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Abstract. New experimental approaches and theoretical
results concerning the search for superfluidity in three- and
two-dimensional solutions of 3He in *“He are reviewed.
Estimates for the s-wave and p-wave pairing temperatures
are given for both unpolarised and polarised cases. The role
of monolayers and submonolayers of He as an ideal-purity
two-dimensional system for experimental verification of
various current theories of high-temperature super-
conductivity is emphasised.

1. Introduction

One of the most interesting and still experimentally unre-
solved problems in low-temperature physics is the search for
superfluidity in three-dimensional and particularly in two-
dimensional (thin films, submonolayers) solutions of 3He in
“He. In the present review I shall concentrate on new
experimental approaches and theoretical results that have
been published in the last few years. | shall stress particularly
the role of thin 3He films and submonolayers as ideal two-
dimensional systems for experimental checking of various
theories which are actual in connection with the problem of
high-temperature superconductivity.

It is known that a solution of *He in *He is the simplest
low-density Fermi system of 3He atoms in an inert superfluid
4He condensate, which makes a solution of this kind an ideal
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object for the development and testing of methods belonging
to the realm of Fermi-liquid theory. These methods have
been used successfully in describing the normal properties of
solu-tions (thermodynamic characteristics, transport
coefficients) [1]and in prediction of possible superfluidity of
the 3He subsystem in such solutions [2—4]. The first classical
theory of superfluidity of three-dimensional solutions was
proposed by Bardeen, Baym, and Pines (BBP) in 1967 [2]:
they established an elegant analogy between pairing of two
3He atoms in a solution via the polarisation of the “He back-
ground (exchange of virtual phonons) and the electron—
phonon interaction in the Bardeen, Cooper, and Schrieffer
(BCS) theory of superconductivity (Fig. 1). In accordance
with the ideas of Bardeen, Baym, and Pines, the total
interaction between two 3He particles in a solution consists
of two components, direct and exchange:

V(r) = Vair (r) + Vexen (r) - @)
P p’
—p -p’

Figure 1. Interaction of two 3He atoms via the polarisation of the super-
fluid “He background.
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The direct interaction includes the contributions of hard-core
repulsion at short distances (V) and of the van der Waals
attraction (V) at large distances:

Vdir (}") = V] (r) + Vz(r) . (2)

Theexchange interaction Ve (7) represents the interaction of
two *He atoms via a local change in the density of “He. This is
an analogue of the deformation potential in the BCS theory.

The corresponding expression in the momentum space is

V(q) = Viir (q) + Vexen (9) » 3)

where Vexen(q) is due to the exchange of a virtual phonon in
the three-dimensional case and the exchange of a quantum of
third sound in the two-dimensional situation.

At low temperatures and concentrations the subsystem of
3He atoms is a low-density Fermi liquid, i.e. it is effectively a
Fermi gas. Therefore, the superfluid transition in this liquid is
described by the BCS theory and it depends decisively on the
amplitude and sign of the total interaction V(g) on the Fermi
surface. More rigorously, we haveg = p—p’, wherep and p’
are the momenta of the incoming and outgoing particles in
the Cooper channel, |p|= |p'|= pr, and ¢>*=
2p3(1—cos®); 0 = pp’ and the only quantity which must
be known when dealing with the Cooper problem is the value
of the s-wave harmonic of the potential V(g) on the Fermi
surface:

]
Vieo = L] V (q(cos0)) d C;SB . 4)

2. Three-dimensional case

The deformation potential has the following form in the
momentum space:

Wy
— 2 _ 2’
817) wq

)
Vexch ((1) 3,1 (3p+q (5)
where g, is the coupling constant and w, is the frequency of
the phonon spectrum of *He. If |g,. ,—&y| < 0y < Wp, We
find that Vixen(q) = — gj/wq <0.

In complete analogy with the BCS theory we have gq2 x q,
W, = sq, where s is the velocity of sound in “He, so that the
final result is Vixen(¢ = 0) = const. In the case of solutions
this constant is —(1 + a)?mas*/ns < 0, where «220.28 is the
relative increase in the volume of the solution owing to the
replacement of a “He atom with a 3He atom; ng and my4 are
the density and mass, respectively, of “He. It should be
noted that in the low-density case we have wp > &r and the
whole volume of the Fermi sphere (and not only the Debye
shell) participates, as in the standard BCS theory, in the
superconducting pairing.

The direct interaction of 3He atoms in the momentum
space is found from the thermodynamic identity describing
the derivative of the chemical potential with respect to the
density and has the following form:

0 1mys>

Varlg = 0) = 51 = (14207
where ps3; and n3) represent, respectively, the chemical
potential of 3He atoms with ‘up’ spin and the density of
3He atoms with ‘down’ spin. The result is

V(g = 0)= Vi = Vexen(g = 0) + Vair(¢ = 0)

2
= ™ 9. %)
ny4

>0, 6)

We can therefore conclude that at very low 3He
concentrations (when pr — 0 and, consequently, ¢ — 0) the
total interaction is attractive and we can expect the
spherically symmetric singlet s-wave pairing which is
standard in the BCS theory.

However, spin diffusion experiments show that the
situation is far from trivial (see Ref. [3] and the papers cited
there). In these experiments the dependence of DT ? (D is the
spin diffusion coefficient and 7 is the temperature) on the
3He concentration is determined. The experimental curves
are strongly nonmonotonic and exhibit a maximum at a
certain concentration xo approximately equal to 4% (Fig. 2).
They are described approximately by the expression

X 2/3

2 2 1y/2
Vizo =5 Vi=oVi=1 + 35 Vi,

DT? x

®)

A theoretical analysis of these experimental curves shows
that the absolute value of the s-wave harmonic of the total
potential V;—( decreases with an increase in the con-
centration x, then vanishes at x = x(, and at higher
concentrations becomes repulsive. On the other hand, for
x 2 xo the p-wave harmonic of the total potential V;—¢ is
significant and attractive (although smaller than V-, at
x = 0). These circumstances lead to two possible
approaches to the superfluidity in solutions.
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Figure 2. Approximate experimental dependence of the product DT 2,
representing the spin diffusion in a solution, on the concentration x of
‘He.

In the first approach it is assumed that the total interac-
tion oftwo 3He atoms described by V(g) exhibits a significant
momentum dependence and, moreover, its sign is reversed at
the values of the vector ¢ of the order of the Fermi
momentum when the concentration is xg, i.e. when it is
kr(xo). This hypothesis leads to the model potential of the
BBP theory:

V(g) = V(g = 0)cost: ks ~ke(ro) ©)
The BBP model potential was improved in 1989 by van de

Haar, Frossati, and Bedell [3]. They introduced the con-
centration dependence of the amplitude of the potential

Vig= 0):

m S2 X
V(g =0) = —%oﬂ(l +7- ) , (10)
max

where Xmax is the solubility limit of *He at a given pressure P
and yp(P) is a fitting parameter. In both theories the s-wave
harmonic ofthe total interaction is maximal and attractive at
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low concentrations and then it begins to fall, changing sign to
become a repulsive one at concentrations corresponding to
kr ~ ks. At higher concentrations the p-wave harmonic of
V(q) becomes attractive. Therefore, van de Haar, Frossati,
and Bedell predict singlet s-wave pairing in a solution at low
concentrations and triplet p-wave pairing at high concentra-
tions. It should be pointed out that two fitting parameters
ks = ks(P)and p(P), deduced from the experiments on spin
diffusion and magnetostriction, are used in the improved
model potential of van de Haar, Frossati, and Bedell.

The second approach, adopted by the author of the pre-
sent review and by others [1, 4, 5], doesnot rely on any model
potential. In this approach the only microscopic parameter of
the system is the s-wave scattering length ap = (m/4m)V = o,
which is independent of the pressure and concentration. It is
assumed that its sign is reversed at a concentration corres-
ponding to the maximum on the DT ? curve (Fig. 3).

X0 x

Figure 3. Qualitative dependence of the scattering length in a solution on
the concentration of 3He. At x = 100% the value of a(x) tends to the
scattering length of pure 3He and is approximately equal to 2/kgo at zero
pressure (here, kyg is the Fermi momentum of pure 3He).

It should be pointed out that the higher harmonics (V;-1,
Vi—», ...) appear in the second order but not because of the
momentum dependence of the total interaction V(g): they
originate from the scattering length ao because ofthe effective
interaction of two 3He particles via the Fermionic back-
ground of their own 3He subsystem.

The relationship between these two approaches is
approximately the following. Let us assume, for the sake of
simplicity, that the direct interaction of two 3He particles in a
solution is described by

Vi, r<r,
ler(r) - {—V2, n<r<r,

where the first term is responsible for the hard-core repulsion
at short distances and the second term is due to the
van der Waals attraction at long distances (Fig. 4).

At low 3He concentrations in a solution, i.e. in the case
when kgri <€ kpro <€ 1, the s-wave harmonic of the direct
interaction is V/=0 = V/=0 — V=0, However, at higher
concentrations when krro = 1, but with kgry still much less
than unity, the van der Waals attraction becomes ineffective

and we have V/=0 = V/=0. Then, if

an

V]’=0 _v 21=0 —yE <,

exch

(12)

but

I r r

—Vob—

Figure 4. Model representation of the direct interaction of two particles in
a solution as a function of the distance r between them.

V|l=0 —v, =0 ¢,

xch

(13)

we have a low-density Fermi gas with the gas parameter
krri <€ 1 and with a scattering length which changes its sign
at kr ~ 1/r2. Naturally, this approach ignores the p-wave
harmonic of the van der Waals interaction, which need
not be small in the transition region krr, ~ 1. It should be
pointed out that at high concentrations when kpr, > 1 we
find that V;=! is small and of the same order as VJ=". In this
review the second (Fermi-gas) approach to the problem of
superfluidity in solutions will be mainly used.

3. Three-dimensional Fermi gas with attraction

The expression for the temperature of the superfluid transi-
tion in a Fermi gas with attraction was first obtained by
Gor’kov and Melik-Barkhudarov in 1961 [6], soon after
creation of the BCS theory. Bashkin and Meyerovich [1]
used this expression to describe the superfluidity of solutions
at very low concentrations. For the concentrations in the
range x < xo and an attractive s-wave scattering length
ap < 0 the expression for this temperature is

TC() = 0.18F0X2/3 eXp ( (]4)

T
2|¢¢0|kF0)€'/3 ’

where er¢ and kro are the Fermi energy and momentum of
pure 3He. It is worth noting that the preexponential factor in
this expression is proportional to &r and not wp, as in the case
of the phonon model.

According to the estimates of @stgaard and Bashkin [7],
the maximum value of Ty is Ty (1%) ~ 10=% K. Frossati
and his colleagues [3] proposed a lower critical temperature
max Ty = Teo(2%) ~4 x 1076—~1073 K. They obtained
the larger value of T, of the order of 103 K by deducing
the fitting parameters from the magnetostriction experi-
ments, and 4 x 10~° from the spin diffusion experiments.
At a given concentration x the gas parameter of the theory is
aokr ox '3 and it depends weakly on the gas pressure.

4. Three-dimensional Fermi gas with repulsion

At higher concentrations (x > x¢) the scattering length
changes its sign, a¢p > 0, and s-wave pairing becomes
impossible. Nevertheless, even in this case the subsystem of
3He atoms in a solution may become a superfluid, but this is
now due to an instability with respect to the triplet p-wave
pairing. The mechanism ofrealisation of the triplet pairing in
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the Fermi gas with a purely repulsive interaction was first
considered by Fay and Layzer [8] and Kagan and Chubukov
[9]. This mechanism is related to the presence of a Kohn
singularity [10] (or of the Friedel oscillations [11]) in the
effective interaction of Fermi particles via the polarisation
of the Fermionic background. More specifically, this
effective interaction is described by the following expression
if we use the first two orders of perturbation theory with
respect to the gas parameter:
Verr(q) = aopr + (aopr) *(q) , (15)
where ¢ = p + p’, and p and p’ are the momenta of the
incoming and outgoing particles in the Cooper channel, and

) — J@(sp)

& — &g

— O(gp1q) &p
(2n)’

(16)

is the standard polarisation operator which is responsible for
charge screening in the case of an electron gas in a metal. [t
should be pointed out that ¢ = p + p’, but not p—p’. This
demonstrates that in reality the second order of perturbation
theory includes contributions not only from a particle—hole
loop diagram, but from all the other diagrams (there are three
of these) that are irreducible in the Cooper channel (Fig. 5).
In the case of a short-range potential the first three diagrams
in Fig. 5 cancel each other and only the fourth exchange
diagram survives: its magnitude is the same as that of the
polarisation operator if we replace p—p’ withp + p’.

ST
A

Figure 5. Diagrams of the second-order terms of the gas parameter aopr,
which contribute to the effective interaction.

The polarisation operator II(g) is described by the stan-
dard Lindhard function and contains not only a regular part,
but also a singular part of the type (¢—2pr) In |¢—2pr|. In the
coordinate space the singular part of II(¢g) leads to the Friedel
oscillations in the effective interaction Vi (7) oc cos (2krr)/r.

Therefore, the purely repulsive short-range potential
between two particles in vacuum gives rise to an effective
interaction in matter and this interaction is characterised by
competition between attraction and repulsion. A rigorous
calculation shows that for all the harmonics of the effective
potential (except the s-wave harmonic) the attraction wins in
this competition and the p-wave harmonic is the most
attractive. Consequently, a three-dimensional Fermi gas
with repulsion is unstable with respect to the superfluid
transition with the triplet p-wave pairing below the critical
temperature

5m?
42In2 = 1)ad pgx?P ]’
where max T, = T, (P = 10 bar, when the maximum
solubility of 3He is 9.5%) ~ 1071°-10—2 K. The triplet

(17)

Tc1 X €pox 23 exp [—

pairing temperature of this order of magnitude was
predicted also by Bardeen, Baym, and Pines [2].

Frossati and others give a more optimistic estimate for
the triplet pairing case. At the maximum concentration
x = 9.5% the value of T,; lies between 10—¢ and 10—* K ;
the lower temperature (10~ K) is obtained when the fitting
parameters are deduced from transport experiments and the
higher temperature follows from magnetostriction experi-
ments.

5. Two-dimensional case

A solution of He in *He is also very interesting because it
can be made purely two-dimensional. In superconducting
electron systems a film is regarded as two-dimensional if
its thickness d is much less than the coherence length
Eo ~ 1000 A. In 3He films on grafoil (exfoliated graphite)
and in monolayers and submonolayers of *He in the
solutions the radius of localisation of 3He atoms in the third
dimension (which is the film thickness) is indeed of the order
of the distance between atoms. Therefore, by analogy with
inversed layers in heterostructures, we are also dealing here
with a purely two-dimensional system and, moreover, our
system is free of impurities. In this sense a two-dimensional
solution of *He in “He can be regarded as a bridge between
superfluidity and superconductivity, particularly high-
temperature superconductivity. In fact, the majority of the
current theories of high-temperature superconductivity rely
on two-dimensional or quasi-two-dimensional behaviour to
account for the unusual normal properties (resistivity,
susceptibility, small jumps in the distribution function on
the Fermi surface, etc.) of these materials, as well as to
account for the high temperature of their superconducting
transition. Two-dimensional helium films and particularly
monolayers with a low two-dimensional *He density are ideal
objects for the experimental verification of the currently
fashionable theories of high-temperature superconductivity,
such as the theory of a marginal Fermi liquid proposed by
Varma et al. [12] or a somewhat similar theory of the
Luttinger Fermi liquid proposed by Anderson [13]. This
topic will be discussed again at the end of the review. At this
stage a brief review will be given of the history of the
experimental discovery and theoretical prediction of the
existence of two-dimensional solution. The first experiments
were carried out by Esel’son and Bereznyak [14] and by
Atkins and Narahara [15]. These experiments revealed a
nontrivial temperature dependence of the surface tension (in
fact, the surface free energy) of a weak solution of *He in “He.
The experiments were interpreted by Andreev [16] who
postulated the existence of surface impurity levels on the
free surface of superfluid “He. This idea was subsequently
confirmed by detailed experiments of Zinov’eva and
Boldarev [17] and of Edwards et al. [18], as well as by
variational calculations (cf. the review of Edwards and
Saam [19] and the literature cited there). The correct
interpretation of the experimental results yields the
following parameters representing the surface state:
e= —A-g, —I—(p| /2m*), where 4 = 2.8 K is the binding
energy of a *He quas1partlcle in the bulk (Andreev [16];
Bashkin and Meyerovich [1]); o = 2.2 K is the difference
between the binding energies of a 3He quasiparticle in the
bulk and on the surface; m* = 1.5m3is the hydrodynamic
effective mass governing the motion of 3He quasiparticles
along the surface. It should be pointed out that, according to
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the variational calculations of Lekner [20]and Saam [21], the
appearance of the Andreev levels is due to a combination of
the effects associated with the van der Waals interaction
between *He and the “He density profile (which varies when
we approach the free surface) and with the difference between
the energies of the zero-point motion of 3He and “He. Such
effects lead to the localisation of 3He atoms near the free
surface. These 3He atoms can nevertheless move freely along
the surface of “He, which is almost equipotential because the
hydrodynamic condition u4 = const is satisfied on this
surface. The wavefunction of the Andreev state is
¥ = Y()exp(ipyr); Y(z)xexp (—z/a), where a is the
radius of localisation along the normal to the surface.

The first experiments on thin “He films, of the same
kind as the experiments of Zinov’eva and Boldarev [17]
and of Edwards et al. [18], were carried out by Gasparini,
Bhattacharyya, and DiPirro [22]. Gasparini and others deter-
mined the contribution of the surface states of *He to the
specific heat of thin films. They also proposed the first
theoretical interpretation of the results [23]. Subsequently
several experimental papers were published by Hallock et al.
[24—26], who measured the magnetisation and the spin-—
lattice relaxation time of *He submonolayers on the surfaces
of thin “He films.

The theoretical interpretation of the experiments of
Hallock et al. proposed by Dalfovo and Stringari [27],
Pavloff and Treiner [28], Krotscheck, Saarela, and Epstein
[29] require the assumption that not one but two Andreev
levels exist on the surface of a thin “He film. The energy of the
first Andreev level, E, = —A4-¢, + (pﬁ/Zml), is practically
identical with the energy of the Andreev level (&) = &) on a
bulk surface, differing only in respect of the effective mass
m; = 1.35m3. The energy of the second Andreev level is still
lower than the energy of 3He in the bulk and is given by the
expression E, = —A4 — &, + (pjj/2m,), where in the limit of
zero concentration of 3He and not too thin films we have
m> = 1.6msz and & = 0.4 K; consequently, e&x—e; = 1.8 K.

The wavefunction of the first Andreev level is localised
mainly near the free surface and has a significant tail (~3 A)
above the surface. At the same time the wavefunction of the
second Andreev level penetrates partly into the film. Accord-
ing to the authors of these theoretical treatments, two
Andreev levels appear (instead of one) because of the com-
petition between the size effect [vanishing of the ¥Y-function
of 3He near the substrate and consequent increase in the
kinetic energy Exinx(V.¥)?x1/d? of 3He] and the
van der Waals attraction by the substrate (which is
proportional to 1/d? and tends to reduce the energy). In the
case of moderately thick filmsthe van der Waals attraction is
stronger than the size-effect repulsion and, therefore, the
energy of the second Andreev level is still lower than the
energy of *He in the bulk.

In the case of very thick films the van der Waals attrac-
tion of the substrate, proportional to 1/d3, may become
unimportant compared with the kinetic energy, and the
energy of the second Andreev level may prove higher than
the energy of *He in the bulk. In this case the second level
evidently vanishes by escaping into the bulk. At a fixed film
thickness, the van der Waals attraction of the substrate
depends on whether the substrate is ‘strong’ or ‘weak’. On a
weak substrate (Cs, Rb, K, Na, Li, Mg, H») it is found that
“He is in the liquid phase. On a strong substrate (Ag, Au, Cu,
Al) one or two solid *He layers form and “He becomes liquid
only in the third and following layers. The presence of one or

two solid layers reduces the van der Waals attraction of the
substrate and increases the kinetic energy, leading to a
possible disappearance of the second Andreev level at lower
thicknesses of the film.

I shall conclude this section by noting that the topic is not
yet fully understood. There is an alternative point of view
according to which the second Andreev level can exist not
only in thin films, but also in the bulk.

It isthusclear that in the case of not very thin and not very
thick films there are definitely two Andreev levels whose
energies differ by & —& = 1.8 K. Their existence is
manifested in the Hallock experiments by the presence of a
step in the dependence of the magnetisation on the surface
density of 3He. This step appears when the density of 3He is
equal to 0.85 of a monolayer. At lower densities the second
Andreev level is not important and we are dealing with a
purely two-dimensional one-level system whose spectrum
iSE=—-4—¢ + (p”2/2m]) and the wave function is ¥ =
Y(z)exp (ipyr). Another important result reported by
Hallock is an analysis of the temperature dependence of the
suscepti-bility. At low temperatures (7 < Tr) this
susceptibility depends weakly on temperature and for
surface densities from 0.03 to 0.3 of a monolayer it is well
described by an expression for a two-dimensional Fermi gas
with a weak repulsive interaction g between the particles:

1+1F

(18)

where F oc g7 and F o g are two-dimensional harmonics
of the Landau function representing the interaction between
quasiparticles; goc1/2(In prro) is a two-dimensional
coupling constant [30]; ro is the radius of action of the
potential.

At densities from 0.005 to 0.03 we have y < yo, which
supports the sign of the coupling constant corresponding to
attraction [this is also true of the coupling constant a(x)prox /3
in the case of three-dimensional solutions]. However, the
exact densities at which the coupling constant changes its
sign can be determined from measurements at lower tempera-
tures, since Tr ~ Trox is small and the transition from the
Fermi-gas behaviour of the susceptibility to the Curie law
occurs very early.

In conclusion, I must mention that there is also one other
purely two-dimensional system: 3He on the surface of grafoil
which has very similar properties at a low surface density of
3He (cf. experiments carried out by the Saunders group
[31, 32].) The rest of this discussion can be also applied to
such a system, subject only to small modifications.

6. Possibility of the superfluid transition
in the two-dimensional solutions

We shall now consider the possibility of the superfluid
transition in a two-dimensional *He submonolayer on the
surface of “He.

By analogy with the three-dimensional case, the total
interaction between two 3He particles on the surface is given
by the expression

V(r,z) = Vaie(r,2) + Vexen (1 2) (19)

where the exchange interaction Veeh(r, ) is governed by the
sum of the residual parts (not used to form an Andreev level)
of the deformation potential of the interaction between two
3He particles via the polarisation of “He and of the
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van der Waals attraction of the substrate. These residual
parts of the exchange interaction are related primarily to the
interaction of 3He particles with the curved surface of
superfluid “He in the field of surface waves of third sound.
The spectrum of third-sound waves is of the form
w? = (a/p)(#* + ¢*)gtanh (gd), where the first term in the
second parentheses describes the contribution of the
van der Waals potential of the substrate and the second
represents the local surface change in the density of “He. In
the case of thin films the contribution of the first term
predominates, i.e. the dynamic part of the van der Waals
potential of the substrate is more important than ‘surface
phonons’ (ripplons). Consequently, a reduction in the film
thickness changes the spectrum from the purely ripplon type
w? = (a/p)g®, where a is the surface tension, to an acoustic
spectrum with a linear dispersion law w? = (adx?/ p)q>,
where x is the capillary constant of the van der Waals
potential and d is the film thickness: gd < 1.

In the two-dimensional problem it is important, as
always, to determine the two-dimensional projection of the
three-dimensional potential V(r, z). In full analogy with the
two-dimensional projection of the Coulomb interaction, it is
given by the expression

V(iri—nr) = JJV(rl —r2,71 —22)

X |®(z1)|?|¥(z2)|* dz1 dz2 (20
where ¥(z)isthe wave function ofan Andreev level. The two-
dimensional projection of the total interaction can be
represented in the form

V(r) = Vair (r) + Vexen (r) (1)
and correspondingly in the momentum space
V(qy) = Vair(q)) + Vexen(q)) » (22)

where Vixen(g = 0)is due to the exchange of a virtual quan-
tum of third sound and, in the case of thin films, is given by
Vexen(q) = 0) = —m4c12“ (Kurihara [33], Monarkha and
Sokolov [34]), where

2 3 Vsub hy

2 _ 23
e FNIETAER (23)

cnr is the velocity of third sound, Vg, is the van der Waals
potential of the substrate, d and &4 are the thicknesses of the
solid and superfluid “He layers. (We recall that in the case of
well-wetted substrates such as Au, Ag, Cu, etc, the first *He
layer solidifies.)

It should be pointed out that, as in the three-dimensional
problem, the limiting frequency of surface waves wp, o m ¢,
is much higher than the Fermi energy er. Therefore, we are
again dealing with an antiadiabatic situation, when the whole
volume of the two-dimensional Fermi sphere (and not only
its Debye shell) is important in the problem of the superfluid
transition.

We shall now consider the direct part of the total
interaction. By analogy with the three-dimensional case, we
have

Vair (g = 0) = V1(g) = 0) + V2(g) = 0) .

where V) is determined by the hard-core repulsion between
two 3He particles at short distances, whereas V, is due to the
attractive interaction of two 3He particles at large distances.

24

As pointed out at the end of the preceding section, the
experiments of Hallock et al. on the dependence of the
magnetisation of a submonolayer on the surface density of
3He demonstrate that the total interaction of two 3He
particles on the surface of a thin film is attractive when the
3He concentration is x < 3% and repulsive when the con-
centration is higher. Therefore, the direct part of the total
interaction can be represented again in a model form shown
in Fig. 4, i.e.

Vi, r<n,
Vd‘r(r) o { Vo, n<r<nm,

where 1/rockr (x = 3%). If the submonolayer density is
such that k? < r2, we can try to use the Fermi-gas approach
again. It should be pointed out that the experiments of
Hallock et al. demonstrate that at 3He densities less than
0.3 of a monolayer we are indeed dealing with a weakly
interacting low-density two-dimensional Fermi gas.

(25)

7. Two-dimensional Fermi gas with attraction

A special feature of the two-dimensional case is that even if
the attraction is infinitesimally weak, we are dealing with the
coexistence of two phenomena: pairing of two particles in
vacuum in the coordinate space and the Cooper pairing of
two particles in matter in the momentum space in the
presence of a filled Fermi sphere. In the case of a purely
attractive potential the energy of a bound state in vacuum is

E 1 4n
= ——exp|——7—],
b mr? P m|Uo|

where Uy is the s-wave harmonic of the potential and ry is its
radius. In the case of the potential with a repulsive core and
an attractive tail (Fig. 4), we have for Vo > Vg

1 ( 4n >
——F €X —_—— | .
mr22 p m(V20 — V]O)

The temperature of the superfluid transition (Cooper
pairing in matter) is described by an expression standard in
the BCS theory:

1
Ty o & exp (— m) ,

where the two-dimensional gas parameter f is determined by
the real part of the scatterring amplitude and is given by the
following expression in the case of attraction:

(26)

Ey, =

@7

(28)

m|Uo|/2n
1 — (m|Uo|/4m) In(1/p}ig) + (m|Uo|/4m)in |’

Jo= Re[—

(29)
where Re stands for the real part. Substituting the expression
for fp into the formula for the critical temperature, we obtain
everywhere apart from a narrow region close to the resonance
[IEs] = 26 or 1 = (m|Ua|/4m) In(1/p2 r3)]

& 2n 1/2
exp | ———— | = (2¢r|E .
PFro p( m|U0|> (2er |

This formula was derived by Miyake [35] for two-
dimensional solutions and was rederived by Randeria,
Duan, and Shieh [36] and by Schmitt-Rink, Varma, and
Ruckenstein [37] in connection with a possible marginal
Fermi-liquid behaviour of high-temperature supercon-
ductors.

Ty o (30)
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[t is interesting to note that, from the formal point of
view, the expressions for the critical temperature in the three-
dimensional and two-dimensional cases differ only by the
preexponential factor e — &r/prro.

However, in reality the two-dimensional situation is
much more interesting. This is because in the case of a weak
interaction when (m|Uo|/21) In (1/prro) < 1 the bound-state
energy |Ep| is much less than &r and, consequently, 7o < &r,
i.e. we are dealing with ordinary Cooper pairs characterised
by a large coherence length. The chemical potential of a
superfluid system found by Miyake from the self-consistent
Leggett approach [38]is given by the expression

n= e — LBy 31
We recall that in the Leggett approach the chemical potential
is deduced from the condition of conservation of the total
number of particles:

2 2
E, —
_PE J_d kB (32)

"= 27 42 Ey

where E, = (&2 + 43)"/? and &, = (k?/2m) — p are, respect-
ively, the energies of the superfluid and normal states; 4 is
the superfluid gap related, as in the usual BCS theory, to the
critical temperature by 4o = (n/9)Tco (Iny = 0.57 is the
Euler constant). It is evident from Eqn (31) that if
|Ep| <€ er we have g — ¢r and pairing occurs on the Fermi
surface. In the opposite limiting case of a strong interaction,
when (m|Uo|/2m)In (1/prro) > 1, we have |Ey| > &7 and
er < Too < |Ep|. In this case the chemical potential is
n= —|Ep|/2 <0 and we have a situation with strongly
bound Cooper pairs (composite bosons) characterised by a
short coherence length [39]. In Bashkin’s terminology they
are called dimers and are helium analogues of bipolarons,
introduced into the theory of superconductivity by
Alexandrov and Ranninger [40, 41]. In fact, in this case, the
pairing process does not occur in the momentum space but in
the coordinate space. It should be pointed out that in the case
of dimers, as in the bipolaron model, there is not one but two
critical temperatures: the temperature 7,y of preconditioning
of local pairs and the temperature T,* o< n/m* o g of the
Bose condensation of such pairs. It should also be pointed
out that in the case of weakly bound pairs the Kosterlitz—
Thouless (K T) fluctuation corrections to the result obtained
above from the mean-field theory are small and proportional
to (T KT T BCS)/TBCS L TBCS/gr < 1 [42], but in the case
of dimers such corrections are very important and can play a
decisive role.

It should be stressed that in the mean-field theory the
transition from the BCS to the bipolaron regime is smooth in
the two-dimensional case not only with respect to the
chemical potential u, but also in the case of the total energy
of the system. In fact, the difference between the energies of
the normal and superfluid statesat 7 = 0is

EXS—E, A T3 [rlE)T
N EF EF &F
EPP —E
= —|B| = =", (33)

where N is the number of particles in the system.
We shall conclude this section with an estimate of the
temperature of the two-dimensional superfluid transition in

the attractive case: according to Bashkin, Kurihara, and
Miyake, we can expect T¢y of the order of 1 mK when the
surface density of 3He is of the order 0f 0.01 of a monolayer.

8. Two-dimensional Fermi gas with repulsion

When the 3He density exceeds 0.03 of a monolayer, the total
interaction between 3He particles changes sign and the s-
wave pairing becomes impossible. The possibility of the p-
wave pairing in two-dimensional solution depends by
analogy with the three-dimensional case on the sign of the
p-wave harmonic of the effective interaction. The effective
interaction obtained within the first two orders of
perturbation theory is

Verr (q) = fo +15 (q)

where ¢ = p + p’, II(g) is a two-dimensional polarisation
operator, and fo = 1/21n (prro) is the gas parameter for the
repulsive case.

In the coordinate space V,g(r) o f* cos (2kpr)/r* exhibits
oscillations much stronger (proportional to 1/7?) than in the
three-dimensional case. However, a two-dimensional Kohn
singularity induced by such oscillations in the momentum
space is of one-sided nature: Iing(q) x Re (g — 2[7]-‘)]/2 [43].
In the case of the Cooper problem we have |p| = |p'| =
pr and ¢ = 2pF2(l + cosf). Therefore, ¢ <2pr and
Re(q—ZpF)]/2 = 0. Therefore, a strong two-dimensional
Kohn singularity is ineffective in the problem of the Cooper
pairing and the two-dimensional Fermi gas with repulsion
remains in the normal state at least in the first two orders of
perturbation theory. Recently, Chubukov [44] showed that
inclusion of the vertex corrections to the expression for the
effective interaction restores the superfluid p-wave pairing in
two dimensions in the third order of perturbation theory
T o &g exp (—1/f3). An estimate of the superfluid transi-
tion temperature obtained by Chubukov is 10=* K for
densities ~0.3 of a monolayer corresponding to the limit of
validity of the Fermi-gas description.

It should be pointed out that allowance for nonquadratic
corrections to the spectrum of 3He quasiparticles, &=
(p*/2m)[1 — y(p*/p?)], results in restoration of the p-wave
pairing already in the second order of perturbation theory.
This yields T, o & exp (—1/3f), as demonstrated by
Baranov and Kagan [45]. However, the superfluid transition
temperature now depends exponentially on the small con-
stant representing the nonquadratic nature of the spectrum
and, therefore, it is very small.

(34

9. Superfluidity in polarised solutions

We shall now consider briefly the situation in strongly
polarised solutions.

It is well known that the singlet s-wave pairing in a
strongly polarised solution is suppressed by a paramagnetic
effect. This means that in magnetic fields obeying ugH > T
(s is the nuclear Bohr magneton) the direction of one of the
spins (antiparallel to the field) of a Cooper pair is reversed
and, therefore, the superfluid state is destroyed. The
influence of an external magnetic field (or of the polaris-
ation) on the triplet pairing temperature is less trivial.
Chubukov and Kagan [46] showed that the p-wave pairing
temperature of a three-dimensional polarised gas with
repulsion depends strongly and nonmonotonically on the
degree of polarisation a: it rises strongly at low and inter-
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mediate polarisations, passes through a maximum when the
polarisation is 48%, and falls on further increase in the
polarisation. A strongly nonmonotonic dependence of T,
on o is due to the competition between two -effects:
enhancement of a Kohn singularity when the polarisation is
increased and reduction in the number of spins which are
antiparallel to the field.

In the language of the diagrammatic technique these
effects are caused by the following circumstance: in the
polarised case, the effective interaction of two ‘up’ spins
(parallel to the field) in a Cooper channel occurs via a zero-
sound polarisation loop composed of a particle and a hole
with ‘down’ spins (Fig. 6). This polarisation loop again
contains a Kohn singularity, but it is now of the type

ng(q) = (g1 —2pr)) In (gy — 2pry) , (35)

where ¢, = p; —p{, qTQ = 2p§T(l —cos 0), 8 = pp’, and
prt and pg| are the radii of the Fermi spheres of the ‘up’ and
‘down’ spins, respectively. In a nonzero magnetic field we
have ppy # pr,. Therefore, a Kohn singularity (i.e. vanishing
of the difference g1 — 2pr|) occurs not at the angle 6 = =
between p and p’, but at the angle § = 6., which deviates
from m on increase in the degree of polarisation. In other
words, if Hing(6) < (1—0)*In (n—0) in the unpolarised case,
then in the presence of polarisation we have Iling(0)x
(6c.—0)In(0.—6). We can see that in the polarised case a
Kohn singularity is stronger because already the first
derivative (and not the second one, as in the absence of a
field) of IIing(0 ) diverges. Naturally, the enhancement of the
Kohn singularity increases the critical temperature. This
effect is counteracted by a reduction in the density of states
of the particles with ‘down’ spin, which reduces the absolute
magnitude of the zero-sound loop and, consequently, reduces
the critical temperature.

Figure 6. Effective interaction of two spins directed parallel to the field in
the polarised case.

The competition between these two effects gives rise to a
maximum in the dependence of T; on the degree of polaris-
ation o (Fig. 7). The maximal temperature corresponds to
a= 48%. At a pressure of 10 bar the maximum possible
concentration isx = 9.5% and the temperature at the maxi-
mum corresponds to 10~°—10~3 K, which is much higher
than Ty ~ 10=19—10~° K correspondingto a = 0. A quali-
tatively similar dependence of 7; on a with a maximum at
a = 32% was also predicted by van de Haar, Frossati, and
Bedell [3]. The temperature at the maximum predicted by
these authors for the same values of pressure and concentra-
tion is somewhat higher and amounts to 1075-10% K.
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Figure 7. Theoretical dependence of the critical temperature 7¢; on the
degree of polarisation o of a three-dimensional solution of *He in “He.

The hope for experimental creation of strongly polarised
solutions is based primarily on the elegant idea of Castaing
and Nozieres [47]. In their classical paper they proposed to
create a strong polarisation in a liquid solution by fast
melting of a solid solution. The idea is that a solid solution
(and pure crystalline 3He) does not have a kinetic energy of
the degeneracy of 3He atoms associated with the Pauli
principle. Therefore, the application of a magnetic field of
the order of the Curie temperature

ugH ~To~T~1mK and H~1T (36)

leads to an almost 100% polarisation ofthe solid solution. (It
should be pointed out that a significant polarisation can be
achieved in a liquid solution only by applying much stronger
and experimentally unattainable fields such that uygH ~ gr ~
0.1 K and H ~ 100 T.) Fast melting of a strongly polarised
(a ~90%) solid solution should, according to the estimates
of Castaing and Nozieres [47], produce a liquid solution with
o ~ 30% . Naturally, this polarisation is of a nonequilibrium
nature, but its lifetime is very long (t ~ 30 min) because of
the long relaxation time in the liquid phase.

Another very important idea for increasing the critical
temperature is the suggestion of Meyerovich [35, 48, 49],
according to which the maximum solubility of a strongly
polarised solution may be 3—4 times higher than the
maximum solubility in the absence of polarisation
(x ma* ~ 30%, instead of x 2 = 9.5%). A combination of
the ideas of Castaing, Nozieres, and Meyerovich may
produce an even greater increase (to 10~4—10—3 K) in the
superfluid transition temperature of a strongly polarised
solution.

10. Two-dimensional polarised solutions

The situation in two-dimensional polarised submonolayers
at *He densities from 0.03 to 0.3 of'a monolayer is even more
favourable from the point of view of the superfluid transition
temperature. This is because, as mentioned above, a strong
two-dimensional Kohn singularity of the type
Re (g — 2pF)]/2 is ineffective in the absence of a magnetic
field when the Cooper pairing occurs. In the presence of a
polarisation the situation is fundamentally different:
Ine(qg = p—p’) x Re(qp —2pFl)]/2 [46] and there is a
range of angles 0 between p and p’ [qu is again equal to
2p§T(l + co0s0)!/2], in which the radicand is positive.
Therefore, the application of a magnetic field suppresses the
one-sided nature of a two-dimensional Kohn singularity and
makes it effective in the pairing problem.
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Figure 8. Theoretical dependence of the critical temperature 7;; on the
degree of polarisation a of a two-dimensional solution of 3He in “He.

The competition between a Kohn singularity and a reduc-
tion in the number of spins antiparallel to the field again gives
rise, in the two-dimensional case, to a nonmonotonic
dependence of T;; on the degree of polarisation o, with a
very strong maximum at a = 60% (Fig. 8). It should be
pointed out that this maximum is very broad and extends
from 20% to 90% ofthe polarisation.

Estimates indicate that the critical temperature is now
fairly high in experimentally attainable fields of ~15 T. In
fact, the application of such a magnetic field leads, for example,
to a 10% polarisation of a two-dimensional solution with the
3He density n3 amounting to ~0.05 of a monolayer and with
er ~ 0.13 K. In this case the triplet pairing temperature is
easily experimentally attainable and amounts to 1 mK.

11. Experimental situation

It is pointed out in the Introduction that the search for
superfluidity in three-dimensional and two-dimensional
solutions has not yet resulted in experimental success. The
published experimental results demonstrating the absence of
superfluidity at certain pressures and concentrations impose
limits on the various theoretical estimates of the superfluid
transition temperature. They are forcing both theoreticians
and experimentalists to concentrate on those ranges of the
parameters where measurements have not yet been carried out.

The review of Ostgaard and Bashkin [7] contains the
experimental results obtained by the groups of Pobell [49]
and Ogawa [50]. They demonstrate the absence of the
superfluid transition in three-dimensional solutions right
down to 0.2 mK for 3He concentrations of 1%, 5%, and
6.4% . They show that the temperature of the singlet s-wave
pairing and the temperature of the triplet p-wave pairing (we
recall that the s-pairing is impossible at concentrations in
excess of 4% ) both most probably lie below 0.2 mK. The
estimates of Ostgaard and Bashkin on the subject of the
singlet pairing show that the most promising avenue is to seek
the singlet superfluidity at *He concentrations amounting to
~0.5% —1%. Van de Haar, Frossati, and Bedell [3] assume
that the optimal concentration lies in the interval 1.5% —
2.5% . The corresponding temperature T is of the order of
0.1 mK for the results of both groups. According to the
estimates of Frossati, Bedell, Meyerovich, and the author of
the present paper, the triplet superfluidity is most likely to
occur at the maximum concentration of 3He amounting
to x = 9.5%, which corresponds to 10 bar, under strong
polarisation conditions (in strong effective magnetic fields).
Aspointed out above, when the polarisation is very strong, it

may be possible to reach 3He concentrations in excess of
9.5% . The most realistic estimates once again predict a triplet
pairing temperature only of the order of 0.1 mK or lower.
Therefore, we obviously can expect that both the singlet and
the polarisation-enhanced triplet pairing temperatures have
values of the order of 0.1 mK.

It seems that the situation in two-dimensional solutions is
more favourable from the experimental point of view. The
most important experimental results imposing limits on the
theoretical estimates are those reported by Pobell and
Shirama [51]. They tried to observe superfluidity in a 3He
submonolayer on the surface of a very thin *He film. Their
measurement method involved determination of the viscous
penetration depth with the aid of torsional oscillations. The
scheme of their experiment is shown in Fig. 9. Pobell and
Shirama went down to 0.85 mK and did not observe the
superfluid transition in the range of surface concentrations
from 0.1 to 1 monolayers. Their experiment suggests that
the superfluidity of two-dimensional solutions should be
searched either at lower 3He densities (n3 < 0.03 of a mono-
layer, when the total interaction corresponds to attraction) or
at approximately the same densities n3 ~ 0.05-0.1 of a
monolayer but in a strong magnetic fields of ~15-30 T. In
both cases we can expect the singlet superfluidity in the
absence of a magnetic field and the field-enhanced triplet
superfluidity at temperatures ~1 mK. On the one hand,
these temperatures are an order of magnitude higher than
those in the case of three-dimensional solutions and, on the
other, they are attainable from the experimental point of
view.

2 < XX
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Figure 9. Basic layout of the experiments of Pobell and Shirama in which
the authors attempted to detect superfluidity in two-dimensional
solutions: (1) 3He submonolayers; (2) superfluid *He (one monolayer);
(3) solid *He films ~3 A thick; (4) silver substrate.

12. Two-dimensional monolayers as a bridge
between superfluidity and superconductivity

In conclusion of this review it is necessary to stress that two-
dimensional 3He submonolayers on the surface of thin *He
films and on grafoil are ideal two-dimensional systems for
experimental checking of many currently popular theories of
the normal and superconducting state of quasi-two-dimen-
sional high-temperature superconductors. Many leading
theoreticians attacking the problem of high-temperature
superconductivity—including Anderson, Varma, and
others—have stressed that the anomalously high values of
T, of high-temperature superconducting systems are closely
related to their unusual properties in the normal state. Such
unusual normal properties include, as pointed out in
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Section 5, primarily the smallness of the jump in the distri-
bution function of the interacting particles on the Fermi
surface and the linear temperature dependence of the
resistivity well below the Debye temperature.

The linear temperature dependence of the resistivity was
explained some years ago by Anderson, who postulated the
existence of a Luttinger Fermi liquid with zero jump in the
distribution function on the Fermi surface [13]. A similar
idea ofa marginal Fermiliquid (which is an important special
case of the Luttinger liquid) was put forward by
Varma et al. [12].

Anderson later put forward an even less trivial hypothesis
that not only a strongly interacting high-density two-dimen-
sional Fermi system but even a weakly interacting low-
density Fermi gas, is described not by the Fermi-liquid
theory of Landau with a finite jump of the distribution
function, but by the Luttinger Fermi-liquid theory [52]. In
other words, Anderson insisted that a Fermi gas in the
classical meaning of Galitskii [53] and Bloom [54] does not
exist in two dimen-sions. Many theoreticians took part in the
discussion following these suggestions of Anderson. The
majority of them (Engelbrecht and Randeria [55];
Fukuyama et al. [56]; Fabrizio, Tossatti, and Parola [57];
Prokof’ev and Stamp [S8]; Baranov, Kagan, and Mar’enko
[59)) support the Fermi-gas idea and demonstrate that it is
internally self-consistent in two dimensions if the ladder and
parquet approximations are used in the diagrammatic
technique. Anderson is still insisting that his view is correct
and postulates that such diagrammatic technique is invalid in
two dimensions (even at the level of summation of an infinite
series of parquet diagrams). In other words, Anderson rejects
the existence of any perturbation theory in two dimensions.
One of the most serious arguments put forward by Anderson
against perturbation theory is a strong singularity he proposes
for the two-dimensional Landau function describing the
interaction between quasi-particles f(p, p’). In accordance
with Anderson’s qualitative ideas, in the case of almost
parallel momenta p and p’ and opposite spins of the colliding
particles, the singular part of the function f(p, p’) is
described by the following expression, valid in the case of
small deviations from the Fermi surface:

1
d !

Fanspop') (37)
The existence of such a strong singularity leads to a logarith-
mic divergence of all Landau harmonics foy, fi, ... and,
therefore, to complete collapse of a Fermi liquid. Calcula-
tions of f(p, p’) in the second order of perturbation theory,
first carried out by Prokof’ev and independently by Baranov
and Kagan, however, predict a much weaker singularity of
the f function and this singularity is of the (p —p’)*]/2 type.
Moreover, they predict this singularity only for a narrow
angular interval @ oc|p—p’|*>%. Therefore, it results only in
nontrivial temperature corrections to the f function, and not
in the collapse of the Fermi-liquid scenario as a whole.

In this connection it would be very interesting to extend to
low temperatures the experiments ofthe Hallock and Saunders
groups, involving measurements of the susceptibility of 3He
submonolayers on the surfaces of thin “He films and on the
surface of grafoil. The susceptibility of a degenerate two-
dimensional Fermi gas,

1+3F°

L=0T (38)

determined in these experiments carries, at temperatures
much lower than the Curie temperature, information on the
concentration and temperature dependences of the Landau
harmonics Fy* and F;*. Information on these harmonics
obtained from such experiments would help in obtaining an
unambiguous answer to the following question: does a two-
dimensional Fermi gas exist and if it exists, what nontrivial
corrections missing in the three-dimensional case should be
applied in the two-dimensional situation?

The author wishes to express his gratitude to
A F Andreev, E P Bashkin, M A Baranov, P Wolfle,
H Godfrin, K N Zinov’eva, Yu Kagan, L P Pitaevskii,
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numerous discussions. The author is also deeply indebted to
A Semenov for his help in preparation of the manuscript and
many critical comments.
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