Physics—Uspekhi 37 (1) 81 —96 (1994)

© 1994 Uspekhi Fizicheskikh Nauk and Turpion Ltd

INSTRUMENTS AND METHODS OF INVESTIGATION

PACS numbers: 03.65.Bz; 06.20.Dk

Standard quantum limits of measurement errors

and methods of overcoming them

Yu I Vorontsov

Contents

1. Introduction

81

1.1 Standard quantum limits (SQL) of measurement errors. 1.2 General scheme of indirect measurements.

1.3 Evolution of the state of the system during the measurement.

2. SQL of the error in the measurement of a coordinate and methods of overcoming them

2.1 Aim ofthe measurement and initial state of the apparatus. 2.2 Uncertainty of the coordinate after the

measurement. 2.3 Errors in the continuous measurement of the coordinate.

3. Quantum nonperturbing (nondemelition) measurements (QNDM)

3.1 Evolution of the QND observable in the measurement process. 3.2 Conditions for the realisation

ofa QNDM. 3.3 Nonperturbing measurement of the energy of a harmonic oscillator. 3.4 Nonperturbing measurement of

the energy of electromagnetic waves.

4. Quasi-nonperturbing measurements of the energy of e.m. waves.

4.1 Principles of quasi-nonpertubing measurements. 4.2 Quasi-nonperturbing measurement of the energy of waves by

using the Kerr nonlinearity. 4.3 Effect of the self-probe action of the test wave on the measurement error of the signal

wave energy.

5. Results of experiments on the QND M of the energy of optical waves

5.1 Mecasurement of the energy of travelling waves. 5.2 Methods of increasing the effective nonlinearity.

5.3 Measurements by wave interaction in a resonator. 5.4 Other methods of QNDM of the energy of waves.

6. Quantum limit of the detection of action on a system

7. Relationship between the measurement error and the perturbation

8. Conclusions
References

Abstract. The so-called standard quantum limits (SQL) of
measurement errors of coordinate, momentum, amplitude
of oscillations, energy, force, etc are due to back action of the
meter on the system under test, whenever the meter responds
to the coordinate of the system. These SQL are not
fundamental and can be surmounted by various methods.
In particular, in a coordinate measurement the SQL can be
overcome by means of an appropriate correlation of conju-
gate meter variables. Conditions of quantum nonperturbing
(nondemolition) and quasi-nonperturbing measurements of
the energy of electromagnetic waves are discussed. Possible
methods of these measurements are reviewed. Conditions for
overcoming the SQL of wave energy measurement by the
optical Kerr effect are analysed. The quantum limit of error
of this measurement is discussed. The effects of dissipation,
dispersion, and generation of combination waves are
considered. Results of experiments reported in the literature
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are discussed. The dependence of the quantum limit of
detection of an external action upon a system on the initial
state of the system is considered. The relation between the
measurement error of an observable A and a perturbation of
an observable B, when [A, B ]is an operator, is examined.

1. Introduction

1.1 Standard quantum limits (SQL) of measurement
€rrors

The quantum limits of the errors in the measurement of
physical quantities have stimulated the interest of theoreti-
cians since the days when the latter had effectively no contact
with experimenters [1, 2]. Resolution of this problem had a
philosophical rather than a practical motivation. If it is
suddenly realised that no physical quantity can in principle
be measured exactly, what is the meaning of its exact value in
theory? If the error of the measurement of energy is inversely
proportional to the duration of the measurement, as is
implied by the Heisenberg—Bohr relationship then the law
of conservation of energy cannot be tested accurately in a
finite time, and there may be grounds for doubting its
fundamental nature. The development of lasers and of
optical systems of information transfer provided a stimulus
for the further development of the quantum theory of
measurements and of the theories of estimation and testing
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hypotheses [3—6]. A specially strong impetus for the
development of new principles and methods of quantum
measurements was provided by the search for methods of
detecting gravitational waves from extraterrestrial sources.
This is because according to the most optimistic predictions
by astrophysicists the relative change in size of bodies on the
Earth induced by gravitational waves cannot be greater than
10—19-10—2!, Solid-state gravitational antennae of metric
size were calculated for a wave frequency of a few kilohertz.
For a frequency w = 10* s~' and a mass m = 103 kg the
uncertainty in the amplitude of the natural oscillations of the
antenna in the coherent state is AA = (A2mw)"? ~
2.3 x 107! ¢m, i.e. of the same order as (or greater than)
the expected signal.

An analysis of the sensitivity limits of gravitation
detectors by the traditional methods of observation carried
out by Braginskii in 1967 identified the limiting sensi-
tivity towards the force action on a harmonic oscillator [7—-9]:

Fot = (2hmw)"/? M

where Fy and 7 are the amplitude and the duration of the
action of the force on an oscillator of frequency w and mass
m. This limit arises because in a continuous measurement of
the coordinate the amplitude of a harmonic oscillator cannot
be measured more accurately than its uncertainty in the
coherent state.

Similar studies aimed at a free body showed that the
uncertainty of its coordinate at time 7 after its measurement
satisfies the inequality

Flt ]/2
Av() > (;) , @)

which also applies to the limit of sensitivity to the momentum
of the force

1/2
Foi > (”—’") . 3

T

Expressions (1)—(3) have become known as the standard
quantum limits (SQL) of the measurement errors of these
physical quantities. The same name is given to an expression
similar to (2) which defines the error limit of the
determination of the instantaneous value of the coordinate
of a free particle by the method of continuous measurement
of the coordinate over a time 7 [10—12].

The group of SQL includes also the error limits of
evaluations of the amplitude and energy of a harmonic
oscillator, equal to

. n \/2 -
AA > (%) . AW = () he (4)

where (n) > 1 is the average number of energy quanta.

None of the SQL [except (2)] is fundamental: they are a
consequence of the fact that the measurement procedure
which had been used to define them isnot optimal. The aim of
this review is to identify the source of the SQL, to suggest
ways of eliminating them, and to comment on the results of
attempts to overcome some of the SQL experimentally. We
shall begin by considering the fundamental propositions of
the quantum theory of measurements.

1.2 General scheme of indirect measurements
Measurements are classified as indirect or direct according to
the nature of the effect of the apparatus on the evolution of
the system. Indirect measurements are those after which the
law of the evolution of the system is preserved. Under these
conditions the system interacts with the first stage of the
apparatus for a finite time. Information on the quantity being
observed (the ‘observable’) remains in this stage, which is
called the quantum readout system (QRS) or quantum
transducer, in the form of a change in its state. The value of
the observable being studied is determined indirectly through
a measurement on the QRS. The indirect measurements are
of interest because they are used in all the experiments which
rely on the so-called test bodies.

Measuring apparatus consists of a number of inter-
connected stages. The quantum theory of measurements
states that the first stages can be quantum, but the last must
be classical. There is no generally accepted definition of the
term classical. The mathematical conditions of classicality
were formulated most precisely by Stratonovich [13]. The
principal classicality conditions were formulated as follows
[14]: a stage of the apparatus can be treated as classical if the
quantum-mechanical uncertainties in the subsequent stages
do not significantly affect the overall error of the measure-
ment. The first stages (QRS), which behave as quantum-
mechanical links, interact reversibly with the system under
study. The interaction of the QRS with the classical part of
the apparatus is irreversible. This destroys the correlation
between the states of the system and the QRS. In a classical
stage, ‘dequantisation’ of the signal takes place: microscopic
changes in the QRS create macroscopic changes in the
classical stage of the apparatus. We shall call the classical
part of the apparatus the monitor. A schematic illustration of
the indirect measurement is shown in Fig. 1, wbe[e A is the
measured observable of the system and Q(A) is the
observable of the QRS, which varies, as a result of
interactions with the system, as a function of A.

Example. A circuit for measuring the charge ¢ on the
capacitor of an LC circuit with the aid of an electron beam
(Fig. 2). Here the LC circuit is the system under study,
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the electron beam is the QR S, and the screen is the monitor.
The momentum of'the electrons after their flight between the
plates depends on the charge on the plates. By measuring
the coordinate of the scintillation of the electrons on the
screen we obtain an estimate of the charge g.

The QRS interacts with the system and with the monitor
successively in time. It is important to stress that at least one
ofthe stages of the measuring circuit interacts with the others
through an impulse.

1.3 Evolution of the state of the system during the
measurement

Thetreatments by physicists ofthe change in state of a system
brought about by the measurement differ as markedly as
their views on the fundamentals of the quantum-mechanical
laws. On the grounds that only what can be tested
experimentally is physically significant, and that the
presence of a living observer is not essential to a
measurement, the stages in the change of state can be
envisaged as shown in Fig. 3.
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Free evolution interaction of! tion after | Mixed

of system and | of system linteraction state I
QRS with QRS { ! | ‘I
Before 0 T I3 1
measurement

Figure3.

Here ¢; is the time of the irreversible interaction of QRS with
the monitor. At this instant the correlation between the QRS
state and the state of the system is destroyed, and the system
becomes a mixture of states ps(A,) where A are probable
values of the assessment of the quantity being measured [15].
This means that during measurements in an ensemble of
identical systems we shall have (after time #;) an ensemble of
systems each of which is in one of the ps(A~j) states. The
instant #> is the time of separation of the mixture. Once the
results of the measurements ofA are available the mixture
can be separated into subensembles with a definite value of
A The system is then transformed from the initial pos to the
ps(Aj) state, i.e. a reduction ofthe state takes place. In the case
of a precise measurement, the ps(A,) state of the system is the
eigen state of the observable A (at the instant of
measurement). In the case of measurements in a unique
system the same statistical characteristics manifest
themselves as a result of the long repetition of the
measurement with the system reverting each time to its
initial state.

The separation of the system according to the results of
the measurement requires some classical actions, which can
be performed either by the experimenter or automatically.

In the mixed state the uncertainty of the measured
observable A is not smaller than it would have been for the
free evolution of the system, because of the fluctuating back
reaction of the apparatus on the system. The difference
between the dispersions of some observable B in the mixed
state and in the unperturbed state can be used as a measure of
the perturbation introduced by the apparatus into that
observable:

(AB).., = (AB)} — (AB); . )

pert

(The dispersion of the observable B in the p(A j) state can be
smaller than in the initial state if B is correlated with A in
the initial state.) It is usually assumed that the uncertainty
of the perturbation of the observable B isrelated to the error
in the measurement of the observable A through an
expression identical to that corresponding to the ratio of the
uncertainties. But this is not so [10]. The relationship
between the measurement error and the perturbation is
discussed in the next section of this review.

2. SQL of the error in the measurement of a
coordinate and methods of overcoming them

2.1 Aim of the measurement and initial state of the
apparatus

The aim of the measurement could be the value of the observ-
able A referred to: (1) the unperturbed state of the system, or
(2) a state which is perturbed by the measurement process. In
each case we may be interested in the value of the observable
at the instant of switching on the apparatus (r = 0), or at
some time during the interaction with the apparatus, or after
the measurement. The aim of the measurement could also be
to prepare a new state of the system. In each case an
apparatus in a specially chosen initial state must be
assembled in order to minimise the error of the
measurement. We shall illustrate these propositions by
considering the simplest example.

Example. The measurement of the coordinate of a free
body. To measure the coordinate we only require that the
QRS interacts with the body according to the Hamiltonian
H; = o;(t)Y for a certain time 7. [H; = o;(¢)f (%)Y is also
possible.] Here X is an operator for the coordinate of the
body, Y isan operator for the QRS, o;(¢) is a linking function.
We assume that o;(t) = o for 0 <7<t and o; = Ooutside
this time interval. The QRS can be represented by a free
particle with a mass M. In the simplest case the full
Hamiltonian is expressed [16] as

. p2 . p2
H= 2—+oc,(t))€}’ W

where P and Y are, respectively, the momentum and the
coordinate operator of the QRS. The theory allows for
the existence of this Hamiltonian, but a real object
described by such a Hamiltonian should contain, in
addition to the two bodies, something capable of generating
negative rigidity between the bodies to compensate for the
positive rigidity which arises during the elastic interaction of
the bodies.
Using Heisenberg’s picture we can write

i p dp .
(a)E_E’ (b)E__“OY’
Yy P dpP .
(c) FriaivE (d) = %t (6)

If the mass M is large enough, the operator Y can be
assumed to be constant (Y¢) during a finite interaction time 7.
Then it follows from (6) that during the period 0 <t <1

oo YA0t2

(@) () = £o0) - 2",




84

Yu I Vorontsov

(b) A(r) = po— Yot ,

(c) P() = Py —aOJ;)E(t)dt

2y -3
~ n oo Y()‘L'
= Py — Ng — 2 0"
0 OC()X()(‘L'/ )‘L' 6m
5 Totg 2Y 73
= P() — a().f(f/z)’f — % (7)
The relation (7c) can be rewritten as
~ };0—};(‘6) 0(0on1,'2
2) = -
(@) #a(s/2) = BB
“ PA()—PA(‘L') 70(0);0’!.'2
2) = -
(b) x(z/2) o Am (®)
where
R N 5(0)t
2) = x(0 9
(@) %o(e/2) = £(0) +27 ©)

is the operator of the coordinate in the unperturbed state at
timet = 1/2, and
p0)  apY 2t

2m 8m

(b) £(z/2) = £(0) +

in a state perturbed by the interaction with QR S.

By measuring P(t) we can evaluate xo(1/2) and x(1/2). If
130 is not correlated with }70 the dispersion of the estimate of
the coordinate xo(t/2) is given by

(A%))? = (i)z[(mz T (APy)?]

oo T

0(0‘52 . 2

o (AYo)~, (10)
where (AP)” is the dispersion of the error in the measurement
of the momentum P(t), and (APy)? are the dispersions of the
coordinate and of the momentum of the QRS in the initial
state. Since (APo)*(AY)* = 7% /4 by minimising the right-
hand side of Eqn (10) we obtain

) e \1/2
This is one of the standard quantum limits of error in the
measurement of the coordinate of a free body. The reason for
theappearance ofthe SQL (11)istheat the directly measured
momentum P(7) includes a component depending on the Yy
coordinate. There are several ways of surmounting this SQL.
Aharonov and Safko [16] suggested eliminating the effect of
Yo on P(7) by a spring of stiffness —a3t2/6m, connected to
the QR S for the duration ofthe measurement. There are even
more elegant ways of overcoming this limit. For example,
x0(1/2) can be estimated by measuring directly the
P(7) + a%r3Y0/6m combination rather than P(t). This
observable can be formed, for example, by using a field of
the divergent-lens type. Another way of overcoming the
SQL (11) is to prepare the QRS in an initial state such that
the momentum is appropriately correlated with the
coordinate. Let

PA(O) _ };0—'_ (a0T2Y0>

6m

+

\

an

(12)

where P is not correlated with Y. In this case (7a) leads to
2 _ (AP)’ +(APO)
(%7)?

if oyt — 0o. A similar state of affairs exists in the
determination of x(7/2) if

(Ax)) -0 (13)

Toot2Y g

P(0) = P°
0) + 24m

2.2 Uncertainty of the coordinate after the measurement
The correlation of the coordinate and of the momentum of
the QRS allows the effect of the back reaction of the
apparatus on the system to be ecliminated from the
determination of the coordinate at a given instant.
However, this back reaction of the apparatus is not
excluded from the coordinate itself. It follows from
Eqn (7a) that the mean square (m.s.) perturbation of the
coordinate at time /2 is

ooT 2AY0

Ax(t)2) = o

(14)

The perturbation of the momentum during the measurement
is

Ap(t) = 0gTAY g . (15)

The perturbation of the momentum creates a perturbation of
the coordinate also after the interaction (+ > 1), and fort > 7
this perturbation is

~ _ oo TtAY

Ax(r) (16)

m

Not allowing for the initial uncertainty of the momentum
p(0)we find from (13) and (16) that the total dispersion of'the
coordinate at time t > Tis

[Ax(1)]? = (A%o)” + [Ax(1)]?

> (17)

Therefore the result of a repeated measurement of the
coordinate of a free body at time ¢ after the first
measurement cannot be predicted to better than within a
m.s. error of (ht/m)"? [9]. This quantity is called the SQL of
the uncertainty of the coordinate ofthe body at time ¢ after its
measurement. It has been the object of wide-ranging
discussions among physicists in connection with the
problem of detecting gravity waves because it leads to
Eqn (3) as the limit of sensitivity to the force [17—-21].

It should be stressed that in the derivation of expression
(17) it was assumed that information on the value of the
coordinate in the time ¢ is given only by measurements of the
coordinate in the time interval 0—t. The theory does not
preclude preparation of the body in a state that at time ¢ the
uncertainty of its coordinate is as small as desired. However,
such preparation cannot be accomplished with the aid of the
apparatus used to measure the coordinate without first
establishing the required correlation between the coordinate
and the momentum of the body after the measurement.
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According to the expression
~ ~ in Ih— 1
fe(n), £() = 2220

m
the uncertainties of the coordinate of a free body at times

(18)

t1 = Oand#, = tarerelated to each other by the expression
nt
Ax(0)Ax(t) = — . 19
A () > 5 (19
Therefore the following inequality is possible:
A\
&) < (). (200)
m
if
e \1/2
Ax (0 — . 20b
0> (5) (20b)

However, (20b) is not a sufficient condition. In general (for
(x) = (p) = 0) we have

Ax() = e + [@ L] w450 L

[f the last term in the right-hand side of (21) is zero, we shall
have Ax(t) = (it/m)/>.  We shall assume that
p(0) = p° — B£(0), where B is a number and p° is not
correlated with £(0). In this case we obtain

Ax()] = [MO)V(‘ ‘%)2+(A”0 ol

Tt
>

=

B

m

. (22)

m

The minimum value of Ax(¢) is reached for Ax(0)Ap® = #/2
and Ax(0) = (hit/4m)| 1 —(Bt/m)|.

2.3 Errors in the continuous measurement of the
coordinate

In the measurement process discussed above only one
particle was used as the QRS. Such measurements have no
practical significance. In real measurements fluxes of
particles or quasi-particles are used (electrons, photons,
etc.). In this case the force responsible for the back reaction
of the apparatus on the system used to measure the
coordinate can be expressed as the sum

Fpa(t) = ZF./(f — 1), 23)

where Fj(t—t;) is the back reaction force of one of the
particles. The force Fj(t—t;) acts during the time interval
—1; < t—1t; < 0, where 7;is the duration of the interaction of
this particle with the system. (The theory of continuous
quantum measurements has been discussed in Refs
[10, 12, 22 —24] amongst others.)

The result of the approximate measurement of the
observable A (r) can be expressed as the result of the exact
measurement of the sum A(¢) + A,(¢), where A,(¢) is an
operator of the apparatus. In the example discussed here it is
represented by the operator Po(r)/aqr.

The error of the measurement of the coordinate can be
calculated by using the equivalent circuit shown in Fig. 4. In
the case of stationary measurements the spectral densities of
the random function F,,(f) and x,(¢) satisfy the condition

= Ideal x(
sl Qu | W
.
Figured.
$(@)5:(@) ~ 51 (@)
> (7% /4) + ho|lm S g ()] (24)

where S, (@) is the spectral density of the cross correlation
function for F,,(¢) and x,(¢), and ImS . (@) is its imaginary
part [10, 25]. The formula SzS, = ﬁ2/4 was obtained by
Giffard in 1976.

Since the output signal of the apparatus is classical, the
physical quantity inferred from the results of a continuous
measurement of the coordinate can be calculated by the roles
ofthe classical theory of estimate optimisation. The quantum
limit of the estimation error (in the case of linear systems) is
determined in this case with the use of expression (24). This
problem has been considered in detail [10]. Instantaneous
values of the coordinate can be estimated more accurately
than SQL, but the mean square perturbation (the error ofthe
estimation of the average coordinate of the free particle
during the observation time 7) satisfies the condition

1/2
A7 > [(565,) ] 12> (ﬁ> , (25)
2m
ifSp = 0, Sp(w) = Sp, Sy(w) = S,.
The error in the estimate of the average momentum (in
time 1) of the free particle under the same conditions is not
less than

1/2. 72 1/2
ApT > [—(SFS'”) m] > (ﬁ—m) .

26
T 2t (26)
The amplitude A and the real (X;) and the imaginary (X2)
parts of the complex amplitude of a harmonic oscillator can
be calculated in this way with errors not smaller than

(SrS )]/2 1/2 7 1/2
X >
mao (meo) ’

and an estimate of the energy is provided by Eqn (4).

Eqn (24) applies also in the case of an ideal apparatus, i.e.
an apparatus not affected by the nature of the motion in the
system as an average. An ideal apparatus does not contribute
dissipation, stiffness, or inertia to the motion. In radio
technology a voltmeter with an infinite input impedance
and an ammeter with zero resistance are good examples of
an ideal apparatus. In an apparatus with a finite input
conductance Y, the spectral densities of the fluctuations
are mutually related by the expression

@7)

-
Sr@)S:(@) = ISr|* > (82/4) + ﬁ‘ R(my7>
11

_(DSXRCY]] ‘ (28)

[Y 12
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Expressions allowing for all four Y parameters of a real
apparatus have been obtained [10, 25].

SQL of errors of measurements in distributed systems
have been discussed in Ref. [26].

The SQL (4), (26), (27) can be overcome by using
nonperturbing or quasi-nonperturbing measurements.

3. Quantum nonpertubing (nondemolition)
measurements (QNDM)

The term quantum nonperturbing measurement refers to a
measurement of the observable N in which the back reaction
ofthe apparatus on the system under study does not affect the
results of the first and of subsequent measurements of this
observable. Such measurements are also called
measurements free from fluctuational back reaction of the
apparatus (back action evading measurements). A stimulus
towards work of this type was provided by Braginskii and
Vorontsov [9]. The basic aspects of the theory and practice of
QNDM methods have been fully described, e.g. in Refs
[10, 11, 12, 14, 23, 24,27 -28].

An observable which can, in principle, be measured
without perturbation is called a nonperturbing (or QND)
observable. Only an observable N which satisfies (in the
Heisenberg picture) the following commutation condition
during the free evolution of the system can be a QND
observable:

[N(tj), N(ti)] —0. (29)
In particular, all the integrals of motion satisfy this
condition. In a free particle the momentum and the energy
are the QND observables. In a harmonic oscillator the
observables include the energy and the real (X;) and the
imaginary (X;) parts of the complex amplitude

(a) X, = £(t)cos wot — [Z(—(Z)sin wot] , (30)
(b) X, = £(¢) sin wot + [Z(—;)Ocoswot] . €2

QND observables are not necessarily integrals of motion
[10, 11].

3.1 Evolution of the QND observable in the
measurement process

There are two types of QND observables. Some observables
can be free from fluctuational back reaction even during the
interaction of the system with the QRS. Others are
unpredictably perturbed during the interaction with the
apparatus, but revert to their unperturbed value as soon as
the link to the apparatus is cut off. In the latter case some
observable Ny(z), which is equal to the observable N(z) for
the free evolution of the system, is retained during the
measurement. Noncanonical observables such as velocity,
kinetic energy, and other functions of the generalised velocity
must vary randomly during their measurement [10, 16].
Were it not so, it would be possible to prepare a state of the
system in which the ratio of the uncertainties was altered.
Indeed, a perturbation of the coordinate must occur during
measurements of the momentum. A random perturbation of
the coordinate can be produced by motion with an
indeterminate velocity over a definite time or by motion
with a velocity known a posteriori, during indeterminate

time. But if the velocity could be continuously monitored,
its value at any instant would be known.

Example. Consider measurement associated with the
following Hamiltonian:

R 132 . 52
H = "—+ap¥ +—. 2
o T 0PY + o0 (32)
In this case we have
dp
= =0, 33
& (33)

i.e. the generalised momentum p is conserved in this
interaction of the free body with the apparatus. However,
the velocity

dx D

p A
— =T a¥(r
Ly

T 34)

is perturbed during the same time. Nevertheless it reverts to
its initial value as soon as the interaction is discontinued
(a; = 0).

However, the same motion of the system and ofthe QRS
can be described by the Hamiltonian

~2 222 ~D b2

~ Po ~ AdOC,‘ o; "X (X,'XP] PI

A =Po_zy - i 35
o T om M oM 33

(This only requires adding to the appropriate Lagrangian the
total derivative of the function o;mx Y .) In this case we have
dx  po dpo RN > .
E:Z, W:m(a[Y-i-a,‘Y),l.e.

a(m)'?—moc;);) =0.
Now the generalised momentum pg is equal to the kinetic
momentum, and therefore it is not conserved during the
interaction. But the same combination as in the previous case
(mx —moY ) is conserved.

(36)

3.2 Conditions for the realisation of a QNDM
The general condition for a measurement of the QND type
can be formulated as follows. For a QND measurement of
the QND observable N it is necessary and sufficient that
after the interaction with the system the QRS carries
information on the values of N but not on the values of the
observables which do not commute with N.

This condition is satisfied, in particular, for the following
interaction:

H = Hs+uNY +H, ; (37)
where ﬁs and ﬁa are the Hamiltonians of the system and the
apparatus, respectively.

Many workers treat this as a necessary condition.
However, strictly speaking, it is sufficient but not necessary.
For example, in order to measure X> we can use the
interaction corresponding to H; = a;£(r)Y if the duration
of the interaction is equal to one half of the period of the
oscill-ator [10, 29]. In this case the total change in the
momentum of the QRS is

T/ w /o X2
J x(t)dt = J (X coswt + X, sinwt)dt = =2, (38)
0 0 w
i.e. as a result of the interaction the QRS acquires
information only on X>.
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3.3 Nonperturbing measurement of the energy of a
harmonic oscillator
Let us consider the LC circuit in Fig. 5 as a model of the
system under study. A mechanical oscillator (M, k) attached
to the mobile parts of the inductor and capacitor plays the
role of the QRS. The systems can be constructed so as to
ensure that
1 14+ oc,»Y 1 (] + (X,'Y)

LY) Ly ° CY)  Co
where Lo and Cy are the unperturbed values of the circuit
parameters. This circuit is represented by the Hamiltonian

(39)

. pr G2 Ao
H=|—+"—)0+0Y)+H,
(2L0+2CO>( +o;Y)+H,

= (i +1)hoo(1 + oY)+ H, (40)

where 7 is an operator for the number of quanta, and
wo = (1/LoCo)"?. In this case we have

dn
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Figure5.

i.e. thenumber of quanta is conserved even during the motion
ofthe QRS. However, the frequency depends on the operator
of the coordinate of the QRS, i.e. it is not a number but an
operator:

& = w(1+aY). (41)

Therefore the number of quanta n, but not the energy of the
oscillator, stays constant during interaction with the QR S.
We also have

dp,
in 3P _

dr Usyvﬂa]‘f'ﬂo[lsy:“i);] s

(42)
where Ho, equal to (7 + %)ﬁ(oo, is an operator for the energy
of the unperturbed oscillator. By measuring p, we can
evaluate Ho and n. After the measurement the mobile parts
of the circuit can be fixed in the state Lo, Co. Under these
conditions the frequency reverts to its initial value wop, and
thus the initial value of the energy of the circuit is restored.
An analysis of this system [30] showed that the possibility of
measuring the energy of a conservative lumped circuit with a
mean-square perturbation of the error AHg < 7/t (where 7 is
the duration of the measurement) is not inconsistent with the
fundamental propositions of quantum mechanics.

The uncertainty of the frequency w during the measure-
ment time increases the uncertainty of the phase by the
amount

Ap = AJ w(t)dt = LA . (43)
0

The following relation also applies:

- AH
a1
Hy 21

44
where AH = Ajiiwo is the mean-square perturbation of the
measurement error of the energy, Ho = ({n) + })iwo, and
AH istheuncertainty ofthe perturbation ofthe energy during
the measurement.

Expression (44) can be re-written
AH > 7 D
2T Ad
where A@ = A(p/‘[ is the uncertainty in the perturbation of
the frequency averaged over time 7. Therefore the necessary
condition for the measurement of the energy of the oscillator
with an error of AH < i/t is an initial state of the QRS such
that the relative uncertainty of the frequency of the oscillator
is greater than 0.5.

During the QND measurement of the energy of the
nonconservative oscillator a change in the relaxation time
takes place. This makes it impossible to measure the energy to
within an error smaller than 7/tj, where 73 is the relaxation
time of the free oscillator [10, 31].

A general theory of continuous QN D measurement of the
number of photons has bee proposed by Mensky [23] and
Veda et al. [32]. The problem of the change in the evolution
of the system by a continuous measurement of its energy
(‘Zeno’s quantum effect’) has also been discussed
[10, 12, 22a, 23]. The most recent thoughts on the energy —
time relationships have been put forward by Mensky [23, 34]
and by Busch [33].

(45)

3.4 Nonperturbing measurement of the energy of
electromagnetic waves

The energy of an electromagnetic wave in volume V of a
nondispersing medium is

1
= Jg—n(sE2 + uH?)dv

(46)

wherep = (u/¢)"?and V isthe volume of the wave. It follows
from (46) that for a nonperturbing measurement of the
energy we require an interaction of the QRS with the
electromagnetic field such that the simultaneous changes in
the dielectric (¢) and the magnetic permittivity (u) leave p
unchanged. In this case the velocity of the wave [v = 1/(en)"
2] and its frequency (w = 2mw/A) may vary during the
measurement, but the number of quanta (rn) and the
wavelength (1) stay constant. A suitable method of realising
this measurement scheme has not so far been proposed.
However, in some suggested measurement methods the
error limits can be much lower than the SQL, though the
conditions for nonperturbing energy measurement are not
strictly fulfilled. These methods are wusually called
nonperturbing, though it would be more correct to call
them quasi-nonperturbing.

Before proceeding any further we should stress the
importance of the results obtained in an analysis of the
quantum limits of error in the measurement of the energy of
an electromagnetic wave. The uncertainty of the change in
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the frequency of the wave in a nonperturbing measurement
(due to random changes in velocity) is
2nAv 27'5(,‘0 ()]

Ao =—— <5 =%

(47)

ie. Aw/wg < % Therefore the error in the measurement of
the energy of the electromagnetic wave cannot be less than
n/t [10].

We can arrive at the same conclusion by a different path.
The measurement of momentum should be accompanied by a
perturbation of the coordinate such that Ax > 7i/2Ap. Since
in our Ax = wAv < 7c¢/2, and the energy of the waves is
H = pco, we have

~_h
AH > —. (48)
T
This result is incompatible with that obtained in the analysis
of the measurement with a lumped circuit. The difference in
the results is due to the difference in the links between
momentum and energy in these circuits.

4. Quasi-nonperturbing measurements of the
energy of e.m. waves

4.1 Principles of quasi-nonperturbing measurements

The infringement of the conditions for a nonperturbing
measurement causes the apparatus to accept information
not only from the observable of interest (N|) but also from
the observable N2 which does not commute with NI This
produces a fundamental limitation of the errors in the
estimation of both these observables. The limit of the error
in the estimate of Ny depends on the precision of the estimate
of N2 from the response of the QRS. If their commutator
[NI,N2] i2hy, these mean-square perturbations of the
estimates are related to each other by the expression [10, 14]

_ _ Vi 1/2
AN\ = (yB0)'*, AN, > (ﬂ :
where § = AN,/AN,. Changes in f§ can be produced, for
example, by exploiting the frequency selectivity of the QR S.
Example. 1f we stipulate that in the circuit of Fig. 5 the
inductance is independent of Y [10, 12, 35], then instead of
the Hamiltonian (42) we obtain
52 22 %
~ Pt gt YY) | -
H=_——+—-F-—""+H,,
2L + 2Cy +

(49)

(50)
for which

dn

g 70
and the force acting on the QR S (the body M on a spring k) is
Fy = ;q>/2Cq. This force will have not only a constant
component (as in the circuit of Fig. 5) but also a variable
component which contains information on the phase of the
electrical oscillations. By observing the motion of the QRS
we can obtain information on both the energy and the phase
of the oscillations simultaneously. However, information on
the energy can be obtained from the constant component of
the displacement of the body M, but information on the
phase can be obtained only from the high-frequency
component of frequency 2w. If the frequency of the
characteristic oscillations of the body M is Q <€ 2w the

amplitude of its high-frequency oscillations will be (Q/2w)?
times smaller than the constant component of the

displacement. The quantity f also undergoes similar
changes. The error limit in the measurement of the number
of quanta is [10, 14]

Ai = (n)]/z Q

(51

In order to make clear which ofthe proposed schemes are
quasi-nonperturbing (though their proposers call them
nonperturbing) we shall list some specific properties of the
circuits for nonperturbing energy measurements. In the
scheme of Fig. 5 the displacement of the body M under the
influence of the field form the electric circuit varies the
characteristic frequency of the circuit but leaves its
characteristic resistance p. = (L/C)Y? unchanged. Under
these conditions the quantity w is independent of the phase
of the electrical oscillations, i.e. the oscillations in the circuit
remain linear. The characteristic motion ofthe QRS also has
no effect on pe.

4.2 Quasi-nonperturbing measurement of the energy of
waves by using the Kerr nonlinearity

From the electromechanical scheme for the quasi-
nonperturbing measurement of the energy of a circuit we
can easily pass to a wholly electrical scheme. The mechanical
oscillator in the scheme plays the part of a link in which
information on the phase of the electrical oscillations is
suppressed by the inertia. But the same filtration can be
achieved by using a low-frequency oscillatory circuit whose
nonlinear capacitance (which depends on the square of the
strength of the electric field) is simultaneously included in the
high-frequency circuit [36a]. By measuring the characteristic
frequency of the low-frequency circuit we can in principle
evaluate the energy of the high-frequency oscillations with an
error smaller than SQL.

The concept of using a quadratic dependence of the
dielectric permittivity (cubic nonlinear polarisability) on the
field strength has been proposed as a basis for a number of
quasi-nonperturbing measurement schemes for the energy of
electromagnetic waves. An optical waveguide with cubic
polarisability has been placed in the capacitor gap of a
UHF resonator [36b]. With some simplifications the
dielectric permittivity of the waveguide can be expressed as

e(x.y,z,1) = e[l +aE>(x,y,2,1)]

The capacitance of a condenser filled with the optical
waveguide will depend on the energy of the field for a given
spatial distribution of the field. By measuring the capacitance
we can determine the energy of the electromagnetic wave. In
this case the electric field used to measure the capacitance of
the condenser plays the role of the QRS.

The use of specific properties of the interaction of waves
in a medium with cubic nonlinearity has been suggested
[37, 38]. We know that when two harmonic waves are
propagating in such a medium, one of which we shall call the
signal wave (SW)

E((x,t) =Agexp [i(mst - ksx)]—l-compl. conj.

and the other the probe wave (PW)

Ey(x,t) =Apexp [i(wpt — kpx)] + compl. conj.
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their wavenumbers are

o= ka1 + (/AL 214512)].

kp = koo [ 1+ (@/4)(14, 7 + 21441, (52)
The phase shift of the PW depends on the square of the
amplitude of the SW. Therefore by measuring the phase of
the PW after the interaction of the waves we can calculate
|A|? and the energy of the SW.

In the condenser circuit the capacitance is independent of
the phase of the SW, i.e. the information on the phase
(position) of the wave is not transferred to the QRS. In the
second circuit information on the phase of the signal wave
can be carried by combination waves.

The first condition for QNDM —constancy of the
measured quantity as a result of its interaction with the
apparatus—can be assumed to be fulfilled in these systems
only to the extent that the formation of harmonics and
combination waves can be ignored. This assumption can be
justified by considering the effect of the dispersion of the
medium, but in strict calculations it should not be forgotten
that dispersion is always accompanied by dissipation.

The second condition for QNDM is that the change in
state of the QRS should be determined by a measurable
quantity whose value is conserved. In our system the effect of
the signal on the QRS is determined by the parameter |A{|?,
which isindependent ofthe amplitude ofthe PW according to
the solutions (52). However, it should be noted that the
solutions (52) are valid under the condition that the field
strengths (rather than the energy fluxes) are given at the
boundary (x = 0). However, if the wave passes from one
medium into another, with a different wave resistance
p = (we)"?, the amplitude of the wave is changed even in
the absence of reflection. In both the schemes examined ¢ is
affected by the QRS, whereas p remains unchanged.
Therefore p also changes, and so does the amplitude of the
SW field. Because of the uncertainty in the amplitude of the
probe fields the change in p (and therefore also the change in
E) becomes indeterminate. Hence, even if the quantity |E|?
is accurately measured during interaction of the waves, its
value before and after the interaction can be evaluated only
approximately. It has been shown [39] that the mean-square
perturbation of the error in the estimate of the energy of the
wave in this case cannot be less than

(53)

where 7 is the duration of the interaction of the SW with the
probe field.

The error of the measurement in real circuits will be
affected by dissipation, by the transfer of energy to the
harmonics and beat frequency waves, and by self-action
effects in the probe wave.

The effect of dissipation in a nonlinear medium on the
error of the measurement of the energy of a wave has been
analysed [40, 41]. It was shown that for a low absorption
coefficient (gq) the number of quanta in the SW can be
calculated with an error of

)12 (54)

The lowest absorption we can find in modern quartz fibres is
0.2 dB km~',i.e. g9 = 10~2for a length of 1 km.

A > ((”)fid

To my knowledge, no analysis of the effect of harmonics
and combination waves has been published so far.
Combination waves probably play the most important role
if their frequencies are close to ws and w,, i.e. waves with
frequencies w3z = 2ws—wp and w4 = 2w, —ws, since they
are closer to synchronism with the SW and the PW. It can be
shown that, if the dispersion is such that the amplitudes of
the combination waves are always much smaller than the
amplitudes of the fundamental waves, the spatial period of
the beats in the amplitudes of the combination waves will be
equal to 2m/6f,m(ws — ®,)* and the maxima of the
amplitudes of the waves with frequencies @w; and w4 will be

oA h,
™ 24 vews(ws — wp)?
weould 214, 2

A = - . 55
A sl 248 vy (w0, — ws) 2 (35)

|As]

These expressions were obtained for conditions such that the
linear dispersion has the same dependence on frequency as in
the Korteweg—de Vries equation, i.e. k(w) = w/v + Bpw3.
If this formula is applied to quartz we can use the value

B = 10=% 3 m—1! at wavelengths close to 1 pm. In the
optical region quartz has x® = 5x 10~ c.gs. units
(0.6 x 10733 SI units). Accordmgly a = ¥ /g~
1072 m2 V=2, e [As4? < |A(*/(ns)!/* will apply at energy
fluxes of the SW (Ps) and of the PW (Pp) for which
10" W
pop, < (W UMY (56)
(ns)
if (ws—wp)/ws & 5 x 1073, as has been reported [42].

4.3 Effect of the self-action of the probe wave on the
error of the measurement of the signal wave
The phase shift of the PW after interaction with the SW for a
length [ is

8¢p, = Dppitp + Dy, (57)
where Dpp = akpolphiow,/27,S is the self-action coefficient of
the PW, Dy, = akpolphws/tsS is the interaction coefficient
of the PW with the SW, nps= |Aps|?1p.s5/2plw, s is the
number of photonsin a length 7,5, and S is the effective cross-
sectional area of the waves.

If the number of quanta in the SW is estimated by
measurements on the phase ¢y, the dispersion of the results is

(&7)* = D 32 [(ABy)” + (ADgomy)?]. (58)
where (A(;Sp,)2 is the dispersion of the error in the
measurement of the phase shift ¢p.

Ifthe PW at the inlet is in a coherent state, then

(AR =D <<” ») +D? <np>>

fiw 1 7\
_ p-2 p p
o2 (2) o 22
> DDy (59)
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Here W, is the power of the test wave. The smallest error will
be obtained for the optimum value of the power of the TW:

vS

w = —.
POPE T o lp

(60)

If the signal wave and the probe wave are pulsed, and their
rates of propagation are different, the time of their
interaction 4, can be shorter than their propagation time in
the nonlinear medium (the self-action time) t,p. In this case
Eqn (59) should be replaced by

(AR)? = ( 1S )2 fioy

Tsp 4oy, phag T

2
1 oWy PTpp
w
% [4wp + ( 25 P
> (@)2 ‘L'?S
Tsp ) 4opha 2T, Tpp

(61)

Eqns (59) and (61) are valid in the regions within which
they are not inconsistent with the expressions (53) and (54).
For what power of the SW can we expect to find
At < ({ns)qn )]/2, where g1 > ¢4? From (59) we obtain

W s 102w,

Wez —— 62
7 2awlpg lg, (62)

Under these conditions the optimum power of the probe
wave should be

Nopt i, vS

S
w = Zopt™p ~5x 1022w . 63
p1opt T alpw, ] ©3)
Therefore
W%min
SLLE (64)
Wp,opt zws(Il

In single-mode optical fibres S &~ 25 um?. Therefore for an
interaction length [ ~ 103> m we find ¢;  0.1if Wg > 0.6 W
and W, =~ 0.1 W.

The limits (59) and (61), due to the self-action of the PW,
are not fundamental. In principle the self-action effect can be
completely suppressed. This is done simply by introducing,
before or after the interaction of the waves, a correlation
between an initial phase of PW ¢po and |A,|? such that
Ppo = Go—Dppnp (¢ is a constant). This can be done, for
example, by passing the PW through another medium having
a nonlinearity, with a sign opposite to that of the medium in
which the interaction takes place. This procedure was used, in
particular to compensate the self-modulation of the radiating
phase ofa Nd/Y AG laser. The compensation was applied in a
cell containing caesium vapour. The elimination of the self-
action of the PW through the dispersion of the nonlinearity
of the medium has been suggested [43, 44]. The self-action is
due to the part of the nonlinear polarisation whose frequency
arises as a result of the following combination: wp, —wp + wp.
The effect of the SW on the PW is caused by the combination
of frequencies wp, —w; + ;. In order to suppress the effect of
the self-action of the PW we must use a medium in which
1N wy, —wp + @) € (Do, — w5 + @). However, it
should not be forgotten that the dispersion of the
nonlinearity is associated with dissipation, and in an ideally
transparent medium the nonlinearity coefficients are
independent of frequency.

The influence of the self-action of the PW on the error
of the measurement of the energy of the SW can be sub-
stantially lowered by an appropriate choice of the operating
regime of the phase detector. The shift in the phase ofthe PW
relative to the reference wave (provided by a local oscillator)
is usually measured with a homodyne detector. The output
current of this detector has a component proportional to
ApArocos(¢ro—Pp), where Ao and ¢ro are the amplitude
and the phase of the reference wave. [f the reference wave in
the coherent state is strong enough, the uncertainties of its
amplitude and phase can be ignored. Under these conditions
the current variation associated with the change in the
quantities A, ¢po, and Ay is equal, to a first approximation,
to

dip ~ 1A L0{5Ap [005 (Lo — (_bpl)
_ oy _
+A4p ﬁsm (Pro— (bpl)]

0 _
+Ap5Asa%il5i“ (bro — ¢p1)} > (65)

where 7. is the quantum efficiency of the detector and A ,, (Ibw
are the average values of the amplitude and phase of the PW.

For measurements of the phase shift the regime which
gives cos ((bLo—(;Sp,) = (isthought to be the best. However,
in this case 8ij, is affected by the phase shift caused by the self-
action. Obviously, the effect of fluctuations in the amplitude
of the PW on the current 8i, can be eliminated (in the linear
approximation) by choosing a regime ofthe detector in which

0¢

cos (¢ — J’pl) +A_p P sin (Pro — J)pl) =0. (66)
p

0A
In practice this method of excluding the self-action effect of
the PW is meaningful only for A,8¢,,/0A, < 1, since in the
opposite case the dependence of 8i, on dA would be much
weaker.

5. Results of experiments on the QNDM of the
energy of optical waves

5.1 Measurement of the energy of travelling waves

The first attempt to measure the energy of optical travelling
waves by the interaction of the waves in a quartz fibre was
reported [37] in 1986. The aim of the experiment was to
demonstrate the link between the phase of the PW and the
quantum fluctuations of the amplitude of the SW. A block
diagram of the apparatusis shown in Fig. 6. The radiation of
a frequency-stabilised krypton-ion laser working on two
independent transitions at 647 and 675 nm limited by
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Figure6.
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quantum noise was introduced into an optical fibre. After
interacting in a single-mode fibre 114 m long the waves had
an additional phase modulation associated with self-action
and interaction. The phase modulation of the wave E, carried
information on the modulation of the amplitude of the wave
E,. After separating the waves with a prism the SW was led to
the photodetector DX. The current fluctuations of this
detector for a sufficiently high power of the SW are
proportional to the amplitude fluctuations of the SW and
independent of its phase. The PW is directed to a confocal
resonator adjusted so that the phase of the reflected wave at
the carrier frequency (the average frequency of the PW)
changes by 8 = —m/3. Under these conditions a phase shift
is generated between the carrier and the side components
which is sufficient to transform a phase modulation of the
wave into amplitude modulation of the photodetector
current.

The variable component of the current iy, delayed for a
time T4 in a coaxial cable, was added to the variable
component of the current iy, and the sum was examined in
a spectrum analyser. Correlation of the currents was revealed
as a periodic dependence of the current spectral density on
the frequency.

In the 54—-58 MHz range the spectrum varied with a
period of2 MHz. The quantum fluctuations ofthe amplitude
of the SW accounted for 37% of the mean-square
perturbation of the total current (ii) fluctuations. The
remaining noise was associated with the amplitude
fluctuations of the PW and with its phase fluctuations,
arising during the generation of the wave in the laser and as
a result of the self-action effect in the nonlinear medium.
Some of the noise was caused by the nonideality of the
photodiode DX (which had a quantum efficiency of 0.4).
Thisnoise level correspondsto S¢/(Ss + Sx) = (0.37)2, where
Ss, Sy are the components of the spectral fluctuation density
of the current iy, generated by the signal noise (Ss) and by
other noises (Sx). Therefore the signal-to-noise ratio is
S¢Sy = 0.2. Accordingly the mean square perturbation of
the error in the measurement of the energy of the SW in the
same circuit is S(ns)]/2hws, i.e. it is 5 times greater than the
corresponding SQL.

Let us compare this value of the error with the value
predicted by Eqn (59). The power of the PW (60 mW) is
much less than the optimum value. Therefore the self-action
of the PW is irrelevant, and we can write

-2
D " hooy

Aii)? 2 —2——
(A7) 4r,Wp

(At ? o v2S§?2
(ng) — 402p220,0,W, Wy

2
~3x102 s )
o

For a single-mode quartz fibre in this range of wavelengths
we can tentatively assume that S/a &~ 25 x 1019 (SI units). In
this case we obtain from (67) (Aii,)*/(n,) & 20, which agrees
with experimental results.

The results of an experiment on the interaction of waves
in an optical wave guide 500 m long have been reported [44].
For a SW power of 12.6 mW the phase shift of the PW was
1.38 x 1072, According to Eqn (62) the error of the

(67)

measurement for this SW power level and length of fibre
cannot be less than the SQL.

In order to overcome the SQL of the energy for a given
length and nonlinearity of the optical fibre we must increase
the power of both the SW and the PW. Sakai et al. [42] tried
to solve the problem by this method. They measured the
energy of a single optical soliton and observed the shift in
another soliton interacting with the first. This was done by
admitting into an optical fibre with a negative dispersion of
the group velocity three solitons, produced with the aid of a
special optical scheme from a single laser pulse. The first
(reference) and the third (probe) had identical wavelengths of
the carrier (1455 nm). In the middle (signal) soliton the
wavelength was slightly greater (1460.7 nm). The velocity of
the signal soliton was slightly less than the velocity of the
probe soliton, producing an overtaking during which the
velocities of the solitons were altered by their nonlinear
interaction. As a result, the distance between the reference
and the probe soliton changes in proportion to the energy of
the signal soliton. The reference and the probe soliton are
then passed through a Mach—Zender interferometer to a
photodetector. The output photocurrent depends on the
phase shift of the probe soliton relative to the reference. The
total phase shift of the probe soliton, resulting from the
interaction with the signal soliton, was 1.22 rad for a signal
energy of 15 pJ (1.1 x 10® photons) and duration of 2.6 ps.
Like Levenson et al. [37] these workers limited their study to a
demonstration of the correlation between the output signal
of the interferometer and the quantum fluctuations of the
energy of the signal soliton. They used the method already
fully described [37]. Groups of three solitons were generated
at a frequency of 100 MHz. The signal solitons from the fibre
were led to a photodetector, whose current was added to the
current from an interferometer (retarded by a delay line). The
total current was amplified and fed to a spectrum analyser.
The required correlation was observed as a periodic
frequency dependence of the intensity of the spectrum.
According to the authors approximately 60% of the mean-
square perturbation of the phase noises at the output of the
phase detector consisted of noises associated with the shot
noise of the signal soliton. This corresponds to a signal-to-
noise ratio of ~1/1.8, i.e. (Any)*/(n,) ~ 1.8.

If there had been no noises associated with imperfections
in the elements of the system (losses in the fibre, 0.1 dB;in the
connectors, 0.2 dB; in the diffraction gratings, 0.6 dB; in
the photodiodes, 1.7 dB) the estimated energy of the solitons
could have been close to the SQL, but not less than it. Thus, it
follows from the parameters of the scheme [/ = 400 m,
dispersion of the group velocity 12 ps km—!, duration of
signal 2.6 ps, duration of probe soliton 3.6 ps, energy of
probe soliton 6 pJ (4.4 x 107 photons), difference in
wavelengths between the signal and the probe soliton
5.7 nm] that the duration of the interaction of the solitons
(overtaking time) due to dispersion is approximately
Tep & 2.5 X 10~7 s, whereas the duration of the self-action
is TpA2x107%s. From Eqn (61) we obtain
(Ang)* > 1.6 x 108 ~ (n,). (The effective cross-sectional
area was assumed to be 25 pm?2.) Unfortunately, even this
elegant experiment failed to overcome the SQL of error for
the energy.

5.2 Methods of increasing the effective nonlinearity
In order to overcome the SQL of the measurement error of
the energy of a wave at reasonable signal power levels we
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need to establish an interaction between the SW and the
apparatus such that the effective nonlinearity is much greater
than in quartz, but the losses remain equally small. In
practice it is found that in transparent media the greater the
nonlinearity, the greater is the dissipation, though in
principle this relationship is not inescapable. The search for
more effective methods of measurement is proceeding along
various paths. The exploitation of wave interactions in
exciton semiconductors (CdS, GaAs), avoiding losses in the
materials by the self-induced transparency effect, has been
suggested [45]. Other directions include the use of the
interaction between streams of particles and a standing or a
travelling wave in a region of nonuniform spatial distribution
of the wave. For example, it is hoped to make use of the
diffraction of a stream of electrons travelling along a
dielectric waveguide in the nonuniform field of a wave
[46, 47]. Because of the radial nonuniformity of the field of
the wave the electron experiences, in addition to the variable
component, a constant component of the force (the Miller
force [48]), proportional to the square of the amplitude of the
electric field strength of the wave. The stronger this effect
the smaller is the difference between the velocity of the
electrons v, and the velocity of the wave v. Calculations
have shown that detection of the effect of an i.r. pulse with an
energy of about one photon on an electron is theoretically
possible under the following conditions: (a) the relative
velocity difference between the electron and the wave
should not be greater than 1073, (b) the interaction length
should not be shorter than 10 cm, (c) the duration of the
pulse should be approximately 1 ps.

An effective method of strengthening the nonlinear
interaction at relatively low SW powers is to store the
energy in microresonators with a high Q factor [49]. For
example, Braginskii and Il’chenko prepared spherical
sapphire optical resonators having a Q of 10¥-10° for a
diameter of 40—400 um. The effective volume of the field in
these resonators for modes of the ‘whispering gallery’ type is
of the order of 10—2 cm3. The volume of the soliton in this
experiment [42] was an order of magnitude greater.

5.3 Measurements by wave interaction in the resonator
Thepossibility of measuring the energy ofa wave by using the
nonlinear interaction of waves in a resonator has been
examined [50, 51, 51a]. Theoretical studies with relatively
rigid limitations showed that the quasi-nonperturbing
measurement of the energy of a wave by using a resonator is
possible in principle. However, an experimental test of this
conclusion by using a ring resonator showed that overcoming
the SQL in a system of this type is not straightforward [51].
Very strict, almost unrealisable limitations on the classical
noises associated with the scattering of the SW and of the PW
in the resonator must be imposed. Nevertheless it is claimed
[51] that the resonator scheme gives better results than the
travelling-wave scheme.

Dianovet al. [S2]reported the results of an experiment on
the interaction of waves in a nonlinear resonator (the external
resonator of a laser). The experimental scheme is shown in
Fig. 7. Radiation from the single-frequency semiconductor
laser /1 (A= 1.28 um) passes through the acoustooptical
modulator 2 (working in the Bragg regime at 65 MHz) and
is split into two beams corresponding to zeroth and first
diffraction. The zero beam is then introduced into the single-
mode optical fibre waveguide 3, 5.7 km long. The principal
feedback mechanism between the fibre and the laser was the
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Figure7.

Rayleigh scattering in the fibre. The zero beam was then
combined with the first diffraction beam in the optical shunt
4, in which one of the outlets was connected to the
germanium avalanche photodiode 5. The beat signal was
amplified and fed to the radio-frequency spectrum analyser 6.
The SW was introduced into the interferometer by using the
free outlet of the shunt, by means of a second semiconductor
laser 7 (A= 1.5 pum) as the source. The intensity of its
emission was modulated sinusoidally by the generator 8.
The average power of the SW in the optical waveguide did
not exceed 100 puW. When the modulation frequency was a
multiple of the inter-mode distance for the longitudinal
modes of the external resonator, a large increase in the
effectiveness of the interaction between the PW and SW was
observed. In this regime an incursion of 5 x 10~2 into the
PW phase was obtained for a SW power of 70 pW. Under
these conditions the PW passed nonlinearly through the
medium not less than 50 times.

This experiment produced a phase shift of the PW per unit
power of the SW not less than three orders of magnitude
greater than in the other experiments described above. However,
even this success does not prove that the SQL can be over-
come in this experiment. With fibre losses 0f0.3 dB km—! the
attenuation ofthe SW for a single passage along the fibre was
about 1.7 dB. Furthermore the increase in the effectiveness of
the interaction at certain modulation frequencies of the SW
suggests that a substantial amount of energy pumping is
taking place through the combination waves.

According to Eqn (62) the SQL can be overcome at a SW
power of 70 pW only if the effective interaction length is not
less than 10% m.

It has been shown [53] that not only classical but also
quantum noises can prevent the overcoming of the SQL in a
resonator. If the resonator is operated in the standing-wave
regime, a random reflection of the SW associated with
the random change in frequency of the resonator during the
measurement cannot be avoided. In order to surmount
the SQL we must use the travelling-wave regime. Such a
regime can be established in ideal ring resonators and
spherical resonators. On the other hand, in real resonators
energy can be transferred between different modes as a result
of various nonuniformities, including those associated with
the spontaneous or induced excitation of acoustic waves.

5.4 Other methods of QNDM of the energy of waves

The search for possible schemes of QNDM of the energy of
electromagnetic waves has included all the phenomena
known to produce low-frequency macroscopic effects in
electromagnetic waves. The optical rectification effect has
been examines [54], but found to be unattractive as a
measurement method because of the vanishingly small value
of the transformation coefficient. The possibility of QNDM



Standard quantum limits of measurement errors and methods of overcoming them 93

of energy by generating the second harmonic in a resonator
with quadratic nonlinearity has been demonstrated [55, 56].
The use of two-photon transitions in atoms has been
suggested [57]. The possible use for the QNDM of the self-
induced transparency effect in two-level systems has been
discussed [58]. It has been stated [S9]that a field containing a
given number of photons can be produced and continuously
maintained by the interaction (in a resonator) of a quasi-
resonant beam of Rydberg atoms followed by the measure-
ment of the phase shift of their wave function. Holland
et al. [60] have obtained a proof that if the frequency of
the light is substantially different from the frequency of the
atomic resonance, and if the resonator in which the atoms are
interacting with the optical field has a high Q factor, the
atomic beam does not affect the number of photons in
the resonator and the number of photons can be established
by monitoring the deflections of the beam. An analysis of a
measurement scheme which uses coherently prepared three-
level atoms interacting with the field of the resonator has
been reported [61, 62].

In the articles mentioned above the proposed methods of
measurement are claimed to be quantum-nonperturbing.
Formally this claim is justified by the fact that with the
specified Hamiltonian for the interaction the measured
observable is an integral of motion even during its inter-
action with the apparatus. In reality, however, approximate
Hamiltonians are used, which fail to allow for various
processes of relevance in the calculation of the quantum
limits of error in the measurements. For example, in the
analysis of the interaction of waves in a Kerr medium no
allowance is made for the generation of harmonics and
combination waves, or for changes in the wave resistance
of the medium. The influence of these effects on the
precision of the measurement has been discussed above. In
the analysis of the interaction of a beam of atoms with an
electromagnetic field in a resonator the usual interaction
(linearly proportional to the electric field) is ignored, and so is
the interaction of the field with the translational motion of
the atoms in the regions of nonuniformity of the field.

6. Quantum limit of the detection of action on a
system

It was pointed out above that one of the strongest stimuli for
the development of the theory and methods of nonperturbing
quantum measurements was the hope of overcoming SQL of
the error in the detection of the interaction ofa force with the
system. In general the detection error depends on the initial
state of the system and on which of the observables has been
chosen as the object of the measurement. The relationship
between the quantum error limit for the detection and the
initial state of the system has been discussed [10, 63].

The process aiming to discover an interaction can be
represented as a sequence of three stages. Some state of the
system is first created. The system then undergoes an
evolution. In the third stage a measurement is carried out in
order to establish whether an interesting interaction has
taken place in the system during the evolution. In order to
minimise the detection error the measurement should be of
the optimum type, i.e. it should be an accurate measurement
of an observable of the system which allows minimisation of
the detection error. In general the optimum measurement
proce-dure is not the same as the optimum procedure for
preparing the initial state of the system.

We shall try to clarify the quantum limit of detection ofan
external action on the system by discussing pure initial states.
After the evolution (but before the measurement) the system
can be found in two probable states:

|®o(t)) = Us(1)|¥(0)).
1P (1)) = U (1) P(0)), (68)

where | ¥(0)) is the vector of the initial state, and Uy (¢), U; ()
are operators of the evolution for the nonperturbed and the
perturbed motion, respectively. The quantum limit of the
average probability of the error in distinguishing between
two pure states is [3]

Pyg = 1= (1 =440 %) 2,

where o, { are the a priori probabilities of the states | ),
[¥1), and |y] = |{¥o|¥1)|. In the present case

7l = KE(O)IR (1) #(0))]-

(69)

(70)

The operator R = U(TU] satisfies the equation

whereﬁ? = U()*(I-}] - 1-70)00, H,, 1'}0 arethe Hamiltonians
of the perturbed and of the non_perturbed motions. The
operator R(¢) in the form R(¢) = ¢'®() gives

) 2
7 = || vaao)

oo

’

where @(¢) is the distribution function for the probabilities
of'the eigen values of the operator ¢. Various @(¢) functions
can give [y| = 0.

For an optimum initial state we have [10, 63]

cos’ Ag, if Ap < /2,
Iyl = , (71)
0, if Ap >m/2.

The state in which |y] = 0 for a minimum value of Ag is
considered to be the optimum. It is characterised by the
following density distribution of the probabilities ¢:

W(p) =1 [S(Aqo —n/2) +8(Ao + n/z)] . (72)

Let us consider the important special case in which the
operator H !(t) satisfied the condition

(120, A f(e2)]. 0] =0 73)

where Q is an arbitrary operator. This condition is fulfilled
when a classical force F(¢) is acting on a linear system. In this
case we have

o) = [ 1

If the action of the classical force is observed over a period T
we obtain

(74)

A%r) = F)E() 79)
and therefore

A l ! AO

(1) = ﬁJOF(t)x (1)dr , (76)
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where
() = UF(0)2(0)Uo(r) . (77)

Formula (76) suggests a path for obtaining a maximum
value of A when F(t) is known. Unfortunately, there is no
known way of preparing the optimum state.

Let us consider the initial states for which

W (@) = apoxp (=22 ) [1 +£(9)] (®)

where f(¢) is a polynomial of finite degree and ¢ and a,, are
parameters. This distribution occurs when a classical force
acts on an oscillator in a coherent state [f(¢p)=0], in a
squeezed state [f(¢) = 0], or in a state with a given energy
[1 + f(@), the Hermitian polynomial].

The limit of the sensitivity of the detection corresponds to
Ap < 1 and ¢ < 1. In this case we obtain from (76) and (78)

p* =1~ (Ag)” . (79
Therefore if{, = {; = %we obtain
Py ~i(1—Ap) . (80)

We shall take Pyq & 0.25 as the detection threshold. This
value of Pyq is found when the signal is equal to the mean-
square perturbation of the fluctuations.

Example. If the force is applied as a rectangular pulse of
amplitude Fp and length T we find from (76) and (80) that

n

Fol = — 1

0T 2Af N (8 )
where

A% = AH )Eo(t)dt)] (82)
TJo

(a) Ifthe force is acting on a free mass m, we obtain

A% = Ax(3/2), (83)

i.e. the detection threshold in this case is lower, the greater the
uncertainty of the coordinate of the mass at the instant when
the force is applied. (We should note that we are discussing
pure initial states.)

(b) This forceisacting on a harmonic oscillator of mass m
and frequency wo.

Let wyT <€ 1. Then, for a coherent initial state we can write

Fof — ﬁm(l)() 1/2
0T = 5 .

Thisisthe SQL of'the detection of the action of'a force on an
oscillator. If the initial state has a given number of quanta n,
and n > 1, we have

(84)

(85)

The expressions (84) and (85) were first obtained by
Braginskii by analysing specific methods of detecting the
action of a force.

[fthe force is in the form of a sinusoidal train of length 7,
frequency Q, amplitude Fo, and Q7 = 2km (where k is an
integer), we can detect from the response of the free body
(with an error probability of 0.25) a force in which

~_ﬁmQ

0T = E 5 (86)

where Ap is the uncertainty in the momentum of the body
during the action of the force. From the response of the
harmonic oscillator at wp = € we can detect (with the same
probability of error) a force which obeys the condition

87)

where AX, is the uncertainty of the imaginary part of the
complex amplitude. In a coherent state AX ¢y = (i/2mewo)"2.
In the n-state AXap = (Ain/2mwg)'? > AXsey. This
inequality can also be applied to the squeezed state.

We should stress the fact that the state of the system
having the product AxAp = 7%/2 does not offer any
advantage over other pure Gaussian states. This is true
under conditions of optimum measurements, i.e. when the
observable being measured corresponds to the initial state
and form of the force. This observable is defined by the
expression

= Uily(0)W(0)|UT — Ug I (0))(¥(0)|Ug (88)

An analysis shows that the procedure for preparing
known states is not the same as the procedure which gives
optimum measurements. The optimum observable could be a
combination of canonical variables which has no recom-
mended measurement method. The experimental workers try
to discover paths which allow the SQL of detection to be
surmounted by using the same procedure for the preparation
and for the measurement, even if this makes the detection
threshold higher than the quantum limit. The nonperturbing
and quasi-nonperturbing measurements whose theory and
methods were discussed above offer this possibility.

QRS can interact with a test body in such a manner that it
obtains information about the variation of the state of the
test body produced by action ofthe external force rather than
about the state itself [29]. Equations (76) and (80) are valid in
this case also.

V B Braginskii(1967) wasthe first to draw attention to the
problem of the quantum-mechanical limitations in the
sensitivity of the gravity wave experiment. The problem was

further analysed by Yul Vorontsov, F Ya Khalili,
K S Thorne, C M Caves, W G Unruh, V V Dadonov,
V I Man’ko, V N Rudenko, A V Gusev [64 —66],

S P Vyatchanin [67], R Onofrio, F Bordoni, and others.
None of these SQL has so far been surmounted
experimentally.

7. Relationship between the measurement error
and the perturbation

The interaction of the system with the apparatus used to
measurethe observable A produces a random perturbation of
allthe observables which are not commutative with A. How is
the error of the measurement of A related to the perturbation
of the observable B? We know that the dispersions of any
observables A and B of a system in any of its states are
interrelated by the uncertainty relation

RIC)
AAVY(AB) > — L
(AM)(A8) > g7 0y
where ris the correlationA coefflcignt between A and B in the
given system state, and C = [A, B]/i%.

The quantities AA and AB are not related to the
measurement error, and they can be obtained

(89)
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experimentally by a statistical treatment of the results of
accurate measurements of the observables A and B for
different elements of the ensemble in systems, in a given
state, or for multiple measurements in one system, returning
the system to its initial state after each measurement. In the
scientific literature and in textbooks we meet assertions that
the uncertainty relation applies also to the dispersion of the
measurements of the observable A [(AA)? ] and of the
change in the dispersion of the observable B [(AB)im]
produced by the apparatus during the measurement. The
evidence quoted to justify this belief'is that the momentum is
perturbed by the measurements of the coordinate according
to the expression

B2

(Ax)rzneas(Ap)f)ert = ? .

An analysis of this problem [10] showed that the uncertainty
relation and the relation between the measurement error and
the perturbation have the same form only when C is not an
operator and r= 0. When [[A(t1),A(t2)],A(t3)] = 0 and

[[é,/f],ff] = 0 we have
2 2 B oo B A
(AA)meas(AB)pert = Z<|C| ) %ZKCM . (90)
Here (AB)ﬁert refers to the quantity (5), defined with respect

to a mixed state of the system. For example, in the
measurement of the energy of free particles we have

O8> () )

On the other hand, if

[[B,A),A] # [|A,B],B] . 1)
we have

(AA) sy (AB) e 7 (AA) e (AB); (%2)
In particular,

(A eas(AH st 7 (AH ) (Ax) e (93)

A general expression similar to (90) applicable to arbitrary
observables has not yet been obtained.

In this review no attempt has been made to examine the
problems of the nonperturbing measurement of the momen-
tum of a free body and of the quadrature amplitude of the
oscillator and ofthe wave in quadrature. Work in those areas
has been reviewed elsewhere [10, 12, 23, 28, 34, 68, 69—71].

A probable resolution of the controversy [1, 2] on the
limits of measurement of the strength of an electromagnetic
field has recently been proposed [72].

8. Conclusions

The standard quantum limits of measurement errors
[1, 3, 4, 11] are not fundamental: they are associated with
certain measurement procedures. Various methods of
overcoming them are available. Observables which are
integrals of motion and other nonperturbable observables
can be measured, in principle, with an error lower than the
corresponding SQL by using nonperturbing and quasi-
nonperturbing measurement techniques. Attempts to
surmount some of these SQL experimentally have been
unsuccessful so far because of various technical difficulties.

However, scientists working on this problem in many
laboratories throughout the world are still hopeful of
overcoming some of SQL of the measurement errors
discussed above. Should they be successful they will present
experimental physics with a range of new possibilities in
fundamental research and new methods of transferring and
processing information.

References

1.  Landau L, PeierlsR Z. Phys. 69 56 (1931)

Bohr N, Rosenfeld L Dan. Vid. Selsk. M at.-Fys. Med d. 12 (8) 3—65

3. Helstrom C W Quantum Detection and Estimation Theory
Mathematics in Science and Engineering, Volume 123 (New York:
Academic Press, 1976)

4. Kholevo A S Veroyatnostnye i Statisticheskie Asp ekty Kvantovoi
Teorii (Probabilistic and Statistical Aspects of Quantum Theory)
(Moscow: Nauka, 1980)

5. Kuriksha A A Kvantovaya Optika i Opticheskaya Lokat siya
(Quantum Optics and Optical Location) (Moscow: Sov. Radio,
1973)

6.  Stratonovich R L J. Stoch. 187-126 (1973)

7. Braginskii V B Fizicheskie Eks perimenty s Probnymi Te lami
(Physical Experiments with Test Bodies) (Moscow: Nauka, 1970);
Zh. Eksp. Teor. Fiz. 53 1434—1441 (1967) [Sov. Phys. JET P 26 831
(1968)]

8. Braginskii V B, Manukin A B Izmerenie M alykh Silv Fizicheskikh
Eksperimentak h (Measurement of Small Forces in Physical
Experiments) (Moscow: Nauka, 1974)

9.  Braginskii V B, Vorontsov Yu I Usp. Fiz. Nauk 114 4153 (1974)
[Sov. Phys. Usp. 17 644 (1975]

10.  Vorontsov Yu I Teoriya i Metody Mak roskopicheskikh Izmerenii
(The Theory and Methods of Macroscopic Measurements)
(Moscow: Nauka, 1989)

11. CavesCM , Thorne K S, Drever R W P et al. Rev. Mod. Phys.

52 341 (1980)

12.  Braginskii VB, Khalili F Ya Quantum M easurement (Cambridge:
Cambridge University Press, 1992)

13.  Stratonovich R L, in press

14.  Braginskii V B, Vorontsov Yu I, Thorne K S Science 209 547 —557
(1980)

15. Dirac P AM The Principles of Quantum Mec hanics 3rd edition
(Oxford: Clarendon Press, 1947)

16.  AharonovY, Safko J L Ann. Phys. N.Y. 91(2)279-294 (1975)

17.  Yuen H P Phys. Rev. Lett. 51 (9) 719721 (1983)

18.  Yuen H P Phys. Rev. Lett. 52 1730 (1984)

19.  Wei-Tou Ni Phys. Rev. A 33 (4) 2225-2227 (1986)

20. PartoviM H, Blankenbecler R Phys. Rev. Lett. 57 (23) 28912893
(1986)

21. Caves CM Phys. Rev. Lett. 54 (23) 2465—2468 (1985)

22.  KhaliliF Ya Vestn. Moskov. Univ., Ser. 3 (a) 22 (1) 3742 (1981);
(b) 27 (2) 19-23 (1986)

23.  Menskii M B Continuous Quantum Me asurements and Path
Integrals (Bristol: IOP Publishing, 1993)

24.  Menskii M B Gruppa Putei, Izmereniya, Polya, Chastitsy (Group of
Paths, Measurements, Fields, Particles) (Moscow: Nauka, 1983)

25.  Vorontsov Yu I, Khalili F Ya Radiotekh. Elekt ron. 27 (12)
2392-2398 (1982)

26.  Vorontsov Yu I Vestn. Mos kov. Univ., Fiz. 26 (4) 8—13 (1985)
[Mos c. Univ. Phys. Bull (USA ) 40 (4) 8—13 (1985)]

27. Unruh W G Phys. Rev. D 18 1764 —1772 (1978)

28.  Braginskii V B Usp. Fiz. Nauk 156 (1) 93 (1988) [Sov. Phys. Usp.
31 836 (1988)]

29. Vorontsov Yu I, KhaliliF Ya Zh. Eksp. Teor. Fiz. 82 (1) 7276
(1982) [Sov. Phys. JETP 55 43 (1982)]

30. Vorontsov Yul Usp. Fiz. Nauk 133 (2) 351 -365 (1981) [Sov. Phys.
Usp. 24 150 (1981)]

31.  Vorontsov Yu I, Kobzar’ I V Vestn. Mos kov. Univ., Fiz. 30 (1)
71-73 (1989) [Mos c. Univ. Phys. Bull (USA ) 44 (1) 71 -73 (1989)]

32, Ueda M, Imoto N, Nagaoka H, Ogawa T Phys. Rev. A 46 (5)
28592869 (1992)

33, Busch P Found. Phys. 20 (1) 1-43 (1990)



96

Yul Vorontsov

34.
35.

36.

37.

38.

39.

40.
41.

42,
43
44,
45,
46.

47.
48.

49.

50.

51

52.

53.
54.
55.
56.

57.
58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71

72.

Menskii M B Phys. Letr. A 169 (6) 403 —410 (1992)

Braginskii V B, Vorontsov Yu [, KhaliliF Ya Zh. Eksp. Teor. Fiz.
73 (4) 1340—1343 (1977) [Sov. Phys. JETP 46 705 (1977)]
Braginskii V B, Vatchanin SP Dokl Akad. Nauk SSS R (2) 264 (5)
11361138 (1982) [Sov. Phys. Dokl. 27 478 (1982)]; (b) 259 (3)
570—-572 (1981) [Sov. Phys. Dokl. 26 686 (1981)]

Levenson M D ct al. Phys. Rev. Lett. 57 2473 (1986)

Imoto N, Haus H A, Yamamoto Y Phys. Rev. A 33 2287 (1985)
Vorontsov Yu I Vestn. Moskov. Univ., Fiz. 31 (6) 34—37 (1990)
[Mos c. Univ. Phys. Bull (USA ) 45 (6) 34 —36 (1990)]

Imoto N, Saito S Phys. Rev. A 39 675 (1989)

Vorontsov Yu I Vestn. Mos kov. Univ., Fiz. 31 (5) 29—34 (1990)
[Mos c. Univ. Phys. Bull (USA ) 45 (6) 29—33 (1990)]

(a) Sakai Y, Hawkins R J, Friberg SR Opt. Lett. 15 (4) 239-241
(1990); (b) Friberg S R, Machida S, Yamamoto Y Phys. Rev. Lett.
69 (22) 3165-3168 (1992)

Martens H, de Muynck WM Quantum Opt. 4 (5) 303 -316 (1992)
Imoto N, Watkins S, Sasaki Y Opt. Commun. 61 159 (1987)
Wanatabe K et al. Phys. Rev. Letr. 62 2257 (1989)

Braginskii V B, Vatchanin S P Phys. Lett. A 132 206 (1988);

Dokl. Akad. Nauk SS SR 307 96 (1989)

Vatchanin S P Vestn. Mos kov. Univ., Ser. 3 31 (5) 411 —447 (1990)
Gaponov A V, Miller M A Zh. Eksp. Teor. Fiz. 34 241 (1958)
[Sov. Phys. JET P. 7 168 (1958)]

Braginskii V B, Gorodetsky M L, [I’chenko V S Phys. Lett. A.

137 393 (1989)

Alsing O, Milburn G J, Walls D F Phys. Rev. A 37 (8) 29702978
(1988)

(a) Bachor H-A, Levenson M D, Walls D F et al. Phys. Rev. A 38 (1)
180—190 (1988); (b) Chaba A N, Collett M J, Walls D F Phys.
Rev. A 46 (3) 14991506 (1992)

Dianov E M, Okhotnikov O G, Prokhorov A M ct al. Kvantovaya
Elektron. (Mo scow) 16 (4) 864 —868 (1989) [Sov. J. Quantum
Electron. 19 563 (1989)]

Khalili F Ya Vestn. Moskov. Univ., Ser. 330 (4) 3—7 (1989)
Shelby R M, Levenson M D Opt. Commun. 64 (6) 553 —559 (1987)
DanceM, Collett M J, WallsD F Phys. Rev. Lett. 66 (9) 1115-1118
(1991)

Grangier P, Roch I F, Reynaud S Ann. Phys. 15 (Collog. 1) 9-15
(1990)

Blockley C A, Walls D F Opt. Commun. 79 (3—4) 241 -250 (1990)
Watanabe K, Nakano H, Honold A, Yamamoto Y Phys. Rev. Lett.
62 (19) 2257 -2260 (1989)

Brune M, Harche S, Lefevre Vet al. Phys. Rev. Lett. 65 (8) 976 —979
(1990)

Holland M J, Walls D F, Zoller P Phys. Rev. Lett. 67 (13)
17161719 (1991)

Poizat J-P, Collet M I, Walls D F Phys. Rev. A 45 (7) 51715179
(1992)

Cheri K M, Grangicr P, Poizat J-P, Walls D F Phys. Rev. A 46 (7)
4276 —4285 (1992)

Vorontsov Yu I, Khalili F Ya Vestn. M oskov. Univ., Fiz. 26 (3) 3-8
(1985) [Mo sc. Univ. Phys. Bull (USA) 40 (3) 3-8 (1985)]

Dodonov V'V, Man’ko V I, Rudenko VN Zh. Eksp. Teor. Fiz.

78 (3) 881 —896 (1980) [Sov. Phys. JET P. 51 443 (1980)];

Pis’ma Zh. Eksp. Teor. Fiz. 36 (3) 5355 (1982) [JETP Le1t.

36 63 (1982)]; Tr. Fiz. Inst. Ak ad. Nauk SSS R 152 12-30 (1983)
Gusev A V, Rudenko VN Zh. Eksp. Teor. Fiz. 76 (5) 1488 — 1499
(1979) [Sov. Phys. JETP 49 755 (1970)]

Kulagin V'V, Rudenko VN Zh. Eksp. Teor. Fiz. 94 (4) 51-57
(1988) [Sov. Phys. JETP 67 677 (1988)]; Nuovo Cimento 100 (6)
601 —607 (1987)

Vatchanin S P Dokl. Aka d. Nauk SS SR 272 342 — 346 (1983)

[Sov. Phys. Dokl. 28 765 (1983)]

Roch J F, Roger G, Grangicer P ct al. Appl. Phys. B 55 (3) 291 —297
(1992)

Braginskii V B, KhaliliF Ya Zh. Eksp. Teor. Fiz. 94 (1) 151 (1988)
[Sov. Phys. JET P. 67 84 (1988)]

Holland M J, Collctt M J, Walls D F, Levenson M D Phys. Rev. A
42 (5) 29953005 (1990)

Shelby R M, Levenson M D, Perlmutter SM J. Opt. Soc. Am. B
5347357 (1988)

Menskii M B Teor. Mat . Fiz. 80 (1) 29 -39 (1989)



