
®mjl 

(3.2.9) 

(3.2.10) 

(3.2.11) 

Tak ing into account E q n (3.2.10) and integrat ing by pa r t s 
in E q n (3.2.7), we get 

8 2 V [ / ] = | d 3 x [ 8 ; / ' ( A f + 8ikmamjl)dkf] . (3.2.12) 

N o w verify the sign-definiteness of the in tegrand in 
(3.2.12). Consider , in par t icular , the asymptot ic region 
r —> oo, r = | j c | , where , in accordance with expres­
sions (3.2.8), 

# j = 0 ( r - ( 3 + 2 a ) ) , (3.2.13) 

showing tha t amji = 0 ( r - 3 ) . To p rove this asymptot ic 
behav iour we first deduce from expressions (3.2.9) and 
(3.2.13), t h rough integrat ion by par t s , the identi ty 

j d 3 x £ j = 0 . 

Tak ing the latter into account , one can rewrite Eqn (3.2.11) 
as follows 

1 
®mjl - 8 1 d V s ^ ( ^ 1 ^ ) - ( 3 - 2 1 4 ) 

By using the mean value theorem one n o w easily finds from 
expressions (3.2.13) and (3.2.14) tha t 

^mjl\ : 0 ( r " 3 ) . (3.2.15) 

Final ly, compar ing Eqn (3.2.15) with the est imate 
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O - (3+2a) l 

emerging from expressions(3.2.8), we infer tha t the 
quadra t i c form in (3.2.12) is sign-indefinite. 

The p r o o f given above can easily be extended to the case 
of soli tons with the spatial dimension D = N + 2 ^ 2. The 
only modif icat ion concerns the expressions (3.2.10) and 
(3.2.11) which should be replaced by the following ones: 

aai...aNjl ^yj % a i . . . a w

( d ^ + V G ( x - x ' ) £ J / ( * ' ) 

where G(x — xf) s tands for the Green function of the 
D-dimensional Laplace opera tor . Thus , the H o b a r t -
Derr ick theorem can be extended to the case D ^ 2, so 
tha t only one-dimensional solitons are excluded. The p r o o f 
of Theorem 3.3 was first given in Ref. [59], and then cited in 
Refs [3, 60, 61]. 

P r o p o s i t i o n 3.1. Non topo log ica l many-d imen­
sional (D ^ 2) s ta t ionary soli tons are energetically 
uns table . Therefore, within the scope of addit ive L y a p u n o v 
functionals of the form (3.1.16), only conditionally-stable 
many-d imens iona l s ta t ionary soli tons m a y exist i.e. those 
stable under certain subsidiary condi t ions on the initial 
pe r tu rba t ions £ 0 . 

As is known , all possible condi t ions on the p e r t u r b a ­
t ions can be included in the definition of the metric, t hough 
this p rocedure makes the stability analysis m o r e compl i ­
cated. To t reat the condi t ional stability of a set U of 
s ta t ionary solut ions it proves convenient to pick out a single 
solut ion u (or any n a r r o w subset of these solutions, labelled 
with param-e te r s co), and to consider all the rest as 
generated by t rans format ions which form the invar iance 
group G of the equat ion (3 .1 .1) | . Let G 0 be the invar iance 
group of the functional V in expressions (3.1.16) and (3.2.4), 
with group pa rame te r s a 0 , so tha t G 0 is a subgroup of a 
group G paramet r i sed by a = { a 0 , / ? } , where fl s tands for 
the complementa ry pa ramete r s . In general, the s ta t ionary 
solution might depend b o t h on group pa rame te r s a, and on 
some n o n g r o u p pa rame te r s a> (frequencies), tha t is 
u = u(t,x\a,w ) G U. If one takes fl = flo one n o w obta ins 
the s ta t ionary solut ions to E q n (3.2.5), which form a subset 
U0 C U. Let us denote the set of s ta t ionary solut ions with 
fixed pa rame te r s fi = p { ) , co = co0, by U^CUq. The 
soliton configurat ion will be called per turbed , if cp ̂  U. 

The t rea tment of orbi ta l stability, or the stability of any 
set of solut ions, requires a par t icular choice of the current 
metr ic p. If one fixes the Banach n o r m d = \\cp — w|| B , then it 
is possible to define the following metrics: 

p = infd, pl=infd, p 2 = infd, (3.2.16) 
um u0 u 

p 3 = infd, p 4 = infd, p 5 = infd 
a o a a,co 

(3.2.17) 

It is wor th emphasis ing the difference between the 
metr ics (3.2.16) and (3.2.17). In version (3.2.16) the 
minimisat ion p rocedure is carried out within the class of 
s ta t ionary solut ions to the equat ion of mot ion , which is 
equivalent to fixing the pa rame te r s a , o . In contras t , in 
version (3.2.17) the pa rame te r s p rove to be functions of 

t ime; consequent ly the compar i son function u is no t forced 
to be long to the manifold of solut ions of the equa t ions of 
mot ion . This fact distinguishes, in any case from the 
physical poin t of view, the choice of (3.2.16) as the 
preferred metric . Then the minimisat ion in the metr ics 
px and p 2 is carried out at some fixed m o m e n t of t ime 
t = T, thus permi t t ing us , as will be shown later, to get rid 
of undes i rable zero per turba t ive modes ( 8 2 V = 0) as well as 
of negative ( 8 2 V < 0) ones . 

By virtue of Theorem 3.3, for many-d imens iona l 
solitons, there are no addit ive L y a p u n o v functionals which 
are positive-definite with respect to the metr ic p = i n f ^ d, 
and according to Propos i t ion 3.1 only condi t ional ly stable 
soli tons can be realised. In other words , stable localised 
s t ructures in many-d imens iona l dynamica l systems can exist 
only if some subsidiary physical condi t ions are imposed on 
the initial pe r tu rba t ions £ 0 . In m a n y cases the condi t ions 
ment ioned here can be formulated ^s fixing certain integrals 
of motion (generalised charges) Qa. The cor responding 
condi t ional stability is k n o w n as Q-stability [14, 45, 61]. 
N o t i n g tha t Qa = Qa((o), one concludes from defini­
t ions (3.2.16) tha t the charges Qa can be fixed if one 
uses the metr ics px or p 2 . The latter choice is equivalent , 
in tu rn , to s tudying nonaddi t ive L y a p u n o v functionals, 
such as those quadra t i c in the charges. 

T h u s we have extended the domain of validity for the 
H o b a r t - D e r r i c k energetic-instabili ty theorem [56, 57] to 
the case of s ta t ionary solitons, the model - independent 
character of the results having also been established. 
However , for static solut ions the result proves to be 
even stronger when energetic instabili ty is replaced by a 
linearised one. In par t icular , the following theorem [61] is 
valid. 

T h e o r e m 3.4. In any local model possessing a transla-
tionally invariant Lagrangian, which is positive-definite with 
respect to velocities cp, static, topologically trivial^ many-
dimensional solitons are linearly unstable. 

P r o o f . Suppose tha t the equat ion of mo t ion for the 
real ^ -componen t field cp admi ts a static soliton solution 
u(x). Define the pe r tu rba t ion £ = cp — u and metr ics p 0 , p in 
the form 

Po(£o) = ll«oll + lieoll', / > (£ )= inf(ll£ll + ll«ll) . 

where || • || denotes the n o r m in the Hilber t space L2(RD), 
and || • || r is tha t in the Sobolev space W2

l(RD), i.e. 
Ĥ ll' = ||V{|| + | | { | | . The metr ic p 0 can also cor respond to 
a na r rower space, defined by the cont inui ty requi rements of 
the functional under considerat ion with respect to p 0 . 

Let us write down the second var ia t ion of the energy 
functional, denot ing the scalar p roduc t in L2(RD) by ( , ): 

b2E = {t,AQ+ {{,$£), (3.2.18) 

where A is a posit ive symmetr ic mat r ix and B a Hermi t i an 
opera tor , b o t h local in u. Let us in t roduce the Chetaev 
functional 

W = -±(n,£)(E-E0) (3.2.19) 

where E0 = E[u] denotes the unpe r tu rbed energy and 
7i = 2A£. Tak ing into account tha t , by vir tue of the 

fTo define such a group it is enough to specify relations of the type 
(3.1.9). 

J i n what follows the solitons will be called topologically trivial if their 
topological charges are equal to zero (see Ref. [3], Ch. 2). 
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linear-ised equa t ions of mot ion h = —8£/8<i;, in the vicinity 
of the solution u one gets 

W = {£,Btf-(£,Atf . (3.2.20) 

Accord ing to the s ta tement of Theorem 3.3, one deduces 
from (3.2.18) tha t , given a n u m b e r 3 > 0, there must be an 
initial pe r tu rba t ion £ 0 and a n u m b e r 3i(3) > 0, such tha t at 
the initial m o m e n t the following inequalit ies hold: 

P o ( £ o ) < 5 , ( * o , £ o ) > 0 , ( 5 2 £ )o < S i < 0 • (3-2.21) 

N o w the posit ivity of the mat r ix A implies tha t in the 
domain W > 0, determined by the condi t ions (3.2.21), the 
following inequali ty ho lds 

-(£,BQ>(t,At)+S1 . 

F r o m relat ions (3.2.20), (3.2.21) and the last inequali ty, it 
follows tha t W > 3\ > 0 in the domain W > 0. Therefore, 
the condi t ions of the C h e t a e v - M o v c h a n theorem will be 
satisfied if one proves the boundedness of the functional 
(3.2.19) with respect to the metr ic p in some ne ighbour ­
h o o d p < 8. To this end notice tha t for the initial 
condi t ions (3.2.21) the following est imate is valid 

s u p W < | ( 8 2 £ ) 0 | . | | A | | s u p ( | | i | | . | | { | | ) . (3.2.22) 
p<8 0<F. ^ / 

\//0 = u(x) exp(—icot), u — u , (3.3.1) 

p<& 
F u r t h e r m o r e , as \ = cp is independent of u, for p < s the 
following est imate applies: 

| |£ | | = i n f U\\ ^p<e. 
u€U0 

Moreover , the tr iangle inequali ty gives us 

l k l l - I H I < l k - « l l < W + I H I . 

whence 

sup \\cp-u\\ - inf \\cp-u\\ <2\\U\\ , 

and therefore 

sup | | 9 - « | | < 2 | | « | | + inf | | { | | < 2 | | « | H - e . 
ueu0

 u e U o 

(3.2.23) 

(3.2.24) 

Inser t ing the estimates (3.2.23) and (3.2.24) into (3.2.22), 
we get 

s u p | W | < | ( 8 2 £ ) 0 | - | | A | | 8 ( 2 | | M | | + 8 ) = F . 
P<8 

M a k i n g the na tu ra l assumpt ion of the boundednes s of the 
n o r m ||w|| together with tha t of ||A||, we infer tha t W is 
b o u n d e d , which proves the theorem. 

Us ing the inequalit ies obta ined while p rov ing the 
theorem, one can easily est imate the t ime T for the 
pe r tu rba t ion to reach the sphere p = s: 

?<^(W-W) . 
°\ 

3.3 Stability of scalar charged solitons ( Q -theorem) 
W e begin with the case tha t is simple to analyse, when the 
soliton is described by a complex scalar field \j/9 defined in 
four-dimensional M i n k o w s k i s p a c e - t i m e f . Let the n o n -
per tu rbed soliton be 

fOne can find an alternative account of the ^-stability theory in 
monographs [3], §3.3.3 and [14], Ch. 10, 14. Our version is close to 
that in the review [61], §3. 

where the function u(x) is assumed to decrease sufficiently 
fast at r = \x\ —> oo. Consider the class of models given by 
the U(l)- and Lorentz- invar ian t Lagrang ian density 

L = -F(p, q, s) . 

Here the following invar iants are in t roduced 

where s tands for the ord inary 4-current expression 
Jti — \ i 1^*9^ — il/dpi//*]. N o w construct the invar iant set U0 

of nonpe r tu rbed soliton solutions, tha t is the variety of 
orbi ts for the group G = T(3) ®s SO(3) <g> U(l), where ® s is 
a semidirect p roduc t . In other words , 

U0 = {u(6x + a ; o ) e ^ } , (3.3.2) 

where O denotes the mat r ix of 3-rotat ions, 
a eR , /? E [0,2TI). It should be emphasised tha t the 
frequency co in set (3.3.2) is no t fixed. The per tu rbed 
soliton can be described by the field 

\j/ = cp(t,x) exp(—icot), cp U0 , 

with the pe r tu rba t ion { being defined as follows 

W e n o w choose the metrics p 0 , p as 

p o ( w = E ( i i ^ i i + i i u ' ) r . 

i=i v / c 

p(i)= inf ^ ( | | ^ . | | + II6H) , 

(3.3.3) 

where the subscript C denotes the c o m m o n n o r m in L2 fl C. 
As it t u rns out , for the soliton solut ions (3.3.1), 

Theorem 3.3 also proves to be valid in the one-dimensional 
(D = 1) case [63]. To suppor t this a rgument , first recall a 
useful L e m m a in the calculus of var ia t ions . Let the 
functional 

v[4] dx 5 ( 8 ^ , 0 ) 

be determined in the class of piecewise smoo th functions 
cp: RD —> Rn, </>(oo) = 0, and admit the field of extremals 
u(a;x) given by the set of con t inuous pa rame te r s 
ah i= 1,/. Then the following L e m m a is valid. 

L e m m a 3.1. There exist constants ct, not all equal to 
zero, and such that the function 

i , 

/ = £ < : 9 a ; =o 
(3.3.4) 

vanishes on a surface Z, which encloses in RD a domain Q 
with nonzero measure, and where Vf\x ^ 0, then 8 2 V is 
sign-indefinite in the neighbourhood of the extremal u(0;x). 

P r o o f . Consider the par t icular pe r tu rba t ion 

{ ( * € f i ) = 0 , Z(x#Q)=f. (3.3.5) 

Then , owing to the proper t ies of extremal fields, 
82V[<f] = 0. However , the pe r tu rba t ion (3.3.5) is no t an 
extremal of the functional 8 2 V , as it violates the ma tch ing 
condi t ions on the b o u n d a r y I. Hence , one can find 
pe r tu rba t ions , close to (3.3.5), such tha t 8 2 V takes values 
of either sign. 
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T h e o r e m 3.5. The stationary soliton solutions (3.3.1) 
cannot be energetically stable. 

P r o o f [63]. Let the L y a p u n o v functional V be of the 
form (3.1.16). Then it admi ts the field of extremals 

— u{x + a ) exp(—icot) . 

Tak ing into account tha t \u\ < oo, w(oo) = 0, we infer 
tha t the e q u a t i o n / = diu(x) = 0 is satisfied on some surface 
Z. Hence , the condi t ions of L e m m a 3.1 are fulfilled, and 
8 2 V is sign-indefinite for any dimension D. 

In view of the aforesaid s ta tements , let us s tudy the 
g-s tabi l i ty of the soliton solut ions (3.3.1), under the 
assumption of fixed charge, which was already presupposed 
in the definition (3.3.3) of the metr ic p : 

J d 3 X (Fp •Fqs)j0 = Q[^0] = Q0 . (3.3.6) 

Let us wri te condi t ion (3.3.6) in a linear approx imat ion : 

(An, fc) = ( * , & ) , (3.3.7) 

with the following no ta t ion 

h = -2co2s(Fpp - 2Fpqs + Fqqs2) + Fp 

g = div(wa) + wc, 

a = co(Fpqs - Fpp)Vs , 

c = 2(o[Fp + s(Fps-

-co2s(Fpi 

" 2Fq ~ Fqss) 

3Fpqs H~ 2Fqqs 

It t u rns out tha t under condi t ion (3.3.7) the n o n - n o d a l 
soli tons (u > 0) can become stable (in fact g-s tab le) . As for 
the noda l soli tons, the following theorem is valid. 
T h e o r e m 3.6. Nodal solitons of the form (3.3.1) are 
energetically Q-unstable. 
P r o o f . In line with K u m a r et al. [64], assume tha t the 
L y a p u n o v functional V admi t s a field of extremals of the 
form 

Since for the n o d a l soli tons u = 0 on a certain closed n o d a l 
surface Z, the function (3.3.4) takes the form 

/ = ^ o ( / * ) l / M > = i*o(0) 

and satisfies the condi t ion of L e m m a 3.1. Therefore 8 2 V is 
sign-indefinite in a ne ighbourhood of pe r tu rba t ions 

tt = £i = 0, £ 2 = u , 

tha t is for H^H <̂  \ \ ^ 2 \ \ - As can be easily verified, condi t ion 
(3.3.7) can also be satisfied in this class of pe r tu rba t ions . 

In view of the aforement ioned results, all tha t is left is to 
obta in the condi t ions of g-s tabi l i ty for the non -noda l 
soli tons. To this end choose the following integral of 
mot ion as the L y a p u n o v functional 

V = E-coQ =E[q>] , (3.3.8) 

where E is the field energy. The second var ia t ion of V has 
the form 

6 2 V = (tuFpt,) + (Z2M2) +J2(tiXiZ,) , (3-3.9) 

where the following self-conjugated opera to r s are in t ro ­
duced: 

Lx = 2co4s(Fpp + 4Fqss2 - 4Fpqs) + Fs + 2Fsss 

+ co2 (-Fp + 6Fqs - 4Fpss + SF^s2) 

+ diy{-FpW - 2FppWu • (VmV) 

+ [co2(Fpp-2Fpqs)-Fps]Vs} , 

L 2 = Fs — co2Fp + Fq(co2s -p) 

-di\[(Fp - Fqs)W + FquWu] . 

It follows from (3.3.9), tha t for 8 2 V to be positive-definite 
the inequalit ies Fp > 0, h > 0 must hold. He re and later 
on the following theorem of R C o u r a n t [65] will be of help. 

T h e o r e m 3.7. The first eigenfunction of a self-
conjugate elliptic differential operator of the second order 
has no zeroes and the corresponding eigenvalue is non-
degenerate. 

Not ice tha t the spectrum of the opera to r L 2 is n o n -
negative, because, owing to the field equat ion L2u = 0, 
where u > 0, and therefore, according to the C o u r a n t 
theorem, the function u is the first eigenfunction of the 
opera tor L 2 . At the same t ime the zero m o d e £ 2 = u is 
excluded because of the choice of the metr ic p . 

Using the Schwartz inequali ty and the condi t ion (3.3.7), 
we get the constra int 

( £ 2 , ^ 2 ) > (g,ix)\u,huTl , 

which permi ts us to obta in the est imate 

5 2 V > (tuFpti) + (I2M2) + (ZiMi) , 

where the self-conjugate opera to r K is given by: 

W e shall n o w specify the condi t ions for the spectrum of the 
opera tor K to be posit ive or, in other words , for the 
quadra t i c form 

{Z,KZ) = +a~l(g,Q , (3.3.11) 

to be positive-definite. H e r e a = (u,hu). 
Consider first the case when a > 0. The case a = 0, 

relevant to nonrelat ivist ic systems, will be studied sepa­
rately. W e n o w calculate the act ion of the opera tor (3.3.10) 
on the function 

du 
dco 

(3.3.12) 

After cumbersome calculat ions, t ak ing into account the 
field equa t ions for w, differentiated with respect to co, one 
finds 

Kv 
a dco 

(3.3.13) 

Via the inner p roduc t of Eqn (3.3.13) with v we obta in 

(v,Kv) = (b-a)-9 (3.3.14) 

with b = 8g /9co . 
Clearly, if k{co) is the min imal eigenvalue of the opera tor 

K, the b o u n d a r y of the stability domain is given by the 
equat ion 

X{co) = 0 . (3.3.15) 
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However , as one can see from E q n (3.3.13), if the condi t ion 

(3.3.16) * ( a > ) = ! ^ = 0 , 
y J dco 

is fulfilled, then the opera to r K has a zero eigenvalue, with 
the eigenfunction given by the expression (3.3.12). Let us 
verify the equivalence of condi t ions (3.3.15) and (3.3.16). It 
should be noted tha t if the opera to r Lx has two or m o r e 
negative eigenvalues, then the equali ty 

( s , 0 = o , (3.3.17) 

can always be satisfied by tak ing as a pe r tu rba t ion the 
linear superposi t ion of the cor responding eigenfunctions. 
This results in the sign-indefinitness of the quadra t i c form 
(3.3.11). Therefore to ensure stability under the singlet 
subsidiary condi t ion (3.3.6) it is necessary to impose the 
requi rement tha t in the stability domain (i.e. for the 
cor responding values of the pa ramete r co), the opera tor Lx 

has a single negative eigenvalue. Let us denote the 
cor responding eigenfunction by If n o w 

( s , * A - ) ^ o , (3.3.18) 

the opera tor K will have a posit ive spectrum in some 
co-domain. As follows from expressions (3.3.14) and 
(3.3.16), this domain is determined by the condi t ion 

6 g 
dco 

< 0 , (3.3.19) 

because its b o u n d a r y is determined by the equat ion (3.3.15) 
and at interior po in t s (y,Kv) > 0 must be t rue . Thus , we 
arrive at the following sufficient criterion for the condi ­
t ional stability of n o n - n o d a l s ta t ionary solitons, which is 
k n o w n as the Q-theorem [3, 14, 45, 63, 64, 6 6 - 7 2 ] . 

T h e o r e m 3.8. (The g - theo rem) . Non-nodal stationary 
soliton solutions (3.3.1) are Q-stable in the Lyapunov sense in 
the domain (3.3.19), if for all co taking values within this 
domain the operator Lx has a single negative eigenvalue and 
the corresponding eigenfunction satisfies the condition 
(3.3.18). 

R e m a r k 3.3. The opera to r K has zero eigenvalue 
cor responding to t rans la t ions of the solut ion (3.3.1) by the 
pa rame te r s of the invariance group G of the mode l (the 
zero-modes). U n d e r such a pe r tu rba t ion the soli tons do no t 
leave the invar iant set U0 and therefore the cor responding 
pe r tu rba t ions must be excluded by the choice of the current 
metr ic p in the form (3.3.3). 

R e m a r k 3.4. It is no t difficult to demons t ra t e the 
limits of the applicabil i ty of the g - t h e o r e m , if one takes into 
account the par t icular dependence of the Lagrang ian 
density on the pa ramete r co, as this dependence was crucial 
to the proof. F o r instance, this co-dependence changes its 
form when one incorpora tes the gauge vector fields via the 
co var iant derivative. F u r t h e r m o r e the g - t h e o r e m cannot be 
applied if the solut ions (3.3.1) exist only for some discrete 
values of co, since in this case the differentiation with respect 
to co cannot be performed. 

N o w consider the very impor t an t par t icular case a = 0 
cor responding to nonrelat ivist ic models . It t u rns out tha t 
the g - t h e o r e m proves to be valid in this case and the 
stability domain is still determined by the inequali ty 
(3.3.19). In fact, condi t ion (3.3.7) reduces to (3.3.17) as 
a —> 0, and thus the p rob lem comes down to finding the 
spectrum of the opera to r Lx under condi t ion (3.3.17). 
In t roduc ing the Lagrange multiplier we get the following 

representa t ion for the min imal eigenvalue X of the opera tor 
Lx. 

(3.3.20) 

Us ing the condi t ion (g, = 0 and the eigenvalue equat ion 

IL^ + xg = 2X\\i 

we obta in the Lagrange multiplier 

1 IMI2 ' 
Insert ing it into expression (3.3.20), we obta in 

X = min 
11*11=1 

( i A , L 1 i A ) - 2 f e , i A ) - min PM. (3.3.21) 
Ml=i 

Thus , we have reduced the p rob lem to the uncond i t iona l 
minimisat ion of the functional P[ i^]/ | | i^| | 2 . Let us p rove tha t 
the new and the old p rob lem are equivalent . Minimis ing the 
functional (3.3.21), we ob ta in the equat ion 

I > - [g(g,L^)+Llg(g,ik)]\\g\\2 = # . (3.3.22) 

N o t e tha t the possible solution \jj = g to Eqn (3.3.22) has to 
be excluded as it violates the condi t ion (3.3.17). Therefore, 
pu t t ing ij/ = g into E q n (3.3.22), we obta in 

-+x ^ 0 . (3.3.23) 

Final ly, the scalar mult ipl icat ion of b o t h sides of 
E q n (3.3.22) by g leads to 

'(gXig) •+x 

whence in view of the inequali ty (3.3.23), we deduce tha t 
(g, xjj) = 0. This proves the equivalence of p rob lems (3.3.20) 
and (3.3.21). 

N o w for the par t icular subst i tut ion ij/ = v in accordance 
with the definition (3.3.12) we find Lxv = —g, t hus deriving 
from Eqn (3.3.21) the equali ty 

dco ' PM = -(g,v) 

The minimisat ion in expression (3.3.21) then leads to the 
equat ion 

~Lxg-
\\g\t 

• = Xv , 

from which it follows tha t the eigenvalue X = 0 still 
cor responds to the surface (3.3.16) in the co-space, and 
the stability domain , where P[\j/] > 0, is determined by the 
inequali ty (3.3.19) in the following explicit form: 

9G=_9_| 
8co 8co 

co J d 3 x ( F p — Fqs)i < 0 (3.3.24) 

As will be shown later, the condi t ions of Theorem 3.8 
appear to be necessary for the g-s tabi l i ty of non -noda l 
soli tons [62, 73]. 

T h e o r e m 3.9. The conditions of Theorem 3.8 are 
necessary and sufficient for the Q-stability of scalar non-
nodal solitons. 

P r o o f . Let us show tha t a violat ion of the condi t ions 
of the g - t h e o r e m implies the linearised instabili ty of n o n -
n o d a l soli tons with respect to the metr ics (3.3.3). To this 

file:////g/t
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end, consider the following Chetaev functional: 

W = (E0-E)[(ZuFpt,)-(Z2,ht2) 

+ ( £ i , c & ) - ( 6 , a . V £ 1 ) ] . (3-3.25) 

Us ing the ellipticity of the opera to r s Lh which is necessary 
for the posit ive definiteness of 8 2 £ , one can establish tha t 
the functional (3.3.25) is b o u n d e d with respect to the metr ic 
p in the domain W > 0, where b2E < —Si < 0. In fact, in 
such a domain ( ^ L ^ ) < —3U whence, in view of the 
general s t ructure of the opera tor 

Lx = - 8 ^ 8 * ] + 5 , 

we obta in 

(diZl,AikdkZl)<-dl-(Zl,BZi)<M\\Zl\\2, 

where max(—B) = M. The latter inequali ty, together with 
the ellipticity condi t ion 

(QiZuAikQkZi)>m\\VZi\\\ m > 0 , 

and with the inequali ty (3.2.24) yields finally the desired 
est imate. Therefore, to verify the applicabili ty of the 
C h e t a e v - M o v c h a n instabili ty theorem (Theorem 3.2), it 
remains only to calculate the t ime derivative W. F r o m the 
linearised equa t ions of mot ion 

Fpii + cti + div(at2) + L i f i = 0 , 

h\2 - cti + («• +L2£2 = 0 (3.3.26) 

we get 

W = (E0-E)[(ZuFpZi)-(Z2,hZ2) 

+ ( { i , ^ 2 ) - « 2 , o - V { 1 ) ] . 

However , in the doma in b2E < —Si, in accordance with 
E q n (3.3.9) the following inequali ty obta ins : 

-(Z2M2) - (Z1X1Z1) > 81 + ituFpti) + (Z2MZ2) • 

Therefore 

W>81 ft + 2(ZuFPZi) + mXiZi)} >S2>0. 

N o w to complete the presenta t ion we come back to 
s tudying the n o d a l soli tons for which the following theorem 
is valid [61]: 

T h e o r e m 3.10. The nodal stationary solitons are 
linearly unstable. 

P r o o f . F o r the noda l solitons, it follows, on the basis 
of L e m m a 3.1 and the C o u r a n t theorem (Theorem 3.7), 
from the zero m o d e equa t ions 

L2u = 0, LiVu = 0 

tha t the ope ra to r s Lx and L2 have negative eigenvalues. 
Solving the equat ion (3.3.26) with respect to £ 2 , regarding 
£i as a given source, we get { 2 = ^ + A ( { 1 ) , where rj 
satisfies the h o m o g e n e o u s equat ion 

hii+L2ri = 0 , (3.3.27) 

admi t t ing the sign-indefinite 'energy ' integral 

e = (fi,hfi) + [nXin) • 

Cons t ruc t ing the Chetaev functional 

W = —E(rj, hrj) , 

we infer tha t its t ime derivative W is posit ive in the doma in 
E < -<$! < 0: 

W=E[(ri,L2ri)-(fiM] > *i • 

No t i ce tha t Theorem 3.10 deals in fact with the stronger 
spectral instability. 

It would also be of interest to consider the limiting (non-
relativistic) case, when in the equa t ions of mot ion (3.3.26) 
Fp = h = a = 0, c = 1. To p rove instabili ty in this case it is 
convenient to use the spectral decomposi t ion 

L2 = L t , + 4 - ) , « . = « { + ) + « { - > , 

with respect to the sign ( > , < ) of the spectrum of the 
opera tor L2. 

The equat ion thus arising is 

« i + ) = - 4 + , A ( « i + ) + « { - ) ) 

and admi ts a solution of the form 

^ = [ 4 + ) ] 1 / 2 « + 5 ( « H ) , 

where the function £ satisfies an equat ion similar to 
(3.3.27): 

c = - [ 4 + ) ] 1 / 2 £ 1 [ 4 + , ] I / 2 « , 

for which the instabili ty has been al ready established. 
F o r the appl icat ion of the g - t h e o r e m it is necessary to 

m a k e sure tha t the opera tor Lx possesses only a single 
negative eigenvalue (negative mode) . 

L e m m a 3.2. For spherically symmetric solitons the 
nega-tive mode is unique if and only if the function 
u(r),r=\x\, is a monotonically decreasing one, and the 
solution w(r) of the equation L j ( w / r ) = 0, with the boundary 
conditions w(0) = 0, w'(0) = 1 has a single internal zero (for 
r > 0). 

P r o o f [62]. F o r spherically symmetr ic soli tons the 
opera tor Lx commutes with the genera tors / of the ro ta t ion 
group and therefore can be expressed in te rms of the 
Casimir opera tor J2 with eigenvalues / ( / + 1 ) . F u r t h e r ­
more , the ellipticity of the opera tor Lx implies tha t its 
spectrum X(t) increases with /. At the same t ime from 
L 1 3 f w = 0 it follows tha t the zero m o d e diu = u(r)xi/r 
cor responds to the angular m o m e n t u m 1=1, or 
A(l) = 0. N o w , since u'(r) < 0, in accordance with the 
Courant theorem (Theorem 3.7), A = 0 is the min imal 
eigenvalue for 1=1. Thus , the states with X<0 cannot 
be other t han spherically-symmetrical , and their number 
will be equal , in accordance with the Sturm comparison 
theorem [65], to tha t of the internal zeros of the solution 
w(r) to the equat ion L 1 ( w / r ) = 0 with the b o u n d a r y 
condi t ions w(0) = 0, w'(0) = 1. 

Consider some simple physical models for which the 
condi t ions of L e m m a 3.2 are satisfied, tha t is, the negative 
m o d e is un ique and the g - t h e o r e m is applicable. 

E x a m p l e 3.5. The power model. In this case the 
Lagrang ian function can be wri t ten as F = p-\-s — sn/n 
and admi t s a soliton-like solution, determined as the field 
function u(x) satisfying the equat ion 

[A - 1 + co2 + u2{n~l)] a = 0 . (3.3.28) 

Equa t ion (3.3.28) admits , in par t icular , the n o n - n o d a l 
solut ion u(r) if the condi t ions 
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| c o | < l , 0 < l - l / n < 2 / £ > (3.3.29) 

are fulfilled. After a change of variables in Eqn (3.3.28) 

r = s(\ — co ) 2^-1/2 = v(l — CO J 
2xl/[2(n-l)] 

the charge g(co) of the nonpe r tu rbed soliton can be found 

g(co) =co\\u\\1 = Cco(\ - co1) 2x[l /(n-l)-D/2] (3.3.30) 

As follows from (3.3.30), condi t ion (3.3.24) is satisfied for 
frequencies in the interval 

1 > Icol > 
n + 1 

n - 1 
D 

-1/2 
(3.3.31) 

Condi t ion (3.3.18) is also fulfilled since g = Icon ^ 0, and 
the eigenfunction ^ 0 (recall tha t is the first 
eigenfunction of the opera to r Lx). T h u s we infer tha t the 
inequali ty (3.3.31) determines the domain of g-s tabi l i ty for 
the non -noda l soli tons in the model . 

E x a m p l e 3.6. The logarithmic model [74]. This mode l 
is determined by the Lagrang ian function 
F = p + s(l — Ins), admi t t ing soliton solut ions (3.3.1) of 
the form 

u(r) = e x p [ 2 - ( Z ) - c o 2 - r 2 ) ] . 

The expression for the charge 

g(co) = Ceo exp ( - c o 2 ) 

determines the doma in of g-s tabi l i ty for the non -noda l 
soli tons of the mode l [64], [75] t h rough the inequali ty 

co > l/y/2. (3.3.32) 

E x a m p l e 3.7. The nonlinear Schrodinger equation. W e 
shall consider it here in its most general form (see Par t I) 

18. ̂  = - [ A + W 2 ( " - 1 ) ] ^ n > \ . (3.3.33) 

It admi ts the soliton solut ions (3.3.1) with the ampl i tude w, 
subject (in tu rn ) to an equivalent equat ion one can derive 
from expression (3.3.28) by subst i tut ing co2 — 1 —> co > 0. 
Per forming the change of variables 

r = s\a>\-V2; u = v\a>\W"-» 

we can reduce the aforement ioned equat ion to the form 
(3.3.28) with co = 0, which gives an explicit expression for 
the charge 

Q(co) = | |« | | 2 = c\a>flK"-lW2» . (3.3.34) 

As follows from expression (3.3.34), the stability domain is 
determined by the condi t ions 

| , (3.3.35) 1 < n < 1 + 

and the instability domain can be characterised by the 
inequalit ies 

1 2 D 

(3.3.36) 

s temming from condi t ions (3.3.29) and having a mean ing 
when D ^ 2. The instabili ty of the non -noda l soli tons in 
the domain (3.3.36) can be established by means of the 
Chetaev functional 

W = (E0-E)(Zut2), 

which is the limiting case of the functional (3.3.25) (the 

non-relat ivist ic limit). Instabil i ty of the n o d a l soli tons with 
respect to the metr ics 

Po : £ | | U ' C , P= £ f £ | | & | l 
=1 ™ u i=l 

is a consequence of Theorem 3.8. 

3.4. Stability of multiply charged solitons 
Let us consider a na tu ra l general isat ion of the g - t h e o r e m 
for m a n y - c o m p o n e n t fields i/^(x, t), s = 1,n, with the 
Lagrang ian density 

(3.4.1) 

admi t t ing the in ternal symmetry group G of r ank /. In 
other words , in the group G one has / d iagonal genera tors 
T a , a = l , / , cor responding to the conserved charges g a , 
and the s ta t ionary (in this case, multiply charged) soli tons 
are described by the functions 

^\x,t) = [ e x p ( & f ) " ( * ) h ® = • ( 3 - 4 - 2 ) 

This allows us to use in the expression for density (3.4.1) 
m o r e appropr i a t e field variables q>(x,t), by means of the 
ansa tz 

ij/ = Qxn(cbt)cp , 

and the Lagrang ian density in te rms of the new variables 
reads 

L = -F(<ps,q>s + (a><p)sA<ps) . 

F o r the L y a p u n o v functional we choose the integral 

V = E - co„Q« , 

where 

E = dx{F - Fs [cps + (&<p)s]}, g a = - | dx F ; ( / > ) ' . 

The second var ia t ion 8 2 V and condi t ions 8 g a 

wri t ten in the form: 

S2V = -(F-srZ',Zr) + (Zr,L^') , 

bQx = -(tr,F;;r(raUy)-(g:,zr) = o. 

0 are 

(3.4.3) 

(3.4.4) 

Since the quadra t ic form with respect to the velocities in 
equat ion (3.4.3) should be positive definite, we in t roduce 
the positive-definite mat r ix 

Aap = -(F';r(rau)\ (fpu)r) 

and, t ak ing into account equat ion (3.4.4) with the help of 
the Lagrange multiplier me thod , we eliminate the velocities 

from E q n (3.4.3): 

(3.4.5) 

F r o m expression (3.4.5) it is obvious tha t the stability 
condi t ion reduces to the requi rement tha t the spectrum of 
the opera tor K should be positive, i.e. A0 = A m i n > 0. In 
order to define the b o u n d a r y of the stability region, let us 
differentiate the equat ion in us with respect to coa, leading 
to the relat ion 

j~ s r 
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where 

dus 

dco„ 
(3.4.6) 

In view of the identi ty (3.4.6), the condi t ion X0 = 0, or 
equivalently K£ = 0 , takes the form 

+ ( A = 0 . (3.4.7) 

In turn , from expression (3.4.7) it follows tha t 
£ = £0 + aaua, where L £ 0 = 0. On the other hand , by 
vir tue of the identi ty (3.4.6) we have 

(ga> ua) — Aap + Fap, Fap = - . (3.4.8) 

and therefore equat ion (3.4.7) is equivalent to the algebraic 
system 

(A~1)AFIayFyP = ° > 

possessing the nontr iv ia l solut ion ay ^ 0 only under the 
condi t ion 

d e t [ F a / ! ] = 0 . (3.4.9) 

Hence , the condi t ion X = 0 ho lds a long with the condi t ion 
(3.4.9). At the same t ime, from the identi ty (3.4.6) we 
deduce tha t 

K^p = (ux,Kup) = F a j 8 + (A 1)fiVF!XfiFpv , 

and therefore the range of stability is located inside the 
region where the mat r ix Fap is posit ive definite, or in brief 
F> 0. 

W e represent the Hilber t space TL of the functions { as: 
7i = N ® KerL 0 P, where N and P cor respond to the 
negative and posit ive eigenvalues of the opera tor L, 
respectively. E q n (3.4.5) leads to a further necessary 
condi t ion for X0 > 0: 

L in{g a

r } = Hg D N , (3.4.10) 

and, in par t icular , dimAf EE v ^ /. 
Let us demons t ra t e tha t the condi t ions F > 0 and 

(3.4.10) are necessary and sufficient for X0 > 0 to hold. 
Indeed, let us assume tha t ua = xa + ya + z a , £ = a + b + c, 
where x a , a G A/"; v a , £ G K e r L ; z a , c G P. On minimising 
E q n (3.4.5) with respect to c, we find 

5 2 V ^ ( a , L x a ) ( A -\-B)~p(a,Lxp) + (a,La) EE (a,Ma) , 
(3.4.11) 

where B^p = (z^Lzp). Fu r the rmore , by virtue of condi­
t ion (3.4.10) the following decomposi t ion a = saxa holds, 
and therefore from expression (3.4.11) we derive the 
est imate 

b2V^saMapsP = sTMs , 

where M a j 8 = ( x a , M x p). Observing tha t 

#aj8 = (u^Lup) - (xa,Lxp) 

is a non-negat ive matr ix , we find in accordance with 
expression (3.4.8), 

Aap+Bafi = -Fafi - (xa,Lxp) = -Fap + Cap , (3.4.12) 

where Cap = — (xa,Lx p) is a posit ive matr ix . Thus , from 
E q n s (3.4.11) and (3.4.12) we deduce tha t 

M = -C - C(F - C ) ~ ' C = F(I - C~]F)~l , 

or M > 0, if F > 0. 

Consider n o w an impor t an t special case, when only one 
negative m o d e occurs, with v = dimAf = 1. Then , instead of 
expression (3.4.5), it is m o r e appropr i a t e to use the est imate 

5 2 y > a-\g,Zf+{tfZ) = &K'Z) , (3.4.13) 

where g = coaga, a = Aapcaacop. As a result, instead of 
relat ion (3.4.6), we arrive at the relat ion 

^ K , c o a ) = -g , 

and the condi t ion for the spectrum of opera to r A to be 
positive-definite can be expressed by the inequali ty 

(3.4.14) 

Thus , the following general isat ion of the g - t h e o r e m for 
mult iply charged soli tons holds [3, 59, 61, 70, 73, 76, 77]: 

T h e o r e m 3.11. The stationary solitonic solutions 
(3.4.2) are Q-stable in the region F>0 [see Eqns (3.4.8) 
and (3.4.14)], if the condition (3.4.10) is fulfilled, i.e. if the 
space spanned by the vectors ga contains negative modes. 

3.5 The method of functional estimates for studying 
stability problems 
The idea of condi t ional stability for many-d imens iona l 
soli tons has been developed by V E Z a k h a r o v and 
E A Kuzne tsov , who demons t ra ted tha t in var ious s i tua­
t ions one can with relative ease be assured of the existence 
of a lower b o u n d for the energy functional of the system 
subject to the condi t ion tha t some addi t iona l integrals of 
mo t ion are fixed [78], [79]. It is t rue, tha t in so doing some 
delicate quest ions on the at ta inabi l i ty of the lower b o u n d , 
on the convergence of the minimising sequence, and on the 
regular i ty and smoothness of the min imal energy config­
u ra t ion are left open. Nevertheless such an app roach fulfills 
the requi rements of the so-called 'physical level of r igour ' 
and is found to work efficiently in var ious appl icat ions. 
Since there are excellent descript ions of this me thod in the 
l i terature (see, for example, Refs [50], [80]), we shall 
confine ourselves to just one demons t ra t ion of the me thod 
for some physical models . 

E x a m p l e 3.8. The nonlinear Schrodinger equation. 
Using the definitions of the dynamica l variables of this 
model , a l ready in t roduced in Example 3.7, we shall 
demons t ra t e tha t the energy E in R3 is est imated from 
be low by the charge g as defined in (3.3.34). In fact, 

£ M = j d 3 * ( W - ^ | \2n 
\\M\ 2 L-\\R\\2 

In t roduc ing the no ta t ion Ilk = | | ^ | | 2 , k = 1 , 2 , . . . , and 
m a k i n g use of the wel l -known inequalit ies: 

l lViAf > a / 6

1 / 3 , a = 3 ( 7 i / 2 ) 4 / \ 
j < j(3-n)/2 (n-l)/2 

we arrive at the est imate 

1 ( 3 - « ) / 2 , ( „ - l ) / 2 (3.5.1) 

If 5 > 3n, then the r ight -hand side of expression (3.5.1) 
a t ta ins its m i n i m u m for 

\ 1 6 / (5 -3n) 3(n-l) 
2an 

, 3 ( 3 - n ) / ( 5 - 3 n ) 



Localised nontopological structures: construction of solutions and stability problems 135 

Therefore the energy functional E[\j/] for the fixed value of 
charge (or tha t of a n u m b e r of particles) I2 = Q a t ta ins its 
min imum as well, which is realised in some stable 
configurat ion. 

E x a m p l e 3.9. The Korteveg-de Vries equation in R1 

reads 

dtcp + d3

xcp + 6<pdx<p = 0, (3.5.2) 

and describes waves in shal low water . As is known , this 
mode l assumes the energy conservat ion law 

E[q>] = dx {(Qx<p)2-<p3 = \\\!>M\2-h 

and also the m o m e n t u m conservat ion law 

| dx cp2 

M a k i n g use of the G a g l i a r d o - N i r e n b e r g - L a d y z h e n s k a y a 
inequali ty 

h ^CI5

2

/4\\dxep 11/2 C = const , 

we obta in an est imate of the energy functional from below: 

E[<p]>^\\Qx<pf-CI2

5/4\\Qxq>\\2 • (3-5-3) 

Minimis ing the right hand side of expression (3.5.3) with 
respect to | |9x(p| | , we get a new est imate 

E[q>] > C 0 / 2

5 / 3 : const . L2 ' ^0 
Thus , for a fixed value of m o m e n t u m P = I2 the energy 
appears to be b o u n d e d from be low and therefore it has a 
min imum, which is realised in some stable configurat ion. 

E x a m p l e 3.10. The Kadomtsev-Petviashvili equation 
in the space R2 has the form 

dx (dtcp + d3

xcp + 6<pdx<p) = 3d2cp 

and is commonly considered as a two-dimens iona l general­
isation of the K o r t e v e g - d e Vries equat ion . It also assumes 
conservat ion of energy 

E[q>] dx \(dxcp)2+ 3-(dyw)2 cp 

cp 

and of m o m e n t u m 

P = dx cp = 12 

Here we use the HoSlder inequali ty 

h < ihh)1'2, 

together with the obvious inequalit ies: 

h ^ 4 d 2 x \cpdxcp\ d2x \cpd cp\ , 

d 2 x |<p9-y<p| d 2 x \cpd2

x 

d2x \dxcp\ • \dyw\ ^ \\dxcp\\ • 

On combining them, we arrive at the relat ion 

7 3 < 2 / 2

3 / 4 | | 6 , « ? , | | . | | 8 ) , 11/2 

which allows us to derive an est imate for the energy 
functional from below: 

E[<P] > h¥M2 +WyHZ ~ 2 / f l l S ^ I I • | | 8 y W | | " 2 . (3.5.4) 

On minimising the right hand side of expression (3.5.4) 
with respect to | |9X(^|| and ||9-yw||, we obta in the following 
inequali ty 

E[q>]> , 

which means tha t for a fixed value of m o m e n t u m P = I2 

the energy m i n i m u m is realised in a stable solitonic 
configurat ion. 

3.6. Stability of plasma solitons (BGK-structures) 
Here we use the direct L y a p u n o v me thod to investigate the 
stability of p lasma soli tons of the electron-phase-hole type, 
k n o w n also as B e r n s t e i n - G r e e n e - K r u s k a l waves [81], 
[82]. To this end we give the V l a s o v - P o i s s o n equat ion with 
the electron dis t r ibut ion function f(t,x, v) and the electric 
field s trength E(t,x) in p lasma in the heavy-ion a p p r o x ­
imat ion: 

dtf+vdxf-Edvf=0 , 

8 ^ = 1 - J d v / . 

(3.6.1) 

(3.6.2) 

Tak ing account of the b o u n d a r y condi t ions 

£ ( f , ± o o ) = 0 , f(t,±oo,v)=fO0(v), 

Jdv / 0 0 (v ) = l , 

cor responding to an electrically neu t ra l system, and 
choosing a frame of reference tied to the centre of the 
d i s t r i b u t i o n / o o , one can eliminate the electric field with the 
help of E q n (3.6.2): 

J —c 
d x r d v / f o * V ) - / o o ( v O , 

on rewri t ing Eqn (3.6.1) in the form 

Qtf+rixf+Zvff d x , | d v , [ / ( ^ x ^ v , ) - / 0 0 ( v , ) ] = 0 . 

(3.6.3) 

Let us assume tha t the E q n (3.6.3) has the s ta t ionary 
solution 

fo =/o(wj^) j Eo(x) = -</>'o(x a = const , 

where w • 1„2 0o (x + a) is the electron energy, \i = sgnv. 
Since the distr ibution function is a positive-definite one, one 
can pu t f=X2ifo=Xo> where it is assumed that the 
function Xo(x is a solution to the equat ion 

D0X0 = 0 , (3-6.4) 

where the s ta t ionary Liouville opera tor 

D0 = -vdx + E0dv . 

has been used. Let us n o w in t roduce the pe r tu rba t ion 
£ — X ~ Xo> a n d t ake into account tha t it has to satisfy the 
linearised normal i sa t ion condi t ion 

J d * J d v x 0 £ = 0 ; (3.6.5) 

it p roves convenient to present the pe r tu rba t ion { in the 
form 
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|V2 5 = D 0 [ 5 ( 2 / o ) - 1 / > ] , S = Kfo 

It is then easy to ascertain tha t E q n (3.6.5) is satisfied in 
view of E q n (3.6.4). The new u n k n o w n function cp(t,x,v) 
satisfies the linearised equat ion 

Ldtcp = Hep , 

in which the following opera to r s 

L=sD0, e = s g n 8 w / o , 

^2 

(3.6.6) 

H eDjJ + vS JdvVS( j c ,v ' ) , 

have been in t roduced. Observing tha t J d x d v ^ 2 , = and 
tak ing into account Eqn (3.6.4), we verify tha t Lxo = 0, 
and therefore tha t the zero eigenvalue of the opera to r L 
belongs to the con t inuous pa r t of the spectrum. This allows 
us to invert of the opera tor L and to reduce E q n (3.6.6) to 
its n o r m a l form: 

dtcp = D0cp — sS (3.6.7) 

F r o m Eqn (3.6.7) it follows tha t the integral of mo t ion 
exists 

y = j d x - j dv£(Z) 0 (p ) 2 +Q dvvScp (3.6.8) 

which for m o n o t o n i c dis t r ibut ions , i.e. for s = — 1, is 
posit ive definite. Therefore, it is reasonable to choose the 
metr ics p 0 , p as follows: 

Pi = | dx | d v ( Z ) 0 ( p ) 2 + Q dvvScp P = i n f p 0 

In this case for s = —I the functional V = pi ^ inf a Po = P" 
can be regarded as a L y a p u n o v functional. Therefore the 
stability of the electron dis t r ibut ions in the V l a s o v -
Poisson p lasma is established when they are m o n o t o n i c 
with respect to the energy w. The result obta ined is k n o w n 
as the Newcomb-Gardner theorem for h o m o g e n e o u s 
dis t r ibut ions (i.e. for dxf0 = 0). 

Let us show tha t the m o n o t o n i c dis t r ibut ions are no t 
only locally bu t also globally stable. To this end, we choose 
as L y a p u n o v functional 

- H E2 + dv + K f - U + c(f) 

where X = G r ( / 0 ) — w is a Lagrange multiplier, 
the condi t ion 5 V r

1 ( / 0 ) = 0. Since X = const, 
ent iat ing X with respect to w, one finds 

dx 
8w 

:S2G"(f0)-\ =0 

found from 
on differ-

(3.6.9) 

E q n (3.6.9) allows us to ob ta in an expression for the 
function G(f) and to conclude abou t the convexity of the 
functional and in so doing on the stability of the 
m o n o t o n i c dis t r ibut ions. 

However , if the dis t r ibut ion is no t mono ton i c , i.e. when 
8 is sign-indefinite, then the functional (3.6.8) is also sign-
indefinite and this indicates instability. Indeed, considering 
the Chetaev functional 

W = V dx dvsF(x,v)(p0(p) (3.6.10) 

where F(x,v) is a solution of the auxil iary equat ion , we 
have 

D0F =\+sF2 dvv2S2 (3.6.11) 

M a k i n g use of equa t ions (3.6.7), (3.6.11) and expression 
(3.6.10), we obta in 

dW 
~di 

= -V{-V + 

+ 

| dx dv vS (cp • •FD0q>) 

j d x Q dvv2S2^j | dvF2(D0(pf 

- Q d v v S F D o ? ) | , 

whence it is evident tha t in the region where V < 0 the 
inequali ty 

dW 
dt 

holds . The latter s ta tement means tha t the condi t ions of the 
C h e t a e v - M o v c h a n theorem (Theorem 3.2) on instabili ty 
with respect to metr ics Po ,p r are satisfied, where 

Pfl= P2o + ^x&v\F\(D0(p)2, p ' = i n f p ' 0 

It should be emphasised, tha t the k n o w n frequency criteria 
of instabili ty [83] are not applicable here owing to the 
substant ia l inhomogenei ty of the dis t r ibut ions. 
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