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Abstract. The theory of matrix models is reviewed from the
point of view ofits relation to integrable hierarchies. Discrete
l-matrix, 2-matrix, ‘conformal’ (multicomponent), and
Kontsevich models are considered in some detail, together
with the Ward identities (‘W-constraints’), determinantal
formulas, and continuum limits, taking one kind of model
into another. Subtle points and directions for future research
are also discussed.

1. Introduction

The purpose of these notes is to review one of the branches of
modern string theory: the theory of matrix models, with the
emphasis on their intrinsic integrable structure. [ begin with a
briefdescription ofthe field and its place within string theory.
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The main content of string theory (see my earlier article
[1] for a general review) is the study of symmetries, in the
broadest possible sense of the word, by the methods of
quantum field theory. The usual scheme is to start from
some symmetry and construct a field-theoretical model
[usually 2-dimensional (2d), for a reason not discussed
here], which possesses this symmetry in some simple sense
(e.g. as Noether symmetry or as a chiral algebra). The main
idea at this stageis to find a model which is exactly solvable (if
nothing but the symmetry is given, this is a nice principle to
restrict dynamics). The next step is to study the hidden
symmetries of the model, which are somehow responsible
for its exact solvability and are usually much larger than the
original symmetry.

This ‘inverse’ step, model — symmetry, can be made with
at least three different ideas in mind.

One can look for some hidden local (gauge) symmetry
which is fixed or spontaneously broken, i.e. identify it with
some other model which has more fields: auxiliary with
respect to the smaller model, and gauge with respect to the
larger one. [Examples include the gauged Wess—Zumino —
Novikov—Witten (WZNW) model and topological theories
in the Becchi—Rouet —Stora—Tyutin (BRST) formalism.]
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One can take for a new (full) symmetry of the model just
its operator algebra (algebra of observables) (see [2, 3, 4] for
the first results in this direction). It deserves mentioning that
the gauging of the entire algebra of observables gives rise to a
‘string field theory’ associated with the original model
(considered as a string model).

One can construct the effective action of the theory by
exact evaluation of the functional integral.

As to the direct step, symmetry — model, one can take as
an example the best understood case, in which the original
symmetry is just a Lie algebra. Then the quantum-
mechanical model can be constructed by the geometric
quantisation technique (see [5] for the most important
example of a Kac—Moody algebra and the WZNW model).

Mathematically, the two elements of the above scheme
appear to be algebra (in the theory of symmetries), and
analysis and geometry (in the field-theoretical models). The
idea of constructing models with a given symmetry (and
nothing else relevant to the dynamics) can be identified with
the mathematical concept of ‘universal objects’.

The sequence of iterations of the two arrows in Fig. 1
leads to a deeper understanding, enlarging and generalising
all the notions involved —symmetry, exact solvability, field
theory, geometrical structures, quantisation, etc—thus
stimulating considerable progress both in physics and in
mathematics. [f this iterative process can somehow
converge, the limit point will deserve to be called the theory
of everything, which will indeed unify all the possible field-
theoretical models by embedding them into a huge but well
structured theory, which will also be exactly solvable in
some yet unspecified sense of the word. I refer the reader to
my earlier review [1] for more details on this semi-
philosophical programme, known as (modern) string theory,
and now turn to a more narrow subject: the theory of matrix
models.

symmetry algebra

model =
with this symmetry

analysis and
geometry

Figure 1. Theory of everything.

At the moment this subject is mainly associated with the
theory of effective actions; so far thisis where the main results
of the modern theory of matrix models find their
applications. This technique is especially suited for the
study of effective actions, obtained after integration over 2d
geometries  (including the sum over genera), and produces
nonperturba-tive (exact) partition functions of particular
string models. The main result of these studies indicates that
these partition functions exhibit two remarkable (though
expected [6]) properties.

First, the effective action for a given model is essentially
the same as for any other model. In fact the effective action is
a function of the coupling constants (‘sources’ in old-
fashioned terms), which are nothing but coordinates in the
space of various models (the configuration space of the entire
string theory); variation of couplings change one model for
another.

Second, effective action possesses a huge additional
symmetry, which is somewhat similar to the general cova-

riance in the space of all models (the above-mentioned
configuration space) and, in the simplest examples which
have been studied so far, can be expressed in terms of
integrable hierarchies. (This ‘general covariance’ in the
configuration space can, after all, turn into the main
dynamical principle of the string theory.)

Both these features seem to be very general, arising
whenever the largest possible Lagrangian with a given
symmetry is considered (without restrictions on the possible
counter-terms, imposed by requirements of renormalisability
or by locality—minimality ‘principles’—this is why this
phenomenon is not widely known to field theorists). An
example of highly nontrivial calculations leading to similar
conclusions can be found in [7].

It is hoped that these remarks will become clearer after
some specific examples have been considered below. Still, they
deserveto be formulated in full generality, not only to intrigue
the reader but also because they can serve to aid better
understanding of the ideas and outcomes of generic string
theory.

The ‘corner’ of the string theory associated with matrix
models can be described as follows (see Fig. 2).

Thebig blocks within the body of string theory, which are
directly related to matrix models, are the theory of conformal
models, the theory of N'= 2 supersymmetry, and the (loop
equation version of) Yang—Mills (YM) theory (in any
number of dimensions). Also, Einstein gravity should be
related to the subject in a way similar to YM theory, but these
links are yet not clarified.

Both conformal theory and N’ = 2 supersymmetry are
sources of the concept of ‘topological models’[§—11]. These
arise after the gauging of all continuous symmetries of the
WZNW models and/or as models with BRST-exact stress
tensors, naturally appearing in the context of A = 2
supersymmetry. If formulated in a self-consistent way in the
‘universal module space’ (unification of module spaces of all
finite-genus Riemann surfaces and bundles over them) these
models turn into those of ‘topological gravity’. Generating
functionals of topological-gravity models in fact generate
infinite sequences of topological invariants of certain spaces
{an inverse definition is also possible in some cases [8],
though the universal (generic) algorithm for the operation
topology of some space — topological gravity has not yet been
formulated].

Alternative models of 2d quantum gravity arise straight-
forwardly from conformal models through the procedure of
‘summation over geometries’. There are essentially two
different approaches to the problem. One (the ‘Polyakov
approach’)is to make use of the complex structure, intrinsic
for conformal theory [12], and sum over Riemann surfaces,
which involves integration over module spaces and the sum
over genera. The main techniques used in this approach are
the theory of free fields on Riemann surfaces[13, 14] and the
bosonisation formalism for conformal field theories [15, 16].
This approach requires solution of Liouville theory, which is
still a problem under intensive investigation (and is in turn
related to conformal field theory). Further progress in this
direction should be related to (or can be expressed in terms
of) the adequate theory of the universal module space, handle-
gluing operators, etc. Similar objects arise in the field-
theoretical approach to topological gravity (see [17] for a
recent review).

An alternative approach to summation over geometries
does not refer at all to the complex structure but instead
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involves a sum over random equilateral triangulations [18 —20].1
This is the place where matrix models first appear in the
context of string theory. The random triangulation approach
is by no means specific to conformal models (since it ignores

TIts relation to the Polyakov approach is a separate very interesting,
important, and badly understood problem, which allows a nontrivial
reformulation in terms of number theory [21]. The main puzzle here is
that equilateral triangulations are in fact arithmetic Riemann surfaces —a
dense discrete subset in the entire module space, with interesting and deep
algebraic properties. Equivalence of the two approaches to 2d quantum
gravity should imply the existence of some number-theoretical background
behind the scenes, which would be very nice to discover in full purity.

the complex structure) and can be applied in many other
situations— for example, to YM theories in any number of
dimensions (where, instead of summation over geometries,
one needs ‘simply’ to sum over ordinary Feynman diagrams).

Applications of the matrix-model method usually involve
two steps: formulating and studying the ‘discrete’ model, and
then taking its ‘continuum limit’, giving rise to a new
‘continuous matrix model’, which sometimes can again be
represented in a form of some matrix integral.

One ofthe main discoveries in the field of matrix models is
that continuous models arising finally from the random-
equilateral-triangulation description of the simplest
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(minimal, with ¢ < 1) string models coincide with the
simplest (CP! Landau-Ginzburg) models of topological
gravity [9, 22—-24]: two (classes of) theories are identical
(this is not yet proved in full detail, but is more than
plausible).

So far, continuous models are actually found and
somehow understood only for string models, based on the
¢ < 1 minimal conformal theories [moreover, only forg = 1
in the (p, ¢) series. Conformal models with ¢ = 1—which
are relevant for description of gauge theories in spacetime
dimension, d > 2 (which possess particles, rather than only
topological degrees of freedom)—should give rise to the

discrete matrix models with ‘nonfactorisable’ integration
over ‘angular variables’, of which the simplest (solvable)
example is the Kazakov—Migdal model [25]. The issue of
the continuum limit for such models is not yet understood (at
least in terms of integrable structures, which should probably
generalise the familiar theory of Toda hierarchies).

The goal of the study of matrix models is threefold. First
of all, one can look for the nonperturbative (exact) answers
for the physical amplitudes in the given model. This is the
subject which attracts most attention in the literature (for
several obvious reasons). However, it is equally (and, perhaps,
even more) important to understand the mathematical
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structure behind the matrix models [which involves topicslike  and ry = —%5/(,3. In fact,

the general theory of integrable hierarchies, geometrical .

quantisation, the  Duistermaat—Heckman theorem ZOM T}~  lim /Zy{t} , 1.4

(‘localisation theory’), etc]. Also important for the purposes
of string theory is to use the results of the study of matrix
models in order to unify a priori different models (according
to the above-mentioned principle, nonperturbative partition
func-tions for different models differ by a change of variables
in the space of coupling constants). Matrix models have
already played an important role in making this principle
clearer and more acceptable to many string theorists.

Let us take the next step and look even closer at the field
of matrix models, especially at its most intensively studied
domain, associated with the d < 2 string models. Then the
structure shown in Fig. 3 will be seen.

A sample example of a matrix model is that of the
I-matrix integralt

o0
Zn{t ECNJ dH exp tTrH* ],
{} NXxXN Z

k=0

(1.1)

where the integral isover the N x N Hermitian matrix H, and
dH = [, ;dH;. There are three directions in which one can
proceed starting from Eqn (1.1).

The first [26] is to look for an invariant formulation of
properties of the functional Zy {¢t}. It appears that Zy {t}
satisfies the following infinite set of differential equations {in
fact these are just Ward identities (WIs) for the functional
integral (1.1) [27]}:

L,Zy{t} =0, n> —1,

N

" par “otein £ 01Otk

2 =Nz (1.2)
2N N .

These equations are known as the ‘discrete Virasoro
constraints’. Zy {t} can be represented as a correlator of
screening operators in some auxiliary conformal model (of
one free field on the ‘spectral surface’), and the Virasoro
constraints (1.2) are of course related to the Virasoro algebra
in that conformal model. Also Zy {t} is some t-function ofan
integrable ‘Toda-chain’ hierarchy (in fact this statement
should be a corollary of the Virasoro constraints, but this
relation is still not very well understood).

The most straightforward approach to further develop-
ment [26, 28]isto take the continuum limit ofthe Toda-chain
hierarchy. In the specially adjusted ‘double-scaling’ (d.s.)
limit [20] it gives rise to the Korteveg de Vries (KdV)
hierarchy, and the corresponding t-function appears to be
subject to the slightly different constraints[28, 29] (which
again form a Borel subalgebra of some other ‘continuous
Virasoro algebra’)

L, Z9"{T}=0, n= —1,

where
>
Ln=37 k(Tx + i)
2oddk:l aTk+2n
+12"i o2 +]5 +](T-|— 25 0
4 AT\ 0T 20—k 16" 4 r n,—1 » .
4 Gl 0T 0Tz 16 0TI Cnl

T In this review the operators det and tr apply to n x n matrices; Det and
Tr apply to N x N matrices and Det applies to (N+ n) x (N+ m) matrices.

d.s.{N—oc} fre1=0

and the T values are related to ¢ by linear transformation
[19, 28]:

1 En T(m +3)
T, =~ ,  kodd;
2 ngl)[m—%(k— D' T3k +1) ’
gm = mtyy , m = 1 5 80 = 2N . (15)

This Z°" {T'} can again be represented in the form of a
matrix integral (over n x n Hermitian matrices) [22, 30 —33]:

Zom{T}=2{T}, (1.6)
with V(X )= 1X 3, where
2T}~ Fyn{l} = j dX expl—tr V(x) + trLX | ,
nxn
(1.7)
and
Ty :%trL_kﬂ ,  kodd. (1.8)

The function Zy {T} (but not Fy,{L}) is in fact
independent of n: the only thing that happens for finite
values of n is that the right-hand side (r.h.s.) of Eqn (1.7)
cannot describe Zy {T } at arbitrary points in the T-space, in
accordance with Eqn (1.8). The continuous Virasoro
constraints (1.3) are in fact equivalent to the trivial matrix-
valued W1

[V(az,) - L]fv,n{L} =0.

Another direction in which to proceed from the discrete
I-matrix model is to rewrite it identically in the form of a
Kontsevich model: this time with V(X )= X2 and with an
additional factor of (det X )V under the integral in Fy_, {L}
[56]. Then the double-scaling limit can be studied in internal
terms of Kontsevich models [36].

The third direction is towards multimatrix models. In the
continuous version they should provide t-functions of
reduced Kadomtsev—Petviashvili (KP)-hierarchies[37]
(KdV is the p= 2 reduction), which are subjected to
‘continuous W-constraints’ [29]. Matrix models of such -
functions are Kontsevich models with V(X )~XP*1 [30—
33]. At the discrete level, however, things are not so simple.
The most popular discrete multimatrix models[34] are
defined as multiple matrix integrals of the form

(1.9)

zN{tw}Ec;—'J dH O .. dH 0D
NXxXN

p—l 0 p—2
X Hexp <Zt,(c“) TrH ’(‘a)> Hexp(Tr H @[ (D)
a=1 k=0 =1

(1.10)

(the form of'the ‘interaction term’ Tr H @H " D js restricted
by the ‘solvability’ principle, but not unambiguously). In fact
these models are particular examples of ‘scalar-product
eigenvalue models’ and are not really distinguished except
for the 1-matrix (p = 2) and 2-matrix (p = 3) cases. This is
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reflected in the absence of any reasonable WIs and
integrable structures for these models, which would
somehow involve their dependence on the variables ¢ with
2 < a £ p—2. Therefore, the ‘multi-scaling continuum
limit* of these models can hardly be investigated with any
degree of rigour. (It is not very important for ‘physical’
applications to have discrete models associated with the
continuum ones, but this is an interesting problem for the
‘science of science’.) For the 2-matrix (p = 3) case the Wls
can be expressed in the from of ‘W-constraints’[38] and look
like [30]

W Yz {7} = (1" W I 2, T} (1)
(here t and f stand for +( and +®); and m and n are any
nonnegative integers).

The really interesting set of discrete multimatrix models
does exist, but it is somewhat different from Eqn (1.10).
These theories will be referred to as ‘conformal matrix
models’, since they arise straightforwardly as a
generalisation of the ‘conformal field theory (CFT)-
formulation’ of the I-matrix model [39]; it is enough to
substitute discrete Virasoro constraints in the theory of one
free field by the W -constraints in the theory of p—1 free
fields. The matrix-integral formulation then involves an
‘interaction term’ Det(HPQI-1®H @*D) instead of
exp (Tr H @H @+ D) which is not very easy to guess a priori,
but the models so defined and their continuum limits can be
examined in a manner quite parallel to the I-matrix case
(though there is more to be done in this direction). Also, this
approach provides the possibility of formulating discrete
models for any set of constraints, e.g. associated with the
more exotic W-algebras and with quantum groups (i.e. they
can help to solve the inverse problem: constraints — discrete
matrix model). This is an option which also deserves further
investigation. Another natural name for this set of theories is
‘multicomponent eigenvalue models’.

Kontsevich models should also be related to topological
models of Landau—Ginzburg gravity (LGG), though this
relation has not yet been clarified in full detail (see, however,
[17, 40)).

Among the main unresolved puzzles in this whole field is
the description of generic (p,g)models. Formally, the
generalised Kontsevich model (1.7) provides this descrip-
tion, but in fact the partition function (t-function) gets
singular when the ‘phase transition’ point where ¢ changes
isapproached, and the Kontsevich model with V (X ) equal to
a polynomial of degree p + 1 provides a nice description only
of (p,1)-models. Generically, the Kontsevich integral
describes a duality transformation between (p,q) and
(¢, p-models: (p,q) = (¢, p) [41], but not any of these
models separately. [The only exceptions are (p, 1)-models
because they are related by Kontsevich transformation to the
(1, pymodels, which are completely trivial.]

In fact continuous models have two different sets of ‘time-
variables’. Thus far I have introduced 7T-values, which are
essentially expansion parameters of the generating functional
for correlation functions. More precisely, these parameters T
depend on the particular model (vacuum) around which the
perturbation expansion is performed, and they differ slightly
from the model-independent 7. Another set of ‘times’, 7T,

twhere ry = K Res[V' (W) *"du.

[p/k(p —

parametrises the shape of the polynomial ‘potential’ V, (X )
(ofdegreep + 1) and describes the coordinatesin the space of
(matrix) models. These two types of variable—parameters
of the generating functional and those labelling the shape of
the Lagrangian —are almost the same [in fact they would be
exactly the same if there were no loop (quantum) effects].
This similarity between Ts and rs is reflected in the
remarkable property of the partition function of the
(p, )-model—essentially it depends only on the sum of
‘times’ T and r [40]:

ZVN{T} :fp(r|Tk + rk) ‘L'p{Tk =+ }’k} (]]2)
with some simple (and explicitly known) function f,. [In
Eqn (1 8), for the monomial cubic potentlal Vi(x) = §x3
Tk— Ti= (]/k)tI‘L —ki2 , while r, = 5k3]

The last thing to be mentloned in thls general description
of matrix model theory is its relation to group theory. The
generalised Kontsevich model (1.7) is intimately connected to
the ‘integrable nature’ of group characters and the coadjoint
orbit integrals {the characters of all the irreducible
representations of U(N ) are usually KP t-functions[101]}.
In fact a ‘discrete (or quantum) version’ of the Kontsevich
integral is the sum over all unitary irreducible representations
of U(n) [the ‘integral’ over a model of U(n), or over the set of
all coadjoint orbits]

FiG}= ZdRXR(G exp[ kack(k} (1.13)

where dg, xr,and Cr(R)arethe dimension, character, and the
kth Casimir operator of the irreducible representation, R, of
U (n). The time variables Ty ~ (1/k) tr G¥, while the potential
V(X)= Y2,sxX* This expression can be further
generalised to

Fy{G}= ZXR(G ) % (G) exp[ kaCk(R} . (1.14)

Properties of these ‘quantum’ Kontsevich models deserve
further investigation [objects like Eqn (1.13) are also known
to arise in the localisation theory; in particular, in the study of
2d YM theory —see, for example, [43, 44].

These notes are essentially a review of the views and
results of the group working in Moscow (and Kiev). Since
references will not be given every time, [ present here the list
of people involved in these investigations: L Chekhov,
A Gerasimov, A Losev, S Kharchev, Yu Makeenko,
A Marshakov, A Mikhailov, A Mironov, A Orlov,
S Pakulyak, I Polyubin, A Zabrodin.

I also apologise for the somewhat sporadic references to
the works of other groups.

2. Ward identities for the simplest matrix
models

2.1 Ward identitites versus equations of motion

[ begin systematic consideration of matrix models from their
simplest, and at the same time most basic, property: the
Ward identities (WIs) for partition functions. A partition
function is, by definition, a functional of the coupling
constants in the Lagrangian, and WIs will be understood
here as (differential or finite-difference) equations, imposed
on this functional. If the partition function is represented in
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the form of a matrix integral,f the Wls are usually implied by
its covariance under the change of the integration variables
(thus the name “WI°).

In ordinary field theory, one is usually dealing with
models where the WIs either do not exist at all, or at most
thereisa finite number of them —then they are interpreted as
reflecting the symmetry of the theory. However, by no means
doesthe finite set ofthese Wls prove a complete description of
the dynamics of the theory: the number of (quantum)

FTo avoid confusion I should emphasise that such a representation does
not need to exist, at least in any simple form. The more the theory of
matrix modcls develops, the less it has to do with matrices and matrix
integrals. However, (as in the case of entire string theory) the original
name has a tendency to survive. Anyhow, the main content of the theory
of matrix models (at lcast of the branch, analysed in thesc notcs) is the
search for invariant formulations of the properties of partition functions,
while matrix integrals (if cxisting at all) arc considered as their particular
realisations (representations). Moreover, therc can exist very different
matrix intcgral representations of the samc partition function, the
simplest cxample being just the basic discrete 1-matrix model, which can
also be represented in the form of a Kontsevich integral (see below).

equations of motion (EqMs) is usually infinite and their
solutions are never fixed by the WIs. In fact this difference
between WI and EqM arises because the Lagrangians,
considered in the ordinary field theory, are not of the most
general form: they are usually severely restricted by
‘principles’ like renormalisability or minimality. Because of
this there is simply not enough coupling constants in the
Lagrangian to describe the result of any variation of
integration variables as that of the variation of coupling
constants, and thus not every EqM can be represented as a
(differential) equation for the partition function. In other
words, by restricting the shape of the Lagrangian for
‘nonsymmetric’ reasons one breaks the model’s original
huge ‘symmetry’ (covariance), which was enough to describe
all the dynamics (all EqMs) as dictated by symmetry, and a
broader view is necessary in order to recognise EqM as the
WI associated with that original high symmetry. This
symmetry (which is not a Noether symmetry, of course) is a
peculiar property of all the quantum-mechanical partition
functions, since these usually arise from the procedure of
functional integration.
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Matrix models appeared to be the first class of quantum-
mechanical systems (functional integrals) for which the
identity

all EQMs = all Wls

was not simply observed as a curious phenomenon, but
became a subject of intensive investigation and is identified
as the source of exact solvability (integrability) of the theory.
Of course, the significance of this observation (and its
implications) is quite universal and is by no means restricted
to the field of matrix models themselves; however, it is not yet
appreciated enough by the experts in other fields. In any case,
[ am going to deal only with matrix models in these notes.

I proceed to the consideration of the WI according to the
plan illustrated in Fig. 4 (not all the arrows will be discussed).

2.2 Virasoro constraints for the discrete 1-matrix model
The basic example [26, 27] which illustrates the arguments
from the previous subsection is provided by the l-matrix
model

o0
ZN{t}ECNJ dH exp T TrH* | .
NXN k=0

This integral is invariant under any change of variables
H — f(H ). It is convenient to choose the following special
basis in the space of such transformations:

8H =g, H"' .

@2.1)

2.2)

Here ¢, is some infinitesimal matrix and, of course, n = —1.
The value of the integral cannot change under the change of
integration variable, and the following identity is obtained:

[e ¢}
dH exp t TrH*
JNxN <Z

k=0

00
= Jd(H + &,H ") exp [Z ty Tr(H + &,H " )k} ,
k=0

that is,

o0 00 n+l1
JdH exp (Ztk TrH ") (Z kti Tt H*" + Tr SZH )

k=0 k=0

0.

2.3)

In order to evaluate the Jacobian Tr(8H " !/8H ), the matrix
indices should be restored:

(SHnH)ij — Z(H kSHH’Fk)U
k=0

(H ) (8H),, (H"™)

mj
k=0

In Tr (8H "*!/8H ) one should take [ = iand m = j, so that

SH "t u
= ZTrH" TrH" .
SH £

Tr 2.4)

Now note that because one started from a Lagrangian of
the most general form (consistent with the symmetry
H — UHU 1), any correlation function can be obtained as a
variation of the coupling constants (all possible sources are
included as counter-terms). In my particular example this is
just a trivial remark:

(TrH" ... TrH™)

00
= JdH exp (Ztk Ter>TrH‘“ LTrH
k=0
- 7.1 @3
ot ..o, NUI '
This relation can be used together with Eqn (2.4) in order to
rewrite Eqn (2.3) as

L.Zy{t}=0, nz= -1, (2.6)
with
00 a n 62
L,= kt 2.7
; k 6tk+n = Ot Ot,—y 2.7)
Note that, according to the definition (2.1),
0
—Zn=NZy .
T N

Several remarks are now in order.

First, the expression in brackets in Eqn (2.3) represents
allthe EqMs for the model (2.1), and Eqn (2.6) isnothing but
another way to represent the same set of equations. This isan
example of the above-mentioned identification of EQM and
WI.

Second, the commutator of any two operators L,
appearing in Eqn (2.6) should also annihilate Zy{t}.
Another indication (not a convincing one, however) that we
already have a complete set of constraints is that L, forms a
closed (Virasoro) algebra:

[LmLm] = (” - m)Ln+m 5 n,mz — 1.

(2.8)

Third, Eqn (2.6) can be considered as an invariant
formulation of the definition of Zy: Z, is a solution of this
set of compatible differential equations. From this point of
view Eqn (2.1) is a particular representation of Zy and it is
sensible to look for other representations as well (I shall later
discuss two of them: one in terms of conformal field theory
(CFT), another in terms of Kontsevich integrals).

Fourth, one can try to analyse the uniqueness of the
solutions of Eqn (2.6). If there are not too many of them the
set of constraints can be considered complete. A natural
approach to the classification of solutions of the algebra of
constraints is in terms of the orbits of the corresponding
group [45]. Let us consider an oversimplified example, which
can still be useful in understanding the implications of the
complete set of Wls as well as in clarifying the meaning of
classes of universality and of integrability.

Imagine that instead of Eqn (2.6) with L, defined in
Eqn (2.7), we would obtain the somewhat simpler equations¥

0
atk+n -

o0
1LZ=0, n>0; with l,,:Zktk
k=1

Then operator /; can be interpreted as generating the shifts
ty =t + &t ,

ty — 13 + 211,

FOne can call them the ‘classical’ approximation to Eqn (2.6), since they
would arise if the variation of measure (i.e. a ‘quantum effect’) was not
taken into account in the derivation of Eqn (2.6). Though this concept is
often used in physics it does not make much sense in the present context,
where I am analysing exact properties of functional (matrix) integrals.
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It can be used to shift #> to zero, and the equation 1Z = 0
then implies that

Z(l],l‘z,l‘3,...) ZZ(tl,O,lT3,...)

(=t — (k= Dtaty1/ti,  k=3].
Next, the operator [, generates the shifts

t3 — 13 + &t ,

ty = 1y + &1,

and does not affect f,. One can now use the equation LZ = 0
to argue that

Z(t1, b2, t3,t4,...) = Z(t1,0,13, 14, ....) =Z(l|,0,0,i,~~~) ,

etc. Assuming that Z is not very dependent on f; with
ty = oot, it is possible to conclude that

Z(t1.tots,...) = Z(t1,0,0,...) = Z(1,0,0,...)

(in the last step | also used the equation [pZ = 0 to rescale ¢,
to unity).

All this reasoning is correct provided f; # 0. Otherwise
one would get Z(0,1,0,0,..), if #1= 0 and 1 #0;
Z(0,0,1,0,..)if t; = t,= 0, t3 # 0, etc. In other words,
one obtains classes of universality (such that the value of the
partition function is the same in the whole class), which in this
oversimplified example are labelled just by the first
nonvanishing time-variable. Analysis of the orbit structure
for the actually important realisations of groups, like that
connected to Eqn (2.7), has never been performed in the
context of matrix model theory. It may deserve emphasising
that the constraints, as we saw, can actually allow one to
eliminate (solve exactly) all the dependence on the time-
variables. In less trivial examples they somehow imply the
integrability structure, which is just a slightly more
complicated version of the same solvability phenomenon.

2.3 Conformal-field-theory formulation of matrix models
Given a complete set of the constraints on a partition
function of infinitely many variables which form some
closed algebra one can now ask an inverse question: how
these equations can be solved or what the integral
representation of the partition function is. One approach to
this problem is the analysis of the orbits, briefly mentioned at
the end of the previous section. Now I turn to another
technique [39], which makes use of knowledge from CFT.
These constructions can have some meaning from the
‘physical’ point of view, which implies certain duality
between the 2d world surfaces and the spectral surfaces,
associated with the configuration space of the string theory.
However, the goal now is more formal: to use the methods of
CFT to solve the constraint equations.

This is very natural in the case when the algebra of con-
straints is a Virasoro algebra, as in the case of the 1-matrix
model, or some other algebra if it is known to arise naturally
as a chiral algebra in some simple conformal models. In fact,
the approach which will now be discussed is rather general
and can be applied to the construction of matrix models
associated with many different algebraic structures.

I begin from the set of Eqn (2.6) which shall be referred to
as ‘discrete Virasoro constraints’. The CFT formulation of

T This, by the way, is hardly correct in this particular example, when the
group has no compact orbits.

interest should provide the solution to these equations in the
form of some correlation function in some CFT. Of course, it
becomesnatural to somehow identify the operators L,,, which
form a Virasoro algebra, with the harmonics, T, of the stress
tensor, which satisfy the same algebra, and manage to relate
the constraint that the L, operators annihilate the correlator
to the statement that the 7, values annihilate the vacuum
state. Thus, the procedure is naturally split into two steps:
first one should find a r-dependent operator (‘Hamiltonian”’),
H (t), such that

La(e) (explH (D). = fexp[H ()],

This will relate the differential operators L, to the #, values
expressed through the fields of the conformal model. Second
one needs to enumerate the states that are annihilated by the
operators t, with n = —1, i.e. solve the equation

T,|G)=0 (2.10)

for the ket states; this is an internal problem of CFT. If both
ingredients, H(¢r) and |G), are found, the solution to the
problem is given by

(exp[H(1)]|G) .

To be more explicit, for the case of the discrete Virasoro
constraints one can look just for solutions in terms of the
simplest possible conformal model: that of a 1-holomorphic
scalar field:

2.9)

(2.11)

A Ik
¢() =g+pnz+Yy —z*;

[Jns Jm] = n5n+m,0 5 (2]2)

[§.p]=1.

Then the procedure is as follows: define vacuum states

Jk|0>=0, <N|J,k=0 (k>0),

plOY=0. (Np=N{N|: 2.13)
the stress tensor

T() =3 8EF = 37,72,
T, = ZL,JkH +1 > Jads (2.14)
k>0 a+b n
a,b =20
and the Hamiltonian
1
H(t tyJy = U(Z)J(Z) )
g; \/E Co
=>ud, JE)=0(). (2.15)
k>0

[t can now easily be checked that

L,(N|exp[H(t)]... = (N|exp[H($)]|Tx (2.16)
and

T,0)=0, n=—1. (2.17)
As an immediate consequence, any correlator of the form

Zy{1]G} = (N |exp[H (1)]G10) 2.18)
gives a solution to Eqn (2.6), provided

[T,,G]=0, n=-—1. (2.19)
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In fact, operators, G, that commute with the stress tensor are
well known: these are just any functions of the ‘screening
charges’t Q 4, where

Qs = Siili = Ei; exp (£V29) . (2.20)

The correlator (2.18) will be nonvanishing only if the
matching condition for zero-modes of ¢ is satisfied. If one
demands that the operator depend only on Q +, this implies
that only one term of the expansion in powers of Q.+ will
contribute to Eqn (2.18), so that the result is essentially
independent of the choice of the function G(Q +); one can,
for example, take G(Q +) = exp Q + and obtain:

Zy{1} ~ 7 (Y explH (1))(0)"10) (2.21)

This correlator is easy to evaluate by means of the Wick
theorem and the propagator ¢(z)d(z') ~In(z—z") and
finally one gets

Sk e[ Jsb veee)
x ]‘_ﬂ[ffc dz; texp [\/54)(@)]: |0)

N'Hii; dz;exp[U(z;) ]H(z, —z,

i<j

Zy{t} =

(2.22)

in the form ofa multiple integral, which can in fact be directly
related to the matrix integral in Eqn (2.1); see [46] and the
next section.

Thus, in the simplest case the inverse problem has been
resolved: the integral representation has been reconstructed
from the set of discrete Virasoro constraints. However, this
answer seem to be a little more general than Eqn (2.1): the
r.h.s. of Eqn (2.22) still depends on the contours ofintegration.
Moreover, one can also recall that the operator G, above,
could depend not only on Q+, but also on Q_. The most
general formula is a little more complicated than Eqn (2.22):

1

20110 €Y ~ oy Y e 1™ ()10
1 N+M
= oo L §, deolv)
Nﬁw(zl_Z/ H(z _Z
TF < exp (U] (2.23)

I I]G-=)
=1 r=1

See [39] for a discussion of the issue of contour dependence.
In a certain sense, all these different integrals can be con-
sidered as branches of the same analytical function, Zy {t}.
Dependence on M is essentially eliminated by Cauchy integra-
tion around the poles in the denominator in Eqn (2.23).

The above construction can be applied straightforwardly
to other algebras of constraints, provided:

T For notational simplicity I omit the normal ordering signs; in fact the
operators involved are : expH : and :exp (:I:\/f(p) :

(i) The free-field representation of the algebra is known in
the CFT framework, such that the generators are polynomials
in the fields ¢ (only in such a case is it straightforward to
construct a Hamiltonian H, which relates the CF T realisation
of the algebra to that in terms of the differential operators
with respect to the t-variables; in fact, under this condition,
H is usually linear in the 7s and ¢s). There are examples (like
the Frenkel—Kac representation of level k = 1 simply-laced
Kac—Moody algebras[47] or generic reductions of the
WZNW model[16,48—51] in which the generators are
exponents of the free fields; in these cases the construction
should be slightly modified.

(ii) It is easy to find the vacuum state, annihilated by the
relevant generators (here, for example, is the problem with
the application of this approach to the case of ‘continuous’
Virasoro and W-constraints). The resolution of this problem
involves consideration of correlations on Riemann surfaces
with nontrivial topologies, often of infinite genus.

(iii) The free-field representation of the ‘screening
charges’ (i.e. operators that commute with the generators of
the group within the conformal model) is explicitly known.

These conditions are fulfilled in many cases in CFT,
including conventional W-algebras[52] and N =1 super-
symmetric models [53].1

For illustration purposes, I present here several formulas
from the last paper of [39] for the case of the W, ;-con-
straints, associated with the simply-laced algebras A of rank
r.

The partition function in such a ‘conformal multimatrix
model’ is a function of ‘time variables’ t,(('l), k= 0...00,

A= 1,.,r= rank A, and also depends on the integer-
valued
r-vector N = {Nji,...,n,}. The W, ;—constraints imposed on

the partition function are
W (nzi{t} =0,

The form of the W-operators is somewhat complicated; for
example, in thecaser + 1 = 3 {i.e. for A= A,[SL (3)]},

=>l—a, a=2,...,r+1.224%

o0

0 _ 0
@ — -
W Z("’k T ar‘m)

k=0
+ > &, 0 (2.25)
< Ot,0t, 0f,01, ’ '

d -
w ) = ktplt)j ———— — kil
" Z( ¢ latk+n+l K

0 _ 0
— 2kt i It} —
KT 0 Otk ynti Otk nti

o o @
(’“ “aron Megan K

+2>° )

k>0 a+b=n+k

A D G m— (226)
3 0t,0t,0t.  0t,01,0%. ) ° '

a+b+c=n

11In the case of N' = 2 supersymmetry a problem arises because of the
lack of reasonable screening charges. At the most naive level the relevant
operator to be integrated over superspace (over dz d¥0) in order to
produce screening charge has dimension 1 —%N, which vanishes when

N= 2
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and two types of time-variables, denoted by #; and 7; are
associated with two orthogonal directions in the Cartan plane
of As:

o _ \/§V2

v v

All other formulas, however, are very simple: the

conformal model is usually that of the r free fields, where

S ~jé¢6¢dzz, which is used to describe representation of

the level-one Kac—Moody algebra associated with A. The
Hamiltonian

+

H(tW, ... 1) (2.27)

sz widi

=1k>0

where the set {u,} is associated with the ‘fundamental weight’
vectors v, in the Cartan hyperplane and, in the simplest case
of A= A,[SL(r + 1)], satisfy

1 r+1

Piky =0 ———, > u;=0;

r+l i=1
thus, only r of the time variables t (1, ..., t @+ D are linearly
mdependent The relation between the differential
operators W,, (t) and the operators W(“) in CFT is now
defined by

W @O(N | exp[H(t)] ... = (N| exp[H ()]W ...,

a=2,...,p; =>1—a, (2.28)
where

W@ = §1a+n—lw(a)(z) ’

W@ (z) = (2.29)

Z[‘ula¢(2)]d +...,
A

are spin-a generators of the Wﬁl—algebra. The screening
charges, which commute with all the W «/(z), are given by

00 — ii;J @ _ % exp o , (2.30)

{a} being the roots of the finite-dimensional simply laced Lie
algebra A.
Thus, the partition function arises in the form

Z3{t} = (N | exp[H(1)]G{Q ®}|0) , (2.31)

where G is an exponential function of screening charges.
Evaluation of the free-field correlator gives

741} ~ JH [IN_[ dz® exp ( > fi”(ﬂm)(l@)")]

A k>0

<1 HH(Z(a) By

(,f) i=1 j=

In fact this expression can be rewritten in terms of an r-matrix
integral—a ‘conformal multimatrix model’:

(2.32)

T Such an orthogonal basis is especially convenient for the discussion of
integrability properties of the model; these r and 7 are linear combinations
of the time-variables ¢ # appearing in Eqns (2.27) and (2.32).

Z?y{rw}:w—'j dHO . dH D
NxXN

p—1 00
X H exp (Z t,(c“) Tr H(/;))
a=1 k=0

x [[Det(H® @1 —1@H )%
(2,8)
In the simplest case of the Wi-algebra, Eqn (2.32), with the
insertion of only two (of the six) screening charges Q,, and
Q.,, turns into

(2.33)

———(N1,Na| exp[H(s, f)](Q(m))Nl(Q(az) N>

0)

A,
ZN| Na( f) 'N [

_ ﬁ]‘[ [ axiexp(ueo)
<1 J dy; exp[U()JA(X)A(xp)A(y) . (234)

where A(x,y) = A4(x)A(y)[];, ;(xi—y»). This model is
associated with the algebra A= A, [SL(3)], while the
original 1-matrix model (2.21)—(2.23) is associated with
A= A, [SLQ2)]

The whole series of models (2.32)—(2.33) for A=
ASL(r + 1)] is distinguished by its relation to the level
k= 1 simply-laced Kac—Moody algebras. In this
particular situation the underlying conformal model has
integer central charge c¢(= r= rankA) and can be
‘fermionised’.f The main feature of this formulation is that
the Kac—Moody currents (which, after integration, turn into
‘screening charges’ in the above construction) are quadratic
in fermionic fields, while they are represented by exponents in
the free-boson formulation.

In fact the fermionic (spinor) model naturally possesses
GL(r + 1) rather than SL(r + 1) symmetry (other simply-
laced algebras can be embedded into larger GL-algebras and
this provides a fermionic description for them in the case of
k = 1). The model contains r + 1 spin% fields ¥; and their
conjugates ¥; (b, c-systems):

r+1

zzj%&p_,d%,

J=1

where the central charge is given by ¢= r + 1, and the
operator algebra is
~ S
T ) = 2t U )
Vi@ (") = @ — 20 (@)Y (2)
+ (1= 0) = ()Y (2)
l/’j(z)'//k(z ) (7 _Z,)ajk ‘/’j(z)'//k(zl) N
+ (1 =) ;W (2)

1 This is possible only for very special Kac—Moody algebras, and such a
formulation is important in order to deal with the conventional formula-
tion ofintegrability, which usually involves commuting Hamiltonian flows
(not just a closed algebra of flows) and the fermionic realisation of the
universal module space (universal Grassmannian). In fact these
restrictions are quite arbitrary and can be removed (though this has not
yet been done in full detail); see Section 4 below for a more detailed
discussion.
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The Kac—Moody currents of level k = 1 GL(r + 1) are just
Jix = Y (j, k= 1,...,r + 1), and the screening
charges are given by Q @ = iE /(Z)_(f Yy 1, where E/(Z) are
representations of the roots @ in the matrix representation of
GL (r + 1). The Cartan subalgebra isrepresented by J;;, while
positive and negative Borel subalgebras are represented by
Jjr with j< k and j> k, respectively. In Eqn (2.23),

0. = ifi;%%’ 0_= i%%% ;
while in Eqn (2.34),

0 @) = iifu/j]l//b 0 = iff%n/@,

0@ — iwz./@ 0= iﬁ@/f‘,

Q@ = i%&ﬂ/’ls Q)= iiﬁ%‘/’z .

Q@) can be substituted for Q) in Eqn (2.34) without
changing the answer. For generic r the similar choice of
‘adjacent’ (not simple!) roots (such that their scalar products
are + 1 or 0) leads to the selection ofthe following r screening
operators

0= i 00 iy 0O Gl

ie. QW) = ifﬁ%l//jﬂ for odd j and Q) = —i§1//j%+] for
even j.

2.4 Gross—Newman equation
[ now consider the WIs for another sort of matrix model. This
subject concerns at least two important classes: the
conventional discrete 2-matrix models and the Kontsevich
models. As was explained in the introduction, theories of the
second type arise from consideration ofthe (p, 1) continuous
matrix models, as well as from the study of topological
Landau—Ginzburg theories; while the 2-matrix model is
believed to exhibit a rich pattern of continuous limits and is
capable of providing representations of all the (p, ¢) uni-
versality classes (this line of reasoning, however, has never
been fully developed and I shall not discuss it in these notes).
The starting point and the basic example is provided by
the integral

FvuiL} = J

nxn

dX exp[—tr V(X ) +tr LX | (2.35)
over n X n Hermitian matrices, which I shall further refer to
as the ‘Kontsevich integral’, in order to keep in mind its most
important application (though, this obvious quantity has, of
course, been considered by many other people). [t may seem
that the action in this integral is not of the most general type
and one can no longer perform an arbitrary change of
variables X — f(X'), without changing the functional form
of the integral. In fact this is incorrect, because the ‘external
field’ L is matrix valued and is coupled linearly to X, and
therefore any correlator of X fields can be represented through
L derivatives. Consider again the shift X — X + g, X "+ !,
n = —1. Invariance of the integral implies

de exp[—tr V(X) +tr LX |tre, ( —X"V(X) 4+ Lx "t

+zn:thrX”‘k> =0,

k=0

which can be written ast

a n+1 a a n+l
_— / —_——
e [( 6Lt,> Y (6L1r> +L( aLtr)
n 9 k d n—k
- - L
2a) (a) o

d n+1 , d
con(-2) " () )= s

This system is in fact equivalent to a single matrix-valued
equation:

V(i) -]ma =o.

As far as | know, this equation was first written down by
Gross and Newman [54]; therefore, it will be referred to as the
Gross—Newman (GN) equation. It was rediscovered and its
implications for the theory of matrix models were
investigated in [24, 30, 38].

There are essentially two types of corollary, which will be
discussed in the next two subsections. First, the GN equation
can be used to characterise the function Fy{L } itself. This
will lead to the consideration of Kontsevich models. Second,
it can be used to derive equations for the 2-matrix model,
which arises after Fy {L } is further integrated with some
weight over L.

(2.37)

2.5 Ward identities for the generalised Kontsevich model
Being just the complete set of EQMs, the GN equation (2.37)
provides complete information about the function Fv{L }.
However, this statement needs to be formulated more
carefully. A reason for this comes, for example, from the
observation that the operators

wn v (5p-) -1
aLtr

do not form a closed algebra: their commutators have some
different functional form. One of the reasons for these
complications is that Eqn (2.37) does not account explicitly
for a very important property of Fy {L }: that this function in
fact depends only on the eigenvalues of L. This information
should be added somehow to the GN equation. I shall
analyse this issue of eigenvalue dependence in more detail in
the next sections. For my current purposes this argument
implies that one should try to express Eqn (2.37) in terms of
eigenvalues. Here, however, one should be careful again.
Clearly, Fv {L } depends not only on eigenvalues, it depends
also on their ‘symmetric’ (Weyl-group invariant)
combinations, i.e. it depends more on quantities like tr L
than on particular eigenvalues. Moreover, powers a here
should be negative and fractional.

Indeed, integrals like that in Eqn (2.35) are usually
understood as the analytical continuation from some values
of parameters in the potential V, when the integral is

(2.38)

1 The obvious relation is used here: X5 exp (trLX ) = (0/0Ls,) exp(trLX ).
Note that the order of the matrix indices pd is reversed on the r.h.s. as
compared to that on the left hand side (1.h.s), i.e. derivatives are in fact
taken with respect to the transposed matrix L: f(X )exp(trlX)
= f(0/0ly)exp(tr LX) [at least for any function f(x) which can be
represented as a formal series in integer powers of X ].
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convergent. They can also be related to the formal
(perturbation) series arising when the integrand is expanded
around a stationary point. To begin with, it is reasonable to
take n = 1i.e. to consider just an ordinary integral. For the
sake of simplicity, one may also take V(x) to be given by
V(x)= —xP*Y(p+1). Then, the stationary point is at
x = AP and

xp+l
de exp (_p I +lx>

~ ]3P oy [—p l(”+l)/”] el H P
Pl kz;:o '

(2.39)

It is now easy to understand what should be done in the
general situation with matrices and arbitrary potentials.
First of all, one needs to solve the equation for the
stationary point: V'(X)= L. For this purpose it is most
convenient to introduce a new matrix variable A instead of L,
which by definition satisfies V'(A)= L. Then, the
stationary point is just X = A. Second, one should separate
the analogue of the complicated prefactor (quasiclassical
contribution) Cy {A }, where

2 oxp{tr[AV(4) = V (A)]}
\/detV7(A) '
Then, the function that describes the pure ‘quantum’
contribution,}
Z{T}=C{A} ' Fy{v'(4)},

to be referred to as the partition function of the generalised
Kontsevich model (GKM) [30], can be represented as a
formal (perturbation) series expansion in the variable, where

Cy {4} = (2n) (2.40)

(2.41)

1
Tk = —trAfk .

p (2.42)

The GN equations (2.37) can be now rewritten as a set of
differential Eqns for Zy {T }. Indeed, we already have

0
cy' [v’(m) —L]cvzv{r} =0,

but it is still necessary to express the operator on the L.h.s. in
terms of 7. This is in fact possible by means of the relation

d 0T, 0Z
o, 2T = e, ot

and substituting the traces of the A matrices, which can arise
in the process of calculation, by T's. It is important only that
the As usually appear in negative powers: this is achieved by

(2.43)

(2.44)

fTThe ‘classical action’ in Eqn (2.40) can also be represented as
tr[AV'(A) =V (A)] = tr[AdV'(4). The determinant of the quadratic
fluctuations is defined as

et VA ~ [y expltrva(a, ¥

where Vy (A, Y )=limgo[V(A+eY )-V(A)—eV'(A)Y ] For V(A) =

AP (p+1) we have V"(A4) = Ef;(l) A* @ AP7*=1 One could easily
choose an ‘opposite’ parametrisation in Eqn (2.42): Tx = —(1/k)tr A—*.
Though not quite obvious, this never influences any results (see Section
2.10 for an example). The choice of signs is motivated by a simplification
of formulas for the GKM including the relations between L and A.
Instead, some sign factors appear in the formulas, and are related to Toda-
like representations of partition functions and those involving W—opcrators.

the choice of a proper normalisation factor Cy{A }. For the
monomial potential

X Pt
V,(X)=
this is especially simple:
oT 1
L=A" and ——~=——A"F,
aLtr P

This reasoning allows one to
identically in the form

Y AT'o(T)2{T}=0,

rewrite Eqn (2.43)

(2.45)

where the O; are differential operators that are dependent on
the shape of V, but are independent of the size, n, of the
matrix (because none of the above reasoning referred to
particular values of n, except for an example at the very
beginning). It remains to use the fact that matrix L can be
arbitrarily large and have arbitrarily many independent
entries, in order to deduce a set of constraints on Zy in the
form

OT)Zy{T}=0.

For a potential V of degree p + 1 these appear to be
exactly the ‘continuous Virasoro constraints’. See [24, 30] for
a detailed analysis of the Virasoro case p = 2 (associated
with pure topological gravity and with the double-scaling
limit of the 1-matrix model), and [55] for an exhaustive
presentation of the case of p = 3.

(2.46)

2.6 Discrete Virasoro constraints for the gaussian
Kontsevich model

As a simple illustration of the technique described in the
previous subsection, I now derive the constraints for the
gaussian Kontsevich model [56] with potential V(X))
= %XZ:

exp(—tr 1L?)
Z:{N. T} = W
x JdX(detX YWexp(—tr IX2+LX ). (247

Inthiscase,L = V'(A)= A,andthetime-variablesare just

1 1
T, =—trA7* :ZtrL_k .

p (2.48)

To make the model nontrivial an extra ‘zero-time’ variable
[36], N,isintroduced, which was not included in the previous
definition (2.41). Now note that the N dependence of the
Kontsevich integral (2.35) can be described simply as an extra
term in the potential: V(X )— V(X) = VX)-NInX
(though, this can be done neither in the quasiclassical factor
Cy nor in the definition of the time variables 7). Since the GN
equation depends only on the Kontsevich equation, one can
use it with V substituted by V. Then one has the following
instead of Eqn (2.43):

exp(—tr %Lz)( G >”+' ) ( Gl )l N
— | = ——N —L|(detL
(detL)N 0Ly 0Ly 0L+ ( ¢ )

xexp(tr L) Z] ,{N.-T} =0. (2.49)
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In order to get rid of the integral operator (/0L )~
should take here n > 0 rather than n > —1. In fact all the
equations with n > 0 follow from the one with n = 0, and I
restrict consideration to the last one. For n = 0 one obtains
from Eqn (2.49):

[fa N 2 0
<6L"+ +L> _2N_L(6L“+ +L>]Z—O,

VER% XN\ @ N2 N 1
<6L"> +<L +T>6T“+F_Ztr2:|z_o’

(2.50)

or

and it remains to substitute
0z i 1 0z
oL, — L*+1 9T}

Rz = [k 1Yoz & 1 iz

L Z <21:L e T, + “2::] L *+2 3T, 0T,
% 1 1 0z

=2 e [ 2 (“—L ) o

k >max(m,0)
m—1 2
0z
* ; aT/<aTm—k :| ’
and finally obtain

. | 00 | 3 m—1 62
Z [ m+2 Z (tr ﬁ) 6Tk+m + ; aTkaTm+k

m=—1 k=146,

0 0 1
— 2 N 2 m,0 — N T my— Z
aTm+2 N aTm * 0 0 (tr L> ° ' ]:|

00

1
= Z Lm+2eXp(NT0)Lm(T+”) exp(—NT)Z=0.

m=—1

2.51)

Here, L, (t) are just the generators (2.7) of the discrete
Virasoro algebra (2.6):

exp (Nt o)L (1) exp(—Nto)

= exp(Nto) (Zktk

ot ktm

m 62
)

and, on the r.h.s. of Eqn (2.51), re = —16k2.1
Thus, it was found that the WIs of the gaussian
Kontsevich model (2.47) coincide with those of the ordinary

T This small correction is a manifestation of a very general phenomenon:
in terms of symmetries (WIs) it is more natural to consider Zy not as a
function of T-variables, but of some more complicated combination,
T4 + ri, depending on the shape of})Otcntial V. If V is a polynomial
of degree p + 1, then T = tr v( A)]_k ? [k, while ry is given by

P 1—k/p
rnn = —=Res[V'(u du .
o = Re v ) A
For monomial potentials these expressions become very simple: Ty = T
and r, = —[p/(p+1)I0k,p+1. See [39] and Section 4.9 below for more

details. In most places in these notes I prefer to use invariant potential-
independent times T instead of fk, but then the WIs acquire some extra
terms with rx (in fact, these terms will be very simple in my examples,
which are all given for monomial potentials).

I-matrix model; moreover, the size of the matrix N in the
latter model is associated with the ‘zero time’ in the former
one. This result [56], of course, implies that the two models
are identical:
eXp(—NTo)Z%Xg{N,T] ,T2, .. } ~ ZN{T(),T|,T2, .. } . (253)
I shall discuss the direct connection between the two matrix
integrals (2.1) and (2.47) in the next section, after some more
details have been presented about the structure of
‘eigenvalue’ matrix models.

2.7 Continuous Virasoro constraints for the V = %X 3
Kontsevich model

This example is a little more complicated than that in the
previous subsection, and I do not present the calculations in
full detail (see [24, 30]). My goal is to demonstrate that the
constraints which arise in this model, though they still form (a
Borel subalgebra of) some Virasoro algebra, are different
from Eqn (2.6). From the point of view of the CF T-formula-
tion the relevant model is that of the rwisted (in this particular
case, antiperiodic) free field. These so called ‘continuous
Virasoro constraints’ give the simplest illustration of the
difference between discrete and continuous matrix models:
this is essentially the difference between ‘homogeneous’
(Frenkel—Kac) and ‘principal’ (soliton vertex operator)
representation of the level k = 1 Kac—Moody algebra. In
terms of integrable hierarchies, this is the difference between
Toda-chain-like and KP-like hierarchies. I shall come back
to a more detailed discussion of'this difference later, when the
‘multiscaling continuum limit’ will be considered.

Another (historical) aspect of the same relation also
deserves mentioning, since it also illustrates the interrelation
between different models. The discrete 1-matrix model arises
naturally in the description of quantum 2d gravity as the sum
over 2-geometries in the formalism of random equilateral
triangulations. The model, however, describes only lattice
approximation to 2d gravity and the (double-scaling)
continuum limit should be taken in order to obtain the real
(continuous) theory of 2d gravity. This limit was originally
formulated in terms of the constraint algebra (EqMs, or
‘loop’ or ‘Schwinger —Dyson’ equations—the terminology is
dependent on taste), leaving open the problem of what the
form of the partition function, Z°°"{T }, of the continuous
theory, is. Since the relevant algebra appeared to be just the
WIs for the Kontsevich model [with V(X)= 1X3] this
proves that the latter one is exactly the continuous theory of
pure 2d gravity. At the same time, the Kontsevich model itself
can be naturally introduced as a theory of fopological gravity
(in fact this is how the model was originally discovered in
[22]). From this point of view the constraint algebra, to be
discussed below, plays a central role in the proof of the
equivalence between pure 2d quantum gravity and pure
topological gravity (in both cases ‘pure’ means that ‘matter’
fields are not introduced).

After these introductory remarks, I now proceed to the
calculations. Actually they just repeat those for the gaussian
model, performed in the previous subsection, but the
formulas get somewhat more complicated. This time I do
not include zero-time N and just use Eqn (2.37) with
VX)= %X3. Now it is also much more tricky (though
possible) to work in matrix notation (because fractional
powers of L will be involved) and I rewrite everything in
terms of the eigenvalues of L.
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The following substitutions are made:
[Lsexp (%’1 (33/2)
\/Hy,5 (\/j'—é + \/l_'y)

o Z G
L), ap <7y — 15 o1, k)’

introducing the notation
D 0
Di, ~ =Co i,

0 1 1 1
T/ AL . S
o, Vi 47, 2;\/17(\/z+ /)

C%Xl =

~—Cyys

Then, Eqn (2.37) becomes

[(D%y>z+z;,1y 1,1,; (Dzz Dz,i;)]z'x‘{” =0

(2.54)

Now an explicit expression for T is needed:

1
T, =-L7*%,

p (2.55)

and, as is already known from the previous subsections,

—gék 3. (2.56)
3 9

is also needed. Although the fact will not be explained until I

turn to consider the integrable structure of the Kontsevich

model in the following sections, Z%Xg {T } is independent of

all time-variables with even-numbered subscripts. Therefore,

one can take only k = 2a + 1in Eqn (2.55):

1 —at 2
Tart=5—D A5 5 man=—301, (@25))
é
and
0
a—lyZ%XX{T}

04, aT2a+l 24 aT2a+I ’

o 1 0z
—Z1:{T} =- Aa b-3__ Y~
043 x {r} 4d;0 ! 0T 244107 241

> -3 0Z
§;<a+ > T QT

When these expressions are substituted into Eqn (2.54), one
obtains

- i —a—b—3 62

452 T 241102511

Zlgtd
)

_|_

NI—‘

6y ly

(Vs S ) o

tll2= Z,{n+2 nZ (2.58)
n=—1
with
£ _i “"’l (T2as1 + 1 )+L
2n — £ P 2a+1 2a+1 6T2a+2n+|
1 ? |
*a 3 ar s Tieom Ty Lr 26—
4 a+bz:;—] 0T24410T 2541 16 0 »—1
a,b >0
1 0 a 1 2n—1 62
k(Tx + i) + - v
odzk:l (T tr OTison 4 it OT 0T 2y
1 1
+1g0m0t 7710 - (259)

The factor of% in front of the first term at the r.h.s. of Eqn
(2.59) is important for £,, to satisfy the properly normalised
Virasoro algebra:t

[62n3£2m] = (I’l -

The coefficient % in front of the second term in Eqn (2.59) can
be eliminated by rescaling the time variables: T — %T. Then,
the last term turns into {5739, _;.

[ shall not actually discuss evaluation of the coefficient in
front of Z (with no derivatives), which is denoted by [...] in
Eqn (2.58) (see [24, 30]). In fact, almost all the terms in the
original complicated expression cancel, giving finally

1 T?
= +—
L] 1647~ 44,

m ) £2n+2m

and this is represented by the terms with d,, and 6, —; in
expressions (2.59) for the Virasoro generators Lo,.

The term with the double T-derivative in Eqn (2.58) is
already of the necessary form. Of intermediate complexity is
the evaluation of the coefficient in front of 02/0T2,+1 in
Eqn (2.58), which I shall briefly describe now. First of all,
rewrite this coefficient, reordering the items, as follows:

<a+ )

l —a—2
}—1;“—' . (2.60)

?7_ 2;\/_"'\/7

The first two terms together are equal to the sum over all j
(including j = i):

a+7 chL7
Z — A 1
) Ay — ﬂ.(s Ay ats A5 at+s

1
2

A0+ — “”’ 1
2M+22 Ay — s ,1;%'

T Therefore, it could be reasonable to use a different notation: £, instead
of L5, I prefer Lo, because it emphasises the property of the model to bea
2-reduction of the KP hierarchy (to KdV); see Section 4 below.
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Similarly, the next two terms can be rewritten as

Ay VA = Vs
2Zf+¢— 2,1a+2z Ay — 2
_ aagt-age 1
_21)%*225: Ay — As l;"'%.

The sum of these two expressions is equal to

Aa+2 1

Aa+2
2m+2z Ay — 45

a+% ’
}'5

Note that the powers a + 2 are already integers and the
remaining ratio can be represented as a sum of a + 2 terms.
Adding also the last term of the coefficient (2.60), one finally
obtains

/la+l 2 Z/{n+22 a—. I’H—

n=—1

=5 ZMH (2a=2n+1)(T + 1)yy_spp1 »

n=-—1

in accordance with Eqns (2.58) and (2.59).

2.8 W-constraints for the asymmetric 2-matrix model

[ turn now to a very different application [38] of the GN
equation (2.37). Namely, I shall now consider Fy ,{L} as a
building block in the construction of the conventional
discrete 2-matrix model:

Zn{t.7}

= 6"12\/ Jdﬁ dH exp
k

Z (tkTrH ki t_kTrﬁ k) +Tr Hﬁ}

(2.61)

= JdL exp <ZtkTrLk>.7-'g,N{L }.
k

Now L plays the role of H, and UH) = Y, f,H*.
The GN equation may also be used to derive a relation for
Zn{t,t}. Take Eqn (2.37):

0
(UaL“—i—L)]-'UN{L}_O (2.62)

multiply by exp[TrU (L)] [which is equal to exp (3, tkTrL")]
and integrate over L. In order to express this relation in terms
of t-derivatives of z it is necessary to have scalar rather than
matrix equations; therefore, it will be necessary to take the
trace of Eqn (2.62). However, in order not to lose any
information, one must first multiply Eqn (2.62) by L” and
then take the trace. In this way one obtains

JdL exp (ZtkTrLk>TrL"<U%+L)]:U{L }=0.
k T

Integration by parts gives

d
— ) 4+L|L" EzTLk.
L1r>+] eka"r

(2.63)

JdL]-'g{L }Tr [U <—

Now it is necessary to introduce a new class of operators
[38] Consider the action of Tr[(©@"/OL{!)L"] on
exp [Tr U (L)]. It gives a linear combination of terms like

i

tr L4 .. —_—
Otg, ... 08,

.trL%expltr U(L)] = exp[—tr U(L)],
i.e. one obtains a combination of differential operators with

t-derivatives, to be denoted W(¢):

m

W "D (1) exptr U(L)] = Tr

L"exp[tr U(L)], m,n=0.

n—m aL{,:
(2.64)
For example,
0
W =g n20;
~ 3 i
Wn2) = kt I
et " Otyn 44 0130ty
and
= 3) ) o 5
WnJ = kt 1t + kt; o
k,zl=:l Otktitn ; a+;+n or,or,
S Y s
+3 kg .
= i a0t
& (+D)@+2) 2
Fomlt 2.65
N om0t 5 5t (@69

a+b+c=n

Note that while Wfll) and Wff) are just the ordinary U(1)
Kac—Moodyand Virasoro operators respectively, the higher
W (m_operators do not coincide with the generators of the
We-algebras: intact

(3) 7é w @) = Z kt i It

k= tk+l+l’l

00 62
+2Zktk Z ot at,, 3

k=1 a+b=k+n

e
il at 40t,0t,

The W—operators (in contrast with ordinary W-operators)
satisfy the recurrence relation

W (m+l) _ Zktk W (ln
(2.66)

Actually, not much is yet known about the W -operators and
the structure of W- -algebras (in partlcular it remains unclear
whether the negative harmonics W ;" ") with n < —m can be
introduced in any reasonable way), see [38] for some
preliminary results.

_ Eqn (2.63) can now be presented in terms of the
W-operators as follows:

JdL]-'U{L } [Z ki (— i>kl +L

k>1

[ze

k>1

L"exp[Tr U(t)]

k 77 (1 -
A k—i—thZ]:|ZN{t,t}:O :

(2.67)
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This relation is highly asymmetric in ¢ and 7, and in fact it
provides a suitable description of the WI only in the some-
what peculiar case when the potential U(H ) is a polynomial
of finite degree. See [57, 38] for a discussion of such
asymmetric models.

2.9 W-constraints for the generic 2-matrix model
When both potentials U and U in Eqn (2.61) are generic
formal series, Eqns (2.67) represent only a I-parameter
subset of the 2-parameter family of WIs. Before I describe
the whole set, let me emphasise that the 2-matrix model (2.61)
is the one (where the action is not of the most general form)
consistent with some symmetry. Therefore, it isnot covariant
under the arbitrary change of variables H, H— f(H, H),
f(H, H), and the usual method of deriving the W1s does not
work. The reason why the generic 2-matrix model with action
containing all the possible combinations
Tr(H“HPH*H?". ) is never considered seriously is
essentially our poor understanding of the 1-matrix integrals
for ‘noneigenvalue’ theories, to which class such a generic
model belongs. For reasons to be explained in the next
section, such problems do not arise for models of the form
(2.61) or (2.33), and this is why they have attracted most
attention. Hopefully the problems with the unitary-matrix
integrals are temporary and this restricted class of
multimatrix models will be enlarged; this should be
especially easy to do in the part of the theory dealing with
constraint algebras, but this subject is beyond the scope of the
present notes.

In order to derive the complete set of Wls for the model
(2.61), I apply the following semi-artificial trick. Note that
the exponential exp (Tt HH ) satisfies

(TrH” —~TrH™ 0

OH™ A" u) exp(TrHH)=0. (2.68)

If one integrates this identity over H and H with the weight
exp[TrU(H) + TrU (H)] and then integrates by parts, one
obtains an identity:

7 7 a " n a " m
JdH dH exp(TrHH) [Tr (aH") H" —Tr <— 61—71) H ]

(2.69)

xexp [TrUH)+TrUH)] =0,

which can be represented in terms of W operators [30]:

WDz {7} = (=1)"7"W D) z{n T}, (2.70)

m-—n

forallm,n >0 .

This is the complete (?) set of W1s for the 2-matrix model.
When one ofthe potentials [say, U(#)]is a polynomial of finite
degree, most of this symmetry is ‘spontaneously broken’, the
surviving part being described by Eqn (2.67).

fRelations (2.68), and thus Eqn (2.70), are in the obvious sense
associated with Tr H"H ™. Of course, there are similar relations, in the
same sense associated with any object like Tr (H “'H »'H “H :...) and with
products of such traces: it is enough to substitute all H—0/0H; to obtain
the Lh.s. of the equation, and to substitute all of H—0/0H, to obtain its
r.h.s. (one should remember that such a substitution is possible, say on the
Lh.s.,ifallthe H are put to the right of all H;in order to restore the matrix-
product form oftherclation, one should carefully take into account all the
commutators arising when 0/0H, is carried back to the original position
of the corresponding A ). All such relations can appear to be just
implications of Eqn (2.70).

Among other things, Eqn (2.70) reveals an amusing auto-
morphism of the Wq,-algebra:
W (m+1) PN W (n+1)

n—m m—n ?*

m,n=0. 2.71)
For example, Virasoro’s Borel subal ebra is formed not only
by the operators W ft ), but also by wv ,n = — 1[whilethe
u(1) Borel subaljgebra is formed not only by W v = o/0t,,
but also by W &V 0 > 0].

_ Onecan attempt to apply the same procedure and derive
W-identities for the conventional ( p—1)-matrix models with
p—1> 2. In principle, this is possible, but unfortunately the
equations arising neither have a nice form nor are there
enough of them. However, for illustrational purposes I shall
sketch some relevant formulas in the rest of this subsection.

Consider the multimatrix integral

IJdH]...de_| exp [TI‘U](H]) +...+TI‘UP_|(HP_])]...

X exp [TI‘(H]HQ + HyH; +...+Hp_2Hp_])] . (2.72)

Acting on Z, the operator W&'ﬁf,ﬂ])(t(])) produces the

term TrH"(0/0H1,)" at the position denoted by...in
(2.72). Integration by parts gives

— m
Gl
TrH}[-——— | = (-1D)"TrH{HY =(-1)"TrHYH .
aHl,tr

In the case of p— 1= 2, discussed above, this can be

rewritten as
— n
0
a1-12, tr ’

and integration by parts gives

6) n
_1 I7lTrHﬂl - R
( ) 2 < 6H2,tr>

which is equivalent to the action of (—1
Z: we have thus reproduced Eqn (2.70).

However, for p—1 > 2 things are more complicated.
Insertion of Tr H J'H | is equivalent to that of

5) n
TrHé" (m—H3> 5

which after integration by parts and operation on
exp[U2(H>)] gives:

—
0
TI'H];(—W—H) Ter<E kt(2)Hk - )

— n—1
X 0 H
6H2’ o 3 e

Derivatives remaining at the r.h.s. should be carried through
the first bracket and then act on exp[Ux(H2)] etc. The
end result is some linear combination of terms like
TrHSH SH b1 ¢ ... with t @-dependent coefficients.
Now, if we are dealing with the p—1 = 3 matrix model,
every H» standing to the right of H3s can be substituted by
0/0H 3 r; otherwise one should also include terms with
commutators when this 0/0H 5 ¢, is carried back to the place

(—1)" TrH " (

)W G0 (@) on

(2.73)
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where H, was standing. This leads to a combination of
insertions of the form

— b[ - /72
Tr —6 H? 0 H?¢
aH3,tr 3 aHS,tr 3
— \ b «— by
e[ =0 ) g2 H¢ (2.74)
aHS,tr 3 a1—13," P -

The resulting operator can be expressed in terms of Vl~/(t (3))
resulting in an identity that states that some algebraic
combination of W(r()) and W(t®) with t®-dependent
coefficients annihilates the partition function.

For p—1> 3 insertion of H, is equivalent to that of
O0/0H 3,1 — H 4 rather than 0/0H 3 ¢, and the procedure should
berepeated again and again. Finally one arrives at constraints
where the operators are algebraic combinations of
W (+() and W (¢ (=) with coefficients which depend on
t(z), ...,t(”’2) (moreover these are infinite series in the W-
operators, unless all the intermediate potentials Us, ..., U,_»
are polynomials of finite degree).

This is, of course, not a very illuminating procedure and
in fact it has never been possible to obtain with its use
concrete identities in any nice form. Instead it can serve to
illustrate the problems peculiar for the class of conventional
multimatrix models (at least for p—1>2). It can also
emphasise the beauty of conformal multimatrix models,
which have clear advantages at the level of the W1s.

2.10 ﬁ’-operators in the Kontsevich model

One can rewrite the GN equation (2.43) for Kontsevich
models in terms of Ws. Namely, I shall prove the following
identity [38]:

0 s m % (m
(M) E{Ti} = (1) S AW () 2T}
=0 (2.75)

valid for any function Z which depends on
Ty = $(l/k)trA’k(k > 1) and To= =trin A, where A4 is
an n X n matrix. Application of the identity (2.75) is most
straightforward in the gaussian model (2.47), e.g. for the
transformation of Eqn (2.50) into Eqn (2.51) (recall that
L = Ain this case). In other cases, calculations with the use
of identity (2.75), accounting for the quasiclassical factor
Cv{L } and the difference between L = V’'(A) and 4,
become somewhat more involved, though they still seem
fairly straightforward. Also, for particular potentials V (X))
the partition function Zv{T } is actually independent of
certain (combinations of) time variables [for example, if
V(X)= XP*1(p+1)itisindependent of all Ty, k€eZ "],
and this is important for the appearance of the constraints in
standard form, like Eqns (2.58) and (2.59), i.e. for a certain
reduction of the W-constraints to the ordinary W-constraints.
This relation between W-and W-operators deserves further
investigation.

TheproofofEqn (2.75) is provided by the following ploy.
Let us make a sort of Fourier transformation:

Z{T}= JdH G{H } exp (f: T TrH k) , (2.76)
k=0

where the integral isover N x N Hermitian matrix H.t Then
it is clear that once identity (2.75) is established for Z{T }
substituted by exp [TrU(H )], UH) =Y 1o, T« TrH*, with
any matrix H, it is valid for any function Z{T }. The
advantage of such a substitution is that use can be made of
the definition (2.64) of the W-operators in order to rewrite
Eqn (2.75) in a very explicit form:

(or) " el U]

= (&1)"! i/r’*‘ W D (T Yexp [Tr U(H )]

l—m
120

> 0
_ m+1 —1-1
= ()" AT T (aH

120

)mH Lexp [Tr U(H )]

tr

a m ]
0H;) AQ1-1®H

= (:I:l)"'HTr( exp [TrU(H)] .

(2.77)

Now the expression for T'sin terms of A should be used. Then
exp [TrU(H)] =Det ' (A1 —1QH),

and substituting thisinto Eqn (2.77) we see that Eqn (2.75) is
equivalent to

d m+1 - 9 m 1
(ﬁ) - l’“(aHn) ARl —1®H

XDet 1 (AR —1®H)=0.

Here ‘Tr’ stands for the trace in the H-space only, while
Det = Det ®@det stands for the determinant in both H and A
spaces. One A-derivative gives explicitly:

a m a m
toraf(L) o116 (222 )]

Det *'(AQI—1QH)
AQI—1QH o

0. (278

This is actually a matrix identity, valid for any A and H ofthe
sizes n x n and N x N respectively. For example, if m = 0
(W (case), it is obviously satisfied. [fbothn= N = 1,itis
also trivially true, though for different reasons for different
choice of signs: for the upper signs, the ratio on the L.h.s. is
just unity and all derivatives vanish; for the lower signs one
has:

(& -(-5)
[ @E)E.

a,b>0

T1t is here that we encounter for the first time an important idea: that
matrix models—the ordinary I-matrix model (2.1) in this case— can be
considered as defining integral transformations. This view on matrix
models can to a large extent define their role in the future development of
string theory.
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and this obviously vanishes since

(aax aah)f(i h) =0

for any f(x).

If m > 0 and A, H are indeed matrices, direct evaluation
becomes much more sophisticated. I present the first two
nontrivial examples: m= 1 and m = 2. The following
relations will be useful. Let Q = 1/(A®1-1®H ). Then

Deti'Q Deﬁ'Q +[(I ®tr)Q] ;

Det i‘Q

0
Ay

Det’"”'Q FltrDQ] ;

®I>Q — —[(r®N0l0;

0
— =[(I®T . 2.
(1857-)2 = 1o 0l )
This is enough for the proofin the case of m = 1. Indeed,
0 0
D +1 D F1
e (aAt, aHu>Q e

={-[(r®nQ]0 £ [(1 & Tr)Q]Q}
FHI(IT®Tr)Q]0 F[(tr ®1)Q]0} =0 .

The first two terms on the r.h.s. arise from A-derivatives,
while the last two arise from H-derivatives.

In the case of m = 2 one should take derivatives once
again. This is a little more tricky, and the same compact
notation is not sufficient. In addition to relations (2.79), one
now needs:

(ai, ® ')K“ ®1)0]0 = —[(tr®)Qfe—B.  (2.80)
Here,
[(tr@1)Q) = {(tr@ D[(tr ®1)0]0} , (2.81)

while, in order to write B explicitly, we need to restore matrix
indices (Greek for A-space and Latin for H-space). The
(od, yk)-component of Eqn (2.80) looks like

0

(aTé’"’>Q’"’Q ~05,04,0% 010500 .
(2.82)

and the appearance of the second term on the r.h.s. implies
that B”‘ = Q Q Q";y. Further,

(@)ool

=—{I®Tr)[(tr®1)Q]0}0 —{(I ® Tr)[(I ®Tr)Q]Q}Q ;

- ICEDLL

= H(tr @ D[ @ Tr)Q]Q}Q + {(I ® Tr)[(tr ®1)Q]0}Q :

(1e57) a0k

=+HITr)[(I®Tr)0]0}0 +B. (2.83)

[t is important that the B that appears in the last relation in
the form of BZ‘}, = Q.xaQ Qﬁ is exactly the same B as in
Eqn (2.80).

Now Eqn (2.78) can be proved form = 2:

o\ o\’
<6Atr> ei-te <6Ht,>

={£[(I @ Tr)Q](-[(r ® )Q]Q + [(1 ® Tr)Q]Q)
—(—l(r o D[(tr ®1)Q]Q]Q — B)

([T @ Tr)[(tr © 1)Q]Q]Q — [(tr T)[(I ® Tr)Q]Q]Q)}
—{F(tr @ HOJ([(1 ® Tr)Q]Q F [(tr @ 1)0]Q)
+([(1® Tr)[(1 ® Tr)Q]Q]Q + B)

F(((re D[ @ Tr)Q]o]e + [(1 ® Tr)[(tr © 1)Q]0]Q)} .

(2.84)

Det *'Q Q0 Det ¥1Q

where terms 1, 2, 3, 4, 5, 6 in the first pair of curly braces
cancel the terms 1, 3, 2, 4, 6, 5 in the second pair of curly
braces and the identity (2.81) and its counterpart with
(tr ® 1) > (1 ®Tr) has been used.

An explicit proofof Eqn (2.78) for general m is unknown.

3. Eigenvalue models

3.1 What are eigenvalue models?
Given the present state of knowledge, we need to consider in
most cases only the narrow class of the ‘eigenvalue’ models.
These models have the property of being associated with
conventional integrable hierarchies [of (multicomponent)
Kadomtsev—Petviashvili (KP) and Toda type], where
integrable flows just commute (instead of forming less trivial
closed algebras), and thus with the level-1 Kac—Moody
algebras (by artificial tricks, familiar from the bosonisation
formalism in conformal field theory [58] these can sometimes
be generalised to particular other levels like K = 2). This
means that the models are essentially associated with abelian
Cartan subalgebrasrather than with full matrix algebras.t In
the conformal-field-theory (CFT) formulation (see below)
this means that the eigenvalue models can be represented in
terms of the free fields, which bosonise the Cartan subalgebra
ofthe whole group in the Wess—Novikov—Witten (WZN W)
model [the remaining (f,y)-fields[16] being (almost)
neglected —their remnants are observed in the form of
‘cocycle’ factors in the Frenkel—Kac formulas [47], see [58].
In the matrix —integral representations the integrals for the
eigenvalue models are in fact reduced to those over diagonal
matrices (consisting of eigenvalues of original matrices, thus
the name ‘eigenvalue models’).

Most important, from the physical point of view
eigenvalue models describe only fopological (discrete)

T Groups arising in the theory of matrix models and integrable hierarchies
arenot just those of matrices appearing in the integral representations: the
latter are at best related to the zero-modes of the former. Moreover, even
this relation is not usually simple to reveal. This remark is important to
avoid confusion in the following paragraphs.
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degrees of freedom, but not any propagating particles.t This
can be understood if one notes that matrix models usually
possess gauge symmetry, associated with the unitary rotation
of matrices, M, — UlMaMa; i.e. matrix models are usually
gauge theories. In the case of eigenvalue models this
symmetry is realised without ‘gauge fields’ V,g, which would
depend on pairs of indices «,f and transform like
Vy — H l\/‘xﬁUﬁ. In other words, eigenvalue models are
gauge theories without gauge fields, i.e. are purely
topological. Thus, it is not a surprise that they usually live in
the spacetime of dimension d < 2, since for d > 2 there
should be particles, associated with the gauge fields. At the
‘boundary’ lies the model ofthe ‘d = 2 (¢ = 1)string’, which
has one particle-like degree of freedom (dilaton, which
becomes tachyon in d > 2 models). This very interesting
model is much worse understood than the d < 2 models, at
least its properties are somewhat different from other
eigenvalue models (especially in the most interesting
‘compactified’ case), and will not be discussed in these notes.
Later I shall return to the subject of noneigenvalue (d > 2)
theories, though not very much is yet known about them; now
[ am going to concentrate on the eigenvalue models.

3.2 1-matrix model

Hermitian matrix integrals are usually transformed to the
eigenvalue form by separation of angular and eigenvalue
variables. As usual, the simplest is the case of the 1-matrix
model

o0
Zn{t ECNJ dH exp tTrH* ],
{} NXxXN Z

k=0

3.1

where this separation does not involve any information
about unitary-matrix integrals. Take

H=U'DU, (3.2)

where U is a unitary matrix whose diagonal matrix, D
[ = diag(hi...hy)], has eigenvalues of H as its entries. Then
the integration measure

UL TTanacs) .

—_— 3.3
[d UCartan] i1 ( )

N
dH = ] dH.; =

iy j=1

where the ‘Van der Monde determinant’ A(h) = det h'f]
= Hf\;/(h, — hj), and [dU ]is the Haar measure of integration
over unitary matrices.

T Particles are always related to the ‘angular (unitary-) matrix’ integrals
(as is well known from the example of Wilson-lattice quantum
chromodynamics) which are far less trivial to deal with, though these
are also integrable in some broader sense of the word — within the (as yet
nonexistent) generalisation of integrable hierarchies from the fields in the
Cartan subalgebra to the entire WZNW model.

fRecall that in the Polyakov formulation, which is the least
counterintuitive formulation for interpreting what happens in the
spacctime (target space), string models usually involve the Liouville
field, identified as a time-variable in the target-space formalism. (Note
that for this reason there is usually (at least one) time in the string theory,
while space can be of any dimension (at least between 0 and 25), not
necessarily integer.) Because of this extra Liouville field, the spacetime
dimension, d, usually differs by 1 from the central charge of the CFT
model, which is coupled to two-dimensional gravity to form a string
model:d = ¢+ landd <2isthesameasc < 1.

The way to derive Eqn (3.3) is to consider the norm of the
infinitesimal variation

N

I8# |

N
|5H,:/'|2 = Z 51‘[,'/' 51‘[],‘ = TI‘(SH )2
1

iy j= iy j=1

=Tr(-UtSUUDU +UDSU +UTSD U )’
=Tr(dD)* 4 2iTr du[8D, D] + 2 Tr[—8u D du D
+(Buw)’D,

where du = (1)U Ut = Suf and 8D = diag(8hy, ..., Shw).
The second term on ther.h.s. vanishes because both D and 8D
are diagonal and commute. Therefore,

N N
IBH 17 = "(8hi)* + > (8u)(8u); (hi — hy)* .
i=1 iyj=1
Now it remains to recall the basic relation between the infin-
itesimal norm and the measure: if ||8/||> = G, 814 81% then
[di]= +/dety Gy [],dI¢ and we obtain Eqn (3.3) with
Haar measure [dU | = Hg/ du;; being associated with the
infinitesimal norm
N N
[18ull> = Tr(8u)* = > Suy; Suji =
iy j=1 i j=
and [dUcaran] = [T, dusi.
Coming back to the I-matrix model, it remains to note

|Suy|* .
1

that the ‘action® TrUH)=) 2,y TrH* with H
substituted in the form (3.2) is independent of U:
N
TrUH) =Y Uh) .
i=
Thus
| N N ,
Zute) = 11 [amewo o] [ [ )
i= i>j
| N
_ , N A2
- N!il;”dhl explU(m)]42(h) (3.4
provided cy is chosen such that
Vol
eyl =N1—9W) (3.5)

(VOlu(]))N ’
where the volume of the unitary group in the Haar measure is

given by

m IN(N+1)

N
Hk!

k=1

(3.6)

A simple way to derive Eqn (3.6) will be described at the end
of this section, as an example of the application of the
orthogonal-polynomials technique.

3.3 Itzykson— Zuber and Kontsevich integrals
Let us proceed now to the Kontsevich integral,

Fyn{l} = J dX exp[—tr V(X ) +trLX ] . 3.7)

nxn

We shall see shortly that it in fact depends only on the
eigenvalues of the matrix L (this fact has already been used
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in the previous section); however, this time somewhat more
sophisticated unitary-matrix integrals will be involved.

Substitute X = U}L(DXUX, and L = UIDLUL in
Eqn (3.7),and let U = UXUZ. Then,

.FV,n{L}
:Hde,»exp[—V(xi)]AZ(x)J 4]

i—1 nxn [d UCartan]

X exp (Z xy15|uy5|2> . (3.8)

7,0=1

In order to proceed further we need to evaluate the integral
over unitary matrices which appear on ther.h.s.

This integral can actually be presented in two different
ways:

1{X.L} EJ [4u] (3.9)

= —exp(tr XULU !
nxn [dUCartan] p( )

dU n
:J ﬁe"p<2kas|%a|2> , (3.10)

7,0=1

(the Us in the two integrals are related by the transformation
U- UXUUI and the Haar measure is both left and right
invariant). Formula (3.9) implies that 7,{X, L} satisfies a set
of simple equations [59]:

0 ¢ k
— | — = =0;
[tr( tr) tr L }I,,{X,L} 0, k 0

0\ .
— = > :
[tr(aL"> tr X ]1,,{x,L} 0, k=0;

(3.11)

which by themselves are not very restrictive. However,
another formula, Eqn (3.10), implies that 7,{X,L} in fact
depends only on the eigenvalues of X and L, and, for such
I4X,L} = i{xy, Is}, Eqns (3.11) become very restrictivet
and allow one to determine IA{xV, ls} unambiguously (at least
ifi{xy, ls} is expandable in a formal power series in x, and l5).
The final solution is

(21‘6)%’1(’17]) det,s exp (xyls)

L{X,L} = ol A(x)A(l)

(3.12)

One can define the normalisation constant by taking L = 0,
whence

VO]U(,,) _ (ZR)%n(nil)
(VOIU(I))n ﬁk!
k=1

L{X,L =0} =

E}

+When acting on 7, which depends only on cigenvalues, matrix derivatives
become

o o .
=S i
"Xy zy:axy :

* . . 1 3 9\
"—axg,’—¥m’+;x,_xa (a—a)”

etc.

and by using the fact that

detys £y (I5) il 51,
ZTX) - (HF det,s 0°~'£,(0) .
{ls=0} k=0

Eqn (3.12) is usually referred to as the Itzykson—Zuber
formula [60]. In mathematical literature it was earlier
derived by Harish-Chandra [61], and in fact the integral
(3.9) is a basic example of coadjoint orbit integrals [62 —65],
which can be evaluated exactly with the help of the
Duistermaat —Heckmann theorem [43, 44, 64, 65]. This
calculation is the simplest example of the very important
technique of exact evaluation of nongaussian unitary-matrix
integrals, which isnow at an early stage (see [66 —68]) and will
be discussed at the end of these notes.

Now we turn back to the eigenvalue formulation of the
generalised Kontesevich model (GKM). Substitution of
Eqn (3.12) into Eqn (3.8) gives:

(211:)%"(”_')

-Fv,n{L}: A([)

4 1
d -V A(x)—det l
T axs xpl=V tlde) ety xp o)

tn(n—1) n
:%dexaexp[—v(xé)+x5[5]A(x)’ (.13)
6=1

where [ used the antisymmetry of A(x) under permutations of
xys in order to change (1/n!) det,s exp(x,l5) for exp(D>_sxsls)
under the sign of the x5 integration.

One can now use the fact that 4(x) = detysx fs_l in order
to rewrite the r.h.s. of Eqn (3.13):

in(n—1) det75 @y (15)

Fva{L} = (2m) a0 (3.14)
where
o,(1) zjdxxv—' exp[-V(x)+x], y=1. (3.15)

These functions @(1) satisfy a simple recurrence relation:

0., o\,
o, = qgl - = (&) ) (3.16)
with
o) =¢,(1) :de exp[—V(x) + Ix] . (3.17)

Note also that if the ‘zero-time’ N is introduced (see
Subsection 2.6 and [36]), then

Fy{NIL} = Fyx)-nmxa{L}
L(no1) dets ?yn (s)
A1)

with just the same ¢,(/) and y,6 = 1...n. If one divides by
the quasiclassical factor Cy {A}(det A)Y [with L = V'(A)]in
order to transform the Kontsevich integral into the
Kontsevich model (see Section 2.5), one obtains

= (2n) (3.18)

1 detys @,y (4s)

ZV{N,T}:(detA)N A().)

(3.19)
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Therole of Cy{A} isto convert $() into properly normalised
expansions in negative integer powers of A:

_ exp[—AVI () + VAV ()
V21

=21 +00(A™N)],

®,(4) &, [V'(2)]

(3.20)

and to change A(l) = A4[V'(A)] in the denominator of
Eqn (3.18) for 4(A) in Eqn (3.19). Instead of the simple
recurrence relations (3.16) for @, the normalised functions ¢
satisfy

(P},(A) = .A(O),_](/{) = Ay_l¢(l) s
where @(1) = @i1(A) and the operator A is given by

(3.21)

B ] E__ Vlll(l) l
VA or 2 [vr()P ’

(3.22)

and now depends on the potential V(x).

3.4 Conventional multimatrix models
The multimatrix integrals of the form

ZN{t(“)}

= P! (ON (-1 ()
=c dH .dH exp t, TrHY,
<[ oo (St

p—2
X Hexp (Tr H @[ (D)

a=1

(3.23)

can be rewritten in the eigenvalue form by means of the same
[tzykson—Zuber formula (3.12). Indeed, substituting

H®= y®@p@y® and then defining U@y @+ = @)
one obtains
p—1 N
Zn{t®) = Hﬂjdh@ exp[-V ()]

“a=1 i=1

p—2
x A2 (W) [ [ in{H @, H =D}

o=I

pIN

H H J dn®exp[—V (h™)]

Ta=1 i=1

p—2
x [T exp(hPE0) a0 D) 40y, (3.24)

a=I

where the same trick is done with the substitution of
(I/N Y det, e P(h(“)h(“H) ) for exp(, A9h*) under the
sign ofthe h integration (step by step: first for « = 1, then
for o = 2, and so on). Note that all the Van der Monde
determinants disappeared from the final formula on the r.h.s.
of Eqn (3.24), except for those at the ends of the matrix chain
(ata= landa= p-1).

If the chain was closed rather than open, i.e. with an
additional factor ofexp (Tr H ®~DH M) under the integral in
Eqn (3.23), then the trick with separation of all angular-
variable (unitary-matrix) integrations would not work so
simply: in addition to the Itzykson—Zuber integral, much
more involved quantities would be required, like

[dU\] [dU]
I,{X1, XL} =c¢,
{ ! ? } ‘ Jnxrz [dUI,Cartan] [dU2,Cartan]

x expltr X U LU T 4 tr X,U,LU |

—HrX](U] )X2(U2U )] . (325)

This (so far unresolved) closed-chain model (lattice Potts
model) is an example of a noneigenvalue model, in the
p = o0 case it turns into a ‘compactified’ ¢ = 1 model.
This theory is more complicated than what so far is the
simplest class of noneigenvalue models of ‘induced Yang—
Mills theory’, known as Kazakov—Migdal models.

3.5 Determinant formulas for eigenvalue models

We are now prepared to make the crucial step towards
understanding the mathematical structure behind
eigenvalue models, which distinguishes their partition
functions in the entire variety of arbitrary N-fold integrals.
This structure expresses itself in the form of determinantal
formulas, which [ am now going to discuss. In Section 4 these
formulas will be identified as examples of -functions of KP
and Toda hierarchies.

Looking at the relevant integrals—Eqns (3.4) and
(3.24)—one can notice that integrals over different
eigenvalues with nontrivial measures which depend on the
shape of potentials U or V are almost separated, the only
‘interaction’ between different eigenvalues being defined by
universal (potential-independent) quantities made from the
Van der Monde determinants. This feature is intimately
related both to its origin (decoupling of angular variables in
the original matrix integral) and to its most important
implication (integrability). The main property of the
Van der Monde determinant is that it is at the same time a
Pfaffian (it is in this quality that it arises from matrix
integrals) and a determinant (this is the feature that implies
integrability):

[0 =) =

i>j

A(h) = det; ! (3.26)
This property was used above, when going from Eqn (3.13)
to Eqn (3.14), which as we shall see later is the crucial step in
the proof of integrability of the Kontsevich model. In that
case the determinantal formula (3.14) for the partition
function was trivial to derive, because the integrand was
linear in Van der Monde determinants. Now I turn to
slightly more complicated situations, involving products of
Van der Monde determinants.
Consider an eigenvalue model of the form

1 & _
ZNZ_N'HJduW—AA(h)A(h) ,
T k=1

to be referred to as the ‘scalar-product’ model. All
conventional multimatrix models (3.23) belong to this class.
In the case of the 1-matrix model (3.4)

dpy, ;s = dhdhexp[U(h)] 8(h —h)

(3.27)

(3.28)

while for conventional multimatrix models (3.24)

dpn, jo-n = dhVdn~ ‘>HJ h(“)Hexp[U (h®)]

o=1

X Hexp(h(“)h(“+')) .

=1

(3.29)
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If dp, j = 8(h — h)dhdm, we call this measure local. The
main feature of a local measure is that the operation of
multiplication by H (or any function of /) is Hermitian. Thus,
the measure is local in the 1-matrix model, but is nonlocal for
all p—1> 1. In the latter case the measure is defined to
depend only on A= h® and h= h®»-Y_ all other A®
(o= 2,...,p=2) being integrated out; this makes the
‘interaction’ between k1 and 7 more complicated than just
8(h—h) in the I-matrix (p = 2) and exp(hh) in the 2-matrix
(p = 3) cases. In no sense is the set of particular formulas
(3.29) for p > 3 distinguished among other scalar-product
models, and from now on we shall not consider conventional
multimatrix models with p—1 > 2 as a separate class of
theories.
Eqns (3.26) and (3.27) together imply that

1 & , i
Zn :mHJduhhﬁkDet,‘k/’l;:]Detjk/’l'Z I
T k=1

= Det,,J dﬂ/l’ﬁl’li_ll’;'i_l :Deti,(hi_' |H/_]> ) (330)

where an obvious notation has been introduced for the scalar
product:

(1)) = [y )
We can now be a little more specific and introduce time
variables t; and 7, so that
d#h,ﬁ = exp[U(h) + 0(5)](1/1;1,5 >
00 o o0 _
Ulhy= > uht, Th)= > &h*,

k=—00 k=—00

(3.31)

and dpy, jis already independent of & and 4. If we now define
Hi(t, ) = (1]1), then
2

at,’afl‘

ifi,j>0 (0 ray £ -
£ (@) (@) e

HE= (W) = —=H"(1,7)

(3.32)

and

Zy =DetyM} (3.33)

where Dety stands for determinant of the N X N matrix
Hi—1,j—1 (which is itself defined for any integers i, j) with i,
j= 0,...,N—1. A characteristic property of 'Hf/ is its
peculiar time dependence:

HE HE
v __ f _ f
=M =Ml 634

Eqn (3.33) provides the determinantal formula for all
scalar-product models. The case of the local measure—
for the 1-matrix model—is a little special. In this case
U(h) contains full information about the measure:
dpn.i= 8h—hydppn, dus = exp[U(h)]dh, and there is no
U(h) (or  simply coincides with 7). Then Eqn (3.33) is still
valid but

_0
Oy

itijz0 0\ _ .
] (E) HI(1).(3.35)

M= W)y, = )]y, =50

The same formula (3.35) can also be derived as a limit of
Eqn (3.14) for the Kontsevich integral. Indeed,

Zuity=ev | dHexplTrU(H)] = fim Fon{L)
_ i D) 279070
g AQ) R
= Det,:/‘Hif_]’j_] s (336)

where this time
iy j>0 6-/*‘€pi{u}(l') (3.14) (0 =2
Hiy = T}’([:Q) ="l oY .
(3.37)

Now we note, that the action of /0 on ®{U}(l)
= [dxexp[U(x)+ Ix] is equivalent to that of (8/0r;), since
this is no longer a matrix integral, and thus

= (2) a0
i=\ar, (0)

ie. Hit) = ®UX0).

Conformal multimatrix models were introduced in
Section 2.3 as eigenvalue models. For the A,_ series, the
partition functions are defined to be

(3.38)

ACSR (AC RN L)

p—1

p—1

HC’V“J dH @ exp [Tr Uy(H @)]
— NgXNy

a=I

p—2
x [[Det(H® @1 1@ H )

=1

p—1 1 Ny

:HNK'

a=1 ti=1

J dh® exp[Uy(h)) 42 (h®)

(3.39)

)
< TLTIH - 1)

a=1 ik

This expression does not have the form of Eqn (3.27); thus,
conformal matrix models for p—1 > 1 are not of the ‘scalar-
product’ type. I shall sometimes call them (p—1)-component
models, because they are related to the multicomponent
integrable hierarchies. The simplest way to proceed with
their investigation is to use on the Kontsevich integral the
same trick that was just applied in the I-matrix case.

Let us start from a very general (p—1)-component
model:

p—1
7 =

=1

J dH @ exp [Tr Uy(H NKHD, ..., 7P,
NgXNgy
(3.40)

It can also be represented in terms of Kontsevich integrals:

( ; : )p_l ’
Z=K|—5+ =7 | [[FvenAL®}
oL el |

L@®@=0
(3.41)
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This representation is not very useful, since the limit L — 0 is
not easy to take unless K is a polynomial in the eigenvalues of
all its arguments. However, this is exactly the case for our
conformal models (3.39). Indeed,

22 0 0
kAt =[]Det| —m@l-10—r ]
ok oL oL

tr

(3.42)

Still, this is not very convenient, because the representation
(3.14) for F contains A(L) in the denominator, which is not
very pleasant to differentiate. Simplification can be achieved
if instead | rewrite the original expression on the r.h.s. of
Eqn (3.39) as follows:

Zy LW 7y

o\ (0 ) 0
=4 (azm‘) H"(am‘)’ az<«+n>"(az(p—l>>

a=I

p—1 N
! 1 & 3 o), (a
X {N !dehE)exp[Ua(hf))HE)hf )]} (3.43)
a=l U= 1@=0
where
N N/ N N’/
A 1"y = T = w) TT0% =) TTTL e = o) -
i=1

i>j k>l k=1

This formula takes the specific form of K into account. The
product of integrals in brackets on the r.h.s. of Eqn (3.43) is
equal (for every fixed «) to

No
L'H BV (1)
N1 -

[compare with Eqn (3.38)].
In order to simplify the notation I shall further denote

o1y = dee Ualo)+h

(3.44)

by @,(1), and

k k
( a()) B (1)) = (% B (@)Y
ot GlAs

by 8°®,(l). Thus,
Z,A;,”"NH (O, 7y

Leee

o \4% (0 0 0
= A(alm) g"(aua)’ a[<a+l>)"<al<p—l>)
T 156 @
XH<N (L1207 )>
=1 =1

If p—1= 1, the differential operator is just the square of the
determinant A(9/0l) and one can use the relation

A*(h) =) Detyhy 2
P

(3.45)

1@ =0

_ Nl

L e By )
3 N

he() hlzu(z) pe) - Mevy)

=Y Det| , X . vist |» (3.46)
zp: Reqy ey Hpay-r Pain)
Ni—1 N Ny W2
Bty Hinty oy - ey |

wherethe sum isover allthe N ! permutations P of N elements
1,...,N,inorder to conclude that Eqn (3.45) reproduces our
old formulas (3.33), and (3.38): Zy = Det;07 2.

For p—1= 2 one needs to use a more complicated
analogue of (3.46):

A(h)A(h,h")A(R")
1 hpgy... ij('ﬁjl‘) 1 iy /If.f(z,;!‘)
heqy Ity - ”ﬁ(ﬂv.) hsqy /Z,l;(z)... /7‘,¥(2N2)
=Z: Pt oy Moy e Bray ey M
h,,(.})’ Loy G /?},‘(;)*‘ /?,é‘(f;)... /7,{‘(;};!*2
(3.47)

where N = ZZ;: N,. Making use of this formula, we
conclude that the r.h.s. of Eqn (3.45) for p—1= 2 is also
representable in the form of a determinant:

& 9d... oo F 30... Mg
Det| ad ... M 0d 3°d... Mo
NG oNB... aNtV2%  N1d oNB... eVt

where @ = &, o= @, and [® = 0. It is especially easy to
check formula (3.47) in the simplest case of Ny = N> = 1.
Then it just says that

— 11
h—h= Det _| .
b

Analogous expressions for p—1 > 2 are more involved; they
are no longer just determinants: this is already obvious from
consideration of the simplest caseof Ny = ...= N, = 1,
when the product [[°Z3(A® —h(+)) is no longer the
determinant of any nice matrix.

3.6 Orthogonal polynomials

The formalism of orthogonal polynomials was intensively
used in the early days of the theory of matrix models. It is
applicable to scalar-product eigenvalue models and allows
one to further (diagonalise) transform the remaining
determinants into products. In variance both with reduction
from the original N ?-fold matrix integrals to the eigenvalue
problem [which, when possible, reflects a physical
phenomenon —decoupling of the angular (unitary-matrix)
degrees of freedom (associated with d-dimensional gauge
bosons)] and with the occurrence of the determinant
formulas which reflect the integrability of the model,
orthogonal polynomials appear more as a technical device.
Essentially, orthogonal polynomials are necessary if one
wants to explicitly separate the dependence on the size N of
the matrix in the matrix integral (‘zero-time’) from the
dependencies on all other time-variables and to explicitly
construct variables which satisfy Toda-like equations.
However, a modern description of integrable hierarchies in
terms of t-functions does not require explicit separation of
the zero-time and treats it more or less on an equal footing to
all other variables, thus making the use of orthogonal
polynomials unnecessary. Still, this technique remains in the
arsenal of matrix model theoryt and we now briefly explain

T Ofcourse, once can also use this link just with the aim of putting the rich
and beautiful mathematical theory of orthogonal polynomials into the
general context of string theory. Among interesting problems here is the
matrix-model description of g-orthogonal polynomials.
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what it is about. At the end of this section, two simple
applications will also be described: the evaluation of the
volume of the unitary group, and a direct proof of
equivalence of the ordinary 1-matrix model and the gaussian
Kontsevich model. Both these examples make use of
explicitly known orthogonal Hermite polynomials and in
this sense are not quite representative: usually orthogonal
polynomials are not known explicitly. Some applications of
such an ‘abstract’ theory of orthogonal polynomials to the
study of matrix models will be mentioned in the following
sections.

In the context of the theory of scalar-product matrix
models, orthogonal polynomials naturally arise when one
notes that after the partition functions appear in the simple
determinantal form of Eqn (3.30), any linear change of bases,
hi—Qi(hy= S, Auhe, h/— Q;(h) = 3 ,Byh!, can be
easily performed and Z —» Z detA det B. In particular, if A
and B are triangular with units at diagonals, their
determinants are just unity and Z does not change at all.
This freedom is, however, enough to diagonalise the scalar
product and to allow the choice of polynomials Q; and Q_j SO
that

(Qi(h)|Q;(h)) = exp(¢;)d (3.48)

Q; and Q; defined in this way up to normalisation are called
orthogonal polynomials. (Note that Q does not need to be a
complex conjugate of Q: the bar does not mean complex
conjugation.) Because of the above restriction on the form of
matrices A and B, these polynomials are normalised so that

Q,(h):/’ll—i-, Q_j(/’;)zl’;/—i-,

i.e. the leading power enters with a unit coefficient. From
Eqns (3.30) and (3.48) it follows that

N
Zy = [[exp(4:im)- (3:49)
i=1

This formula is essentially the main outcome of orthogonal
polynomial theory for matrix models: it provides complete
separation of the N-dependence of Z (on the size of the
matrix) from that on all other parameters (which specify the
shape of the potential, i.e. the measure dp, ;); this
information is encoded in a rather complicated fashion in
¢;. As was already mentioned, any feature of the matrix
model can already be examined at the level of Eqn (3.30),
which does not refer to orthogonal polynomials and thus
they are not really relevant to the subject.

One can, however, reverse the problem and ask what it is
that matrix models can provide for the theory of orthogonal
polynomials.t The first question to ask in the theory of
orthogonal polynomials is: given the measure dy, j;, what
are the corresponding orthogonal polynomials?

Usually the answer to this type of question is not at all
straightforward. Its complexity, however, depends on what
one agrees to accept as a suitable answer. Of particular
interest for our purposes below would be integral
representations. It would be very helpful to have just an
integral transformation, converting the set of orthogonal

TOf course, one can hardly get anything new for that theory, but the
purpose is to sec which features are immediate consequences of the
‘physically inspired’ approach. Usually this can help one to somechow
organise the existing knowledge on the appropriate system. This is,
however, my goal in these notes: only a very simple example will be
mentioned, which will also be of use to us later.

polynomials for given dp, ; into some standard set, like
QEO = x'. Unfortunately, such transformations are rarely
available, though there are important examples: classical
orthogonal polynomials and their g-analogues [expressed
through the (¢-»hypergeometric functions, which usually
possess integral representation of a simple form, see [69] for
an introductory review of such integral formulas, which are
in fact well known in CFT]. The simplest example of this
kind, which will be used below, is the set of Hermite
polynomials:

Hey (h) = \/Lz_nexp G/ﬂ) J(ix)k exp <—%x 2 ixh)dx

d\* 1, d\* 1,
= (=) 1= (5) (=) o (-3#)
1 1, d\* 1,
—2—kexp<zh > (h_2@> exp (_Zh

(3.50)

These polynomials are orthogonal with the local measure
dw, = exp(—1h?).

For a generic measure an answer of this type does not
exist in any universal form. However, matrix models still
provide a somewhat peculiar integral representation for any
measure, with the number of integrations depending on the
number of polynomials. In order to obtain this expression, let
us consider a slight generalisation of formula (3.27):

2yt =511 [ m aAD [JG, ). 351

kyy

Then, 4(h) [1;,,(4 — ) = A(h,4)/A(4), and 4, can be con-
sidered just as hy.4y, which are not integrated over in
Eqn (3.51). Then it is clear that

Oi1(he) Ongy—1(hy) ]

3.52
0i1(7) Oy (Us) (3:32)

A(h, A) = Det[

while A(h) = DetyQj—1 (). Since all the Qnyy—1(hi) are
orthogonal to all Q;_;(h) (because N + y—1%j—1), one
obtains:

detys Ony—1(4s)

Zn{4s} = 200) Zn. (3.53)
In particular,
ov(n =224, (3.54)

Zy

where both the numerator and the denominator can be
represented by N x N-matrix integrals.

The inverse of the ‘main question’ of the theory of
orthogonal polynomials is: given a set of polynomials,

Oih)=h+...,

what is the measure dg, j; with respect to which they form an
orthogonal system?
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I shall not discuss the complete answer to this question
and consider only the case of the local measure, when
0;= 0, Then, usually the answer does not exist at all: not
every system of polynomials is orthogonal with respect to
some local measure. It is easy to find the necessary (and in
fact sufficient) condition. As was mentioned above, the local
measure is distinguished by the property that multiplication
by (any function of’) 4 is a Hermitian operation:

(f (h)\g(h)) = (£ (h)lhg(h)) . if dp, j ~ 8(h — h). (3.55)

This property implies that the coefficients ¢;;in the recurrence
relation

hQi(h) = Qiyi(h) + Xl:cﬁQi(h) (3.56)
=0
are almost all vanishing. Indeed, for j < i
o (BQimIQ;(h) _ (Qi(h)|hQ;(h))
TAQiWQi(h))  {Qi(m)]Q;(h))
=0 M =0j,i-1exp(¢; — P;_1) - (3.57)

0, (m)oy (i)

In other words, polynomials orthogonal with respect to a
local measure are obliged to satisfy the ‘3-term recurrence
relation’

hQi(h) = Qiyi(h) + C;Qi(h) + R;Qi—1 (h)

(the coefficient of Q;+ can, of course, be changed by a
change of normalisation). Parameter C; vanishes if the
measure is even (symmetric under the change 7 — —h); in
this case the polynomials are split into two orthogonal
subsets: even and odd in 4. The partition function (3.49) of
the 1-component model can be expressed through parameters
R; = exp(¢i—¢i_1) of the 3-term relation:

N-1
Zy =17, HRfH ,
pl

(3.58)

(3.59)

thus defining a 1-component matrix model (i.e. the particular
shape of potential) associated with any system of orthogonal
polynomials.

Our ‘inverse main question’ in the case of the local
measure should now be formulated as follows: given a set of
orthogonal polynomials Q;(h) = hi+ ...which satisfy the
3-term relation (3.58), what is the measure dp,?

As with every complete orthogonal system of functions,
orthogonal polynomials satisfy the completeness relation

> exp(=¢,)0i(h)Qi(h) = 81 (h, h) (3.60)
i=0

where the 8-function associated with the measure dp, j is
defined so that

“f(h)é{d”} (k. h")dpy, 5 = f(h") (3.61)
for any function f(h). Since for the local measure
dun = exp[U(h)]dh the &-function is just &'#i(hh)
= exp[—U(h)]d(h—h), as an answer to our question we can

take a representation of U(h) in terms of the corresponding
orthogonal polynomials:

expl-U()]8(i — i) = 3 L)

3.62
2 (0,100) (3.62)

As usual, this relation should be understood as an analytical
continuation. The squared norms ||Q||? in the denominator
are expressed through the coefficients R; of the 3-term
relation (3.59) up to an overall constant as follows:
104> =TTz RillQoll>

For example, in the case of the Hermite polynomials
(3.50) we have:

Hees: (k) = (h —(f—h)nek(h) — hHey(h) —%Hek(h)

= hHey(h) — kHeg_1(h) (3.63)
(the last equality holds because d/dh and h—d/dh play the
role of annihilation and creation operators, respectively).
This means that the 3-term relation is satisfied with Ry = &
and thus ||[He||>= ||Heo|/?k!. We shall use the
normalisation condition ||Heol|2= +2m. Then, for
exp[—U(h)], we get:

expl- ()]0 — hy = 3 Hert) Her(h)

k=0 ||H€/<||2

1 &1 dV /- d¥

om = k! dh dh
1 | 1o\ 1 [/ d )
= ——¢X W+ —h? — -
T p(z 2 );k!(dhdl)

1 Lyl d? Lo L
=——=exp|= = ex —)exp| —zh" — =
var P\2" T2 )P \anar) P\ T2 T2
1 dada 1 1 -
:\/—z_n]mjj%exp(—a&)exp(zhz+§h2)
d _d 1, 15
xexp(aﬂ—kad—ﬁ) exp(—zh —§h>
1 dada 1,
=] : __
o mJJ o exp[ 2(0(—1—0()]
1, _ 1 i}
X exp [—E(a—i-a)(h +h)] exp [—E(a—cx)(h —h)]

= exp G}ﬂ)ﬁ(h —h)

3.7 Scalar-product models in the Miwa parametrisation

I shall now take the first step towards clarification of the
interrelation between the scalar-product and Kontsevich
models. We already know that in the latter case an important
role is played by the representation of time variables in the
form of

1
T, = ~trA~* s

p (3.64)
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(with the n x n matrix A), which will be further referred to
as the Miwa parametrisation (expressions of a similar form
were first introduced in [70]). Let us now perform such a
transformation in the case of the scalar-product model.
Let us use Eqn (3.31) to define the time-dependence of the
measure, but ignore the 7-variables. Namely, introduce
dun i = exp[Um)]dV i {i.e. dpn = exp[U(h)Idfn, i}

Substitute
1
ty = ;(Etr/rk + rk> , (3.65)
and obtain
. 0 h k
exp[U(h)] = exp[—V (h)] exp :FtrZE y
k=1
5 det™ (A — hl)
= V() — )
o0 | V015 ]
_exp[=V(h)] V(h)] _
== H () — h)* (3.66)

=
where V(h) = £ 3, reh*. Let us choose the upper signs in
these formulas. Then we can use Eqns (3.51) and (3.53) to
conclude that, in the Miwa parametrisation,

PRC

"
V= Gy Ay )

_ ) detys Ony1 (As)
N A (det A)Y

where dv, ; = exp [— V(ﬁ)]dvh,g and Qk are the correspond-
ing orthogonal polynomials. In other words, the model with
potential U(h) has been reduced to another model, with
potential —V(h), and the difference has been expressed in
terms of orthogonal polynomials Qy:

VA I{lej} _ 1 dety,; QN+y_] (115) (3.67)
z 8 (det 4)" A(2)

If V(h) is adjusted to give rise to some simple orthogonal
polynomials (i.e. if the new model Z Ndv} is easy to solve) this
representation can considerably simplify the original model.

Another interpretation ofthis formula is that we obtained
a GKM-like representation of the form of Eqn (3.19) for
the discrete scalar-product model. The only difference is that
(p§v}in Eqn (3.19) are changed for Q,_; in Eqn (3.67).
This is an important difference, because ¢; ’ in GKM are
defined by integral formulas like Eqn (3.15), (p{v} = {{x71)
or, alternatively, satisfy recursive relations like Eqn (3.21).
Moreover, generic qoyv are infinite formal seriesin A~ !, while
Q-1 are orthogonal polynomials. This discrepancy is one of
the important stimuli for further development ofthe concept
ofthe GKM, as well as for the search for convenient integral
representations for orthogonal polynomials.

There is, however, at least one interesting situation when
the two formulas indeed coincide. This is the case of the
gaussian potentials V and V, when both qo§V and Q,_ are
represented by orthogonal Hermite polynomials, which
possess integral representation, and are exactly adequate in
the context of GKM. This is the subject of the next
subsection.

3.8 Equivalence of the discrete 1-matrix and gaussian
Kontsevich models

Let us take the ordinary l-matrix model with the local
measure du, = exp[U(h)]dh to be the scalar-product model,
considered in the previous subsection, and take the Miwa
parametrisation with upper signs and with r, = ——5k 2 (as
in Section 2.6). Then V(h)= Y, nh* = —1n?= L(in)".
The relevant orthogonal polynomials Q are ]LlSt Hermlte
polynomials of imaginary argument:} Qk__h an_
i*Hei(ih) = B +.... These polynomials possess an
integral representation (3.50):

1 1
ilikHek,] (1/’!) = \/—2_nexp <—§h2>

] .20/ 1,2
x Jxk_] exp (—§x2 +xh>dx Do my . (3.68)

Using Eqns (3.67) and (3.19) one obtains a remarkable
relation between the two matrix models:

ZN{tO =0t = —(l/k)trAik +%5k’2}
Zy{tx =16,2}

o0
dH exp < tkTer>
JNXN Z

_ k=0
J dH exp(H?)
NxN
—triA®
= LQ)NJ dX(detX )V exp(—triX? + AX)
(2m)2" (det A)™ Jnxn
= Zi{N,1}, (3.69)

where Zny{tx = —5k 2b = (— 2n)% . This relation can

also be regarded as an identity:

J dHexp(3TrH?)Det(A®1 —1®H)
NXxXN

J dH exp(%Ter)
NxXN

J dX exp(—1trX 2)det" (X + A)
= . (3.70)
J dX exp(—1trX %)
nxn

valid for any A. Note that the integrals are of different sizes:
N x N on the Lh.s. and n x n at the r.h.s. While the
N-dependence is explicit on both sides of the equation,
the n-dependence on the lL.h.s. enters only implicitly,
through the allowed domain of variation of variables
tx = —(1/k)trA=%+18; 5. (This can serve as an illustration
to the general statement that the shape of the Kontsevich
partition function Zy, considered as a function of T's rather

tNote that this system of functions @ = i~¥Hex(ih) looks like o = 1,
@1 = h, 2= h*+1,..., and does not resemble any set of orthogonal
polynomials with a local measure (for example the product @, = h>+1
may seem positive definite, this being inconsistent with the orthogonality
requirement (@,|@,) = 0). The thing is that integration on the Lh.s. of
Eqn (3.69) is well defined only along the imaginary axis, while integrals
along the real axis are understood as analytical continuations.
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than of L or A, is independent of the matrix size n.)
The identity (3.69) was anticipated from the study of the
WIs for the gaussian Kontsevich model in [56] [see Eqn (2.53)
in Section 2.6], and was derived in the present form in [36].

Eqn (3.69) can be used to perform analytical continua-
tion in N and define Zy for N, which are not positive
integers. Since ¢y = 0 for all negative integers [see
Eqn (3.77) below], the same is true for Zy. In Section 4 we
shall see that it is a characteristic property of t-functions of
forced hierarchies.

3.9 Volume of the unitary group

The formalism of orthogonal polynomials provides a simple
derivation of Eqn (3.6) for the volume of the unitary group.
Consider Eqn (3.4) with U(H) = H?2. Then the gaussian
matrix integral can be easily evaluated:

CNJ
NxN

dHexp(—3TrH?) =cy HJdH,, exp(—3

i=1

N
X HJd2H@/eXp (*|H1y'|2) = (2m)*"" |

i<j
while according to Eqns (3.48) and (3.49) the same integral is
given by

1 N rtoo
FHJ exp(~3h}) 1_[fv>/(hl - h./')2 = H,N=| [Hej—1 ||2
=l Yo

Here ||He;_{|| stands for the norm of orthogonal Hermite
polynomials (3.50), ||[Hei||> = +/2mk!. Comparing the two
expressions for the same integral we get:

(21’5) IN(N-1)

1 1
= (2m)?"’ H =
\/_k' N—1
II*

(3.71)

According to Eqn (3.5),

and Volyay = 2m. Thus, we obtain Eqn (3.6):

Zn)%N(N+I)

N
Hk!

k=0

VOlu(N) =

An example ofa somewhat more sophisticated (quantum)
group-theoretical quantity, arising from gaussian matrix
models, is provided by the following formula for the
g-factorial [71, 72]:

(q, Hl—c/

“ dH[dU] exp(—m*TrH? + Tr HUHU )
= 1N NN
Voly ) J dH exp (—m2 TrH 2)

NxN

The integral in the numerator is over Hermitian (H ) and
unitary (U) N x N matrices,and g =m?—+vVm* — 1.

The explicit expression (3.71) can be used to prove that
cy = 0 for all negative integers N [36]. Eqn (3.71) defines ¢y
only for positive integers N, as a finite product. There is an
obvious prescription for analytical continuation of such
products, provided continuation of the items is known (it
can be considered as implied by the similar formula for
integrals with varying upper limit): let

FIN)= Y f(k).

k=—00

(3.73)

then

F(N) — F(0) , (3.74)

S(N) EZ:f(k) =

and, obviously F(0)-F(-N) = EQ:I_N.)"(k), so that

Zf( —k)

Exponentiation of this formula gives the rule for the
products. In the case of ¢y one can treat factorials in
Eqn (3.71) as gamma functions,

S(—=N)=F(=N) —F(0) = (3.75)

N
@r)" ™ Vey = T[T (3.76)
k=1
and obtain:
N—1 -1
QryEVVHDe_y = [H r(—k)} =0, (3.77)
k=0

because of the poles of the gamma functions.

4. Integrable structure of eigenvalue models

4.1 The concept of integrability

Theintegrable structure of dynamical systems implies that all

the dynamical characteristics—the solutions of the

equations of motion (EqMs) for a classical system and

functional integrals for a quantum one—-can be found

exactly. According to this description the notion of

integrability is not very concrete, and in fact it evolves with

time, including more and more classes of theories into the

class of integrable systems. Nowadays we consider the

following types of theories as clearly belonging to this class:

—free motion (classical or quantum) on group manifolds

and homogeneous spaces;

—2d conformal theories and their

deformations’;

—integrable hierarchies of the (multicomponent)

Kadomtsev —Petviashvili (KP) and Toda type, and their

reductions;

—functional integrals, subjected to the conditions of the

(generalised) Duistermaat —Heckman theorem;

— (eigenvalue) matrix models;

—topological theories;

—many supersymmetric models (at least those allowing for

Nicolai transformations and/or a Duistermaat —Heckman-

like description);

—systems with (infinitely) many local integrals of motion.
This list (which is in no particular order) is rather

arbitrary. Also, different items are not really different and

(asit should be) can be considered as different descriptions of

‘integrable massive
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the same reality. Now I discuss very briefly at least some of
the most important views on the concept of integrability.

Often the notion of integrability is related to the occur-
rence of ‘sufficiently many’ integrals of motion (‘sufficiently’
means equal to the number of degrees of freedom). This is,
however, not as rigid a definition as one might think. In fact,
in classical mechanics there is usually a complete set of
integrals of motion available: just initial conditions in the
phase space (or, to be more sophisticated, angle—action
variables). The problem is, however, that:

—these obvious integrals are complicated (nonlocal and
multivalued) functionals of the current coordinates; and
—in the general situation they are very ‘unstable’ under a
small change of current coordinates (‘divergence of
trajectories’).

In order to avoid these problems one usually imposes a
‘locality’ condition on EqMs. While this is a reasonable thing
to do for particular classes of theories (e.g. possessing a well-
defined kinetic term, which is quadratic in momenta), this is
not a nice description in the general situation, since ‘locality’
isnot invariant under arbitrary (including nonlocal) changes
of variables. In practice, when approached from this side,
integrability implies a kind of ‘regular’ behaviour of trajec-
tories and some more-or-less nicely defined transformation
from ‘natural’ (or, rather ‘original’) coordinates to the
action —angle variables.

The situation becomes even less clear when quantum
theory is considered, since ‘chaotic behaviour’ no longer
implies anything really ‘chaotic’ for the quantum system.
Again, very much depends on what kind of observables one
wants to consider, and any notion of ‘regularity’ is not
enough under an arbitrary change of variables.

This can be made even more transparent, ifone recalls the
idea of universality classes, so important in the modern
theory. The idea is that even in the cases when the behaviour
of the system seems absolutely chaotic from any naive point
of view (as in the cases of turbulence or quantum gravity),
one can and should introduce new variables (which can be
very complicated functions of the original ones), which have
smooth and well defined correlation functions. In most cases
one is not attempting to find a complete set of such variables
(and thus some information is lost), but this reflects nothing
but the current state of knowledge, and in fact in studies of 2d
quantum gravity the goal of a complete description is already
clearly formulated.

Despite these comments, the ‘definition’ of integrability
in terms of ‘sufficiently’ local integrals of motion should be
given priority in this discussion because most of the systems
which so far were considered as integrable, more or less
naturally get into this class, allowing for some preferred
choice of dynamical variables (‘more or less’ appears because
some ‘minor’ nonlocality is usually present in any interesting
examples, where angle—action variables are not obvious
from the very beginning).

This ‘definition’ is so unclear because I attempted to look
for a generic description of integrability. Most interesting
approaches, however, are in another direction. One starts
from some simple system and then performs a change of
variables, which makes it look much more complicated
(being still simple in its essence). This appears to be a much
more fruitful view on the problem and in fact all the other
items in my list above are describable in terms of this kind.

A trivial, but surprisingly representative example of this
approach is provided by a free particle, moving in flat

D-dimensional space. The eigenfunctions of the Laplace
operator are just plain waves or, equivalently, spherical
harmonics. The radial part of the jth harmonic is already a
not very simple function, satisfying the equation

Ca(j)
dr+ r?

d’ Lp-1d

dr? r
This equation is of course less trivial than the original
Laplace equation, but solutions are related in a simple way.

In order to find a solution of Eqn (4.1), say, for j = 0, one
should take an angular average of a plane wave:

Y(r) =Ey(r) . .1

& (r) :Jexp(ikFV)dD_'V; | =1. 4.2)

This integral representation expresses the solutions of
Eqn (4.1) through Bessel functions, and this is in fact the
proper way to derive the well-known formula

i (1) = 2227 T D) (kr) 2P (kr) 43)

If one expands the exponent in the integral in a series, the
standard expansion for the Bessel function arises.

A slightly more involved example is the quantum
mechanical model of a particle in the potential exp(—g),
i.e. the theory of the equation

[— dd—; + exp(—q)] Y(q) =0 “4)

(one of course recognises a simplified version of Toda
models). It can be solved by projection of the simple
Schrodinger equation for a particle moving on the upper
part of the hyperboloid x} —x? —x3 =1,x, > 0 [73]. If

xo =cosh(q) +3z%exp(3q) ,
x1 = sinh($q) —1z%exp(1q),
xy =zexp(3q)

then ¢ = In(xo+x;). The Laplace operator on the
hyperboloid is
, o 19 1 ’

=——=—+- —q)=— 4.5

o7 Zaqu4e><p( 077 (4.5)
and average of the wave function Y(¢,z) provides the
following expression for solutions of Eqn (4.4):

¥, (q) = exp(idg) Joo %=1 exp [— (t + cxp q)]dl . (4.6)

t —_—
0 t

This idea, which is sometimes referred to as the
‘projection method’ (see [73] for a broad review) reveals
hidden symmetries of some complicated systems (which do
not possess any symmetry at all in the usual, Noether-like,
sense of the word) by considering them as embedded into
wider theories with more degrees of freedom. Quantum
mechanical examples of the applicability of the method are
by no means exhausted by the two systems above; one can
consider various projections, starting from (the exactly
solvable problem of) the free motion on any group
manifold, and in general this gives rise to the very important
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theory of ‘zonal spherical functions’, which nowadays is
increasingly attracting attention because of its obvious links
to integrability theory and quantum geometry (see [74], for a
discussion of'the latter relation and [75], where relations with
orthogonal poly-nomials and the generalised Kontsevich
model are partly revealed). An extremely important example
of free motion on a group manifold (in the infinite-
dimensional Kac—Moody case) is provided by the 2d
Witten —Zumino —Novikov—Wess (WZN W) model and the
corresponding version of projection method is known as the
Hamiltonian reduction in conformal field theory (CFT).
Again the resulting theories (like minimal conformal
models) do not possess any kind of symmetry in the usual
sense of the word, but still they are very simple and exactly
solvable because of their origin in the theory of free fields.

In principle, the theory which is reduced—i.e.
complemented by constraints (initial conditions)—does not
need to be absolutely symmetric—i.e. to have a Casimir
operator of even zero (as in the WZNW case) as its
Hamiltonian. In fact, it is possible to use the projection
method to gain a lot of information about reductions of
theories with more sophisticated Hamiltonians which are
nontrivial functions of group generators. The simplest
example is provided by the theory of quantum-mechanical
‘quasi-exactly-solvable models’[76, 77] and its CFT
generalisations [77, 78]. A more elaborate technique has the
name ‘localisation theory’f (also known as geometrical
quantisation, Fourier analysis on group manifolds, and
Duistermaat —Heckman theory) and provides a very wide
generalisation ofthe above averaging procedure, which maps
plain waves into Bessel functions. The classical example of a
system illustrating all the aspects of integrability, starting
from free motion and ending with anionic statistics,
W w-algebras and 2d Yang—Mills theory, is the Calogero —
Sutherland system, which can be associated in a uniform way
with any simple Lie algebra and, in an ‘intermediately
involved’ form, looks like a multiparticle theory in 1 + 1
dimensions with interaction potential g2[sing(x;—x;)]~2,
(see [73] for an introduction to the theory of Calogero-type
models, and [80, 81] for the new developments).

This discussion was necessary to illustrate a very simple
idea: that the theory of free particles, though trivial, is in fact
inexhaustively deep. It is enough to impose sophisticated
initial conditions or to perform a sophisticated change of
variables in order to obtain very complicated dynamical
systems, which, after they are studied, per se appear to be
surprisingly systematic, the reason for this simplicity being
that the real underlying dynamics is just trivial —that of the
free particles—though it may be a very hard problem to
reveal this simplicity when the system is given. It is an
advantage of the general theory that one can begin from the
proper side: from the theory of free particles and making it
more and more complicated; by introducing a different kind
of variables; by considering correlators of sophisticated oper-
ators; and so on. Everything that can be obtained in this way
is by definition trivially integrable, though it may not be so
simple to guess for somebody who did not know where the
particular system at the end of this procedure appeared from.

[ now proceed to a discussion of a particularly important
realisation ofthisidea: the theory of 8-operatorsin 1 complex

fFor various views and approaches to this theory see [5, 43, 44, 61—
65, 79]. (So far there are no connections with Andersson localisation in
solid-state physics.)

dimension (i.e. the theory of free holomorphic fields in 2 real
dimensions). When considered as functions of moduli of
bundles over Riemann surfaces (i.e. boundary conditions,
imposed on 2d free fields), these simple objects (known as
‘-functions’) start looking a little involved and after all
appear related to sophisticated nonlinear equations (but of
course integrable) in 2 and 3 dimensions [like KdV or the KP
equation]. I do not attempt to present an exhaustive theory of
t-functions and integrable hierarchies (besides being still
uncompleted, this is a very big field), but instead concentrate
on the very core of it, which consists of simple determinant
formulas for the simplest t-functions (namely, those
associated with free-fermion theory and level k = 1 Kac—
Moody algebras). This issue will be discussed in some
detail, because besides being the basis of integrable
hierarchy theory, it is also where the links with the matrix
models are found.

4.2 The notion of 7-function
There are several different definitions of t-functions, but all
of them are particular realisations of the following idea: the
t-function is a generating functional of all the correlation
functions in the theory of free particles in 1 + 1 dimensions.
This basic quantity is a kind of ‘det D’, where D is a time-
evolution operator (continuous or discrete) and ‘det * is a sort
of product over eigenvalues of D, which is usually expressed
in the form of a functional integral, associated with free
particles (it is not a priori gaussian in the original variables).
This quantity is the most general definition of the -function.
In practice one is usually more specific. The most well-
studied version of 7-function arises if one thinks about free
particles of a peculiar type: free fermions with quadratic
Hamiltonian and continuous time evolution, i.e. the theory
of the spin-1 b, c-system (fermions), Y/(Z, z), Y(Z. z), described
by the functional integral

1{A} ~ Det (34 A)
~ J DJD!// exp (szz Jét//)

xoo|[ [ _aGaoE-aw0ie)]

b1

where 7 plays the role of time and A = A(z,7)8(Z — 7)dzdz
is some (3, 1; 3, 1)-bidifferential (i.e. contains a factor
of d71/2d7 dz'/?dz).

Of course, one can think about more general 7-functions,
involving many fermions (this is often done), and more
general b-, c- and f-, y-systems, in particular, arising in the
context of the WZNW model associated with any Kac—
Moody algebra of any level.] It is also of interest to consider
discrete time evolution (described by difference equations
rather than in differential equations), though, as usual in the
2d theories, this is not really a independent problem.

1 The main technical difference between the generic and the ‘free-fermion’
cases is that the Lagrangian of generic free-field theory is not just
quadratic in the scalar ficlds ¢, but can also contain particular
combinations of exponents exp (). It is also worth noting that the most
general expression, quadratic in scalar fields, if rewritten in terms of
fermions is in fact quartic (but, of course, a generic quartic interaction
does not arise in this way). The integrable nature of certain quartic-
fermion interactions is well known from the theory of Thirring models (in
this class of models interactions are usually local).
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In the language of matrix models the restriction to free-
Sfermion -functions is essentially equivalent to the restriction
to eigenvalue models. Serious consideration of noneigenvalue
models, aimed at revealing their integrable (solvable) structure
will certainly involve the theory of generic t-functions, but
both these things are matters for future research, and I shall
not go into details about them in these notes.

4.3 The z-function, associated with the free fermions
Because of the specific form of the Lagrangian in Eqn (4.7)
the functional integral can easily be represented in
Hamiltonian form, provided the topology of the 2-surface
on which (Z, z) are coordinates, is trivial (genus 0: sphere or
annulus). Namely, consider Y and ¥ as operator-valued
functions of z only (not of the time 7). Then the only
thing reminiscent of a kinetic term [, YOy is the canonical
commutation relation

WE)v(E)], =8EF —z)dz'2dz 12 . (4.7)
Then,
Wy~ Olewlf § ACDUEIO)0. @y

Now it is usual to expand around z = O:

W) =30 s G = Y G e

nez nez

W], =3
V100 =0 for m<O0;

A= > 2" A dz a2

myn€Z

myn s

¥,l0) =0 for m>0 ;

so that
§ § AcVEIE -

In fact, this expansion could be around any point zo and on a
2-surface of any topology: topological effects can be easily
included as specific shifts of the functional A(z,7) by a
combination of ‘handle-gluing operators’. Analogous shifts
can imitate the change of basic functions z” for z”** and
more complicated expressions (holomorphic é—differentials
with various boundary conditions on surfaces of various
topologies).

One can now consider whether local functionals
A(z,7) = U(z)8(Z—-z)dz"?d7V? play any special role. The
corresponding contribution to the Hamiltonian looks liket

Z Amnl//m‘p

mynez

H cartan :fi; U@ () ¥() :fi; U(z)J(z) , (4.9)
dz z
where
JR) =y =D Juz"dz (4.10)
nez
isthe U(1)x= 1 Kac—Moody current;
In=Y UWin:  Umsdul =mbyino . (4.11)

mez

+Note that the normalisation factor here is different by a factor of 1/4/2
from that in the discussion of discrete models in Sections 2.3, 2.7, and 2.8.
This is not just a change of notation, since the Miwa transformation can
lead to different results when thisnormalisation is changed. Sec a footnote
in Section 4.6 below for more detailed discussion.

If the scalar function (potential) U(z) is expanded as
U@) = Y yez ti2*, then

HCartan = Ztkjk .
nez

(4.12)

This contribution to the whole Hamiltonian can be
considered to be special for the following reason. Let us
return to the original expression (4.8) and try to consider it as
a generating functional for all the correlation functions of
and Y. Naively, variation with respect to A(z,Z) should
produce the bilinear combination ¥(z) ¥(Z) and this would
solve the problem. However, things are not so trivial, because
the operators involved do not commute (and in particular,
the exponential operator in Eqn (4.8) should still be defined
less symbolically, see the next subsection). Things would be
much simpler if one were to consider a commuting set of
operators: this is where the abelian U(1),_, subgroup of the
entire GL(00);=; group (and even its purely commuting Borel
subalgebra) enters the game. Remarkably, it is sufficient to
deal with this abelian subgroup in order to reproduce all the
correlation functions.I The crucial point is the identity for
free fermions (generalisable to any b, c-systems):

— A
W(AY(4): = :exp LJ :, (4.13)

which is widely known in the form of bosonisation formulas:§

ifJ(z) = 0¢(2),
W) ~ rexpl(@D)]: {9 (co)d(A): = :exp[p(2) — p(00)]:1,
Y(A) ~ rexp[—p(A):  {:¥ (A (c0): = :exp[d(c0) — p(A)] .

This identity implies that one can generate any bilinear
combinations of y-operators by variation of the potential
U(z) only; moreover, this variation should be of the specific
form

TFUJ = (sz) = L J= Zfzkldz

kez

that is
1/1 1
Aty =———=1.
£ k(z" z")

11 onceagain emphasise that this trick is specific to free fermions and for
thelevelk = 1 Kac—Moody algebras, which can be expressed entirely in
terms of free ficlds associated with Cartan generators (modulo some
unpleasant details, related to ‘cocycle factors’ in the Frenkel-Kac
representations [47], which are in fact reminiscent of free fields associated
with the non-Cartan generators (parafermions) [S8]. These can, however,
be put under the carpet and/or taken into account ‘by hand’ as unpleasant
but nonessential(?) sophistications).

(4.14)

§ The formulas in brackets are indeed correct; before them the usual
symbolic relations are written. Using these formulas we get

—o]: =00 ([[28): = o ([ 1)

This identity can of course be obtained within fermionic theory; one
should takeinto account only those Y-operators that are nilpotent, so that
the exponent of a single Yy-operator would be just the sume of two terms
(polynomial).

V() = exp[9(2)
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Note that this is not an infinitesimal variation and that it has
exactly the form consistent with the Miwa parametrisation
used in Section 3.

Since any bilinear combination can be generated in this
way from U(z), it is clear that the entire Hamiltonian
S A, W, can also be considered as resulting from some
transformation of V (i.e. of ‘time-variables’ #;). In other
words,

A} =OuffA = U} .

These operators O4 are naturally interpreted as elements of
the group GL(o0), acting on the ‘universal Grassmannian’
[82, 83, 84], parametrised by the matrices A,,, modulo
changes of coordinates z — f(z). This representation for
T{A } is, however, not very convenient, and usually one
considers an infinitesimal version of the transformation,
which just shifts A:

t{t|A + 84} = Osa[f]e{r|A} . (4.15)

Note that this transformation clearly distinguishes between
the dependencies of 7 on ¢ and on all other components of A.
The possibility of using such a representation with the
privileged role of Cartan generators is the origin of all
the simplifications arising in the case of free-fermion
t-functions.t

Relation (4.15) is the basis of the orbit interpretation of
t-functions [83]. It is also important to understand the role
of the ‘string equation’ and other constraints, imposed on
t-functions in the theory of matrix models. These arise as
some particular subalgebras in the set of O-operators, and
their role is to specify particular points, A, in the
Grassmannian, of which this subalgebra is a stabiliser.} The
simplest examples are in fact provided by formulas from
Section 2.3 above, where combinations of the screening
charges describe As which are stable points of discrete
Virasoro and W-constraints (in the latter case the multi-
fermion system is used).

The fact that the t-function at all the points A of a
Grassmannian can be obtained by the group action from
7{0}, has an implication, known as the Hirota equation. The

T This is also the reason, why these are the free-fermion t-functions that
appear in the study of ordinary integrable hierarchies: the Hamiltonian
flows, which describe evolution in different r-directions, just commute
because the ts are associated with the commuting Cartan generators of
GL(00). In the more general situation the flows would form a closed, but
nonabelian, algebra.

1 This relation is straightforward in the case of Virasoro constraints, since
Virasoro algebra is just a subalgebra of GL(00) acting on t-functions, and
thus is a symmetry (covariance) of the associated integrable hierarchies
[84]. W-constraints do not form a Lie-subalgebra of this GL(c0), they
arise after a certain reduction, which in turn exists in a simple form not
everywhere on the Grassmannian (in particular W is not a symmetry of the
entire KP hierarchy [85]: here we deal with a more sophisticated self-
consistency relation, which remains to be understood in full detail (e.g. it
is unknown whether reduction exists at all at any Virasoro-stable point,
which would significantly simplify this kind of consideration). In fact, the
entire relation between the constraints and t-functions is not exhaustively
worked out: for example, there is still no clear and satisfactory proofthat
the full set of Virasoro and/or W-constraints implies that the partition
function is a 7-function, which would be purely algebraic and not refer to
theuniqueness of solutions to the constraints. The result, widely discussed
in the literature (see [29]) is that the string equation (the lowest Virasoro
constraint L _,Z = 0), if imposed on Z, which is somehow known to be
the properly reduced t-function, implies the entire set of Virasoro and
W-constraints (though even this proof can still have some loopholes).

idea [83] is just that there are Casimir operators in the group,
which commute with the group action and thus the
eigenvalue of the Casimir operator is the same for 7{A} at
all points A. In the free-fermion case the simplest example of
a Casimir operator is given by

Jo= s =i =Y

nez

(4.16)

The ecigenvalue of this operator for the vacuum state |0)
is an infinite subtraction constant, and this makes the
equation JoO,|0) = O4Jp|0) = const-Ox|0), or Jot{A} =
const-T{A}, not very interesting. However, this operator is
represented in bilinear form and in such cases the following
trick is usually useful.

If the operator T 4T ¢, which is bilinear in the generators
of the algebra, commutes with the action of the group, so
does T9® T4 if the group action on the tensor product of
representations is defined as |) ® |) — O4|) ® O4|). Indeed,
(T*®1 —|—I®T“)2 then commutes with the group action
and so does T9®T*=3[(T®1+1® T —TTa @l
[® TeT ). If, further, T ® T * annihilates the product of
two vacuum states:

(T®@T*[0)®]0)=0, 4.17)
then the same equation holds for all A:

(TQT )0, ®|04)=0. (4.18)
Condition (4.17) is trivially valid in our case:

D _¥al0) ®,0) =0, (4.19)

nez

since in every term in the sum, one of the vacuum states is
annihilated: the first one if n = 0 and the second if n < 0.§
Thus, we obtain the relation

> ¥, |0) ®1,104) =0,

nez

(4.20)

which can now be multiplied from the left by
(O (00) exp[H cartan (1)] @ (O(00) exp[H carian ()]

(¢} need not coincide with ¢,) and after the y-operators are
expressed as the time shifts, we obtain

> D t{tlAy @ Di{t'|A} =0, (4.21)
nezZ
where
1 9
Dz ™" =exp (ﬂ: ——) .
2 2T

This is a particular form ofthe Hirota equation [86], which is
often used to define t-functions, associated with integrable
hierarchies. If one takes Eqn (4.8) for the definition, as it is

§ 1t is easy to verify directly that Y, ¥, ® IZ" is indeed a Casimir operator
in the tensor product

[Z V@V, 18> Awiih, + Y A, ® 1]
n Lm

Iym

= Z (l//n ® ZAnm{/;m - ZAlﬂl//l ® lZn)
n m 1

= ZZAIW(IPI ® Jm - lpl ® J}Il) =0 .
1 m
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more natural to do in the general ‘theory of everything’ and
as we did above, Eqn (4.21) is the starting point for the path,
leading to hierarchies in conventional form of differential
equations; the Lax and pseudodifferential representations
naturally appearing on the way. [ do not go along this path in
these notes.

The last remark to be made, before I proceed to more
detailed formulas, is that t-functions can be considered
as the determinants Detd of the O-operators acting on
fields with some complicated boundary conditions [like
U(z) ~ exp (Ek>0 tz _") in the simplest cast of +~dependen-
cies]. Entire A-dependence is usually described in this context
as that on points in the ‘universal module space’, which once
appeared in the study of string models on Riemann surfaces
ofarbitrary genus[87]. From this point of view, more general
t-functions are sections of the bundles over the universal
module space associated with conformal models and is more
sophisticated than just the theory of free fermions (and b-, c-
systems). The WZNW model is, of course, the most
important example to be studied in this context.

The crucial feature of all the quantities associated in this
way to conformal models is the applicability of the Wick
theorem, reducing multipoint correlation functions to pair
correlators. In the free-fermion case this is just a consequence
of the quadratic form of the Lagrangian; in the generic
situation this follows from the existence of holomorphic
operator algebra, which allows one to define the correlators
by fixing the monodromy properties dictated by the pairwise
collision of points. The Wick theorem is the concrete source
of determinant formulas for 7-functions, which are used in
order to establish their relations with matrix models and
other branches of string theory.

After this discussion of the context where free-fermion
t-functions can and do appear, I turn now to more detailed
and exact formulas that are relevant in this particular free-
fermion case. The only sophisticated part of the work with
these formulas is the accurate accounting for the normal
ordering routine [88] (mostly due to the Japanese school [88],
though many other people contributed to this field after it
was established), which will be mostly unnecessary for our
purposes. In the main, I shall follow the presentation of [30,
36, 891].

4.4 Basic determinant formula for the free-fermion
correlator
Let us consider the following matrix element:

t{1.71G} = (N exp(H )G exp(A)IN) | 4.22)
where

YE) =Y W ) = g,

nez nez
G= exp( Z Amﬂl/’m@n) 5
m,n€zZ
H=Y tdi, H=Y fly;
k>0 k>0
J@) =YWE) =D T e T =Y Uiy, ;
nez k
[Jm’ ‘pn]+ = 6171,;1 5 [Jm»jn] = m5m+n,0 5

¢"7|N>:O’ m<N’ <N|l//m:0’ m>N,

UlN)
Jn|N) =

0, m>N; (N|y,=0, m<N;

m>0; (N|J,=0, m<0. (423)

The ‘Nth vacuum state’ |N ) is defined as the Dirac sea, filled
up to level N:

W) =1 ¥iloor = T il =o0)

00 N—1 -
(N| = (ool [J i = (ool I] ¥ (4.24)
i=N i=—00

where the ‘empty’ (bare) and ‘completely filled” vacua are
defined so that:

$m| —OO) =0 s <_Oo|l//m =0 5

lpm|00> =0 s <OO|$m =0 5

for any m € Z. For the same reason that operators J, H, H,
and G are defined so that they have usually ¥ at the very
right and ¥ at the very left, we have also:

Jm|—OO) =0 ) <_OO|Jm =0 5
G| —o00) =|—00); (~00|G* = (00| ;

exp(£H )| — 00) = | —00) ; (—oo|exp(£H ) = (—o0] .
(4.26)

(4.25)

Now one can use all these formulas to rewrite the original
correlator Eqn (4.22) as:

(N| exp(H ) G exp (A )|N)

- <—oo|<ﬁ %) exp(H ) Gexpm)( II ¢i>| - )

i=—00 i

= (~oolexp(~H) (}H %) xp(H) G

1=—00

X eXp(h_')(_l:[ l/h-) exp(—H )| — o0)

— (ool [T i1 [] #90)-o0)
= Dt e (00| PP FIF]| - o)

= Det; jcoHisn,j+N - (4.27)

The last two steps here introduce ‘GL(o0)-rotated’ fermions,
Wi[t] = exp(—H )y exp(H ) ;
¥ [f] = exp(H ), exp(—H ) ;
YO =GY 711G ; (4.28)

and an application of the Wick theorem to express the
multifermion correlation function through pair correlators:

Hy(t.7) = (00| #i[)¥ [ [7]| — o0)

= (—o0|?,[]G¥/[T]| — o) , (4.29)

(once again the fact that G !/ —o0) = |—o0) wasused). The
only nontrivial dynamical information entered through the
use of the Wick theorem, and for that it was crucial that all
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the operators exp (H ), exp (H ), G are quadratic exponents,
i.e. can only modify the shape of the propagator, but do not
destroy the quadratic form of the action (fields remain free).
This is exactly equivalent to the statement that ‘Heisenberg’
operators Y[t] are just ‘rotations’ of ¥, i.e. that transforma-
tions (4.28) are linear.

[ shall now describe these transformations in a little more
detail. Namely, their entire time-dependence can be encoded
in terms of Schur polynomials, P, (¢). These are defined to
have a very simple generating function (which we have
already encountered many times in the theory of matrix
models):

o0
D Pa(t)z" =exp (Z tez k) (4.30)
nz0 k=1
(ie. = 1, Pp= t,, P,= %t% + £2, etc.), and satisfy the
relation
oP,
=P, . 4.31
o, k (4.31)
Since
= 1
k ng _ kn
k=1 k>0 \m >0
the Schur polynomials can also be represented as
(4.32)

Pi)= Y (Hnljtzk).
{”"|Zk>0knk=n} k>0

Now, since

exp(—B)A exp(B) =A +[A, B] +% [[A.B].B]

+%[[[A,B],B],B]+... .
and

[Ji’ Jk] = Ji+/< } [[Ji"lkl]s Jkg] = Ji+k|+/<z’ e

we have, for every fixed k,
~ tzk ~
oxp(—tedi )i exp(tedi) = Y i Vit -
n=0%°

It remains to note that all the harmonics of J in
H= 3.t commute with each other, which yields:

B,(1) = exp(—H ) P exp(H )

= |:H exp(—thk):| % [H exp (1 /i ):|

k>0 k>0

| X (The)

n=0 {"‘|ZA>0 kng=n} \k>0

C S GinPalt) = S UP) |

nz=0 [

(4.33)

Similarly, the relation [Jx, ;] = Wi.4; implies that

V(1) = exp(H )y, exp(—H )

=Y WnPa(F) =D U, Puy(F)  (434)

n=z0 mzj
and finally}
Hij = Z (—OO|IPI Gl/’ml - Oo>Pl—i(t)Pm—j(lT)
l=Zi,m>=j
= Z TimP_i(t)Pm—i() , (4.35)
l1Zi,m>=j
which implies also that
oH; OH;
6t: =Hit,j » ?/:j =Hi j+k - (4.36)
The matrix
Tin = (00l G| — o0) (4.37)

is the one which defines fermion rotations under the action of
the GL(00) group element G:

Gl/’m Gil = Z‘//lTlm ;

lez

G_IJIG:ZTIIH;I;WH or GJIG_I :Z(T_I)ln1$m'

mez mezZ

(4.38)

IfG= 1, Ty, = Om. 1fall ty = fk: 0, then H[j: T,:/'.

4.5 Toda-lattice z-function and linear reductions of the
Toda-lattice hierarchies
In the previous subsection I derived a formula,

w{t,f|G} = Det; jcoHitn, j4n »

for the basic correlator, which defines the ‘Toda-lattice
t-function’. For obvious reasons, 7 is often referred to as
negative-time. The t-function can be normalised by dividing
by the same quantity for all vanishing time-variables, but this
is not always convenient. Eqn (4.39) has generalisations
when similar matrix elements in a multifermion system are
considered —this leads to ‘multicomponent Toda’ (or
AKNS) t-functions. Generalisations to arbitrary conformal
models should be considered as well. It has also particular
‘reductions’, of which the most important are: KP, forced
(semi-infinite), and Toda-chain t-functions. This is the
subject to be discussed in this subsection.

The idea of linear reduction is that the form of the
operator G or, equivalently, of the matric T, in Eqn (4.35),
can be adjusted in such a way that Ty{t,7|G} becomes
independent of some variables; i.e. equation(s)

(Za%—l—Zﬁ%-ﬁ-ZﬁkDN(/‘) ‘H’)TN{taﬂG} =0
k k %

(4.40)

(4.39)

can be solved as equations for G for all the values of'¢, 7, and
N at once. [In Eqn (4.40) Dy (k) fy = f~n +k—fn.] In this case
the system of integrable equations (hierarchy), arising from

TEqns (4.34) can be also interpreted as representations of Schur
polynomials in terms of fermionic correlators in the bare vacuum:
P,(f) = <_Oo|l//j+m ‘”‘p(]'7 )'/’,' — 00)

Pun(t) = (—ool; exp(H Wiy | — 00) .
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the Hirota equation for 7, gets reduced and one usually
speaks about a ‘reduced hierarchy’. Usually Eqn (4.40) is
imposed directly on matrix H;;; of course, then Eqn (4.40) is
just a corollary.

I shall refer to the situation when Eqn (4.40) is fulfilled
forany t,t, N asa ‘strong reduction’. It is often reasonable to
consider also ‘weak reductions’, when Eqn (4.40) is satisfied
on particular infinite-dimensional hyperplanes in the space of
time-variables. Weak reduction is usually a property of the
entire T-function as well, but isnot expressible in the form ofa
local linear equation, satisfied identically for all values ofz, z,
N. Now I proceed to concrete examples.

Toda-chain hierarchy. Thisisa strong reduction. The corres-
ponding constraint Eqn (4.40) is just
OH; OH;
Oty o Ofy ’
or, because of Eqn (4.36), Hi+x,j = Hij+«. It has an
obvious solution:

Hi,j=Hitj

i.e. H;; is expressed in terms of a one-index quantity H;. It is,
however, not enough to ask what the restrictions on H;
are—the equations should be satisfied for all # and 7 at once,
i.e. should be resolvable as equations for 7;,. In the case
under consideration this is simple: T, should be such that

(4.43)

(4.41)

(4.42)

Tlm = 7,:'I+m .
Indeed, then

Hy =Y TinPri(t)Puy(7) = Y TienPri(t)Pui(F)

lym lym
=D Tuisi [Z Pk(f)Pnk(f_)} ;
n>0 k=0

and

Hi=Y Tny [Z Pi(1)Pas (f)] :

n=0

(4.44)

Volterra hierarchy. The Toda-chain t-function can be
further weakly reduced to satisfy the identity

6er

=0, forallk,
{t211=0}
i.e. Toy is required to be an even function of all odd-times
tr+1 (this is an example of ‘global characterisation’ of the
weak reduction). Note that Eqn (4.45) is imposed only on
Toda-chain 7-functions with even values of zero-time. Then
Eqn (4.45) will hold whenever H; in Eqn (4.44) are even
(odd) functions of 544 for even (odd) values ofi. Since Schur
polynomials Py (¢) are even (odd) functions of odd-times for
even (odd) 4, it is enough that the sum in Eqn (4.44) goes
over even (odd) n when i is even (odd). In other words, the
restriction on T, is that

(4.45)

Otok41

Tim=Trm, and Ty =0 forall k. (4.46)

Forced hierarchies. This is another important example of
strong reduction. It also provides an example of singular
t-function, arising when

6= oo (S m )

blows up and normal ordering operators should be used to
define regularised 7-functions. Forced hierarchy appears
when G can be represented in the form [89] G = GyPy,
where projection operator P, is such that

P+|N> = |N> for N ZN(J

P,JN)=0 for N<Nj. (4.47)

Explicit expression for this operator ist
Py =: exp(—z ‘P[‘P/) P= H (I =) = H L7
[<Ng <Ny I<Ng

Because of (4.47), Pi|—o0) =0, and the identity

G| — o) = | — 00), which played an essential role in the
derivation of (4.27), can be satisfied only if Gy is singular
and Ty, = oo. In order to avoid this problem one usually

introduces in the vicinity of such singular points in the
universal module space a sort of a normalised (forced)
t-function T[\t; = ‘L'N/’L'NO. One can check that now T,,';I = 0
forall I, m < Ny, and tfcan be represented as determinant of
a finite dimensional matrix [90, §9].

‘L';;, = DetN(,g,-,_KNH;, for N > Ny ;

th, =13 (4.48)

va =0, for N<N,.
For N > Ny we have now a determinant of a finite-
dimensional (N —Ng) x (N —Ny) matrix. The choice of Ny is
not really essential; therefore it is better to put No = 0 in
order to simplify the formulas, phrasing, and relations with
the discrete matrix models (N is easily restored if everywhere
N is substituted by N —Ny). For forced hierarchies one can
also represent 7 as

‘L';;, = Dety < ;,>/<N6’i 6/]7'(1 , (449)

where Hf = M}, andd, = 8/0t,0, = 0/df,. For the forced
Toda-chain hierarchy this turns into an even simpler
expression:

= Deto<i jen OVHT, (4.50)

while for the forced Volterra case we get a product of two
Toda-chain t-functions with a halvedvalue of N [91]:

‘L'gN = (Det(, <i,j<N 6’;’7-2 f) (Det() <i,j<N 6’2+’(62'}-Zf))

=l [H 7 [0 HT). (4.51)

Forced r,fv can always be represented in the form of a
scalar-product matrix model. Indeed,

Hlj = Z TlmPl—i(t)Pm—j(t_)

= ﬁexp[u(h) + U WR'T (h,h) dhdh,  (4.52)

where T(h,h) =3, T,/ "~'h ™!, and

Im
exp[U(h)] = exp (Ztkh") = Zh’P,(t) .
k>n 120

+ Normal ordering sign : :means that all operators l/~/ stand to the left of
all operators Y. The product at the r.h.s. obviously implies both the
property (4.47) and the projection property Pf =P,
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Then, since
Deto <i,j<n B = Ay (h)

(this is where it is essential that the hierarchy is forced),

Deto <i,janHy = HHGXP[U (hi) + O ()

XT (i, h;) dh; dh; Ay (R) Ay (R) ,  (4.53)
i.e. we obtain a scalar-product model with
dpy, ;= exp[U(h) + U(h)|T(h, i) dhdh . (4.54)

Theinverse is also true: the partition function of every scalar-
product model is a forced Toda-lattice t-function —see
Section 4.7 for more details.

KP hierarchy. In this case we just ignore the dependence of
the t-function on times 7. Every Toda-lattice -function can
be considered also as a KP t-function: the operator
GKP = GexpH (a point of the Grassmannian) becomes 7
dependent. Usually N dependence is also eliminated —this
can be considered as a little more sophisticated change of
G. When N is fixed, extra changes of field-variables are
allowed, including the transformation from the Ramond to
the Neveu—Schwarz (NS) sector, etc. Often the KP
hierarchy is formulated from the very beginning in terms of
Neveu—Schwarz (antiperiodic) fermionic fields, Ys,
associated with principal representations of Kac—Moody
algebras) i.e. expansions in the first line of Eqn (4.23) are in
semi-integer powers of z: Yyg (z) = ey ¥,2" 72 dz /2.

Given a KP 7-function one can usually construct a Toda-
lattice one with the same G by introducing, in an appropriate
way, dependences on fand N. For this purpose t%P should be
represented in the form of Eqn (4.39):

™°{t|G} = Det; jooM}" | (4.55)
where Hi;" = Y, T;P,_(1). Since T, is a function of G only,
it does not change when one constructs a Toda-lattice
t-function:

‘L'N{t, lTlG} = Det,»,j<0'H,'+N,j+N ,

Hy =2 TP )PueyF) = 3 HPuy(F) . (456)
lym
Then,
#4116} = 10{1,01G (4.57)

If one goes in the opposite direction, when the Toda-lattice
t-function is considered as KP 7-function,

=Pt |G(7)} .
= ZHiumfj(f) s
TH{G(E)} =D Tin{ G }Pu(7) .

HEP
(4.58)

The KP reduction in its turn has many further weak
reductions (KdV and Boussinesq being the simplest
examples). | shall mention them again in Section 4.9, after
the Miwa transformation of representation Eqn (4.39) has
been considered in the next subsection.

4.6 Fermion correlator in Miwa coordinates

Let me now return to the original correlator Eqn (4.22) and
discuss in a little more detail the implications of the
bosonisation identity Eqn (4.13). In order not to write
down integrals of J, I introduce the scalar fieldt

o) = > Jk" Kty +JoInz, (4.59)
k#0
keZ—0
such that 0¢(z) = J(z). Then Eqn (4.13) states that
WAWY(A): = :expld(X) — $(A)]: - (4.60)

‘Normal ordering’ here means nothing more than the
requirement to neglect all mutual contractions (or
correlators) of operators between the colons when the Wick
theorem is applied to evaluate correlation functions. One can
also get rid of the normal ordering sign on the Lh.s. of
Eqn (4.60), then

V(A (A) = :exp[p(A)]: zexp[—¢(A)]: .
In distinguished coordinates on a sphere, when the free-field
propagator is just In(z—2), one also has

VR == WEOTE):.

(4.61)

My task now is to express operators exp (H ) and exp (H ) in
terms of the field ¢. This is simple:

H :fi;o U(2)J(2) = ff U(2) 0(2) ff $()OUE) . (4.62)

Here, asusual, U(z) = ) ;50 tkz and the integral is around
z = 0. This is very similar to the generic linear functional of

¢_(4) =— Ek>0(1/k)1krk’

H= Jqs,(i)f(x)dx : 63)
one should require only thatf

U(2) = J HONYS

-2

that is

Uz) = Jln (1 - I) £(2)da (4.64)
In terms of time-variables this means that

= —Hﬂfu) dA (4.65)

Here, one requires that U(z = 0) = 0; sometimes it can be
more natural to introduce also
o = Jln(/l)f(l) a (4.66)

This change from time-variables to ‘time density’, f(4), is
known as the Miwa transformation. In order to establish the

fOne can consider ¢ as introduced for simplicity of notation, but it
should be kept in mind that the scalar-field representation is in fact more
fundamental for generic T-functions not related to the level k = 1 Kac—
Moody algebras (this phenomenon is well known in CFT, see [16] for
more details).

I As is usual nowadays, a factor of 2mi is assumed to be included in the
definition of the contour integral §
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relation with fermionic representation and also with matrix
models we shall need it in ‘discretised’ form:

(o).
ty = —é(Zlnly —Zlnl,) .
Y Y

The integral over A has been replaced by a discrete sum,
i.e. the density function f(4) is a combination of 8-functions
picked at some points 4,, 4,. This is, of course, just another
basis in the space of linear functionals, but the change from
one basis to another is highly nontrivial. The thing is that the
basis has been selected where the amplitudes of the different
d-functions are the same: the parameter & in Eqn (4.67) is
independent of y. Thus, the real parameters are just the
positions of the points 4,, 4,, while the amplitude is defined
by the density of these points in the integration (summation)
domain. This domain does not need to be specified a priori: it
can be the real line, any other contour or—better still—
some Riemann surface. The parameter & is also unnecessary
because bases with different £ are essentially equivalent.
I shall soon put it equal to one, but not before the Miwa
transformation has been discussed in a little more detail.
Substitution of Eqn (4.63) into Eqn (4.67) gives

H=—t5"¢_(h)+¢> o_(R)
b Y

In fact, what is needed is not the operator H itself, but the
state which is created when exp(H ) acts on the vacuum state
(N|. Then, since (N |J,, = 0form <0, (N|exp[—&p_(A)]is
essentially equivalent to (N |exp[—&@(A)] with ¢_(4)
replaced by ¢(4). If €= 1, exp[—¢(4)] can be further
changed for Y(4) and one obtains an expression for the
correlator (4.22), an expression where exp (H) is replaced
by a product of operators Y(4,). The same is, of course, true
for exp (H ). Then the Wick theorem can be applied and a new
type of determinant formula arises, like, for example,

A(4, ) ~

T~ —————det,s(N | Y (A A5)G IN) .
o sV ) TG V)
It can also be obtained directly from Eqns (4.27), (4.29), and
(4.35) by Miwa transformation. The rest of this subsection
describes this derivation in somewhat more detail.

The first task is to replace ¢_ by ¢. For this purpose I
introduce the operator

(4.67)

(4.68)

(4.69)

o0
S wi=Hi +H_, (4.70)
k=—00
where H = Y, ot Jisjustourold H; H_ = Y, 5t J;;
and ‘negative times’ f_, are defined by ‘analytical

continuation’ of the same formulas (4.65) and (4.67):

t_ Jl"/(l :——(Z,l" Zx") 4.71)
Then
kioo ni=Hy+H_ =-¢ [zy: o(4,) — ; ¢(1})] . (472)
Further,

exp(H+ +H_) = exp [~ 5s(t)] exp(H) exp(H_)
=exp[s(t)] exp(H_)exp(Hy) ., (4.73)
where
S(l‘) = Zktkt—k
k>0

e D7) T (- 2)]

— 2 — As/2)(1 = As /%) "

=&In [E N — e +const, (4.74)

where the prime means that the terms with y = ¢ are
excluded from the product in the numerator and accounted

for in the infinite ‘constant’, added on the r.h.s. In other
words,
r 7 \¢
H(}W - 16)(}“? —2s)
>0
exp[ls(t)] = const X |~ =
’ HH(}W —4s)
Y 9
- ~ él
A () A*
= const X M 4.75)
A4, A)

Since (N |J,» = Oforallm < 0,wehave (N|exp(H-)= (N|,
and therefore

(Nlexp(H) = (N|exp(H) =
=exp[—3s()[(N |exp(Hy +H_) .
From Eqn (4.72),
exp(H . +H_)

= const X H rexp[—¢p(4y)]: rexp [éqﬁ(}:},)] , (477

v
where ‘const’ is exactly the same as in Eqn (4.75). If & =
Eqn (4.61) can be used to writet

(N [exp(H_) exp(H 1)

(4.76)

L AQD

W lexplan) = oo

(NITTw) HW (4.78)

T The value of € can be chosen to suit particular purposes. Here I impose
the requirement that the Miwa transform represents exp(H) =

exp(H cartan) as a product of dlmcmlon— operators—this is most
natural from the point of view of Hirota cqudt]ons and simplifies the
relation with integrable hierarchies. However, in Section 2.7 and 2.8 T used
another requirement (and there & = 1/4/2 rather than & = 1). There the
I-matrix model, which is characterised by an especially simple form of the

full Hamiltonian (product of dimension-zero operators), was considered

and it was more important to adjust operators which arise from
exp(H cartan) after Miw:i transformation so that they have simple
correlators with exp(Ayy). When analysing the 1-matrix model from
this point of view one should also keep in mind that it was actually
represented in Section 2.3 in terms of two complex fermions. The
screening charges are

Q) = }cxp(\/ﬁ(ﬁ) = i;%% = }cxp( — )
00 = i;cxp (—Vv2¢) = }‘7’2‘/’1 }c"p(% — 4.
while ¢ = (1/v2)(¢,
1 1
ﬁ;lk-/k =§Xk:’k(-/; i)

and the Miwa transformation generators are operators x,%,, where y; and
%, have dimension % [rather than %as in the one (complex)-fermion system
considered in rhis section].

— ¢,). The Hamiltonian is

Hcartan =
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Similarly, Starting from representation (4.86) one can restore the
AG, corresponding matrix Hj;" in Eqn (4.55) [36];
exp(H)|N) —HW& H.//(z(S |N>A2(1()A2zz) (4.79)
K'Pt:fi;'i (z tz* |dz, 4.88
where HE {t} = ¢z'p_;(z) exp zk: 2 ]dz (4.88)
_ 1 . Tk
=2 (B ). (4.80)  that s
and I used the fact the J,,/N ) = 0 for allm > 0. Finally, Ty" = TFZ ¢_i(2) . (4.89)
ww{t.7|G} = (N |exp(H ) Gexp(H)|N) Then obviously
AQT) AL Kp
Ty el | (20 ) LR Y
VE (1) 4? (,1) A*(2)A? (,1 5 o1 ik,
X G];['/’(lfs) 1;[t//(l5)|N) (4-81) " Now one needs to prove that the t-function is given at once

Singularities at the coinciding points are completely
eliminated from this expression, since poles and zeroes of
the correlator are cancelled by those coming from the
Van der Monde determinants.

Let me now put N = 0 and define the normalised
t-function:

_ {1, 7|G}
~10{0,0|G}’
i.e. divide the r.h.s. of Eqn (4.18) by (0|G|0). The Wick

theorem now allows one to rewrite the correlator on the
r.h.s. as the determinant of the block matrix

(4.82)

O )P E)G10)  (Ol(4) GE(Gs)l0)
(0IG 0) (01G10) “.83)
{0 (s) G(3y)10)  {0IG Y (7)Y (%s)]0)
(0IG [0) (0IG0)

Special choices of points 4,, ..., s can lead to simpler
formulas. If 4, — 4,, so that 7z — 0, the matrix elements
at the lower right block in the matrix (4.83) blow up, so that
the off-diagonal blocks can be neglected. Then

(Ol exp(H) G |0)

T ="
A(4.7) (0l (4,) ¥ (4s) G0)
Y R /1) B

This function no longer depends on #-times and is just a KP
7-function.
The matrix element

= Oy (A)G]0)
e e )

is singular when A—A:9(,2) = 1/(A=7). If now in
Eqn (4.84) all 1 — oo,

(4.85)

_L_KP{t |G} = detys @5(4y)

VIONER (4.86)

where
05(2) = (01Y(2) (@°'9)(00) G [0) ~ AM[HOG)],
(4.87)

This is the main determinant representation of the KP
t-function in the Miwa parametrisation.

by detyy(4s)/A(A) and DetHE" {t}. In order to compare these

ij
two expressions one should take r, = (1/k) >/ 4.", ¥, so that

exp (Z’kzk> = H,{fiz

k>0
T —1)" 4,(4)
= (Hiy> zy:z — AV( 7 (4.90)
where
_ _A4)
4,(4) = al:[ﬁ (lu = Ap) = %) (4.91)
o, B#y Ay
and
(=1)"*'4 4,(4) ,
KP I :—Z it <l;[ ) Z A('1 : _l(/l )
(4.92)

Aslong as n is kept finite,

Det

K
i,j< OHij

=0
1INV - >
t"=fzv/17k
since it is obvious from Eqn (4.92) that the rank ofthe matrix
is equal to n. Therefore, let us consider the maximal
nonvanishing determinant,

KP
Det_y <i,j<0H; |,A_

,%Z"r‘
y+l
(HA ) dety, [ ;,A w?“’} detyyo,(Ay)
dety; @;(4)
_ W . (4.93)

I used here the fact that determinant of a matrix is a product
of determinants, and reversed the signs of i and j. Also used
were some simple relations:

(4) 1
HAy(i A1)’

-1
1 - 1
det,‘»y ? = <H ly) Y| (I) ,
b b
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thus,

n(n ]) ’Y()' ] _ 1

(H’1> HA(,1 'VA;_A(x)'
Since Eqn (4.93) is true for any n, one can claim that in the
limit n — oo one recovers the statement that tP{¢}

Det;,j<oH,!§p with ’Hf.jpgiven by Eqn (4.92) (that formula
does not refer directly to Miwa parametrisation and is
defined for any ¢ and for any j <0 and i). This relation
between the ¢,s and 'H,‘?P can now be used to introduce
negative times 7, according to the rule (4.58). Especially
simple is the prescription for zero-time: H; — Hiyn, j+n»
which, when expressed in terms of ¢, implies just that

det ¢, (4 det A
-t
Generalisations of Eqn (4.88), like
H{t 1}
= ii;ffz 70| Y (z) G J(f) |0) exp [Z(tkz ko t_kz_,k)] dzdz,
k (4.95)

also can be considered.

4.7 Matrix models versus z-functions

[ can now return to my main subject and discuss the
integrability properties of eigenvalue matrix models. The
claim is that the partition functions of all these models,
when considered as functions of time-variables (parametris-
ing the shapes of potentials) are in fact t-functions of
(perhaps multicomponent) Toda-lattice and/or KP type.
(Interesting noneigenvalue models are believed to be related
to integrable systems of more general type, not restricted to
levelk = 1 Kac—Moody algebras).

Partition functions are, however, not generic Toda or KP
t-functions: first, they usually belong to some reduced
hierarchies; second, the relevant operators G (points of a
Grassmannian) are restricted to stay in particular domains of
the universal module space, specified by ‘string equations’.
The string equations are in fact nothing but the set of Ward
identities (WIs) (Virasoro or W-constraints, in the examples
under investigation), which are now interpreted as equations
on G. The very possibility of such interpretation is highly
nontrivial and reflects some deep relation between the
constraints and integrable structure. In the case of Virasoro
constraints this is not a puzzle, because Virasoro algebra is a
symmetry (covariance) of the hierarchy, the situation with
other constraints is less clear (see the footnote in Section 4.3).
In fact, when applied to a t-function of appropriately
reduced hierarchy, the infinitely many constraints usually
become dependent and it is enough to impose only the lowest
Virasoro constraint L_j7 = 0 (or L_,t = 0, where p is the
degree of reduction), in order to recover the entire set [29]. It
is this lowest constraint [or rather its ¢;-derivative,
(©/0t1)/(L_1t) = 0] that traditionally carries the name
‘string equation’. It is often much simpler to deduce than
the entire set of identities, which is important in practical
applications (especially because determinant formulas,
which imply integrability, can also be simpler to find, in
some situations, than the WIs).

In order to give a complete description of some sort of
(matrix) model from the point of view of integrability theory
it is enough to specify the hierarchy to which it belongs (if the

partition function is interpreted as a 7-function),

Zmodcl {t} = I{t |Gmodcl} 5

and the string equation which serves to fix the operator G—
the point in the universal module space.t After that, it
becomes an internal (yet unsolved) problem of integrability
theory to explain what is so special about the set of points
{Gmodel} in this space. (I shall touch this problem in the next
subsection, devoted to Kac—Schwarz operators.) Alterna-
tively, if there is nothing special, it is an (unsolved) problem
of matrix model theory to find models associated with any
points G in the universal module space (or to explain what, if
anything, is an obstacle).

I proceed now to a description of particular matrix
models from this point of view. As everywhere in these
notes | consider only the most important classes of scalar
product, conformal (multicomponent) and generalised
Kontsevich models (GKM). All other examples (like models
of complex matrices, orthogonal matrices, unitary matrices,
etc.) can be taken into consideration with more or less effort
(see [28, 91] for cases of complex and unitary models,
respectively), but they do not add much to the general theory
that we are now considering. String equations will be
discussed in the next subsection.

(4.96)

Scalar-product models. These were exhaustively discussed in
Sections 3.5—3.7. Recall that all conventional multimatrix
models [with intermatrix interaction of the form
exp(Tr H @H +1)] belong to this class. The crucial
formulas are:

Iy = DetN'H{/ = Detosi,.iSN—'Hiff

_ f
=Det_y <i,j<0Hirn, j4n >

o CAWARY
f f_ Y\ Y f
H al‘ath o (6t1>(6t_|>H ’ (497)
Here,
Hj = (h'|h/) = Jdﬂ,l’ aexp[U(h) + U(h)|Wh! . (4.98)
Further,
exp[U(h)] (Z tkhk> = ZhlP,(t)
k>0 1
exp[U(h (Z f A ) = Zl;um (;) (499)
k=0 m
and thus,
H =Y (B R Py (1) P (F)
lym
= ZTmel—i(t) P’71—_f(l‘_) >
lym
T4, = (")) (4.100)

T As argued in the Introduction and in Section 2.1, the word ‘matrix’ can
probably be omitted if generic Lagrangians are considered in other
models of quantum field theory. Also, the universal module space (-
where moduli are of bundles over spectral Riemann surfaces) can (and
should) be treated as a ‘space of theories’. It is one of the great puzzles
(and beauties) of string theory that Riemann surfaces appear both in the
world-sheet and in the spectral ‘dimensions’. See [6] for more discussion of
this issue.
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where the scalar product ({ | )) is with respect to the measure
dy, 7 {while (| ) is with respect to the measure du, ; =
exp[U(h) + U(h )]dﬂh it

One would 1mmed1ately recognise in these formulas
representation (4.39) of the Toda-lattice t-function, were
there no additional restriction that the determinant in
Eqn (4.97) is over a finite-dimensional N x N matrix (indices
are constrained: i,j = —N ). This can be automatically taken
into account if one requires that

Tf

Im

=oo0 forall,lm<0, 4.101)

and identify Z y as a normalised t-function, 7, of forced Toda-
lattice hierarchy (thus the superscript f carried by H and T').
One concludes that the partition function of any scalar-
product model is a T-function of the forced Toda-lattice
hierarchy.

Let us now consider them as KP t-functions. This means
that the r~dependence is simply ignored. However, N will be
preserved explicitly as a parameter labelling the KP 7-function.
After the Miwa transformation #, = —(1/k)3_, ly_k — ey
described in Section 3.7, one gets:

7. = > dety(SQANﬂ'—l(Aé)
N — &N A(}.) s

where the Qs are orthogonal polynomials with respect to the
measure dy, ; = = exp(— Y, rih* )duh i

One concludes that in the framework of the KP hierarchy
the scalar-product models are distinguished by the fact that
the corresponding ¢,(4) in Eqn (4.86) are polynomials rather

than infinite series in powers of A~

(4.102)

The 1-matrix model. This is a particular example of a
scalar-product model with a local measure given by

dpy, ;= exp[U(h) + U(h)]8(h— h)dhdh.

In this case,

HE = (W W) = (W) = in— 2 iHHf (4.103)
v oty \on o
Thus, in this case one is dealing with the (forced) Toda-chain
reduction of a Toda-lattice hierarchy. At the end of this
section orthogonal polynomials are used to present a detailed

description of I-matrix models as Toda-chain 7-functions.

This model can alternatively be defined as a gaussian
Kontsevich model: see Section 3.8. The fact that the partition
function is a t-function follows then from the general
statement for the GKM, see below. The fact that it is a
forced t-function is related to the property c_y = 0,
mentioned at the end of Section 3.8 (and proved in Section
3.9). Also, the reduction to a Toda-chain hierarchy can be
observed directly in terms of the GKM; see [36] for more
details.

Multicomponent (conformal) matrix models. These are
related to multicomponent hierarchies, with 7-functions
representable as correlators in multifermion systems. An
example of a determinant formula which substitutes
Eqn (4.39) in the 2-component case is given at the end of
Section 3.5, where it is derived from a consideration of the
relevant matrix model [39]. For derivation of the same
determinant formula in the theory of t-functions see [92].
The generic theory of multicomponent hierarchies is now
making its first steps and I do not review it in these notes. See
[93] for the group-theory approach to the problem.

Generalised Kontsevich model (GKM). Determinant
formulas for this case are derived in Section 3.3. The most
important expression is

1 detys @,y (4s)

ZviN.T} = et )Y 4()

(4.104)

where
0,() = %Z_nexp[—zv'u) VTR

x Jxv—' exp[=V(x) + V(1) x] dx

=2""+o( ™M), (4.105)

and
(P},(A) = 'Aq)y—l (,{) = 'Ay_l ¢(A) .

For N = 0 this is just the representation, peculiar to the KP
t-function in the Miwa parametrisation, Ty = (1/k)trA7*;
see Eqn (4.86) above. Thus,

Zy{T} =T | Gy}, (4.107)

where it is the operator G (the point in the Grassmannian)
which depends on the shape of potential V(X ). Also, recall
that the only way in which Z depends on the size of the matrix
n is through the domain of variation of the time variables T.
If Eqn (4.104) is extended to the full Toda-lattice =-function
by the introduction of negative times, one obtains [36]

(d_lil ) exp( ZT" tr A~ )

XJ dx (det X )" exp [— tr V(X) —HrAX—i—Z TptrX _k}.
nxn k>0

(4.106)

Zy{T,N,T} =

(4.108)

When this extended partition function is considered as a KP
t-function we have, instead of Eqn (4.104)

1 det75 (py+N ('15)
(det A)Y A(4) '

Zy{T,N,T} = (4.109)

and the relevant ¢-functions are

AP Fexp[—iv'(A)+V(l)]¢VTw
X JXY—I exp[—‘}(x) + V’(ﬂ.)x] dx
:/{NH’—I[] +O(ﬂ._l)] , (4.”0)
with
V)= V@) —Ninx =Y Tex ™,
k>0
V) = Vi) @.111)

where A\7+(x) is the positive-power portion of the Laurent
series V(x). Functions ¢,(4) in Eqn (4.105) are equal to

¢§V}(’1)|T:o :
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4.8 String equations and the general concept of reduction
The role of the string equation is to fix the point G in the
universal module space (UMS) associated with the particular
matrix model, so that the partition function, considered as a
function of time-variables, will appear as the corresponding
t-function of a fixed shape. In this sense the idea behind the
string equation is exactly the same as the reduction of
integrable hierarchies. The difference is that linear
reductions, as defined in Section 4.5 above, are not enough
to fix G unambiguously: they just specify certain subsets in
the Grassmannian, which are still infinite-dimensional. The
reason why these are usually linear reductions that are
considered in the conventional theory of integrable
hierarchies is that they are associated with the simplest
possible—Kac—Moody—subalgebras in the entire
GL(o0). String equations, even their simplest examples, are
usually fragments of more complicated Virasoro and
W-algebras, and are in fact considerably more restrictive.
Moreover, the string equation is usually a distinguished
fragment, because it usually belongs to the Virasoro
component of the Wls, and the Virasoro algebra is still a
Lie subalgebra in GL(00). This is what makes the problem of
string equations very similar to the ‘classical’ one with linear
reduction.

More specifically, in order to take string equations (and in
fact the entire set of Virasoro—but not W —constraints)
into consideration of reduction it is enough to allow the
coefficients in Eqn (4.40) to depend on r and 7, without
changing the order of time-derivatives. Of course, there are
no obvious reasons to think that any point G in the UMS can
be selected by imposing these kind of linear-derivative
constraints on t-function, and further investigation may
require essential generalisation of such a restricted notion of
string equations. However, some of the eigenvalue matrix
models are already known to possess string equations of such
simple type, associated with Virasoro subalgebras of GL(c0).
[ will not go into details of the general theory —it is far from
completed yet—but instead present several examples of how
string equations arise in particular matrix models. These
examples can illustrate also the simplifications arising when
only string equations and not the entire sets of WIs need to be
derived. In particular, it is clear that in cases when t is repre-
sented as Det;/H;;, a linear differential equation imposed on
‘H;; will give rise to a similar equation on 7 itself. Most known
string equations can be derived with the help of this technical
idea. They are usually associated with the invariance of inte-
grals under constant shifts of integration variables 82 = const
in scalar-product and other discrete models, and with the
action of the operator tr(0/0L,) in the GKM. For somewhat
more involved ideas associated with string equations, see [94].

Scalar-product models. The string equation can be easily
deduced for very specific types of measures dfy, ;. Since the
integral

Hj = jh’ﬁf exp[U(h) + U(h)] dpy, (4.112)
is invariant under the shift of integration variable &4
= const,

Jh’ﬁf exp[U(h) + U(h)|dy, ;

x[ih"—i—a%—l(fl)—i——l n(dpy, ;)| =0, (4.113)

or

0 o @
i+ > kg — I77{,,+[ (at’a_f>]..:0' 4.114)
y

k>0

The string equation arises straightforwardly when the
operator S is linear. This is true if In(df, ;) ~ hf(h) with
any function f(h). If the measure dj, j is also required to be
symmetric in & and &, one obtains the conventional 2-matrix
model as the only example:

dfy, i = exp(chh) dhdh . (4.115)
The equation for H;; is:
6 .
Zktk Hyj = —iHi 1, - (4.116)
k>0
Its implication for 1y is:
0 0
>kt +e— |ty =0, (4.117)
0 atk 1 6t|

since the r.h.s. of Eqn (4.116) does not contribute to the
determinant (the entries in the ith row are proportional to
those in row i—1).

In the particular case of the I-matrix model, c = 0, one
recognises the lowest Virasoro constraint L _Ty = 0. Tradi-
tionally the name string equation is given not to the L_;
constraint itself, but to its #; derivative: (0/0¢;) (L_Ty)= O.
For the 2-matrix model, Eqn (4.117) is the lowest (m = 1,
n = 0)component of the Wls

W, () - (- Wity = 0.

Of course, there is also a similar equation with 7 < 7.

)m+n n+1

Multicomponent (conformal) models. The crucial feature of
these models is that the intermatrix interaction, when
rewritten in terms of eigenvalues, usually contains only
differences h() hj(ﬂ) Thus there is usually covariance
under stmultaneous shift of all eigenvalues 5/1 9 — const by
the same constant. This gives rise to a string equation of the
form

(ZL@)IN ~o

See [39] for details.

(4.118)

Generalised Kontsevich model. In order to derive the string

equation, one should act on the partition function
Z AT, = (/k)tra™} = Cy'F {L = V'(4)} with the
operator
tr = tr 1
oL,  V"(A)oA,

One can rewrite the result of this action in terms of time-
derivatives:

0 1 0
(4.119)

Alternatively one can use the fact that

_ Z;i
V(L) ok,

0 .
trm %4 ().) N
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and obtain an explicit expression for Zy in terms of
eigenvalues (Miwa coordinates):

det (Apy (15)
I0)

(4.120)

Zy ~expltr V(A) — tr AV'(A)] [TV ")

Y
_ det g, (49)
44
to get:

(traz > InZy{T}

__ I/I(A
_2 [V”(l QZ

>0

I/(l ”(Aé) ]
Ay = /16 VI (2,)V " (45)

)
—tr A+ Za—lﬁln detysd,(Is) . (4.121)
B

Comparison of these two expressions gives:

E(fVI)ZV:L Z tr—] o
Zy Zy V1(A) AT ) 0T

k>0

I/ /I
G)-V'0s) 13
zZ L h vy o | 2

>0

0 0
=——InZy+trd— Za—lﬁln detysd,(ls) . (4.122)
B

oT,

One can show that the r.h.s. is equal to zero, and thus the
string equation arises in the form

Mz, =0. (4.123)
If the potential is monomial, V, = X?*!Y(p+1), then
re = —[p/(p+1)]6k,p+ 1 and
L L, =- Z(k + ) (Tisp + 1 )i
—1 -p +p )3T,

k>0

18
=Y k(p—k)T Ty | . 4.124
F32 K P ITT | - (124)

The technical idea behind the proof[30] is to represent

Zy{Ti + (1/kA%)}dA
Zv{T} ’

0
—InZy =Res

a7, (4.125)

and to make use of the second determinant representation in
(4.120) in both the denominator and the numerator:

det [(pa(a) (pn+l()3):|
%IHZV =Res—; d (p((si(et) (;Pn)ﬂ( )
| []¢—4) e
y=I
(4.126)
Now recall that
@,(A) ~ 271+ 0(A)]. (4.127)

At some point we shall need even more: in fact,

@,(4) ~ 271 +0(A7)]

that is,
@, () =2 e+

This is a rather delicate property of the GKM.
from two facts: first, that

v (V///)2
¢, = ]+O<_(V”)2 s —(V”)3 >

thus ¢; = 0; and second, that the Kac—Schwarz
operator A, defined in Eqn (4.106), does not have
contributions with zeroth powers of A, thus ¢,+1 = ¢,.
(For example, if

V(x)= 3x*+ax,

.., and ¢, =0 foranyy . (4.128)

It follows

then

1
:\/—z_njxy Pexp[—3(x—A)]dx =2+ 0- 2 4
the dangerous terms with a simply do not show up in the
expression for ¢y.)

After this comment | can come back to the evaluation of
Eqn (4.126). The product in the denominator, which arose
from the Van der Monde determinant, is already propor-
tional to A% [[=i(A=24) =21+ O(4™")]. Because of this
and the asymptotic formulas (4.127), it is clear that if
determinant in the numerator of Eqn (4.126) is rewritten as
a linear combination of n X n determinants with the
coefficients ¢,(4) from the last row, only terms with y > n
can contribute. There are two such terms: with y = n and
y= n+ 1. In the expansion of the (n+ 1) x(n+1)
determinant, ¢,+(4) is multiplied by det ¢,(45), which
exactly cancels with the determinant in the denominator,
and the relevant contribution is

@,(x)

o LA _ Sk = AL (4129)
[T -%) ’
=1
The term with @,(2) is
det[q)] (A'Y) <Py (}’}’) q’n+l (A'Y)] Res (pn()')dl ) (4]30)
det[e (4,) ..

-(Pn,|(l )(pn(l )] z
v [1G-4)

y=1
The remaining residue is just unity. The determinant in the

numerator differs from the one in the denominator by a
substitution of the column with entries ¢,(4,) for that with

(pn+l(ly).
At last we can return to Eqn (4.122) and recall that

©/81)¢,41(1) = @y (1); thus

det[(,b] (ly) “ee é’n—l (l?) ¢n+l (l?)]
det[ () .. @y (By) Pu(By)]
(4.131)

0
—Indet,s@;s(L,) =
zﬂ:alp Yo o\ty

the r.h.s. of which is just the same as the term (4.130), since
the @ differ from the @gzs by a J-independent factor of
exp[V(A) — AV'(A)]4/V"(A). Thus, one concludes that the
r.h.s. of Eqn (4.122) is equal to —cu+1, which actually
vanishes, as was explained several lines above.

Two things deserve attention in this derivation. First, it
was absolutely crucial that we had (0/0T)In Zy on the r.h.s.
of Eqn (4.122) to make it vanish, and therefore ©/0¢;
immediately appears in the expression for the EEVI) operator
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on the lLh.s. [this is the origin of the ri-corrections in
Eqn (4.124)]. Second, the result is both simple and natural,
but the proofiis full of technical details and looks somewhat
artificial. It becomes even more involved when the general
formula (4.136) for the Ty-derivatives of Zy with 1 <k <p
(see [40]) is derived; this formula plays an important role in
the theory of GKM and its applications to the theory of
quantum gravity. The proof of the string equation is just a
particular case of that formula, since using the integral
representation of (/) one can represent the r.h.s. of
Eqn (4.131) as (1/Zv){tr X ), where () now stands for the
average defined by the Kontsevich integral. Thus,

(4.122) (4 1_36)

0
Mz, "= —ﬁZVJr(trA—trX) 0. (4132)

4.9 On the theory of the generalised Kontsevich model
This theory is a naturally broad collection of topics for a
separate big section in these notes. However, I decided not to
include too detailed a presentation because the GKM theory
seems to be incomplete. First, [ believe that the natural
invariant formulation —of which the existing matrix
integral is only a specific realisation —is still lacking.
Second, the GKM is not yet generalised enough to fulfil its
main purpose of incorporating information about all the
models of 2d gravity (in fact it should include even more: the
entire theory of integrable hierarchies and geometrical
quantisation). Third, though the whole approach is very
conceptual and deep, many proofs, as available nowadays,
are still very technical and long. All this implies that a proper
view on the subject of GKM still needs to be found. At the
moment | could describe two complementary approaches:
one, starting from the integral representations, the other
from the Duistermaat —Heckman (localisation) theory and
Fourier analysis on group manifolds. Though intimately
related, these two approaches are still technically different
in too many respects. The second one is more fundamental
(since ordinary integrals arise from discrete sums either in
special limits or in the case of infinite-dimensional algebras,
and is more important, since the integral representation is
only one of many possible ways to define the quantities of
interest). However, many of the most important results
obtained in the first approach do not have their proper
names and exact counterparts in the second one. I believe
that this whole issue will be greatly clarified in the near future
and have decided to postpone a detailed review till that time.
What one cannot avoid in these notes is giving at least a list of
topics already included in the theory of GKM, and this is the
purpose of the present subsection.

The Kontsevich model with V = %X3 was derived by
Kontsevich [22] from the original definition of topological 2d
gravity, given by Witten [9] in terms of the generating
functional for Chern classes of certain bundles over
Riemann surfaces. Generalisation of this reasoning (when
more bundles are taken into consideration) leads to the
theory of Landau—-Ginzburg gravity (LGG), which is
believed to be the same as the GKM, though not all the
proofs are yet available.t

T Intermediate results include the study of the spherical approximation to
LGG, which exhibits the structures peculiar to ‘quasiclassical integrable
hierarchies’ (of which the Bateman hierarchy, to be briefly mentioned in
Section 5.2, is an example), and which also arise in ‘quasiclassical
approximation’ to the GKM. For some results in this direction see [17,
40, 41, 95-97], references therein.

The crucial feature of nonperturbative partition func-tions,
as discussed at the beginning of Section 2, is their intrinsic
integrability. For 2d gravity this general idea acquires a very
concrete formulation: the partition functions are usually just
t-functions of conventional integrable hierarchies; moreover,
for LGG, associated with minimal models, these are just
ordinary multicomponent Toda hierarchies.}

Kontsevich found a representation for the generating
func-tional in the form of a matrix integral, i.e. he
formulated a matrix model, which later allowed him to
prove Witten’s conjecture that the functional is in fact a -
function. The concept of the GKM as a universal matrix
model, including all the information about generic
(eigenvalue?) matrix models and thus all the models of 2d(?)
gravity, was introduced in [30], and the analogue of the
Kontsevich model with arbitrary potential V(X), i.e. the
expression

= Cy(A) ' Fy[V'(4)]
Ty=(1/k)tr A~

v/det V(A)

" 2n) exp tr[AV (4) — V()]

Zy{T}

xj dXexp[-trV(X)+tr V'(4)X] (4.133)

was proposed as an intermediate step in this direction.§ This
(still restricted) version of the GKM is already enough to
unify all the (p, 1)-models of 2d gravity. In some sense, ( p, ¢)-
models with ¢ # 1 are also included, but in a very
nontransparent way (using analytical continuation), which
does not even explicitly respect the p «» g symmetry. The
partition function of such a GKM, Zy{T }, depends on two
types of variables: time-variables, fk, and the potential, V.
Formally these two types of variables are absolutely
different, V being responsible for the choice of a particular
LGG model or, what is essentially the same, of a particular
reduction of the Toda-lattice or KP hierarchy; f"k are
parameters of the generating functional of all correlation
functions in this particular model. But of course, since one is
dealing with an exact (nonperturbative) approach, there is
almost no real difference between these types of
dependencies— on the model (vacuum state) and on the Ts:
the model can be changed by a noninfinitesimal shift of the T
variables. Technically, in the GKM this is reflected in the
identity of the form [40]:

Zy AT} =f,(r|Te + 1) (T + 1| Gp} (4.134)
where
_ P / 1-k/p
=———— Res|V d
rk k(p_k) es[ (I’L)] I’L

provides a specific parametrisation of potentials V (which is
here assumed to be any polynomial of degree p) and f, is some
simple function:

1 One can say that this is natural: both such models and Toda hierarchies
are associated with the level k= 1 Kac—Moody algebras and
corresponding simplified versions of the WZNW model. However, too
much still remains to be clarified about this ‘obvious’ connection.

§1I remind the reader that detV ”(A) has a somewhat tricky definition, see
Section 2.5. The same matrix integral (4.133) was also considered in
[31-33, 98].
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. IS 1 o A
Tp(r|Tk + 1) = exp _EZAfj(r)(Tf +r)(Ti+1)| .

9]

b NI AT A1) o’In tf)p)
Ay =ReslV/ @I V' ()P =20 (4135)
6t,-6tj
and 1:(()’)) is a -function of the ‘quasiclassical hierarchy’. The

important thing to note is that G, (which defines the shape of
the -function as a function of 7 + r) and f, depend only on
the degree p and not on the other details of the shape of the
potential. This is a deep formula. It accounts for two
phenomena at once. First, it says that Z depends on the sum
of T and r.T Second, the dependence on V isnot quite smooth:
when the degree of the potential changes, the shape of the
functions f and 7 also change abruptly. Another side of the
same phenomenon is that the partition function Zy{T },
which in principle is well defined as a matrix integral for all
choices of V and L (and thus T ) at once, is in fact singular at
some points: there are phase transitions, manifesting
themselves in the switch from one LGG model to another.
After a phase transition the original integral expression
becomes somewhat symbolic: it defines the partition
function only in the sense of analytical continuation, and it
isa separate problem to find an integral representation that is
adequate in the new phases. In practice, what is nicely
described by the GKM integral representation in the form
of Eqn (4.133) are (p, models, with p + 1 being just the
power of the potential V(x). What has not yet been found is
an analogous representation for ( p, ¢y-models with ¢ # 1 (it
can involve multiple matrix integrals, and the universal
model is supposed to be ‘matrix quantum mechanics in
external fields”).

Derivation of the crucial formula (4.134) by any
approach —starting from the GKM in the form of either
LGG or matrix integrals—is still very tedious. In the matrix-
model representation it relies upon the identities [40]

ZZTV: (tr A* —tr X *) EC;IJ(trAk —trX %)
k

xexp[—tr V,(X ) +trV (A)X]dX for 1<k <p,
(4.136)

which look trivial but are rather hard to derive. (A proof of
the string equation in the GKM at the end of the previous
subsection is the simplest example of this kind of exercise.)
Certainly, some simple derivation ‘in two lines’ should exist,
but has not yet been found. Formulas of this kind are very
important for all aspects of GKM theory. Besides other
things, they are necessary to evaluate the correlation
functions in (p, 1)-models of 2d gravity, of which Zy{T } is
a generating functional. If instead of these ‘physical’

t1In the Miwa parametrisation, 7, = (l/k)tr[V;(A)]fk/P. Throughout
these notes I have used different time-variables T, = (1/k)tr A—*, which
are independent of the potential V; instead the V-dependence of Zy —
which we did not really study—was rather nontrivial. If expressed in
terms of 7, the partition function Zy {7 + r} = Zy{T } becomes almost
independent of V: it changes — abruptly — only when the degree, p, of the
potential changes. This second type of description is, of course, in better
accord with the symmetries of the particular model, which are different in
different ‘vacua’ (for different p). Therefore, the variables T + r, rather
than T, arise naturally in the Wls as we saw in Sections 2.5 and 2.6. T's and
T are suited to different purposes: the T's are nice where the universality
aspects of the GKM are concerned, while the Ts arise when specific
features of particular models (orbits, vacua) are considered.

questions, one asks about integrability theory, identities of
this sort also play an important role. For example, looking at
Eqn (4.136) for a special Kk = p and special choice of
potential —monomial V,(X)= X?*1/(p + 1)—one can
note that the r.h.s. vanishes: this is just a WI, reflecting
invariance under the shift of the integration variable,
X = const. This is the simplest version of a more general

statement:J 1
pt+
if V,(X) :X—, then 22Y 0 for all ezt.
p+ 1 ank
(4.137)
Looking from the point of view of integrable hierarchies, one
immediately recognises statement (4.137) as an example of
the reduction condition Eqn (4.40). It corresponds to the so-
called p-reduction of the KP hierarchy, of which KdV
(p= 2) and Boussinesq (p = 3) are the most celebrated
examples. See [30, 40] for all details and references, the only
thing to mention hereis that the slightly weaker version ofthe

constraint (4.137),
oZy

o (4.138)

= a, = const ,
where the a, do not depend on any time variables, can be
expressed simply in the Miwa parametrisation: it is just the
statement that the g-functions in

. dety(s P, (}.5)
T AD
satisfy the p-reduction condition
y+p
Po,(2) =" Visos(2) . (4.139)
5=1

This is a restrictive relation, because the @s are infinite series
in 1/4, while on the r.h.s. of Eqn (4.139) there is only a finite
number of terms. In the GKM it is satisfied for monomial
potential just asa corollary of the Gross—Newman equation,
or, more exactly, of the WI for the integral

0, () ~ Jx 7! oxp—V(x) + V'(A)x]dx .

Indeed, the integral does not change under the shift
dx = const, and this implies

Jxv—l[v'(x) vy 1=

. 1]exp[—V(x) V() x]dx =0,

that is,

p+1

k () =AW = (= e, =0
; Ok (@141 (4) ¢y = (7 = 1o (4.140)

Ifonly vy, 1 # 0, thisleads to an identity of the required form
of Eqn (4.139). This description of reduction can be modified
to allow for nonmonomial potentials, making use of the
concept of ‘equivalent hierarchies’, see [40, 100]: in this
framework the reduction condition is

V() 0,(2) =D Vys0s » (4.141)
3

1 This property was technically implicit in Kontsevich’s original work [22]
for p + 1 = 3, where it was related to certain combinatorial identities. A
tricky proof, relying upon properties of 7-functions, was given in [30] for
any p. An example of a straightforward proof, again forp + 1 = 3, (just
in terms of Kontsevich matrix integrals) can be found in [99].
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but classes of essentially different reductions are labelled by
the degree of the potential only.

As already discussed in the previous subsection, linear
constraints like Eqn (4.139) are not restrictive enough to fix
the shape of the 7-function (the point G in the universal
module space) unambiguously; the string equation should
also be imposed. If expressed in terms of @s, the string
equation is just the property (4.106):

Oy = Ap, (4.142)
where the Kac—Schwarz operator is given by
1 0 1 V")
= ——= 4.143
% V() oL 2|y "(,1)]2 ’ ( )
and has an obvious generalisation of the form
3 1 V’”(l)
Ap g = == +0.04), (4.144)

V(@) 2 V)P

where Q (1) is a polynomial of degree ¢ + 1 and Eqn (4.142)
is replaced by

Ppg = Ap,q®y - (4.145)

This generalisation is naturally related to the string equation
in (p, grmodels; see [41] and references therein. The generic
(p,q) LGG model can be described by a system of
constraints,

# =V,){e} =0,
A, {e}=0,

where the operators V, and A4, ,are not uniquely fixed by the
choice of p and ¢, and there is also the freedom to change
variables A — f(4) and to make a triangular transformation of
the basis ¢, — ¢y+25<y C,s95- Altogether, the set of
Eqns (4.146), modulo these allowed transformations, is
finite: (p—1)(¢—1)-dimensional, which is the dimension of
the module space of LGG models with given p and ¢. The
Kontsevich integral can now be used to establish duality
transformation from the (p, ¢)- to the (g, p)-model [41]:

Zy,o(A4) =Cylo(4)
xJ dX exp[—tr Sy, o(X, A) +tr V'(A)Q'(X)]Zo,v(X).

(4.147)

(4.146)

Here,
Svoe) = [ V010 0)dy = [ V/0)a0'0) . @1as)
As usual, Cy, o(A) is the quasiclassical approximation to the
integral, and
detys ¢, (4s)
VA A) = 0ol
VsQ( ) A(l) >

where ¢ are solutions to Eqns (4.146) with V, and A, ,
defined by Eqns (4.141) and (4.144), respectively.t

T Also, the expression for the #x-variables is now modified:

k(p”—_k)Res[v L] () -

Fr =

For monomial V,, and Qg,

Fe = — 5k,1)+q .

P
p+q

This relation does not provide any formula for Zy, o (A)
unless ¢ = 1. The case of ¢ = 1 is distinguished because
Zvy,.q, is trivial. Indeed, the I-reduction constraint,
A, = @t <, Vys®s implies  that dety; ¢, (45)
= A(A) [15 ¢:(4s), and hence Zg,,v, = exp D>, @, T, which
isessentially thesameasZg, v, = 1,fand Eqn (4.147)isjust
our old formula (4.133) for the (p, 1) version of GKM. [In
fact, Q1(X) ~X?2, and Zy, o, is nothing but the gaussian
Kontsevich model. It is trivial for the ‘zero-time’ condition
N = 0, asis assumed here.] The matrix model realisation of
Zy,, o, for g # 1is as yet unknown.

This is not the only important further generalisation of
GKM Eqn (4.133). Another oneis implied by the formula for
Fv in terms of the eigenvalues from Section 3.3,

n

Fy~ dexy exp[=V (e, A2 () I(x, 1) .

y=1

(4.149)

As was already mentioned in Section 3.3, the Itzykson—
Zuber integral,

detys exp(x,ls)

OYIOR (4.150)

I(x,1) ~ J[DU] exp(trUXU TL) ~

is, in fact, a coadjoint orbit integral and has a group
theoretical interpretation: under certain conditions it
becomes a character yz(g) = Trrg of the group GL(n).
Here, g = exp (L) is considered as a group element, and the
representation R is labelled by integer-valued parameters
my, ..., m,—essentially the lengths of the rows in the Young
diagram. The exact statement is

A(1) _ dety gy xe(s)
A(g)  A(m)A(g)  dr

@.151)

i.e. in order to get a character one should integrate over
matrices, X, with integer-valued ecigenvalues.§ The
dimension, dgR(I), of the representation can also be
expressed in terms of m-variables: dg = A(m). As regards
the traces, tr X% = Zyx’y‘ — Zymﬁ, which appear in the
action of the GKM, they are very similar to the k-th Casimir
eigenvalue Cx(R) (though not exactly the same). Thus, we see
that the integral in Eqn (4.149) is in fact very similar to

Fi{e.8} =D xx(®) 2r(g) exp [— ikak (R)] ,(4.152)

tSince ¢,(2) = 1+ Yysobd ™, ey (2) = Yysola/k)2™, and the
sum 3510 ¢, (As) = Yys0(a/k) Y5 25" = Yo 44 T Addition of any
linear combination oftime-variables to In T does not essentially change the
t-function. For example, the ordinary integrable equations (like KdV or
KP) are usually written in terms of variables like u = (0%72)In 7, which
are second derivatives of In 7.

§ The ratio
a) _

A(g)  sexp(h) — exp(ls)

L—1Is

is the usual correction factor, which is the price for the possibility of
reducing the quantum-mechanical problem of motion on the orbit to a
single matrix integral. The full problem of matrix quantum mechanics can
and should be considered as a multimatrix (in fact, infinite-matrix)
generalisation of GKM Eqn (4.133), which incorporates all the (p, q)
LGG models.
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evaluated at the point g = [. The only real difference is that
instead of the integral we have a sum over discrete values of m
[sum over all the representations, or a model of GL(n)]. This
‘discretised’ (quantum?) GKM is more general than the
continuum one, which can be obtained by various limiting
procedures. It is now obvious that the theory of the
discretised GKM largely overlaps that of 2d Yang—Mills
theory. The simplest ingredient of this theory is the classical
result,[101] that GL(N ) characters are in fact (singular)
Toda-lattice and KP 7-functions. Moreover, the entire sum
on ther.h.s. of Eqn (4.152), if considered as a function of 7'
= (1/k)trg* and Ty = [(1/k)trg¥]is in fact a Toda-lattice
t-function. There are also features parallel to Eqn (4.134).
See [102] for a little more details about the discretised GKM
(see also the recent paper [81]). This is one more very
important direction for the further investigation of GKM.

4.10 The 1-matrix model versus the Toda-chain hierarchy
At the end of this section I use an explicit example of a
discrete 1-matrix model [26] to illustrate how a more familiar
Lax description of integrable hierarchies arises from
determinant formulas. This example will also be useful in
Section 5.3 below, when one of the ways to take the double-
scaling continuum limit of the I-matrix model will be
discussed. The Lax representation appears usually after
some coordinate system is chosen in the Grassmannian. In
the example which is now being considered this system is
introduced by the use of orthogonal polynomials.

We already know from Section 3.6 that the partition
function of the 1-matrix model (which is a one-component
model) is given by

ZN = D€t0<,j<N /’l |l’lj

Hexp(¢ Z]HRN’

(4.153)

where the last two representations are in terms of the norms
of orthogonal polynomials:

<Qn |Qm > = CeXp (d)n) 5nm 5

and the parameter of the 3-term relation

(4.154)

hQn(h) = Ot (h) + chn(h) +R,0n1 (h) s

Zi =exp(¢y) =(1|1), Rn=-exp(¢,—d,_1) -

Of course, all the information is contained in the determinant
formula together with the rule which defines the time-

dependence of'}-l{i = (W'|nl)= z+j'
aHf aHf
f
B =My, =M i s OF a0, =H, . (4155

(The possibility of expressing everything in terms of'Hf with a
single matrix index i is a feature of the Toda-chain reduction
of the generic Toda-lattice hierarchy.)

However, in order to reveal the standard Lax represent-
ation I need to go into somewhat more involved considera-
tions. Namely, I consider representation of two operators on
the basis of orthogonal polynomials. First,

ntk k ntk
=Sl o, =3 80,0 @1s6)

m=0 <m |m> m=0

h*Qnu(h)

(here a simplified notation is introduced for

(n|f(h) |m) = (Q,|f(h)|Qm) and 28 = (n|h*|m) .

Second,
atk mZO (mlm Qm(l’l WZ)Y””,Q,”(/’!
Oy _ (1) _
o (nny (4.157)

[These last relations arise from differentiation of the
orthogonality condition (4.154):

a n m
() 20t b, = A1)
= (5[0 + (0] 32) +@n* 10,
Tk

by looking at the cases of m < nand m = n, respectively.]
From these relations one immediately derives the Lax-
like formula

a Sl’;z = 7 ¢,
ol Sromm § 00 s
q l=m—k I=m+1
or, in matrix form,
o — Ry, 4] | (4.159)
at(
where
(k) s
—Ymn  ifm>n
Ry® = o . (4.160)
Ymn ifm<n

[I remind the reader that usually the R-matrix acts on a
function

+00
fly="" fih"

according to the rule

=D LI =Y hk

nxzl n<l

R f(h)

with some ‘level’ .] These y©) are not symmetric matrices, but
one can also rewrite all the formulas above in terms of
symmetric ones:
h k
W)= [3(6, b
(m|m)(n|n)
From Eqns (4.158) one can easily deduce Toda-equations
for ¢,

o9,
01,01, atk

— )]0 = (4.161)

0 (nfn'|n)
(nln)

nlh*|m)(m|h'|n)
- (o-x) i,

m>n m<n

(4.162)

where the r.h.s. can be expressed in terms of R,,, where
Ry = exp(¢m—Pm_1). In particular,

0’9,

:Rn
6t16t| +

= exp(¢n+l - ¢n)

—R,

—exp(d, — ¢,1) - (4.163)
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Let me also mention that in this formalism the WIs
(Virasoro constraints) follow essentially from the relation

CAY 0 k-1
(&)_—&—th ,

k>0

(4.164)

where the Hermitean conjugation is with respect to the scalar
product (|). For example, this relation implies, that

00\ /20,
<Qﬂ E> = _<E

Now note that 0Q,/0h is a polynomial of degree n— 1, thus
(0,]0Q,/0h) = 0. In fact,

n—1
aaan ==Y ki (Zvﬁﬁ,')Qm> ==k aikQ_nl '

k>0 m=0 k>0

Qn> =D _kt{Qaln*11Qa) . (4.165)

k>0

Also, recall that

0
<er|hk_I |Qn> = (Qn|Qn> 3 ¢n .
Ti—1
to obtain:
> ke 9%, _y (4.166)
k>0 Ot

for any n. This should be supplemented by the relation
0¢pn/0to= ¢, In order to get the lowest Virasoro constraint
(string equation), L_;Zy= 0 or L_1InZy = 0, it is
enough just to sum over n from O to N —1.

For more details about the 1-matrix model, Toda-chain
hierarchy, and application of the formalism of orthogonal
polynomials in this context, see [26].

5. Continuum limits of discrete matrix models

5.1 What is the continuum limit?

The continuum limit of matrix models is, of course, the
crucial issue for their phsycial application whenever these
models are interpreted as discrete (lattice) approximations to
continuum theory. The very first thing to be kept in mind is
that it is not the only possible view on matrix models. Another
approach considers them as describing topological (and thus
also in a certain sense ‘discrete’) properties of the theory.
Such models, when appearing in the field of, say, quantum
gravity (which after all is a sort of pure topological theory) do
not require any continuum limit to be taken: their discrete
nature (occurrence of integer-valued matrix indices) reflects
not the discrete approximation to the spacetime (which does
not really exist in quantum gravity), but rather the essential
discreteness of the underlying structures: the topology of the
module spaces of geometries. Examples of matrix models
which allow for this kind of interpretation —in terms of the
topology of module spaces of bundles over Riemann
surfaces—are provided by Kontsevich models, and this is
why they usually do not require any continuum limit and why
they were called ‘continuous matrix models’ in the
introduction. The models which are usually interpreted in a
more traditional way —as lattice theories— are represented
by our ‘discrete’ models, the 1-matrix, conventional, and
‘conformal’ multimatrix models being included in this class.
More sophisticated examples are provided by ‘c= 1’
theories, the Kazakov—Migdal model, and, say, Wilson’s
quantum chromodynamics (QCD) (and infinitely many
other lattice theories). It is not surprising that the continuum

limits of some discrete models provide theories of the
Kontsevich type: this happens whenever continuum theory
is supposed to have a kind of topological nature. This is
usually the case for quantum gravity (which, as I said, is
conceptually a topological theory in the ‘module space of
geometries’, the notion of which is already made more or less
explicit in the 2d case), but in principle this can also be true
for many other theories, including the exhaustive quantum
theory of Yang—Mills (YM) fields (again there is already
considerable progress in this direction, as far as the 2d YM
model is concerned). There should not be confusion about
the presence of gauge particles in dimensions greater than 2
(for YM) and 3 (for gravity): there is no reason to prevent
generic topological theory from possessing a continuum
spectrum of excitations, through an explicit analogue of the
Kontsevich-like description of such situations has not yet
been found (as I have mentioned many times, it should
probably rely upon noneigenvalue models).

I shall not discuss the nontrivial history of invention and
understanding of all these notions (the crucial steps being the
discovery of the ‘multiscaling continuum limits [19, 20],
which preserve the integrable structure of the discrete
models in the continuum case; and the hypothesis of the
equivalence of quantum and topological 2d gravities [9] and
its proof [23, 24], provided by discovery of Kontsevich
models [22] as a peculiar and powerful tool for description
ofthe topology of the module spaces). Instead, following the
main theme of these notes, I shall concentrate on the intrinsic
relation between (multi-scaling) continuum limits and
integrability: the notion of continuum limits is, in fact, built
into the theory of integrable hierarchies and the underlying
representation theory of Kac—Moody algebras.

In the case of the eigenvalue models the central issue here
is the interrelation between Toda-lattice and Kadomtsev —
Petviasvili (KP) hierarchies, even its more narrow aspect:
elimination of the zero-time N, present in the Toda-lattice
case. In terms of representation theory (or conformal field
theory, which is essentially the same) the zero-time (which
labels the filling level of the Dirac sea in the fermionic picture)
is associated with the zero-modes of a scalar field and its
elimination is just the change of boundary conditions, which
eliminates zero-modes. The simplest example of this
‘twisting’procedure is just the transformation from periodic
to antiperiodic scalars —it still preserves the possibility ofa a
fermionic description (where it looks like a switch from the
Ramond to the Neveu—Schwarz sector), and thus does not
take us out of the field of conventional integrable hierarchies.
In representation theory one can interpret the same operation
simply as a switch from the homogeneous to the principal
representation (associated with the Toda-lattice and KP
hierarchies respectively).

This remarkably simple description is, of course, far from
obvious if one investigates the continuum limit in a naive
way, without taking integrable structure into account
explicitly, but just sending the number of degrees of freedom
in the discrete theory (i.e. the matrix size N ) to infinity
(together with the inverse lattice spacing, if any). See the
classical review [18] for a discussion of the naive continuum
limits in lattice gauge theories, i.e. the conditions for
obtaining the second-order phase transitions, which allows for
a continuum-like scaling behaviour in the vicinity of the
critical point, with critical exponents defining all the
continuum physics, from the quantum dimension of the
spacetime to the spectrum of particles. The problem with
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naive continuum limits is that they can easily destroy the
integrable structure of the theory (the underlying hidden
symmetries), unless special precaution is taken: the critical
point (which is in fact a low-codimensional hypersurface in the
infinite-dimensional space of parameters) should be
approached from certain directions, so that the Ward
identities (WIs) are not explicitly broken.

Assoon as one considers Wls one is already into the field
ofintegrable systems and the issue can be discussed inside this
field. The above-mentioned switch from periodic to
antiperiodic fields is, of course, apparent if the discrete and
continuous Virasoro constraints [represented by formulas
(1.2) and (1.3)] are compared, but this is a posteriori
information, because so far | have interpreted ‘continuous
Virasoro constraints’ as the Wls for the V = X 3 Kontsevich
model, and it still remains to be explained why the
Kontsevich model is indeed what arises after the continuum
limit is taken. The simplest approach to this problem is to
make use of the identity between the discrete 1-matrix model
and the gaussian Kontsevich model [56], established in
Section 3.8. Then the X 3 model arises in the large-N limit,
just when the matrix integral is evaluated by the steepest-
descent method [36]. I shall present this simple calculation in
Section 5.4, but before that, I take a somewhat more direct
(and complicated) approach in order to reveal at least some
of ideas underlying the entire theory of continuum limits.

5.2 From the Toda-chain to the Korteveg de Vries equation
[ begin with the simplest existing example: the continuum
limit, in which the lowest equation of the ‘Volterra
hierarchy’,

OR,
Fyal —R,(Rpt1 —Ru-1) , (5.1)

turns into the lowest Korteveg de Vries (KdV) equation:
or |

= —3r"=2rr".
3

(5.2)

The Volterra hierarchy is a reduction of the Toda-chain
hierarchy, with R, = exp (¢,—¢,_1), arising when all the
odd-times t2x+1 = 0 and all ¢, are supposed to be
independent of them. More precisely,

04,

=0.
atzul '

0dd =0

Therefore, this hierarchy is clearly related to the discrete 1-
matrix model. I shall turn to the study of the 1-matrix model
in the next subsection, but here I address the transformation
from Eqns (5.1) to (5.2) [26, 103].

The basic idea of taking the continuum limit is to change
the discrete ‘zero-time’ n for the continuum variable x (to be
substituted by T, of the continuous hierarchy). In other
words, the idea is to consider a subset of functions R,,
which satisfy the Volterra equation and depend on n very
smoothly, so that they can actually be substituted by a
smooth function R(x). This is a very natural thing to do, of
course, when one is interested in the large-n limit of the
equation. Namely, one replaces Eqn (5.1) by
OR (x)

t

— = RX)R(x+&) —R(x—¢)],

= (5.3)

and takes the limit ¢ - 0, which, after rescaling x — &x, gives
rise to the ‘Bateman equation’ (or ‘Hopfequation’),
OR (x)
ot

= —R(X)R '(x) . (54)

This is a very interesting equation (see [104] for a description
of the amusing aspects of the related theory, which is in fact
intimately related to the theory of jets). However, it is much
simpler than the KdV equation (for example, it is completely
integrable in the most trivial sense of the word: the entire set
of solutions satisfying any boundary conditions can be
written down immediately, see [104]). The KdV equation
can be considered as a sort of ‘quantisation’ of Eqn (5.4)
(unfortunately this very interesting subject has not yet
attracted enough attention and has not been studied well
enough).

Remarkably, the Bateman equation is not the only
possible limit of the Volterra equation: a fine-tuning
procedure [‘double-scaling (d.s) limit’] exists, which can
provide a less trivial —KdV—equation [103]. Indeed,
suppose that in the continuum limit R, tends to a constant
Ry, and the function r(x) arises only as a scaling
approximation to this constant: R(x) = Ro[l + &r(x)].
Then, the leading term on the r.h.s. of Eqn (5.4) is
eRR'(x) = —2&r(x)[1+ O(e,¢%)], and instead of Eqn (5.4)
we would get

or

E: —28R0r'(x)[1 +O(82,8‘y)] . (55)

This equation is even simpler than Eqn (5§.4)—it is just
linear, but in fact it is too simple to preserve its form: by a
simple change of variables,

X=x —ZEROt . (56)

f=¢&Ryt, (5.7)

it can be transformed into

or 22

—=¢-0(¢,¢"%),

P (e,¢%)

and terms on the r.h.s. also deserve to be taken into account.

Then we get

or(x)
ot

= —2eRo[l +&°r(x)][r'(x) + 62" (x) + O(e*))]

= —2eRo[r'(x) +¢&r" (x) +&'rr'(x) + £0(e%, &),
and, after the change of variables (5.7),

aré? _ —%r”’(f) _ 283‘72”,/(}') + 0(82,8“‘) .

It is now clear that the choice s = 2 is to be preferred
(a critical point), and at this point we get

3
o __1er o (5.8)
0T 3073 oT,

where new notation, T and T, is introduced for X and 7,

respectively. This is already the KdV Eqn (5.2), so we reach

the following conclusion.

While the naive continuum limit of the Volterra equation
is just a simple Bateman equation, the scaling limit can be fine
tuned so that the KdV equation arises instead. The crucial
ingredient of this adjustment is the change of time-variables,
{t} - {T'}, which involves a singular parameter & The
procedure can be easily generalised to the entire Volterra

AN
Roa_;>a_£_a_7'

T This change of variables is implied by the relation:

0 s, O or R o\ o ox
64‘28 R()a— (6-1-28 R()a)ﬁ-l- (5-1-28
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hierarchy, and fine tuning allows one to get the entire KdV
hierarchy in the limit of ¢ — 0. Uusally, transformation to the
‘Kazakov variables’ {T } (they are a little different from those
originally introduced by Kazakov[19]) from {¢} is some
linear triangular transformation.

An important detail is that this procedure requires
restriction to only even time-variables 2, m = 0. (If odd
times are also involved, a pair of KdV hierarchies arises in the
continuum limit—this is not a ‘minimal’ case.) Thus
‘irreducible’ realisation of the continuum limit requires a
reduction of the original hierarchy. This can also be seen from
the fact that the lowest KdV equation arises from the lowest
Volterra equation, which is related to the second equation of
the Toda-chain hierarchy.

Unfortunately, this simple piece of theory (continuum
limits in terms of hierarchies) has never been worked out in
full detail (for the entire Toda-lattice hierarchy, its multi-
component generalisations and their reductions). As already
mentioned, this theory will involve the general relation
between homogeneous and principal representations of the
(level k = 1) Kac—Moody algebras.

5.3 Double-scaling limit of the 1-matrix model
Now I proceed to a discussion of a slightly different approach
to continuum limits, which is directly suited to the needs of
matrix models. The naive idea [20, 29] is to forget about
integrability and just look at the Wls (Virasoro constraints in
the 1-matrix case) and take a continuum limit of these
identities. This approach makes close contact with the
standard technique of ‘loop equations’ (M akeenko —Migdal
equations[105]) in the theory of matrix models, of which
Virasoro and W-constraints are just particular examples.t
However, careful analysis of the continuum limit of
discrete Virasoro constraints[28] makes it clear that the
pro-cedure is far less simple than one might have thought
(usually, derivations are not very careful and details are
‘swept under the carpet’). The crucial problem is that what
is needed is a peculiar (double scaling) limit rather than a
naive limit, and, as mentioned in the previous subsection, this
also requires a certain reduc-tion (elimination of the odd-
times f2,, +1). If parity symmetry (with respect to the change
of H—> —H in the original matrix integral) is taken into
account, one can easily throw away first derivatives with
respect to the odd-times #2,, + 1, just because

0Zy
a1‘2 m+1

:0’

b1 =0
but this is no longer true as far as the second derivatives

*Zy
012410121

’

trp41 =0

are concerned, which appear in (the ‘quantum portion’ of)
the Virasoro constraints (1.2). It is a highly nontrivial feature
of loop equations (having its origin in their integrable

FOne of the puzzles in the theory of noneigenvalue models is to identify
the group theoretical meaning of generic loop equations: they are usually
introduced as equations of motion rather than as Wls (see the discussion
at the beginning of Section 2), and thus their implications are a more
obscure and technical means to deal with them and are much more
restricted. When a group-theoretical description has been found, it will
very soon reveal the (generalised) integrable structure of noneigenvalue
models and it will be a big step forward in the whole theory.

structure!) that in the continuum limit these terms can in fact
be carefully eliminated. The thing is that the second
derivatives of In Z y appear to be local objects, in the sense
that they depend only on Zg with the difference
[N —N|<m+I, which does not blow up as N - o in
continuum limit. Moreover, the differences

62 In ZN 62 In ZN
0ty ;n410t21—1  Otr,0t2;

almost tend to zero, leaving some simple (though vitally
important) correction to the arising continuous loop
equations. This locality property allows one to get rid of
these dangerous odd-time derivatives, substituting them by
second derivatives with respect to the even-times. Since such
a substitution is possible only for logarithms of Zy,
continuous constraints appear imposed on the square root
of the original partition function [or on the (1/p)-th power in
the case of the (p—1)-component conformal models].
Another aspect of this trick to deal with the odd-time
derivatives is that it makes the entire derivation dependent
on the fact that the theory is integrable—this is what
guarantees the above-mentioned locality. Since the way to
reveal integrability, by looking at the loop equations
themselves, is not yet very well understood, the whole
calculation becomes not quite self-contained (but of course,
if everything is known about integrable structure this is not a
real drawback, just a limitation of the particular approach
starting from the loop equations). In particular, this is the
only loophole which is still not filled in the description of the
continuum limit of conformal (multi-component) matrix
models, which in all other respects goes through exactly in
parallel with the I-component (1-matrix) case.}

[ shall now describe briefly the steps of this calculation for
the 1-matrix model, referring for all the details to [28 and 45].
The previous discussion already contains motivations for the
main steps, so I do not need to go into detailed explana-tions.
Manipulations below, involving Kazakov variables can look
a little artificial, but I repeat that they can be interpreted as a
switch from the Toda-type to the KP-type hierarchies, which,
was already seen in the previous subsection, is naturally
associated with the double-scaling continuum limit.

[ start from the discrete Virasoro constraints (1.2),
rewritten in terms of a generating functional (‘stress tensor’
on the spectral plane):

L (2)Zy =0, (5.9)
where
L(x)= ) Lz " =5[], (5.10)

n=-—1

and

fIt transforms discrete W-constraints into continuum W-constraints,
which, in their turn, arise from the generalised Kontsevich model (GKM)
with the appropriate potential [30, 55]. Unfortunately, since the GKM
interpretation of discrete multicomponent models (like the one existing in
the 1-matrix case, see Section 3.8) is as yet unknown, the direct way to
take their continuum limit—like the one to be described in the next
subsection for the 1-matrix case—is also as yet unavailable. For more
details about conformal matrix models, their integrable structure, and
continuum limits, see [39].
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J(2) =0¢(z) =

Z JnZ —n—1 ,

f L

0

Oto
Next, one needs to reduce the original partition function:
Zn{t} = Z "t oven } = Zn{toad = O, foyen } - (5.12)
Allodd Virasoro generators, L, ,, act trivially on Z red since

0Zn
Ot k41

—Zy=NZy . (5.11)

=0

toad =0

and it is necessary to consider only Ly,. Introduce also¥t

—2k )
md(Z lsz \/E Z— =~ >
/;) ; k al‘Qk
L™(z) =3[0 ¢r°d(1)]

Ly = kty (5.13)

k>0

Zat2kat2n %

Now there are two issues to be discussed separately. The
first is the change from #2; to Kazakov variables, T2, + 1. The
second is the difference between the constraints imposed on
Zrdand Z.

The simplest way to describe Kazakov variables is to
introduce one more—antiperiodic—scalar field:

al 2k+2n

7?

k+4
®(u) = l;)nk“u fk;)k o . (5.14)
Here 7 and T are related by the transformation
Toirr = Topgr + € lfzk—l + 2eNdy,0 - (5.15)
2
Now impose the relation
0™ (z) =5 U~ '0d(u)U ,
2=1+4éu, (5.16)

and in the continuum limit ¢ is assumed to vanish. This is a
relation which maps homogeneous into principal
representations, but its invariant meaning (especially from
the point of view of CFT) does not seem to be well-enough
understood. Anyhow, these relations establish a relation
between feyen and 7. Namely, comparing the coefficients in
front ofthe positive powersofuon both sides ofthis equation,
one obtains

tNote that ¢"(z) # ¢(z )i,0m0 and similarly L4 (z) # Lo, ,,— » some
factors of 2 in Eqns (5.13) bcmg responsible for this dlscrcpdncy In fact,
Lred are related to generators of the Virasoro constraints in the complex-
matrix model [28],

zZ§= JdM exp [Z 1o Tr(MM f)k] ,

k=0

and, in the continumm limit, Z § ~ /Z 9.

> 8m r(m + )
Tyl =16 L k=0;
2 ; k+3) 7
gm = Mt yy, m = ls 80:2N . (5]7)
The inverse transformation looks as follows
- T T(k +3)
'm:z —1 k=m 2 . 5.18
; k;( Sk —mTm 1Y (>.18)
Now,
0 13 Tk 4et! 0
=5 ( +238 . (5.19)
atzk 2171:0 (k —m-= 1) r(m + 5) aTZm+l

and, using the formula when comparing the negative powers
of u, one finds that

U= exXp (ZA mn 7’:/2m+l f2n+l> )

myn

-1 m+n r 3 r 3
Ay =2 (ntITnty) _(599)
g2l tnt ) mlpl (m +n+1)(m +n +2)
The square of relation (5.16) is
redy 2 1
(0¢™) (2) = 5 U~ (02) (u)U (5.21)
or
doLglz = u! ( > Lo ) (5.22)
p=0 n>=—1
This equality implies that
- n+ldu
-1 _ 4 d
Ut B = YL
p=0 M
n+l1
=gy (-1)*rel Lyt (5.23)
p=0
since
4§ u™du w™du 1 I'(—p)
o 2272 T ] (1 + g2u)"™! T e (n4+1—p)T(—n—1)
_ (_1)n+/7+l (}’l + ])| _ (_])n+l—pcp
e pln+1-=p) 2 e

Explicit expressions for the generators ,C~2,, [which are
harmonics of the stress tensor %(6@)2 (u) of the antiperiodic
field @(u)], are

L,= Z (k + )T2k+l L-FT—%
k> 1 T g1y 4
~ 0
0= Z(k + )Tkt =
>0 0T 2k41
L’:VZn = (k +%)T2k+l =
k=0 2(k+n)+1
1 n—1 62 -1 n
+ ( ) n>0.

A Oy 0T g (ugmryyr 1687

(5.24)
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So far, all that has been done is to change the variables, and
all the relations were exact for any ¢; no limits were taken.

Operators (5.24) are very similar to L5, arising in the
‘continuous Virasoro constraints’ (1.3), imposed on the
partition function of the X >-Kontsevich model. There are,
however, two discrepancies.

First, 0/0T instead of 8/0T appears in (5.24). One can
argue that this difference is not really essential, since Ty
and Ty, differ by terms which are proportional to & and
thus vanish in the continuum limit ¢ —» 0. [Note, however,
that this reasoning can be applied only for each particular
constraint L>,Z = 0 (n > — 1) not to the entire generating
functional, where different terms are summed, multiplied by
different powers of &.]

The second discrepancy is a little more serious: it is the
occurrence of an extra term (—1)**1/16¢** for all n > 0 [this
difference is present for n = 0 as well, because Ly contains
the coefficient 1¢- Which is lacking in (5.24)]. This extra term
cannot be eliminated just by taking the continuum limit;
moreover, it blows up instead of vanishing when & — 0.
Remarkably enough, this term disappears when considering
actual Virasoro constraints, not just a formal choice of time
variables. It cancels completely with the other potential
source of problems for the derivation of continuum WIs. |
proceed now to this, the most sophisticated matter in this
whole subsection.

The point is that, as mentioned before, the reduction of
the discrete Virasoro constraint L,,Zy = 0 contains some
nonvanishing terms with odd-time derivatives:

62 red
(ZM 2 ZW)Z

=0 Ot2k42n
n 62 n—1 62
= _ A red )
<; 02 Ot2y i kz:;at2k+lat2n—2k—l N
(5.25)

An extra term with second even-time derivatives has been
added to both sides of the identity in order to get on the r.h.s.
a combination which hasa chance to vanish in the continuum
limit. [This formula still needs to be corrected, see Eqn (5.29)
below.]

In order to find a rigorous reason for eliminating the
terms on the r.h.s. [ need to address the explicit formulas
from Section 4.10 (no simpler way is known so far). The
crucial formula needed is

¢, 0 (n|h!|n)
ddon, o (nln) (Z Z)

m>n m<n

(n| h* |m){m | k! |n)
(m |m){n|n)

(5.26)

il

and the most important feature of it is its R-matrix structure
(the fact that a difference occurs on the r.h.s.). This structure
implies an almost complete cancellation of terms when one
sums over n in order to get InZ , = Zf)v* ¢, leaving only a
finite sum of the length independent of N:

-y Ni (n|h* |n+j)n+jlh! )
0<j<min(k, ) \n=N—j <i’l|l’l><}’l—|—/|l’l+/>

(5.27)

62 In ZN
01,01,

The finite sum on the r.h.s. can be expressed in terms of
R, = exp(¢.—¢n—1), and contains exactly the quantities to
satisfy the equations of the Volterra hierarchy and tending to

a constant (denoted by Rg in the previous section) in the
continuum limit. The locality property —the finiteness of the
sum on ther.h.s. of Eqn (5.26) —implies that the r.h.s. tends
to a constant value as N — o0. This constant does not
completely cancel in the difference

2 n—1 2
Inz ™ 5.28
(;at2kat2n2k 4= Btok410t2n—2k— 1) nZy . (G2

and the remaining contributions appear to be exactly those
necessary to cancel the dangerous term (—1)"*!/16¢>" which
appeared in the difference between £, and £,. See [28] for
more details on these cancellations, and the only thing to
discuss in the rest of this subsection is the difference between
the r.h.s. of (5.25) and (5.28). In the second expression the
second derivatives are taken of In Z, while they are of 7 itself
in the first one. Of course,

Fmzyt 1 AL
Z 159 Otop110t2n—2k—1

9
foaa =0

0t2k4+10t2—2k—1

but this is not true for even derivatives. So identity (5.25) still
needs to be transformed a little more in order to contain
exactly Eqn (5.26) on its r.h.s. If this is achieved, the Lh.s.
acquires an additional contribution and turns into

n 2
szk Z +Z( ozyt 1 oazye az;;d>
=0 Otar12n Ot Oton-ox  Z },Cd Oox Otzn—2k

redy red, /7 red
ZN L2n ZN .

As a result of all this reasoning it is possible to conclude
that the double-scaling continuum limit of the reduced
I-matrix can be described by the following relation:

: /7 red — 71
d.s.e—l>1(;[}1N—»oo z N {tcvcn} =v ZV=%X3{T} ’

where the factor U is defined in Eqn (5.20), the relation
between the ¢ and T variables is given by Eqn (5.17), and
Zy_1x:{T } is the X 3-K ontsevich model. The motivation for
this conclusion is that both sides of the equation satisfy the
same continuous Virasoro constraints Eqn (1.3).

This whole derivation can be straightforwardly generalised
to the case of the multiscaling limit in conformal matrix models
and the analogousrelation contains roots ofthe pth degree, see
Ref. 39 for a detailed discussion.

=4 (5.29)

(5.30)

5.4 From the gaussian to the X 3-Kontsevich model

[ shall now abandon these complicated matters and give a
simple illustration of how things can work, if expressed in
adequate terms. Namely, as an alternative to the sophisti-
cated procedure involving an explicit switch to Kazakov
variables and the study of the limits of the WIs (loop
equations), | shall use just the equivalence of the discrete
I-matrix model and gaussian Kontsevich model, proved in
Section 3.8, in order to take the continuum limit just of this
simplest Kontsevich model. This procedure, suggested in [36]
appears to be a kind of standard evaluation of the integral in
the large-N limit by the steepest-descent method. It is
important here that the GKM is not sensitive to the size n of
the matrix in the Kontsevich integral; therefore, this limit,
when expressed in terms of the GKM, hasnothing to do with
the infinitely large matrices.
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The relation to be proved below is

lim  Frpy=Fivy » (5.31)

d.s. N—oo
where V(X ) = 1X2-NInX and V(X)= 1X3.

Very naively, what happens as N — oo is that in the
Kontsevich integral,

JdXexptr(—%Xz—i—NlnX +4X) , (5.32)
a stationary point arises at X = Xy, such that
N
Xo

Expansion of this action in powers of X = P~ (X -Xy)
comes entirely from the logarithmic expression

X X
m{1+2) -2
( Xo) Xo}

~ \k
2
y N\sz, N X
=2 (1+=5)X —|—y=1]. (534
)t n o) e

In the continuum limit, y should be adjusted in such a way
that the quadratic term is finite, i.e. y~ (1 + N/X 3)~"2. Now,
if A remains finite as N —» o0, Xo ~ /N, y ~ 1 and all the
terms with k >3 in the sum are damped as y*NX ;% ~
N '=%/2_ This is the naive continuum limit. However, it is
clear, that one can usually ask A to behave more
adequately —blow up together with the growth of N—and
fine tune the way in which it tends to infinity so that in the end
the first term with k = 3 also survives. For this purpose 4,
and thus X, should scale in such a way, that both quantities
9%(1 + N/X %) and Ny*/X } remain finite. This requirement in
the case of the latter expression means that y &~ XoN —/3 and
then
N N+X3

Y
S—S(,:7x2—1v

This is never finite, unless N + X(2, — 0 as N —» oo0. This in
turn implies that X ~ iv/N and A4 — 2X, =~ 2iv/N should be
pure imaginary. One can also check that the terms with &k > 3
in the sum in Eqn (5.34) all tend to zero in this specific limit.
Thus, we are left with a model which has only cubic and
quadratic terms in the action. By a simple shift of variables,
the quadratic term can be changed to a linear one and we get a
description ofthe theory in the vicinity ofthe stationary point
in terms of an X 3-Kontsevich model.

In practice things are a little more complicated because
reduction to even-times should also be taken into account.
However, this does not add too many new problems. We
need that only even times, tax = (1/2k)tr (1/4%), remain
nonvanishing, while all the odd times,

1 1
tyy1 = mtrw =

This obviously implies that the matrix A should be of block
form:

=[5 3

0 M (5.35)

and, therefore, the matrix integration variable is also
naturally decomposed into block form:

X = [g i] : (5.36)
Then,
Fipmtxioninx} = JdXdyd2Z ,
det (Xy - Z_JL)ZJJ)N exp[—tr{| Z|”
H1X2 1Y - MY+ MYY] . (5.37)

To take the limit N — 00, one should assume a certain scaling
behaviour for X, )Y and Z. Moreover, previous naive
consideration gave us some feeling of what the fine-tuned
scaling behaviour can look like. So I take

X =yl +x), Y=y(-ipl+y), Z=9,

M =y7"Gal +m) , (5.38)

with some large real parameters «, 8, and y. If expressed
through these variables, the action becomes:

tr [|Z|2 +3+31V - MX+ MY
—N1n (Xy— Z%ZJO] =y tr [L(iBI +x)?

+1te (GBI — y)* + 2] — tr(iod + m) (201 +x —y)

_Ntrln(ﬁ2)?2){l - 1%4%—';—'22 [‘ +O(%)]}

= (2af — f*y* = 2N In By)tr I —2iftrm (A)
+i<ﬁy2— o +%)(trx —try) +% <y2%) (trx 2 +try?)

(B)

+(v2 +%>tr|€|2 ©)

B .

—tr mx + trmy +317tr(x3—y3) (D)

+o(%) +o<|c|2%> : (E)

(5.39)

We want to adjust the scaling behaviour of a, f, and 7 in such
a way that only the terms in line (D) survive. This goal is
achieved in several steps.

Line (A) describes the normalisation of the functional
integral, and does not contain x and y. Thus, it is not of
interest to us at the moment.

Two terms in line (B) are eliminated by adjustment of a
and y:

g

e o 5
As we shall see soon, y> = N/B? is large in the limit of
N — o0. Thus, the term (C) implies that the fluctuations of
the {-field are severely suppressed, and this is what makes the
terms of the second type in the line (E) negligible. More
generally, this is the reason for the integral Z ; to split into a
product of two independent integrals leading to the square of

(5.40)
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the partition function in the limit N — oo [this splitting is
evident as, if Z can be neglected, the only mixing term

X Z
In det [Z y]

turnsinto In XY = In X +In Y]

Thus, we remain with a single free parameter 8, which can
be adjusted so that

3

N —const as N — 00 (5.41)
(.e. B~ NP 92 ~ N3, o~ N?/3), making the terms in the
last line (E) vanishing and the third term in line (D) finite.

This proves the statement Eqn (5.31) in a rather straight-
forward way. Unfortunately no generalisation of this pro-
cedure for other discrete models has so far been found, the
main problem being identification of GKM-type realisation
of other (for example, conformal) discrete matrix models.

6. Conclusion

[ have come to the end of my briefreview of the facts that are
currently known about the relation between matrix models
and integrable hierarchies. There are still several topics which
are discussed in the literature but are not presented in these
notes.

First, I did not discuss the relation between matrix models
and theories of topological (Landau—Ginzburg) activity
(LGG). This field has been developing rapidly in recent
months and will soon be ready for inclusion in reviews of
this kind. This list of things which are sufficiently clarified
includes the realisation of the Ward identities in the form of
‘recursion relations’ for topological gravity [9]. Also, the rela-
tion between quasiclassical hierarchies, arising in the spherical
approximation to topological theories [96], to the integrable
structure of the generalised Kontsevich model is more or less
understood [40]. Of special importance is the chapter on this
theory, which provides a matrix-model description of module
spaces associated with Riemann surfaces [22, 106]. What sill
deserves better understanding is the acionatic construction of
topological gravity, similar to the remarkably simple con-
struction of topological LG models (before they are coupled
to 2d gravity) in terms ofthe Grothendieck residues and chiral
rings [107] : see [108] for a very nice presentation of the latter
case, and [17] for the first big steps towards a similar
construction in the former case. Also, the relation to the
theory of nonconformal LG models [109], deserves clarifica-
tion. A piece which is essentially lacking so far is the clear
description of minimal ( p, g)-models coupled to 2d gravity in
the case of p # 1. In this situation the generalised Kontsevich
model is known to describe nothing more than duality
transformation between (p, ¢) and (g, p) models [41], rather
than the models themselves. This subject is also connected
with the theory of the Kac—Schwarz operator [110]. The
work in this direction is extremely important for the
understanding of the unification of various string models
and ofthe essential symmetries of future string field theory (in
particular, generic BRST and Batalin — Vilkovisky symmetries
are very close analogues of the complete sets of the Ward
identities, as described in the general framework in the
beginning of Section 2). All these things would constitute a
natural next section to these notes, but I chose to wait a little
longer until further clarification is achieved in this fragment
of the theory.

Second, I did not touch at all the physical interpretations
of matrix models, which include quantum gravity. Yang—
Mills theory, and many other possible applications. This
should be a subject of a very different review, for which the
whole content of these notes is just a list of techniques
involved in the study of physical phenomena.

Third, the biggest terra incognita in this branch of science,
which remained beyond the scope of these notes, is the theory
of noneigenvalue matrix models, which are related to
physical theories in spacetime dimensions d = 2. [t is indeed
a terra incognita, at least from the point of view of the
semirigorous analysis which I am reviewing. The recent
breakthrough in this field is due to the appearance of the
Kazakov—Migdal model [25] (see also the latest review [111]
and references therein), which for the first time creates the
possibility to treat a wide class of noneigenvalue models by
the extra methods of localisation theory (other names for this
field, which in fact is developing into the generic theory of
integra-bility, are the Duistermaat—Heckman theorem or
Fourier analysis on group manifolds). Work in this direction
is, however, only at the early stages and this is why I decided
not to present the first nonsystematised results in these notes.
A part of it which is very close to being satisfactorily
understood is the ‘boundary model’ of the ¢ = 1 string
(‘d = 2 dilaton gravity’)—a very important one from the
point of view of general string theory. For the present state of
knowledge about this model see [112], and its relation to
integrability theory is partly revealed in [41, 113].

In the domain which was actually reviewed, the weakest
points are the theory of continuum limits and that of the
multicomponent hierarchies. These theories, when developed,
can also help to move in the most important direction,
mention many times above: towards the creation of a more
general theory of integrability. The next natural step, when
approached form this side, should be generalisation of the
conventional integrable hierarchies, which would life the
restriction to level k= 1 simply-laced Kac—Moody
algebras and unitary representations. The emerging theory
will, of course, have much to do with both localisation theory
and noneigenvalue matrix models, and when it is created we
shall find ourselves at a new level of understanding, which will
be one step closer to the goal of constructing the entire
building of string theory (mathematical physics) and will
probably provide us with an unexpected new means for
investigating the features of the real physical world around us.
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