
Abstract. The interaction between free electrons and a
laser field in an unbounded dielectric medium and above
the surface of a dielectric waveguide is discussed in detail.
Both classical and quantum approaches are applied. The
feasibilities of modulation and polarisation of an electron
beam by laser radiation are also discussed. Theories of the
Cherenkov laser and Cherenkov klystron are developed.

1. Introduction

The advent of a powerful source of electromagnetic
radiation — the laser — marked the beginning of active
research of electromagnetic effects in high-intensity fields.
The first works along this line were conducted as early as
1933 by Kapitsa and Dirac [Proc. Cambridge Philos. Soc.
29 297 (1933)]. They considered the scattering of an
electromagnetic wave by an electron in the presence of

another wave (the stimulated Compton effect). Then the
theories of stimulated braking, magnetobraking, Cheren-
kov, and other effects were developed in parallel with the
cited problem. We have systematically studied the
stimulated Cherenkov, transient, diffraction, and Comp-
ton effects. In this review we present the results on the
stimulated Cherenkov and Cherenkov surface effects (in
the first case electrons travel in an unbounded dielectric
medium, in the second they travel over the surface of a
dielectric). For brevity we refer to either effect as the
stimulated Cherenkov effect (SCE).

Note that along with the scientific aspect of the issue —
how powerful fields affect the course of electrodynamic
effects — the problems in question are of extreme practical
importance: design of new sources of electromagnetic
radiation (free-electron lasers) and laser-driven charged-
particle accelerators.

The idea that the stimulated Compton effect could be
used for developing the Compton laser was suggested by
Pantell and co-authors [ IEEE J. Quantum Electron. 4 (11)
905 (1968)] and Madey ( J. App l. Phys. 42 (3) 1906 (1971)).
They proposed an undulator laser. Since then this last
scheme has been worked out in detail and at present it is
implemented experimentally. The main bulk of publications
on this laser is systematically surveyed in reviews [1 – 6], the
collected volume [7], and monograph [8]. However, the
undulator laser is not efficient in the optical and shorter
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wavelength range. Therefore, there was a need to study
other electromagnetic effects. We have been developing the
theory of how to amplify an electromagnetic radiation on
the basis of the Cherenkov, transient, diffraction, and
Compton effects. In this review we present the analysis
of various operational modes of the Cherenkov laser.

The energy of an electron is changed by its interaction
with intensive electromagnetic radiation. At present there is
a variety of suggestions of how to accelerate electrons on
the basis of the Compton (including the undulator case),
Cherenkov, diffraction, and other effects. The present state
of the art of laser-driven accelerators is well reflected in the
collected volume [9] and the review [10]. We have confined
our study to the mechanisms of emission and absorption of
a photon on the basis of the listed effects. These results are
of key importance for an understanding of all effects in the
field of laser radiation.

One of the ways of increasing the efficiency of inter-
action of an electron beam with radiation lies in a
preliminary modulation of its density. The research of
modulation of an electron beam at optical frequencies
was initiated by Schwarz and Hora [ Appl. Phys. Let t. 15
349 (1969)]. Modulated electron beams are the basis for
developing a free-electron laser of the klystron type. In this
review we present an analysis of the characteristics of the
Cherenkov klystron.

The polarisation states of an electron beam and laser
radiation are changed by their interaction. The laser
radiation will magnetise a nonpolarised electron beam or
modulate its magnetisation if it is polarised before the
interaction. As an elliptically polarised wave propagates in
an electron beam, the plane of polarisation rotates and the
ellipse is deformed.

The systematic analysis of the cited effects revealed the
following underlying general rules:

1. The possibility for modulation of electron beams,
amplification of electromagnetic waves, and magnetisation
of a particle beam occurs only if photons are emitted and
absorbed by electrons with different energies or if the
photons have different projections of wave vectors. In
what follows, for brevity, we refer to these processes as
asymmetric. If there is no asymmetry, then it must be
created.

2. Quantitatively, the listed effects depend on the
increment in the energy of an electron after the interaction
with radiation, in the linear approximation with respect to
the field.

Note that the references fall into two parts: the first part
consists of works which deal directly with the problems in
question [1 – 73], and the second part consists of works on
the stimulated Cherenkov [74 – 91] and Cherenkov surface
[92 – 97] effects.

2. The stimulated Cherenkov effect

The spontaneous emission of a charged particle in a
dielectric — the Cherenkov radiation (C) — has been thor-
oughly studied theoretically and experimentally [11 – 15]. It
occurs only if the velocity of the charged particle is greater
than the velocity of the electromagnetic wave in the medium
(v > c=n).

If the same particle travels in a dielectric medium in the
presence of an external electromagnetic wave, then the
radiation becomes stimulated. In this case the dynamics of

the process acquires an essential feature which is absent in
the spontaneous effect: the particle may not only decelerate,
radiating its energy to the wave (the stimulated Cherenkov
radiation), but it may also accelerate, absorbing energy
from the external field (the stimulated Cherenkov absorp-
tion). As a rule these processes cannot be separated
completely for particle beams. Clearly, the competition
between absorption and emission will significantly restrict
the transfer of energy from the particle beam to the
electromagnetic wave.

In analysis of the SCE we use two models: (a) electrons
interact with radiation which can be described by a plane
monochromatic wave; and (b) an electron beam interacts
with a monochromatic spatially bounded wave. In Sec-
tions 2.1 and 2.2, the dynamics of electrons is studied for
both cases. A simple analysis of the classical equations of
motion shows that an electron can decelerate or accelerate
depending on initial conditions. For an electron beam this
effect results in modulation of its density and current at the
frequency of the electromagnetic wave (see Section 2.3). In
Sections 2.4 and 2.5 the quantum theory of the SCE is
presented [16 – 19]. This approach makes it possible to
consider absorption and emission separately.

Analysis shows that the asymmetry of these processes
lies at the heart of the modulation effect (see Section 1). The
asymmetry is responsible for magnetisation of the electron
beam [18]. Note that these effects are studied with account
being taken of angular and energy spreads of the electron
beam and also of angular and frequency spreads of the
photon beam (see Section 2.7). In Sections 2.8 – 2.12, 2.14
we develop the theory of how to amplify an electromagnetic
wave on the basis of the SCE — the Cherenkov klystron
[16, 20] and the Cherenkov laser [21 – 24]. Clearly, ampli-
fication is possible only if emission dominates over
absorption. An interesting possibility for total suppression
of absorption is considered in Section 2.12 [23]. In Sections
2.9, and 2.14 the SCE is considered in a constant magnetic
field [20, 24]. In this scheme the negative effect of the
angular spread of an electron beam can be neutralised and
the range of operation of the laser can be extended
significantly at the cyclotron resonance (see Sec-
tion 2.15) [25].

In section 2.13 the optical polarisation effects are
considered in a system of the Cherenkov laser type, related
to anisotropy and polarisation of the electron beam [22]. At
the end of Section 2 we discuss conditions under which the
effects in question can be observed experimentally.

2.1 Motion of an electron in the presence of a plane wave
in a dielectric medium
If an electron travels in an unbounded dielectric medium,
spontaneous Cherenkov emission occurs when the velocity
of the particle v, the wave vector k, and the frequency o of
the emitted electromagnetic wave are related by the
equation

oÿ k .v = 0 . (1)

Let an electromagnetic wave with the vector potential

A = A0 cos(ot ÿ k .r) (2)

propagate in the same medium, i.e. it is the same wave as
that induced by the SC effect. (In the analysis which
follows we suppose that the magnetic permeability is
m = 1.)
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We shall determine the changes in momentum and
energy of a particle using the classical equations of motion,

dp
dt

= eE +

e
c

v�H ,
de
dt

= ev.E , (3)

in the linear approximation with respect to the field.
Remembering that E = ÿcÿ1qA=qt, H = curl A and sub-
stituting the unperturbed trajectory of the particle in the
form

r = r0 + v0t , (4)

into the right-hand sides of Eqn (3), we obtain

p = p0 + Dp0 , e = e0 + De 0 . (5)

Here,

Dp0 =
�

ÿ

e
c

A0 ÿ
ek(v0

.A0)

c(oÿ k .v0)

�

cos[(oÿ k .v0)t ÿ k .r0] ,

(6)

De0 = ÿ

eo(v0
.A0)

c(oÿ k .v0)
cos[(oÿ k .v0)t ÿ k .r0] , (7)

v0 = p0c2
=e0 is the initial velocity of the particle, and n is

the refractive index. The field is assumed to be switched on
adiabatically slowly at t = ÿ1. The amplitudes of the
quantities De0 and Dp0 .k=jkj contain the Cherenkov pole
oÿ k .v0 which coincides with the spontaneous emission
condition (1).

At first we suppose that the quantity oÿ k .v0 > 0 (or
v0 cos y < c=n) and the inner product A0

.v0 > 0. The
strength of the electric field of the wave [Eqn (2)] is
E = E0 sin(ot ÿ k .r). Hence, the electrons lag behind the
wave and are decelerated and accelerated in turn within the
intervals of time

p(2N + 1) + k .r0

oÿ k .v0
> t >

2pN + k .r0

oÿ k .v0
,

2p(N + 1) + k .r0

oÿ k .v0
> t >

p(2N + 1) + k .r0

oÿ k .v0

(here E = oA0=c, N = 0;�1;�2::: are arbitrary integers). If
the quantity oÿ k .v0 < 0 (or v0 cos y > c=n), then the
electron overtakes the wave and is accelerated and
decelerated in turn within the intervals of time

jp(2N + 1)ÿ k .r0j

joÿ k .v0j
> t >

j2pN ÿ k .r0j

joÿ k .v0j
,

j2p(N + 1)ÿ k .r0j

joÿ k .v0j
> t >

jp(2N + 1)ÿ k .r0j

joÿ k .v0j
.

According to the above inequalities the intervals of time
within which these processes occur coincide and are equal to
T f = p=joÿ k .v0j. For this time the electron travels the
distance Lf = pv0=joÿ k .v0j. In these terms the amplitude
of the energy increment (7) is De = (1=p)jejE0

.Lf. Clearly,
the maximal increment (or decrement) in the energy of
particles is equal to the work done by the constant electric
field with the strength E0 along the path Lf.

Thus, the quantities T f and Lf give intervals of time and
parts of the trajectory, along which processes of stimulated
emission of energy from an electron to the wave or
stimulated absorption of energy of the wave by the electron
proceed. They coincide with the intervals of time and the
forming zones, which were introduced to describe sponta-
neous emission of particles [26 – 29].

Let velocities of electrons be such that the quantity
oÿ k .v0 tends to zero. Then the parameters T f and Lf

increase indefinitely. This result is concurrent with the
analysis of the spontaneous SC effect: emission of uni-
formly moving particle occurs along its whole trajectory in
an unbounded transparent medium. If the quantity
oÿ k .v0 = 0, then the energy and momentum of the
particle are divergent. The divergence is caused by the
infinitely long action of the electromagnetic field of the
wave [Eqn (2)] on the electron. We shall consider the case of
oÿ k .v0 = 0 in more detail. We suppose that the field is
switched on for a time Dt � 2t in accordance with the law

A0(t) =

1
2

A0

0

�

1 +

tanh t
t

�

. (8)

Substituting Eqns (2), (4), (8) into Eqn (3) and taking into
account Eqn (1) we obtain

De0 = ÿ

1
2

eE0
.v0

�

t + t ln

�

2
cosh t
t

��

sin(k .r0) . (9)

Here E0 = oA0

0=c is the amplitude of the strength of the
electromagnetic field of the wave [Eqn (2)]. If the time of
the electron – wave interaction Dt4 t, then

De0 = ÿeE0
.v0t sin(k .r0) . (10)

Clearly, the sign of the expression depends on the phase
f = k .r0. If De0 < 0, the particle is decelerated and
transfers its energy to the field [Eqn (2)]. If De0 > 0, the
particle is accelerated at the expense of the energy of the
electromagnetic wave.

Expressions (6), (7), and (10) are true provided that the
synchronism condition oÿ k .v0 = const is satisfied for the
electron and the wave. Actually the equality is violated even
by a small change in velocity. Therefore, the correct
expression for the energy and momentum of a particle
in the presence of a plane wave can be obtained only by
solving Eqns (3) exactly [30]. However, formulae (6) and (7)
are of practical importance. This is because of the fact that
actual beams have certain spreads in energies and angles
and the Cherenkov divergence can be eliminated by
averaging over these spreads.

2.2 The stimulated Cherenkov effect in a finite laser
beam
The stimulated Cherenkov effect in a laser beam of a finite
diameter was studied theoretically and experimentally in
Refs [31 – 38]. We consider the relatively simple case of an
electromagnetic wave propagating along the z axis and
which has a finite width in the x direction only:

A x ; y =

�

A x ; y(q
0

) q 0z d

�

o
2

c2 n2
ÿ jq 0j2

�

� exp(iq 0 .rÿ iot) dq 0

+ c:c: , (11)

A x ; y(q
0

) =

1

2
���

p
p ax ; y d exp

�

ÿ

q 02x d 2

4

�

, (12)

ax = ÿiA 0x , ay = A 0y ,

A z(r, t) � 0 .

Here o = 2pc=l is the frequency of laser radiation, l is its
wavelength in vacuum, and q 0 is the wave vector of the
Fourier component of the field.
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The Fourier transform of the vector potential [Eqn (12)]
is chosen so that, in the plane z = 0, the amplitude of the
field is attenuated on increase in jx j as the Gaussian
distribution of a width 2d. For simplicity the diffraction
divergence of the beam is assumed to be small (l=d5 1) so
that z-projections of the field can be neglected.

We want to determine the change in the energy and
momentum of an electron travelling in the xz plane and
intersecting the field [Eqn (11)] at an angle y, which is much
greater than the angular divergence of the laser beam. It
follows from Eqns (3), in the linear approximation with
respect to field, that

De0 = De cosf . (13)

Here the amplitude of the energy change is

De = xx DE ,

DE = 2p
���

p
p

mc2 d
l

exp

�

ÿ

q2
x d 2

4

�

, (14)

the phase is f = q .r0, and the dimensionless parameter is
xx = eA 0x=mc2.

The wave vector is found from the system of equations

oÿ q .v0 = 0 , (15)

q2
x + q2

z =

�

o

c
n

�2

, (16)

and its projections are

qx =

o

v2
0

h

v0x ÿ v0z

���������������������

(nb0)
2
ÿ 1

q

i

,

qz =

o

v2
0

h

v0z + v0x

���������������������

(nb0)
2
ÿ 1

q

i

, (17)

where b0 = v0=c.
The system of equations (15), (16) has another pair of

solutions, different from Eqns (17) in the signs in front of
the radical signs. Since the amplitude of the energy change
De drops on increase in qx , their contribution may be
neglected. The quantity De is very important in the theory
of interaction between free electrons and laser radiation. As
will be shown later, the characteristics of all processes in
which the electron is involved depend on De.

If the velocity of a particle is such that

qx =

o

v2
0

h

v0x ÿ v0z

���������������������

(nb0)
2
ÿ 1

q

i

= 0 , (18)

then its interaction with the field occurs under the optimal
conditions. In this case,

DE = 2p
���

p
p

mc2 d
l

, (19)

and the amplitude of the change in energy of the particle
De peaks.

We want to express De in terms of the width of the
angular distribution of the strength of the field [Eqn (11)].
Let the angle between the vector q 0 and the axis z be y. If
y5 1, then

q 0x = n
o

c
sin y � n

2p
l
y .

By substituting the last expression into Eqn (12), we obtain
the intensity of the luminous flux represented by the
Gaussian distribution in angles such that

dI
dy
� exp

�

ÿ

4(ln 2)y2

d
2
f

�

;

the quantity df = l
�����������

2 ln 2
p

=pnd characterises the angular
width of the distribution. We substitute the expression
d=l = 2

��������

ln 2
p

=pndf into

DE =

4
�����������

p ln 2
p

ndf
mc2 , (20)

and compare formulae (13), (14), (20), and (7). Clearly, if a
photon beam has an angular spread, the Cherenkov pole
o=(oÿ k .v0) is replaced by the angular width df according
to the remark at the end of Section 2.1.

Formula (13) is true provided that

jDej5e . (21)

The condition (21) imposes a constraint on the parameters
of the laser beam. Note that the z-projection of the vector
potential can be neglected in Eqns (3) when the inequality

v0x

v0z
4

qx

qz
(22)

holds. It holds automatically when qx = 0 [see Eqn (18)].
If the electron beam crosses the field [Eqn (1)] then,

depending on the phase f, its energy spectrum contains
either accelerated (De0 > 0) or decelerated (De0 < 0)
particles [Eqn (13)]. This results in a wider energy spectrum
of electrons, which was observed in experiments [27 – 30].

2.3 Modulation of an electron beam (the classical theory)
The stimulated Cherenkov effect causes the modulation of
energy [Eqn (13)] and, consequently, of the velocity of the
particle beam. In accordance with the theory of the
klystron, electrons can overtake those electrons which
have left the region of interaction at earlier instances of
time [35]. As a result the electron beam becomes inhomo-
geneous and its density and current break into oscillation
at the frequency of the external field and the harmonics of
the frequency. We shall neglect quantum effects in
considering the features of the modulated density and
current of an electron beam, with the aid of the kinetic
equation

qf
qt

+ v. qf
qr

+ F. qf
qp

= 0 , (23)

where F = eE + e=c(v�H ) is the Lorentz force.
Let an electron beam cross the electromagnetic wave

[Eqn (11)] propagating along the axis z at an angle y. If the
electric and magnetic fields are of low strength, then the
electron distribution function can be determined by the
perturbation theory, in the region x4 d, as

f = f0 + f1 . (24)

Here f0 is the initial distribution function

f1 = ÿ

���

p
p

2
e
c

A 0x d exp

�

ÿ

q2
x d 2

4

�

�

�

qx
qf0

qpx
+ qz

qf0

qpz

�

exp(iq.rÿ iot) + c:c: , (25)
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and the projections of the vector q are specified by the
expressions (17) [in calculations we take into account
inequality (22)].

By substituting the function (24) into the expressions

r = r0

�

f( p) dp , j = er0

�

v f( p) dp

for the density and current of the electron beam, we have

r = r0 + r1 , j = j0 + j1 , (26)

where r0 and j0 = er0

�

vf0 dp are the initial density and
current of the electron beam,

r1 = ÿ

���

p
p

2
e
c
r0A 0x d

�

exp

�

ÿ

q2
x d 2

4

�

�

�

qx
qf0

qpx
+ qz

qf0

qpz

�

exp(iq .rÿ iot) dp + c:c: , (27)

j1 = ÿ

���

p
p

2
e2

c
r0A 0x d

�

v exp

�

ÿ

q2
x d 2

4

�

�

�

qx
qf0

qpx
+ qz

qf0

qpz

�

exp(iq .rÿ iot) dp + c:c: (28)

For simplicity we suppose that all particles of the beam
have the same momentum, f0 = d(px ÿ p0x ) d(pz ÿ p0z) d(py),
before the interaction. Integration of Eqns (27) and (28) by
parts yields

r = r0

�

1 + x
De

e0

o(n2
ÿ 1)

v0x
sin(qzz ÿ ot)

+

De

e0
cos(qzz ÿ ot)

�

, (29)

jx = j0x

�

1 + x
De

e0

o(n2
ÿ 1)

v0x
sin(qzz ÿ ot)

�

,

jy = 0 ,

jz = j0z

�

1 + x
De

e0

o(n2
ÿ 1)

v0x
sin(qzz ÿ ot)

+

De

e0

1

b
2
0z

cos(qzz ÿ ot)

�

. (30)

Here we have taken into account condition (18); the wave
vector qz = o=v0z and the quantity De are specified by the
expressions (14) and (19).

Clearly, the density and current of the electron beam
break into oscillation at the laser radiation frequency o,
and also the depth of modulation increases in direct
proportion to the drift distance x (the second terms in
brackets). This result is well known from the theory of the
klystron. As for the third terms, they are responsible for
rearranging the density of particles when they move in the
field [Eqn (11)]; the rearrangement remains in the drift
region. However, the depth of modulation as a result of this
mechanism is not large.

In Section (2.7) the role of the angular, frequency, and
energy spreads of the light beam and particle beam will be
examined. We shall also give the conditions under which
formulae (29) and (30) are applicable. These conditions are

found by the perturbation theory. Since r15r0 and j15 j0,
we have

x
De

e0

o(n2
ÿ 1)

v0x
5 1 . (31)

2.4 Modulation of an electron beam (the quantum theory)
Let us now study the modulation effect for an electron
beam on the basis of a more general, quantum mechanical
approach. From the quantum standpoint a change in the
energy of a particle is caused by emission or absorption
(n = jDej=�ho) of photons. Clearly, in the region x4 d the
wave function of a particle beam is a superposition of
states describing different multiphoton processes. The
result is modulation of the density and current of the
electron beam. Since the amplitudes of emission and
absorption make opposite contributions, the depth of
modulation of the particle beam depends on the difference
between them.

We shall determine the depth of modulation of a
relativistic electron beam as a result of the SCE in the
simplest case — at the first harmonic of the field [Eqn (11)],
neglecting the spin effects. Let the electron beam be
described by the plane wave

c0 =

������

r0

2e

r

exp

�

ÿi
e

�h
t + i

p
�h

.r
�

(32)

before the interaction. Here r0 is the density of electrons, e
and p are their energy and momentum.

We shall determine the wave function of the electron
beam after the interaction with the use of the Klein – Gordon
equation

ÿ�h2 q
2
c

qt2 =

�

c2
( p̂ÿ

e
c

A)

2
+ (mc2

)

2
�

c . (33)

Its solution can be presented in the form

c = c0 + c
+

+ c
ÿ

.

Here c0 is the initial wave function of the electron beam
[Eqn (32)], the terms c

+

and c
ÿ

describe emission and
absorption of a photon. By substituting them into Eqn (33)
we have
�

ÿ(mc2
)

2
ÿ �h2 q2

qt2 + �h2c2 q2

qx 2 + �h2c2 q2

qz2

�

c
�

= ÿ2ecpx

�

A
�

q 0zd

�

o
2

c2 n2
ÿ jq 0j2

�

� exp[�i(q 0 .rÿ ot)] dq 0x dq 0z c0 , (34)

where A
+

= A x (q), A
ÿ

= A �

x (q) [see Eqn (12)]. We suppose
that electrons travel in the xz plane before the interaction.

The solution to Eqn (34) is sought in the form

c
�

=

�

j
�

(x , q 0z ) exp

�

ÿi
e� �ho

�h
t + i

pz � �hq 0z
�h

z

�

dq 0z . (35)

Then the partial differential equation (34) can be reduced
to the second order ordinary differential equation

d2

dx 2 j� + g
2
�

j
�

= ÿ2
e
c

px

�h2

������

r0

2e

r

�

�

A
�

q 0zd

�

o
2

c2 n2
ÿ jq 0j2

�

exp

�

i
px � �hq 0x

�h
x

�

dq 0x , (36)
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where,

g
�

=

1
�hc

[(e� �ho)

2
ÿ ( pz � �hq 0z )

2c2
ÿ (mc2

)

2
] .

Its solution has the form

j
�

= ÿ

2e
c

px

�h2

������

r0

2e

r

1
g
�

�

x

ÿ1

da
�

+1

ÿ1

dq0x sin[g
�

(x ÿ a)]

�A
�

q 0zd

�

o
2

c2 n2
ÿ jq 0j2

�

exp

�

i
px � �hq 0x

�h
a

�

. (37)

In the region x4 d the upper limits in the integral of
Eqn (37) can be replaced by +1. Integrating with respect
to a yields

j
�

= ip
2e
c

px

�h2

������

r0

2e

r

1
g
�

�

�

�

A
�

q0z d

�

o
2

c2 n2
ÿ jq0j2

�

d

�

px � �hq0x
�h

ÿ g
�

�

exp(ig
�

x) dq0x

ÿ

�

A
�

q0zd

�

o
2

c2 n2
ÿ jq0j2

�

d

�

px � �hq0x
�h

+ g
�

�

exp(ÿig
�

x) dq0x

�

.

(38)

The second terms in Eqn (38) are responsible for one-
photon reflection of electrons from the laser beam. If the x -
projection of the momentum of an electron is px 4 �h=d,
then the probability of such processes is exponentially low
and they can be neglected. The projections of the wave
vectors of photons q

�

involved in absorption and emission
are found from the laws of conservation of energy and
momentum, and from the dispersion equation

e� �ho = e
� , p� �hq� = p� ,

o
2

c2 n2
ÿ jq�j2 = 0 . (39)

Given the initial energy and momentum of the electron
we have

q�x =

o

v2

�

vx

�

1 �
�ho
2e

(1 ÿ n2
)

�

ÿvz

�

n2
b

2
ÿ

h

1 �
�ho
2e

(1 ÿ n2
)

i2
�1=2�

,

q�z =

o

v2

�

vz

�

1 �
�ho
2e

(1 ÿ n2
)

�

+vx

�

n2
b

2
ÿ

h

1 �
�ho
2e

(1 ÿ n2
)

i2
�1=2�

. (40)

The second pair of solutions, which are different from
Eqns (40) in that they have different signs in front of the
radical signs, can be neglected as in the case of Eqn (17). If
n2
b

2
ÿ 14 �ho(n2

ÿ 1)=2e, then the roots in Eqns (40) can
be expanded into the Taylor series,

q� = q� Dq . (41)

The projections of the vector q are specified by expressions
(17), and we can write

Dqx =

�ho
2e

n2
ÿ 1

������������������

n2b
2
ÿ 1

q qz , Dqz = ÿ

�ho
2e

n2
ÿ 1

������������������

n2b
2
ÿ 1

q qx . (42)

By neglecting the term in the conservation law
[Eqn (39)] we find the expression for the momenta of
electrons which have emitted or absorbed a photon

p+

= p + �hq , pÿ = pÿ �hq .

The quantum corrections [Eqn (42)] introduce an asym-
metry in these formulae and play a leading part in the
effect of quantum modulation of an electron beam. The
momenta can then be written as

p+

= ( p + �hq+

)ÿ �hDq , pÿ = ( pÿ �hqÿ)ÿ �hDq .

Taking into account Eqns (38) and (40) we arrive at the
final expression for the wave function of the electron beam
in the region x4 d,

c =

������

r0

2e

r

�

1 +

1
2
De

+

�ho
exp(ÿiot + iq+ .r)

ÿ

1
2
De

ÿ

�ho
exp(iot ÿ iqÿ .r)

�

c0 , (43)

De
�

= 2p
���

p
p

mc2
xx

d
l

exp

�

ÿ

(q�x )

2d2

4

�

.

The density of the electron beam is

r = i�hc�
q

qt
c+ c:c:

=

1
2
r0

�

1 +

1
2
De

+

�ho
e+ �ho
e

exp(ÿiot + iq+ .r)

ÿ

1
2
De

ÿ

�ho
eÿ �ho
e

exp(iot ÿ iqÿ .r)
�

+ c: c: , (44)

in the linear approximation with respect to field. If an
electron interacts with the wave under the optimal
conditions:

qx = 0 , qz =

o

vz
=

o

c
n ,

Dqz = 0 , Dqx =

1
2
�ho2

(n2
ÿ 1)

evx
, (45)

then

r = r0

�

1 + 2
De

�ho
sin(Dqx x) sin(qzz ÿ ot)

+

De

e
cos(Dqx x) cos(qzz ÿ ot)

�

. (46)

Here the quantity De is specified by the expressions (14)
and (19): the terms of order of �ho=e are omitted.

We will now analyse the expression in brackets in
Eqn (46). The second term is proportional to the difference
of amplitudes of emission and absorption of a photon, and
describes the quantum modulation of the electron beam.
Interestingly enough, this difference depends both on the
asymmetric part of the loss Dqx and on the distance to the
point of observation along the x axis. In the region
Dqx x5 1 the modulation is classical in nature and the
expression for the density of electrons [Eqn (46)] coincides
with Eqn (29). Since the second term is proportional to x in
this limit, the associated modulation can be called the
klystron modulation. In the region Dqx x � 1 the difference
between the amplitudes of emission and absorption peaks,
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and the classical modulation goes into a quantum one with
depth 2De=�ho. Subsequently the factor sin(Dqx x) causes
the spatial modulation of the density of the electron beam
with the period L = 2p=Dqx along the x axis, whereas the
depth of modulation remains constant.

The amplitude of modulation of the density of electrons,
owing to the third term, is classical in nature and is well
below the amplitude in the previous case:

De

e
5

De

�ho
. (47)

As is noted in Section 2.3, it is associated with the
rearrangement of the density of electrons in the presence of
the laser radiation, and the rearrangement remains in the
drift region x > d. The quantum correlations cause an
additional spatial modulation of the density of electrons
with the period L = 2p=Dqx along the x axis. The modula-
tion of the electron current occurs similarly, and is given by

j = j0 + j1 , (48)

where j0 = er0v is its initial value and

j1 = er0

�

2v
De

�ho
sin(Dqx x) sin(qzz ÿ ot)

+

qc2

o

De

e
cos(Dqx x) cos(qzz ÿ ot)

�

. (49)

The gap between the regions of the classical and quantum
modulations can be determined from the condition
Dqx x 1 = 1:

x 1 =

l

p

e

�ho
bx

n2
ÿ 1

. (50)

The expressions (46) and (49) are true for

De

�ho
5 1 . (51)

Note in conclusion that the experimental and theoretical
research of the quantum modulation was initiated in
Refs [40, 41]. A comprehensive review of the results is
given in Ref. [42].

2.5 Modulation of a polarised electron beam
The expressions for the depths of modulation of the current
and density of an electron beam [Eqns (46), (48), and (49)]
are generally applicable.

Using these formulae, we will evaluate the contribution
of the magnetic moment of an electron in the modulation of
the electron beam. Since the quantity De � mH in the case
of a spin interaction (here m = e�h=2mc is the magnetic
moment of the electron and H is the magnetic field
strength), the amplitudes of terms responsible for the
klystron modulation are classical in nature. Interestingly
enough, the Planck constant �h enters only into the
asymmetric part of the loss and has no effect over distances
x � x 1.

We shall find the expressions for the density and current
of a polarised electron beam from the Dirac equation

i�h
q

qt
c =

�

ca .
(q̂ÿ

e
c

A) + mc2
b

�

c . (52)

In order to extract the pure spin contribution we assume
that the electromagnetic wave is polarised along the y axis
such that

A y =

�

A y(q
0

) q 0zd

�

o
2

c2 n2
ÿ jq 0j2

�

� exp[i(q 0 .rÿ ot)] dq 0 + c:c: , (53)

A y(q
0

) =

1

2
���

p
p A 0yd exp

�

ÿ

q02x d2

4

�

,

and the electron beam moves in the xz plane.
If we solve the Dirac equation in the linear approxima-

tion with respect to the field, the wave function of the
electron beam takes the form,

c = c0 + c
+

+ c
ÿ

, (54)

in the region x4 d. Here

c0 =

������

r0

2e

r

u exp

�

ÿi

�

e

�h
t ÿ

p
�h

. r
��

(55)

is the wave function of the initial electron beam and the
terms

c
�

= ÿi
ep

2�hcpx
exp[i(q� .r � ot)]( p̂

�
+ mc) ^A

�
(q�)c0 (56)

describe absorption and emission of a photon. The
quantities q� are specified by the expressions (40) and
(45); the operators

p̂
�

= (pm � �hq�m )g
m , ^A

�
= Am

�

gm , Am

+

= [0, 0, A y(q), 0] ,

Am

ÿ
= (Am

+

)

� , pm = (e=c, p) , (q�)m = (o=c, q�)

are the four momenta of electrons and photons involved in
absorption (+) and emission (ÿ).

We determine the density, r = c
+

c, and the current,
j = ecc+

ac, of the electron beam under the assumption
that the polarisation matrix has the form

r̂ =

1
2 ( p̂ + mc) (1 ÿ g

5â) (57)

before the interaction [Eqn (43)]. The four-dimensional
vector a m is related to the electron polarisation vector f by
the equations

a0 =

p.f
mc

, a = f +

(f .p)p
(e+ mc2

)m
. (58)

Taking Eqns (54) – (57) into account we have

r = r0

�

1 +

DE
e
xy

mc2

e

ax

bxbz
sin(Dqx x) sinf

�

, (59)

jx = j0x

�

1 +

DE
e
xy

mc2

e

a0 ÿ bzaz

b
2
xbz

sin(Dqx x) sinf

�

, (60)

jy = 0 ,

jz = j0z

�

1 +

DE
e
xy

mc2

e

ax

bxbz
sin(Dqx x) sinf

�

.

Here r0 and j0 = er0v are the initial density and current of
the electron beam; the quantity De is specified by Eqn (19);
xy = eA 0y=mc2; bx ;z = vx ;z=c; and the phase f = qzz ÿ ot.
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In calculations we do not consider the terms of order of
(DE=e)xy�ho=e which are associated with the induced
magnetisation of the electron beam by the laser radiation
(see Section 2.6). The cited approximation is true when

jaj4
�ho
e

. (61)

Note also that the constraints on the angular and energy
spreads of the electron beam are specified by inequal-
ities (82). It is clear from Eqns (59) and (60) that the
modulation of a polarised electron beam is specified by the
asymmetric part of the loss Dqx .

Since an actual laser beam always has an angular
spread, it acquires an addition to its state, with polarisation
along the x axis, upon traversing the polariser. In order to
assess the possibility of extracting the spin contribution we
shall give the expressions for the density and current of an
electron beam in the general case of an elliptically polarised
electromagnetic wave [see Eqn (11)]. As done earlier, we will
determine the wave function and then the density and
current of the electron beam, given by

r = r0

�

1 + 2
DE
�ho

xx sin(Dqx x) sinf+

DE
e
xx cos(Dqx x)

� cosf+

DE
e

mc2

e

1
bxbz

sin(Dqx x)

�(axxy sinf+ ayxx cosf)

�

, (62)

jx = j0x

�

1 + 2
DE
�ho

xx sin(Dqx x) sinf

+

DE
e
xy

mc2

e

a0 ÿ bzaz

b
2
xbz

sin(Dqx x) sinf

�

,

jy = er0c
DE
e
xx

mc2

e

a0 ÿ bzaz

bxbz
sin(Dqx x) cosf , (63)

jz = j0z

�

1 + 2
DE
�ho

xx sin(Dqx x) sinf

+

DE
e

xx
1

b
2
z

cos(Dqx x) cosf+

DE
e

mc2

e

1
bxbz

� sin(Dqx x)(axxy sinf+ ayxx cosf)

�

.

In calculations we assume that inequality (61) holds. Note
that the expressions (62) and (63) go into formulae (59)
and (60) for xx = 0 and that they coincide with Eqns (46)
and (48) for a m

= 0.
For interpretation of the above results it is convenient to

make use of nonrelativistic quantum mechanics. In this
limit the Hamiltonians of the orbital ( ^H 1 = ÿeA .p=mc) and
spin ( ^H 2 = ÿl̂ .H, where l̂ = e�hr=2mc and r is the Pauli
matrix) interactions enter independently. Thus each con-
tribution can be examined separately. We solve the Pauli
equation [44] in the linear approximation with respect to the
field and substitute the wave function c into the definitions
of the current and density of electrons,

r = c
+

c+ c:c: , (64)

j =
e

2m
c

+p̂c+ c:c:+ c curl I . (65)

Here I = (e�h=2mc)c+

rc is the magnetisation of the
particle beam. Since the polarisation matrix takes the
form r̂ = (1 + fr)=2 in the nonrelativistic limit, we obtain
the same expressions as (62), (63), for v=c5 1.

The calculations show that the second and third terms in
Eqn (62) are associated with the orbital motion, and the
fourth term with the spin motion. Analysis of the projec-
tions of the current [Eqn (63)] is more complicated. It
follows from Eqn (64) that the current modulation is caused
both by the modulation of the density of the particle beam
(the terms of the type c

+pc) and by the magnetisation
modulation (the terms of the type of curl I). The first effect
is associated with the oscillating terms in the x - and z-
projections of the current. It is shown in Section 2.6 that the
magnetisation breaks into oscillation due to: (a) the induced
magnetisation of the electron beam; (b) the magnetisation
modulation associated with the modulation of the density
of electrons; and (c) the oscillation of magnetic moments of
electrons about the magnetic field of the laser radiation.
The contribution of the first effect is negligible [see
Eqn (61)], therefore it is not considered. The effects (b)
and (c) are responsible for the emergence of the y-projection
of the current. Note that both effects also make a
contribution to the x -projection of the current. However,
the terms which describe them are cancelled, with a part of
the terms responsible, as is noted above, for the density
modulation.

Clearly, the spin effects are large when the quantities
xx ;yDE=e � 1. However, the perturbation theory is not
applicable for the orbital motion in this case
(xx ;yDE=�ho4 1). To avoid complicating the problem
with the analysis of multiphoton processes, we assume
that the field is polarised along the y axis and that electrons
travel in the xz plane [see Eqns (59), (60)]. If the conditions
are optimal, i.e., the particle beam is fully polarised along
the x axis, then it follows from Eqns (62), (63), that the
ratio of the x - and y-projections of the field obeys the
inequality

xx

xy
4

�ho
2e

mc2

e

ax

bxbz
. (66)

2.6 Magnetisation of an electron beam by laser radiation
The density, current, and state of polarisation of an
electron beam are changed as a result of the interaction
between the beam and the laser radiation in a dielectric
medium. Clearly, the last effect is associated with the
magnetic field of the electromagnetic wave. It is well
known that a constant magnetic field causes the magnetic
moment of a particle to precess. If, in addition, the electron
experiences an inelastic collision with the surrounding
medium, its magnetic moment is gradually oriented along
the magnetic field so that the potential energy U = ÿl .H is
minimum.

The pattern is complicated when the electron interacts
with the magnetic field of the laser radiation. Since the
direction and magnitude of the magnetic field oscillate with a
frequency o, the magnetic moment of a particle-at-rest
oscillates (not precesses) about the magnetic field at the
frequency o.

If an electron beam crosses the wave under the
synchronism condition (1), the magnetic moment of each
particle turns through the angle Dj which depends on the
phase of the field [Eqn (11)] and on the duration of
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interaction T = d=vx . Clearly, the magnetisation of the
electron beam oscillates at the frequency o at a fixed
point (x4 d, y, z) after the interaction. If an electron is
involved in nonelastic processes of emission and absorption
of a photon, a magnetisation of the electron beam along the
magnetic field of the laser radiation results.

The magnetisation of the electron beam is determined
by use of the Dirac equation (52). In the linear approxima-
tion with respect to the field, the wave function of the
electron beam takes the form of Eqns (64) – (65) where the
vector A(q) is specified by Eqn (12). In the same approx-
imation the magnetisation of the electron beam is

I =

e
mc

c
+

Rc = I0 + I1 , (67)

where

R =

�h
2

r 0
0 r

� �

and I0 =

e
mc

c
+

0 Rc0

is the spin operator and the initial magnetisation of the
electron beam, I0 is the linear correlation with respect to
the field.

If the polarisation matrix of the particle beam has the
form of Eqn (57) before the interaction, then the projec-
tions of the vector I1 are

I1x = r0m

�

DE
vzpx

xy(1 ÿ b
2
z ) sin(Dqx x) sinf

ÿ

DE
e

mc2

e

az ÿ bz(b
.a)

bxbz
cos(Dqx x) cosf

+2
DE
�ho

mc2

e
xx ax sin(Dqx x) sinf

�

,

I1y = r0m

�

DE
vzpx

xx (1 ÿ b
2
z ) sin(Dqx x) cosf

+

DE
e

mc2

e

az ÿ bz(b
.a)

bxbz
cos(Dqx x) sinf

+2
DE
�ho

mc2

e
xx ay sin(Dqx x) sinf

�

, (68)

I1z = r0m

�

DE
e
xy sin(Dqx x) sinf

+

DE
e

mc2

e

1
bxbz

cos(Dqx x)(axxx cosfÿ ayxy sinf)

+2
DE
�ho

mc2

e
xx az sin(Dqx x) sinf

�

,

by virtue of Eqns (53) – (56). Here m = e�h=2mc is the
magnetic moment of the electron, the vector I0 is related
to the initial polarisation of the electron beam f by the
equation

I0 = r0 m
mc2

e

�

f +

p(f .p)
(e+ mc2

)m

�

. (69)

By comparing Eqns (69) and (58) we have

I0 = r0

�

m
mc2

e

�

a .

The vectors q, Dq, and the quantity DE are specified by the
expressions (45) and (19); the dimensionless parameters xx ;y

are xx ;y = eA 0x ;y=mc2.
We will now analyse the above formulae. At first we

suppose that the electron beam is not polarised before the
interaction: jf j = 0. Analysis of the first term in Eqn (68)
shows that the asymmetric part of the loss Dqx causes the
induced orientation of magnetic moments of electrons along
the magnetic field of the wave [Eqn (11)], as well as along the
magnetic field H = [v, qA=qt]=c2, which appears when we
pass to the frame of reference moving together with the initial
electron.

If the initial polarisation of electrons is not zero, jf j 6= 0,
then, after the interaction with the laser radiation, the
magnetisation at a fixed point of observation oscillates at
the frequency o, first, due to oscillation of the magnetic
moment about the magnetic field of the wave [the second
terms in Eqn (68)] and, second, due to the modulation of
the density of the electron beam [the third term in Eqn (68)].
The expressions (68) are true when the angular and energy
spreads of the electron beam obey inequalities (82). The
spin current ( jsp = c curl I ) and the magnetic field
(H = 4pI ) which occur in the electron beam can readily
be determined by means of the formulae for magnetisation.
Note that the terms responsible for the spin current arise
automatically when expressions (60) and (63) are deter-
mined. However, they are omitted since their contribution is
small under the condition (6). Several effects associated
with the spin current will be considered in Sections 2.11 –
2.13.

2.7 Accounting for spreads in frequencies, energies, and
angles
We shall now examine the influence of the angular, energy,
and frequency spreads of electron and photon beams on
the effects we considered in Sections 2.3 – 2.6. Let the
central axis of an electron beam (the z0 axis) lie in the xz
plane at an angle y to the z axis, and let its momentum
distribution be Gaussian:

f( p) =

�

4 ln 2
p

�3=2 1

D
2
?

D
jj

� exp

�

ÿ4 ln 2
( pz0 ÿ p0)

2

D
2
jj

ÿ 4 ln 2
p2

x 0 + p2
y

D
2
?

�

(70)

(the axes y and y 0 of both coordinate systems coincide). The
widths of the energy and angular spreads of such an
electron beam are D = v0Djj and d = D

?
=p0, respectively. If

the duration of the electromagnetic wave is t, its spread in
frequencies is specified by means of the formula

g(o) =

t

2
���

p
p exp

�

ÿ

(oÿ o0)
2
t

2

4

�

. (71)

Since the photon wave vector distribution is specified by
the expression (12), the widths of spreads of photons in
angles and frequencies are df = l

�����������

2 ln 2
p

=pnd (see Sec-
tion 2.2) and Do =

�����������

8 ln 2
p

=t, respectively. To simplify
the analysis we will average the expressions for the density
of the particle beam [Eqns (29), (46)] over the spread
[Eqn (70)]. Let the average momentum p0 satisfy the
synchronism condition oÿ qz0v0 = 0. Taking into account
the fact that j pz0 ÿ p0j, j px 0 j, j py j5 p0, we can expand the
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projections [Eqn (17)] of the wave vector q into the Taylor
series such that

qx =

on
cp0

px 0 ÿ
o

v0p0 sin y

�

mc2

e0

�2

( pz0 ÿ p0) ,

qz =

o

v0 cos y
(72)

[it is assumed that qx (0, 0, p0) = 0].
By substituting the expressions (72) into (27), (43), and

averaging over momenta we have

r
kl

= r0

�

1 + R

�

x
De

e

o

vx
(n2

ÿ 1) sin(qzz ÿ ot)

+

De

e
cos(qzz ÿ ot)

��

, (73)

r
kw

= r0

�

1 + R

�

De

�ho
sin(Dqx x) sin(qzz ÿ ot)

+

De

e
cos(Dqx x) cos(qzz ÿ ot)

��

. (74)

Here the quantities De, Dqx , qz are specified by means of
formulae (14), (19), (45), where the quantities v, p, e are
changed for v0, p0, e0. The factor R is given by

R =

���

2
p

df
p0

Dpe

�

e0

mc2

�2

nb0 sin y exp

�

ÿ

x 2

d2

D2
e

D2
pe

�

, (75)

where

De =

�

D
2
jj

+ D
2
?

n2
b

2
0 sin2

y

�

e0

mc2

�4 �1=2

(76)

is the effective width of the electron beam, and

Dpe =

�

D2
e + d

2
f2n2p2

0b
2
0 sin2

y

�

e0

mc2

�4 �1=2

(77)

is the combined effective width of the electron and photon
beams.

If the width of the angular spread of the photon beam is
small,

df5 min

�

1
���

2
p

D
?

p0
,

1
���

2
p

1
nb0 sin y

�

mc2

e0

�2
D
jj

p0

�

, (78)

then Dpe � De and R � exp(ÿx 2
=d2

). Since the drift
distance is x4 d, the modulation effect is exponentially
low in this case. If

df4 min

�

1
���

2
p

D
?

p0
,

1
���

2
p

1
nb0 sin y

�

mc2

e0

�2
D
jj

p0

�

, (79)

the factor R is

R = exp

�

ÿ

x 2

l
2

p2

4 ln 2

D
2
jj

+ D
2
?

n2
b

2
0 sin2

y(e0=mc2
)

4

p2
0b

2
0 sin2

y(e0=mc2
)

4

�

. (80)

Clearly, the modulation effect is not small when the
index of the exponent (80) is less than or of the order of

unity. We can now determine the constraints on the energy
and angular spreads of the electron beam:

D

e0
9

2
��������

ln 2
p

p

l

x

�

e0

mc2

�2

b
3
0 sin y ,

d9
2
��������

ln 2
p

p

l

x
1
n

. (81)

The larger the drift distance x , the progressively greater will
be the requirements on the quality of the electron beam.
Since the quantum modulation occurs over distances
x � 1=Dqx , we obtain very severe constraints on the
spreads for the effect to be observed:

D

e0
92

��������

ln 2
p

b
2
0(n

2
ÿ 1)

�ho
e0

�

e0

mc2

�2

,

d92
��������

ln 2
p n2

ÿ 1
nb0 sin y

�ho
e0

. (82)

Let the interaction between the electron beam and light
occur in a gaseous atmosphere (n = 1 + Dn, where Dn5 1).
In this case e04mc2, y � mc2

=e0, and the angular spread
of the electron beam has a dominant role in the cutting
factor [Eqn (80)]. The factor R can suitably be rewritten for
the further analysis as

R = exp(ÿo2T 2
) ,

T = xnd

4
��������

ln 2
p

c
. (83)

After the interaction, electrons reach the point of
observation x at different instances because of the angular
spread of the electrons. The time T is proportional to the
maximal difference between these times. The factor R is not
small if

T 4 T 0 , (84)

where T 0 = 2pc=o0 is the average period of oscillation of
the electromagnetic wave. Since the duration of the wave is
t4 T 0,

T5 t . (85)

By averaging the expressions (73) and (74) over the
spread [Eqn (71)] under the condition (85), we obtain the
expression

R = exp

�

ÿo
2
0T 2

ÿ

(t ÿ n0z=c)2

t2

�

(86)

[for simplicity we do not take into account the dispersion
of the gaseous atmosphere n(o) = n0]. Clearly, under
condition (84) the cutting factor coincides with the
envelope of the electromagnetic wave
R = exp[ÿ(t ÿ n0z=c)2

=t
2
]. If the wave duration is greater

than the time for which the modulation effect is observed
(t4Dt) and if condition (81) is satisfied, then R = 1 and
the depth of modulation is maximum.

2.8 The classical and quantum theories of the Cherenkov
klystron
We shall consider the possibility of transmitting the kinetic
energy of an electron beam to a wave on the basis of the
SCE. The change in the energy of a single particle after the
interaction with the field [Eqn (11)] is determined in the
linear approximation with respect to the field in Sec-
tion 2.2. Here we extend this result to the electron beam.
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First we consider the case of a spatially homogeneous
particle beam before the interaction. It follows that the
same number of electrons falls within each phase of the
field. Since the sign of expression (13) depends on the
phase f, half the particles of the electron beam are
accelerated (De > 0), and the other half are decelerated
(De < 0). This presents significant problems as regards
accelerating the electrons so as to amplify the electro-
magnetic wave. In the first case only a small fraction of
electrons which fall within a proper phase of the wave is
maximally accelerated. In the second case the effect is
absent since the number of decelerated electrons is equal to
the number of accelerated electrons.

The last result can be illustrated vividly by determining
the energy loss (W ) for the electron beam,

W =

�

j.E dv . (87)

Integration is performed over the whole space where the
interaction between the field and electrons occurs. If we
substitute the expression for the homogeneous electron
beam j = er0v and take into account the fact that the
electric field strength is E = ÿcÿ1qA=qt [see Eqn (11)], then
we obtain W = 0. The calculation shows that the electron
beam must be inhomogeneous, r = r(r, t), for an exchange
of energies between the wave and electrons to occur.

If the period of its spatial inhomogeneity is of the order
of the emission wavelength l, then the balance between the
electrons falling within the decelerating and accelerating
phases is violated. In order to amplify the electromagnetic
wave the initial conditions are to be chosen so that the
number of decelerated electrons is greater than the number
of accelerated electrons. The scheme of such an amplifier is
well known in radiophysics and bears the name klystron
[39]. It was considered for the first time in the optical range
of frequencies by A N Skrinskii and N A Vinokurov for
the undulator version of the amplifier [45]. An interesting
method for increasing the efficiency of the klystron was
proposed in Ref. [46].

We shall now consider the feasibility of the Cherenkov
klystron. It is shown in Sections 2.3 and 2.4 that the current
and density of an electron beam are modulated by the SCE.
Since the oscillating terms of the currents [Eqns (30) and
(48)] are proportional to the outer field, the exchange of
energies between electrons and the field [Eqn (11)] occurs in
the second approximation with respect to the wave only.
Since the modulation effect can be both classical (x5 x 1)

and quantum (x 5 x 1) in nature, we shall find the gain in
both cases.

To determine the gain of the classical Cherenkov
klystron we use the closed consistent system of the
Maxwell – Vlasov equations,

qf
qt

+ v . qf
qr

+ F. qf
qp

= 0 , (88)

j = er0

�

(vf ) . dp , (89)

curl H =

4p
c

j +
n2

c
qE
qt

, curl E = ÿ

1
c
qH
qt

(90)

(it is assumed that the magnetic permeability of the
medium is m = 1).

In what follows we also use the system of equations
which results from combining Eqn (88) with the wave
equation

H2A ÿ

n2

c2

q2A
qt2 = ÿ

4p
c

j , (91)

where A is the vector potential of the electromagnetic wave.
As a rule the amplitude of the field A0 [Eqn (2)] depends
weakly on the r coordinate in the amplifying medium. In
this case the left-hand side of Eqn (91) can be accelerated
and written as

H2A ÿ

n2

c2

q2A
qt2 � ÿi exp[i(ot ÿ k .r)](k .~H)A0 + c: c:

On solving Eqn (91) we can find the gain for the amplitude
of the electromagnetic wave GA . In what follows we shall
always determine the gain for the intensity of the
electromagnetic wave G, which is related to GA by G = 2GA .

In the analysis of different versions of the free electron
laser we restrict ourselves to the linear approximations of
the amplified wave and the gain (the latter implies that we
neglect the dependence of the amplitude on distance and
time). The general remarks having been made, we can
return to calculations of the Cherenkov klystron.

Let us study the scheme in Fig. 1 for H0 = 0. An
electron beam crosses an electromagnetic wave propagating
along the z axis at an angle y and then moves in the drift
region x > d. In this region the current of the electron beam
is specified by the expression (26). At the distance x = x 0

the same beam of light is again directed at the electron
beam by means of two mirrors R 1 and R 2 and is amplified
or absorbed.

The vector potential of the amplified wave has the form

A x =

�

A(kx ) exp(i k .rÿ iot ÿ ikx x 0 + if) dkx + c:c: ,

A z � 0 , (92)

A(kx ) = ÿ

i

4
���

p
p A 1x d exp

�

ÿ

k2
x d2

4

�

,

kz =

�

o
2

c2 n2
ÿ k2

x

�1=2

, ky = 0 ,

x

x 0
z0 e

R 2

y

R 1

H0

e

z

x 0

Figure 1.
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where the phase f is a function of the distance R 1R 2

between the mirrors, and the amplitude A 1x varies slowly
with the z coordinate. As in the case of Eqn (11) the
Fourier transform is chosen so that the beam of light has
the Gaussian envelope of width d in the plane z = 0. (The
diffraction divergence of the light beam is assumed to be
small and its width is assumed to be close to a constant).

The simplest way to find the gain for a spatially
inhomogeneous wave is to use the energy relations. By
multiplying Eqn (90) by H and E and summing them up we
have

1
8p

q

qt
(n2
jHj2 + jHj2) = ÿj.Eÿ

c
4p

div(E�H ) . (93)

If we integrate both sides of this inequality over the
space between two parallel planes at a distance dz from
each other and neglect the rapidly oscillating terms, we have

dP = P(z2)ÿ P(z1) = ÿ dz
�b=2

ÿb=2
dy
�

+1

ÿ1

dx j.E , (94)

where,

P =

c
4p

�b=2

ÿb=2
dy
�

+1

ÿ1

dx (E�H )

.n (95)

is the flux of the energy of the electromagnetic wave, the vec-
tor n is directed along the z axis. Since there is no feedback
between the amplified wave [Eqn (92)] and the electron
beam [Eqn (26)], on passing through the interval [0; z] the
time averaged flux of the electromagnetic wave takes the
form

P = P0

�

1 +

1
2
Gz

�2

, (96)

where P0 is the energy flux through the plain z = 0 and

G = ÿ

1
���������

P0P
p

�b=2

ÿb=2
dy
�

+1

ÿ1

dx j.E . (97)

If Gz5 1, then the wave is amplified linearly:
P = P0(1 + Gz), where the amplification factor is specified
by Eqn (97). On substituting the expression for the current
[Eqn (28)] and for the energy flux

P0 = c

������

2p
p

16p

�

o

c

�2

A 2
0x nbd (98)

into Eqn (97), we have

G = 4p2
������

2p
p

r0e2 d
l

�

c
o

�2 1

nc2 e if

�

�

vx

�

qx
qf0

qPx
+ qz

qf0

qPz

�

exp

�

iqx x 0 ÿ
q2

x d 2

2

�

dp + c:c:
(99)

Since the amplitude A 1x of the field [Eqn (92)] varies slowly
with the coordinate z, the flux P is specified by means of
formula (98) with A 1x in place of A 0x . The projection of the
wave vector q is specified by Eqn (17).

The analysis of the previous section shows that the
integral in Eqn (99) is not small when inequality (79) holds.
On substituting the distribution function (70) and the
expansion (72) into Eqn (99), and integrating with respect
to the variables Px 0 ; Py ; Pz0 with regard to Eqn (79) we get

G = 8p2
������

2p
p

r0r0x 0
d
ln

mc2

e0

�(n2
ÿ 1) sinf exp

�

ÿ

p2

4 ln 2

�

x 0

l

�2

�

��

D
?

P0

�2

n2

�

D
jj

P0

�2�mc2

e0

�4 1

b
2
0 sin2

y

��

. (100)

Here r0 = e2
=mc2 is the classical electron radius.

Clearly, the gain is not small if the phase f = p=2, and

x 0 < min

�

2
��������

ln 2
p

p
lb0 cos y

P0

D
?

,

2
��������

ln 2
p

p
l sin y

�

e0

mc2

�2 P0

D
jj

�

. (101)

The angular spread of the electron beam gives rise to the
principal constraint on the drift distance x 0 for relativistic
particles (e04mc2

). In Section 2.9 we will discuss how the
effect of the angular spread can be neutralised by a
constant magnetic field. If x 0 = l

�����������

2 ln 2
p

P0=pD?n, then the
gain is maximum:

G = 45r0r0l
d
l

P0

D
?

mc2

e0

n2
ÿ 1
n

. (102)

We shall now determine the gain of the quantum
klystron. If we substitute the expressions for the current
[Eqn (48)] into Eqn (97) and average over the spread
[Eqn (70)] with regard to Eqn (79), then

G = 8p
������

2p
p

r0r0b0d
mc2

�ho
sin y

�

1
n

sin(Dqx x 0) sinf exp

�

ÿ

p2

4 ln 2

�

x 0

l

�2

�

��

D
?

P0

�2

n2
+

�

D
jj

P0

�2�mc2

e0

�2 1

b
2
0 sin2

y

��

. (103)

Here Dqx = �ho(n2
ÿ 1)=(2e0v0 sin y). Since the quantum

modulation of the particle beam occurs over distances
x 0 � 1=Dqx , very severe constraints on the quality of the
electron beam [Eqn (82)] result.

Note also that the perturbation theory we use to
determine the currents [Eqns (26), (48)] is true for field
inequalities (31), (51) specified. In the classical limit
(�h ! 0), formula (103) goes into Eqn (100).

2.9 Theory of the Cherenkov klystron in a constant
magnetic field
The negative role of the angular spread of an electron beam
in the Cherenkov klystron can be neutralised by a constant
magnetic field, which is applied in the direction of motion
of the electrons (see Fig. 1). The gain for the electro-
magnetic wave is determined using the system of equations
(88), (90). In the case considered, the Lorentz force is

F = eE +

e
c
[v.

(H + H0)] , (104)

where the strength of the constant magnetic field
H0(0, 0, ÿ H 0) is opposite to the z axis.

In determining the electron distribution function, we
take into account the constant magnetic field exactly and
the modulating wave [Eqn (11)] in the first approximation.
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In a constant magnetic field the solution to Eqn (88) takes
the form

f1 = f0( p0x 0 , p0y , p0z0) . (105)

Here the function f0 is specified by the expression (70). The
equations

p0x 0 = px 0 cosOt ÿ py sinOt ,

p0y = py cosOt + px 0 sinOt , (106)

p0z0 = pz

are the characteristics of Eqn (88); O = O0mc2
=e;

O0 = jejH 0=mc is the Larmor frequency; and

e = [(mc2
)

2
+ c2

( p2
0x 0 + p2

0y + p2
0z0)]

1=2

= [(mc2
)

2
+ c2

j pj2]1=2
:

In the first approximation with respect to the field
[Eqn (11)] we have

f = f1 + f2 ,

where

f2 = ÿ2pe sin y
qf0

qpz0

�

J0

�

v
?

q 0x 0

O

�

q 0z

�d

�

o
2

c2 n2
ÿ jq0j2

�

d(oÿ q 0z0vz0)

�Eq0 exp

�

iq0 .rÿ iot ÿ iq0x 0
v
?

O
sinj

�

dq0 + c:c: (107)

is the Fourier transform of the electric field
Eq0 = ioA x (q

0

)=c [see Eqn (12)]; y is the angle between
the axes z0 and z; tanj = py=px ; J0(a) is the Bessel function
of zero order. In Eqn (107) only terms responsible for the
stimulated Cherenkov effect are taken into account:

oÿ qz0vz0 = 0 . (108)

Clearly, the difference between Eqns (108) and Eqn (15),
which we used to derive (102), is that the former involves
only one projection of the velocity vz0 . The calculations
show that this fact is crucial in neutralising the angular
spread of electrons in a constant magnetic field.

Let us determine x — the projection of the current of the
electron beam in the region x4 d. Remembering that
vx = vx 0 cos y+ vz0 sin y and retaining only the terms oscil-
lating at the frequency o, we have

jx = ÿpe2
r0 sin y

�

�

1 +

vx 0

vz0
cot y

�

qf0

qpz0
J0

�

v
?

qx 0

O

�

�Eq exp

�

iq .rÿ iot ÿ iqx 0
v
?

O
sinj

�

dp + c:c: , (109)

where

qz0 =
o

vz0
, qx 0 =

o

vz0

������������������

n2b
2
z0 ÿ 1

q

,

v
?

=

p
?

c2

e
, p

?
=

����������������

p2
x 0 + p2

y

q

. (110)

By substituting these expressions into Eqn (97) we find the
gain of the Cherenkov klystron,

G = ÿ2ip
���

p
p

r0e2x 0d
sin y
nc

eÿif

�

�

�

1 +

vx 0

vz0
ctg y

�

qqx

qpz0
J0

�

v
?

qx 0

O

�

� f0 exp

�

iqx x 0 ÿ iqx 0
v
?

O
sinj

�

� exp

�

ÿ

q2
x d2

2

�

dp + c:c: , (111)

where qx = qx 0 cos y+ qz0 sin y, and the phase f is a
function of the distance R 1R 2 between the mirrors (see
Fig. 1).

If the average momentum p0 of the electron beam is
chosen such that qx (p0) = 0, then the wave vector is

qx �
o

p0v0 sin y

�

mc2

e0

�2

( pz0 ÿ p0) +
oc2

e
2
0v0 sin y

p2
?

.

By substituting this expansion into Eqn (111) and
integrating with respect to the variables pz0 , p

?
, j we get

G = 8p2
������

2p
p

r0r0x 0
d
l

1

nb2
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�

mc2

e0

�3

sinf I0

�

1
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4 ln 2
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jj
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�2 1
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�2
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�

oD
?

n sin y
O0mc

�2�

. (112)

Here I0(a) is the modified Bessel function; v0 = p0c2
=e0;

e0 = [(mc2
)

2
+ c2p2

0]
1=2.

Note also that the term proportional to ( pz0 ÿ p0)
2 is

omitted in the Taylor series expansion of qx since its
contribution is negligible.

Expression (112) is valid for

x 0 < l
2 ln 2
pb0

�

p0

D
?

�2

sin y . (113)

Clearly, this constraint on x 0, associated with the angular
spread of the electron beam d = D

?
=p0, is considerably

weaker than that defined by Eqn (101). If the strength of
the constant magnetic field is

H 04
1
�����������

8 ln 2
p

oD
?

n sin y
jej

, (114)

the phase is f = p=2, and the distance is

x 0 =

l

p

�����������

2 ln 2
p p0

D
jj

�

e0

mc2

�2

b0 sin y ,

then the gain is maximum,

G = 45r0r0l
d
l

p0

D
jj

mc2

e0

1
nb0

sin y . (115)

By substituting the expression for x 0 into Eqn (113) we find
the range of energies in which the constant magnetic field
neutralises the angular spread of the particle beam:

mc2
< e0 < mc2

�����������

2 ln 24
p

b0

�������

p0

D
?

r

�������

D
jj

D
?

s

. (116)
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Note in conclusion that in Ref. [47] the gain of the
Cherenkov klystron is examined in the case of a constant
magnetic field which is perpendicular to the velocity of
particles in the drift region.

2.10 The classical theory of the Cherenkov laser
We shall discuss the interaction between an electron beam
and a plane monochromatic wave,

A x =

1
2 A 0 exp[i(ot ÿ kz )] + c:c: , (117)

propagating in a dielectric medium with the index of
refraction n. The current of the electron beam can be
expanded into a series of the perturbation theory in terms
of the field

j = j0 + j1 exp[i(ot ÿ kz )] + j2 exp[2i(ot ÿ kz )] + ::: . (118)

The first term j0 = er0v corresponds to the zero approx-
imation and, as is noted in Section 2.8, does not contribute
to the exchange of energies between the electron beam and
the wave (W = 0). The current j1 exp[i(ot ÿ kz )] is linear
with respect to the field. Clearly, the integral in Eqn (87) is
not zero in this approximation. Thus the energy of
electrons can be transmitted to the wave, i.e., the
Cherenkov laser is feasible. The terms of the second and
higher orders in Eqn (118) are responsible for harmonics
and are not considered here.

The amplification of an electromagnetic wave in the
Cherenkov laser has the following important distinctions
from that in the Cherenkov klystron.

1. In the klystron the difference between the phases (f)

of the current and the amplified wave is a function of the
distance R 1R 2 between the mirrors. Thus it may be chosen
so that the number of electrons falling within the deceler-
ating phase is greater than the number of accelerated
electrons (W < 0). In the Cherenkov laser the difference
between the phases f of the current j1 exp[i(ot ÿ kz )] and
the amplified wave [Eqn (117)] is a function of the
coefficient j1 which is proportional to the derivative of
the electron distribution function [Eqn (120)]. Clearly, if the
distribution functions have extrema, then the sign of the
derivative and, consequently, the difference between the
phases f can be chosen so that the electron beam transmits
its energy to the wave (W < 0).

2. An important distinction between the Cherenkov
laser and the Cherenkov klystron lies in the nature of
amplification. In the klystron scheme the velocities of the
electrons are modulated near the x = 0 plane, whereas the
electromagnetic wave is amplified near the x = x 0 plane (see
Fig. 1); there is no feedback between the current and the
wave. Hence the intensity of the wave grows linearly
(Gz5 1) or quadratically (Gz4 1) with z [see Eqn (96)].
In the Cherenkov laser, the field and the current are
specified at the same point. Therefore the electromagnetic
wave is amplified exponentially [see Eqn (124)].

We shall determine the gain of the Cherenkov laser
using the closed consistent system of equations (88), (90).
We suppose that the width of the beam (d) of the amplified
radiation is large (l=d5 d, D=e) and the beam is approxi-
mated by the plane wave [Eqn (117)]. We suppose also that
the amplitude of the wave A 0 varies slowly with the z
coordinate.

On solving Eqn (81) in the linear approximation with
respect to the field we obtain the electron distribution
function in the form

f = f0 + f1 . (119)

Here f0 is the initial electron distribution function,

f1 =

i
oÿ kvz

F. qf0

qp
+ c:c: , (120)

the force,

F =

1
2

e

�

E0

�

1 ÿ
kvz

o

�

+

k
o

(v.E)

�

exp[i(ot ÿ kz )]

[E0 = ÿi(o=c)A0 is the amplitude of the electric field
strength]. The field [Eqn (117)] is assumed to be turned on
adiabatically slowly at t = ÿ1.

By substituting Eqn (120) into Eqn (89) and integrating
by parts we arrive at the expression for the x -projection of
the current:

jx = ÿ

1
2

e2
r0cA 0 exp[i(ot ÿ kz )]

�

�

�

f0(p)
e

dp + (n2
ÿ 1)

�

vx px f0(p)

(eÿ ncpz)
2 dp

�

+ c:c: (121)

The first term in brackets yields the index of refraction of
the electron beam, and the second term is responsible for
amplification or absorption of the electromagnetic wave.

By substituting the current [Eqn (121)] into Eqn (93)
and integrating over the space between the z = z1 and z = z2

planes, we have

dP = ÿ dz
�b=2

ÿb=2
dy
�a=2

ÿa=2
dx jx Ex . (122)

Here,

P =

1
8p

no2

c
abA 2

0 (123)

is the flux of the energy of the wave through the area
S = ab, and dP = P(z2)ÿ P(z1) is the variation of the flux
over the interval dz = z2 ÿ z1.

The solution to Eqn (122) has the form

P = P0eGz , (124)

where P0 is the flux of the energy of the wave through the
z = 0 plane,

G = ÿ2r0r0l
n2
ÿ 1
n

Im
�

mc2vx px

(eÿ ncpz)
2 f( p) dp . (125)

If the distribution function has a maximum at p = p0,
then

G = ÿ2r0r0l
n2
ÿ 1
n

mc2v0x p0x J . (126)

Here the factor

J = ÿIm
�

�

d
dx

1
x

�

f0( p) dp ; (127)

x = eÿ ncpz ; r0 = e2
=mc2 is the classical radius of an

electron; l is the wavelength of the amplified radiation. The
notation for the gain [Eqn (126)] is convenient for various
models of the electron distribution function. To establish
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the dependence of the amplification factor for the
Cherenkov laser on the energy spread of electrons,
f0( p) dp must be replaced by g(e) de. The change of
f0( p) dp for g(y,j) dy dy makes it possible to examine the
role of the angular spread of electrons.

We consider the general case of Gaussian spreads of an
electron beam in energies and angles,

f( p) dp = g(e, y) de dy
dj
2p

, (128)

g(e, y) =

8 ln 2
p

1
dD

exp

�

ÿ4 ln 2

�

(eÿ e0)
2

D
2 +

y
2

d
2

��

.

In this case it is convenient to determine the quantity

J = ÿIm
1

2p

�

+1

ÿ1

de
�

1

0
dy
�2p

0
dj g(e, y)

�

d
dx

1
x

�

, (129)

in the system of coordinates associated with the beam of
particles.

We direct the z0 axis along the central axis of the particle
beam and pass the x 0z0 plane through the z0 axis and the
vector A (Fig. 2). The angle y0 is the angle between the wave
vector k and the z0 axis, y is the angle between the z0 axis
and the velocity vector v, and y

0 is the angle between the
wave vector k and the velocity vector v. Since the integrand
damps rapidly for e 6= e0 and y 6= 0, the limits of integra-
tion for these variables are chosen to be [ÿ1, +1] and
[0; +1], respectively.

We can now write the new variables as

u = eÿ ncp cos y0 , u = y , n = j , (130)

on the interval [Eqn (129)]. Then

J = ÿIm
1

2p

�

+1

ÿ1

du
�

1

0
du
�2p

0
dn g(u; u; n)

�

�

�

�

qe

qu

�

�

�

�

�

d
du

1
u

�

.

(131)

Integrating this expression by parts and using the rule,

1
x ÿ iZ

�

�

�

Z!+0
= ipd(x) + P

1
x

, (132)

we have

J =

2(4 ln 2)2

pD3
d

�

1

0
dy
�2p

0
dj

�

p
mc

�4

(eÿ e0)

� exp

�

ÿ4 ln 2
(eÿ e0)

2

D
2 ÿ 4 ln 2

y
2

d
2

�

, (133)

where e is found from the equation

eÿ ncp cos y0 = 0 . (134)

In formula (133) the contribution from electrons of all
possible directions of the velocity v is taken into account.
The greatest contribution is made by particles moving along
the axis z0. We find from Eqn (134) that the energy em is

em =

mc2

[1 ÿ nÿ2
(cos y0)

ÿ2
]

1=2
. (135)

It must be close enough to e0 for the gain to be
exponentially low.

For velocities which make the angle y0 with the z axis the
energy is specified by the expression

e =

mc2

[1 ÿ nÿ2
(cos y0)ÿ2

]

1=2
. (136)

Since only particles with energies close to em make nonzero
contributions, the denominator in Eqn (136) can be
expanded into the Taylor series

e = em

�

1 ÿ y tan y0 sinj

�

pm

mc

�2 �

. (137)

Here we take into account the relation between the angle y0

and the angles y and j (see Fig. 2):

cos y0 = cos y cos y0(1 + tan y tan y0 sinj)

� cos y0(1 + y tan y0 sinj) . (138)

(Analysis shows that it suffices to consider the linear
approximation in the expansion in terms of a small angle
y.)

The expansion [Eqn (137)] is true for beams with
angular spreads

d <

�

mc
p0

�2

cot y0 . (139)

By substituting the expansion [Eqn (137)] into formula
(133) and factoring the slowly varying functions of angle
outside the integral sign, we have

J = 2
���

p
p

(4 ln 2)3=2
�

p0

mc

�4
em ÿ e0

D3

� exp

�

ÿ4 ln 2
(em ÿ e0)

2

D2

�

, (140)

where the effective width is

D =

�

D
2
+ d

2
e

2
0

�

p0

mc

�4

tan2
y0 sin2

j

�1=2

. (141)

Since the dependence of the integrand on the angle j is
complicated, it is integrated approximately with respect to
this variable. In what follows we assume that sin2

j takes
the largest value — equal to unity.

Note that the same result can be obtained exactly if the
initial electron distribution function is chosen in the form of

v0 v

k

z0

y0

x 0

y0

y
0

y

j

Figure 2.
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Eqn (70). The gain [Eqn (126)] peaks for the energy em,
where em = e0 ÿ D=

�����������

8 ln 2
p

, and is given by

G = 16 ln 2

�����

p

2e

r

r0r0l
n2
ÿ 1
n

e0mv2
0(p0=mc)4 sin2

y0

D
2
+ d

2
e

2
0(p0=mc)4tan2 y0

,

(142)

where e = 2:718 . . . is the base of the natural logarithm.
The frequency corresponding to the energy em is found
from Eqn (134) for y

0

= y0.
If the angular spread of an electron beam is

d5
D

e0

�

mc
p0

�2

jcot y0j , (143)

then the gain depends solely on the energy spread,

G = 8:4r0r0lb
3
0

n2
ÿ 1
n

�

p0

mc

�3 �
e0

D

�2

sin2
y0 . (144)

Note that in this case G depends strongly on the average
energy of the particles (G / (e0=mc2

)

3 if D=e0 = const).
For ordinary relativistic beams the inverse inequality

d4
D

e0

�

mc
p0

�2

jcot y0j , (145)

holds. In this case the gain depends solely on the angular
spread of the electron beam and is given by

G = 8:4 r0r0l
mc2

e0

n2
ÿ 1

n3

1

d
2 . (146)

Clearly, the dependence of the gain on the energy of a
particle is totally different when the angular spread is taken
into account: the gain starts to decrease on increase in the
average energy of the electron beam as mc2

=e0.
It is shown in Section 2.14 that the negative role of the

angular spread can be neutralised by a constant magnetic
field. Note also that the computational technique we have
developed in this section, for the analysis of the operation of
the Cherenkov laser, can be applied for gains for which the
inequality

G < k
Dv
v

, (147)

holds. Here Dv=v is the relative spread of the electron beam
in velocities in the direction in which the wave propagates.

The exponential growth of the amplitude of the plane
transverse wave [Eqn (117)] and, consequently, corrections
to the initial distribution function (120) mean that the
electron beam and the decelerating medium are an unstable
system, and the instability is of the Cherenkov nature. The
issues of absorption and growth of perturbations as a result
of the stimulated Cherenkov effect are well known and
studied in the theory of plasmas: Landau damping and
beam instability [48, 49].

In contrast to the cited schemes, the longitudinal wave is
decelerated in a plasma. Therefore, a plasma can be used as
an active medium only if there are converters of the
transverse wave into a longitudinal wave, and vice versa,
at the entry and at the exit from the plasma. The mechanism
of amplification and the computational technique for the
increment of instability are alike in both cases.

Note that according to the terminology adopted in
plasma physics there are two types of instability,

namely, the hydrodynamic and the kinetic instabil-
ity [49]. In the first type, the temperature of the plasma
and the energy spread of the electron beam can be
neglected, i.e., the increment of instability is a function
of the density of particles and their velocity. In the second
type both spreads are essential and, therefore, the increment
of instability is defined by distribution functions both for
the particle beam and for the plasma.

In our work we assume that inequality (147) holds, i.e.
the kinetic Cherenkov instability of the system is studied. In
Ref. [50] both kinetic and hydrodynamic instabilities were
considered (see also Section 2.14).

2.11 The quantum theory of the Cherenkov laser
If the angular spread of an electron beam is d! 0, then by
substituting f( p) dp = g(e) de into Eqn (127) and integrat-
ing by parts, we have that the sign of the gain of the
Cherenkov laser depends on the derivative of the electron
energy distribution function. The physical meaning of this
fact can be made clear by the analysis of the SCE with the
aid of the laws of conservation of energy and momentum:

e
�

� �ho = e2 , p� � �hk = p2 . (148)

Given the angle y0 between the wave vector k and the
momentum of a particle p, the system of equations (148)
governs the energy and momentum of electrons involved in
emission and absorption of a photon,

e
ÿ

= e1 + De , e
+

= e1 ÿ De . (149)

Here the energy e1 is found from Eqn (134) for y = y0 and

De =

�ho
2

(n2
ÿ 1)

�

p1

mc

�2

. (150)

Since different electrons are involved in emission and
absorption, the radiation can be amplified if the number of
emitting electrons N(e

ÿ

) is greater than the number of
absorbing electrons N(e

+

). Taking into account that
DN = N(e

ÿ

)ÿ N(e
+

) / g(eÿ)ÿ g(e+

), and expanding
the distribution function into the Taylor series in terms
of the small parameter De, we establish that the
overpopula-tion is DN / 2( dg= de1)De > 0 on the left-
hand wing of the electron energy distribution function.
From the classical standpoint (see Section 2.10) it follows
that for dg= de1 > 0 the number of particles in the
decelerating phase is larger than the number of accelerated
particles.

We shall now examine the role of the spin and
polarisation effects in the Cherenkov laser. We shall
determine the gain for the elliptically polarised monochro-
matic electromagnetic wave,

A x = A 1 cos(kz ÿ ot) , A y = ÿA 2 sin(kz ÿ ot) , (151)

using the closed consistent system of the Dirac and Maxwell
equations,

i�h
qc

qt
=

�

ca

�

p̂ÿ
e
c

A
�

+ mc2
b

�

c , (152)

H2A ÿ

n2

c2

q2A
qt2 = ÿ

4p
c

j , (153)

j = ecc+

ac . (154)
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If the wave amplitudes A 1;2 vary slightly with the z
coordinate, then the solution to the Dirac equation in the
linear approximation with respect to the field is

c = c0 + c
+

+ c
ÿ

. (155)

Here c0 is the initial wave function of the particle
beam (55); the terms

c
�

= �

ec( p̂
�
+ mc) ^A

�
exp[�i(kz ÿ ot)]

4�hoe[1 ÿ nbz � (�ho=2e)(n2
ÿ 1)]

c0 , (156)

describe the processes of emitting and absorbing a photon;
the four-vectors pm

�

= pm � �hkm, km(o=c; 0; 0; K); the oper-
ators p̂ = pmg

m, ^A
�

= A�

m g
m; the vectors A�

=

^iA 1 �
^jiA 2.

The polarisation matrix of the density is assumed to be
of the form Eqn (57) before the interaction. Then the
projections of the current of an energy homogeneous
electron beam are:

jx =

e2
r0c

2e

�

(1 ÿ nbz)
2
ÿ

�

�ho
2e

�2

(n2
ÿ 1)2

�

ÿ2

�

�

[(1 ÿ n2
)b

2
x ÿ (1 ÿ nbz)

2
]A 1

+i(1 ÿ n2
) +

�

bxby + i
�ho
2e

mc2

e
(a3 ÿ na0)

�

A 2

�

� exp[i(kz ÿ ot)] + c:c: , (157)

jy =

e2
r0c

2e

_

�

(1 ÿ nbz)
2
ÿ

�

�ho
2e

�2

(n2
ÿ 1)2

�

ÿ2

�

�

(1 ÿ n2
)

�

bxby ÿ i
�ho
2e

mc2

e
(a3 ÿ na0)

�

A 1

+i[(1 ÿ n2
)b

2
y ÿ (1 ÿ nbz)

2
�

A 2

�

� exp[i(kz ÿ ot)] + c:c: (158)

We shall compare the x -projection of the current
[Eqn (157)] with the classical expression [Eqn (121)]. First
of all, note that the energies of particles involved in
emission and absorption are split in quantum calcula-
tions. According to the pole of the expression (157),

1 ÿ nbz = �

�ho
2e

(n2
ÿ 1) . (159)

Here ÿ corresponds to emission of a photon and + to
absorption. The solutions to these equations are specified
by the expressions (149) and (150).

We shall compare the coefficient of A 1 [Eqn (157)] and
the numerator in the second term of Eqn (121). Clearly, the
quantum calculation introduces an additional term propor-
tional to (1 ÿ nbz)

2. Analysis of the expression for the
current in the nonrelativistic limit [Eqn (64)] shows that the
term is associated with the induced magnetisation of the
electron beam (a similar effect was considered in Sec-
tions 2.5, 2.6).

We shall now consider the coefficient of A 2. The term
proportional to bxby is absent in expression (121) because it
is assumed that A y = 0. The term proportional to a3 ÿ na0

is associated with the initial polarisation of the electron
beam (a similar effect was considered in Section 2.5).

Clearly, the polarised electron beam is an anisotropic
medium, having hydrotropy [44], with the coefficient

g3 =

1
2

�

op

o

�2
�ho
e

�

mc2

e

�2
(n2

ÿ 1)(a3 ÿ na0)

(1 ÿ nbz)
2
ÿ (�ho=2e)2

(n2
ÿ 1)2 .

(160)

If we substitute Eqns (157) and (158) into Eqn (153),
and take into account the fact that the amplitudes of the
field [Eqn (151)] vary weakly with the z coordinate, we
arrive at the system of truncated differential equations for
A 1;2:

dA 1

dz
= aA 1 + bA 2 , (161)

dA 2

dz
= qA 1 + dA 2 . (162)

Here the coefficients are

a = iR [(1 ÿ n2
)b

2
x ÿ (1 ÿ nbz)

2
] ,

b = ÿR [(1 ÿ n2
)bxby ÿ in] ,

d = iR [(1 ÿ n2
)b

2
y ÿ (1 ÿ nbz)

2
] ,

q = R [(1 ÿ n2
)bxby + in] ,

R =

o
2
p

2noc
mc2

e

�

(1 ÿ nbz)
2
ÿ

�

�ho
2e

�2

(n2
ÿ 1)2

�

ÿ1

,

o
2
p =

4pe2
r0

m
,

and

n =

�ho
2e

mc2

e
(a3 ÿ na0)(n

2
ÿ 1) . (163)

First we consider the amplification of an electromag-
netic wave, which is linearly polarised along the x axis,
neglecting spin effects. The electron beam is assumed to
move in the xz plane and have a Gaussian energy spread

g(e) =

�

4 ln 2
p

�1=2 1
D

exp

�

ÿ4 ln 2
(eÿ e0)

2

D
2

�

. (164)

By presenting the factor R [Eqn (163)] as a difference
between the amplitudes of emission and absorption of a
photon,

R �

�

(1 ÿ nbz)
2
ÿ

�

�ho
2e

�2

(n2
ÿ 1)2

�

ÿ1

= ÿ

�

�ho
e

(n2
ÿ 1)

�

ÿ1��

1 ÿ nbz +

�ho
2e

(n2
ÿ 1) + iZ

�

ÿ1

ÿ

�

1 ÿ nbz ÿ
�ho
2e

(n2
ÿ 1) + iZ

�

ÿ1�

Z!0

, (165)

and averaging the right-hand side of Eqn (161) over
energies by means of the rule [Eqn (163)], we obtain the
gain for the intensity of the electromagnetic wave,

G = 2pr0r0l sin2
y0

mv2
0

n�ho

�

p0

mc

�2

�e0[g(e1 + De)ÿ g(e1 ÿ De)] . (166)
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Clearly, the gain depends on the extent to which the
processes of emitting and absorbing a photon are split. If
the quantity

De =

�ho
2

(n2
ÿ 1)

�

p1

mc

�2

5D , (167)

then, expanding the function into the Taylor series, we
come back to formula (144). If the quantity De4D, then
for relativistic particles the initial conditions can be chosen
[1 ÿ nbz ÿ (�ho=2e)(n2

ÿ 1) = 0] such that the contribution
of absorption is exponentially low. In this case the gain is
purely quantum in nature:

G = 5:9 r0r0l
mv2

0

n�ho

�

p0

mc

�2
e0

D
sin2

y0 . (168)

However, for large energies the angular spread of the
particle beam [Eqn (145)] comes into play. The feasibility
of this limiting case is up against the complicated problem
of generating particle beams with a negligible angular
spread [Eqn (143)]. If we average the poles of Eqn (165)
over the energy and angular spreads [Eqn (128)], then we
return to formula (142) as �h ! 0.

We shall analyze the contribution of spin to the
amplification of the electromagnetic wave. In order to
extract the pure spin interaction between an electron and
the wave, we suppose that the electron moves in parallel
with the z axis (bx = by = 0). Amplification of an electro-
magnetic wave by a polarised electron beam is analyzed in
the next section. Here we consider amplification of an
electromagnetic wave by a nonpolarised electron beam
(jf j = 0) due to its induced magnetisation. If the electron
beam has the Gaussian spread in energies [Eqn (116)], then
it follows from Eqns (161) and (162) that

G = 2:1 r0r0lb0
(n2

ÿ 1)2

n

�

�ho
e0

�2� p0

mc

�3�
e0

D

�2

(169)

[the contribution of the angular spread is not essential for
y0 = 0; see Eqn (141)] The gain of the spin Cherenkov laser
is not large since �ho=e05 1.

2.12 Rules of selection in the Cherenkov laser
It is possible to suppress completely photon absorption by
amplifying circularly polarised electromagnetic radiation
by a polarised electron beam (jf j 6= 0). We shall show,
using the law of conservation of moment of momentum for
the photon-electron system, that suppression is possible
when all photons are polarised in a clockwise manner and
move along the z axis. The moment of momentum of such
photons is �h. Let the electron beam have the same direction
as the wave vector of photons. Electrons emit and absorb
photons according to the laws of conservation of energy
and momentum [Eqn (148)], as well as by the law of
conservation of moment of momentum,

S 1z � Iz = S 2z . (170)

Here the z-projection of the moment of momentum of a
photon Iz runs the values �h; 0; ÿ�h; the z-projection of the
moment of momentum of an electron S z takes the values
�h=2 and ÿ�h=2.

If Iz = �h, S 1z = �h=2 (photons are clockwise polarised,
electrons are polarised along the z axis), then electrons can
emit photons by flipping the spin: S 2z = ÿ�h=2. If electrons
are polarised in the direction opposite to the z axis
(S 1z = ÿ�h=2), then the conservation law [Eqn (170)] per-

mits absorption of photons only. Thus an electron beam
polarised in the direction of motion is a totally over-
populated medium for a right-hand circularly polarised
light beam which propagates in the same direction.

In this case the gain for an electromagnetic wave can be
determined as follows. Let

A x = A 0 cos(ot ÿ kz ) ,

A y = A 0 sin(ot ÿ kz ) , (171)

be the vector potential of the wave. On solving the Dirac
equation (152) in the linear approximation with respect to
field, we have

c = c0 + c
+

+ c
ÿ

, (172)

where c0 is specified by Eqn (55),

c
�

= �

ec( p̂
�
+ mc) ^A

�
exp[�i(ot ÿ kz )]

4e�h[oÿ kv � (�ho2
=2e)(n2

ÿ 1)� iZ]
Z!0

c0 , (173)

A
�

=

^iA 0 �
^jiA 0. The other symbols are the same as in

Eqn (156).
If the polarisation matrix of the density of electrons has

the form of Eqn (57) before the interaction, then the x -
projection of the current is

jx =

e2
r0c

4e
A 0 exp[i(ot ÿ kz )]

�

�

(oÿ kv)(1 + zz)

oÿ kv + (�ho2
=2e)(n2

ÿ 1)ÿ iZ

+

(oÿ kv)(1 ÿ zz)

oÿ kv ÿ (�ho2
=2e)(n2

ÿ 1)ÿ iZ

�

Z!0

. (174)

The y-projection of current has a similar form.
The first term in curly brackets in Eqn (174) describes

the emission of a photon, the second describes the
absorption of a photon. If zz = 1, i.e., the particle beam
is fully polarised along the z axis, then the absorption
amplitude is zero and the gain is maximum.

If zz = 0, then the only cause of amplification is the
induced magnetisation (see Section 2.6) and the amplifica-
tion is a function of the difference of amplitudes of emission
and absorption of a photon [see Eqn (168)]. By averaging
the current [Eqn (174)] over the spread [Eqn (164)] for
zz = 1 and substituting the result into the truncated
equation (153), we have

G = 18:5 r0r0lCb0

�

mc2

e0

�2
e0

D
. (175)

Here lC = �h=mc is the Compton wavelength of an electron.
Comparison of gains for the intensity of an electro-

magnetic wave [Eqns (169) and (175)] shows that the
efficiency of the Cherenkov laser is greater by a factor
of D=�ho when absorption is suppressed. However, the
absolute value of G [Eqn (175)] is not large in comparison
with Eqn (142) since the spin interaction between an
electron and the wave (H 1 = ÿl .H) is significantly weaker
than the orbital interaction (H 2 = ÿecA .b 0).

Note also that, in the spin laser, electrons and the
amplified wave travel in the same direction with almost the
same speed. Therefore they interact over a prolonged period
of time so that the effect can be observed.
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Note in conclusion that the classical and quantum
theories of spontaneous emission of the magnetic moment
(including forward direction) were considered in detail in
Refs [52 – 54]. According to the results of Refs [52 – 53], on
threshold [1 ÿ (nv=c) = 0 or eÿ = e1, where e1 is the
energy of an initial electron moving with the speed of
the wave given by Eqn (149)] both spontaneous and
stimulated Cherenkov effects are absent in the forward
direction. The spontaneous effect is absent in the forward
direction since the equation

1 ÿ n
v
c
= ÿ

�ho
2e1

(n2
ÿ 1)

yields the zero frequency of the emitted photon.
In the case of the stimulated effect, the factor 1 ÿ (nv=c)

nullifies both terms in the current [Eqn (174)]. If the
velocity of an electron is greater than the velocity of a
photon

v =

c
n

�

1 +

�ho
2e1

(n2
ÿ 1)

�

or eÿ = e1 + De [see Eqn (149)], then the spontaneous and
stimulated effects are possible and are of the order of the
loss [22, 54]. It is worthwhile to evaluate the velocity of an
electron which has emitted a photon. Since v2 = c2p2=e2,
we have

v
2
=

c
n

�

1 ÿ
�ho
2e1

(n2
ÿ 1)

�

,

i.e., the velocity of the electron is less than the velocity of
the photon. Thus the electron lags behind the emitted
field{.

2.13 Rotation of the polarisation plane
The polarisation characteristics of an electromagnetic wave
travelling within an electron beam can be examined with
the aid of the system of equations (161), (162). Since a
polarised electron beam is an anisotropic medium,
deformation and rotation of the ellipse of the electro-
magnetic wave [Eqn (151)] result. We shall dwell on the last
effect since it is useful in the analysis of the structure and
polarisation of an electron beam.

To simplify the problem it is convenient to separate
polarisation effects from amplification effects. It suffices to
assume that the inequality

je1 ÿ e0j > D (176)

holds for the average energy of the electron beam. Here e1

is found from Eqn (134), D is the width of the energy
spread of the electron beam. In this case the right-hand
sides of Eqns (161), (162) may be averaged over the spread
of the electron beam [Eqn (128)] by simply replacing all the
parameters of the beam with the average quantities: e! �e,
etc. In what follows we assume that �bx = 0, �by =

�b sin y,
�bz =

�b cos y, and the sign of the average is omitted.
The solution for the amplitude A 1 is sought in the form

A 1(z) = f exp(iw1z) + l exp(iw2z) . (177)

The field [Eqn (151)] is assumed to be elliptically polarised
at the point z = 0:

A 1(z = 0) = A 0x , A 2(z = 0) = A 0y . (178)

The principal axes of the ellipse are directed along x and y.
At an arbitrary point z we have

A 1 = a1 cos(k1z ÿ ot) + a2 cos(k2z ÿ ot) ,

A 2 = a3 sin(k1z ÿ ot) + a4 sin(k2z ÿ ot) . (179)

Here

a1 =

1
Dn

n

nA 0y ÿ [n2 + (1 ÿ nbz)
2
]A 0x

o

,

a2 =

1
Dn

n

ÿnA 0y + [n1 + (1 ÿ nbz)
2
]A 0x

o

,

a3 = ÿ

1
Dn

n

nA 0x + [n1 + (1 ÿ nbz)
2
]A 0y

o

,

a4 =

1
Dn

n

nA 0x + [n2 + (1 ÿ nbz)
2
]A 0y

o

, (180)

where

n1;2 = ÿ(1 ÿ nbz)
2
+

1
2
(1 ÿ n2

)b
2
y

�

 

1 �

�

1 +

�

�homc2

e
2
b

2
y

(a3 ÿ na0)

�2�1=2
!

,

Dn = n1 ÿ n2 , k1;2 = k + Rn 1;2 = k + w1;2 .

The quantities R and n are specified by the expressions
(163). Let the system of coordinates (x 0; y0; z) be rotated
through the angle,

j =

1
2

arctan

�

2
���������������

1 + 4w2
q

�

w
r2
ÿ 1
r

ÿ 1

�

sin(Dkz )

�

�

(1 + 4w2
)

r2
ÿ 1
r

ÿ 8w

�

w
r2
ÿ 1
r

ÿ 1

�

sin2 Dkz
2

�

ÿ1�

,

(181)

about the system (x ; y; z). Then the vector potential
[Eqn (179)] describes an ellipse whose principal axes are
directed along x 0 and y 0. The quantity Dk = k1 ÿ k2, and
r = A 0x=A 0y is the axial ratio of the ellipse at the point
z = 0; the parameter w = �homc2

(a3 ÿ na0)=(2e
2
b

2
y).

If jwj5 1 [or y4 (�homc2
ja3 ÿ na0j)

1=2
=2cp], then rota-

tion of the ellipse is due mainly to the fact that the electron
beam moves at an angle y to the direction in which the wave
propagates:

jy =

1
2

arctan

�

2r

1 ÿ r2 sin

�

p

�

op

o

�2

b
2 sin2

y

�

1 ÿ n2

n
mc2

e

1

(1 ÿ nbz)
2

z
l

��

. (182)

If jwj4 1 [or y5 (�homc2
ja3 ÿ na0j)

1=2
=2cp], then the angle

of rotation is a function of the polarisation of the electron
beam

jg =

p

n
g3

z
l

. (183)

Here the factor g3 is specified by expression (160).
We shall consider constraints on the angular and energy

spreads of the electron beam in more detail. When
{The authors are grateful to D M Sedrakyan and V O Papanyan for
valuable comments on the issues.
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averaging the factor R [Eqn (163)] the angular and energy
spreads can be neglected if

1 ÿ nb+

y
2

2
> yd ,

1 ÿ nb+

y
2

2
>

D

e

�

mc2

e

�2 n
b

. (184)

Let y 6= 0. For definiteness we assume that

1 ÿ nb+

y
2

2
= 3yd . (185)

Then the average energy of the electron beam is limited by
the inequality

e > mc2 1
b

����������

D

e

1
yd

r

. (186)

We assume also that

1 ÿ nb = 3
D

e

�

mc2

e

�2 n
b

, (187)

for y = 0.
Using the relations (185) and (187), we can conveniently

transform formulae (182) and (183) for numerical evalu-
ation:

jy = 0:1 r0r0lzb2 mc2

e

1

d
2

r

1 ÿ r2

1 ÿ n2

n
, (188)

jg = zzr0r0lCzb
e

D

n2
ÿ 1

n2 . (189)

Here lC is the Compton wavelength of an electron, zz is the
rate of polarisation of the electron beam along the z axis,
and r0 is the classical radius of an electron.

2.14 Theory of the Cherenkov laser in a constant
magnetic field
The analysis of operation of the Cherenkov laser in
Section 2.10 shows that the efficiency of the laser is limited
by the angular spread of the electron beam [Eqn (146)].
The negative role of the angular spread can be neutralised
by applying a constant magnetic field along the particle
beam. We assume that an electron beam propagates along
the axis and has the Gaussian spread in momenta:

f0( p) =

�

4 ln 2
p

�3=2 1

D
2
?

D
jj

� exp

�

ÿ 4 ln 2
( pz ÿ p0)

2

D
2
jj

ÿ 4 ln 2
p2

x + p2
y

D
2
?

�

, (190)

and the strength of the constant magnetic field is
Hz = ÿH 0. Let the amplified wave be linearly polarised
in the xz plane and let it propagate at the angle y to the z
axis.

A x 0 =
1
2 A 0 exp(iot ÿ ikz 0) + c:c: (191)

The vector potential given by Eqn (191) is written in the
system of coordinates x 0, y, z0 associated with the wave.

We shall determine the gain for the electromagnetic
wave using the system of Eqns (88) and (91). If we solve the
kinetic equation for the constant magnetic field exactly and
for the amplified wave [Eqn (91)] in the first approximation,
then

f( p) = f0( p0) + f1( p) . (192)

Here the function f0 is specified by the expression (190), the
vector p0 has the projections

p0x = px cosOt ÿ py sinOt ,

p0y = py cosOt + px cosOt , (193)

p0z = pz ,

O = jejH 0
c
e

,

e = [(mc2
)

2
+ c2

j p0j
2
]

1=2
= [(mc2

)

2
+ c2

j pj2]1=2 .

The second term is

f1 =

i
oÿ kzv0z

�

F1;x

�

qf0

qp0x
ÿ i

qf0

qp0y

�

eij0

+F
ÿ1;x

�

qf0

qp0x
+ i

qf0

qp0y

�

eÿij0
+ F0;z

qf0

qp0z

�

� exp i

�

ot ÿ kzz ÿ kx x ÿ kx
v0?

O
sin(Ot ÿ j

0

)

�

, (194)

where

Fr;x =

eEx 0

2i
(cos yÿ nb0z)Jr

�

kx
v0?

O

�

,

Fr;z =

eEx 0

2i
(ÿ sin y+ nb0?

rO
kx v0?

�

Jr

�

kx
v0?

O

�

, (195)

v0? =

c2p0?

e
, p0? = ( p2

0? + p2
0y)

1=2 ,

b0? =

v0?

c
, tanj0 =

p0y

p0x
.

Note that f1 is in fact a function of all harmonics of the
frequency O, given by

f1 =

X

+1

r=ÿ1

Qr

oÿ kzv0z + rO
.

In Eqn (194) we retained only the zero harmonic (r = 0)
which is responsible for the SCE. The terms with r 6= 0
describe the cyclotron radiation of electrons in a dielectric
medium. The gain of the cyclotron laser for r = ÿ1 is
examined in the next section.

By substituting Eqn (192) into Eqn (89), changing the
variables p to p0, and singling out the terms proportional to
exp[i(ot ÿ kz 0)], we obtain the expression for the x 0-
projection of the current which is responsible for the
amplification of the electromagnetic wave [Eqn (191)]:

jx 0 = pe2
r0 sin2

(yEx 0) exp i(ot ÿ kz 0)

�

�

+1

ÿ1

dp0z

�

1

0
dp0?p0?

v0z

oÿ kzv0z

qf0

qp0z
J2

0

�

kx
v
?

O

�

. (196)

We integrate with respect to the variable p0z in
accordance with the rule given by Eqn (132). By substitut-
ing the resultant expression into Eqn (91) and taking into
account the fact that the distribution function [Eqn (190)] is
maximum for p0x = p0y = 0 and p0z = p0, we obtain the gain
of the Cherenkov laser in a constant magnetic field,
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G = ÿ256
���

p
p

(ln 2)5=2
r0r0l sin2

y cos y

�

�

p0

mc

�2 p0mc

D
2
?

D
3
jj

�

1

0
dp0?( p0z ÿ p0)J

2
0

�

kx p0?

mO0

�

p0?

� exp

�

ÿ4 ln 2
p2

0?

D
2
?

ÿ 4 ln 2
( p0z ÿ p0)

2

D
2
jj

�

. (197)

Here O0 = jejH 0=mc, and the quantity p0z is found from the
equation

oÿ kzv0z = 0 . (198)

To simplify the subsequent analysis we extract the
explicit dependence of p0z on p0?. Let the solution to
Eqn (198) have the form p0? = 0 for p0z = b. If p0? 6= 0,
then the quantity p0z can be presented in the form

p0z = b + q1p0? + q2p2
0? . (199)

If we substitute the last expression into Eqn (198), then
q1 = 0, and q2 = (b=mc)2

=2b. The expansion of Eqn (199)
is true for q2D

2
?
5 b. Since b0 � p0 the average momen-

tum — or the average energy e0 = [(mc2
)

2
+ c2p2

0]
1=2 — of

the electron beam is limited by the inequalities

0 < p05 1:4
mc
d

, (200)

where d = D
?
=p0 is the angular spread of the electron

beam. The explicit dependence of the integrand on p0? can
be extracted by substituting Eqn (199) into Eqn (197).
However, the integration cannot be performed exactly.

We consider the two limiting cases:
(1) the magnetic field H 0 is arbitrary but the momentum of
electrons is limited by the inequalities

q2D
2
?
5 jbÿ p0j

or

0 < p05 1:4
mc
���

d
p

�

D
jj

D
?

�1=2

(201)

[the latter is a more severe constraint than Eqn (200)];
(2) the magnetic field is large [see Eqn (206)] and the
momentum of electrons belongs to the interval [Eqn (200)].

In the first case it follows from the inequality (201) that
p0z ÿ p0 � bÿ p0. Taking into account this last fact and
integrating Eqn (197) with respect to the variable p0?, we
have

G = ÿ32
���

p
p

(ln 2)3=2
r0r0l sin2

y cos y

�

p0

D
jj

�2 p0

mc
I0(R)

�

bÿ p0

D
jj

exp

�

ÿ4 ln 2
(bÿ p0)

2

D
2
jj

ÿ R

�

. (202)

Here,

R =

D
2
?
o

2n2 sin2
y

8 ln 2(mc)2
O

2
0

(203)

is the argument of the modified Bessel function of zero
order.

Clearly, in the region defined by Eqn (201) the gain
[Eqn (202)] grows proportionally to the average momentum
(or to the average energy e0 = p0c2

=v0) of the electron
beam. The gain is maximum if the detuning is

bÿ p0 = ÿ

D
jj

(8 ln 2)1=2
, (204)

and the parameter R5 1:

G = 8:4r0r0lb0 sin2
y cos y

�

p0

D
jj

�2
e0

mc2 . (205)

Taking into account the definition of R [Eqn (203)], we
establish that the constant magnetic field is limited by the
inequality:

H 04 0:4
D
?

jej
on sin y . (206)

We shall now examine the gain given by Eqn (197) in a
wider range of average momenta [Eqn (200)] [case (2)]. We
suppose that the magnetic field strength satisfies the
condition (206). Since p0?9D

?
, we have in this case

that J2
0(kx p0?=mO0) � 1 in the integrand of Eqn (197).

Integrating with respect to the variable p0?, we get

G = 32
���

p
p

(ln 2)2
r0r0l sin2

y cos y

�

�

p0

mc

�2 p0mc

D
2
?

D
2
jj

exp

�

ÿ4 ln 2
(bÿ p0)

2

D
2
jj

�

�

1
a

�

�����������

p ln 2
p

q2

D
jj

D
2
?

exp

�

d2

4a2

��

1 ÿ F

�

d
2a

��

ÿ1

�

. (207)

Here the quantity a = 2
��������

ln 2
p

q2=Djj, the parameter

d
2a

=

��������

ln 2
p

�

1 + 2q2D?
D
?

D
jj

bÿ p0

D
jj

��

q2D?
D
?

D
jj

�

ÿ1

, (208)

and the function F(x) is the probability integral [55].
We suppose that the longitudinal and transverse spreads

of the electron beam are of the same order: D
jj
� D

?
, and

the detuning is bÿ p0 � D
jj
. In this case the argument of the

probability integral [Eqn (208)] is a function of the param-
eter

q2D? =

1
2

�

b
mc

�2
D
?

b
.

If q2D?5 1, then the quantity d=2a4 1. Taking into
account the asymptotic expansion of the function F(x) for
x4 1, given by

F(x) = 1 ÿ
1
���

p
p

x

�

1 ÿ
1

2x 2

�

exp(ÿx 2
) (209)

and the inequality R5 1, we have that the expression (207)
coincides with Eqn (202) in this limit and with Eqn (205)
under the condition (205).

We use this fact to sharpen the upper bound for the
momentum p0. We suppose that the detuning bÿ p0 is
specified by Eqn (204) for all values of p0. The expansion
(209) is true for 1=2x 2

5 1. For definiteness we set
1=2x 2

= 0:1. Then, by use of Eqn (208), we find that the
gain of the Cherenkov laser has the form of Eqn (205) in the
region

0 < p0 4 0:9mc

�

p0

D
?

D
jj

D
?

�1=2

. (210)

The argument of the probability integral, x = d=2a, first
decreases to zero (q2D? � 1) and then to ÿ1 (q2D?4 1) on
further increase in the momentum, p0. The gain is inversely
proportional to the average energy of the electron beam
within the region: G / mc2

=e0.
Note also that in this range of momenta the expression

in curly brackets in Eqn (207) first decreases to zero and
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then becomes negative. This effect is due to the fact that the
momentum p0z = b + q2D

2
?

[see Eqn (199)] becomes larger
than po and the electron beam absorbs the energy of the
electromagnetic wave on the right-hand wing of the
distribution function (199) on increase in po. Thus the
region where the gain grows linearly on increase in the
average momentum of the electron beam is limited by the
inequality (210).

We shall show in conclusion that linear, not cubic [see
Eqn (144)], dependence of the gain [Eqn (205)] on the
average energy of electrons can be interpreted simply by
using the law of conservation of energy and momentum (see
Section 2.15). On solving the system of equations (212) for
r = l, we find that the z-projections of momenta of electrons
involved in emission and absorption of a photon differ in
Dp, where

Dp =

�ho
2v0

. (211)

Clearly, in this case the asymmetric part of the momen-
tum and, consequently, of the gain does not contain the
factor ( p0=mc)2

(n2
ÿ 1) characteristic of the Cherenkov

effect [see Eqn (150)].
Note that the theory of the Cherenkov laser was also

developed by Walsh [50]. Our investigations show that one
of the principal parameters on which the operation of the
Cherenkov laser depends is the angular spread of the
electron beam, d. The principal distinction between Wal-
sh’s work and our work is that he does not consider the
angular spread of the particle beam. To justify his model,
Walsh supposes that an infinitely large magnetic field is
applied along the electron beam. Clearly, the magnetic field
does not eliminate the angular spread of an electron beam.
Let us consider a spatially homogeneous electron beam be
described at the point (x , y, z) by the distribution function
(190). If a constant magnetic field is applied along the beam
(the z axis), then electrons start to rotate in the xy plane. If
the electron beam is homogeneous, then the number of
electrons which have a momentum p

?
and start from the

point is exactly equal to the number of electrons which have
the same momentum and come to the same point. Therefore
the angular spread of electrons is the same. (Here we have
not accounted for effects such as the magnetobraking
radiation and scattering of electrons by molecules of the
medium). This conclusion is verified by exact calculations
with the use of Eqns (192), (193). Therefore the energy and
the angular spreads are to be taken into account if one
wants to describe operation of the Cherenkov laser in the
region [Eqn (147)].

2.15 Stimulated cyclotron radiation near the Cherenkov
cone
The analysis of Sections 2.9 and 2.14 shows that a constant
magnetic field has a significant effect on the SCE. We shall
now study the influence of a dielectric medium on the
stimulated cyclotron radiation of electrons. The stimulated
radiation of electrons moving in a constant magnetic field
in vacuum (the cyclotron resonance laser) has been well
studied theoretically and experimentally [56 – 58].

We will see here how the feasible region of such
generators can be extended to the regions of the infrared
and visible spectrum of electromagnetic waves. The central
difficulty of this problem, i.e., how to create high-intensity
magnetic fields and high-precision high-energy electron

beams, can be bypassed by considering the cyclotron
radiation in a dielectric medium near the Cherenkov
cone [Eqn (1)].

We shall examine the operational characteristics of the
cyclotron resonance laser using the laws of conservation of
energy and momentum together with the dispersion equa-
tion:

er � �ho = el , p�z � �hkz = p ,
o

2

c2 n2
= jkj2 . (212)

Here the energy er = [(mc2
)

2
+ c2p2

z+

2mc2
�hO0(r + 1=2)]1=2, r = 0, 1, 2, . . . are arbitrary num-

bers, n is the index of refraction of the gaseous atmosphere,
O0 = jejH 0=mc is the Larmor frequency, H 0 is the strength
of the constant magnetic field which is applied in the
direction opposite to the z axis. Emission or absorption of
a photon is accompanied by electron transition from the
level r to the level l.

If r = l, then Eqns (212) describe the SCE (see
Sections 2.9, 2.14). Other transitions (r 6= l) describe the
stimulated cyclotron radiation on all harmonics of the
Larmor frequency. We dwell on the first harmonic:
rÿ l = �1. Let the photon beam be directed along the z
axis (kx = 0). Once the quantum numbers r and l are
determined and the frequencies O0 and o are fixed, the
system of equations (212) specifies the z-projections of the
momenta of electrons which are involved in emission (ÿ)
and absorption (+),

p�z = p0 � Dp . (213)

The quantity p0 is found from the equation

o =

O0

1 ÿ nbr

mc2

er
(214)

and the asymmetric part of the momentum from

Dp =

�hk
2

n2
ÿ 1

n(nÿ br)
. (215)

Here br = p0c=er. If n > 1 then Dp > 0, and amplification,
as is the case with Eqn (150), occurs on the left-hand wing
of the Gaussian spread of the electron beam in the z-
projections of momentum.

Note that in the adopted geometry (the wave vector of
photons and the constant magnetic field are directed along
the z axis):
(a) the asymmetric part of the momentum and, conse-
quently, the gain of the cyclotron laser (G � Dp qf0=qp0) are
nonzero in a dielectric medium (n 6= 1) only;
(b) the Cherenkov factor (1 ÿ nbr) in Eqn (214) can be
made arbitrarily small; thus amplification can be obtained
in the region of the optical frequencies even for weak
magnetic fields (clearly, n < 1 for x-ray frequencies and the
cited consideration is no longer true).

We shall find the gain for the electromagnetic wave
described by

A x = A 1 sin(ot ÿ kz ) , A y = A 2 cos(ot ÿ kz ) , (216)

by using system of equations (88), (91). The constant
magnetic field is assumed to be applied along the z axis.
The electron propagation function is found from Eqn (88)
by taking account of the constant magnetic field exactly
and the amplified wave in the first approximation:

f( p) = f0( p0) + f1 . (217)
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Here the characteristics p0 are specified by the expres-
sions (193) and the linear addition with respect to the field
[Eqn (216)] by

f1 = ÿefG1 exp i[(o+ O)t ÿ kz ]

+B1 exp i[(oÿ O)t ÿ kz ]g+ c:c: , (218)

where

G1 = ÿi
G2E

+

O+ o(1 ÿ nb0z)
+

B2OE
+

[O+ o(1 ÿ nbz)]
2

ÿit
B2OE

+

O+ o(1 ÿ nb0z)
,

B1 = i
G�

2E
ÿ

Oÿ o(1 ÿ nb0z)
+

B�2OE
ÿ

[Oÿ o(1 ÿ nbz)]
2

+ it
B�2OE

ÿ

Oÿ o(1 ÿ nb0z)
,

G2 =

1 ÿ nb0z

2

�

qf0

qp0x
ÿ i

qf0

qp0y

�

+

nb
ÿ

2
qf0

qp0z
,

B2 =

1
2
b
ÿ

�

b0y
qf0

qp0x
ÿ b0x

qf0

qp0y

�

,

E
�

=

1
2
o

c
(ÿA 1 � A 2) , b

�

= (b0x � ib0y) ,

O = O0
mc2

e
, e = [(mc2

)

2
+ c2p2

0]
1=2 . (219)

The terms proportional to B1 describe the amplification
at the normal frequency (1 ÿ nb0z > 0), and the terms
proportional to G1 the amplification at the abnormal
frequency (1 ÿ nb0z < 0). In what follows we consider
only the first case and assume that the amplified wave is
circularly polarised (A 1 = A 2 = A 0):

E
+

= 0 , E
ÿ

= ÿ

o

c
A 0 . (220)

Retaining only the time-dependent terms [such as
exp(iot)] in expression (89) for the current, we have

jx =

i
4
r0e2 o

c
A 0 exp i(ot ÿ kz )

�

�

1

0
dp0?

�

+1

ÿ1

dp0z

�2p

0
dj

v0?p0?(1 ÿ nb0z)

Oÿ o(1 ÿ nb0z) + iZ
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��
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qp0?
+

i
p0?

qf0

qj
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+ nb0?
qf0

qp0z

�
�

�

�

�

Z!0

+ c:c: (221)

Expression (221) is written in the cylindrical coordinate
system ( p0?, p0z , j). If the amplitude, A 0, varies slowly
with the z coordinate, then the gain of the cyclotron laser
can be found:

G = Re

(

i
2p
n

e2
r0

�

1

0
dp0?

�

+1

ÿ1

dp0z

�2p

0
dj

�

b0?p0?(1 ÿ nb0z)

Oÿ o(1 ÿ nb0z) + iZ
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��

qf0

qp0?
+

i
p0?

qf0

qj

�

+nb0?
qf0

qp0z

�

)

�

�

�

�

Z!0

. (222)

We choose the initial electron distribution function, with
regard for the cylindrical symmetry of the problem, in the
form:

g(e, y) =

4 ln 2
p

1
Dd

� exp

�

ÿ4 ln 2
(eÿ e0)

2

D
2 ÿ 4 ln 2

(yÿ y0)
2

d
2

�

, (223)

where y is the angle between the velocity of the electron and
the z axis. We are now going from the electron distribution
function in the momentum space f0( p) to the energy and
angle distribution functions given by Eqn (223). From rule
(132) we have that

G = ÿ16
���

p
p

(ln 2)3=2
r0r0l

n2
ÿ 1
n

b
4
0 sin2

y0

(b0 ÿ n cos y0)
2

�

mc2
e0

D2

e1 ÿ e0

D
exp

�

ÿ4 ln 2
(e1 ÿ e0)

2

D2

�

, (224)

where r0 = e2
=mc2 is the classical radius of an electron,

b0 =

cp0

e0
, p0 =

[e
2
0 ÿ (mc2

)

2
]

1=2

c
,

D =

�

D
2
+ d

2
e

2
0 n2 b

4
0 sin2

y0

(b0 ÿ n cos y0)
2

�1=2

(225)

is the effective width, the energy e1 is found from the
equation

o =

O0mc2
=e1

1 ÿ nb1 cos y0
, (226)

b1 =

p1c
e1

, and e1 = [(mc2
)

2
+ c2p2

1]
1=2 .

When integrating we use the inequality

jb0 ÿ n cos y0j4 dnb2
0 sin y0 . (227)

If the frequencies o and O0 = jejH 0=mc are chosen such
that e1 = e0 ÿ (D=

�����������

8 ln 2
p

), then the gain [Eqn (224)] is
maximum:

G = 4:2r0r0l
n2
ÿ 1
n

b
4
0 sin2

y0

(b0 ÿ n cos y0)
2

�e0mc2

�

D
2
+ d

2
e

2
0 n2 b

4
0 sin2

y0

(b0 ÿ n cos y0)
2

�

ÿ1

. (228)

If

d n
b

2
0 sin y0

jb0 ÿ n cos y0j
4

D

e0
,

then the amplification depends solely on the angular spread
of the electron beam and is independent of the angle y0:

G = 4:2r0r0l
n2
ÿ 1

n3

mc2

e0

1

d
2 . (229)

Clearly, the amplification factors for the cyclotron laser
and the Cherenkov laser are practically the same.

Note in conclusion that the related issues of the
cyclotron laser were considered in Ref. [59].

2.16 Experimental observation of the stimulated
Cherenkov effect
In this section we will determine when the above effects can
be observed experimentally. Clearly, it is worthwhile to use a
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gaseous atmosphere for the spatial SCE. Thus the neg-
ative role of multiple scatterings of electrons by atoms can
be reduced. Since the index of refraction of a gaseous
atmosphere is close to unity (n = 1 + Dn, where Dn � 10ÿ4),
it follows from the condition 1 ÿ nb cos y = 0 that the energy
e and angle y of the particle are limited by the inequalities

y
2
< 2Dn ,

�

mc2

e

�2

< 2Dn . (230)

If Dn = 0:5 � 10ÿ4, then y < 10ÿ2 rad and e > 50 MeV.
Consequently, the SCE is only possible for relativistic

electron beams in the usual gaseous atmospheres. If a
resonance gas is used, then Dn can be increased up to a
value of order of 10ÿ2. Thus the energy of the particles is
diminished from 3.5 – 1.1 MeV and the angle y is increased
from 0.1 – 0.4 rad. In this case, however, the resonance
condition imposes a severe constraint on the frequency of
the electromagnetic radiation: o � o0, where o0 is the
frequency of the resonance transition of an atom or
molecule.

We shall determine when dynamic effects can be
observed. For estimates the following relations may be
useful:

x1 = 0:85 � 10ÿ9
l
������

P1

p

, x2 = 0:61 � 10ÿ9
l
������

P2

p

,(231)

where P1 and P2 represent the wave power (measured in
watts per square centimetre), l is its wavelength (in
micrometres), x = jejA 0=mc2 is a dimensionless para-
meter, and the indices 1 and 2 correspond to linear and
circular polarisation of radiation.

If the laser radiating power is P = 4:5 � 1010 W cmÿ2,
l = 1:06 mm, and the width of the beam is 2d = 2 mm, the
amplitude De [Eqn (14)] is equal to 106 eV. Since the energy
of a photon is �ho = 1:2 eV, an electron can emit or absorb
up to 106 photons due to the SCE. Clearly, multiple
repetition of this process is necessary to achieve a sig-
nificant acceleration.

We shall now evaluate the fields which are required for
quantum modulation of the current and density of the
electron beam [Eqns (46), (48)]. The depth of modulation
runs to 10 % for the laser radiating power
P = 1:6 � 10ÿ4 W cmÿ2, l = 1:06 mm, d = 1 mm. If the
refractive index of the gaseous atmosphere is n = 1:021,
the energy of the particles is e = 2:5 MeV, and the angle is
y = 2:77 � 10ÿ2, the gap x 1 = 1=Dqx between the regions of
quantum and classical modulation is equal to 45.4 cm.

Let us now assume that the mechanism of emission and
absorption of photons is based on the interaction between
the magnetic moment of electrons and the radiation (see
Section 2.5). We suppose that the particle beam with the
above parameters is fully polarised along the x axis
(zx = 1). In this case the laser radiating power must be
P = 4:9 � 107 W cmÿ2 for the depth of modulation to run
to 10 % [see Eqns (59), (60)]. We shall assess the possibility
of magnetisation of a particle beam on the basis of the SCE.
If an electron beam is not polarised before the interaction
(jf j = 0), then after the interaction the magnetisation level
Zx = max (I1x=r0m) along the x axis [see Eqn (68)] is 31.6 %
for P = 1:2 � 1010 W cmÿ2, l = 1:06 mm, n = 1:021. The
depth of magnetisation modulation of a polarised electron
beam associated with the modulation of its density, given by
Eqn (68), runs to 10 % for P = 1:6 � 10ÿ4 W cmÿ2.

In all cited cases the angular and energy spreads of an
electron beam must satisfy the conditions (82). For the

above parameters D=e � 0:7 � 10ÿ6, d � 1:02 � 10ÿ6, and
the constraints on the angular and energy spreads can be
made weak by means of a constant magnetic field and the
use of a resonance medium with n = 1:1 – 1.01, respec-
tively. Note that such severe constraints on the quality of an
electron beam are the main obstacle to the experimental
observation of quantum effects.

We are coming to the analysis of several schemes of how
to amplify the electromagnetic radiation on the basis of the
SCE. Although the gain of the quantum klystron is large
[see Eqn (103)], unique particle beams, as is noted above,
are required for its implementation. Let us compare the
gain for the Cherenkov klystron [Eqn (102)], G = Gkl, with
that for the Cherenkov klystron in a constant magnetic field
[Eqn (115)], G = G

H
kl. Their ratio is

G
H
kl

Gkl
=

n sin y

b0(n
2
ÿ 1)

D
?

D
jj

. (232)

If the angle y and the energy of particles e0 is related to the
refractive index n = 1 + Dn by the equation y = mc2

=e0 =

������

Dn
p

, and the longitudinal and transverse spreads are of the
same order D

jj
� D

?
, then the ratio

G
H
kl

Gkl
=

e0

2mc2 4 1

for relativistic particles.
Let us compare the gains for the Cherenkov laser

[Eqn (146)], G = Gl, and for the Cherenkov laser in a
constant magnetic field (215): G = G

H
l . Their ratio is

G
H
l

Gl
=

�

e0

mc2

�2 n2 sin2
y

n2
ÿ 1

�

D
?

D
jj

�2

. (233)

If y =

��������

2Dn
p

, D
?
' D

jj
, mc2

=e < y, then

G
H
l

Gl
=

�

e0

mc2

�2

4 1

in the range of momenta the condition (210) specifies.
Clearly, a magnetic field enables the efficiency of
amplification to be increased greatly both for the klystron
and for the laser.

Let us compare the gains of the Cherenkov laser, given
by Eqn (205), and of the Cherenkov klystron [Eqn (115)]:

G
H
l

G
H
kl

= 0:2
l

d
p0

D
jj

�

e0

mc2

�2

b0 sin y . (234)

If, for example, d=l = p0=Djj, y = mc2
=e0, then the ratio is

G
H
l

G
H
kl

= 0:2
e0

mc2 .

Clearly, in this case G
H
l < G

H
kl if e0 < 5mc2; and G

H
l > G

H
kl

if e0 > 5mc2. Let the average energy of an electron beam
be e = 12:6 MeV; D

jj
=p0 = 10ÿ3; r0 = 2 � 1010 cmÿ3;

n = 1:0016; y = 3:97 � 10ÿ2 rad; and the strength of the
constant magnetic field H = 100 kG. Then the gain
[Eqn (205)] is G

H
l = 0:2 cmÿ1 over the wavelength

l = 1 mm.
In conclusion we will examine optical polarisation

effects in a system of the Cherenkov laser type (see
Section 2.13). If an electron beam moves at an angle to
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the direction of a propagating wave and it is polarised, then
a rotation of the polarisation ellipse of the test signal
[Eqn (181)] results. Taking account of Eqn (188), we find
that the contribution of magnetisation of the electron beam
in the effect is negligible. If the density of particles is
r0 = 1010 cmÿ3, their average energy is e = 6:65 MeV;
d = D=e = 10ÿ3; the wavelength of the test signal is
l = 0:67 mm; the angle is y = 6:9 � 10ÿ2 rad; the coeffi-
cient is r = 1:6. This implies that jy = 1:4 � 10ÿ5 rad for
the region of interaction L = 1 cm.

Let a particle beam and a wave propagate in the same
direction. In this case, rotation is due to the spins of
electrons [Eqn (189)]. If the particles are fully polarised
along the z axis (zz = 1), e = 4:98 MeV, r0 = 1012 cmÿ3,
L = 10 m, then the angle is jz = 1:1 � 10ÿ7 rad. The
refractive index ( n) of the gaseous atmosphere is assumed
to be equal to 1:005 in both cases.

3. The stimulated surface Cherenkov effect
(SCCE)

In the Cherenkov laser and Cherenkov klystron, the
electron beam propagates in a dielectric medium at an
angle to the amplified radiation. Clearly, this presents
problems in the transportation of the electron beam and
restricts the region of its interaction with the wave. The
region of interaction between electrons and the wave can be
chosen arbitrarily if the amplified wave propagates in a
waveguide and the electron beam moves over its surface.

As is known from Ref. [14], electrons moving over a
dielectric medium can spontaneously emit electromagnetic
radiation if the electron velocity, the frequency, and the
wave vector of the wave are related by the equation,

oÿ kzv = 0 . (235)

Here the z axis is directed along the surface of the medium,
v is the velocity of an electron along the same axis, and kz is
the z-projection of the wave vector of the wave. Equation
(235) coincides with the condition for the spontaneous
emission of an electromagnetic wave in an unbounded
dielectric medium, given by Eqn (1). Note that in both
cases the spontaneous emission intensities are quantities of
the same order provided that the distance from the electron
to the surface of the dielectric medium is not large.

The situation is totally different in the case of the SCE.
In the first case (an unbounded medium) the asymmetric
part of the loss is always nonzero [see Eqns (42), (150)] and,
thus, the electromagnetic wave can be amplified (see
Sections 2.8, 2.10); in the second case it is often impossible
to separate the emission and the radiation of photons. We
shall show this using the law of conservation of energy of
momentum.

Let an electromagnetic wave propagate in a plane
waveguide placed in a dielectric (gaseous) medium. The
expressions for the projections of the electric field within the
waveguide and outside it, and the dispersion equation are
all given in Section 3.1 [see Eqns (247) – (250)]. Note that
unlike in an unbounded medium, the x -projection of the
wave vector over the surface of the dielectric is a purely
imaginary quantity: kx = iqx .

To establish the conditions for emission and absorption
of a photon we use the Klein – Gordon equations (33). The
principal problem is how to choose the initial wave function
of the electron. From the classical standpoint the electron

moves only over the surface of the dielectric. To obtain a
quantum mechanical description adequate to the classical
description we suppose that the wave function of the
electron has the form of the de Broglie wave over the
surface of the waveguide and is zero inside the waveguide:

c =

������

r0

2e

r

exp

�

ÿi
e

�h
t + i

pz

�h
z

�

, x > a ,

c = 0 , x < a .

(The field of the crystal is approximated by an infinitely high
potential barrier.) This choice is in good agreement with
experimental results according to which slow electrons
penetrate a crystal thickness of several atomic layers
[Maradulin A in Defekty i Kolebatel’nyi Spektr Kristallov
( Defects and Vibrational Spectrum of Crystals) (Moscow:
Nauka, 1968), p. 359].

We assume that the field, described by Eqn (247), is
adiabatically slow, and turned on and off at z = �1. The
z-projection of the vector potential is presented as

A z = ÿ

ic
2o

E1z exp [i(kzz ÿ ot)ÿ qx x ] + c:c:

In the linear approximation with respect to the field the
wave function of an electron takes the form

c = c0 + c
ÿ

+ c
+

,

where c0 is the initial wave function of the electron, and
the terms c

�

describe emission and absorption of a photon.
We shall seek the function c

�

in the form

c
�

= j
�

(z) exp

�

ÿ

i
�h
(e� �ho)ÿ qx x

�

.

By substituting this expression into Eqn (33) and integrat-
ing the second-order equation as it is done in Section 2.4,
we find the wave functions after the interaction:

c
�

=

2peEzpzc2

o

������

r0

2e

r

� exp

�

ÿi
e� �ho

�h
t ÿ qx x + i

pz � �hkz

�h
z

�

�d[(e
�

� �ho)

2
+ (�hqx c)2

ÿ (mc2
)

2
ÿ ( pz � �hkz)

2c2
] .

Taking into account the relation (248) we establish that an
electron can emit or absorb a photon when its initial energy
(e! e

�

) and momentum ( pz ! p�z ) satisfy the condi-
tions,

(e
�

� �ho)

2
+ (�hqx c)2

ÿ ( p�z � �hkz)
2c2

= (mc2
)

2 ,

o
2

c2 n2
1 = k2

z ÿ q2
x . (236)

Since the electron moves in the region x > a, and the
field [Eqn (247)] does not have a determinate value of the x -
projection of the wave vector, there is no point in suggesting
a determinate value of the x -projection both for the initial
and for the final state of the electron in the case of the
SCCE in contrast to the SCE.

Formally we assume that the momentum of the particle
can take imaginary values. In this case conditions (236) can
be found with the aid of the system of equations
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e
�

� �ho = e2 , p�z � �hkz = p2z ,

��hk�x = p2x ,
o

2

c2 n2
1 = k2

x + k2
z . (237)

Here k+

x = iqx , kÿx = (k+

x )

�, where + corresponds to
absorption of a photon and ÿ to emission of a photon.
Although only the corollary [Eqn (236)] to this system of
equations is physically meaningful [in calculations
e

2
2 = (mc2

)

2
+ (cj p2j)

2, ( p�2x )
2
= ÿj p�2x j

2 are to be taken
into account], it is convenient for analysis since it is
analogous to the ordinary system of equations (148).

According to Eqn (236), in vacuum (n1 = 1) the same
electron is involved in both processes. Its velocity can be
found from Eqn (235). Since the absolute values of the
amplitudes of both processes also coincide, the depth of the
klystron modulation (see Section 2.8), the overpopulation
of the electron beam (see Section 2.11), and the gains for
the Cherenkov laser and Cherenkov klystron are zero. This
peculiar degeneration can be removed in three ways: (1) by
placing the waveguide in a gaseous atmosphere; (2) by
applying a constant magnetic field along the waveguide;
and (3) by considering amplification by particles whose
velocities lie outside the Cherenkov cone.
(1) If the waveguide is placed in a gaseous atmosphere
(n1 6= 1), then it follows from system of equations (236)
that the energies of particles involved in emission and
absorption of a photon are different:

e
�

= e� De . (238)

Here the quantity e is found from Eqn (235), and the
asymmetric part of the energy is

De =

1
2
�ho(n2

1 ÿ 1)

�

p
mc

�2

. (239)

(2) Let a constant magnetic field be applied along the
surface of a waveguide placed in vacuum. The energies and
momenta of electrons involved in emission and absorption
are found from the equations

e
�

r � �ho = el , p� � �hkz = pz ,
o

2

c2 = k2
x + k2

z . (240)

Here er, where

er =

�

(mc2
)

2
+ c2p2

z + 2mc2
�hO0

�

r +

1
2

��1=2

is the energy of an electron in the constant magnetic field;
r = 1, 2, ::: ; O0 = jejH 0=mc is the Larmor frequency; kz is
the z-projection of the wave vector of the field described by
Eqn (247).

If r = l, and the frequency o and the wave vector kz of
the photon are given, then the system of equations (240)
specifies the z-projections of the momenta of particles
involved in emission (ÿ) and absorption (+) of the photon:

p�z = p� Dp . (241)

The quantity p is found from Eqn (235) and

Dp =

�ho
2v

. (242)

Clearly, the degeneration is removed because the law of
conservation of momentum is violated along the x axis (the
direction perpendicular to the magnetic field).
(3) Let an electron, with an energy e and momentum
p(0, 0, p) before the interaction, interact with the field

[Eqn (247)] within a finite portion of the waveguide,
L 5 z 5 0. The calculation of the amplitudes of the
probabilities of emission and absorption of a photon
shows that, in this case, the law of conservation of
momentum along the z axis,

pz � �hkz = p�z , (243)

can be violated. Therefore emission and absorption of a
photon [combined with the dispersion equation (248)] are
governed by the equations

e� �ho = e
� , � �hk�x = p�x ,

o
2

c2 = k2
x + k2

z . (244)

Since the waveguide is placed in vacuum, n1 = 1.
The z-projection of the momentum of the electron after

the interaction can be determined as follows. Taking into
account

p�z =

1
c
[(e

�

)

2
ÿ c2

( p�x )

2
ÿ (mc2

)

2
]

1=2 ,

and using Eqn (244), we have

p�z = p� �h

�

kz +

oÿ kzv
v

�

ÿ �hkz
�h(oÿ kzv)

pv
. (245)

The comparison between this inequality and Eqn (243)
shows that in the field [Eqn (247)] an electron whose velocity
lies outside the Cherenkov cone absorbs and emits photons
which have the z-projections of the wave vectors Q �

z given
by

Q�

z = kz +

oÿ kzv
v

� DQ 6= kz .

Here the term

DQ = kz
�h(oÿ kzv)

pv
. (246)

Clearly it introduces an asymmetry in emission and
absorption. Since in this case the synchronism condition
(235) is not satisfied, it is not, strictly speaking, the
Cherenkov effect.

A somewhat different approach to the analysis of
stimulated processes in fields with singularities at certain
points [in our case this corresponds to turning on and off
the field at the points z = (0;L)] was considered by
V M Arutyunyan and S G Oganesyan [ Z h. Ek sp. Teor.
Fiz. 72 466 (1977)].

All three possibilities for removing the degeneracy are
used in Sections 3.2 and 3.3 to obtain a modulated electron
beam. In Section 3.3 the role of the angular and energy
spreads of an electron beam is examined. In Sections 3.4 –
3.7 we show that the SSCE can be used to develop the
Cherenkov laser and the Cherenkov klystron [60 – 64]. In
Section 3.1 the dynamics of a particle in the field of a
surface wave is studied.

Since the quantum effects are thoroughly studied in
Section 2 in the case of the SCE, the analysis of this section
is based on the classical equations only.

3.1 Motion of an electron in the presence of a surface
wave
Let a monochromatic electromagnetic wave propagate in a
dielectric waveguide of thickness 2a and of infinite length
and width (Fig. 3). The waveguide is symmetric about the
yz plane. The strength of the electric field of an
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electromagnetic TM wave over the waveguide (x > a) is
given by

Ez = E1z exp i(kx x + kzz ÿ ot) , Ex = ÿ

kzEz

kx
, (247)

where kx , ky = 0, and kz are the projections of the wave
vector k [65]. Assuming total internal reflection, we find
that kx is a pure imaginary quantity, kx = iqx , where

q2
x = k2

z ÿ
o

2

c2 n2
1 . (248)

(It is assumed that the waveguide is placed in a gaseous
atmosphere of refractive index n1). In the waveguide,

Ez = E2z sin(k 0x x) exp i(k 0zz ÿ ot) ,

Ex = i
k 0z
k 0x

E2z cos(k 0x x) exp i(k 0zz ÿ ot) , (249)

and the dispersion equation takes the form

o
2

c2 n2
2 = (k 0x )

2
+ (k 0z)

2 , (250)

where n2 is the refractive index of the waveguide.
Since the fields are continuous on the boundary, the z-

projections of the wave vectors of the fields [Eqns (247),
(249)] are related by the equations

kz = k 0z , tan k 0x a =

n2
2qx

n2
1k 0x

. (251)

The amplitudes of the fields, given by Eqns (247), (249),
are related by the equation,

E1z = E2z sin(k 0x a) exp(qx a) . (252)

The solutions to Eqn (251) give the set of natural modes of
the waveguide.

Let an electron move in parallel with the surface of the
waveguide before the interaction:

x = x 0 , y = 0 , z = z0 + v0t . (253)

We shall find the changes in its momentum and energy in
two cases: (1) the field is turned on adiabatically slowly,
and (2) the electron interacts with the wave within a finite
portion of the waveguide (L 5 z 5 0).

In the first case, by substituting the expressions for
electric [see Eqn (247)] and magnetic [H = c(k � E )=o]

fields into Eqn (3) we have

p = p0 + D p , e = e0 + De .

Here

Dpx =

eE1z(oÿ kzc)
cqx (oÿ kzv0)

exp(ÿqx x 0) cos[kzz0 + (kzv0 ÿ o)t] ,

Dpy = 0 ,

Dpz = ÿ

eE1z

oÿ kzv0
exp(ÿqx x 0) sin[kzz0 + (kzv0 ÿ o)t] ,

De = ÿv0
eE1z

oÿ kzv0
exp(ÿqx x 0) sin[kzz0 + (kzv0 ÿ o)t] ,

(254)

where the velocity v0 = p0c2
=e0. Note that the expressions

(254) differ from Eqns (6), (7) in the cutting factor,
exp(ÿqx x 0), only. Therefore all explanations to Eqn (5)
remain valid here.

Let the particle and the wave move synchronously,

oÿ kzv0 = 0 , (255)

and the field is turned on for a time 2t by the law

E1z =

1
2

E 0

1z

�

1 +

tanh t
t

�

.

By integrating Eqn (3) with respect to time, we find that
the increment of energy increases proportionally to the
duration of interaction between the electron and wave for
t4 t:

De = eE 0

1zv0t exp(ÿqx x 0) cos(kzz0) . (256)

We assume now that the electron interacts with the wave
within a finite portion of the waveguide L 5 z 5 0.
Equation (3) integrates to

De = eE1zL
sin a
a

exp(ÿqx x 0) cos

�

aÿ
o

v0
z0

�

, (257)

where the detuning is a = (oÿ kzv0)L=2v0. Depending on
the phase f = aÿ oz0=v0, the particle is either accelerated
(De > 0) or decelerated (De < 0). If the electron beam
crosses the interval [0, L ], then the interaction results in
modulation of its energy.

Since the amplitudes of the fields E1z and E2z are related
by Eqn (252), the interaction between electrons and the
wave is efficient when the aiming parameter is

x 0 ÿ a <

1
qx

. (258)

Taking account of Eqns (248), (255) we find that

x 0 ÿ a <

lv0

2pc

�

1 ÿ n2
1

v2
0

c2

�1=2

,

in a gaseous atmosphere (n1 6= 1), and

x 0 ÿ a <

lv0

2pc
e0

mc2 ,

in vacuum (n1 = 1). Note also that formulae (254), (256),
(257) are true when

jDpj < p0 , jDej < e0 . (259)

3.2 Modulation of the density and current of an electron
beam
Modulation of the energy of an electron beam due to the
SSCE [Eqn (256)] results in the modulation of its velocity.
However, it is not sufficient, as is noted at the beginning of
Section 3, to obtain the klystron modulation for the
current and density of the electron beam. Note yet
another fact which hampers the analysis of the modulation
effect on the basis of the SSCE. Actual electron beams

a

x

z

e

e

Figure 3.
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always have angular spreads. Clearly, if electrons move at
an angle to the surface of the waveguide, they either leave
the region of interaction with the field [Eqn (247)] or
penetrate the waveguide and are rapidly scattered there.
The number of such electrons can be diminished by
applying a constant magnetic field along the central axis of
the particle beam (see Section 3.3).

We will begin the analysis of the modulation effect with
a simple model. We suppose that all particles of the beam
move along the surface of the waveguide and have the same
momentum p0(0, 0, p0). We determine the density and
current of the electron beam after its interaction with
the field given by Eqn (217), within the interval
L 5 z 5 0, using the kinetic equation (23). On solving it
in the linear approximation with respect to the field, we find
that the function

f = f0 + f1 ,

in the region z > L . Here f0 = d( pz ÿ p0) d( px ) d( py) is the
initial electron distribution function,

f1 = ÿRe

�

LF1
qf0

qp
sin a0

a0vz

� exp i

�

kx x +

oÿ kx vx

vz
z ÿ ot ÿ a

0

��

, (260)

the force is

F1 = e

�

E1

�

1 ÿ
k .v
o

�

+

k
o

(v.E1)

�

, E1x = ÿ

kzE1z

kx
,

and the detuning is

a
0

=

oÿ k .v
2vz

L .

By determining the density and current of the electron
beam and retaining only the terms of the klystron type we
have

jx = jy = 0 , (261)

jz = j0

�

1 ÿ 4p2
xz

mc2

e0b0

zL

l
2

�

n2
1 ÿ 1 +

oÿ kzv0

ob
2
0

�

�

sin a
a

exp(ÿqx x) sin

�

ot ÿ
o

v0
z + a

��

, (262)

r = r0
jz
j0

. (263)

Here j0 = er0v0 is the initial electron current,
xz = eE1z=mco, b0 = v0=c, and the detuning

a =

oÿ kzv0

2v0
L . (264)

The notation in Eqns (261) – (263) for the current and
density of electrons is convenient for different limiting
cases. If the waveguide is placed in vacuum (n1 = 1), and
the synchronism condition (255) is satisfied, then the
second term in Eqn (262) vanishes and we get

j = j0 , r = r0 ,

according to the analysis at the beginning of Section 3.
If the waveguide is placed in a gaseous atmosphere

(n1 > 1) and the synchronism condition (255) is satisfied,
then

jz = j0

�

1 ÿ 4p2
xz

mc2

e0b0

zL

l
2 (n2

1 ÿ 1)

� exp(ÿqx x) sin

�

ot ÿ
o

v0
z

��

,

r = r0
jz
j0

. (265)

If the waveguide is placed in vacuum (n1 = 1) and the
velocities of electrons lie outside the Cherenkov cone, then
a 6= 0 and

jz = j0

�

1 ÿ 4pxz
mc

p0b0

z
l

sin a

� exp(ÿqx x) sin

�

ot ÿ
o

v0
z + a

��

,

r = r0
jz
j0

. (266)

Clearly, in the last two cases the current and density of
the electron beam oscillate at the frequency o, and the
depth of modulation increases in direct proportionality to
the drift distance z (the klystron modulation).

Formulae (265), (266) are applicable when

4p2
xz

mc2

e0b0

zL

l
2 (n2

1 ÿ 1)5 1 ,

4pxz
mc

p0b0

z
l

sin a5 1 . (267)

3.3 Accounting for spreads of electrons in energies and
angles
Let us consider the modulation of an electron beam which
has the Gaussian spread in momenta before the interaction

f( p) =

(4 ln 2)3=2

D
2
?

D
jj
p3=2

exp

�

ÿ4 ln 2
(pz ÿ p0)

2

D
2
jj

ÿ 4 ln 2
p2

x + p2
y

D
2
?

�

.

(268)

The widths of the energy and angular spreads of this beam
are specified by the expressions D = v0Djj, d = D

?
=p0. Let

electrons interact with the field [Eqn (247)] within the
interval L 5 z 5 0. We shall determine their density and
current in the region z > L when a constant magnetic field
Hz = ÿH 0 is applied along the z axis. Since our concern is
only with electrons which move over the surface of the
waveguide, the kinetic equation must be added by the
inequality

x > a . (269)

On solving Eqn (88) for the constant magnetic field
exactly and for the field [Eqn (247)] in the first approxima-
tion, we have

f = f0 + f1 . (270)

Here f0 is the initial electron distribution function (268),

f1 = ÿRe

�

eE1z
L
vz

sin a
a

qf0

qpz
I0

�

qx
v
?

O

�

� exp

�

ÿ qx
v
?

O
sinjÿ qx x + i

o

vz
z ÿ iot ÿ ia

��

, (271)

O = jejH 0c=e, the velocity v
?

= c2
(p2

x + p2
y)

1=2
=e, the

detuning
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a =

oÿ kzvz

2vz
L , (272)

the angle j is found from the equation, tanj = py=px . Note
that in Eqn (271) only the term responsible for the SCE is
taken into account.

We will now analyse inequality (269). When solving
Eqn (88) in a constant magnetic field, we need to use the
characteristics (106), in which the primes must be omitted.
Simultaneously the expressions

x = x 0 +

v0?

O
sin(Ot ÿ j

0

) , tanj0 =
p0y

p0x
,

must be substituted in inequality (269). Since this inequality
must hold at any moment of time, x 0 > a + v0?=O.
Returning to the variables k, v, and considering
Ot ÿ j

0

= ÿj, we establish constraints on the angle j:

pÿ j1 > j > j1 . (273)

Here

j1 =

p

2
ÿ a1 = arcsin

a + v
?
=Oÿ x

v
?
=O

, (274)

for a < x < a + 2v
?
=O; and j1 = ÿp=2 for x 5 a + 2v

?
=O.

Inequalities have a simple physical meaning. Since v
?

is
the projection of the velocity of a particle onto the xy plane,
v
?
=O = rl is its Larmor radius. If we let a particle go

through a point x in the region a < x < a + 2rl, its
trajectory does not intersect the plain x = a if the angle
between the momentum p

?

and the x axis lies in the interval
defined by Eqn (273) (Fig. 4). If a5 a + 2rl, then the angle
j can be chosen arbitrarily. Thus inequalities (273) take up
particles from the assemblage of particles going through the
point x such that their trajectories pass over the surface of
the waveguide.

On converting to the cylindrical coordinates in momen-
tum space ( px , py , pz ! j, p

?
, pz), we find the expression

for the z-projection of the current of the electron beam,

jz = j0z + j1z , (275)

where j0z is the z-projection of the current of the electron
beam before the interaction,

j1z = ÿRe

�

e2
r0LE 1z exp(ÿqx x ÿ iot)

�

�pÿj
?

j1

dj exp

�

ÿqx
v
?

O
sinj

�

�

+1

ÿ1

dpz

�

1

0
p
?

dp
?

�I0

�

qx
v
?

O

�

sin a
a

qf0

qpz
exp i

�

o

v
?

z ÿ a

��

, (276)

for a < x < a + 2v
?
=O, and

j1z = ÿRe

�

2pe2
r0LE 1z exp(ÿqx x ÿ iot)

�

�

+1

ÿ1

dpz

�

1

0
p
?

dp
?

�I2
0

�

qx
v
?

O

�

sin a
a

qf0

qpz
exp i

�

o

vz
z ÿ a

��

, (277)

for x 5 a + 2v
?
=O.

We assume that the average momentum of the electron
beam satisfies the synchronism condition oÿ kzv0 = 0. To
simplify further calculations, we also assume that the
strength of the constant magnetic field is

H 0 >
mco
jej

d . (278)

In this case the relative contribution of the term defined
in Eqn (276) to the strength of the current

Iz =

�

1

a
dx
�l=2

ÿl=2
dy jz ,

is of the order of dmco=jejH 05 1 and can be neglected.
Taking into account p

?
4D

?
, j pz ÿ p0j4D

jj
, the

quantity 1=vz can be expanded into the Taylor series about
the point 1=v0 as

1
vz

=

1
v0
ÿ

1
p0v0

�

mc2

e0

�2

( pz ÿ p0)

+

�

mc2

e0

�2
( pz ÿ p0)

2

p0e0
+

p2
?

2p0e0
. (279)

By substituting this expansion into Eqn (277) and applying
definition (268) we have

j1z = j0z4p2
xz

�

mc
p0

�3 zL

l
2

� exp

�

ÿ

�

z
z1

�2

ÿ qx x

�

cos

�

ot ÿ
o

v0
z

�

. (280)

Here xz = eE1z=mco, and

z1 =

2
��������

ln 2
p

p
l

�

e0

mc2

�2

b0
p0

D
jj

. (281)

In calculations it is assumed that the distance z is given
by

z5
2 ln 2
p

l

�

p0

D
?

�2 1
b0

, (282)

and the average momentum of the electron beam is

p05 1:4mc
p0

D
?

�

D
jj

p0

�1=2

. (283)

Note that under conditions (278) and (282) the current
[Eqn (280)] is independent of the angular spread of the
electron beam. The energy spread defines the drift region
for electrons, z < z1, where z1 is specified by expres-
sion (281).

The perturbation theory used to determine the expres-
sion (280) is true for

j j1z j5 j0z . (284)

a

j1

p
?

y

x

a1

v
?
=O

x

ÿa1 < a < a1

Figure 4.
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3.4 Theory of the Cherenkov laser (a plane waveguide)
We shall consider the feasibility of amplification of an
electromagnetic wave on the basis of the SSCE in the
simplest case, i.e. when the waveguide is placed in a
gaseous atmosphere and an electron beam moves in
parallel with the waveguide and has a spread in energies
only. The analysis at the beginning of Section 3 shows that
electrons involved in emission and absorption have
different energies [see Eqn (258)]. Since De > 0, the
number of electrons involved in emission
[N(e

ÿ

) � g(e+ De)] is greater than the number of
electrons involved in absorption [N(e

+

) � g(eÿ De)] on
the left-hand wing of the Gaussian electron energy
distribution; the gain G > 0.

We determine the gain of the Cherenkov laser using the
system of equations (88), (93). The electron distribution
function is determined from the kinetic equation (88) in the
linear approximation with respect to the field [Eqn (247)],
as:

f = f0 + f1 , (285)

where f0 is the electron distribution function before the
interaction,

f1 = iF
qf0

qp
1

k .vÿ o+ iZ

�

�

�

�

Z!0

, (286)

where F = eE + (e=c)[v�H ] is the Lorentz force.
The gain G can be found from Eqn (93) under the

assumption that electrons move on either side of the
waveguide (see Fig. 3):

G = ÿ2Re
1
P

�

1

a
dx
�l=2

ÿl=2
dy j.E � . (287)

Here,

P =

c
4p

�

+1

ÿ1

dx
�l=2

ÿl=2
dy (E �

�H )

.n

=

c
4p

l
kzo

e2c
E1zj j

2 exp(ÿ3qx a)

k
02
x q2

x

�

�

a(e2
2q2

x + e
2
1k

02
x ) + e1e2

q2
x + k

02
x

qx

�

(288)

is the energy flux of the wave [Eqns (247), (249)] along the
x axis; l is an arbitrary width along the y axis; e1;2 = n2

1;2 are
the dielectric constants of the gaseous atmosphere and
waveguide.

By substituting Eqns (89), (286), (288) into Eqn (287)
and assuming that the energy spread of the electron beam is
Gaussian in nature [Eqn (154)], we obtain

G = 2:7 r0r0lb
3
0

�

e0

mc2

�3�
e0

D

�2

�(e1 ÿ 1)(e2b
2
0 ÿ 1)(1 ÿ e1b

2
0) e2 ÿ e1

�

�

1 + 2pa
h

e1 + e2(1 ÿ e1b
2
0)

i

(1 ÿ e1b
2
0)

1=2

lb
3
0e1e2

�

ÿ1

, (289)

where b0 = v0=c = p0c=e0, and r0 is the classical radius of
an electron. Clearly, in vacuum (e1 = 1), G = 0 according
to the laws of conservation of energy and momentum.

Let us now analyse the case when electrons interact with
the wave in vacuum (e1 = 1) within a bounded portion of
the waveguide L (Fig. 5). The solution to the kinetic
equation (88) for this scheme has the form given by

Eqn (285)], where

f1 = i F
qf0

qp

�

1
k .vÿ o

+

exp[i(oÿ k .v)z=vz ]

oÿ k .v

�

. (290)

The amplification, for which the first term in brackets is
responsible, has been analysed above. The second term in
the distribution function (290) is responsible for turning on
the interaction at the point z = 0. The function brings
about modulation of the density of electrons, the velocities
of which do not coincide with the wave velocity,

oÿ kzvz 6= 0 . (291)

The analysis at the beginning of Section 3 shows that
this condition is satisfied for those particles of the beam for
which the law of conservation of momentum is not satisfied
along the z axis. We shall find conditions under which the
electron beam amplifies the field [Eqns (247), (249)] and
determine the gain in the case when the waveguide is a part
of a circular resonator (see Fig. 5). We assume zero losses,
and first integrate Eqn (93) over the space between the
planes at a distance L from each other:

d
dt

W = ÿ2Re
�L

0
dz
�

1

a
dx
�l=2

ÿl=2
dy j.E � . (292)

Here,

W =

1
8p

�L

0
dz
�

1

ÿ1

dx
�l=2

ÿl=2
dy
h

ejEj2 + jHj2
i

, (293)

is the energy of the electromagnetic field.
By integrating Eqn (292) with respect to time, we find

the gain for the electromagnetic wave:

G = ÿ2Re
1

cW

�L

0
dz
�

1

a
dx
�l=2

ÿl=2
dy j.E � . (294)

Taking account of Eqns (247), (248), (89), (290), and (293)
we find that the gain

G = ÿ2pr0r0L

�

mc2

e0

�3

a
d

da

�

sin2
a

a2

�

�

e2b
2
0 ÿ 1

b
3
0(e2 ÿ 1)

�

1 + 2p
a
l

mc2

e0

�

1 + e2

�

mc2

e0

�2��ÿ1

, (295)

where a = (oÿ kzv0)L=2v0. In calculations it is assumed
that the electron beam is monoenergetic: g(e) = d(eÿ e0).
This approximation is valid for

D

e0
5

l

2pL

�

e0

mc2

�2

b
3
0 . (296)

e

e L

Figure 5.
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The maximal value of the factor

n = ÿa
d

da

�

sin2
a

a2

�

,

is n = 0:8 for a = ÿ1:75.
Note that this waveguide version of the Cherenkov laser

was considered for the first time in Ref. [66]. The authors
supposed that the electron beam could move in one direction
only (see Section 2.14) and considered the z-projection of
the electric field only. These suppositions result in an increase
of the gain, given by Eqn (295), by the factor
(1ÿ kzv0=o)

ÿ1
(mc2

=e0)
2.

3.5 Theory of the Cherenkov laser in a constant magnetic
field
Let an electromagnetic wave propagate in the plane
waveguide [Eqns (247), (249)]. Let us direct an electron
beam with the Gaussian spread in momenta along the
surface. The constant magnetic field H z = ÿH 0 is applied
in the direction opposite to the z axis. The gain of the
Cherenkov laser is determined with the use of system of
equations (88), (93).

On solving the kinetic equation (88) for the constant
magnetic field exactly, and for the field, given by Eqn (247), in
the first approximation, and considering the inequal-
ity x > a, we have

f = f0 + f1 . (297)

Here f0 is specified by the expression (268), and

f1 = ÿieE1zI0

�

qx
v
?

O

�

qf0

qpz

1
oÿ kzvz

� exp

�

ikzz ÿ iot ÿ qx x ÿ qx
v
?

O
sinj

�

. (298)

In the calculation of f1, only terms responsible for the
stimulated Cherenkov effect are retained; I0(R) is the
modified Bessel function; the angle j is specified by the
relation tanj = py=px , p

?
= ( p2

x + p2
y)

1=2; and v
?

= p
?

c2
=e.

The inequality x > a imposes constraints on the angle j:

pÿ j1 > j > j1 , (299)

where

j1 =

arcsin a + v
?
=Oÿ x

v
?
=O

,

for a < x < a + 2v
?
=O and j1 = ÿp=2 for x 5 a + 2v

?
=O.

The analysis of Section 3.3 shows that only electrons
moving over the surface of the waveguide are taken into
account in this case.

By substituting Eqn (298) into Eqn (89), we find the
z-projection of the current of the electron beam:

j1z = ÿie2
r0E1z exp(ikzz ÿ iot ÿ qx x)

�

�pÿj1

j1

dj
�

1

ÿ1

dpz

�

1

0
p
?

dp
?

I0

�

qx
v
?

O

�

qf0

qpz

vz

oÿ kzvz

� exp

�

ÿqx
v
?

O
sinj

�

, (300)

for a < x < a + 2v
?
=O , and

j2z = ÿ2ipe2
r0E1z exp(ikzz ÿ iot ÿ qx x)

�

�

1

ÿ1

dpz

�

1

0
p
?

dp
?

I2
0

�

qx
v
?

O

�

qf0

qpz

vz

oÿ kzvz
, (301)

for x 5 a + 2v
?
=O.

Let electrons move on either side of the waveguide.
Then the gain is found from Eqn (93):

G = ÿ2Re
1
P

�a+2v
?
=O

a
dx
�l=2

ÿl=2
dy j1zE�

z

+

�

1

a+2v
?
=O

dx
�l=2

ÿl=2
dy j2zE �

z . (302)

Here the quantities j1z , j2z , and the flux P are specified by
Eqns (300), (301), and (288). Integration with respect to the
variables x , y, pz yields

G = ÿ32p ln 2

�

4 ln 2
p

�3=2

r0r0l
e0mc

D
2
?

D
3
jj

�

p0

mc

�2

�

k 02x q2
x

kzo[a(e2q2
x + k 02x ) + e(k 02x + q2

x )=qx ]

�

�

�a+2v
?
=O

a
dx exp(ÿ2qx x)

�pÿj1

j1

dy exp

�

ÿqx
v
?

O
sinj

�

�

�

1

0
p
?

dp
?
(pz ÿ p0) I0

�

qx
v
?

O

�

� exp

�

ÿ4 ln 2
p2
?

D
2
?

ÿ 4 ln 2
( pz ÿ p0)

2

D
2
jj

�

+

p

qx
exp(ÿ2qx a)

�

1

0
p
?

dp
?
( pz ÿ p0) I2

0

�

qx
v
?

O

�

� exp

�

ÿ4 ln 2
p2
?

D
2
?

ÿ 4 ln 2
( pz ÿ p0)

2

D
2
jj

ÿ 4qx
v
?

O

��

. (303)

The momentum pz is determined from the equation

oÿ kzvz = 0 . (304)

If we assume that pz = b for px = py = 0, then pz can
explicitly be expressed as a function of the projection of the
momentum onto the xy plane,

pz = b + q2p2
?

. (305)

Here the quantity q2 = (1=2b)(b=mc)2. The expansion (305)
is valid provided that q2D

2
?
5 b or, taking into account

b � p0, d = D
?
=p0, that

p05 1:4
mc
d

. (306)

The explicit dependence of the integrand in Eqn (303)
on the variable p

?
can be extracted by substituting

Eqn (305) into Eqn (303). However, the integrals in
Eqn (303) cannot be taken in general form. To simplify
the calculations we assume that the parameter qx v

?
=O5 1.

Since the maximal value of the velocity is
v
?

= c2p
?
=e9c2

D
?
=e0, the constraint on the constant

magnetic field follows the inequality

H 04
omc
jej

d , (307)
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where d = D
?
=p0 is the angular spread of the electron

beam. In this case the ratio of the first term in curly
brackets in Eqn (303) to the second term is of the order of
qx v

?
=O5 1, and it can be neglected.

The analysis of Section 2.14 shows that the second
integral in Eqn (303) is maximum for q2D

2
?
5 jbÿ p0j.

Since q2 = (1=2b)(b=mc)2 and jbÿ p0j � D
jj
, the average

momentum of the electron beam is

p05 1:4
mc
���

d
p

�

D
jj

D
?

�1=2

. (308)

If the detuning is bÿ p0 = ÿD
jj
=(d ln 2)1=2 (see Sec-

tion 2.14) and inequalities (307), (308) hold, then the
final expression for the gain of the Cherenkov laser in a
constant magnetic field is

G = 8:4 r0r0l

�

p0

D
jj

�2 mc
p0

(nb0)
2
ÿ 1

b
2
0(n

2
ÿ 1)

�

�

1 +

2p

(nb0)
2

amc
lp0

�

1 + n2

�

mc2

e0

�2 ��ÿ1

. (309)

3.6 Theory of the Cherenkov laser (a tubular hollow
waveguide)
We consider the amplification of an electromagnetic wave
propagating in a hollow tubular waveguide (Fig. 6). The
axis of the tubular waveguide, of inner and outer radii d
and b, is the z axis. The projections of the electric and
magnetic field strengths of the TM0 mode onto the z axis,

Ez = exp(ik
jj
z ÿ iot)

�

AI 0(k?r) , r < d

BJ 0(k
0

?
r) + CN 0(k

0

?
r) , d4 r4 b

DK 0(k?r) , r > b
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>

>

>

>

<

>

>

>

>

:

9

>

>

>

>

=

>

>

>

>

;

+ c:c: ,

Hz = 0 ,
(310)

define the other components of the wave,

Er = i
k
jj

k
?

exp(ik
jj
z ÿ iot)

�

ÿAI 1(k?r) , r < d

ÿ

k
?

k 0
?

[BJ 1(k
0

?
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0

?
r)] , d4 r4 b
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>

<

>

>

>

>

:

9

>

>

>

>

=

>
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>

>

;

+ c:c: ,

Ey = 0 ,
(311)

Hy = i
o

ck
?

exp(ik
jj
z ÿ iot)

�

ÿAI 1(k?r) , r < d

ÿn2 k
?

k 0
?

[BJ 1(k
0

?
r) + CN 1(k

0

?
r)] , d4 r4 b

DK 1(k?r) , r > b
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>

>

>

>

<

>

>

>
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:
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>
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=
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;

+ c:c: ,

Hr = 0 .

Formulae (310), (311) are written in the cylindrical
coordinates r, y, z ; the constants A , B, C, D are given
below; Jm , N m , Im , Km , where m = 0, 1, are common and
modified Bessel functions. The projections of the wave
vector onto the z axis and onto the xy plane inside and
outside the waveguide are related by the equations

k 0
?

=

�

o
2

c2 n2
ÿ k2

jj

�1=2

, k
?

=

�

k2
jj

ÿ

o
2

c2

�1=2

.

By the sewing condition for the components of the
electromagnetic field [Eqns (310), (311)] on the boundaries
r = d and r = b, we obtain the existence conditions for the
modes,

J0(u2)I1(u1)=I0(u1)ÿ n2
(u1=u2)J1(u2)

N 0(u2)I1(u1)=I0(u1)ÿ n2u1=u2N 1(u2)

=

J0(u3)K1(u4)=K0(u4) + n2
(u4=u3)J1(u3)

N 0(u3)K1(u4)=K0(u4) + n2
(u4=u3)N 1(u3)

, (312)

and expressions for the dimensionless quantities B=A , C=A ,
and D=A :

B
A

=

B
C

C
A

,

B
C

=

n2
(u1=u2)N 1(u2)ÿ N 0(u2)I1(u1)=I0(u1)

J0(u2)I1(u1)=I0(u1)ÿ n2
(u1=u2)J1(u2)

,

C
A

=

I0(u1)

N 0(u2) + (B=C)J0(u2)
,

D
A

=

(B=A)J0(u3) + (C=A)N 0(u3)

K0(u4)
. (313)

The parameters ui (where i = 1; 2; 3; 4) have the form

u1 = k
?

d , u2 = k 0
?

d , u3 = k 0
?

b , u4 = k
?

b . (314)

Let a homogeneous electron beam with the Gaussian
spread in momenta [Eqn (268)] enter the hollow of the
waveguide and interact with the field [Eqns (310), (311)]
and the constant magnetic field of strength Hz = ÿH 0. We
determine the gain of the Cherenkov laser using the system
of equations (88), (93). On solving the kinetic equation in
the region r < d, we find the electron distribution function

f = f0 + f1 .

The first term f0 is specified by the expression (268), the
linear component with respect to the field [Eqns (310),
(311)] is

f1 =

eA
i(oÿ k

jj
vz)

�

I0(k?r) +
k
?

v
?

O
sin(jÿ y)I1(k?r)

�

�

qf0

qpz
exp(ik

jj
z ÿ iot) + c:c: , (315)

e

H0

d

z

b
x

Figure 6.
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where O = O0mc2
=e, O0 = jejH 0=mc is the Larmor fre-

quency, and the angles y and j are related by the equations
tan y = y=x , tanj = py=px .

In calculations the magnetic field is assumed to be
sufficiently large, i.e.

H 04 max

�

cD
?

jejd
;

ck
?
D
?

jej

�

, (316)

and only terms which contain the Cherenkov pole are
taken into account. Given the coordinates of the point of
observation r(r, y, z), the inequality r < d implies that the
constraints on the angle j are

ÿpÿ n+ y < j < n+ y , dÿ 2v
?
=O < r < d ,

0 < j < 2p , 0 < r < dÿ 2v
?
=O . (317)

In this case,

n = arcsin
d2
ÿ 2dv

?
=Oÿ r2

2rv
?
=O

. (318)

The constraints (317) take up electrons which go through
the point r and do not penetrate the walls of the waveguide.

The gain of the Cherenkov laser is found from Eqn (93):

G = ÿ

1
P

�

+1

ÿ1

dx
�

+1

ÿ1

dy j.E . (319)

Here P is the flux of the energy of the electromagnetic wave,
described by Eqns (310), (311), through the xy plane as
specified by the expressions (325), (322), (323). In
Eqn (325) the numerator and denumerator are time
averaged.

Taking Eqns (88), (315), and (317) into account, we get
the gain,

G = 8:4 r0r0l
mc
p0

�

p0

D
jj

�2

(1 ÿ g)G , (320)

where r0 is the density of the initial electron beam; r0 is the
classical radius of an electron; e0 = p0c2

=v0 is the average
energy of the electron beam; and b0 = v0=c. The parameters
g and G are specified by the expressions

g =

I2
0(u1)

I2
0(u1)ÿ I2

1(u1)

cD
?

jejH 0d
, (321)

G =

h

I2
0(u1)ÿ I2

1(u1)

i

�

I2
1(u1)ÿ I2

0(u1) +
2
u1

I0(u1) I1(u1)

+

�

Du4

Au 1

�2�

K2
0(u4)ÿ K2

1(u4) +
2
u4

K0(u4)K1(u4)

�

+

n2

u2
2

h

u2
4 c(u3)ÿ u2

1 c(u2)

i

�

ÿ1

, (322)

where the quantity

c =

�

B
A

�2

(J2
1 ÿ J0J2) +

�

C
A

�2

(N 2
1 ÿ N 0N 2)

+

BC

A 2 (2J1N 1 ÿ N 2J0 ÿ N 0J2) . (323)

Formula (320) is valid under the conditions

p05 1:4 mc

�������

p0

D
?

r

�������

D
jj

D
?

s

, g5 1 . (324)

The factor G is related to the flux of the field energy, given
by Eqns (310), (311), by the equation

P = A 2 d 2
okz

4k2
?

G

h

I 2
0 (u1)ÿ I 2

1 (u1)

i

. (325)

We shall consider the amplification of an electro-
magnetic wave by an electron beam of moderate energy
(e0 5mc2

). If the parameters of the waveguide are chosen
so that d > l, the expressions (312) and (320) – (323) can be
simplified. Considering that ui4 1 and using the asymptotic
representation for the Bessel function [55], we obtain

tan
k 0
?
(bÿ d)

2
=

n2k
?

k 0
?

, (326)

G =

�

2 + 2p
(bÿ d)mc

lp0

�

1

n2 +

n2

n2b
2
0 ÿ 1

�

mc2

e0

�2��ÿ1

, (327)

g = 1:1
oD

?

O0p0
. (328)

Note that only the first (principal) terms are taken into
account in the asymptotic representations of the Bessel and
Neumann functions when we estimate the energy flux in the
waveguide (d > r > b). We also cite the expression for G in
the case where the second terms are retained:

G =

n2
b

2
0 ÿ 1

2b2
0(n

2
ÿ 1)

�

1 + p
(bÿ d)mc

lp0

1

n2b
2
0

�

�

1 + n2

�

mc2

e0

�2��ÿ1

. (329)

The quantity g is associated with the first correction in the
parameter omcD

?
=jejH 0p0 (it is omitted when determining

the gain in the plane waveguide). Clearly, in line with the
analysis at the beginning of Section 3, the gain diminishes
on decrease in the magnetic field H 0.

The feasibility of amplification of electromagnetic
radiation in plane and tubular waveguides was also
considered by Walsh et al. in Refs [61 – 64] in case of a
one-dimensional electron beam (d = 0) that moves in
parallel with the waveguide (we examined this model at
the end of Section 2.14). In calculations of the amplification
the authors assumed that the electron beam is monoener-
getic (D = 0) and they studied only the case when a large
gain is achieved. Clearly, in the limitD = 0 the mechanism of
amplification is different from the one described in this
paper. The role of the magnetic field is also different.
Walsh et al. consider it as the leading field (see [Ref. 50],
page 303), whereas we introduce it to create an asymmetry
in emission and absorption of photons by electrons, i.e. to
create the mechanism of amplification.

Large gains and the related issues of nonlinear effects
(saturation, generation of harmonics, etc.) are not con-
sidered in this review.

Note that, strictly speaking, the magnetic field strength
does not enter the original equations given by Walsh et al.
as a parameter: they simply postulate that one-dimension-
ality of an electron beam is equivalent to a very strong
magnetic field. Therefore, the results obtained on the basis
of this model can be considered as qualitative.

In Refs [71 – 73] the experimental research of the SSCE
was initiated.
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3.7 Theory of the Cherenkov klystron in a constant
magnetic field
The scheme in which the amplified wave moves in a
waveguide and electrons move over its surface can be used
for developing the Cherenkov klystron. Let electrons move
in a constant magnetic field Hz = ÿH 0 and interact with
the field [Eqn (247)] within two portions of the plane
waveguide: (0; L) is the modulating interval and
(z0, z0 + L 1) is the amplifying interval; the drift distance
z04 L , L 1. To determine the gain of the klystron we use
system of equations (88), (93).

On solving Eqn (88) for the constant magnetic field
exactly and for the field [Eqn (247)] in the first approxima-
tion, we obtain the electron distribution function in the
region z > L , given by Eqns (270), (271). By substituting
Eqn (271) into Eqn (89), we find the z-projection of the
current, given by Eqns (276), (277).

We shall find the gain of the Cherenkov klystron from
Eqn (93) in the case where particles move on either side of
the waveguide. After the interaction with electrons within
the interval [0; L 1] the radiation flux is given by

P = P0

ÿ

1 +

1
2 GL 1

�2
,

where

G = ÿ

2
L 1

Re
�

1

a
dx
�l=2

ÿl=2
dy
�z0+L 1

z0

dz
j.E �

���������

PP 0
p . (330)

Here P0 is the flux of the energy of the electromagnetic
wave [Eqn (288)].

To simplify further calculations we assume that the
magnetic field strength is large enough [see Eqn (278)]. In
this case the current [Eqn (276)] can be neglected. We also
assume that the relation,

oÿ kzv0 = 0 , (331)

is obeyed for the average momentum of the electron beam.
By substituting Eqns (277), (279) into Eqn (330) and
integrating with respect to the variables x , y, z, p

?
, pz we

have

G = 4pr0r0L

�

mc
p0

�5
o

c
z0 exp

�

ÿ

z2
0

z2
1

�

n2
b

2
0 ÿ 1

n2
ÿ 1

� sin(f+ p)

�

1 +

2p

n2b
2
0

amc
lp0

�

1 + n2

�

mc2

e0

�2��ÿ1

. (332)

Here the distance

z1 =

2
��������

ln 2
p

p
l

�

e0

mc2

�2

b0
p0

D
jj

, (333)

and the phase difference f between the current [Eqn (277)]
and the amplified wave [Eqns (247), (249)] depends on the
drift distance z0. When determining Eqn (332) we assumed
that the average momentum of the particle beam is

p0 < 1:4mc
p0

D
?

������

D
jj

p0

s

. (334)

If z0 = z1=
���

2
p

, and the phase f = 3p=2, then the gain is
maximum

G = 17:9 r0r0L
p0

D
jj

�

mc
p0

�3 n2
b

2
0 ÿ 1

b0(n
2
ÿ 1)

�

�

1 +

2p

n2b
2
0

amc
lp0

�

1 + n2

�

mc2

e0

�2��ÿ1

. (335)

3.8 On the experimental observation of the stimulated
surface Cherenkov effect
We shall determine when the SSCE can be observed. Since
the refractive index of a waveguide n reaches the value of
1:5 – 2, the synchronism condition (255) can be satisfied for
high-precision low-energy electrons. If e0 5mc2, then the
interaction between electrons and the wave is efficient for
the aiming parameter x 0 ÿ a of the order of the wavelength
l [see Eqn (258)].

Let us consider the amplification of an electromagnetic
radiation in a plane waveguide (see Sections 3.5, 3.7). The
comparison of the gains for the Cherenkov laser G

H
l

[Eqn (309)] and Cherenkov klystron G
H
kl [Eqn (335)] shows

that

G
H
l

G
H
kl

= 0:5
l

L
p0

D
jj

�

p0

mc

�2 1

n2b0

. (336)

Let D
jj
=p0 = l=L . Then

G
H
l

G
H
kl

= 0:5

�

p0

mc

�2 1

n2b0

.

Clearly, in this case G
H
l 5G

H
kl when b05 1 and G

H
l 4G

H
kl

when p04 1:4nmc. If the current of the electron beam is
1 kA cmÿ2 and its average energy is e0 = 1 MeV, then it
follows from Eqn (309) that the optimal region of
amplification for spreads d = D=e0 = 10ÿ1 is the milli-
metre range of wavelengths. If the thickness of the
waveguide is 2a = 1 mm, its refractive index n = 1:5, the
strength of the constant magnetic field H4 22 kG, then
the gain given by Eqn (309) is G = 0:1 cmÿ1 over the
wavelength l = 5 mm.

If the quality of the electron beam is one order of
magnitude better (d = D=e = 10ÿ2

), the gain G = 0:1 cmÿ1

can be achieved over the wavelength l = 5 mm. In this case
the strength of the constant magnetic field is H 04 220 kG.
(The ratio a=l and the refractive index n are assumed to be
the same in either case.)

We shall now consider amplification of an electromag-
netic wave in a tubular hollow waveguide made from
quartz. We assume that the wavelength of the amplified
radiation is l = 4 mm. The dielectric constant of quartz is
e = 3:8 in the millimetre region of wavelength. The inner
and outer radii of the waveguide are chosen to be equal to 5
and 10 mm. Let the average energy of the electron beam be
e0 = 150 keV; its density is r0 = 0:5 � 109 cmÿ3; and its
angular and energy spreads are d = 10ÿ2 and
D=e = 0:5 � 10ÿ2. If the strength of the constant mag-
netic field is H 0 = 4 kG, then the gain [Eqn (320)] is
G = 0:1 cmÿ1.

The exponential growth of the radiating power for the
Cherenkov laser is obtained in the linear approximation
with respect to the field. Clearly, this result is true in the
region in which nonlinear effects are negligible. In this
review we have not considered these issues. In this regard
we note only that the limits of the region where the linear
theory is applicable can be estimated by considering a cubic
addition, with respect to the field, to the current of the
electron beam and requiring that it is small in comparison
with the linear part. For electron beams of moderate
energies (e � mc2

) this condition implies that the inequal-
ity x < (D=e)

2 (where x = jejE0=mco is a dimensionless
parameter). Hence, for the above parameters of the tubular
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waveguide the nonlinear effects become significant for a
power of about 1 kW.

4. Conclusions

In this review the interaction between electrons and a
monochromatic electromagnetic wave is studied in detail in
an unbounded dielectric medium and over the surface of a
dielectric waveguide. The dynamics of particles and also
the feasibilities of modulation and polarisation of an
electron beam by a laser radiation are examined. The
feasibility of the Cherenkov laser and Cherenkov klystron
are considered. The studies are performed in the linear
approximation with respect to the field on the basis of
classical and quantum approaches. The latter is especially
fruitful for analysis of mechanisms underlying the cited
effects, as well as in the search of possible ways to affect
their course. It is established that a constant magnetic field
provides extensive means for affecting the SCE.

The theory of the SCE is far from being complete. We
list below the issues which are partly clear by now or are
under development. On the theoretical side, there is the
analysis of the quantum modulation effect when individual
particles are described by a wave packet [9]. Together with
A M Akopyan we conducted the theoretical work on
amplification of electromagnetic momentum in the Cher-
enkov waveguide laser. The nonlinear theory of the SCE is
in its completion stage. Note that several results in this field
were obtained in Ref. [84].

There are a number of outstanding issues as regards the
experimental realisation of the SCE. There is the negative
role of multiple scattering of an electron beam in a medium.
This difficulty can be bypassed for the SSCE. In this case,
however, another problem arises — deposition of electrons
on the surface of the waveguide. The electrostatic charge
perturbs the trajectories of particles and thereby upsets the
normal operation of the laser, while the breakdown destroys
the walls of the waveguide. In this connec-tion we, together
with R A Akopov and E M Lasarev, have developed the
Cherenkov waveguide laser with conducting surfaces. The
optimal shape of the waveguide is yet to be found. The SCE
can find a very important application in the acceleration of
particles.

Finally, note in conclusion of the review that the
experimental and theoretical research of the SCE is
fundamental in nature because the stimulated transient,
diffraction, and Compton effects are reduced to it in the
end.
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