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Abstract. Presented below is the critical review of the Let no one expect from us a complete history and theory of

modern optical experiments devoted to the demonstration
of the quantum nature of light and which reveal the
properties of photons. The three main languages used for
the description of such demonstration experiments are
described and compared: the formal quantum language Q,
which enables calculation of all averaged experimental
data; the classical or semiclassical language C, which allows
a visual qualitative description of some effects; the
metaphysical language M, which uses vaguely defined
terms (such as photons, their duality, quantum nonlocality,
etc.) and provides no new observable results, but claims to
offer the most profound reflection of the quantum-optical
phenomena. It is proposed to distinguish the three types of
photons: Q-photon (the Fock state with n = 1), C-photon
(the classical wave packet), and M-photon (the hypothetical
elementary particle producing discrete pulses at the photon
detector output, and which has not yet been defined in the
framework of any consistent theory).
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the Glass Bead Game. Even authors of higher rank and
competence than ourselves would not be capable of providing
that at the present time.... Still less is our essay intended as a
textb ook of the Glass Bead Game; indeed no such thing will
ever be written.

Hermann Hesse Das Glasperlenspiel

1. Introduction

One of the areas of concentration of recent investigations
in quantum optics is the study of different types of the two-
photon interference of light (see Refs [1-9]). The specific
feature of these investigations is the use of two-photon light,
consisting of pair-correlated photons and, correspondingly,
the detection of the coinciding in time of output pulses of
two photodetectors. The possible effects in the interference
of three- and more numbers of photons are being discussed
[10-13]. Also, the usual (amplitude or ‘one-photon’)
interference [14—17] and the anticoincidence of photon
counts in the two output shoulders of a beamsplitter (see
Refs [18, 19]) continue to attract attention.

Usually these experiments are motivated by the wish to
demonstrate the essential nonclassicality of some optical
phenomena and to emphasize the principal difference of the
quantum and classical description of light. Many physicists
also hope that such investigations would lead to the
fulfilment of Einstein’s unrealized dream to understand,
at last, what the photon really is.

In some types of two-photon experiments it is possible
to introduce a quantitative measure of the nonclassicality,
the visibility V of the interference pattern. The point is that
the exceeding of the interference visibility V over a certain
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level may contradict the classical stochastic models of the
light or the famous Bell inequalities [20] following from the
wide range of classical models (see Refs [7, 8]). In other
experiments there is no such measure, although they are
frequently taken to be demonstrating the photon structure
of light. Sometimes even the optical geometrical Berry
phase is considered to be the property of photons (see
Refs [21, 22)).

Quantum optics play a special role in the problem of the
interpretation of the quantum formalism. Light, first of all,
is the main source of information about the surrounding
world and, naturally, investigators would like to understand
the nature of the object delivering this information.
Quantum optics often tackles linear problems, which
simplifies its comparison with the classical models. The
aforesaid simplification is because of the fact that the
Maxwell equations for the classical free-space fields have
exactly the same form as the corresponding Heisenberg
equations. It is essential that light can be directly detected
by the eye with the retina playing the role of a classical
detector. Note that the modern laser techniques enable one
to prepare the light field in a two-photon state (plus the
vacuum component), which in some approximation is a
pure state and corresponds to the macroscopic scale of
coherence phenomena [23].

The purpose of this paper is to present a short review
and schematic description of the main types of quantum
demonstration experiments of modern optics, ie. the
experiments aiming at two goals: demonstration of the
quantum properties of light and revelation of the nature of
the photon. An attempt is made to estimate the achieve-
ments in solving the problems and also to classify and
compare different ‘languages’ used for the description of
demonstration experiments. Section 2 is devoted to defining
the ‘languages’.

A general description of some typical optical experi-
ments in different languages is given in Section 3. For the
sake of completeness the conventional two-modes ampli-
tude interference is discussed in Section 4. Demonstration
experiments, using a beamsplitter for mixing of two
transversal modes (beams), and two detectors with a
coincidence circuit (or analog correlometer) which reveal
the correlation and anticorrelation of photons, are analyzed
in Section 5. Section 6 is devoted to the more complicated,
four-mode schemes. Two types of intensity interference are
distinguished here: the Brown—Twiss interference and the
advanced waves interference. The main conclusions of the
review are concentrated in Section 7.

It should be emphasized that, for the sake of being
specific, the range of considered problems is limited here to
several stationary effects in the optical wave range. When
saying a quantum object, I shall basically keep in mind only
the electromagnetic field of this range.

2. Semantic sketch of quantum optics

It is possible to define the following main languages of
quantum optics (Fig. 1):

—the quantum (Q), giving predictions which are in
quantitative agreement with the experiment and consisting
of several ‘dialects’ (Qu, Qs, Qc);

—the metaphysical (M), pretending to give the tradi-
tional realistic interpretation of observed phenomena and of
the quantum formalism mainly with the help of new terms;

—the classical (C*) and semiclassical (C), presenting the
quantum theory and the observed effects in usual visual
patterns, without pretensions to the universal quantitative
description.

Mixing of the mentioned languages, often in a single
phrase, is typical of many works. I shall try to avoid such
mixing, defining different languages by the corresponding

Metaphysics (M)

~< Schrodinger
Representation (Qs)

Observed Quantum Copenhagen
Optical Theory (Q) Interpretation (Qc)
Phenomena

Heisenberg
- Representation (Qu)

Classical (C*)
and Semiclassical (C)
Theory

Figure 1. Scheme of the main language families used for the description of optical phenomena.
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code symbols Q, M, C. The adopted classification (shown
below) of languages is in many aspects a reflection of my
own subjective standpoint.

The starting point here is my conviction that at present
there is a necessity to distinguish quantum physics, for which
a steady and fruitful interconnection between the experi-
ments and the mathematical models is typical, and fruitless,
mainly verbal quantum metaphysics, which is not controlled
by the experiment but pretends to be a more profound
description of the quantum phenomena. Physics, as an
experimental science, cannot evidently avoid criteria similar
to the Popper principle of falsification or the Bridgeman
operational determinability (at least for some key notions).

On the other hand, it is desirable not to ignore, as is
accepted in current quantum optics, but as far as possible to
emphasize the common features of the classical and
quantum models.

2.1 Quantum Q-language

Let us define by symbol Q the language that uses
conventional mathematical formalism of the quantum
theory and well-established quantum models of the optical
processes.

The most important constituents of the Q-language are:
noncommutative algebra of the ‘observables’, absence of
the joint probability distributions for the two noncommut-
ing observables, and the uncertainty relation.

It is usually assumed that two main ‘dialects’ of the Q-
language, the Schrodinger representation (Qs) and the
Heisenberg representation (Qu), give equivalent results.
However, the different time correlation functions, describ-
ing the observable optical phenomena, can be precisely
defined in the general case only in the Qpu-language. An
important property of the Qu-description is the possibility
of transition to the explicit Lorentz-invariant form. More-
over this language follows closely the classical description
of the field evolution in the space—time coordinates, which
is much more convenient and visual and performs specific
calculations.

However, the Qu-language leaves little room for differ-
ent ‘realistic’ interpretations. This is probably the reason
why, in the discussions of the demonstration experiments,
the schematic Schrodinger description (Qs-language) with
Fock’s stationary vector (|1),), or the quasi-stationary
vectors of the states and the corresponding Metaphysical
language M (see below) are used. Evidently the evolution of
the state vector [/(¢)) in the Fock basis looks more realistic
and visual than the evolution of the field operator E(r, ) in
the Heisenberg representation, where it is possible to avoid
the notion of a photon.

The overwhelming (‘silent’) majority of physicists are
completely satisfied with the Q-language, i.e. with the
pragmatic approach to the quantum theory, which explains
and predicts a lot of the observed phenomena very well. It
will also be shown that the Qg-language (unlike the Qgs-
language) gives a simple universal description of the main
optical effects—the classical ones and the essentially
quantum ones, i.e. without classic analogies.

The Qu- and Qs-languages are pure mathematical ones.
Some rules of correspondence between the mathematical
symbols and the measured quantities should be postulated
to connect the languages and the experiments. These rules
are closely connected with the problem of the quantum
theory interpretation. 1 shall speak here on the Copenhagen

(it is also called orthodox or minimal) interpretation of the
quantum formalism (Qc-language), according to which
there is no sense in asking too many questions about its
nature (I shall not try to define different versions of the Qc-
language). In essence, this is not an interpretation but a
rejection, if one takes the interpretation as an aspiration to
attribute to the quantum objects some a priori dynamical
properties (except those determined by its state and ‘the
measuring projective postulate’). Besides, new ‘meta-laws’
are postulated: the complementary principle or (according to
Fock’s formulation) the principle of relativity to the
observation means.

This principle is reflected in quantum optics as a rather
vague term, photon duality, which (along with the under-
standing of the photon as an elementary particle) is, from my
point of view, rather a metaphysical category, i.e. belongs to
the M-language because there is no exact operational or
Q-definition.

The most important element of the Qc-language is the
‘measuring projective postulate’ determining the connection
between the state vector of a quantum object and the results
of classical measurements, i.e. bridging the gap that divides
the quantum and classical worlds.

When the Qp-language is used for a quantitative
description of the experiment, some operators of the
quantum model are regarded as observables [these are
usually the different time correlation functions for the field
operators E(r, t)]. The goal of the Qu-theory is reduced to
the calculation of the observables average values for the
determined initial state of object |Y(z,)).

When the Qs-language is used, it is postulated that the
projections of the final state |Y(r)) at the same definite
vectors of the Hilbert space of the system states determine
the statistics of the observed phenomena (which is estab-
lished in the course of repeating trials under
macroscopically identical conditions). In the schematic
qualitative models of quantum optics the one-photon
Fock states |1), ,where k is the mode index, are usually
chosen as these vectors.

The notion reduction of the state vector is considered to
be an important constituent of the Copenhagen inter-
pretation. This term has two main aspects: in the first
one, the problem of the mechanism of an individual (from
many possible) measurement result is emphasized, i.e. the
problem of description in the Q-language of the nonunitary
projection operation; in the second one, attention is given to
the problem of what is happening with the quantum object
state itself in the course of the ‘measurement’. | shall keep
in mind only the last aspect. The term reduction (according
to the proposed definition) may be attributed to the
Qc-language, if one assumes that it gives only a brief,
symbolic description of the experimental situation for which
the correlations of the measurements (or conditional prob-
abilities) of two or more macrodevices are detected. These
devices inevitably change the state of the object (according
to the Q-theory including classical C-parameters of the
devices). It is the so-called back action. The third close term
is the preparing of the state.

As an example, it is instructive to consider, according to
Schiff [24], a trace formation by an electron in the Wilson
chamber. The fair calculation of electron scattering by two
atoms shows that the electron trace for the high energies
should, with a high probability, be almost a straight line
parallel to the electron momentum p. This actually follows
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from the calculations of the probability of exciting both
detector-atoms with their diameter a being much larger
than 7i/p (it is the Qs-languages). On the other hand (for the
estimates or visualization), it is possible to exclude from the
very beginning the first atom in the trace and assume that
the electron interaction with the first atom is the act of
measurement of the transverse electron coordinate with
accuracy a (it is the Qc-languages). It is also assumed
that an instantaneous change (Q-reduction or preparation)
of the electron wave function takes place, i.e. the trans-
formation of the initial plane wave exp(ipr/h) into a narrow
beam, as if the first atom is an orifice of the diameter ¢ in a
nontransparent screen in the path of the plane wave.

If the reduction is accepted, as is often assumed, as some
mysterious, ‘other world’ process, indescribable by the
Q-languages in principle, it should be attributed to the
metaphysical M-language because it does not lead to the
observable consequences different from the predictions of
the Q-theory.

In the same way the term backaction should be specified.
If it is accepted as a convenient brief definition of the device
action on an object which can be explicitly described by the
inclusion in the Q-theory of the corresponding (classical)
C-parameters, ensuring the unitarity of the evolution of the
object (i.e. conservation of the commuting relations and the
uncertainty relation), it is the Q-term. If it is accepted that
the backaction is something more meaningful, it is the M-
term to which no experimentally verifiable (or according to
the Popper formulation, falsified) predictions correspond,
i.e. this term has no operational meaning.

A popular term which may, with the same specification,
be attributed to the Q-languages is the entangled state term.
In the simplest optical case it is a nonfactorizable two-photon
four-mode state which is used for the Einstein —Podolsky —
Rosen (EPR) and Bell paradoxes demonstrations. Accord-
ing to the Qc-language prescriptions some a priori individual
properties cannot, contrary to the semiclassical theory, be
attributed to the Q-photons. These are frequency, direction of
the wave vector, and polarization. Note here that,
contrary to widespread conviction, the condition of the
entangling (nonfactorizability) of the field state is not
obligatory for the optical demonstration experiments (see
Section 6.4)

2.2 Metaphysical M-language

For the metaphysical description (M-language), typical is a
desire (as yet unrealized) to go out of the frame of the
minimal (Copenhagen) interpretation and to look behind
‘the scenes’, behind the °‘looking glass’. It is usually
achieved with the help of the M-terms, such as reduction
of the state vector, photon duality, photon indistinguishabil-
ity, quantum nonlocality, contextuality, contrafactuality etc.,
which throw the uninitiated into a state of anxiety.

The specific indications of the M-language are, accord-
ing to the proposed determination, vague terms (having, as
a rule, neither an explicit reflection in the formal Q-theory
nor a clear operational meaning), doubtful discussions, and
the absence of real predictions different from those of the
quantum theory (Q-language). Many ‘fashionable’ notions
and formulations of the M-language were adopted by
frequent and noncritical repetition.

An example of a term currently popular is quantum
nonlocality. Here the term ‘nonlocality’ has actually no
connection with the conventional meaning of this word, but

defines, in a squeezed form, something else. This is a
quantitative contradiction between the classical and quan-
tum descriptions of some models (the Bell or Kochen—
Specker type paradoxes) connected, in essence, with the use
in the Q-language of the noncommutative algebra of
observables, and the absence of the notion of ‘joint
probability distribution’ for the noncommutative observ-
ables.

The logic of the origin of the term may be presented
briefly as the following (see for details Refs [8, 25] and the
references therein). There are two statements:

1. The Q-language presents some affirmation A (which
can be confirmed in the experiment).

2. The classical C-language (more precise, with some of
its dialect Cp introduced by Bell) also presents the
affirmation A, although only with the use of such addi-
tional notions as the negative probability or the unknown
long range forces, manifesting themselves in the instanta-
neous mutual influence of separated measuring devices or
some other even more unacceptable assumptions.

From these, despite contradiction with formal logic, the
conclusion to be drawn is that the Q-theory and physical
reality are nonlocal.

However, the main notion of optical metaphysics,
according to me, is that of ‘the photon as an elementary
particle of the light field’. I shall call it M-photon, to
distinguish it from the formally introduced Q-photon
‘created’ from vacuum by the operator ¢*, and from the
C-photon, a wave packet of the semiclassical C-language. I
shall not touch old mechanical models of the photons in the
form of balls with definite energies and momenta (see the
review Ref. [26]), which are only of historical interest and
are successfully used by the authors of manuals on quantum
mechanics to confuse students at once and forever.
According to current publications the M-photon is some-
thing objectively existing in time—space and resulting in a
pulse of current at the photon detector output (see
Section 2.5).

The formal Q-theory gives no a priori information
about the field , except at most about its vector of the
state [). The Fock one-mode state |1), or the many-mode
superposition of these states (quantum wave packet) are
rather exotic representatives of the multitude of all possible
field states, preparation of which is very complicated even
with the help of modern laser techniques. In the usual
realistic situations, there are, according to the Q-theory,
mixed states that are quite different from the ideal ones (see
Section 3.1 for details). The Q-theory gives no grounds
for schoolboy assertions like ‘light consists of photons’,
which is assumed to be true by the overwhelming majority
of physicists.

Let us emphasize the essential difference of the situa-
tions connected with the detection of nonrelativistic
electrons or other Fermi particles and of those arising
from pulses at the photon detector output. In the first case,
the number of particles is fixed and the notion of an
elementary particle is natural. In this case it is possible to
draw some conclusions (the so-called ‘retrodiction’) on the a
priori parameters of the electron state vector. In the second
case, the a priori number of the particles is , as a rule,
indefinite (see Fig. 3 below) and it is possible only to ask
about the state vector of the field.

The problem of inconsistency between the notion of the
photon as an elementary particle, introduced in the first
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pages of manuals on quantum mechanics, and the ‘realistic’
state of the quantized field (according to the formal Q-
language) is not, unfortunately, mentioned in the textbooks
and original papers known to me. A paradoxical situation
has arisen in quantum optics: for its main notion, M-
photon (as an elementary particle of the light field), there is
no precisely determined place in formal quantum theory.
In general there is a sharp contrast between the very
high accuracy of some calculations (Q-language), some-
times coinciding with the measured quantities to seven
digits (and better), and the vague verbal description of the
phenomena (M-language), which drives the students to
despair. Additional difficulties are created by the absence
in the textbooks of a distinct border between mathematics
and physics, between classical and quantum physics, and
also by the poor terminology (e.g. by quantization we often
mean a mathematical procedure leading to discrete Fourier-
transforms, which is also useful in the classical approach).
The quantitative calculations in the Q-language, which
describe the observed effects well, are not needed in the M-
notions. At the same time some Q-terms (type of reduction
of the state) can be useful as compact symbol nota-tions of
the definite Q-notions at the stage of forecasting some new
effects and their preliminary qualitative description. It is
also difficult to imagine modern physics without the
‘photon’ language which describes visually at a qualitative
level a lot of phenomena (however, one keeps in mind the
Q-photons, i.e. packets, of the semiclassical language).

2.3 Semiclassical C-language

The semiclassical description (C-language) is based on the
semiclassical radiation theory (e.g. see Refs [26, 27]). This
theory considers matter in a quantum manner and the field
in a classical way, i.e. as a superposition of the ‘Cphotons’,
classical wavepackets of the energy 7iw.

Evidently almost all physicists imagine the light field
consisting only of the actually existing C-photons, each of
them having definite a priori properties: spectral distribu-
tion, wave-front shapes, longitudinal and transverse length,
polarization. Though the demonstration experiments show
convincingly that this visual picture is not adequate (e.g. see
Figs 3 and 10) the classical ‘heresy’, learned in school,
persists.

The most important (and mysterious) constituent of the
semiclassical description is the postulate on C-reduction of
the wave packet (do not confuse with the Q- and M-
reductions considered above), according to which the C-
photon can be detected only once, whereas the probability of
this event (it is assumed that detection happens instanta-
neously) is proportional to the square of the field averaged
over the detec-tion volume. Thus, the ‘corpuscular’ proper-
ties of the C-photon manifest themselves at the moment of
detection only.

2.4 Classical C*-language
This is the language of classical statistical optics describing
classical analogs of quantum effects. When [ say classical
analog, I keep in mind the phenomenon which has all the
most important features of the quantum effect. Usually it is
understood as analog detection at which the detected
photo-current is proportional to the instantaneous intensity
of the incident light at the detector.

Of course, this definition can lead to some subjectivism
and nonunique classification of the phenomena. For exam-

ple, according to me, the most important feature of rwo-
photon interference (see Section 6.3)isa definite periodicity in
the dependence of two-detector correlation on the lengths of
the optical paths and, therefore, it has an optical analog (see
Section 6 and Refs [28, 29]). On the other hand, it is possible
to consider as such a feature, the high visibility V of the
observed interference pattern, i.e. the low value of the
background signal (absence of random coincidences). How-
ever, the absence of the random coincidences seems to be
unspecific for two-photon interference because it is related to
the properties of the light source (not to the specific optical
scheme) and can be observed in more simple two-mode
experiments (see Section 5).

At present nobody has doubts that the classical optical
models are limited. Nevertheless the search for the features
common with those of classical optics facilitates under-
standing of the essence of new effects. It corresponds to the
traditional conservatism of physics, to the law of ‘the
Occam’s razor’, to the principles of reductionism, to the
evristic rule ‘from the simple to the complex’. Besides, the
flagrant contradiction between the instinctive realistic
convictions (they are sometimes called naive realism) of
the overwhelming majority of physicists and the Copenha-
gen Qc-language, which defies some a priori properties of
quantum objects of observation, makes natural the desire to
restrict themselves, at the faintest opportunity, to the
classical notions, ‘do not mention the name of God in
vain’. (Unfortunately, the opposite, the desire to emphasize
without any need the quantum or ‘other world’ nature of
the phenomenon, frequently happens.)

According to the proposed definition, C- and C*-
languages, contrary to the M-language, do not have preten-
sions to scientific reflection of the reality at the quantum
level. It is evident that only the Q-language has such
pretensions. The M-, C-, and C*languages and their
separate terms in the best case play auxiliary, heuristic,
comforting, or mnemonic roles.

2.5 Towards the definition of the ‘photon’ notion

Q. As is generally known, the Maxwell equations in the
case of the Hamiltonian description are reduced to the
system of equations for a multitude of noninteracting linear
oscillators. (In the case of the free field these equations are
of the same form in both classical and quantum theories.)
As a result, the theory of the free field is reduced to the
investigation of every possible initial state and their
properties for the system of oscillators. In the quantum
case, to every state of the system corresponds a point in the
space of this system.

In the case of one mode the Hilbert space is covered, for
example, by a complete system of Fock (|n)) vectors or the
coherent (|z)) basis vectors. One of the popular directions in
modern quantum optics is the construction and investiga-
tion of new classes of the states and their properties, i.e. of
the new subspaces of the quantum oscillator Hilbert space.
In the framework of the Q-language (the formal mathe-
matical system of the postulates and the quantum theory
theorems) all points of this space are equivalent (except,
perhaps, point |vac) = |n = 0) = |z = 0)) and therefore, the
Fock state |n=1) with determined energy 7w is not
distinguished in any way.

What is the reason for this special role of the state
|n = 1) corresponding to the metaphysical notion of the M-
photon? First, it may be assumed that the measurable
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observables are to be conserved in the closed system. In
optics, this condition distinguishes the energy of the field
and, accordingly, the Fock vectors [1),|2),]3),... as
‘distinguished” ones. Second, vector |n = 1) is distinguished
by the weakness of the field interaction with matter in light
sources and photon detectors. Many-photon states with
n > 1 are rarely important. (This lucky property of our
world reveals itself in the linearity of most optical effects.)
Thus, the notion of the photon is tightly connected with the
detection process, and a paradoxical formulation can be
suggested: a photon has a fleeting existence only at the
moment of its absorption in the detector.

However, it is possible to imagine a world made of
matter with forbidden one-photon transitions, as, for
example, in the case of certain pairs of states (of the
type ls—2s in a hydrogen atom). In this world the
main state should be |2) and the elementary particle should
be considered as a ‘biphoton’.

In the framework of orthodox quantum theory (Qc-
language) questions such as ““what is a photon?’’ and “what
are its properties?’’ are senseless. It is possible only to ask
about the properties of a given pure or mixed field state, the
projection of which at vectors |n = 1), determines the count
statistics of photon detectors and other measuring devices.

In the Q-language the following definition of a photon is
possible. The photon is the objective reality corresponding
to the stationary Fock vector |n=1), or to the quasi-
stationary one-photon wave packet |f;). However, this
definition is not very good because, according to the Q-
theory, the state |y,) is practically never realized in optics
(see Section 3.1 for further details).

If this rare possibility is excluded one should conclude
that the photon appears for a moment from nonexistence
only at the moment of its absorption by the detector! (Thus
the names of operators a* and a ought to be swapped.) Let
us remember in this connection the well known aphorism
reflecting the Copenhagen school creed: “A quantum
phenomenon is a phenomenon only if it is a recorded
phenomenon”’. (This aphorism is attributed to John
Wheeler, but in response to my direct question he denied
his authorship. Evidently the aphorism belongs to N Bohr.)
When applied to the problem under discussion it may be
reformulated in the following way: ‘‘a photon is a
phenomenon only if it is a recorded photon”’.

M. The metaphysical language is based on the conviction
that the notion ‘photon’ corresponds not only to the
mathematical symbols |1) or [,), but also to some ‘real’
physical substance with some a priori properties (elements of
the physical reality according to the well-known Einstein
formulation), and that any electromagnetic field of radiation
consists of the set of these independent (neglecting the rather
weak nonlinearity of the vacuum) substances, similar to that
for the ideal gas consisting of noninteracting atoms.

It is usually assumed that the final revelation of ‘real’
properties of the M-photon is only a matter of time and
applied efforts. Great hopes are pinned on the introduction
of new, frequently vaguely determined, terms and notions,
leaving room for the subsequent interpretations and refining.
This optimistic point of view (which up to now is followed
by a significant number of physicists) has endured since the
introduction by Einstein in the beginning of the century of
the light quantum notion, in spite of the apparent absence of
any progress in this direction. Nevertheless many still hope

that the investigation of new interference schemes based on
the use of many-photon light is the ‘way to the holy grail’?

Note that the generally accepted standard visual
formulation, such as a ‘photon was emitted (or
absorbed) by an atom’, or a ‘photon as a whole is
transmitted through the semitransparent mirror or is
reflected by it’ belongs to the semiclassical C-language,
because simultaneously (maybe unconsciously) something,
similar to the real wave packet, is assumed.

In the M-language the photon is frequently defined as
something which was the direct cause of a separate pulse at
the photon detector output. To clear up the precise meaning
of this M-definition from the point of view of the Q-
language compare two experiments: in the first, nonrela-
tivistic electrons are detected (or other Fermi particles); and
in the second, discrete photon detectors are used.

Let in both cases the following a priori information be
known: the sources prepare quantum objects in the pure
states |y) with definite spin (polarization) components, and
the detectors ‘see’ only one mode of the corresponding wave
fields, the de Broglie electron wave or the Maxwell
electromagnetic one. This means that the cross section
and the specific time of the detector T4, are much less
than the corresponding scale of the field inhomogeneity
(and therefore the quantum detection efficiency # is less
than unity).

The appearance of one pulse at the electron detector
output in these circumstances is naturally and uniquely
interpreted as the consequence of the hitting of one a priori
existing electron on the surface of the detector during
interval T4,. Two or more electrons are unable to be in
this interval according to the Pauli exclusion principle. The
superposition of the one-electron state with the vacuum of
type |[¢¥) = co|0) +¢|1) is forbidden by the charge con-
servation law: the electron is either present or absent (this is
an example of the superselection rules).

In the case of the Bose-particle detector, possible
conclusions which follow from the detection of an individ-
ual event are much more diverse. Suppose that initially
7 = 1. Then a pulse in the one-photon detector according to
the projection postulate means that the projection of |i/) at
the Fock vector |n) with n =1 for the corresponding mode
is different from zero: ¢; = (1|y) # 0. Hence, |§) = |1) or
|) is the state with an indefinite photon number, e.g. a
coherent state (see Section 3.1).

Further, taking into account the inevitable nonideality
of the detector leads to # < 1. This gives an additional
possibility that the field was in the stationary state |n) with
any n> 1 [the probability of this equals to 7(1 —n)"""].
Only repeated trials with the identically prepared vector |/)
can refine the procedure of the initial state reconstruction
(retrodiction).

Therefore, detection of a separate pulse at the photon
detector output in the general case does not allow us to state
that it was produced by a single photon: the field can be in a
multitude of states different from the one-photon state |1).

Therefore, we arrive at the conclusion that the photon as
an elementary particle of the optical field has no reasonable
distinct definition and consequently is, according to the
suggested definition, a metaphysical category.

More detailed substantiation of the above accepted
‘linguistic’ classification will be given later with the specific
examples. Of course, a variety of other languages and
‘dialects’, which cannot be overviewed here, are actually
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used, so the choice was inevitably influenced by the author’s
point of view. In particular, the alternative theories of
de Broglie, Bohm and others are not considered at all.
The same relates also to the different versions of the
statistical interpretation of the quantum theory (see review
Ref. [30]), to the general theory of quantum measurements (see
themonograph by Braginsky and Khalili [31]), and to the Cp-
language of Bell’s dichotomic classical observables [20] (see
also Refs [7, 8, 25]).

3. General description of optical experiments

An experimental set up usually consists of three main parts:
a light source, an optical channel, and a detecting device.
Thus the theory should describe the properties of light
emitted by the source, changing of those properties in the
course of light propagation through a linear optical
channel, and connection of the properties (changed) of
light with the detecting device readings.

According to the above discussion, it is convenient to
consider the formal quantum description (Q-language)
consisting of three main stages: (1) choice (or calcula-
tion) of the required initial state of the field at the
optical channel input, (2) calculation of the field evolution
in the optical channel, and (3) choice of the operators for
the observables corresponding to the experimental measur-
ing procedure. [Sometimes the field evolution is excluded
with the help of a spectral expansion over the eigenfunc-
tions of the optical channel (see Ref. [24]). However, the
last approach is less universal and visual.] In this connec-
tion, consider the well-known quantum trichotomy of the
Qc-language including a classical device (preparation of the
initial state of a quantum object), the object itself (the
dynamics of which is governed by the Schrodinger or
Heisenberg equations), and a classical measuring device.

A description of these three stages is presented below in
different languages.

3.1 Initial field state

Q. Since it is not to be involved in calculations, let us
assume that the initial field state is known . This state can
be either mixed or pure. The latter occurs in two cases:
(1) when the motion of charges in the source are
describable in the framework of a classical consistent
theory (‘semi-quantum’ emission theory), as is done, for
example, in the phenomenological theory of parametric
scattering [32]; and (2) when the wave function of the
system ‘source + field’ are factorable.

The state vector or density matrix of the field carries the
information which is not required for description of most
quantum-optics experiments, where usually it is sufficient to
know only the intensity correlation function of the first and
second orders. (A rare exception is an interesting experi-
ment [33], where the field density matrix was reconstructed
from the photon statistics.) In many cases the observable
effects are specified by one number: g = (a™a*)/N ?. Where
(.y=Wl...|¥), N=(n) = (a"a), n=a"a is the Q-pho-
ton number operator, and a(a") is the operator of Q-
photon annihilation (creation) for the individual field mode.
Number g is called the photon bunching parameter or a
fourth normalized moment.

Number g is simply connected to the other frequently
used parameters describing the photon number fluctuations,

the dispersion ¢ = (n* —N?), and the Fano factor
® =d’/N:
o —N_ &—1

)—1:—_—
8 N2 N

@)
At g>1 the term photon bunching (the Brown-—Twiss
effect) is accepted; at g < 1 the term antibunching is used.
In respect of the directly observed photon counts the terms
superpoissonian statistics and subpoissonian statistics at
® > 1 and @ <1 are used, respectively.

The correlation of the field intensities in the modes A
and B can be specified by the moment G,z = (a"ab*h).
This moment being normalized by the average photon
numbers gives the parameter gop = Gop/N4Np (which is
often called a second order coherence degree [34, 35]), where
N, = (a*a), Ny = (b"b). It is convenient also to introduce
the correlation coefficient normalized, as is accepted, by the
dispersion:

GAB _NANB
0,0p

K =

_ Gap —NyNp
(Gas + Ny _N/%)]/Q(GBB + Np _Né)]/z

@

In the experiments under consideration sources of three
main types corresponding in the quantum theory to three
main types of the initial state for one mode of the field are
normally used.

1. The chaotic (thermal or Gaussian) state is described by
the equilibrium density matrix corresponding to some
effective (brightness) temperature. In this case g = 2.

2. The coherent state |z) [where z = A exp(ip) is the
classical parameter of the state] in the Fock base vectors |z)
is of the form [34, 35],

[e ¢}
NEDIADE ©)
n=0
Here ¢, = (z"/vn!)exp(—|z|*/2). Thus, the Q-photon
number is indefinite and its statistics corresponds to the
Poissonian distribution with ((a")*a") = (z*)*z" and
g=1

In the case of an ideal one-mode laser beam it is possible
to consider parameter ¢(¢) as a classical stochastic function
of time with a homogeneous distribution and some definite
coherence scale t.o, ~ 1/Aw.op,. In this approach vector |z)
is related to the individual mode with a fixed frequency, but
the field state due to the classical stochasticity becomes
mixed and describes the radiation with the final spectral
width Awy,.

3. The squeezed vacuum |F) state describes the quantum
noises of a parametric amplifier-converter. Here F is the
increment of the parametric gain proportional to the
amplitude of laser pumping. In fact, the field state at
the amplifier output is also mixed because there is a
random classical parameter, the phase of the pumping
field ¢, (2).

If |[F| < 1 this state describes two-photon light, emitted
by the parametric amplifier (effect of parametric scatte ring),
and

|F) = [y,) = [vac) + ) Fu af ajf [vac)

:|vac>+ZFk1|]>k|]>l' “)
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Here function Fjy, is the probability amplitude of finding
one photon in both k and I/ modes. Its Fourier transform
describes in C-language a two-photon wave packet depend-
ing on two points in time—space.

In the two-mode approximation,

V) = vac) + Fa'btlvac) = vac) + Fl1), (1) . (9)

where operators a, b and indices A, B relate to the signal
and idle modes with the frequencies connected by the
relation w, + wp = ®y (wg is the pumping frequency). In
the nondegenerate case modes A and B differ in at least one
of the parameters: frequency, wavevector direction,
polarization type.

The results of two-detector experiments are reducible in
Q-language to the measuring of parameter g4z for the
output light. The high visibility of intensity interference,
provided two-photon light is used [1-6], proves that
inequality g4z >1 [36]. In a typical experiment
gap ~ 10%, which leads to the negligible low influence of
random coincidences. A degenerate parametric amplifier at
the low amplification level is described by the state with
g> 1.

In the past, the two-quantum transitions in atomic
beams were used as the sources of two-photon
light [1, 2], whereas now the more convenient parametric
frequency downconverters [3—6] are used. Note that the
phenomenological descriptions of both types of transfor-
mers have much in common [37, 38].

At large pumping amplitudes the components with large
(even) numbers of Q-photons (4, 6, 8, ...) are visible and it
is possible to observe (with the help of a homodyne
detector) the squeezing effect (in the degenerate case it is
decrease in dispersion of one of the quadratic components
at the expense of an increase in the dispersion of the second
component [39]).

For the nondegenerate two-mode parametric amplifiers
at any F [28],

N, = Nz = N =sinh’F,
gap =1 +coth’F=2+4+N"",

8aa =88 =2,

K=1. ()

Therefore the numbers of the signal and idle photons are
completely correlated, although the statistics of each ‘half’
of the parametric scattering field from either the signal or
the idle mode (they can be separated with the help of
frequency, polarization, or angular filters) is a chaotic one.
These circumstances were evidently not taken into account
in the paper devoted to investigations of the M-photon
properties [18].

An unusual peculiarity of the state |F) is the nonzero
nonstationary moment (also called anomalous). If the
operators’ temporal dependence is taken into account it
takes the form

M = (ab) = [N(N + 1)]'* exp(—iwgt — ig,)
= 0.5sinh(2F) exp(—iwot — igy) . (7

To study a classical analog of the squeezed vacuum state
it is useful to consider a generalization of the state |F)
obtained by the action at the parametric amplifier —
converter input of an additional chaotic radiation with
an average number of Q-photons per mode N, (Fig. 2).
With the help of the parameter N, this state enables one to
trace the continuous transition of the essentially quantum

bo a
P
ao b

Figure 2. Scheme for the squeezed vacuum and squeezed classical light
preparation. The classical pumping field P excites the nonlinear crystal
(hatched) which emits the signal (a) and the idle (b) field. The crystal is
also subjected to the action of the initial fields ay, and by. At
ay = by =0 a spontancous emission is observed and at ay = by # 0 the
induced radiation is added. If Ny = (afay) = (biby) > 1/2, the
classical squeezed light is emitted by the crystal.

light to classical light [28]. At Ny < 1/2 it is the squeezed
vacuum. With Ny > 1/2 it is the state with a close classical
analog, the so-called classically squeezed light [13, 28, 40,
41]. In this case instead of Eqns (6), (7) one gets [28]

N, =Np =N = Nycosh(2F) ,
Guy =Gpp =2N? :N§[1 + cosh(4F)] ,
M = Ngysinh(2F), Gz =N?+M? = N§ cosh(4F) ,

N 2
gap = 1 +tanh?(2F) =2 — (ﬁ’) . )

Let us, apart from three relatively easily realizable
states, examine two ‘exotic’ pure states.

4. The stationary one-photon state of a single mode
[1), = a; [vac) and the quasi-stationary multimode super-
position of these states are very popular in theoretical
works. The latter has the following form,

W, (1) = ZFk exp(—iwgt) [1);
3
Sl .
k

and is called a one-photon wave packet. Only this state of a
rather specific form is the sole element of the Q-language
corresponding to the M-photon.

Sometimes Fj is interpreted as a wave function of the
photon in the momentum representation. (Let us emphasize
that Eqn (9) formally is the wave function of the whole
field, not of a separate photon.) The Fourier transform of
function F; gives a visual space—time pattern of the
photon.

In the case of the one-photon state of the single mode
N=g=1and @ =0=0, i.c. there is maximum possible
antibunching and no fluctuations.

It is essential for our discussion that actual preparation
of the optical field in the state |,) is very difficult, even
with the help of modern laser techniques. It is very likely
that the one-photon states of the form of Eqn (9) were
actually not realized up to now in any of the numerous
demonstration experiments aimed at studying properties of
a single M-photon. Thus, in the work described in Ref. [18]
only the signal radiation of a parametric downconverter
(described according to Eqn (6) in terms of chaotic
statistics) was used. However, in the work described in
Ref. [16], the two-photon states and, respectively, two-
detector coincidence circuits were used (although, if one

Wy = ck N (9)



Quantum optics: quantum, classical, and metaphysical aspects

1105

of the detectors is considered as being a preparing
component of the experimental set up it is formally
possible to speak about a one-photon state).

Note a curious paradox: it is easier to prepare a two-
photon state such as that described by Eqn (6) than a one-
photon state in the form of Eqn (9). The reason is the
following: preparation of an atom in a stationary excited
state is connected with great difficulties and in the general
case its initial state is nonstationary. After some time the
atom returns to the ground state and the field to a
nonstationary state with the indefinite Q-photon number
which can be schematically presented in the form analogous
to Eqn (3).

If there are many atoms or molecules being indepen-
dently excited (for example, in the gas discharge), the
incoherent mixture of states of the form of Eqn (3) should
be chosen. (Some paradoxes related to the many-photon
emission of the heated matter were discussed in Ref. [32].)

5. It is instructive to examine one more specific state of
the field having, at first glance, paradoxical properties. In
Qc-language terms it has two peculiarities: it is a state with
the definite energy 7w, but with an undetermined Q-photon
number n. Besides, in this state the cube of the field (E°) is
not zero [32, 42].

Assume that in the initial moment a noncentrosym-
metric molecule was in the excited state 1 (Fig. 3) and the
field was in the vacuum state. At t — oo the molecule goes
over to the ground state 3, giving the energy fiwc to the
field. It is essential that the transition to the final state can
proceed along two paths: the direct one 1 =3 with the
creation of one Q-photon and the cascade 1=2=3,
creating two Q-photons fim, and 7iwg with the frequencies
being related by w, + w0z = .

Figure 3. One-photon and two-photon quantum transitions from the
excited state 1 to the ground state 3 can be simultancously allowed in a
noncentrosymmetrical molecule (crystal). As a result the field with
definite energy hws; = hwe but indefinite photon number is formed.
Besides, the average cube of the field (E3) is nonzero.

The final state of the field can be schematically
presented in the form,

V) = a|0),[0)51) ¢ exp(—iewct)

+BI1)411)510)¢ exp(—ieos t — ieop) . (10)
where «, f are the coefficients depending on the molecular
properties (see for more details Ref. [32]). It is easy to
prove that this state is not the eigenstate for the operators
of the photon number, ata, bTb, ¢tc and the sum of these
operators.

One finds from Eqn (10) (afaj}ac) = af*, which leads to
the nonzero third moment at the point r:

(E3) o2 Re{(a}aéac) exp [i(kc —k, — kB)r]} .

This effect can be observed with the aid of the inverted
transition in a molecule detector [32]. It can be easily
modeled in C-language terms. The cubic power of the field
consisting of the superposition of three photon-packets has
the stationary component:

E*  cos(wat + @) cos(wgt + @) cos(wct + @)

1
= 7 c08(04 + @5 — @) +(1) .

However, this model contradicts the first peculiarity: the
packet numbers should be equal to one or two but not to
three.

A study of the pure state given by Eqn (10) shows that
the assertions such as ‘light consists of photons’, which
assume a definite number n of these constituent elements of
the light make no sense in the Q-language because the
measured photon number n in this state in some experi-
ments is one, but in some others, it is two. In the Qc-
language this result is interpreted in the following way: a
priori the field has no definite n. It is also evidently
impossible to use the C- and C*-languages, i.c. to present
the field in this state as a classical stochastic field with three
independent frequency components.

Similar arguments are applicable also to the more
general nonstationary states of the type given by Eqn (3).

C. In the semiclassical theory a photon is accepted as a
wave packet, i.e. the quasi-monochromatic and quasi-plane
classical field E(r,t) with energy fhw, where @ is some
central frequency of the radiation spectrum ( as a rule, a
monochromatic field is under consideration). The spectrum
of this field is determined by function Fj from Eqn (9). Let
us emphasize that we consider the C-language as a useful
palliative, which gives only a qualitative description of the
limited range of the optical effects.

It is accepted that a single packet with the exponential
envelope curve with the time constant 1/2A, where A is the
Einstein coefficient, is emitted in a spontaneous one-
quantum transition in an atom (molecule, crystal). In
the general case the field is formed by a superposition
of several such packets with different parameters, including
time localization. Statistically independent C-photons are
emitted in spontaneous transitions, whereas in the case of
induced emission the C-photons are bunched with phase
conservation.

In the case of the stationary stochastic field the
longitudinal and transverse sizes of the packets are
described by some distribution and their average values
are determined by the corresponding coherence scales. The
C-photon number in the coherent volume corresponds to an
important notion of the Q-language, to the operator of the
Q-photon number n; = aff a; in mode k. In C-theory, ny is a
random discrete quantity with some distribution P(ny).
Inequality {n;) = N, > 1 is often accepted as a condition of
applicability of the classical theory. In the C-language this
corresponds to a large number of packets in an individual
coherent volume.

A packet with the doubled energy 27w corresponds to
the two-photon one-mode Q-state. Two mutually coherent
packets with average energies fiw, and fiw, can be put into
the correspondence to the nondegenerate two-photon two-
mode state. (For more details on the two-photon wave
packets notion see Refs [23, 37, 43].)
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The semiclassical theory gives plausible results for many
elementary processes: spontaneous and induced emission,
photoelectric effect, etc. [44]. However, it is unlikely now
that anybody accepts it seriously. Here we consider the
semiclassical theory as no more than a convenient and
helpful language for the qualitative and graphic presenta-
tion of some phenomena, remembering at the same time
that it is not applicable to the effects described in the Q-
language by the states given by Eqns (5) and (10).

C*. The possible ‘states’ of the stationary radiation field in
classical stochastic optics are determined by the multi-
dimensional nonnegative distribution function P(a) =
P(ai,ay,a3,...) which allows us to calculate various
moments ({a;)), ({ara;)), {({arap)), ... (if, of course, they
do exist) and the averaged values from other functions of
the state P(a),

(f@) = JJ $ay da ... P(a)f(a) (11

We introduce here the notation ({...)) for the operation of
the classical averaging of the observables.

Commutative algebra is used in the C*-language, so
there is no difference between the ordered and nonordered
moments (contrary to the Q-language). This results in the
different forms of some mathematical inequalities for the
moments in the Q and C*-theories. For example, in the
quantum theory G = (a?d?) = (n?) =N (here N = (n)),
and provided that the dispersion is positively determined
(6" ={(n—N)*) = (n*) —=N? > 0), one gets the following

inequality:
G=N2-N. (12)
For the normalized moment one gets g = 1 — N7! so g can

be less than unity.
At the same time, in the C*-theory the second term in
Eqn (12) is absent G,y = ((@*2d?)) = ((n?)), so
() o

8class = N2 =1. (]3)

Thus, if the fluctuations are absent (¢ =0), g =1 in the
classical theory and g =1 —N""in the quantum theory. In
this connection inequality g < 1 is accepted as one of the
criteria of a one-mode light field being nonclassical. The
states, for which this inequality is satisfied, are called
nonclassical. In this case, the term effect of photon
antibunching is also used.

Let us now consider two modes. The second moments
for the intensities should satisfy the Cauchy—Schwartz and
Cauchy inequalities:

2y )" < %((ni) +(13)) -

Proceed to the normally ordered moments:
() =Gaa + Ny, (ng)=Gps+Np .

Here, the second terms, which are absent in the C*-theory,
can be interpreted as a revelation of the quantum (photons
or shot) noise in the energy measurements. Now Eqn (14)
takes the form,

1/2
Gup < [(Gaa +Na)(Ggg + Np)] /

(14)

GAB = <”A nt;) <

1
< E(GAA + Ny + Ggp +Ng) . (15)

In the symmetric case G4y = Gpg = G, Ny =Np =N so
Gy SG+N, (16)

or for the normalized moments gy < g +N7". At the
same time there is no quantum noise in the C*-theory and
the inequality ((n4np)) < ((n3)) coincides with the inequal-
lt)’ (GAB)cldss = (GAA )cldss

Let the A and B modes be in a chaotic state: G = 2N 2,
g =2. Then in the frame of the Q-theory one gets the
restriction

g S2+N7'. (17)

In the case of the squeezed vacuum state, Eqn (17) is
converted into an equality [see Eqn (6)]. Moreover, in
typical experiments gup ~ N~ ~ 107, ie. the classical
inequality ((n4nz))/N* <2 is broken by eight orders of
magnitude!

According to Eqn (7) in the case of the squeezed state
there is a nonstationary moment (ab). It is not difficult to
obtain the following form of the Cauchy—Schwartz
inequality for operators a, b:

| ab)| (ata){bbty =N, (Ng+1) . (18)

The sign of equality is reached here in the case of the

squeezed vacuum. Thus [(ab)|*/NoNy =gsz —1 and

N4 = Npg, so Eqn (17) again follows from Eqn (18).
Inequality (1 8) in the C-theory takes the following form:

|((ab))[* < ({a”a)){(bb")) (19)

According to Eqn (8) the classically squeezed light satisfies
this restriction, and the sign of equality is reached at high
gain. For typical conditions Ny, =Nz =N = 10%  the
difference of the right-hand sides of Eqn (18) and
Eqn (19) normalized by N? reaches 10%.

Therefore, for some field states the normal-ordered
moments = (a*a®) = (:n*:) and usual moments
(aTaata) = ( Y =G+ N differ essentially, which leads
to a contradiction with the C-description, for which there
is no mentioned difference. Besides, in the case of the
squeezed vacuum state, owing to the difference of ata and

* the classical inequality (19) is violated.

:NANB .

3.2 Evolution of the field in an optical channel

The evolution of the field can be conveniently described in
the spectral representation with the help of expansion over
the system of orthogonal functions—for example, the
spherical ones or the plane waves:

Er ) =ED @) +E (1),
ED (1) = Z i (r) ay exp(—iwygt) ,
k
EC () =" up(r) g exp(ioyt) = [ED(r.0)]" . (20)

k

Here E®) and EC) are the positive- and negative-
frequency components of the field. For the sake of
simplicity we take into account only one type of
polarization and assume that there are no field sources
in the space region under consideration. In the case of
expansion over the plane waves,

drthao, \/2
w(r) = 1( nL;Dk) exp (ikr) ,

where @, = ck; L is the periodicity length.

1)
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In the classical theory ¢, determines the amplitude (in

dimensionless units) and the phase of the plane wave at the
point (r =0, ¢ =0), and in the quantum theory g is the
operator of the photon annihilation in the Schrodinger
representation. Let us pay attention to the important,
although widely unknown circumstance. In free space
the Maxwell equations for the classical fields and the
Heisenberg equations for the field operators have an
identical form; therefore the classical and quantum Green
functions (propagators) coincide.
Qu. The influence of a linear optical system (beamsplitters,
lenses etc.) on the characteristics of light is conveniently
described by the Heisenberg representation with the help of
the phenomenological scattering matrix of the system
connecting the plane wave amplitudes at the input and
output of an optical channel [32, 42]:

!
a = E Dyaqy ,
T

where the prime marks the transformed quantities. In
vector notations a’ =Da. If the parametric frequency
converters are excluded, then Dy ~ 8(w, — ;). (For a
more general case see Ref. [29].) If there is no dissipation
matrix, D is unitary and uniquely connected to the
evolution operator [21, 45]. Thus, all possible K-mode
optical systems, neglecting the losses, realize a group of the
unitary matrices U(K).

It is essential that the linear transformations (22)
describing the functioning of the optical system are of
the same form in the classical and quantum theories (if in
the latter the Heisenberg presentation is used), and so the
main parts of our formulae are applicable to both theories if
the corresponding redefinition of the symbols is done.
Actually matrix D is the phenomenological classical Green
function in the spectral representation.

We shall be mainly interested in the mixing of two
transverse modes (beams) of amplitudes A and B by means
of the beamsplitter without any dissipation, the Mach—
Zehnder interferometers, and so on. (The same formalism
describes transformation of the polarization in an individ-
ual beam; see Ref. [9].) It is assumed that the radius of each
beam is much smaller than the coherence radius. Besides,
for the sake of simplicity we shall examine only one
longitudinal mode (spectral component) in each beam.
This one-mode approximation is justified if the coherence
time of the radiation 7.y ~ 1/A®w (the C-photon length
divided by c¢) is much larger than the typical detection time
Tdct~

Let @ and b be the photon creation operators or the
classical amplitudes of the fields in two transverse modes. If
the common phase factor is not taken into account, the
beamsplitter performs the transformation,

(22)

a'=ta+rb, bV =—ra+tb.

(23)

Here ¢ and r are the phenomenological amplitude
transmission and reflection coefficients for the beamsplit-
ter or for the whole optical channel satisfying, in the
absence of losses, relation |t|* 4+ |r|* =T + R = 1. Thus the
scattering matrix of the two-mode optical system may be
presented in the form,

24

Matrix D has the property of unitarity, i.e.
DTD =DD™ =1, and belongs to the SU(2) group.

With the help of Eqn (23) it is possible to express the
output (transformed) moments through the input ones
determined by the properties of the light source. If the
input beams are mutually incoherent in the first order
({a*h) = 0), then the output intensities have the form,

N{=TN4+RNz, Nsz=RN,+TN;,. (25)

From T+ R =1 it follows that N; + Nj =N, + N.

Let relations (a*?b?) = (a™ab) = (b**ba) = 0 be satis-
fied at the input. Then Eqn (23) leads to the following
relations:

Gly =T Gyu + R*Gpp + 4TRG 43 ,
Gjs = R*Guy + T>Gyy +4TRG 4 ,
Gis = TR (Gas + Gy) + (T —R)*Gyp (26)

where Guu = (a™d%), Ggg = (b0, Gup = (a*bTba). If
T +R =1 these transformations possess the property of
invariance (‘the law of correlations and fluctuations sum
conservation’):

Gas + Gpp +2G4p = Gas + G +2Gyp 27

Let the input moments of the A and B beams be equal
(Ny =Np =N, G4y =G =G). In this case, the output
moments are also symmetric and from Eqns (26) one finds
thg: following relations between the moments normalized by
N~

gl:(l_x)g+2x£’ABs g,{\B:xg‘f'(]_zx)gAB,

g + g =8+ 8up - (28)

Here the following notations are used
x =2TR =2T(1 —T) = 0,5sin’(2q) ,

1 —2x =cos’(2a), T =cos’a, R =sin"a.

(In the case of the polarization-dependent beamsplitter, a is
the angle of the prism rotation, and in the case of the
Mach —Zehnder interferometer, it is one half of the optical
path difference; see Section 4.)

The fluctuation transformations into (anti)correlation
and back production by the beamsplitter are described by
the relations (28). According to Eqn (28) the increase
(decrease) of the output intensity fluctuations due to the
change of the beamsplitter parameters (for the unchanged
statistics of the incident light) is accompanied by the
decrease (increase) of the correlations between the output
intensities: Ogjz/0x = —0g'/0x.

Actually, by the term ‘beamsplitter’ one can designate
any four-pole described by a SU(2) matrix with the first row
elements t, r and mixing two modes (distinguished by the
polarization or the propagation direction)—the Nicol
prism, the Mach—Zehnder interferometer etc.—or the
succession of elements of this kind described by the
product of the corresponding matrices. If parameters ¢, r
are subjected to dispersion the given relationships are valid
in the spectral representation only.

The fluctuations and correlations can also be charac-
terized by the dispersion 0,24 =Gyp + Ny —N,f, and the
correlation coefficient K normalized by the dispersion [see
Eqn (2)]. For the symmetric excitation,

2 2 2

o
—0_2,8 » 8ap =K

=t 1—— 41
vty ERER

(29)

K:(A’AB*I)
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so from Eqn (28) one gets
0" _1+K

0.2_1+KI'

(30)

Hence, it again follows that the correlation increase at the
output is accompanied by the fluctuation decrease, and vice
versa.

Exactly the same relationships follow from the classical
theory. Thus, the quantum specific by no way reveals itself
in the course of the field propagation through an optical
channel. It can reveal itself only in the peculiarities of the
input linear scheme and in the detection process.

Transformations (26) describe a number of optical
effects observed with the help of the parametric sources
of two- photon light and which are called photon anti-
correlations, two-photon interference, and so on (see below).
Actually, however, these effects have no connection with
the M-photon properties but reflect the statistics of the used
light source and the properties of the transformation (26),
which in their turn follow from the transformations of the
SU(2)-type [Eqn (23)], common to the Q- and C*-lan-
guages.

The inverse to the transformations given by Eqn (22)
determine the input moments through output ones, i.e. give
a solution of the inverse problem —a reconstruction of the
incident light properties from the detected data. The
pragmatic value of such experiments lies in this very
possibility. Moreover, these experiments can be used for
measuring the optical channel parameters: dispersion,
group-delay [4, 36], detector efficiency [46].

Let us now examine the nonunitary transformations [37,
45]. Let the input mode b not be excited. In the classical
theory it means that

! /
b=0, a' =ta, b =-ra,

@31

and in the quantum theory it means that the initial state is
of the form |¢) = |¢),|vac),. Transformations (31) are
nonunitary. They break the commutation relations. For
example, now [a’, "] is equal to T instead of unity.
However, they can be used in the preliminary normally
ordered expressions. This approach simplifies significantly
the computations and gives the same results as the
computations with the complete expressions (23), which
take into account the initial state |{), |[vac), only at the end
of the computations.

Frequency or space filtration are also nonunitary
operations. Thus, any detector ‘sees’ a limited number of
modes which can be taken into account by the quantum
efficiency factor n(k). The screens and diaphragms sur-
rounding the detector restrict its emission diagram 5(9, @),
and the photocathode does the same with its frequency
characteristics n(w).

Moreover, the optical channel usually includes addi-
tional frequency filters characterized by some amplitude
characteristics D(w). All these factors can be taken into
account in the complete scattering matrix D of the whole
system including the detectors, although this transforms the
matrix into a nonunitary one, i.e. nonconserving the
commutation relations. Similar to the case discussed above
of two modes mixing, this does not prevent this matrix from
being used in calculations with preliminary-ordered oper-
ator functions. As a result, the classical and quantum
descriptions retain similar forms even if the dissipation is
taken into account. Such a simple description of the

nonunitary transformations is unlikely to be possible in
the Schrodinger representation.

An analogous formalism is also applicable to the case of
more complicated (multimode) optical schemes which may
contain resonators and linear parametric downconverters
[29]. With the help of the nonunitary scattering matrix the
functioning of a lens can also be described [47].

Let the effective detector cross-section be much less than
the coherence square of the incident radiation. Under this
condition the detector sees only one transverse mode with
the output amplitude,

At, 2) =T~ D(w) a(w) exp[—io(t —z/c)] . (32)

Here T is the periodicity interval which does not enter the
final expression; z is the coordinate of the observation
point along the beam axis. Note, that for D oc /@ the
operator A(tz) is proportional to the positive-frequency
term of the electric field operator E ™) () but for D = Vit
takes into account the quantum efficiency of the detector,
and the meaning of r(t) = AT(t)A(¢) is the photo electron
ﬂol\;\; per unit temporal interval [the dimension of A () is
s /7]

If the frequency transmission band of the filter is much
less than 1/Ty, (where Ty is the time constant of the
detector), it is possible to limit the consideration to only one
(central) longitudinal mode with the amplitude a(w,) = a.
In this case the field dynamics is lost; however, this is not of
principal interest because it is the same in both quantum
and classical theories. These considerations are used as a
basis for the applicability conditions of the frequently used
one-mode approximation (for each beam).

Qs. In the quantum theory there is an alternative
possibility for the field evolution description: the descrip-
tion in the Schrodinger representation (the classical analog
is the Fokker—Planck equations application) where the
optical system transforms not the operators @ and b but the
field state vector |y). For transition to this representation
let us express the initial state vector at the beamsplitter
input |§) as the result of action of some combination of
the creation and annihilation operators at the vacuum state
[¥) = fla™, b)vac).

The transformation inverse of Eqn (23) is described by
the Hermitian conjugated matrix D~' = D*:

a=ta —rb', b=ra +th'.

(33)

Substitution of the Hermitian conjugated expressions in

function f determines the field state vector at the
beamsplitter output:
W) =flta"™ — b, ra'" 4+ £b"")|vac) . (34)

In particular, if there is a vacuum state at the input of
beam B, the initial state vector can be presented in the form
[¥) = f(a®) |vac) = f(a™) |0), |0),, which gives at the out-
put W) =flta"" —r"b"") |0); |0)y.

Let one Q-photon be at the A-beam input, i.c.
flat) =a* =ta™ — ¥*b"*. Then
W) = (ta"" = r"b"") |0); [0);s

= 1]1); 10)5 — " [0 1) - (35)

According to the projection postulate, the probability
amplitudes for observing the photons in exit beams A and
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B are of the form (Y/|1)!, = t*, (y/|1)}; = —r. From here one
finds the probabilities themselves:

2
(WL =1 =T,

W) =P =R=1-T
Sometimes the transition amplitudes from the initial to

some final state are considered, which leads to the same
result:

W), = 4 (1), = 4 (1]a"" |vac)
Lfa™ + bt |vac) =1,
A1) = 4 (116" |vac)

(
=, (1| —ra* + th*|vac) = —r.

? (36)

(W)

(37

Let the input state now be a two-photon one with one
photon each in modes A and B:
) =a"b"|vac) = |1, 1), Im)y |n)g -

In this case f(x, y) = xy and according to Eqn (34) one gets

Im, n) = (38)

W) = (ta"™ — b)) (ra’"" + *b'")|vac)
=2, 00+ (T —R)|1, 1) =70, 2) . 39)
In particular, at 7 = R = 0.5 this gives
l¥) =0.5(]2, 0) — 0, 2)) . (40)

In the multimode case the transformed state vector can also
be expressed analogously with the aid of the phenomen-
ological scattering matrix of the channel [21].

The comparison of the presented relationships shows
that the Qu-language is more advantageous than the Qgs-
language in terms of the compactness, universality, and
closeness to the C*-language.

The description of field evolution in other languages will
be discussed later together with the examination of specific
effects.

3.3 Detection

Qu. The currently accepted ‘standard model’ of photon
detection (see Ref. [35]) evidently describes well all the
experimental observations. The dependencies of the output
counting rate for two or more detectors R, Ry, ... and the
coincidence counting rate for detector pairs R,p,... on the
different parameters of the source and the detecting devices
are, in fact, the main result of the modern demonstration
experiments of quantum optics. The corresponding
averages are obtained as a result of time averaging
(sometimes for hours) under the stationary macroscopic
conditions.

In order to compare with the theoretical averages over
the quantum ensemble (...) one needs to accept the ergodic
hypothesis, i.e. to assume that the source repeatedly
produces the field just in the same state. (This problem
has been poorly investigated in quantum optics.) The
counting rates are determined by the formulae,

Ry = <rA(t)> = <A+(t)A(t)> =nuNa Avy

RB:<r3(t)>:<B+(t)B(t)>:VIBNBAVB N (41)
where Av, p = Aw, /27 are the effective frequency bands
of the emission for the beams, and N, ; are the average
photon numbers in the central longitudinal modes. The

quantum efficiencies of the detectors #, and ny are
included in the definitions of operators A and B [see
Eqn (32)].

Let us examine an idealized case, where between the
characteristic times of detectors, coincidence circuit, and
field, there is the following relationship: Ty < Teoin < Teoh-
The anticoincedence counting rate can be presented in the
form of

Rap = Teoin <A+(I)A(t) B+(I)B(t)> = Racc 848 -

Here R, =T inRsRp corresponds to the ‘random’
coincidences observed for the independent beams A and
B, gap = gap(0), where

(42)

gap (2) = L ATOAQ B+ B+ 1)) (43)
is the normalized intensity correlation function for the A
and B beams.

Note that the notion of the correlation second-order
function gy (1), the Fourier transform of which determines
the spectrum of the intensity fluctuations, comes from the
Qpu-language. The same is true for the first-order correla-
tion function (A*(t)A (¢t +1)) determining the usual field
spectrum.

Thus, the parameter g,p determines the coincidence
counting rate normalized by the random counting rate.
Note that parameter g4z —1 is proportional to the
correlation coefficients of the Q-photon flows in two
beams [see Eqn (2)]. Note also that the opposite inequality
usually holds in the experiments: Ty > Tyer > Teon- In this
case one should change in Eqn (42) g.3 by
1+ (g4 — )Teon/Teoin- This quantity is usually close to
unity. An exception is the two-photon light for which

p—1=N"">1

In the general case the observed statistics of the photon
detector readings is expressed through the field correlation
function and, in principle, the inverse problem can also be
solved: reconstruction of the field state at the optical
channel output through the observed statistic. Thus, the
detectors can be considered as classical devices for the
observation of a quantum object —incident light. However,
this quantum object is connected by the classical laws to the
initial field at the optical channel input [see Eqn (26) for the
couplings of the moments], so the optical channel may be
regarded as a classical part of the detecting device. In this
approach various optical schemes can be used only for the
investigations of the statistical properties of light sources.

In some experiments with analog detectors, the fluctu-
ation spectrum of the detector photocurrent, which is
proportional to the cube of the Fourier transform of the
nonordered intensity correlation function, is measured:

(r(0)r(x)) =R &(z) + R g(1) , (44)
where r(t) =AT(t)A(t) and R = (r(t)) =yN Av is the
average photoelectron flow (N is the average photon
number in the central longitudinal mode, Av is the effective
spectral bandwidth),

4(6) = o3 (AT (04" () A D) A0)) 45)
is the normalized normally ordered autocorrelation func-
tion.

The first term in Eqn (44) describes the so-called shot,
or photon, noise. It is due to the noncommutivity of the
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field operators: [A(t), AT(t')] =~ &8(t —t'). The function
g(t) — 1 describes the so-called excessive noise, which is
absent in the case of the coherent state, but in the case of
the nonclassical field states it can be compensated by the
shot noise.

Note that on the right-hand side of Eqn (44) it is
possible to take into account nonunitary transforma-
tions, for example, the quantum efficiency (not unity) of
the photodetector A = 11]/2A. After this substitution the
operator r(t) describes the flow of photoelectrons, not of
photons.

Qc. The photocurrent fluctuations can be considered as a
revelation of the quantum fluctuations connected with the
field energy measurement. These fluctuations should be
absent in the case of the state with the definite energy, for
example, for the one-photon state (with g = 0). However,
the conventional field states have no definite energy, which
reveals itself as photocurrent fluctuations. The coherent
state (g = 1) gives the shot noise only, which is, therefore, a
characteristic quantum effect connected with the quantum
fluctuations of energy and having no classical analog in
stochastic optics (in the C*-language the field amplitude of
an ideal laser does not fluctuate). At the same time, the
excessive (above Poissonian) photocurrent noises in the
case, for example, of thermal radiation allow the use, for
their explanation, of a simple classical analogy: they are
caused by the thermal fluctuations of the field intensity.

As was mentioned above, the coincidence detection in
the case of two-photon light leads to a very high contrast
gap — 1, connected with the low probability of the random
coincidence. In C-language this can be explained visually by
the fact that for Ny = Ny < 1 the signal and idle packets,
belonging to the different pairs, rarely overlap.

M. In the case of the metaphysical approach the detecting
process plays a special role. The observed macroevent (the
appearance of a pulse at the detector output, or a silver
grain in the photoemulsion) is, in the M-language, accepted
as a proof of the a priori existence of the quantum of light
with definite but not yet completely studied properties,
which is somewhere (maybe emitted at a remote star), flies
through the interstellar space and the laboratory channel,
crossing simultaneously two screen slits or two inter-
ferometer shoulders, and again unites as a whole at the
moment of detection (do not confuse with the C-photon;
see below).

However, the Q-theory gives no grounds for this or
some other similar conclusion (see Section 2.5). It does not
allow a unique retrodiction on the basis of a single
observation, even with the a priori information on the
purity of the state, similar to that in vector algebra where
reconstruction of the vector based at its single projection is
impossible. Thus, the M-photon materializes (like a
phantom) only at the moment of its detection, to disappear
again at the same moment.

In the case of the n-photon field an appearance of the
pulse in one detector is accompanied by an even more
mysterious, superluminal process—M-reduction —i.e. by
the conversion of the field state into the (n — 1)-photon
state (do not confuse with the Q-reduction described for
n =2 in Ref. [23]).

C. In the semiclassical theory the probability of the
photocurrent pulse appearing at the detector output is
proportional to the square of the wave-packet envelope
describing the C-photon. This is why the pulse appears
most frequently at the moment when the envelope
maximum crosses the photocathode surface.

In the case of a coherent field state the photon packets
and, correspondingly, the photocurrent pulses are distrib-
uted in time according to the Poissonian distribution, and in
the case of a thermal radiation they are distributed
according to the geometrical Bose—Einstein distribution.
The periodic preparation of the one-photon state should
give rise to equal intervals between the packets and to more
uniform pulse distribution, i.e. to the sub-Poissonian
statistics.

The average pulse counting rate R = #N /Ty, i.e. 7N
determines the average number pulse during the coherence
time 7.,. At N €1 the intervals between the packets are
larger than the length of the packets themselves, i.e. packet
overlapping rarely occurs.

[f the subsequent amplifier has the time constant Ty,
much larger than the average interval between the pulses
1/R, then the pulses are smoothed, i.e. the detection
becomes an analog one. And in this case there are shot
noises plus (in the case g > 1) excessive photocurrent noises
in the amplifier band l/Tamp. If g < 1 the noises are below
the level determined by the Schottky formula for the
detector average current.

C". In the classical theory r(t) = A*(¢t) A(¢) multiplied by
the factor v7w in the summation [see Eqn (32)] has the
orientation of the light intensity in the beam which, for
example, can be measured by a calorimeter. If the
calorimeter inertia is sufficiently low then it is possible
to estimate the statistics of the field intensity from the
fluctuations of its readings. If, however, one takes into
account the discrete nature of the charge the shot noises,
according to the Schottky formula, should be added. These
noises are not connected with the noncommutativity of the
operators and cannot be suppressed at any field state.

[t is possible to investigate the correlation and inter-
ference of the intensities of two beams by means of two such
detectors. In this case a classical analog of the Brown-—
Twiss effect should be observed.

4. Amplitude interference

Two-beam interferometers may be divided into two classes:
polarization type and conventional type (like the Michelson
or Mach—Zehnder interferometers). Their phenomenologi-
cal descriptions are identical (see, e.g. Ref. [9]) and
therefore only the latter will be discussed here.

Let us briefly examine in the Q-language the conven-

tional interference of two modes using the example of the
Mach —Zehnder interferometer depicted schemati-cally in
Fig. 4.
Q. The interferometer scattering matrix is equal to the
product of three matrices, describing the input and output
mirrors and the difference of the optical passes
k(zy — zo) = 2o between the mirrors:

) ) D
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Figure 4. Schematic representation of the Mach—Zehnder interfero-
meter.

d= [ cos isino
isina cosa / °

Thus for the system as a whole, t = cosa, r = isin a, i.e. the
interferometer possesses the properties of a beamsplitter
with easily changeable (but frequency dependent) trans-
mission T = cos’a and reflection R = sin?a coefficients.
The signs in Eqn (46) are chosen so as to satisfy #(0) = 1.

(46)

Qu. Using the Heisenberg representation, one easily finds
with the help of Eqn (23) the output intensity of beam A:

Ni=(a"a"y ={(t*a* + r'b")(ta + rb))

= N, cos® a+ Ny sin® o — Im(a™b) sin(2ar) . 47)

Here N, = (Y|ataly), and Ny = (Y|bTb| ). If there exists a
vacuum state at the input of beam B, one gets the usual
result:

Ni=TN, =N, cos’a . (48)

Note that this expression describes the interference
independently of the initial field state which influences
the average intensity N, only.

Formula (47) and the analogous expressions for Nj and
(a'+b') give unique algebraic couplings between the input
and output field moments in the spectral representation.
The Fourier transforms of these couplings determine the
relationships between the correlation functions. This
procedure is easily generalizable for the higher moments
[9]. The corresponding results can be symbolically presented
in the form

Grlnn = D*’nDnGrﬂﬂ . (49)
It should be emphasized that these phenomenological
relationships are of the classical type.

Qs. Let us now use the Schrodinger representation.
According to Eqn (34) one has

) =fla"" cosa+ib'" sina, ia'" sino+ b'" cosa] [vac) .
(50)

This expression should lead to the result equivalent to
Eqn (47) at the arbitrary initial state [21]. However, for the
sake of simplicity, we will assume that it is the one-photon
state: |[¢) =1, 0). Then f=da" =a"t cosa+ib""sina. In
the result

)" = cosa|l, O) +isinal0, 1), S

and thus
Ni=|ataly’) =T =cos’a,

which is in agreement with Eqn (48).

The examination performed above shows that in the
Heisenberg representation the interference is described in
exactly the same manner as in classical optics: by the
superposition of two fields with the amplitudes a and b.
The Schrodinger representation camouflages this analogy,
therefore the effect is frequently interpreted as the result of
the quantum interference of two transition amplitudes from
the initial and the final state [see Eqn (31)] in two
indistinguishable ways.

(52)

M. The last term is related to the M-language because its
meaning is quite mysterious. In the translation into the Q-
language it means that there are no additional macroscopic
parts in the interferometer, which break the coherence and
change the evolution (calculated above) of the field. For
example, it is possible to insert in one of the interferometer
shoulders a beamsplitter which directs part of the beam to
an additional detector. Similar multidetector schemes can
be easily described in the Qu-language (see Sections 5 and
6). The other languages add nothing to the calculations
which predict all statistic characteristics of the photo-
counts, i.e. the average pulse counting rates and their
correlation or anticorrelation.

In the explanation of interference in the M-language
photon indistinguishability is frequently discussed. Here, in
fact, the effects analogous to the classical ones and
connected with the notion coherence of the fields are
discussed. Analogously, the photon distinguishability in
the translation from the ‘newspeak’ reduces to incoher-
ence. Another popular new term, quantum eraser, is used in
quantum optics at the reversible breaking and consequent
restoration of the field coherence in two modes. For
observations of the attenuated total internal reflection
the M-term, photon tunneling, is used.

5. Correlation and anticorrelation of
photocounts

Let us proceed to the demonstration experiments with a
beamsplitter and a two-detector coincidence circuit.

5.1 Brown - Twiss effect

Let us first consider the case when, in the scheme presented
in Fig. 5, mode B is not excited. The counting rate R 4 (1)
is detected as the function of the difference ct of optical
passes between the beamsplitter and the photodetector.
When 7 » 7, the coincidence counting rate becomes
independent of the delay: R,p(00) =const =R, =
R4R3T in (Fig. 6), where T, is the coincidence circuit
‘gap’. The events in channels A and B are independent and
there are ‘random’ coincidences only. When 1 < 7., the
extreme value of R,3(0) is usually observed.

Qu. According to Eqn (42 ) Ry5(0) = gigRacc. With the
help of Eqn (26) at Gy =Gz =0 one finds
Gap =TR Gy, and gf/w = 8aA -

Thus, a beamsplitter, two detectors, and a coincidence
circuit enable one to measure parameter g4, characterizing
the bunching or antibunching of intensities in the incident
light:
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Figure 5. Schematic representation of the Brown—Twiss experiment.
The input beam of the amplitude a is incident at the beamsplitter and
is divided into two mutually coherent beams. The intensity correlation
in the output beams, as a function of the relative delay time 7, is
measured by two detectors A and B in the coincidence circuit.

T/Tcoh

Figure 6. The normalized intensity correlation g versus the relative
delay t for the different states of incident light: one-photon (a),
coherent (b), thermal (c), two-photon (d).

op =gy = Ran(©)
AA AB Racc .

The relationship gip = g44 means that the beamsplitter
transforms the input intensity fluctuations into the output
intensity correlations. Fig. 6 schematically depicts the
Brown —Twiss effect for the one-photon (a), coherent (b)
and two-photon light.

The exceeding of g4, by unity in the case of thermal
radiation was first discovered by Brown and Twiss about
forty years ago [48, 49]. This experiment is considered as
one of the first in quantum optics. The discovered effect
caused a lively discussion at that time; however, in the Q-
and C*-languages it gives only the evidence of ‘excessive’
fluctuations in the used light source. More astonishing from
the classical point of view is the photon antibunching effect
(gaa < 1) discovered in 1977 in the light of the resonant
fluorescence of individual atoms [50].

Qs. In the Schrodinger representation we shall consider
only the case (a) presented in Fig. 6. For the one-photon
state of the input mode A the output state vector,
according to Eqn (35), is of the form

W) = (ta"" = r"b") 0) [0}y = t[1)} [0)5 — r[0); 1) (53)

Here the Q-photon belongs to the two output modes. As a
result the coincidence probability is equal to zero:
| 1), [1Y5> =0, ie. the effect of complete anticorrela-
tion of photocounts takes place (Fig. 6a). This also follows
directly from gy, = (1|la™d?|1) =0 .

Qc. The Copenhagen language does not allow us to pose
‘inappropriate’ questions. The photocount statistics,

according to the measurement postulate and the standard
photodetection model, is determined by the statistics of the
field incident at detectors, and in the Heisenberg
representation the problem is completely resolved by the
phenomenological couplings [Eqn (26)] between the input
and output moments and the statistics of the incident light.

M. The Brown-Twiss effect at gip > 1 is explained
sometimes by the M-photon tendency to bunching. The
opposite inequality probably corresponds to antibunching,
i.e. to the M-photon repulsion, respectively. Such spec-
ulative conclusions (explanation of the statistics property
of a separate quantum ensemble by the individual
properties of its constituent hypothetical particles) are
characteristic for metaphysics.

In the experiments [51] the output intensity correlation
was observed in the course of modulation of the beams-
plitter transmissivity by the noise radio-frequency signal.
The results of the experiment were interpreted as a tendency
of the M-photon to obey sometimes the types of statistics
intermediate between the Bose and Fermi statistics. In the
Q- and C-languages similar experiments with modulated
optical parameters are described by the couplings
[Eqn (26)], where T and R are the functions of time.

C. If two-photon packets belong to the common coherence
volume it seems natural that the beamsplitter is able to
divide and direct them to the different detectors so that the
detection is almost simultaneous. (Sometimes the appear-
ance of such ‘tight pairs’ of C-photons in the thermal
radiation is explained by the induced emission in the light
source.) And vice versa, if the photons arrive at the
beamsplitter one by one at equal temporal intervals,
there will be no coincidences. In the experiments [50] the
latter was caused by the finite time (order of the reciprocal
Rabi frequency) of the consequent atom excitation for the
resonant fluorescence.

C”. In the first Brown — Twiss experiments analog detectors
were actually used and the correlation of the two current
noises was detected. A simple classical interpretation of this
effect is possible: the input intensity fluctuation at the
beamsplitter should lead to the output intensity correla-
tions and, correspondingly, to the photocurrent
correlation.

5.2 Detection of anticorrelations

Let us now consider a different detection scheme, which is,
evidently, close to the one used in Ref. [18]. In fact, this is
again the problem of the count anticorrelation in the
output beams (Fig. 6a), although for rather different
electronic pro-cessing of the output pulses. Let us be
interested not in the coincidences but in their absence, i.c.
in the anticoincidences.

Qu. The probability of the pulse to be detected by detector
A, depicted in Fig. 5, during some time As much larger
than the pulse duration is, according to Eqn (41), equal to
Py(1)=R; At =n,N4s AvAt (the events connected with
two or more pulses in a single detector are not taken into
consideration). This probability is, evidently, equal to the
sum of mutual probabilities, taking into account the
alternative events: appearance or absence of the pulse in
detector B during the same interval, i.e.
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Py(1)=Pag(1, 1)+ Pap(1, 0) .

The coincidence probability here is of a familiar form [see
Eqn (42)]:

PAB(la ]) =Rap At IgngRzgRt/f(At)z :Hf'w PA(])PB(I) :
(55)

From Eqns (54) and (55) one finds the sought-for
anticorrelation probability P,z(1, 0), normalized by the
probability of the count in detector A:

Pyp(1, 0) -1 7PAB(]» 1)
PA(1) Pa(1)
(we took into account the equality of the normalized input
and output moments, gig = ga4)-

Thus, for a sufficiently low counting rate in the B
channel (R < 1/(gaa At) the anticorrelations are observed:
the pulses in the A channel are not accompanied by the
pulses in the B channel. This affirmation is true for any
incident light state which influences the bunching parameter
gaa only and, consequently, the threshold value of the
counting rate R} = 1/(gaa At) above which the probability
drops. In particular, in the case of the one-photon state,
gaa =0, and therefore the coincidences are absent at any
counting rate (of course, inside the limits of the accepted
assumptions).

It follows from the aforementioned that the detection of
coincidences P,(1,0) = P4 (1) themselves is not the proof
of light being nonclassical (in the sense of g < 1). The only
pragmatic result of these experiments is the measurement of
the incident light bunching parameter g4 4, similarly to the
case of the coincidences detection.

(54)

=1 — 8AA R;;At

(56)

M. Observation of coincidences is accepted as the proof of
M-photon indivisibility in the M-language, of its corpus-
cular nature. Usually, the following condition (which is not
fulfilled in any experiment) is added: the incident light
should be one-photon.

Moreover, if a tunnel beamsplitter is used for beamsplit-
ting [19] i.e. attenuated total internal reflection (which is a
wave effect), as was done in Ref. [18], then contrary to the
traditional point of view, each anticoincidence detection
demonstrates the duality of the M-photon in the same
experimental situation. Note, however, that the perfor-
mance of any beamsplitter, for example, of a
semitransparent mirror or a polarization prism is also
based on the wave nature of light.

C. The absence of coincidences in the case of the one-
photon source follows in the semiclassical theory from the
postulate on the C-reduction of a photon packet at the
moment of detection. If, however, the coincidences are
detected, they are explained by the incidence at the
beamsplitter of two photons separated by the temporal
interval less than At.

C*. In pure classical theory it is, evidently, possible to
consider only the analog mode of detection of two
photocurrents and their correlation and anticorrelation
in detectors A and B. Anticorrelation, when only one input
mode is excited, apparently cannot be observed.

5.3 Anticorrelation effect
Now, in the scheme depicted in Fig. 5, let both input
modes be excited.

Qu. According to Eqn (26) the output moments are
uniquely determined by the input moments and by the
intensity transmission coefficient 7. Let the input moments
in modes A and B be the same and 7 = 0.5. Then

§'=05g+gus. gap=05g. (7

Thus, at g4 < 0.5¢ (weak correlation of the input
beams) the transformation results in the bunching
decrease: g’ < g. If g <2 (i.e. the bunching in the input
beams is less than the thermal one) the output beams are
anticorrelated: g1 < 1 (independently of the initial correla-
tion).

As will be shown below, the effect of photocount
anticorrelations at the beamsplitter output has a simple
classical analogy (contrary to the case of a single incident
beam)—namely, the anticorrelation of the continuous
intensities—and, correspondingly, the photocurrents are
due to the energy conservation law and the phase fluctu-
ations in the incident light.

In the quantum theory g1, as well as g, is allowed to be
zero; however, in the C'-theory from gy, =1 follows
gip = 0.5, and the sign of equality is reached if the
fluctuations are absent, when g =1. This Ilimitation,
however, does not prevent complete anticorrelation
(K = —1) of the output intensities.

In the case of modes differing by the polarization type
they can be mixed with the help of the Nicol prism (with
T = cos®a, where « is the prism orientation angle). In this
case the examined effect reveals itself as a hidden polariza-
tion of the single output beam [9]. In reality, the equality
N4 = Nj means that at any a the beam is not polarized in
the conventional sense of the term. However, if fluctuations
or intensity correlations in the output modes (with
orthogonal polarizations) are detected the beam shows a
transverse structure with a fourfold symmetry axis.

Let us now consider several types of initial field
statistics.

1. In the case of thermal input beams g =2,
6’ =N+ N2, and therefore at the output g’ =1+ guz,
gip = 1, i.e. the beams become uncorrelated independently
of the initial correlation. The bunching (fluctuations)
increases if there is initial correlation (g45 > 1) and
decreases if there is initial anticorrelation.

2. In the case of two independent input beams,
g = gap = 1, and bunching (fluctuation increase) and anti-
correlation occur at the output: g’ = 1.5, giz = 0.5 and
K=—1/(14+2N7").

3. In the case of a two-mode squeezed vacuum, at the
input [according to Eqn (6)] g =2, o> =N+N? (thermal
fluctuation in the modes) and gy =2+N7", K=1
(complete correlation of the modes independently of the
amplification) and at the output ¢’ =3 +N"", giz =1,
¢ =20°, ie. the correlation is suppressed and the
dispersion doubled. The invariant [Eqn (27)] occurs here
in the form 4N 2 + N.

For the arbitrary transmission coefficient 7 = cos’ o one
finds from Eqn (26) the interference dependence on o:

gy =1+ (1 +N"cos?(2a) o 1 + Vcos(4a) , (58)
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with the visibility V = (1 + N)/(1 4+ 3N) approaching 1/3 in
the case of classically squeezed light (N > 1) and
approaching 1 in the case of low squeezing (N < 1).

If a large delay is introduced in one of the incident
beams, the beams become independent. When the initial
correlation is conserved: gip = g4 [it follows from
Eqn (58) at a=0]. Thus the ‘contrast’ of the effect
(changing of the counting rate by introduction of a
delay) at T =R = 0.5 is equal to 24+ N7

The anticorrelation effect was observed in many works
with the help of two-photon light when N <€ 1 (see Refs [4,
6]). It can be used for measurements of the group of
femtosecond delays [4, 6].

4. In the case of a symmetric two-photon state, at the
input [) =|1,1) N=1, g=0¢> =0 (complete antibunch-
ing), gap = 1, and at theoutput N' = g’ = o? =1, gip =0,
i.e. the fluctuations are present and the correlations are
suppressed.

Qs. The anticorrelation effect is ‘explained’ in the most
simple way in Q-photon terms in case 4 (two-photon state
at the input). Remember that in the Qs-language the
transformation being performed by the 50% beamsplitter
according to Eqn (40) is described by the following
formula,

W) = 1. 1) = [)" = 0.5(]2, 0) — [0, 2)) .

Thus, for T =0.5 the output state vector does not
contain component |1,1) with one Q-photon in each
beam, which results in the coincidence of photocounts.
The anticorrelation effect allows the 2J-photon general-
ization: in the case of state |J,J), at the input the
transmission coefficient 7 has J values reducing to zero
component |/, J) in the output state vector [9]. This effect
reflects the property of the SU (2) matrix with the (2J + 1)*
dimension: its central element is the Legendre polynomial
P;(T —R), i.e. the effect is the consequence of the model
symmetry, but not of its quantum specific.

(59)

M. The M-language is usually used for discussing the
action of a beamsplitter on the state of the form
|¥) =1, 1), and in the course of the discussion some
conclusions about the M-photon properties are also
derived. For example, the absence in |1//)' of component
|1, 1), leading to the coincidences, is explained by the wave
‘component’ of the M-photon, and the presence in i)’ of
components |2,0) and |0,2) is explained by the corpuscular
‘component’.

C. In the semiclassical theory, case 4 (two-photon input
state |1,1)) can be modeled in the following way. Two
photon packets with random relative phase ¢ strike a
semitransparent mirror from time to time, simultaneously
from both sides. Each packet is a piece of a sinusoid with
random phase and amplitude equal to unity.

@ =0 results in |d'| =+/2, b’ =0, i.e. both photons go
through channel A, which corresponds to the output state
|2,0) and to the absence of coincidences. ¢ = T results in
d=0,V= V2, i.e. both photons go through channel B,
which corresponds to the output state |0,2) and also to the
absence of coincidences. However, for all other values of
the phase there is the finite field amplitude in both output
channels and some probability of the photocount coinci-
dence.

Thus, C-language does not allow complete anticorrelation
of the discrete photocounts.

C*. Let two quasimonochromatic waves with equal and
stable incident amplitudes , which we assume to be equal to
unity, and with independently drifting phases «(¢) and (¢)
be incident at a beamsplitter. Assuming a = exp [ia(¢)] and
b = exp [if(r)], one finds the amplitudes at the output of a
50% beamsplitter: ¢’ = (a4 b)/v/2 and b’ = (—a + b)/V2.
The output intensity can be presented in the form

ny =d| =1+cose), ny =V =1—cose(r), (60)

where ¢ =a — f.

Thus, depending on the existing difference of phases
o(t), the intensity is being redistributed in a random
manner between two output channels. The total energy

ny +ng =2 is conserved and this is  why
drly /dt = —dnf/ dt, ie. the intensities are always chang-
ing in opposite directions, which leads to their

anticorrelation.

If at the input, g = g4 = 1, 0 =0, then at the output
for the homogeneously distributed 8 one has Nj = Nj = 1,
and

g = ((n2)) = ((nf)) = 14 ({cos’ p(1))) = 1.5,
g = ((Whnp)) = 1 — ((cos® p(1))) = 0.5 ,
o = (W) —=NZ2=05. (61)

Therefore the intensity correlation coefficient
K' = (Giy —NANp)/d"* = —1, ie. complete intensity anti-
correlation occurs.

Let one plane wave with amplitudes ¢ and b of the
orthogonal polarization be presented. The fluctuations of
their relative phase ¢(¢) result in the fluctuations of the
polarization state of the input field. Now the role of the
semitransparent mirror is played by the polarization prism
that transforms the polarization fluctuation into the anti-
correlated fluctuations of the output intensities.

Taking the initial fluctuations into consideration will
complicate the description of the effect, but will not change
its essence. A beamsplitter is a phase detector transforming
the fluctuations of the relative phase of the input signals into
the anticorrelated fluctuations of the output intensities.

6. Intensity interference

The effect of intensity interference (see, e.g. Ref. [35],
page 107) is closely linked with the Brown—Twiss effect
discussed above. It turns out that, under some conditions,
the observed intensity (anti)correlation at the optical
channel output is dependent on the definite combination
of optical paths. The simplest scheme consists of four
beams which are mixed either directly at the detector
surfaces, or with the help of beamsplitters (or, in the
polarization sensitive case, with Nicol prisms) and two
detectors working in the coincidence mode (or with an
analog correlometer). The mathematical descriptions of the
polarization and usual interferometers have much in
common (in fact, they are isomorphic; see Refs [9, 13]).
There are a number of experimental versions of the
observation of the effect, which differ in optical schemes
and in the statistics of the light sources used [9, 13].

If two-photon or squeezed light (quantum or classical) is
used, the effect is unusually dependent on the optical path
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lengths. Recently some interesting experiments involving
two-photon parametric light have been described [3-6].
The experiments with the sources (nonexistent now) of the
three- and four-photon light are discussed [10—13].

We shall discuss below several typical schemes, which
will allow us to compare different languages applicable to
the description of the effect .

6.1 Two types of intensity interference

Let us consider the scheme depicted in Fig. 7. The
controllable phase retardation a=k,(z, —z,,) between
the input fields @; and a,, each of frequency w,, is
introduced before mixing. Analogously, the phase retarda-
tion f = k,(zp, —25,) between the field b, and b, of the
frequency w, is also introduced.

Figure 7. Schematic representation of the four-mode intensity
interferometer. Fields a; and a,, and also b, and b,, arc mixed by the
beamsplitters. The observed intensity (anti)correlation of the output
fields @ and b is periodically dependent on the phase delays o and f.
Depending on the incident field statistics, two types of statistics are
possible: with the phase o+ f (two-photon interference or advanced
wave interference) and with the phase a— f (the Brown-—Twiss
intensity interference). Both effects are trivially explained in the
framework of the classical approach: they arise as a result of
transformation by the beamsplitter of the incident field relative to
phase fluctuations into the amplitude anticorrelation.

Qmu. For the output amplitude at r =r = l/\/f, taking into
account the delays, one gets

a= \/LE [a1 exp(—ia/2) + a; exp(ia/2)] ,

ay = \/LE [—a; exp(—ia/2) + ay exp(ia/2)] ,
1

b= 7 [b1 exp(—iB/2) + by exp(iB/2)] .
by = \/% [~y exp(—iB/2) + by exp(iB/2)] . (62)

i.e. the scattering matrix for the upper part of the scheme
shown in Fig. 7 is of the form,

exp(—ix/2)  exp(in/2)
D(a) = — .
) \/E[—exp(—iaﬂ) exp(ia/Z)]

For the transition to the Qgs-language, one requires the
inverse matrix,

: 63)

exp (iot/2)
exp(—ie/2)

—exp (ia/2)
exp(—ix/2)

D\ (@) = D" (a) = [

7 ] . (64)

In matrices D(B), D™'(B), coupling amplitudes by, b,, and
b, by are of the analogous form.

The general scattering matrix of the 4 x 4 dimension is
of the block form:

D(x) O ]
0 D@B)|

These enable one to find the photon number operators at
the output of the a and b modes:

1
n,=a'a= 3 [14, + 14, + @ ay exp(ia) + a3 a; exp(—ia)] ,

n,=b"h= % [1s, + 1y, + b by exp (i) + b3 by exp(—ip)] .
(65)
The coincidence probability is determined by the
moment G,, = (:n,n,:). Averaging the product of n, and
ny, provided the moments such as {(afa,b{b,) equal zero,
one gets [compare with Eqn (26)]

Gup(®, B) = Go + G cos(a + ) + G_cos(a—f) . (66)

1
Gy = Z(Ga]bl + Goppy, + Goppy + Gupp,)y Gu = (menys)

1
mG, =~ (ajbfa,b,), G_= E(aTb;aQb]) 67)

1
2
(it is assumed that moments G, are real). Here the
combination of moments G, describes the already familiar
redistribution of the fluctuations and correlations [see
Eqn (26)] and the terms containing G, and G_ describe the
fluctuations of two types: with phases a+ f and o — f,
respectively. For k, —k;, one gets

a+ﬁ:k(zalh_zagb)’ O‘_B:k(AZI _AZZ)’
where z,, = 24, + 25, Az =2, — 2,

The term advanced wave interference was proposed by
me for the interference with phase o + f§, because its main
peculiarity, the dependence of the intensities correlator on
the sums of optical paths z,;, between the detector and the
ith source, is convenient to interpret with the help of
fictitious advanced waves propagating from one detector
to the ith source, and after ‘reflecting’ from it, to the second
detector [13, 52]. The existence of two (or more) paths z,,
leads to the interference with phase z,;, — 2,

The old term, Brown—Twiss intensity interference, was
conserved by me for the interference with phase o — f.

[t is convenient to define the visibilities of these effects
as:

Gyla, f) x 1 +Vcos(a+ f) + V_cos(a— p),

V:t = Gi/GO . (68)
6.2 Brown-Twiss intensity interference

Qu. If usual light sources G, = 0 are used, the harmonic
dependence of the coincidence rate (or the correlator of the
analog photocurrents) on « — f (due to G_) is also called
intensity interference. Condition G_ #0 can be easily
realized by connecting modes a; and b; to the output of
one beamsplitter and modes a, and b, to the output of the
other (Fig. 8), provided that the condition w, = w, is
satisfied.
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Figure 8. Schematic representation of the intensity interference

observation for the phase a—pf (the Brown-Twiss intensity
interference). The input fields ¢ and d may be independent.
Assume t =r= 1/\/5 Then
C + Co d + do
a; = , Uy = s
1 \/E 2 \/5
—C + Co —d + do
bh=———, b =—— 69
1 ‘\/E 2 \/5 ( )
According to Eqn (31) ¢g = dy = 0. Therefore,
+2 72 + 7+
d TdTde) G,
6, =) ) Gy o0

If the unconventional light sources, with the unusual
statistics, are excluded (see Section 6.4), G, =0.
In the case of symmetric excitation, when

NC:NCI:N’ Gcc:Gdd:gN2» ch:gch2»
one has
g+gcd 2 8cd
Gy=N?2"24 = G=N?24,
0 8 8
G, 1
V. = cd (71)

ch + Gua B 1 +g/gzrd -

Thus, for high visibility of interference the bunching
parameter g should be small, i.e. the intensity fluctuation in
each input beam should be minimum and the correlation of
beams g. should be maximum. In the classical theory
G, = Gy, therefore V ., <1/2 .

We will now examine different types of input fields (see
Fig. 8).

1. Let the modes with amplitudes ¢ and d be selected
from the fields of two independent sources, for example,
two stars or two lasers. From their independence it follows
that g, =1 so

1
-=Txg’

(72)

and the visibility is determined by the intensity fluctuations
of the sources. Thus, in the cases of independent coherent
or thermal input fields, the visibility of the intensity
interference is 1/2 or 1/3, respectively.

2. If the squeezed vacuum state is at the input, then
from Eqn (6) it follows that g = g4 —N'"=2 and

_2N+1  cosh(2F)
4N +1 2cosh(2F) —1"

(73)

where F is the parametric amplification coefficient
proportional to the pumping amplitude. For weak
pumping (N =F’< 1, spontaneous parametric scatter-
ing) V_=1; for strong pumping (parametric
superluminescence) V_ =1/2. The high visibility of the
intensity interference, provided that parametric two-photon
light is used, can be considered to be an essentially
nonclassical effect connected with the inequality G.. < G4
for the input field moments. (For typical experiments,
Gcc/Gzrd ~ ]078')

3. If the squeezed classical light is incident at the input,
then according to Eqn (8),

cosh(4F)

V. =
1 + 2 cosh(4F)

(74
Thus, for weak pumping (i.e, noncorrelated Gaussian noise
at the interferometer input) V_ = 1/3, as in the case of the
thermal sources, and for strong pumping (complete
correlation of the input intensities) V_ =1/2, as in the
case of the independent lasers with the Poisson statistics or
in the case of the strong squeezed vacuum.

Note that, though the correlation coefficient of signal
and idle modes K is equal to unity for the squeezed vacuum
(F<1, Ny<1) and for the classical squeezed light
(F>»1, Ng>» 1), the absence of random coincidences
results in 100% visibility in the first case only.

Qs. Consider the case 2 at N €1 in the Schrodinger
representation. If the vacuum component is omitted, the
input two-photon state is of the form:

o) = c*d T vac) = 1) 1), .

To find the transformed state at the output of the first
beamsplitter pair, one should inverse the transformation of
the operators [Eqn (69)]:

(75)

a; — b,
c= S

V2

ay — [)2 a + b]
9 (’. =
vz TV

o ay +[)2

4= v

, dy
(76)

Here ¢, and d are the operators of the unused input modes
of the input beamsplitters that are in the vacuum state.
Inserting Eqn (76) in Eqn (75) one finds

W) = 5 af — b1 — bDlvac)

1

(]1010) 410101 — [1001) —[0110)) ,  (77)

S]]

where |kimn) = |]>a, |1>b. |l>dz l)hz.
On performing a substitution according to Eqn (64) we
get

— dy a—+ ay

a :a\/§ exp(i/2), a,= i exp(—ie/2) ,
b =2 \_/51’0 exp(iB/2), by = ”\J;;O exp(—if/2) . (78)

From the above one gets the state of four output modes,
[,) = % {exp(—ia)[2000) + exp(—iB)|0200)
— exp (i) [0020) — exp(if)|0002)
+2cos[(a— B)/2] (|0011) — [1100))

+2isin[(« — p)/2] (j0110) — |1001))} . (79)
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where [kimn) = [1), [1), [1),, 1)
The coefficient of vector |1100) equals

crigo = —0.5cos[(a — B)/2] ,

and according to the measuring postulate corresponds to
the probability amplitude of one photon for each « and b
mode to be found. From here one finds the coincidence
probability,

(80)

P, = 1 [l + cos(a — ﬁ)] )

: 8D

This expression, as well as Eqn (73) for N < 1, describes
the two-photon intensity interference with the phase a — f8
and the visibility V_ = 1. Note that calculations based on
the state given by Eqn (75) do not describe the random
coincidences lowering the visibility for N ~ 1 [compare
with Eqn (73)].

6.3 Advanced waves interference

If squeezed or two-photon light is used, the moment
G, = (afbfayb,)/2 in Eqn (66) may be different from zero
and the interference with the phase o + f will be observed.
This effect is called the two-photon interference, though it
can be observed (although with a lower visibility) with the
help of the classical squeezed light and the analog
detectors.

Let the parametric downconverter with two signal
(a1, a) and two idle (b;, b,) modes (Fig. 9), having a
common pumping [52] (the signal and idle frequencies
may be different), be a four-mode light source.

Figure 9. Schematic representation of the intensity interference
observa-tion for the phase o+ f (two-photon or advanced wave
interference). Two nonlinear crystals subjected to the common
pumping P form the four-mode field with nonzero correlator
{af b ayby) = {arb1)"(arbs).

Qu. Analogously to Eqn (6), one has
G, = (afbibra) = G, = (a3 b3 bya)) =2N*> + N ,
G, = (@i b3brar) = Gy = (@ bibiay) = N? ,
(@l bl ayby) = (arby)*{azby) = N(N +1) . (82)
Inserting these expressions in Eqn (67) one finds

1
Gy =~ (Gup, + Gupp, + Gayp, + Gayp,a) :§N(3N +1),

I

1
G, =~ (afbfa,b,) = EN(N +1), (83)

N —

a\% Ta] R Tb] [‘ﬁ b
Va4

a b2

nq hnp

(nanh) & COSZ(“ - ﬁ)

Figure 10. Scheme for the observation of two-photon interference of
the polarization type. The source emits photon pairs with the
correlated polarizations which are detected by two detectors and the
coincidence circuit. The coincidence rate is dependent on the analyzer
orientation angles in accordance with the ‘two-photon Malus law’
cos’(a — B) that is incompatible with the visual semiclassical ideas of
photon packets with random polarizations, but follows directly from
the model with the advanced wave E,q, emitted by one of the
detectors.

and thus

N+1
V, = )
TTAN 41

(84)

Thus, again the superclassical visibility V, =1 corresponds
to weak pumping and V, =1/3 corresponds to strong
pumping.

Let us examine the polarization version (Fig. 10) of this
effect [1, 2, 5, 6], when indices 1 and 2 specify two polar-
ization states of the same beam (¢ and b). The analyzers
with the transmission coefficients 7, = cosa and ¢, = cosf§
are used as beamsplitters. The amplitudes of the input fields
are [compare with Eqn (62)]

a=a cosa+aysino, b=D>bycosf+bysinff. (85

Consequently, the operators of the photon number at
outputs a and b are of the form [compare with Eqn (65)]

n,=ata= g, cos” o + ng, sin?
+(afar + afa;) cosasina,

ny, = b*b = n, cos’ B+ n,, sin’ B

+ (bf by + bFby) cos Bsin B . (86)
From the above discussion, at {(afafbh,)=...=0 one
finds [compare with Eqn (66)]
Gy = Gy, cos” a cos® f + Gy, sin” o sin” B
+Gyp, cos” o sin® B+ Gop, sin® a cos® B
+4(G, + G_)cosa cos f§ sina sin (87)

(it is again assumed that the moments G. are real).

Inserting the values of the correlators given by Eqn (82)
at N €1 (two-photon light), G, = G,,p, =2GL =N in
Eqn (87), one has

G,y = N(cosa cos f+ sin o sin B)2 = 0.5N cos’(a — f) . (88)

Thus, the coincidence probability is dependent on the
difference of the analyzer orientation angles only, and for
the crossed analyzer there are no coincidences independent of
the individual values of angles o and B. The latter effect
shows most visually the inadequacy of the C-language (see
below).
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Qs. Two pairs of the signal and idle modes, having a
common coherent pumping, are in the first order of the
pumping described by the two-photon state,

|l//1) \/— \/—(a bl

where |klmn) = [1), [1), [1),, [1)p,- The vacuum compo-
nent is omitted because it is of no interest in the experiment
under consideration. The state given by Eqn (89) is called
entangled: the signal Q-photon, as well as the idle one,
belongs to two modes with indices 1 and 2 simultaneously.

Using Eqn (89) one easily finds the nonzero moments:
(afbfaib) = 1/2, where k, [ =1,2. As the result one again
has V, =1.

Let us now obtain the results given above in the
Schrodinger representation. With the help of Eqn (64)
one finds the output state,

o) =

(]1100) +10011)) = + a3 b3 )|vac) , (89)

\/_{cos[(oc + £)/2](]1100) + 0011}))

+isin[(«+ B)/2] (]1001) + [0101))} ,

where |klmn) = [1),[1), [1),, [1),,- The coefficient of vector
|1100) is equal to

1

c =—cos|(a+ 2],
1100 Ve [( B)/ ]
and according to the measuring postulate corresponds to
the probability amplitude of one photon for each « and b
mode to be found.From here one finds the coincidence
probability, [compare with Eqn (81)]

(90)

on

1
Pap =7 [1+cos(x+B)] . (92)
This expression describes the two-photon intensity inter-
ference with the phase a + f and the visibility V, = 1.

M. Numerous papers are devoted to the description of
different versions of two-photon interference in the M-
language. In these papers the paths chosen by the photons,
the influence of their undistinguishability and distinguish-
ability, the manifestation of the duality, the influence of the
initial state entangling, etc., are discussed in detail.

An example of the statement in the M-language is given
below. Let the field be in the state given by Eqn (89). When
observing a photon, for example, in the a; mode, instanta-
neous reduction of the field state occurs: the second term in
Eqn (89) disappears and in the first term only component
1)y, is left, i.e. the by mode is prepared in the one-photon
state. Detector B is informed instantly about this due to the
quantum nonlocality. In general, the detection of a photon in
any of the four modes is at the same time a preparation of
the one-photon state for the corresponding ‘pair’ mode. In
reference to the experiment depicted in Fig. 9 it is possible
to conclude that the photons are created locally: either both
in crystal 1, or both in crystal 2.

Actually this type of language gives no information in
addition to the computation results: in fact, it is possible to
speak about the photocount coincidences observation for
two equivalent detectors. (The reduction in this context is
discussed in more detail in Ref. [23].) For the detection of
coincidences one needs to have some coupling channel
between the detectors, as there is, of course, no long-range
interaction here.

Figure 11. Frequency degenerated parametric downconverter with the
additional beamsplitter mixing the signal and idle modes prepares the
field with nonzero correlator (ct2d?) and (cTcd*d). This field, being
incident at the input of the interferometer depicted in Fig. 8, enables
one to observe simultancously both intensity interference types.

6.4 Simultaneous observation of two types of interference
In the examples presented above, the interferences of
different types were observed only separately: either with
the phase o + f§ or with the phase a« — . Let us examine the
combination of the schemes presented in Figs 8 and 11.
(Recently its polarization version has been realized [53].)
Here, instead of two pairs of the signal and idle modes (see
Fig. 9) only one such pair is used. However the signal (c”)
and idle (d") modes (of the same frequency but differing in
the propagation direction or in the polarization type) are
preliminarily mixed by a 50% beamsplitter (see Fig. 11).

As a result the fields at the input of the interferometer
depicted in Fig. 8 are of the form,

_c'—l—d' d_—c'—l—d'
V2 V2o

Note that, according to Eqn (7), there exist the following
relations:

() =—(d%) = ('d)
=[N'(N"+ 1)]]/2 exp(—iwyt — ig,) .

93)

94)

The transformed moments at the interferometer input, if
Eqn (93) is taken into account, are of the form

1
Geoe =Gua = Z(Gz{v + Gy +4Gl) =N'(3N" +1) ,
1
Gey = Gae =3 (Gic + Gaa) =N" , (95)
where N’ is the intensity of each mode. From here, one

finds the parameters determining the visibility:

1 1
GO :E(G({c +Gc,ld +2G(/d) :g NI(4NI + 1) s

1 1
Gy Iﬁ(Géc‘i‘Gﬁd—“Géd) = —gNI(N"i‘ 1),

1 1 1
G=-Gy=—Gl.=-N".

16 8 6)

Note that Eqns (93) and (96) result in a characteristic for
the squeezed light property, the factorizability of the
moments:

1
G, = ("% = ¢ (D)%) = g [{d)[*
In the result, the visibilities of the two simultaneously
observed interference patterns are given by

7
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v G, 1G,.—2G,;  N'+1
TGy 2 GL+G, T 4AN'+1°
G. 1 G N’
V_: cc (98)

G, 2Gl.+G, 4N'+1°

For weak pumping N’ <1 so the intensity interference
with the phase o — B disappears (V_ =N'); however the
two-photon interference with the superclassical visibility
|[V,| =1 conserves. For strong pumping V_=—-V_=1/4,
so the coincidence rate is proportional to 1 + 0.5 sin asin f.

An addition to the parametric downconverter input of
the Gaussian noise of large intensity results in squeezed
classical light (see Fig. 2). And according to Eqn (8) one
gets

1

Go =3 N§[1 +2cosh(4F)] ,
1
Gy, = 6 N [l F cosh(4F)] , (99)
SO
v, 1 1Fcosh(4F) (100)

T21 +2cosh(4F)

Thus, for weak pumping (F < 1), i.e. for the Gaussian
noise at the input of the interferometer depicted in Fig. §,
V,=4F?/3<1, V_=1/3, and for strong pumping
V_=-V,=1/4 (similar to the case Ny =0 and F> 1).

Qs. Let us examine the same effect in the Schrodinger
representation for the initial state of the form,

W) = (1), [1)g = ¢""d""|vac) .
Note that this is a factorized state: every Q-photon belongs
to one mode.

At the output of the first beamsplitter (see Fig. 11) one
has [compare with Eqn (75)]

Vo) = %(c” —d*?)|vac) = % (2. 0) — [0, 2)) .

(101

(102)
Further, each beam c, d is divided again in half at the
input mirrors of the interferometer (see Fig. 8). Inserting

Eqn (76) in Eqn (102) one finds the four-mode field state
inside the interferometer [compare with Eqn (77)]:

1
[¥,) = m (afrz— 2afbf + IJTQ— a;2 +2ai by — 1);2) |vac)

1
=——=(|2000) — 2|1100) + {0200
37512000) ~2[1100) + [0200)

—0020) + 2/0011) — 0002)) . (103)

Here [klmn) = |k), |1}, |m),, [n)s,-

In the Qc-language the two initial photons may be
distributed over four modes. The factors 2 before states of
the type |1100) are interpreted usually in the M-language as
the consequence of indistinguishability of two photons.

Examine further the action of the output mirrors of the
interferometer depicted in Fig. 8. Substituting Eqn (78) in
Eqn (103) one finds that the state at the interferometer
output consists of ten independent components [compare
with Eqn (79)]:

[W,) = ﬁz{—Zi sin a(|2000) + [0020))
—2isin $(]0200) + 0002))
—4cosa|1010) 4+ 4 cos B|0101)
+4isin[(« + B)/2] (|1100) + |0011))
+4cos[(a+ B)/2] (|1001) + [0110)) }.(104)

Here |kimn) = |k),[l), [1),, [1)s,- The coefficient of vector
[1100) is the probability amplitude of finding the photons
in the output modes a and b:

isin[(x+B)/2] . (105)

1
Cl100 = —=
1100 \/E
Therefore the probability itself is of the form analogous to
Eqn (92):

P, = 1 [1—cos(x+p)] .

7 (106)

The output state |¥,) also belongs to the class of
factorable states because it can be transformed again to
the initial form [Eqn (101)] by the choice of some definite
representation: in fact |,) and |y,) are the same states in
different representations. The transition between them is
performed by the unitary transformation which is realized
by the beamsplitters.

In the course of discussions on the two-photon inter-
ference effect and, in particular, about the Bell inequalities
violation, special significance is attributed to the entangling
(nonfactorability) of the field state. Therefore one might
conclude that the state |y,) is unsuitable for the demon-
stration of violations of these inequalities. However, this
conclusion is erroneous: the above obtained 100% visibility
of the two-photon interference V. in the scheme under
consideration witnesses the opposite.

[f needed, it is possible to conserve the condition of state
entangling, if the cases with the appearance of two photons
in one mode [with the components of the form |2000) in
Eqn (104)] are ignored. This can be done while processing
the stored data. In the conventional experiments the
coincidence detectors do not detect these events automat-
ically, i.e. according to the measuring postulate they project
vector |Y,) into the subspace formed by the vectors of the
[1100) type only. Projecting is a nonunitary transformation
so the obtained state is nonfactorable. Thus, one is
compelled to conclude that, though the output state |/,)
is actually an unentangled one, in the course of the
posteriori processing of the experimental data it becomes
entangled.

Artificiality of the presented formulation shows that the
entangling of the state discussed above is apparently due to
the use of the M-language.

6.5 Classical models
C*. Both types of intensity interference determined above
can be trivially explained in classical terms: they are the
results of transformation by beamsplitters of the input field
phase fluctuations into the output field intensity fluctu-
ations (see the end of Section 5).

Let the fields ay, by (k =1, 2) in Fig. 7 have constant
amplitudes (equal to unity) and drifting phases:

ap(t) = exp[~ix (r)] . be(t) = exp[~ive(r)] -
Phases x;(¢) and y,(¢) play the role of hidden parameters.

(107)
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The output amplitudes are of the form [compare with
Eqn (62)]

a(t) = —= [exp(—ix; —ia/2) + exp(—ix, +i2/2)] ,

1

V2
1 . . . .

b(t) = 7 [exp(—iy; —iB/2) + exp(—iy, +iB/2)] . (108)

From the above it follows that the expressions for the

output intensities can be presented in the form [compare
with Eqn (65)],

n,=14+cos(x+a), n=1+cos(y+p), (109)

where x = x| — x5, y =y — y».

Let x1, x, and y;, y, be the independent phases. Then
({ny)) = {{ny)) =1, ie. the conventional interference is
absent. We can then form the intensity correlator [com-
pare with Eqn (66)]

Gap = ((namp)) =1 +%Z<<cos(x +aty+p)). (110)

Consequently the stationary interference with the phases
o+ f and the visibilities V. =1/2 1is possible for
x(t) £ y(t) = const. These conditions may be called phase
correlation and anticorrelation. The first condition, giving
the conventional intensity interference, is satisfied if, for
example, x; =y, X, = y,, i.e. for ¢y = b; and a, = b, (see
Fig. 8). The second condition is satisfied if x| +y; = x, + y»,
i.e. ifthe nondegenerated parametric generators are used (see
Fig. 9), for which the phases (as well as the frequencies) of
the signal and idle waves are drifting in the opposite
directions.

Note that the approach to the beamsplitters and
polarization prisms as phase detectors can, with the help
of the phase difference operator, be extended in the
quantum description [8].

Thus, both interference types with the phases o+ f (in
particular, the two-photon interference) have close classical
analogs, whose visibility, however, cannot exceed 1/2.

C. Let us try to describe the polarization version of two-
photon interference [1, 2, 5, 6] in terms of photon packets
with the a priori determined polarization. Now in the
scheme depicted in Fig. 7, symbols «, a, and by, b, are the
polarization components of the beams a and b, respec-
tively; the dashed lines are the analyzers with the
orientation angles o« and fB. According to Eqn (88) the
observed coincidence probability is proportional to
cos’(a — f).

Assume that the C-photons in every pair possess the a
priori definite polarization along some two directions a; and
Bi, and are changed at random at every trial with number i
(this is again an example of hidden parameters). Assuming
the field amplitude to be equal to unity, one gets the input

amplitudes in the ith trial:
aj;=cosa;, day =sing;,

byj=cosf;, by =sinp,; .

(111)

At the output, according to Eqn (85) one has

b= cos(B—f) -

a = cos(o — o),

From here one finds the intensities according to the Malus
law:

ny; = COS2(ﬁ -B) -

The averaging over the hidden parameters results in the
following intensity correlators:

Gap = {(nainp)) = <<0052(°‘ - ;) COSZ(ﬁ - ﬁi)>> .
For the homogeneous distribution of the polarization
directions, one gets

[1+ ((cos(2a — 20;) cos (28 — 2,)))]

ng = cos®(a — ;)

(112)

Gy =

NN

{1 +%<(cos[2(a —a+B-B)]))

+%<<COS[2(G—%‘_B+B1’)]>>} ) (113)
To make this expression dependent on the difference a — f8
only the directions o; and f; should be completely
correlated.

Let a; = B, i.e. the photons in pairs are of the same
polarization. Then the second term in Eqn (113) vanishes in
the course of averaging and the third term is independent of
the trial number:

:%{l-i—%cos[Z(a—ﬁ)]}. (114)

We again get the limiting classical visibility 50% : for the
crossed polaroids the coincidence probability does not
vanish, but decreases by half in comparison with the
maximum one.

Thus, it is impossible to explain in the C-language, as well
as in the C*-language, the 100% visibility of the two-photon
interference and, in particular, the absence of coincidences at
crossed analyzers in the Clauser type experiments [1, 2, 5].

So, the 100% visibility of the intensity interference is an
essentially quantum effect. It can be predicted in the
framework of the C-language with the help of the model
with the advanced waves [38, 52] and the Malus law (see
Fig. 10). The unpolarized advanced wave (packet), ‘emitted’
in the backward direction in the time and space by one of
the detectors— for example, by detector A —at the moment
of photon detection becomes polarized in direction o,
‘reflects’ from the source, and its f~component is detected
by detector B.

It should be emphasised that the advanced waves play
here a pure ‘mnemonic’ role, reflecting the Q-calculation
structure, so they do not belong to the M-language. Besides
the two-photon interference they are useful for a qualitative
description and prediction of other effects of two-photon
optics [54]: two-photon diffraction [54], photon mutual focus-
ing [23, 55], and biphoton frequency filtration [37, 38].

1
G = 3 cos” (o« — B)

7. Conclusion

1. The main criteria in the comparison of the advantages of
the alternative languages is the possibility of predicting new
effects; the ability to generalize, classify, and systematize
the phenomena; and universality, compactness, simplicity,
and visibility. (The last item is of a historic, relative
character: for Newton’s contemporaries his language was
probably less visual than that of Aristotle and Descartes).
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The description of several optical experiments in differ-
ent languages presented above has demonstrated an
obvious advantage in favour of the Qpu-language (the
quantum theory in the Heisenberg representation) for
these criteria. The Qu-language gives an universal quanti-
tative  description of every possible multimode
interferometer through their classical scattering matrices.
And different interference effects are explained just as in the
classical theory: these occur because of the superposition of
two or more oscillations. The C*language (classical
stochastic electro-dynamics), similar in spirit to the Qpu-
language, gives useful classical analogies of the observed
effects.

However, the possibility of description of an individual
event, namely, of the appearance of an individual pulse at
the detector output, which in the M-language is ‘explained’
by the arrival of a M-photon, is ignored here. The attempt
to describe casually the individual events in space—time and
the interpretation of different optical effects as the result of
the mysterious propagation of M-photons via different
paths is, probably, one justification for the existence of
the M-language. The latter is to a certain extent based in the
Qs-language (quantum theory in the Schrodinger represen-
tation), which is less convenient for the quantitative
calculations of the real optical problems.

The general balance of two pairs of similar languages
(Qu, C*) and (Qs, M) moves in favor of the first pair. It
appears as if the importance and perceptiveness of the M-
language in current publications is overestimated and the
usefulness of the C*-language is underestimated.

The ‘every day’ C-language of the photon packets is
indispensable for the visual description of the overwhelming
majority of optical phenomena. The notion of the two-
photon packet, which is formed with the help of advanced
waves, is useful for the description and prediction of
different effects of two-photon optics (biphotonics).

2. What was new in the optical demonstration experi-
ments of the last decades? In the framework of the Qg-
language their results reduce to the measurements of
correlation functions or of the fourth order field moments
such as G,, = (a*?a®) and G, = (a*bTba) (see Section 3.2).
In other words, any possible optical schemes (together with
the detectors) serve as classical devices for the measurement
of the moments or the correlation functions of the initial
light. And the detected inequalities of the G,, < (a*a)? type
(photon antibunching effect) and G,, < G, type (two-
photon correlation) reveal the inadequacy of the classical
C*-language (see Section 3.1).

If one has confidence in the modern photodetection
models and the Maxwell equations, describing propagation
of light through a linear optical system, then possible
manifestations of the nonclassicality in the experiments
under discussion, i.e. violations of inequalities of the
Cauchy—Schwartz or Bell types, are explained not by
the peculiarities of the optical scheme but by the statistical
properties of the used light source, which are transferred by
the classical Green functions to the optical tract output. In
the Qu-language, all linear optical schemes are described by
the classical propagators and, therefore, the quantum
specificity, if it is present, is connected only with the light
source used at the system input.

Further, the visibility magnitudes of the two-photon
interference exceeding 1/v/2 lead to violation of the Bell

inequalities and thereby deny the possibility of describing
the corresponding experiments in the Cp-language (lan-
guage of the dichotomic Bell’s observables). These
inequalities can be proved by means of the notion joint
probability for some variables (corresponding to the non-
commuting operators in the Q-theory). Their violation in
the experiment should be naturally considered as evidence
of nonapplicability of the notion of joint probability.

The Bell inequalities may also be proved with the help of
the locality condition (i.e. in the absence of interaction of
the remote detectors by means of unknown forces) and
therefore their violations are usually interpreted (rather
inconsistently, from my point of view; see Section 2.2) as a
manifestation of the quantum nonlocality. Note that in the
experiments discussed, a localized two-photon light source
is used and the field propagation through the interferom-
eters to the remote detectors is described by the classical
Green functions. Therefore it is unclear how the quantum
nonlocality arises.

The possibility of duplicating all two-photon experi-
ments with the help of classical squeezed light and analog
detectors is essential. Here the analogous interference
dependences should be observed, but with one differ-
ence, the visibility should be lower (see Section 6.5). This
kind of experiments which is easily realised, can be
completely described in the C-language.

3. At the same time these experiments yielded good data
for the commentary in the M-language, which, however, do
not bring closer the solution to the M-photon mystery, i.c.
the physical essence which gives rise to the appearance of an
individual pulse at the photondetector output. Similar
discussions do not involve any new experimentally verifi-
able or refutable conclusions and, if one follows the Popper
definition, cannot be considered as scientific ones.

Apparently, in modern quantum optics there are no
experimental results that contradict the standard Q-models.
At the same time I do not know any experimentally
observable results, which follow from the concepts and
notions of the M-language, such as the a priori proper-
ties—duality, distinguishability and undistinguishability,
circular polarization, tendency to bunching or antibunch-
ing, etc attributed to the M-photons. It is not excluded that
Bohr’s words about ‘the contradiction to science’s spirit of
mysticism’ may be related to some M-terms and notions.

Taking the risk of being accused of pragmatism,
operationalism and other ‘heresies’, I would like to note
the difference between the consistent with the experiment
scientific theory and its possible interpretations. The choice
of the latter is, according to the definition, a matter of taste,
and the importance of interpretation should not be over-
estimated as it takes place in current quantum optics. It
seems that some ‘moderate’ operationalism is, however,
necessary for distinguishing between physics and meta-
physics. Similar considerations are also true in classical
physics; however, in quantum physics the gap between
mathematics and visual thinking is more evidently revealed.

I do not, of course, call into question the existence of the
optical field as an objective reality (even when ‘nobody sees’
it), but I only suggest that exact borders be drawn between
three multitudes: the firmly established objective laws, the
computing algorithms with the precisely determined useful
terms (Q-language); and the speculative fruitless notions
and terms isolated from the experiment (M-language); and
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the ‘naive realism’ (C-language). One should certainly not
reject the ‘photon’ notion. However, it is worth formulating
its modern status precisely.

I hope that the classification proposed above of the Q,
M, and C-languages used in quantum optics, with distinct
borders between them will help in a logical comprehension
of the results of the demonstration optical experiments,
both the known and the planned ones.

4. Nevertheless, let us try to find some excuse for the
widely used M-language. It is impossible, certainly, to reject
in general the importance of some indistinct intuitive
notions which constitute the basis of human thinking
and frequently are of evristic value. As the history of
physics shows, they can be in future formally founded in
the framework of some qualitative theory, the origin of
which is sometimes promoted by these notions. It is not
ruled out that one of the interpretations using the M-
photon notion is able to promote its rank up to the one of a
scientific theory (however, the lack of progress in the
founding of corresponding notions during the last 60 years
is surprising). One may hope that the M-language does,
nevertheless, form some base for the development and
acceptance in the future of a new thesaurus that will
bridge the existing gap between the quantum formalism
and the traditional form of the physical realism.

Let me also recollect the well-known standpoint on the
art as a ‘superscience’, intuitive, heuristic, ‘brain righthalf’
method of reality cognition. An analogous role is played by
the quantum metaphysical M-language. It helps (together
with the semiclassical C-language) to classify the known
effects and predict on a qualitative level the results of new
experimental situations. In general, the refusal, at some
stage, of the axiomatic approach promotes the movement
ahead. (Note in this connection the Hedel theorems.)

When we solve specific problems of quantum optics, the
use of the M- or C-languages is, apparently, optimal at the
first and final stages: before and after the more strict, model
calculations in the Q-language.

5. Summing up, we arrive at the pessimistic vision of the
modern state of ‘the great quantum problem’ of 20th cen-
tury physics, the problem of presenting a realistic
interpretation of the state vector. Despite the efforts of
several generations of physicists, hundreds of articles,
dozens of conferences and monographs, the invention of
lots of terms, there is evidently no reasonable, commonly
accepted alternative to the Copenhagen Qc-language.

Quantum optics is distinguished by the fact that when
observing light by a naked eye we perceive a quantum
object, the light field, directly, so the interface between the
classical and quantum worlds can be put somewhere in the
eye retina. (In this context the experiments on the detection
by a naked eye of the nonclassical light, for example, of the
two-photon one, and the absolute measurements of the
retina quantum efficiency with the help of such light seem to
be of interest.)

Let us imagine that weak light from a star is observed by
the naked eye. Let the average flow of photons R be much
less than, for example, 1 photon per second. If the quantum
efficiency of the eye is 0.1, then the mind registers, on
average, each tenth photon. And we are sure that every
sensing of a flash in the eye is caused by some preceding
reason, i.e. by the arrival and absorption of the M-photon.

However, according to the only qualitative light theory
based on quantum electrodynamics, there are a priori no
M-photons; there is a field state only, a pure or a mixed
one. The Q-theory predicts only the average rate of flashes
R (which is determined by the projection of the state vector
at the Fock vectors |1),) and the other statistic parameters
of our sensing. So, what do we see at the flash moment: the
M-photon or the state?

The latter suggestion is contradictory to all our instincts;
however, the first one has no quantitative theoretical base.
All existing mathematical models of the quantum measur-
ing process contain two nonoverlapping multitudes of
objects: the c-numbers and the g-numbers. It means that
‘the iron curtain’ between the classical and quantum worlds
remains impenetrable and quantum optics is helpless here,
as well as in other directions of quantum physics. The M-
photon remains, as 60 years ago, a ‘thing in itself’ and we,
as before, play the role of Plato’s cave inhabitants,
observing only the shadows of the quantum world projec-
tions.
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