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Abstract. N e w exper imenta l a p p r o a c h e s and theore t ica l 
results concerning the search for superfluidity in th ree- and 
t w o - d i m e n s i o n a l so lu t ions of 3 H e in 4 H e are reviewed. 
Es t imates for the s-wave and p-wave pai r ing t empera tu res 
are given for bo th unpolar i sed and polar ised cases. The role 
of monolayer s and submonolayers of 3 H e as an ideal-puri ty 
two-d imens iona l system for exper imenta l verif icat ion of 
v a r i o u s c u r r e n t t h e o r i e s of h i g h - t e m p e r a t u r e s u p e r 
conduct ivi ty is emphasised. 

1. Introduction 
One of the mos t interest ing and still experimental ly u n r e 
solved p rob lems in low- tempera ture physics is the search for 
superfluidity in three-dimensional and par t icular ly in t w o -
dimensional (thin films, submonolayers ) solut ions of 3 H e in 
4 H e . In t he p resen t review I shall c o n c e n t r a t e on n e w 
exper imental approaches and theoret ical results tha t have 
been publ ished in the last few years . I shall stress par t icular ly 
the role of thin 3 H e films and submonolayers as ideal t w o -
dimensional systems for exper imental checking of var ious 
theories which are ac tual in connect ion with the p rob lem of 
h igh- tempera ture superconduct ivi ty . 

It is k n o w n tha t a solut ion of 3 H e in 4 H e is the simplest 
low-density F e r m i system of 3 H e a t o m s in an inert superfluid 
4 H e condensate , which makes a solution of this kind an ideal 
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object for the development and testing of m e t h o d s belonging 
to the realm of Fermi- l iquid theory. These m e t h o d s have 
been used successfully in describing the n o r m a l proper t ies of 
solu-t ions ( the rmodynamic characterist ics, t r anspor t 
coefficients) [1] and in predict ion of possible superfluidity of 
the 3 H e subsystem in such solut ions [ 2 - 4 ] . The first classical 
theory of superfluidity of three-dimensional solut ions was 
p roposed by Bardeen, Baym, and Pines (BBP) in 1967 [2]: 
they established an elegant ana logy between pai r ing of two 
3 H e a toms in a solution via the polar isa t ion of the 4 H e b a c k 
g round (exchange of vir tual p h o n o n s ) and the e l e c t r o n -
p h o n o n interact ion in the Bardeen, Cooper , and Schrieffer 
(BCS) theory of superconduct ivi ty (Fig. 1). In accordance 
with the ideas of Bardeen, Baym, and Pines, the to ta l 
interact ion between two 3 H e part icles in a solut ion consists 
of two componen t s , direct and exchange: 

V(r) = VdlY (r) + y e x c h (r) . (1) 

P p' 

Figure 1. Interaction of two 3 H e atoms via the polarisation of the super-
fluid 4 H e background. 
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The direct interact ion includes the cont r ibu t ions of ha rd-core 
repulsion at short distances (V\) and of the van der Waa l s 
a t t rac t ion (V 2 ) at large distances: 

Vdir(r) = Vl(r) + V2(r) . (2) 

The exchange interact ion V^x ch(r) represents the interact ion of 
two 3 H e a toms via a local change in the density of 4 H e . This is 
an ana logue of the deformat ion poten t ia l in the BCS theory. 

The cor responding expression in the m o m e n t u m space is 

V(q) = V d l r (q) + V e x c h (q) , (3) 

where Vexc^(q) is due to the exchange of a vir tual p h o n o n in 
the three-dimensional case and the exchange of a q u a n t u m of 
third sound in the two-dimens iona l s i tuat ion. 

At low tempera tu res and concent ra t ions the subsystem of 
3 H e a t o m s is a low-density F e r m i liquid, i.e. it is effectively a 
F ermi gas. Therefore, the superfluid t ransi t ion in this liquid is 
described by the BCS theory and it depends decisively on the 
ampl i tude and sign of the to ta l interact ion V(q) on the F e r m i 
surface. M o r e r igorously, we have q = p w h e r e p andp' 
are the m o m e n t a of the incoming and outgoing particles in 
the Cooper channel , | /? |= \p'\ = pv, and q2 = 
2/?p(l — cos6) ; 6 = pp' and the only quan t i ty which mus t 
be k n o w n when dealing with the Cooper p rob lem is the value 
of the s-wave h a r m o n i c of the poten t ia l V(q) on the F e r m i 
surface: 

Vi= J 1 V(</(cos0)) 
d c o s # 

(4) 

2. Three-dimensional case 
The deformat ion poten t ia l has the following form in the 
m o m e n t u m space: 

(5) 
co

xy here gq is the coupl ing constant and coq is the frequency of 
the p h o n o n spectrum of 4 H e . If \sp+ q — sp\<CQq<CQv, we 
find tha t Vexch(q) = - gq/% < 0. 

In complete analogy with the BCS theory we have g2 oc q, 
coq = sq, where s is the velocity of sound in 4 H e , so tha t the 
final result is Vexc^(q -> 0) = const. In the case of solut ions 
this cons tant is —(1 + 0L)2mAS2lnA < 0, where a = 0.28 is the 
relative increase in the vo lume of the solut ion owing to the 
replacement of a 4 H e a tom with a 3 H e a tom; UA and YYIA are 
the density and mass , respectively, of 4 H e . It should be 
no ted tha t in the low-density case we have co D > £ F and the 
whole vo lume of the F e r m i sphere (and no t only the Debye 
shell) par t ic ipates , as in the s t andard BCS theory, in the 
superconduct ing pair ing. 

The direct interact ion of 3 H e a t o m s in the m o m e n t u m 
space is found from the t h e r m o d y n a m i c identi ty describing 
the derivative of the chemical po ten t ia l with respect to the 
density and has the following form: 

V d i r ( . = 0 ) = ^ l = ( l + 2 a ) ^ > 0 (6) 

w h e r e /n3^ a n d n^i r ep resen t , respect ively , t he chemica l 
po ten t ia l of 3 H e a t o m s with ' u p ' spin and the density of 
3 H e a toms with ' d o w n ' spin. The result is 

V(q = 0) = V / = o Vexch(q 
2 

0) + Vdir(q = 0) 

= - a 2 — — < 0 
TlA 

(7) 

W e can therefore conclude tha t at very low 3 H e 
concent ra t ions (when p F -> 0 and, consequently, q -> 0) the 
to ta l interact ion is a t t ract ive and we can expect the 
spherically symmetr ic singlet s-wave pa i r ing which is 
s t andard in the BCS theory. 

However , spin diffusion exper iments show tha t the 
si tuat ion is far from trivial (see Ref. [3] and the pape r s cited 
there) . In these experiments the dependence of VT2 (V is the 
spin diffusion coefficient and T is the t empera tu re ) on the 
3 H e concent ra t ion is determined. The exper imental curves 
are strongly n o n m o n o t o n i c and exhibit a m a x i m u m at a 
certain concent ra t ion xo approximate ly equal to 4 % (Fig. 2). 
They are described approximate ly by the expression 

VP1 

. 2/3 

. 2 y / = 0 y / = 1 + l i y / 
2 

1=1 

(8) 

A theoret ical analysis of these exper imental curves shows 
tha t the absolute value of the s-wave h a r m o n i c of the to ta l 
p o t e n t i a l V/=o dec rea se s w i th an inc rease in t h e c o n 
c e n t r a t i o n x , t h e n v a n i s h e s at x = xo, a n d at h ighe r 
concent ra t ions becomes repulsive. On the other hand , for 
x > xo the p-wave h a r m o n i c of the to ta l po ten t ia l V/=o is 
significant and at t ract ive (a l though smaller t h a n V / = 0 at 
x = 0) . T h e s e c i r c u m s t a n c e s lead to t w o p o s s i b l e 
approaches to the superfluidity in solut ions. 

x 0 x 
Figure 2. Approximate experimental dependence of the product VT2, 
representing the spin diffusion in a solution, on the concentration x of 
3 H e . 

In the first app roach it is assumed tha t the to ta l in terac
t ion of two 3 H e a toms described by V(q) exhibits a significant 
m o m e n t u m dependence and, moreover , its sign is reversed at 
the values of the vector q of the order of the F e r m i 
m o m e n t u m when the concent ra t ion is xo, i.e. when it is 
&F(-*O). This hypothes is leads to the mode l potent ia l of the 
BBP theory: 

V(q) = V(q = 0) cos ' k¥(x0) (9) 

The BBP mode l po ten t ia l was improved in 1989 by van de 
H a a r , Frossa t i , and Bedell [3]. They in t roduced the con
cent ra t ion dependence of the ampl i tude of the po ten t i a l 
V(q= 0): 

^2 
V(q = 0) = -

THAS 

UA 
\+y- (10) 

where x m a x is the solubility limit of 3 H e at a given pressure P 
and y(P) is a fitting pa ramete r . In b o t h theories the s-wave 
h a r m o n i c of the to ta l interact ion is max ima l and at t ract ive at 
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low concent ra t ions and then it begins to fall, changing sign to 
become a repulsive one at concent ra t ions cor responding to 
&F ~ ks. At higher concent ra t ions the p-wave h a r m o n i c of 
V(q) becomes at t ract ive. Therefore, van de H a a r , Frossa t i , 
and Bedell predict singlet s-wave pai r ing in a solution at low 
concent ra t ions and triplet p -wave pai r ing at high concent ra 
t ions. It should be poin ted out tha t two fitting pa rame te r s 
ks = kS(P) and y(P), deduced from the experiments on spin 
diffusion and magnetos t r ic t ion , are used in the improved 
mode l po ten t ia l of van de H a a r , Frossa t i , and Bedell. 

The second approach , adop ted by the au thor of the p r e 
sent review and by others [1, 4, 5], does no t rely on any mode l 
potent ia l . In this app roach the only microscopic pa ramete r of 
the system is the s-wave scattering length ao = (m/4n)Vi= o, 
which is independent of the pressure and concent ra t ion . It is 
assumed tha t its sign is reversed at a concent ra t ion corres
p o n d i n g to the m a x i m u m on the VT2 curve (Fig. 3). 

Figure 4. Model representation of the direct interaction of two particles in 
a solution as a function of the distance r between them. 

> o , (13) 

Figure 3. Qualitative dependence of the scattering length in a solution on 
the concentration of 3 H e . At x = 100% the value of a(x) tends to the 
scattering length of pure 3 H e and is approximately equal to 2/kFo at zero 
pressure (here, kFo is the Fermi momentum of pure 3 He ) . 

It should be poin ted out tha t the higher ha rmonics (V/=i , 
V/=2, • • •) appear in the second order bu t no t because of the 
m o m e n t u m dependence of the to ta l interact ion V(q): they 
originate from the scattering length ao because of the effective 
interact ion of two 3 H e part icles via the Fe rmion ic b a c k 
g round of their own 3 H e subsystem. 

The relat ionship between these two approaches is 
approximate ly the following. Let us assume, for the sake of 
simplicity, tha t the direct interact ion of two 3 H e particles in a 
solution is described by 

VdlY (r) 
- v 2 , r\ < r < r2 

( i i ) 

where the first te rm is responsible for the ha rd-core repulsion 
at sho r t d i s t ance s a n d t h e second t e r m is d u e to t h e 
van der Waa l s a t t rac t ion at long distances (Fig. 4). 

At low 3 H e concent ra t ions in a solution, i.e. in the case 
when k?r\ <^ k?r2 <̂  1, the s-wave h a r m o n i c of the direct 
interact ion is V^jjr0 = V / = 0 — V2

l=0. However , at higher 
concent ra t ions when kFr2 ^ 1, bu t with kFn still much less 
t han uni ty, the van der Waa l s a t t rac t ion becomes ineffective 
and we have = V / = 0 . Then , if 

1=0 Vj=° • Vl=0 < 0 
vexch ^ U ' 

(12) 

we have a low-density F e r m i gas with the gas pa ramete r 
k?n <̂  1 and with a scattering length which changes its sign 
at &F ~ 1/^2. Na tu ra l ly , this app roach ignores the p -wave 
h a r m o n i c of the van der W a a l s in te rac t ion , which need 
no t be small in the t ransi t ion region k?r2 ~ 1. It should be 
po in ted out tha t at high concent ra t ions when k¥r2 1 we 
find tha t V2

l=l is small and of the same order as V2

l=0. In this 
review the second (Fermi-gas) app roach to the p rob lem of 
superfluidity in solut ions will be mainly used. 

3. Three-dimensional Fermi gas with attraction 
The expression for the t empera tu re of the superfluid t rans i 
t ion in a F e r m i gas with a t t rac t ion was first ob ta ined by 
G o r ' k o v and M e l i k - B a r k h u d a r o v in 1961 [6], soon after 
creat ion of the BCS theory. Bashkin and Meyerovich [1] 
used this expression to describe the superfluidity of solut ions 
at very low concent ra t ions . F o r the concent ra t ions in the 
r ange x < xo and an a t t rac t ive s-wave scat ter ing length 
ao < 0 the expression for this t empera tu re is 

' c0 0 . l £ F O x 2 / 3 exp 
2\a0\k¥0x1/3 

(14) 

bu t 

where £FO and &FO are the F e r m i energy and m o m e n t u m of 
pu re 3 H e . It is wor th no t ing tha t the preexponent ia l factor in 
this expression is p ropo r t i ona l to £F and no t COD, as in the case 
of the p h o n o n model . 

Accord ing to the est imates of 0 s t g a a r d and Bashkin [7], 
the m a x i m u m value of rc 0 is r c 0 ( l % ) ~ 1 0 - 4 K. Frossa t i 
and his colleagues [3] p roposed a lower critical t empera tu re 
m a x r c 0 = Tco (2%) ~ 4 x 1 0 - 6 - 1 0 - 5 K. They obta ined 
the larger value of Tco of the order of 1 0 ~ 5 K by deducing 
the fitting pa rame te r s from the magnetos t r ic t ion experi
ments , and 4 x 10 ~6 from the spin diffusion experiments . 
At a given concent ra t ion x the gas pa rame te r of the theory is 
aokF o x 1 / 3 and it depends weakly on the gas pressure. 

4. Three-dimensional Fermi gas with repulsion 
At h igher c o n c e n t r a t i o n s (x > xo) t he sca t te r ing length 
c h a n g e s i ts s ign, ao > 0, a n d s -wave p a i r i n g b e c o m e s 
impossible. Nevertheless , even in this case the subsystem of 
3 H e a t o m s in a solution m a y become a superfluid, bu t this is 
n o w due to an instabili ty with respect to the triplet p -wave 
pair ing. The mechanism of realisat ion of the triplet pa i r ing in 
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the F e r m i gas with a purely repulsive interact ion was first 
considered by F a y and Layzer [8] and K a g a n and C h u b u k o v 
[9]. This mechanism is related to the presence of a K o h n 
singulari ty [10] (or of the Fr iedel oscil lat ions [11]) in the 
effective interact ion of F e r m i part icles via the polar isa t ion 
of t h e F e r m i o n i c b a c k g r o u n d . M o r e specif ical ly , t h i s 
effective interact ion is described by the following expression 
if we use the first two orders of pe r tu rba t ion theory with 
respect to the gas pa ramete r : 

Veff(tf) = OQPF + (a0p¥)2n(q) (15) 

where q = p + and p and p' are the m o m e n t a of the 
incoming and outgoing part icles in the Cooper channel , and 

n[q) •0(sp) - @{ep+q) d3/> 
sp ~ sp+q (2TC)3 

(16) 

is the s tandard polar isa t ion opera tor which is responsible for 
charge screening in the case of an electron gas in a meta l . It 
should be po in ted out tha t q = p + bu t no t p-p'. This 
demons t ra tes tha t in reality the second order of pe r tu rba t ion 
theory includes cont r ibu t ions not only from a p a r t i c l e - h o l e 
loop d iagram, bu t from all the other d iagrams (there are three 
of these) tha t are irreducible in the Cooper channel (Fig. 5). 
In the case of a shor t - range poten t ia l the first three d iagrams 
in Fig. 5 cancel each other and only the fourth exchange 
d iagram survives: its magn i tude is the same as tha t of the 
polar isa t ion opera tor if we replace p-p' with p + p'. 

Figure 5. Diagrams of the second-order terms of the gas parameter ciop?, 
which contribute to the effective interaction. 

The polar isa t ion opera tor II(q) is described by the s tan
dard L indhard function and contains not only a regular par t , 
bu t also a singular par t of the t y p e ( q - 2 p F ) \ n \ q - 2 p F | . In the 
coordina te space the singular par t of II(q) leads to the Friedel 
oscillations in the effective interact ion Veff (r) oc cos (2k?r)/r3. 

Therefore, the purely repulsive shor t - range poten t ia l 
between two part icles in vacuum gives rise to an effective 
interact ion in mat te r and this interact ion is characterised by 
compet i t ion between a t t rac t ion and repulsion. A r igorous 
calculat ion shows tha t for all the ha rmon ics of the effective 
poten t ia l (except the s-wave ha rmonic ) the a t t rac t ion wins in 
this compet i t ion and the p-wave ha rmon ic is the mos t 
at t ract ive. Consequent ly , a three-dimensional F e r m i gas 
with repulsion is uns tab le with respect to the superfluid 
t rans i t ion with the triplet p -wave pa i r ing below the critical 
t empera tu re 

5TZ2 

TC\ oc £ F O * 2 ^ 3 exp 
~4(2\n2-l)a2p2

0x2/3 
(17) 

w h e r e m a x TC\ = 
solubil i ty of 3 H e 

Tci (P = 
is 9 .5%) 

10 b a r , 
~ i o - 1 0 

w h e n t h e m a x i m u m 
- I O " 9 K . T h e tr iplet 

p a i r i n g t e m p e r a t u r e of t h i s o r d e r of m a g n i t u d e w a s 
predicted also by Bardeen, Baym, and Pines [2]. 

F rossa t i and others give a m o r e optimist ic est imate for 
the triplet pa i r ing case. At the m a x i m u m concent ra t ion 
x = 9.5% the value of TCL lies between 1 0 ~ 6 and 1 0 ~ 4 K ; 
the lower t empera ture (10 ~ 6 K ) is obta ined when the fitting 
pa ramete r s are deduced from t ranspor t experiments and the 
higher t empera tu re follows from magnetos t r ic t ion experi
ments . 

5. Two-dimensional case 
A solution of 3 H e in 4 H e is also very interest ing because it 
can be m a d e purely two-dimensional . In superconduct ing 
electron systems a film is regarded as two-dimens iona l if 
its t h i ckness d is m u c h less t h a n t h e cohe rence length 
£o ~ 1000 A. In 3 H e films on grafoil (exfoliated graphi te) 
a n d in m o n o l a y e r s a n d s u b m o n o l a y e r s of 3 H e in t h e 
solut ions the rad ius of localisation of 3 H e a t o m s in the thi rd 
dimension (which is the film thickness) is indeed of the order 
of the distance between a toms . Therefore, by analogy with 
in versed layers in hetero s tructures, we are also dealing here 
with a purely two-dimens iona l system and, moreover , our 
system is free of impuri t ies . In this sense a two-dimens iona l 
solut ion of 3 H e in 4 H e can be regarded as a br idge between 
super f lu id i ty a n d s u p e r c o n d u c t i v i t y , p a r t i c u l a r l y h i g h -
t empera tu re superconduct ivi ty . In fact, the major i ty of the 
current theories of h igh- tempera ture superconduct ivi ty rely 
on two-dimens iona l or quas i - two-dimensional behav iour to 
a c c o u n t for t he u n u s u a l n o r m a l p r o p e r t i e s (resist ivi ty, 
susceptibility, small j u m p s in the dis t r ibut ion function on 
the F e r m i surface, etc.) of these mater ia ls , as well as to 
account for the high t empera tu re of their superconduct ing 
t ransi t ion. Two-d imens iona l hel ium films and par t icular ly 
monolayer s with a low two-dimens iona l 3 H e density are ideal 
objects for the exper imental verification of the current ly 
fashionable theories of h igh- tempera ture superconduct ivi ty , 
such as the theory of a marg ina l F e r m i liquid p roposed by 
V a r m a et al . [12] or a s o m e w h a t s imilar t h e o r y of t h e 
Lut t inger F e r m i liquid p roposed by A n d e r s o n [13]. This 
topic will be discussed again at the end of the review. At this 
s tage a br ief review will be given of the h i s to ry of the 
exper imenta l discovery and theore t ica l predic t ion of the 
existence of two-dimens iona l solution. The first experiments 
were carried out by EsePson and Bereznyak [14] and by 
Atk ins and N a r a h a r a [15]. These exper iments revealed a 
nontr iv ia l t empera tu re dependence of the surface tension (in 
fact, the surface free energy) of a weak solution of 3 H e in 4 H e . 
T h e exper imen t s were in te rp re ted by A n d r e e v [16] w h o 
pos tu la ted the existence of surface impur i ty levels on the 
free surface of superfluid 4 H e . This idea was subsequent ly 
c o n f i r m e d b y de t a i l ed e x p e r i m e n t s o f Z i n o v ' e v a a n d 
B o l d a r e v [17] a n d of E d w a r d s et al. [18], as well as b y 
va r i a t i ona l ca lcu la t ions (cf. t he review of E d w a r d s and 
S a a m [19] a n d t h e l i t e r a t u r e ci ted t h e r e ) . T h e co r r ec t 
i n t e r p r e t a t i o n o f t h e e x p e r i m e n t a l r e s u l t s y ie lds t h e 
fo l lowing p a r a m e t e r s r e p r e s e n t i n g t h e su r face s t a t e : 
8 = —A-s0 +(p2/2m*), where A = 2.8 K is the b ind ing 
energy of a 3 H e quasipar t ic le in the bulk (Andreev [16]; 
Bashkin and Meyerovich [1]); £ 0 = 2.2 K is the difference 
between the b inding energies of a 3 H e quasipart ic le in the 
bulk and on the surface; m* = 1.5m3 is the hyd rodynamic 
effective mass governing the mot ion of 3 H e quasipart icles 
a long the surface. It should be po in ted out that , according to 



Fermi-gas approach to the problem of superfluidity in three- and two-dimensional solutions of 3 H e in 4 H e 73 

the var ia t ional calculat ions of Lekner [20] and Saam [21 ], the 
appearance of the Andreev levels is due to a combina t ion of 
the effects associated with the van der W a a l s in teract ion 
between 3 H e and the 4 H e density profile (which varies when 
we app roach the free surface) and with the difference between 
the energies of the zero-point mot ion of 3 H e and 4 H e . Such 
effects lead to the localisation of 3 H e a t o m s near the free 
surface. These 3 H e a t o m s can nevertheless move freely a long 
the surface of 4 H e , which is a lmost equipotent ia l because the 
h y d r o d y n a m i c cond i t ion \ia = const is satisfied on th is 
su r face . T h e w a v e f u n c t i o n of t h e A n d r e e v s t a t e is 
W= W(z) exp (ip\\r); W(z) oc exp ( — z/a), w h e r e a is t h e 
rad ius of localisation a long the n o r m a l to the surface. 

The first experiments on thin 4 H e films, of the same 
kind as the experiments of Zinov 'eva and Boldarev [17] 
and of E d w a r d s et al. [18], were carried out by Gaspar in i , 
Bhat tacharyya, and DiPirro [22]. Gaspar in i and others deter
mined the contr ibut ion of the surface states of 3 H e to the 
specific heat of thin films. They also proposed the first 
theoretical interpretat ion of the results [23]. Subsequently 
several experimental papers were published by Hal lock et al. 
[24 -26] , who measured the magnet isat ion and the s p i n -
lattice relaxation t ime of 3 H e submonolayers on the surfaces 
of thin 4 H e films. 

The theoret ical in terpre ta t ion of the experiments of 
Hal lock et al. p roposed by Dalfovo and Str ingari [27], 
Pavloff and Treiner [28], Kro tscheck , Saarela, and Epstein 
[29] require the assumpt ion tha t not one bu t two Andreev 
levels exist on the surface of a thin 4 H e film. The energy of the 
first Andreev level, Ex= — A -sl + ( / ? | 2 / 2m 1 ) , is practically 
identical with the energy of the Andreev level (s\ = 8o) on a 
bulk surface, differing only in respect of the effective mass 
mi = 1.35m3. The energy of the second Andreev level is still 
lower t han the energy of 3 H e in the bulk and is given by the 
expression E2 = —A — s2 + ( p | / 2 m 2 ) , where in the limit of 
zero concent ra t ion of 3 H e a n a not too thin films we have 
ni2 = 1.6m3 and 82 = 0.4 K; consequently, 82 — £1 = 1.8 K. 

The wavefunct ion of the first Andreev level is localised 
mainly near the free surface and has a significant tail ( ~ 3 A) 
above the surface. At the same t ime the wavefunct ion of the 
second Andreev level penet ra tes par t ly into the film. Accord 
ing to the au tho r s of these theoret ical t rea tments , two 
Andreev levels appear (instead of one) because of the com
peti t ion between the size effect [vanishing of the ^ - func t ion 
of 3 H e near the subst ra te and consequent increase in the 
kinetic energy E^m oc (WZW)2 oc lid2 of 3 H e ] and the 
van der Waa l s a t t rac t ion by the subst ra te (which is 
p r o p o r t i o n a l to lid3 and tends to reduce the energy). In the 
case of modera te ly thick films the van der Waa l s a t t rac t ion is 
s tronger than the size-effect repulsion and, therefore, the 
energy of the second Andreev level is still lower t han the 
energy of 3 H e in the bulk. 

In the case of very thick films the van der Waa l s a t t r ac 
t ion of the substrate , p ropo r t i ona l to lid3, m a y become 
u n i m p o r t a n t compared with the kinetic energy, and the 
energy of the second Andreev level m a y p rove higher t han 
the energy of 3 H e in the bulk. In this case the second level 
evidently vanishes by escaping into the bulk. At a fixed film 
thickness, the van der Waals at t ract ion of the substrate 
depends on whether the substrate is ' s t rong ' or 'weak ' . On a 
weak substrate (Cs, R b , K, N a , Li, M g , H 2 ) it is found tha t 
4 H e is in the liquid phase . On a s t rong substrate (Ag, Au, Cu, 
Al) one or two solid 4 H e layers form and 4 H e becomes liquid 
only in the third and following layers. The presence of one or 

two solid layers reduces the van der Waa l s a t t ract ion of the 
substra te and increases the kinetic energy, leading to a 
possible d isappearance of the second Andreev level at lower 
thicknesses of the film. 

I shall conclude this section by no t ing tha t the topic is no t 
yet fully unde r s tood . There is an al ternat ive poin t of view 
according to which the second Andreev level can exist not 
only in thin films, bu t also in the bulk. 

It is thus clear tha t in the case of not very thin and no t very 
thick films there are definitely two Andreev levels whose 
energies differ by 8 1 - 8 2 = 1.8 K. Their existence is 
manifested in the Hal lock experiments by the presence of a 
step in the dependence of the magnet i sa t ion on the surface 
density of 3 H e . This step appears when the density of 3 H e is 
equal to 0.85 of a monolayer . At lower densities the second 
Andreev level is no t impor t an t and we are dealing with a 
purely two-dimens iona l one-level system whose spectrum 
is E = —A — 8 1 + ( /? | 2 /2m 1 ) and the wave function is W = 
W(z) exp (ip\\r). Ano the r impor t an t result repor ted by 
Hal lock is an analysis of the t empera tu re dependence of the 
suscepti-bility. At low tempera tures (T <̂  T F ) this 
susceptibility depends weakly on t empera tu re and for 
surface densities from 0.03 to 0.3 of a monolayer it is well 
described by an expression for a two-dimens iona l F e r m i gas 
with a weak repulsive interact ion g between the particles: 

* = X o ^ ^ X o O + s ) , 08 ) 1 

where F* oc g2 and F 0

a oc g are two-dimens iona l ha rmon ics 
of the L a n d a u function represent ing the interact ion between 
q u a s i p a r t i c l e s ; g oc l / 2 ( l n p F r 0 ) is a t w o - d i m e n s i o n a l 
coupl ing cons tan t [30]; ro is the r ad ius of ac t ion of the 
potent ia l . 

At densities from 0.005 to 0.03 we have % < xo, which 
suppor t s the sign of the coupl ing constant cor responding to 
a t t ract ion [this is also t rue of the coupling constant a(x)pFoxl/3 

in the case of three-dimensional solutions]. However , the 
exact densities at which the coupling constant changes its 
sign can be determined from measurements at lower t empera 
tures, since TF ~ TFox is small and the t ransi t ion from the 
Fermi-gas behaviour of the susceptibility to the Curie law 
occurs very early. 

In conclusion, I must ment ion tha t there is also one other 
purely two-dimens iona l system: 3 H e on the surface of grafoil 
which has very similar proper t ies at a low surface density of 
3 H e (cf. exper iments carried out by the Saunders group 
[31, 32].) The rest of this discussion can be also applied to 
such a system, subject only to small modif icat ions. 

6. Possibility of the superfluid transition 
in the two-dimensional solutions 
W e shall n o w consider the possibi l i ty of the superfluid 
t ransi t ion in a two-dimens iona l 3 H e submonolayer on the 
surface of 4 H e . 

By analogy with the three-dimensional case, the to ta l 
interact ion between two 3 H e part icles on the surface is given 
by the expression 

V(r, z) = Vdir (r, z) + Vexch (r, z) , (19) 

where the exchange interact ion Vexch(f% z) is governed by the 
sum of the residual pa r t s (not used to form an Andreev level) 
of the deformat ion poten t ia l of the interact ion between two 
3 H e p a r t i c l e s via t h e p o l a r i s a t i o n of 4 H e a n d of t h e 
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van der Waa l s a t t rac t ion of the substra te . These residual 
pa r t s of the exchange interact ion are related pr imari ly to the 
in te rac t ion of 3 H e par t ic les wi th the curved surface of 
superfluid 4 H e in the field of surface waves of third sound. 
T h e s p e c t r u m of t h i r d - s o u n d w a v e s is o f t h e fo rm 
co2 = (a/p)(%2 + g 2 )g t anh fed), where the first te rm in the 
s e c o n d p a r e n t h e s e s de sc r ibe s t h e c o n t r i b u t i o n of t h e 
van der W a a l s po ten t ia l of the subs t ra te and the second 
represents the local surface change in the density of 4 H e . In 
the case of th in films the con t r ibu t ion of the first t e rm 
predomina tes , i.e. the dynamic pa r t of the van der Waa l s 
po ten t ia l of the subst ra te is m o r e impor t an t t han 'surface 
p h o n o n s ' (r ipplons). Consequent ly , a reduct ion in the film 
thickness changes the spectrum from the purely r ipplon type 
co2 = (a/p )g 3 , where a is the surface tension, to an acoust ic 
spec t rum with a l inear d ispers ion law co2 = (adx2/ p)q2, 
where x is the capi l lary cons t an t of the van der W a a l s 
po ten t ia l and d is the film thickness: qd <̂  1. 

In the two-dimens iona l p rob lem it is impor tan t , as 
always, to determine the two-dimens ional project ion of the 
three-dimensional po ten t ia l V(r, z). In full ana logy with the 
two-dimens iona l project ion of the C o u l o m b interact ion, it is 
given by the expression 

V(rx -r2) = JV(ri -r2,zi -z2) 

x l ^ i ) | 2 | ^ f e ) | 2 d z i d z 2 (20) 

where W(z) is the wave function of an Andreev level. The t w o -
d i m e n s i o n a l p ro j ec t i on of t h e t o t a l i n t e r a c t i o n can b e 
represented in the form 

V(r) = V d i r ( r ) + V e x c h ( r ) (21) 

and correspondingly in the m o m e n t u m space 

^ 1 ) = Vdir fe||) + Vexch fe||) , (22) 

where V^xchfen = 0) is due to the exchange of a vir tual q u a n 
t u m of thi rd sound and, in the case of thin films, is given by 
K?xchfe|| = 0) = —mAc2

u ( K u r i h a r a [33], M o n a r k h a a n d 
Sokolov [34]), where 

rriAn^d + HA) L 
(23) 

c m is the velocity of third sound, V s u b is the van der Waa l s 
po ten t ia l of the substra te , d and HA are the thicknesses of the 
solid and superfluid 4 H e layers. (We recall tha t in the case of 
well-wetted substrates such as Au , Ag, Cu, etc, the first 3 H e 
layer solidifies.) 

It should be po in ted out tha t , as in the three-dimensional 
p rob lem, the limiting frequency of surface waves coD oc m4c2

u 

is much higher t han the F e r m i energy e F . Therefore, we are 
again dealing with an an t iad iaba t ic s i tuat ion, when the whole 
vo lume of the two-dimens iona l F e r m i sphere (and no t only 
its D e b ye shell) is impor t an t in the p rob lem of the superfluid 
t ransi t ion. 

W e shall n o w consider the direct pa r t of the to ta l 
interact ion. By analogy with the three-dimensional case, we 
have 

vkir fen = 0) = Vi fen = o ) + y 2 fen = 0 ) , (24) 

where V\ is determined by the hard-core repulsion between 
two 3 H e part icles at short distances, whereas V2 is due to the 
at t ract ive interact ion of two 3 H e part icles at large distances. 

As poin ted out at the end of the preceding section, the 
experiments of Hal lock et al. on the dependence of the 
magnet i sa t ion of a submonolayer on the surface density of 
3 H e demons t ra t e tha t the to ta l interact ion of two 3 H e 
part icles on the surface of a thin film is a t t ract ive when the 
3 H e concent ra t ion is x < 3 % and repulsive when the con
centra t ion is higher. Therefore, the direct pa r t of the to ta l 
interact ion can be represented again in a mode l form shown 
in Fig. 4, i.e. 

Vdi rW -{ - v 2 , 

r < r\ , 
r\ < r < ri 

(25) 

where l/r2 0c£ F (x = 3%). If the submonolayer density is 
such tha t &p < r f 2 , we can try to use the Fermi-gas app roach 
again. It should be po in ted out t ha t the exper iments of 
Hal lock et al. demons t ra t e tha t at 3 H e densities less t han 
0.3 of a monolayer we are indeed dealing with a weakly 
interact ing low-density two-dimens iona l F e r m i gas. 

7. Two-dimensional Fermi gas with attraction 
A special feature of the two-dimens iona l case is tha t even if 
the a t t rac t ion is infinitesimally weak, we are dealing with the 
coexistence of two p h e n o m e n a : pa i r ing of two part icles in 
vacuum in the coord ina te space and the Cooper pai r ing of 
two par t ic les in m a t t e r in t he m o m e n t u m space in the 
presence of a filled F e r m i sphere. In the case of a purely 
at t ract ive poten t ia l the energy of a b o u n d state in vacuum is 

1 
exp 

4ti 
~m\U0\ 

(26) 

where Uois the s-wave h a r m o n i c of the poten t ia l and ro is its 
radius . In the case of the poten t ia l with a repulsive core and 
an at t ract ive tail (Fig. 4), we have for V2o > ^10 

Eh = -
1 4tc 

mr0

2 C X P V m(V2o V10) 
(27) 

The t empera tu re of the superfluid t ransi t ion (Cooper 
pai r ing in mat te r ) is described by an expression s t andard in 
the BCS theory: 

TC0 oc £ F e x p ^ - ^ - J , (28) 

where the two-dimens iona l gas pa ramete r f0 is determined by 
the real pa r t of the scat terr ing ampl i tude and is given by the 
following expression in the case of a t t rac t ion: 

Z o = R e 
m\U0\/2n 

1 - (m\Uo\/4n)\n(\/p2^) + (m|t/0|/47c)i7C. 

(29) 
where R e s tands for the real pa r t . Subst i tut ing the expression 
for /o into the formula for the critical t empera tu re , we ob ta in 
everywhere apar t from a n a r r o w region close to the resonance 
[\Eb\ = 28 F or 1 = H t f 0 | / 4 7 i ) l n ( l / p 2 ^ ) ] 

2k \ _ 
TC0 oc — exp 1 — 1 

p¥r0 \ m\U0\J 
( 2 e F | £ b | ) 

1/2 (30) 

This formula was derived by M i y a k e [35] for t w o -
dimensional solut ions and was rederived by Rander i a , 
D u a n , and Shieh [36] and by Schmit t -Rink, Varma , and 
Ruckenste in [37] in connect ion with a possible margina l 
Fermi-l iquid behaviour of h igh- tempera ture supercon
ductors . 



Fermi-gas approach to the problem of superfluidity in three- and two-dimensional solutions of 3 H e in 4 H e 75 

It is interest ing to no te tha t , from the formal po in t of 
view, the expressions for the critical t empera tu re in the th ree-
dimensional and two-dimens iona l cases differ only by the 
preexponent ia l factor 8 F - > 8 F / / ? F ro . 

However , in reality the two-dimens iona l s i tuat ion is 
much m o r e interesting. This is because in the case of a weak 
interact ion when (m| Uo\/2%) In (l / /? F ro) <̂  1 the bound- s t a t e 
energy | £ b | is much less t han 8 F and, consequently, Tc0 <^ 8 F , 
i.e. we are dealing with o rd inary Cooper pa i rs characterised 
by a large coherence length. The chemical po ten t ia l of a 
superfluid system found by M i y a k e from the self-consistent 
Leggett app roach [38] is given by the expression 

H = 8 F - \ \Eh (31) 

W e recall tha t in the Leggett app roach the chemical po ten t ia l 
is deduced from the condi t ion of conservat ion of the to ta l 
number of part icles: 

A 
271 

where Eh 

d2k 
4 7 ? 

(sj + A2 f2 and sk 

(32) 

(k2/2m) — fi are, respect
ively, the energies of the superfluid and n o r m a l states; A0 is 
the superfluid gap related, as in the usua l BCS theory, to the 
critical t empera tu re by Ao = (n/y)Tco ( l n y = 0.57 is the 
E u l e r c o n s t a n t ) . I t is ev iden t f rom E q n (31) t h a t if 
\E\>\ <^ 8 F we have fi -> 8 F and pai r ing occurs on the F e r m i 
surface. In the opposi te l imiting case of a s t rong interact ion, 
when (m| Uo\/2n) In ( l / / ? F r 0 ) > 1, we have | £ b | P £ F and 
£ F <^ Tc0 <̂  \E\>\. In this case the chemical po t en t i a l is 
fi = — | £ b | / 2 < 0 and we have a s i tua t ion wi th s t rongly 
b o u n d Cooper pai rs (composi te bosons) characterised by a 
short coherence length [39]. In Bashk in ' s te rminology they 
are called dimers and are hel ium analogues of b ipo la rons , 
i n t r o d u c e d in to t h e t h e o r y o f s u p e r c o n d u c t i v i t y b y 
Alexandrov and Rann inge r [40, 41]. In fact, in this case, the 
pai r ing process does no t occur in the m o m e n t u m space bu t in 
the coord ina te space. It should be poin ted out tha t in the case 
of dimers, as in the b ipo la ron model , there is no t one bu t two 
critical t empera tures : the t empera tu re Tc0 of p recondi t ion ing 
of local pai rs and the t empera tu re T* oc n/m* oc 8 F of the 
Bose condensa t ion of such pairs . It should also be poin ted 
out tha t in the case of weakly b o u n d pai rs the K o s t e r l i t z -
Thouless (KT) f luctuation correct ions to the result ob ta ined 
above from the mean-field theory are small and p ropo r t i ona l 
to ( r K T - r B C S ) / r B C S - TBCS/sF <| 1 [42], bu t in the case 
of dimers such correct ions are very impor t an t and can play a 
decisive role. 

It should be stressed tha t in the mean-field theory the 
t rans i t ion from the BCS to the b ipo la ron regime is smooth in 
the two-dimens iona l case no t only with respect to the 
chemical po ten t ia l fi, bu t also in the case of the to ta l energy 
of the system. In fact, the difference between the energies of 
the n o r m a l and superfluid states at T = 0 is 

7BCS 

N 8 F 

= -\Eh\ = 

±c0 

8 F 

£ b l P 

[(s,\Eh\) 
l / 2 l 2 

8 F 

N 
(33) 

where N is the number of part icles in the system. 
W e shall conclude this section with an est imate of the 

t empera tu re of the two-dimens iona l superfluid t ransi t ion in 

the at t ract ive case: according to Bashkin , K u r i h a r a , and 
Miyake , we can expect Tc0 of the order of 1 m K when the 
surface density of 3 H e is of the order of 0.01 of a monolayer . 

8. Two-dimensional Fermi gas with repulsion 
W h e n the 3 H e density exceeds 0.03 of a monolayer , the to ta l 
interact ion between 3 H e part icles changes sign and the s-
wave pai r ing becomes impossible. The possibili ty of the p-
w a v e p a i r i n g in t w o - d i m e n s i o n a l so lu t i on d e p e n d s b y 
analogy with the three-dimensional case on the sign of the 
p-wave h a r m o n i c of the effective interact ion. The effective 
i n t e r a c t i o n o b t a i n e d w i t h i n t h e first t w o o r d e r s o f 
pe r tu rba t ion theory is 

Vefffe) =fo+fo2n(q) (34) 

where q = p + p \ TI{q) is a two-dimens ional polar isa t ion 
opera tor , a n d / o = 1/2 In ( p F r o ) is the gas pa ramete r for the 
repulsive case. 

In the coord ina te space V e f f ( r ) o c / 0

2 cos ( 2 ^ F r ) / r 2 exhibits 
oscillations much stronger (p ropor t iona l to 1/r2) t han in the 
three-dimensional case. However , a two-dimens iona l K o h n 
singularity induced by such oscillations in the m o m e n t u m 
space is of one-sided na tu re : ns[ng(q) oc R e (q — 2 p F ) ^ 2 [43]. 
In the case of the Cooper p rob lem we have \p\ = \p'\ = 
p¥ and q2 = 2/? F (l + c o s # ) . Therefore, q<2pF and 
R e (q — 2p?)1/2 = 0. Therefore, a s t rong two-dimens ional 
K o h n singularity is ineffective in the p rob lem of the Cooper 
pai r ing and the two-dimens iona l F e r m i gas with repulsion 
remains in the n o r m a l state at least in the first two orders of 
pe r tu rba t ion theory. Recent ly, C h u b u k o v [44] showed tha t 
inclusion of the vertex correct ions to the expression for the 
effective interact ion restores the superfluid p -wave pai r ing in 
two dimensions in the third order of pe r tu rba t ion theory 
Tc\ oc 8 F exp (—l/f 0

3 ) . A n est imate of the superfluid t rans i 
t ion t empera tu re obta ined by C h u b u k o v is 1 0 - 4 K for 
densities ~ 0 . 3 of a monolayer cor responding to the limit of 
validity of the Fermi-gas descript ion. 

It should be poin ted out tha t a l lowance for n o n q u a d r a t i c 
correct ions to the spectrum of 3 H e quasipart icles, 8 = 
(p2/2m)[\ — y(p2/p2)], results in res tora t ion of the p-wave 
pai r ing al ready in the second order of pe r tu rba t ion theory. 
This yields Tcl oc 8 F exp (—l /y / 0

2 ) , as demons t ra ted by 
B a r a n o v and K a g a n [45]. However , the superfluid t ransi t ion 
t empera tu re n o w depends exponential ly on the small con
stant represent ing the n o n q u a d r a t i c na tu re of the spectrum 
and, therefore, it is very small. 

9. Superfluidity in polarised solutions 
W e shall n o w consider briefly the s i tua t ion in s t rongly 
polar ised solut ions. 

It is well k n o w n tha t the singlet s-wave pai r ing in a 
strongly polar ised solution is suppressed by a pa ramagne t i c 
effect. This means tha t in magnet ic fields obeying fiBH > Tc0 

(fiB is the nuclear Bohr magne ton ) the direction of one of the 
spins (ant iparal lel to the field) of a Cooper pair is reversed 
and, therefore, the superfluid state is destroyed. The 
influence of an external magnet ic field (or of the polar i s 
at ion) on the triplet pa i r ing t empera tu re is less trivial. 
C h u b u k o v and K a g a n [46] showed tha t the p-wave pa i r ing 
t empera tu re of a three-dimensional polar ised gas with 
repulsion depends strongly and nonmono ton ica l ly on the 
degree of polar isa t ion a: it rises strongly at low and inter-
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media te polar isa t ions , passes t h rough a m a x i m u m when the 
polar isa t ion is 4 8 % , and falls on further increase in the 
polar isa t ion. A strongly n o n m o n o t o n i c dependence of Tc\ 
on a is due to the compet i t ion between two effects: 
enhancement of a K o h n singularity when the polar isa t ion is 
increased and reduct ion in the n u m b e r of spins which are 
ant iparal le l to the field. 

In the language of the d iag rammat ic technique these 
effects are caused by the following circumstance: in the 
polar ised case, the effective interact ion of two ' u p ' spins 
(parallel to the field) in a Cooper channel occurs via a zero-
sound polar isa t ion loop composed of a part icle and a hole 
with ' d o w n ' spins (Fig. 6). This polar i sa t ion loop again 
conta ins a K o h n singularity, bu t it is n o w of the type 

^ s i n g f e ) = fet - 2P?l) In fet - 2/?Fi) , (35) 

w h e r e q^ = —pp q2 = 2p^(\ — cos 0), 9 = pp', a n d 
P F T a n d PFI a r e the radi i of the F e r m i spheres of the ' u p ' and 
' d o w n ' spins, respectively. In a nonzero magnet ic field we 
h a v e p F | ^ p F | . Therefore, a K o h n singularity (i.e. vanishing 
of the difference q^ — 2/? F | ) occurs no t at the angle 9 = k 
between p and p', bu t at the angle 9 = 0C, which deviates 
from 7i on increase in the degree of polar isa t ion . In other 
words , if 77 S in g (0) oc ( T C - 9 ) 2 In (n- 9) in the unpolar i sed case, 
then in the presence of po la r i sa t ion we have 77 S i n g ( 0 )oc 
( 0 c - 0 ) l n ( 0 c - 0 ) . W e can see tha t in the polar ised case a 
K o h n s ingu la r i ty is s t r onge r b e c a u s e a l r e a d y t h e first 
derivative (and not the second one, as in the absence of a 
field) of 77 S i n g ( 0 ) diverges. Na tura l ly , the enhancement of the 
K o h n singulari ty increases the critical t empera tu re . This 
effect is counterac ted by a reduct ion in the density of states 
of the particles with ' d o w n ' spin, which reduces the absolute 
magn i tude of the zero-sound loop and , consequently, reduces 
the critical t empera tu re . 

P P' 

Figure 6. Effective interaction of two spins directed parallel to the field in 
the polarised case. 

The compet i t ion between these two effects gives rise to a 
m a x i m u m in the dependence of Tc\ on the degree of po la r i s 
at ion a (Fig. 7). The max imal t empera tu re cor responds to 
oc = 4 8 % . At a pressure of 10 ba r the m a x i m u m possible 
concent ra t ion is x = 9.5% and the t empera tu re at the max i 
m u m cor responds to 1 0 - 6 - 1 0 - 5 K , which is much higher 
t han Tc\ ~ 1 0 ~ 1 0 - 1 0 - 9 K cor responding to a = 0. A qual i 
tatively similar dependence of Tc\ on a with a m a x i m u m at 
oc = 32% was also predicted by van de H a a r , Frossa t i , and 
Bedell [3]. The t empera tu re at the m a x i m u m predicted by 
these au tho r s for the same values of pressure and concent ra 
t ion is somewhat higher and a m o u n t s to 10 — 5 — 1 0 — 4 K . 

a= 48% 

Figure 7. Theoretical dependence of the critical temperature Tc\ on the 
degree of polarisation a of a three-dimensional solution of 3 H e in 4 H e . 

The h o p e for exper imental creat ion of strongly polar ised 
solut ions is based pr imar i ly on the elegant idea of Cas ta ing 
and Nozieres [47]. In their classical paper they p roposed to 
create a s t rong polar isa t ion in a liquid solut ion by fast 
melt ing of a solid solution. The idea is tha t a solid solution 
(and p u r e crystalline 3 H e ) does no t have a kinetic energy of 
the degeneracy of 3 H e a toms associated with the Paul i 
principle. Therefore, the appl icat ion of a magnet ic field of 
the order of the Cur ie t empera tu re 

p.BH - 7 c - r - l m K and H ~ 1 T (36) 

leads to an almost 100% polar isa t ion of the solid solution. (It 
should be po in ted out tha t a significant polar isa t ion can be 
achieved in a liquid solution only by applying much stronger 
and experimental ly una t t a inab le fields such tha t fiBH ~ e F ~ 
0.1 K and H ~ 100 T.) Fas t melt ing of a s trongly polar ised 
(a ~ 90%) solid solution should, according to the est imates 
of Cas ta ing and Nozieres [47], p roduce a liquid solut ion with 
a ~ 30% . Na tura l ly , this polar isa t ion is of a nonequi l ibr ium 
na tu re , bu t its lifetime is very long (t ~ 30 min) because of 
the long relaxat ion t ime in the liquid phase . 

Ano the r very impor t an t idea for increasing the critical 
t empera tu re is the suggestion of Meyerovich [35, 48, 49], 
according to which the m a x i m u m solubility of a strongly 
polar ised solut ion m a y be 3 - 4 t imes higher t han the 
m a x i m u m solubility in the absence of polar isa t ion 
(x m a x ~ 3 0 % , instead of = 9 .5%). A combina t ion of 
the ideas of Casta ing, Nozieres , and Meyerovich m a y 
p roduce an even greater increase (to 1 0 _ 4 - 1 0 - 3 K ) in the 
superfluid t ransi t ion t empera tu re of a s trongly polar ised 
solut ion. 

10. Two-dimensional polarised solutions 
The si tuat ion in two-dimens iona l polar ised submonolayers 
at 3 H e densities from 0.03 to 0.3 of a monolayer is even m o r e 
favourable from the poin t of view of the superfluid t ransi t ion 
t empera tu re . This is because, as ment ioned above, a s t rong 
t w o - d i m e n s i o n a l K o h n s i n g u l a r i t y o f t h e t y p e 
R e (q — 2p?)1/2 is ineffective in the absence of a magnet ic 
field when the Cooper pai r ing occurs . In the presence of a 
p o l a r i s a t i o n t h e s i t u a t i o n is f u n d a m e n t a l l y d i f fe ren t : 
Ilsmgiq = p—p') oc R e (#f — 2p¥[)1^2 [46] and the re is a 
range of angles 9 between p and p' [q2 is again equal to 
2 p F | ( l + c o s f l ) 1 / 2 ] , in w h i c h t h e r a d i c a n d is p o s i t i v e . 
Therefore, the appl icat ion of a magnet ic field suppresses the 
one-sided na tu re of a two-dimens iona l K o h n singularity and 
makes it effective in the pai r ing p rob lem. 
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a= 60% a 

Figure 8. Theoretical dependence of the critical temperature Tc\ on the 
degree of polarisation a of a two-dimensional solution of 3 H e in 4 H e . 

The compet i t ion between a K o h n singularity and a reduc
t ion in the number of spins ant iparal lel to the field again gives 
rise, in the two-dimens iona l case, to a n o n m o n o t o n i c 
dependence of Tc\ on the degree of polar isa t ion a, with a 
very s t rong m a x i m u m at a = 60% (Fig. 8). It should be 
po in ted out tha t this m a x i m u m is very b r o a d and extends 
from 20% to 90% of the polar isa t ion . 

Es t imates indicate tha t the critical t empera tu re is n o w 
fairly high in experimental ly a t ta inable fields of ~ 1 5 T. In 
fact, the application of such a magnetic field leads, for example, 
to a 10% polar isa t ion of a two-dimensional solution with the 
3 H e density n3 amoun t ing to ~ 0 . 0 5 of a monolayer and with 
8F — 0.13 K. In this case the triplet pair ing t empera tu re is 
easily experimentally a t ta inable and a m o u n t s to 1 m K . 

11. Experimental situation 
It is po in ted out in the In t roduc t ion tha t the search for 
superf lu id i ty in t h r e e - d i m e n s i o n a l a n d t w o - d i m e n s i o n a l 
solut ions has no t yet resulted in exper imental success. The 
publ ished exper imental results demons t ra t ing the absence of 
superfluidity at certain pressures and concent ra t ions impose 
limits on the var ious theoret ical est imates of the superfluid 
t ransi t ion t empera tu re . They are forcing b o t h theoret ic ians 
and experimental is ts to concent ra te on those ranges of the 
parameters where measurements have not yet been carried out. 

The review of 0 s t g a a r d and Bashkin [7] conta ins the 
exper imental results obta ined by the g roups of Pobel l [49] 
and Ogawa [50]. They demons t ra t e the absence of the 
superfluid t ransi t ion in three-dimensional solut ions right 
down to 0.2 m K for 3 H e concent ra t ions of 1%, 5 % , and 
6.4% . They show tha t the t empera tu re of the singlet s-wave 
pa i r ing and the t empera tu re of the triplet p -wave pa i r ing (we 
recall tha t the ^-pairing is impossible at concent ra t ions in 
excess of 4 % ) b o t h mos t p robab ly lie be low 0.2 m K . The 
est imates of 0 s t g a a r d and Bashkin on the subject of the 
singlet pa i r ing show tha t the most p romis ing avenue is to seek 
the singlet superfluidity at 3 H e concent ra t ions a m o u n t i n g to 
~ 0 . 5 % - 1 % . Van de H a a r , Frossa t i , and Bedell [3] assume 
tha t the op t imal concent ra t ion lies in the interval 1.5% -
2 .5% . The cor responding t empera tu re Tc0 is of the order of 
0.1 m K for the results of b o t h groups . Accord ing to the 
est imates of Frossa t i , Bedell, Meyerovich, and the au tho r of 
the present paper , the triplet superfluidity is mos t likely to 
occur at the m a x i m u m concent ra t ion of 3 H e a m o u n t i n g 
to x = 9 . 5 % , which cor responds to 10 bar , under s t rong 
polar isa t ion condi t ions (in s t rong effective magnet ic fields). 
As po in ted out above, when the polar isa t ion is very s t rong, it 

m a y be possible to reach 3 H e concent ra t ions in excess of 
9.5% . The most realistic est imates once again predict a triplet 
pa i r ing t empera tu re only of the order of 0.1 m K or lower. 
Therefore, we obviously can expect tha t b o t h the singlet and 
the polar i sa t ion-enhanced triplet pa i r ing t empera tu res have 
values of the order of 0.1 m K . 

It seems tha t the si tuat ion in two-dimens iona l solut ions is 
m o r e favourable from the exper imental poin t of view. The 
most impor t an t exper imental results imposing limits on the 
theoret ical est imates are those repor ted by Pobel l and 
Shi rama [51]. They tried to observe superfluidity in a 3 H e 
submonolayer on the surface of a very thin 4 H e film. Their 
measurement me thod involved de terminat ion of the viscous 
pene t ra t ion depth with the aid of tors ional oscillations. The 
scheme of their experiment is shown in Fig . 9. Pobel l and 
Shi rama went down to 0.85 m K and did not observe the 
superfluid t ransi t ion in the range of surface concent ra t ions 
from 0.1 to 1 monolayers . Their experiment suggests tha t 
the superfluidity of two-d imens iona l solut ions should be 
searched either at lower 3 H e densities (m < 0.03 of a m o n o 
layer, when the to ta l interact ion cor responds to a t t rac t ion) or 
at approximate ly the same densities ^ 3 ^ 0 . 0 5 - 0 . 1 of a 
monolayer bu t in a s t rong magnet ic fields of ~ 1 5 - 3 0 T. In 
b o t h cases we can expect the singlet superfluidity in the 
absence of a magnet ic field and the field-enhanced triplet 
superfluidity at t empera tu res ~ 1 m K . On the one hand , 
these t empera tu res are an order of magn i tude higher t han 
those in the case of three-dimensional solut ions and, on the 
other , they are a t ta inable from the exper imental poin t of 
view. 

Figure 9. Basic layout of the experiments of Pobell and Shirama in which 
the authors attempted to detect superfluidity in two-dimensional 
solutions: (7 ) 3 H e submonolayers; (2) superfluid 4 H e (one monolayer); 
(3) solid 4 H e films ~ 3 A thick; (4) silver substrate. 

12. Two-dimensional monolayers as a bridge 
between superfluidity and superconductivity 
In conclusion of this review it is necessary to stress tha t t w o -
dimensional 3 H e submonolayers on the surface of thin 4 H e 
films and on grafoil are ideal two-dimens iona l systems for 
exper imental checking of m a n y current ly popu la r theories of 
the n o r m a l and superconduct ing state of quas i - two-d imen
s ional h i g h - t e m p e r a t u r e s u p e r c o n d u c t o r s . M a n y leading 
theore t ic ians a t t ack ing the p r o b l e m of h igh - t empera tu r e 
s u p e r c o n d u c t i v i t y — i n c l u d i n g A n d e r s o n , V a r m a , a n d 
others — have stressed tha t the anomalous ly high values of 
Tc of h igh- tempera ture superconduct ing systems are closely 
related to their unusua l proper t ies in the n o r m a l state. Such 
u n u s u a l n o r m a l p r o p e r t i e s i n c l u d e , as p o i n t e d o u t in 
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Section 5, pr imar i ly the smallness of the j u m p in the distr i
bu t ion function of the interact ing particles on the F e r m i 
sur face a n d t h e l inear t e m p e r a t u r e d e p e n d e n c e of t h e 
resistivity well be low the D e b ye t empera tu re . 

The linear t empera tu re dependence of the resistivity was 
explained some years ago by Anderson , who pos tu la ted the 
existence of a Lut t inger F e r m i liquid with zero j u m p in the 
dis t r ibut ion function on the F e r m i surface [13]. A similar 
idea of a marg ina l F ermi liquid (which is an impor t an t special 
case of the Lut t inger liquid) was pu t forward by 
V a r m a et al. [12]. 

Ande r son later pu t forward an even less trivial hypothesis 
tha t no t only a strongly interact ing high-densi ty two-d imen
sional F e r m i system bu t even a weakly interact ing low-
density F e r m i gas, is described no t by the Fermi- l iquid 
theory of L a n d a u with a finite j u m p of the dis t r ibut ion 
function, bu t by the Lut t inger Fermi- l iquid theory [52]. In 
other words , Ande r son insisted tha t a F e r m i gas in the 
classical mean ing of Gali tski i [53] and Bloom [54] does no t 
exist in two dimen-sions. M a n y theoret ic ians took pa r t in the 
discussion following these suggestions of Anderson . The 
major i ty of them (Engelbrecht and Rande r i a [55]; 
F u k u y a m a et al. [56]; Fabr iz io , Tossat t i , and Paro la [57]; 
P r o k o f 'ev and S tamp [58]; Ba ranov , K a g a n , and M a r ' e n k o 
[59]) suppor t the Fermi-gas idea and demons t ra t e tha t it is 
internally self-consistent in two dimensions if the ladder and 
pa rque t approx imat ions are used in the d iag rammat ic 
technique. Ande r son is still insisting tha t his view is correct 
and pos tu la tes tha t such d iag rammat ic technique is invalid in 
two dimensions (even at the level of summat ion of an infinite 
series of pa rque t d iagrams) . In other words , Ande r son rejects 
the existence of any pe r tu rba t ion theory in two dimensions. 
One of the mos t serious a rguments pu t forward by Ander son 
against per turbat ion theory is a s t rong singularity he proposes 
for the two-dimensional L a n d a u function describing the 
interact ion between quasi-particles f(p,p'). In accordance 
with A n d e r s o n ' s quali tat ive ideas, in the case of almost 
parallel m o m e n t a p and p' and opposi te spins of the colliding 
particles, the singular par t of the function f(p, p') is 
described by the following expression, valid in the case of 
small deviat ions from the F e r m i surface: 

Ung(p,p') ~ ^ _ ^ , | • (37) 

The existence of such a s t rong singularity leads to a logar i th
mic divergence of all L a n d a u h a r m o n i c s fo, / i , . . . and , 
therefore, to complete collapse of a F e r m i liquid. Calcula
t ions of /X/? , p') in the second order of pe r tu rba t ion theory, 
first carried out by P r o k o f ' e v and independent ly by B a r a n o v 
and K a g a n , however , predict a much weaker singularity of 
t h e / f u n c t i o n and this singularity is of the (p —p')~1^2 type. 
Moreover , they predict this singularity only for a n a r r o w 
angular interval cp oc \p-p ' | 3 / 2 . Therefore, it results only in 
nontr iv ia l t empera tu re correct ions to t h e / function, and no t 
in the collapse of the Fermi- l iquid scenario as a whole . 

In this connect ion it would be very interesting to extend to 
low tempera tures the experiments of the Hallock and Saunders 
groups , involving measurements of the susceptibility of 3 H e 
submonolayers on the surfaces of thin 4 H e films and on the 
surface of grafoil. The susceptibility of a degenerate t w o -
dimensional Fe rmi gas, 

X = * o ^ T , (38) 

de termined in these exper iments carries, at t empera tu res 
much lower t han the Cur ie t empera tu re , informat ion on the 
concent ra t ion and t empera tu re dependences of the L a n d a u 
h a r m o n i c s F0

a and Fx

s. I n f o r m a t i o n on these h a r m o n i c s 
obta ined from such experiments would help in ob ta in ing an 
u n a m b i g u o u s answer to the following quest ion: does a t w o -
dimensional F e r m i gas exist and if it exists, wha t nontr iv ia l 
correct ions missing in the three-dimensional case should be 
applied in the two-dimens iona l s i tuat ion? 
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