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Abstract. The theory of mat r ix models is reviewed from the 
poin t of view of its relat ion to integrable hierarchies. Discrete 
1-matrix, 2 -ma t r ix , ' c o n f o r m a l ' ( m u l t i c o m p o n e n t ) , a n d 
Kontsevich models are considered in some detail, together 
with the W a r d identities ( 'W-const ra in ts ' ) , de te rminan ta l 
formulas , and con t inuum limits, t ak ing one kind of mode l 
into another . Subtle po in t s and directions for future research 
are also discussed. 

1. Introduction 
The pu rpose of these notes is to review one of the b ranches of 
m o d e r n string theory: the theory of mat r ix models , with the 
emphasis on their intrinsic integrable s t ructure. I begin with a 
brief descript ion of the field and its place within string theory. 
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The main content of string theory (see m y earlier article 
[1] for a general review) is the s tudy of symmetries, in the 
b roades t possible sense of the word , by the m e t h o d s of 
q u a n t u m field theory . The usua l scheme is to start from 
some symmetry and construct a field-theoretical mode l 
[usually 2-dimensional (2d), for a reason no t discussed 
here], which possesses this symmetry in some simple sense 
(e.g. as Noe the r symmetry or as a chiral a lgebra) . The main 
idea at this stage is to find a mode l which is exactly solvable (if 
no th ing bu t the symmetry is given, this is a nice principle to 
restrict dynamics) . The next step is to s tudy the h idden 
symmetries of the model , which are somehow responsible 
for its exact solvability and are usually much larger t han the 
original symmetry. 

This ' inverse ' step, model —• symmetry, can be m a d e with 
at least three different ideas in mind . 

One can look for some hidden local (gauge) symmetry 
which is fixed or spontaneous ly b roken , i.e. identify it with 
some other mode l which has m o r e fields: auxiliary with 
respect to the smaller model , and gauge with respect to the 
larger one. [Examples include the gauged W e s s - Z u m i n o -
N o v i k o v - W i t t e n ( W Z N W ) mode l and topological theories 
in the B e c c h i - R o u e t - S t o r a - T y u t i n (BRST) formalism.] 
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One can t ake for a new (full) symmetry of the mode l jus t 
its opera to r algebra (algebra of observables) (see [2, 3, 4] for 
the first results in this direction). It deserves ment ion ing tha t 
the gauging of the entire algebra of observables gives rise to a 
' s t r ing field t h e o r y ' assoc ia ted wi th t he or ig ina l m o d e l 
(considered as a string model) . 

One can construct the effective act ion of the theory by 
exact evaluat ion of the functional integral . 

As to the direct step, symmetry —• model, one can t ake as 
an example the best unde r s tood case, in which the original 
symmetry is jus t a Lie algebra. Then the q u a n t u m -
mechanica l mode l can be constructed by the geometr ic 
quant i sa t ion technique (see [5] for the most impor t an t 
example of a K a c - M o o d y algebra and the W Z N W model) . 

Mathemat ica l ly , the two elements of the above scheme 
appear to be algebra (in the theory of symmetries) , and 
analysis and geometry (in the field-theoretical models) . The 
idea of const ruct ing models with a given symmetry (and 
no th ing else relevant to the dynamics) can be identified with 
the ma themat i ca l concept of 'universal objects ' . 

The sequence of i terat ions of the two a r rows in Fig. 1 
leads to a deeper unders tand ing , enlarging and generalising 
all the no t ions involved — symmetry, exact solvability, field 
theory, geometrical structures, quant isa t ion, etc — thus 
st imulating considerable progress bo th in physics and in 
mathemat ics . If this iterative process can somehow 
converge, the limit poin t will deserve to be called the theory 
of everything, which will indeed unify all the possible field-
theoret ical models by embedding them into a huge bu t well 
s t ructured theory, which will also be exactly solvable in 
some yet unspecified sense of the word . I refer the reader to 
my earlier review [1] for m o r e details on this semi-
phi losophical p r o g r a m m e , k n o w n as (modern) string theory, 
and n o w turn to a more n a r r o w subject: the theory of mat r ix 
models . 

s y m m e t r y = a l g e b r a 

u 
m o d e l = a n a l y s i s a n d 

w i t h t h i s s y m m e t r y g e o m e t r y 

Figure 1. T h e o r y o f e v e r y t h i n g . 

At the m o m e n t this subject is mainly associated with the 
theory of effective act ions; so far this is where the main results 
of the mode rn theory of mat r ix models find their 
appl icat ions . This technique is especially suited for the 
s tudy of effective actions, obtained after integration over 2d 
geometries (including the sum over genera), and produces 
nonper turba- t ive (exact) par t i t ion functions of par t icular 
string models . The main result of these studies indicates tha t 
these par t i t ion functions exhibit two remarkab le ( though 
expected [6]) propert ies . 

Firs t , the effective act ion for a given mode l is essentially 
the same as for any other model . In fact the effective action is 
a function of the coupl ing cons tan ts ( ' sources ' in old-
fashioned terms) , which are no th ing bu t coordina tes in the 
space of various models ( the configurat ion space of the entire 
string theory) ; var ia t ion of couplings change one mode l for 
another . 

Second, effective act ion possesses a huge addi t iona l 
symmetry, which is somewhat similar to the general cova-

r iance in the space of all models (the above-mentioned 
configuration space) and, in the simplest examples which 
have been studied so far, can be expressed in terms of 
integrable hierarchies. (This 'general covar iance ' in the 
configurat ion space can, after all, tu rn into the main 
dynamical principle of the string theory.) 

Both these features seem to be very general, arising 
whenever the largest possible Lagrang ian with a given 
symmetry is considered (without restr ict ions on the possible 
counter - te rms, imposed by requi rements of renormalisabi l i ty 
or by l o c a l i t y - m i n i m a l i t y ' p r inc ip l e s '—th i s is why this 
p h e n o m e n o n is no t widely k n o w n to field theoris ts) . A n 
example of highly nontr iv ia l calculat ions leading to similar 
conclusions can be found in [7]. 

It is hoped tha t these r emarks will become clearer after 
some specific examples have been considered below. Still, they 
deserve to be formulated in full generality, not only to intrigue 
the reader bu t also because they can serve to aid better 
unders tand ing of the ideas and ou tcomes of generic string 
theory. 

The ' corner ' of the string theory associated with mat r ix 
models can be described as follows (see Fig . 2). 

The big b locks within the b o d y of string theory, which are 
directly related to mat r ix models , are the theory of conformal 
models , the theory of Af= 2 super symmetry, and the (loop 
equat ion version of) Y a n g - M i l l s ( Y M ) theory (in any 
number of dimensions) . Also, Einstein gravity should be 
related to the subject in a way similar to Y M theory, bu t these 
links are yet no t clarified. 

Both conformal theory and Af = 2 supersymmetry are 
sources of the concept o f ' t opo log ica l mode l s ' [ 8 - 1 1 ] . These 
arise after the gauging of all con t inuous symmetries of the 
W Z N W models and /o r as models with BRST-exac t stress 
tensors , na tura l ly appear ing in the context of Af = 2 
supersymmetry . If formulated in a self-consistent way in the 
'universal modu le space ' (unification of modu le spaces of all 
finite-genus R i e m a n n surfaces and bundles over them) these 
models tu rn into those of ' topological gravi ty ' . Genera t ing 
functionals of topological-gravi ty models in fact generate 
infinite sequences of topological invar iants of certain spaces 
{an inverse definition is also possible in some cases [8], 
t hough the universal (generic) algorithm for the operat ion 
topology of some space -> topological gravity has not yet been 
formulated]. 

Al ternat ive models of 2d q u a n t u m gravity arise s t raight
forwardly from conformal models t h rough the p rocedure of 
' summat ion over geometr ies ' . There are essentially two 
different approaches to the p rob lem. One (the 'Polyakov 
a p p r o a c h ' ) is to m a k e use of the complex s tructure, intrinsic 
for conformal theory [12], and sum over Riemann surfaces, 
which involves integrat ion over module spaces and the sum 
over genera. The main techniques used in this approach are 
the theory of free fields on R i e m a n n surfaces [13, 14] and the 
bosonisa t ion formalism for conformal field theories [15, 16]. 
This approach requires solution of Liouville theory, which is 
still a p rob lem under intensive investigation (and is in tu rn 
related to conformal field theory) . Fu r the r progress in this 
direction should be related to (or can be expressed in terms 
of ) the adequa te theory of the universal module space, handle-
gluing operators, etc. Similar objects arise in the field-
theoret ical approach to topological gravity (see [17] for a 
recent review). 

A n al ternat ive app roach to summat ion over geometr ies 
does no t refer at all to the complex s t ructure bu t instead 
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o t h e r d i s c r e t e m a t r i x m o d e l s 

for d > 2 

Figure 2 . 

involves a sum over random equilateral triangulations [18—20].f 
This is the place where mat r ix models first appear in the 
context of string theory. The r a n d o m tr iangulat ion approach 
is by no means specific to conformal models (since it ignores 

f i t s r e l a t i o n t o t h e P o l y a k o v a p p r o a c h is a s e p a r a t e v e r y i n t e r e s t i n g , 
i m p o r t a n t , a n d b a d l y u n d e r s t o o d p r o b l e m , w h i c h a l l o w s a n o n t r i v i a l 
r e f o r m u l a t i o n in t e r m s o f n u m b e r t h e o r y [21]. T h e m a i n p u z z l e h e r e is 
t h a t e q u i l a t e r a l t r i a n g u l a t i o n s a r e in fact arithmetic R i e m a n n s u r f a c e s — a 
d e n s e d i s c r e t e s u b s e t in t h e e n t i r e m o d u l e s p a c e , w i t h i n t e r e s t i n g a n d d e e p 
a l g e b r a i c p r o p e r t i e s . E q u i v a l e n c e o f t h e t w o a p p r o a c h e s t o 2 d q u a n t u m 
g r a v i t y s h o u l d i m p l y t h e ex i s tence o f s o m e n u m b e r - t h e o r e t i c a l b a c k g r o u n d 
b e h i n d t h e scenes , w h i c h w o u l d b e v e r y n i c e t o d i s c o v e r in full p u r i t y . 

the complex structure) and can be applied in m a n y other 
s i tuat ions — for example, to Y M theories in any number of 
dimensions (where, instead of summat ion over geometries, 
one needs 's imply' to sum over ord inary F e y n m a n diagrams) . 

Appl ica t ions of the mat r ix -mode l me thod usually involve 
two steps: formulat ing and s tudying the 'discrete ' model , and 
then tak ing its ' con t inuum limit ' , giving rise to a new 
' con t inuous mat r ix mode l ' , which sometimes can again be 
represented in a form of some mat r ix integral . 

One of the main discoveries in the field of mat r ix models is 
tha t continuous models arising finally from the r a n d o m -
equi la teral - t r iangulat ion descript ion of the simplest 
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D i s c r e t e m a t r i x 
m o d e l s 

L G G 

K o n t e s e v i c h m o d e l s 
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' C o n f o r m a l ' 
m u l t i m a t r i x m o d e l s 

C o n v e n t i o n a l 
m u l t i m a t r i x m o d e l s 

O t h e r 
c o n t i n u o u s 

m o d e l s 

(p, q) m o d e l s 

p-q d u a l i t y 

M o d e l s for d ^ 2 
(c= 1, P o t t s , K a z a k o v -

M i g d a l , ...) 

( G e n e r a l i s e d ) Y M t h e o r y , 
( s t r i n g y ) g r a v i t y . . . . 

Figure 3 . 

(minimal , with c < 1) string models coincide with the 
simplest ( C P 1 L a n d a u - G i n z b u r g ) models of topological 
gravity [9, 2 2 - 2 4 ] : two (classes of) theories are identical 
(this is no t yet p roved in full detail , bu t is m o r e t han 
plausible). 

So far, continuous models are actually found and 
somehow unde r s tood only for string models , based on the 
c < 1 min imal conformal theories [moreover, only for q = 1 
in the (/?, q) series. Confo rma l models with c ^ 1—which 
are relevant for description of gauge theories in spacet ime 
dimension, d ^ 2 (which possess part icles, ra ther than only 
topological degrees of freedom) — should give rise to the 

discrete mat r ix models with 'nonfactor isable ' in tegrat ion 
over 'angular var iables ' , of which the simplest (solvable) 
example is the K a z a k o v - M i g d a l mode l [25]. The issue of 
the con t inuum limit for such models is not yet unde r s tood (at 
least in t e rms of integrable s tructures, which should p robab ly 
generalise the familiar theory of T o d a hierarchies). 

The goal of the s tudy of mat r ix models is threefold. Firs t 
of all, one can look for the nonper tu rba t ive (exact) answers 
for the physical ampl i tudes in the given model . This is the 
subject which a t t rac ts most a t tent ion in the l i terature (for 
several obvious reasons). However , it is equally (and, perhaps , 
even more) impor tan t to unders t and the mathemat ica l 
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s t ructure behind the mat r ix models [which involves topics like 
the general theory of integrable hierarchies, geometrical 
quant isa t ion , the D u i s t e r m a a t - H e c k m a n theorem 
('localisation theory ' ) , etc]. Also impor tan t for the purposes 
of string theory is to use the results of the study of mat r ix 
models in order to unify a priori different models (according 
to the above-ment ioned principle, nonper tu rba t ive par t i t ion 
func-tions for different models differ by a change of variables 
in the space of coupling constants) . M a t r i x models have 
already played an impor tan t role in mak ing this principle 
clearer and m o r e acceptable to m a n y string theorists . 

Let us t ake the next step and look even closer at the field 
of mat r ix models , especially at its most intensively studied 
domain , associated with the d < 2 string models . Then the 
s t ructure shown in Fig. 3 will be seen. 

A sample example of a mat r ix mode l is tha t of the 
1-matrix i n t eg ra l ! 

Z J V { ^ } = cN m exp \^2,tk TrH' 
k=0 

(1.1) 

where the integral is over the N x N Hermi t i an m a t r i x / / , and 
dH = Ylt j dHij. There are three directions in which one can 
proceed s tar t ing from E q n (1.1). 

The first [26] is to look for an invar iant formulat ion of 
proper t ies of the functional ZN {t}. It appears tha t ZN {t} 
satisfies the following infinite set of differential equa t ions {in 
fact these are just W a r d identities (Wis) for the functional 
integral (1.1) [27]}: 

LnZN{t} = 0, n ^ - 1 , 

k+n 

8 ; 0 

= NZj (1.2) 

T h e s e e q u a t i o n s a r e k n o w n as t h e ' d i s c re t e V i r a s o r o 
cons t ra in t s ' . ZN {t} can be represented as a correlator of 
screening opera to r s in some auxil iary conformal mode l (of 
one free field on the 'spectral surface'), and the Virasoro 
const ra in ts (1.2) are of course related to the Virasoro algebra 
in tha t conformal model . Also ZN {t} is some T-funct ion of an 
in tegrable ' T o d a - c h a i n ' h ie ra rchy (in fact this s ta tement 
should be a corol lary of the Virasoro const ra ints , bu t this 
relat ion is still no t very well unders tood) . 

The most s t ra ightforward app roach to further develop
ment [26, 28] is to t ake the con t inuum limit of the Toda-cha in 
hierarchy. In the specially adjusted 'double-scal ing ' (d.s.) 
limit [20] it gives rise to the Kor teveg de Vries (KdV) 
hierarchy, and the cor responding T-function appears to be 
subject to the slightly different const ra in ts [28, 29] (which 
again form a Borel subalgebra of some other ' con t inuous 
Virasoro a lgebra ' ) 

C2nZcont{T} : = 0, n ^ - 1 

where 

' odd£=l 
2n-l ^2 

^Tk+2n 

+ £ 1 1 2 (1.3) 

f I n t h i s r e v i e w t h e o p e r a t o r s d e t a n d t r a p p l y to nxn m a t r i c e s ; D e t a n d 
T r a p p l y t o N x N m a t r i c e s a n d Det a p p l i e s t o (N+ n) x (N+ m) m a t r i c e s . 

and rk = — 1 ^ , 3 . In fact, 

' m ~ K M xy/ZN{t} 
d.s.{TV—>oo} 

(1.4) 

and the T values are related to t by linear t r ans format ion 
[19, 28]: 

T h = 2 2 ^ 

gm = mt2m , m ^ 1 

I ( £ - I ) ] ! r ( i * + I ) ' 

?o = 2N . 

k odd ; 

(1.5) 

This Z c o n t {T} can again be represented in the form of a 
mat r ix integral (over n x n Hermi t i an matr ices) [22, 3 0 - 3 3 ] : 

Zcont{T} = Zv{T} , 

w i t h V ( X ) = | X 3 , where 

(1.6) 

ZV{T } - FvAL} = [ d x e x p [ - t r V(x) + tr LX ] , 
Jnxn 

and 

k 
k odd 

(1.7) 

(1.8) 

T h e func t i on Z v {T} ( b u t n o t Fv,n{L}) is in fact 
independent of n: the only th ing tha t h a p p e n s for finite 
values of n is tha t the r igh t -hand side (r.h.s.) of E q n (1.7) 
cannot describe Z v {T } at arbitrary po in t s in the T-space, in 
a c c o r d a n c e w i t h E q n (1 .8) . T h e c o n t i n u o u s V i r a s o r o 
const ra in ts (1.3) are in fact equivalent to the trivial ma t r ix -
valued W I 

8 L T R 

- L Fv,n{L} = 0 (1.9) 

Ano the r direction in which to proceed from the discrete 
1-matrix mode l is to rewrite it identically in the form of a 
Kontsevich model : this t ime with V(X) = X2 and with an 
addi t iona l factor of (det X ) N under the integral in Tyin {L} 
[56]. Then the double-scal ing limit can be studied in internal 
t e rms of Kontsevich models [36]. 

The third direction is t owards mul t imat r ix models . In the 
continuous version they should provide T-funct ions of 
reduced K a d o m t s e v - P e t v i a s h v i l i (KP)-hier archies [37] 
( K d V is the p = 2 reduct ion) , which are subjected to 
' con t inuous W-cons t ra in t s ' [29]. M a t r i x models of such T -
functions are Kontsevich models with V(X)~XP+1 [ 3 0 -
33]. At the discrete level, however , th ings are no t so simple. 
The mos t popu la r discrete mul t imat r ix models [34] are 
defined as mult iple mat r ix integrals of the form 

ZN{tM} = c% p-i 

JNxN 

p-1 / oo \ p—2 

<X=l k=0 

11 exp ( ^ t f Tr H \ a ) J [ ] exp (Tr H ®H ^ ) 

(1.10) 
<X=l 

( the form of the ' interact ion t e r m ' Tr H ( a + x ) is restricted 
by the 'solvabil i ty ' principle, bu t no t unambiguous ly) . In fact 
these mode l s a re pa r t i cu la r examples of ' s ca la r -p roduc t 
eigenvalue mode l s ' and are no t really dist inguished except 
for the 1-matrix (p = 2) and 2-matr ix (p = 3) cases. This is 
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re f lec ted in t h e a b s e n c e of a n y r e a s o n a b l e W i s a n d 
i n t e g r a b l e s t r u c t u r e s for t he se m o d e l s , w h i c h w o u l d 
somehow involve their dependence on the variables t ^ with 
2 ^ a ^ p — 2. Therefore , the 'mul t i - sca l ing c o n t i n u u m 
limit ' of these models can hard ly be investigated with any 
degree of r igour . (It is no t very impor t an t for 'physical ' 
appl ica t ions to have discrete mode ls associated with the 
con t inuum ones, bu t this is an interesting p rob lem for the 
'science of science'.) F o r the 2-matr ix (p = 3) case the W i s 
can be expressed in the from of 'W-cons t ra in t s ' [38] and look 
like [30] 

wt+J]{t}ZN{tJ} = {-l)m+nW^{t}ZN{tJ} (1.11) 

(here t and t s tand for t ^ and t^; and m and n are any 
nonnegat ive integers). 

The really interest ing set of discrete mul t imat r ix models 
does exist, bu t it is somewhat different from Eqn (1.10). 
These theories will be referred to as ' conformal mat r ix 
models ' , since they arise s t ra ightforwardly as a 
general isat ion of the 'conformal field theory ( C F T ) -
formula t ion ' of the 1-matrix mode l [39]; it is enough to 
subst i tute discrete Virasoro const ra ints in the theory of one 
free field by the ^ - c o n s t r a i n t s in the theory of p - \ free 
fields. The matr ix- integral formulat ion then involves an 
' interact ion t e r m ' Det(H^&-\®H^+ *)) instead of 
exp (Tr H ( a + ^ ) , which is not very easy to guess a pr ior i , 
bu t the models so defined and their con t inuum limits can be 
examined in a m a n n e r quite paral lel to the 1-matrix case 
( though there is m o r e to be done in this direction). Also, this 
app roach provides the possibili ty of formulat ing discrete 
models for any set of constra ints , e.g. associated with the 
m o r e exotic W-algebras and with q u a n t u m groups (i.e. they 
can help to solve the inverse p rob lem: constraints -> discrete 
matrix model). This is an opt ion which also deserves further 
investigation. Ano the r na tu ra l n a m e for this set of theories is 
'mul t i component eigenvalue models ' . 

Kontsevich models should also be related to topological 
models of L a n d a u - G i n z b u r g gravity ( L G G ) , t hough this 
relat ion has no t yet been clarified in full detail (see, however , 
[17, 40]). 

A m o n g the main unresolved puzzles in this whole field is 
the descript ion of generic (p, g)-models. Formal ly , the 
generalised Kontsevich mode l (1.7) provides this descr ip
t ion, bu t in fact the par t i t ion function (T - func t ion) gets 
singular when the 'phase t rans i t ion ' po in t where q changes 
is approached , and the Kontsevich mode l with V (X) equal to 
a polynomial of degree p + 1 provides a nice descript ion only 
of (p, l ) -models . Generically, the Kontsevich integral 
describes a dual i ty t rans format ion between (p, q)- and 
(q, p ) -models : (p,q) -> (q, p) [41], bu t no t any of these 
models separately. [The only exceptions are (p, l ) -models 
because they are related by Kontsevich t rans format ion to the 
( l , /?)-models , which are completely trivial.] 

In fact con t inuous models have two different sets o f ' t i m e -
variables ' . T h u s far I have in t roduced T-values, which are 
essentially expansion pa ramete r s of the generat ing functional 
for correlat ion functions. M o r e precisely, these pa rame te r s T 
depend on the par t icular mode l (vacuum) a r o u n d which the 
pe r tu rba t ion expansion is performed, and they differ slightly 
from the model - independent T. Ano the r set of ' t imes ' , r^ | , 

f w h e r e rk = [p/k{p - k)] R e s [ V { f i ) ] l ~ k / p d f i 

parametr i ses the shape of the po lynomia l 'po ten t ia l ' VP(X) 
(of degree/? + 1) and describes the coord ina tes in the space of 
(matr ix) models . These two types of var iable — pa ramete r s 
of the generat ing functional and those labelling the shape of 
the Lagrang ian — are a lmost the same [in fact they would be 
exactly the same if there were no loop (quan tum) effects]. 
This similarity between Ts and rs is reflected in the 
r emarkab le p rope r ty of the par t i t ion function of the 
(p, l ) -model — essentially it depends only on the sum of 
' t imes ' T and r [40]: 

Zvp{T } =fp(r\fk + n) Tp{fk + rk} (1.12) 

with some simple (and explicitly k n o w n ) function fp. [In 
E q n (1.8), for the monomial cubic poten t ia l V?>(x) = \x 3 , 
fk= Tk= (\/k)tvL - * ' 2 , while rk= - § 5 M . ] 

The last th ing to be ment ioned in this general description 
of mat r ix mode l theory is its relat ion to group theory. The 
generalised Kontsevich mode l (1.7) is int imately connected to 
the ' integrable n a t u r e ' of group characters and the coadjoint 
orbit integrals {the characters of all the irreducible 
representa t ions of U(N) are usually K P T-funct ions [101]}. 
In fact a 'discrete (or q u a n t u m ) vers ion ' of the Kontsevich 
integral is the sum over all un i ta ry irreducible representa t ions 
of U(n) [the ' integral ' over a model of U(n), or over the set of 
all coadjoint orbits] 

^dRxR(G) exp - $ > c t ( j ? ) (1.13) 

where dR,%R, and C^(R) are the dimension, character , and the 
&th Casimir opera tor of the irreducible representa t ion, R, of 
XJ(n). The t ime variables Tk ~ (l/k)trGk, while the poten t ia l 
V (X) = J2T=oskXk- T h i s e x p r e s s i o n can b e fu r the r 
generalised to 

n u { G } = X ) z « ( G ) z 8 ( G ) e x P - $ > C t ( K ) 
k=0 

. (1.14) 

Proper t ies of these ' q u a n t u m ' Kontsevich models deserve 
further investigation [objects like E q n (1.13) are also k n o w n 
to arise in the localisation theory; in par t icular , in the s tudy of 
2d Y M theory — see, for example, [43, 44]. 

These notes are essentially a review of the views and 
results of the group work ing in M o s c o w (and Kiev). Since 
references will not be given every t ime, I present here the list 
of people involved in these investigations: L Chekhov, 
A Geras imov, A Losev, S Kharchev , Yu M a k e e n k o , 
A M a r shako v, A Mikhai lov , A Mi ronov , A Orlov, 
S Pakulyak , I Polyubin, A Zabrod in . 

I also apologise for the somewhat sporadic references to 
the works of other g roups . 

2. Ward identities for the simplest matrix 
models 
2.1 Ward identitites versus equations of motion 
I begin systematic considerat ion of mat r ix models from their 
simplest, and at the same t ime most basic, p roper ty : the 
W a r d identities (Wis) for par t i t ion functions. A par t i t ion 
funct ion is, b y def ini t ion, a func t iona l of the coup l ing 
cons tan ts in the Lagrang ian , and W i s will be unde r s tood 
here as (differential or finite-difference) equat ions , imposed 
on this functional . If the par t i t ion function is represented in 
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' G e n e r a l i s e d i n t e g r a b i l i t y 
( g e n e r i c t h e o r y o f W Z N W m o d e l ? ) 

S t r i n g field t h e o r y 

Figure 4 . 

the form of a mat r ix in t eg ra l , ! the W i s are usually implied by 
its covariance under the change of the integrat ion variables 
( thus the n a m e 'WI ' ) . 

In o rd inary field theory, one is usually dealing with 
models where the W i s either do no t exist at all, or at most 
there is a finite number of them — then they are interpreted as 
reflecting the symmetry of the theory. However , by no means 
does the finite set of these W i s p rove a complete descript ion of 
the dynamics of the theory: the number of ( quan tum) 

f T o a v o i d c o n f u s i o n I s h o u l d e m p h a s i s e t h a t s u c h a r e p r e s e n t a t i o n d o e s 
not n e e d t o exis t , a t l eas t in a n y s i m p l e f o r m . T h e m o r e t h e t h e o r y o f 
m a t r i x m o d e l s d e v e l o p s , t h e less it h a s t o d o w i t h matrices a n d m a t r i x 
i n t e g r a l s . H o w e v e r , (as in t h e c a s e o f e n t i r e string theory) t h e o r i g i n a l 
n a m e h a s a t e n d e n c y t o s u r v i v e . A n y h o w , t h e m a i n c o n t e n t o f t h e t h e o r y 
o f m a t r i x m o d e l s (a t l eas t o f t h e b r a n c h , a n a l y s e d in t h e s e n o t e s ) is t h e 
s e a r c h for invariant f o r m u l a t i o n s o f t h e p r o p e r t i e s o f p a r t i t i o n f u n c t i o n s , 
w h i l e m a t r i x i n t e g r a l s (if ex i s t i ng a t a l l ) a r e c o n s i d e r e d a s t h e i r p a r t i c u l a r 
r e a l i s a t i o n s ( r e p r e s e n t a t i o n s ) . M o r e o v e r , t h e r e c a n exist v e r y d i f fe ren t 
m a t r i x i n t e g r a l r e p r e s e n t a t i o n s o f t h e s a m e p a r t i t i o n f u n c t i o n , t h e 
s i m p l e s t e x a m p l e b e i n g j u s t t h e b a s i c d i s c r e t e 1 -ma t r ix m o d e l , w h i c h c a n 
a l so b e r e p r e s e n t e d in t h e f o r m o f a K o n t s e v i c h i n t e g r a l (see b e l o w ) . 

equa t ions of mot ion (EqMs) is usual ly infinite and their 
solut ions are never fixed by the W i s . In fact this difference 
between WI and E q M arises because the Lagrang ians , 
considered in the o rd inary field theory, are not of the mos t 
general form: they are usual ly severely restricted by 
'pr inciples ' like renormalisabi l i ty or minimali ty . Because of 
this there is simply no t enough coupling cons tan ts in the 
Lagrang ian to describe the result of any var ia t ion of 
in tegrat ion variables as tha t of the var ia t ion of coupling 
constants , and thus no t every E q M can be represented as a 
(differential) equa t ion for the par t i t ion function. In other 
words , by restricting the shape of the Lagrang ian for 
' nonsymmet r i c ' reasons one b reaks the mode l ' s original 
huge ' symmetry ' (covariance), which was enough to describe 
all the dynamics (all E q M s ) as dictated by symmetry, and a 
b roade r view is necessary in order to recognise E q M as the 
WI associated with tha t original high symmetry. This 
symmetry (which is no t a Noe the r symmetry, of course) is a 
peculiar p rope r ty of all the quantum-mechanical par t i t ion 
functions, since these usual ly arise from the p rocedure of 
functional integrat ion. 
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M a t r i x models appeared to be the first class of q u a n t u m -
mechanica l systems (functional integrals) for which the 
identi ty 

all E q M s = all W i s 

was no t simply observed as a cur ious p h e n o m e n o n , bu t 
became a subject of intensive investigation and is identified 
as the source of exact solvability (integrabili ty) of the theory. 
Of course , t he significance of th is obse rva t ion (and its 
implicat ions) is quite universal and is by no means restricted 
to the field of ma t r ix models themselves; however , it is no t yet 
apprecia ted enough by the experts in other fields. In any case, 
I am going to deal only with mat r ix models in these notes . 

I proceed to the considerat ion of the WI according to the 
plan il lustrated in F ig. 4 (not all the a r rows will be discussed). 

2.2 Virasoro constraints for the discrete 1-matrix model 
The basic example [26, 27] which il lustrates the a rguments 
from the previous subsection is provided by the 1-matrix 
mode l 

ZN{t} = cN dH expf J T t ^ TYH] 

k=0 
(2.1) 

This integral is invar iant unde r any change of var iables 
H - > f ( / / ) . It is convenient to choose the following special 
basis in the space of such t rans format ions : 

bH = snHn+l . (2.2) 

Here en is some infinitesimal mat r ix and, of course, n ^ — 1. 
The value of the integral cannot change under the change of 
integrat ion variable, and the following identi ty is obta ined: 

dH expf JTf* TYH1 

k=0 

I 
d(H + snH n + i ) e x p 

k=0 

tha t is, 

[dH e x p f ^ S * TrHk\( ^Tkt k Tr H k + n + Tr 
J \ f r = 0 / \k=0 

m n + \ 

m = 0 . 

(2.3) 

In order to evaluate the Jacobian Tx(bHn+llbH), the mat r ix 
indices should be restored: 

( 5 H n + 1 ) . . = Y^(HkbHHn-k)ij 

k=0 

= J2(Hk)umLM(H"-%. 
k=0 

In Tr (hHn+llhH) one should t ake / = / and m = j , so tha t 

S zj n+l n 
T r — = TY H k TY Hn~ (2.4) 

k=0 

N o w no te tha t because one started from a Lagrang ian of 
the most general form (consistent with the symmetry 
H -> UHU T), any correlat ion function can be obta ined as a 
var ia t ion of the coupling constants (all possible sources are 
included as counter- terms) . In my part icular example this is 
just a trivial remark : 

( T r H a i ...TYHAN) 

• j d # e x P ^ | ^ TY H K^TY H AI ...TYHAN 

-ZN{t} . (2.5) 

This relat ion can be used together with Eqn (2.4) in order to 
rewrite E q n (2.3) as 

LnZN{t} = 0 , n ^ - 1 

with 
oo q n 

k = 0 dtk+n f^0dtkdtn-k ' 

N o t e tha t , according to the definition (2.1), 

8 „ 

(2.6) 

(2.7) 

Zn=NZN 

Several r emarks are n o w in order . 
Firs t , the expression in bracke ts in E q n (2.3) represents 

all the E q M s for the mode l (2.1), and Eqn (2.6) is no th ing bu t 
ano ther way to represent the same set of equat ions . This is an 
example of the above-ment ioned identification of E q M and 
W I . 

Second, the c o m m u t a t o r of any two opera to r s Ln 

appear ing in E q n (2.6) should also annihi la te ZN{t). 
Anothe r indicat ion (not a convincing one, however) tha t we 
already have a complete set of const ra ints is tha t Ln forms a 
closed (Virasoro) algebra: 

[LmLm] = (n-m)Ln / i , m ^ 1 . (2.: 

Third , E q n (2.6) can be considered as an invar iant 
formulat ion of the definition of ZN\ Zn is a solut ion of this 
set of compat ib le differential equat ions . F r o m this poin t of 
view E q n (2.1) is a par t icular representa t ion of ZN and it is 
sensible to look for other representa t ions as well (I shall later 
discuss two of them: one in te rms of conformal field theory 
(CFT) , ano ther in te rms of Kontsevich integrals). 

F o u r t h , one can try to analyse the uniqueness of the 
solut ions of E q n (2.6). If there are no t too m a n y of them the 
set of const ra ints can be considered complete . A na tu ra l 
app roach to the classification of solut ions of the algebra of 
const ra in ts is in te rms of the orbi ts of the cor responding 
group [45]. Let us consider an oversimplified example, which 
can still be useful in unde r s t and ing the implicat ions of the 
complete set of W i s as well as in clarifying the mean ing of 
classes of universali ty and of integrabili ty. 

Imagine tha t instead of Eqn (2.6) with Ln defined in 
E q n (2.7), we would obta in the somewhat simpler e q u a t i o n s ! 

lnZ = 0 , n ^ 0 ; with /„ = kt k -, dt k+n 

Then opera tor l\ can be interpreted as generat ing the shifts 

ti —• t2 + £i*i , 

t3 —• t3 +2sit2 , 

f O n e c a n ca l l t h e m t h e ' c l a s s i c a l ' a p p r o x i m a t i o n t o E q n (2 .6 ) , s ince t h e y 
w o u l d a r i s e if t h e v a r i a t i o n o f m e a s u r e (i .e. a ' q u a n t u m effect ' ) w a s n o t 
t a k e n i n t o a c c o u n t in t h e d e r i v a t i o n o f E q n (2 .6) . T h o u g h t h i s c o n c e p t is 
o f t en u s e d in p h y s i c s it d o e s n o t m a k e m u c h s ense in t h e p r e s e n t c o n t e x t , 
w h e r e I a m a n a l y s i n g exact p r o p e r t i e s o f f u n c t i o n a l ( m a t r i x ) i n t e g r a l s . 
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It can be used to shift t2 to zero, and the equat ion l\Z = 0 
then implies tha t 

Z ( f i , f 2 , * 3 , . . . ) = Z ( f i , 0 , j " 3 , . . . ) 

[h =tk-(k-l)t2tk-i/tl9 k > 3 ] . 
Next , the opera to r generates the shifts 

t 3 ^ t 3 + s2ti , 

^ 4 —* ^ 4 ~~r~ £2t2 i 

and does ?z6tf affect t2. One can n o w use the equat ion l2Z = 0 
to argue tha t 

Z(t\,t2,h,U, • • •) = Z ( * i , 0 , ? 3 , ? 4 , . . . ) = Z ( f i , 0 , 0 , ? 4 , . . . ) , 

etc. A s s u m i n g tha t Z is no t very dependen t on tk wi th 
^ -> o o | , it is possible to conclude tha t 

Z(tl9t2,t39...)=Z(tl909 0 , . . . ) = Z ( 1 , 0 , 0 , . . . ) 

(in the last step I also used the equat ion foZ = 0 to rescale t\ 
to uni ty) . 

All this reasoning is correct provided t\ ^ 0. Otherwise 
one would get Z(0 , 1,0,0, . . . ) , if t\ = 0 and t2 ^ 0; 
Z(0 , 0 ,1 ,0 , . . . ) if ti= t2= 0, t3 0, etc. In other words , 
one obta ins classes of universali ty (such tha t the value of the 
par t i t ion function is the same in the whole class), which in this 
oversimplified example are labelled just by the first 
nonvanish ing t ime-variable. Analysis of the orbit s t ructure 
for the actually impor t an t real isat ions of groups , like tha t 
connected to E q n (2.7), has never been per formed in the 
context of mat r ix mode l theory. It m a y deserve emphasis ing 
tha t the const ra ints , as we saw, can actually al low one to 
eliminate (solve exactly) all the dependence on the t ime-
variables. In less trivial examples they somehow imply the 
integrabil i ty s t ructure , which is just a slightly m o r e 
complicated version of the same solvability p h e n o m e n o n . 

2.3 Conformal-field-theory formulation of matrix models 
Given a comple te set of the cons t r a in t s on a p a r t i t i o n 
funct ion of infinitely m a n y var iab les which form some 
closed algebra one can n o w ask an inverse quest ion: h o w 
t h e s e e q u a t i o n s can b e so lved or w h a t t h e i n t e g r a l 
representa t ion of the par t i t ion function is. One app roach to 
this p rob lem is the analysis of the orbits , briefly ment ioned at 
the end of the prev ious section. N o w I tu rn to ano the r 
technique [39], which makes use of knowledge from C F T . 
These c o n s t r u c t i o n s can h a v e some m e a n i n g f rom t h e 
' phys i ca l ' p o i n t of view, which impl ies ce r ta in dua l i t y 
between the 2d world surfaces and the spectral surfaces, 
associated with the configurat ion space of the string theory. 
However , the goal n o w is m o r e formal: to use the m e t h o d s of 
C F T to solve the const ra int equat ions . 

This is very na tu ra l in the case when the algebra of con
straints is a Virasoro algebra, as in the case of the 1-matrix 
model , or some other algebra if it is k n o w n to arise na tura l ly 
as a chiral algebra in some simple conformal models . In fact, 
the app roach which will n o w be discussed is ra ther general 
and can be applied to the const ruct ion of mat r ix models 
associated with m a n y different algebraic s t ructures . 

I begin from the set of E q n (2.6) which shall be referred to 
as 'discrete Virasoro cons t ra in ts ' . The C F T formula t ion of 

f T h i s , b y t h e w a y , is h a r d l y c o r r e c t in t h i s p a r t i c u l a r e x a m p l e , w h e n t h e 
g r o u p h a s n o c o m p a c t o r b i t s . 

interest should provide the solution to these equa t ions in the 
form of some correlat ion function in some C F T . Of course, it 
becomes na tu ra l to somehow identify the opera to r s Ln, which 
form a Virasoro algebra, with the harmonics , Tn9 of the stress 
tensor , which satisfy the same algebra, and m a n a g e to relate 
the const ra int tha t the Ln ope ra to r s annihi la te the correlator 
to the s ta tement tha t the Tn values annihi la te the vacuum 
state. Thus , the p rocedure is na tura l ly split into two steps: 
first one should find a ^-dependent opera tor ( 'Hami l ton ian ' ) , 
H (t), such tha t 

Ln(t){exV[H(t)]... = {exV[H(t)]tn . . . . (2.9) 

This will relate the differential ope ra to r s Ln to the tn values 
expressed th rough the fields of the conformal model . Second 
one needs to enumera te the states tha t are annihi la ted by the 
opera to r s tn with n ^ — 1, i.e. solve the equat ion 

Tn\G)=0 (2.10) 

for the ket states; this is an internal p rob lem of C F T . If b o t h 
ingredients, H(t) and |G), are found, the solution to the 
prob lem is given by 

<exp[ f f (0 ] |G>. (2.11) 

To be m o r e explicit, for the case of the discrete Virasoro 
const ra in ts one can look jus t for solut ions in te rms of the 
simplest possible conformal model : tha t of a 1-holomorphic 
scalar field: 

[Jn,Jm]=ndn+m,0 , [q,p] = l . (2.12) 

Then the p rocedure is as follows: define vacuum states 

/* |0) = 0 , (N\J.k=0 (k>0)9 

p\0)=09 {N\p = N{N\ ; (2.13) 

the stress tensor 

T{z)=\mz)]2 = Y,TnZ-"-2 , 

k>0 a+b=n 
a9b^0 

and the Hami l t on i an 

v 2 k > 0 V2Jco 

U(z) = ^2tkzk , J(z)=^{z) . (2.15) 

It can n o w easily be checked tha t 

Ln{N\exp[#(f)] • • • = (N\exV[H(t)]Tn . . . (2.16) 

and 

Tn\0) =0 , n > - 1 . (2.17) 

As an immedia te consequence, any correlator of the form 

ZN{t\G} = (N\Qxp[H(t)]G\0) (2.18) 

gives a solution to E q n (2.6), provided 

[Tn9G]=09 n> - 1 . (2.19) 
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In fact, opera to rs , G, tha t c o m m u t e with the stress tensor are 
well k n o w n : these are just any functions of the 'screening 
c h a r g e s ' ! g + , where 

Q± = oJ± = o exp (±y/2(j)) . (2.20) 

T h e c o r r e l a t o r (2.18) will be n o n v a n i s h i n g on ly if t h e 
match ing condi t ion for zero-modes of </> is satisfied. If one 
d e m a n d s tha t the opera tor depend only on g + , this implies 
tha t only one te rm of the expansion in powers of Q+ will 
con t r ibu te to E q n (2.18), so tha t the result is essentially 
independent of the choice of the function G ( g + ); one can, 
for example, t ake G (Q +) = exp Q + and obta in : 

ZN{t}~ — {N\exp[H(t)}(Q+)N\0). 
N! 

(2.21) 

This correla tor is easy to evaluate by means of the Wick 
t h e o r e m a n d t h e p r o p a g a t o r </>(z)4>(z') ~ I n ( z - z ' ) a n d 
finally one gets 

ZN{t}=^{N\:QxV - = o U(z)Q<Kz) 
v 2 J c 0 

: J j £ dzi :exp[V20(zf)]: |0) 

N\-
f[o dziQxV[U(zi)]Y[(zi-Zj)2 (2.22) 

KJ 

in the form of a mult iple integral, which can in fact be directly 
related to the mat r ix integral in E q n (2.1); see [46] and the 
next section. 

Thus , in the simplest case the inverse p rob lem has been 
resolved: the integral representa t ion has been reconst ructed 
from the set of discrete Virasoro const ra ints . However , this 
answer seem to be a little m o r e general t han E q n (2.1): the 
r.h.s. of Eqn (2.22) still depends on the contours of integration. 
Moreover , one can also recall tha t the opera tor G, above, 
could depend not only on Q + , bu t also on g _ . The most 
general formula is a little m o r e complicated than Eqn (2.22): 

Z ^ t IQ , C J ~ - _ l - < t f | exp [H{t)\(Q+)N+M [Qjf |0> 
(N+M)\MV 

1 
{N + M)\M 

N+M /. 

T I I 4> dz,-exp 
• i=l Jc* 

N+M 

n ( * - " ) 2 n & - o 2 

: n i dz'reMU(z'r)],<J

 N + M M

 r < S . (2.23) 
r=l JLr n n f e - ^ ) 2 

See [39] for a discussion of the issue of con tour dependence. 
In a certain sense, all these different integrals can be con
sidered as b ranches of the same analyt ical function, ZN {t}. 
Dependence on M is essentially eliminated by Cauchy integra
t ion a round the poles in the denomina to r in Eqn (2.23). 

The above const ruct ion can be applied s t ra ightforwardly 
to other algebras of constra ints , provided: 

f F o r n o t a t i o n a l s i m p l i c i t y I o m i t t h e n o r m a l o r d e r i n g s igns ; in fact t h e 
o p e r a t o r s i n v o l v e d a r e : QxpH : a n d : exp (±y/2cp) : 

(i) The free-field representa t ion of the algebra is k n o w n in 
the C F T framework, such tha t the genera tors are polynomials 
in the fields </> (only in such a case is it s t ra ightforward to 
construct a Hami l ton i an H, which relates the C F T realisation 
of the algebra to tha t in te rms of the differential ope ra to r s 
with respect to the ^-variables; in fact, under this condi t ion, 
H is usual ly linear in the ts and 0s). There are examples (like 
the F r e n k e l - K a c representa t ion of level k = 1 simply-laced 
K a c - M o o d y algebras[47] or generic reduct ions of the 
W Z N W mode l [ 1 6 , 4 8 - 5 1 ] in which the genera tors are 
exponents of the free fields; in these cases the const ruct ion 
should be slightly modified. 

(ii) It is easy to find the vacuum state, annihi la ted by the 
relevant genera tors (here, for example, is the p rob lem with 
the appl icat ion of this app roach to the case of ' con t inuous ' 
Virasoro and W-constraints) . The resolut ion of this p rob lem 
involves considerat ion of correla t ions on R i e m a n n surfaces 
with nontr iv ia l topologies , often of infinite genus. 

(iii) The free-field representa t ion of the 'screening 
charges ' (i.e. ope ra to r s tha t c o m m u t e with the genera tors of 
the group within the conformal model ) is explicitly k n o w n . 

These condi t ions are fulfilled in m a n y cases in C F T , 
including convent ional W-algebras [52] and Af = 1 super-
symmetr ic models [53]. J 

F o r i l lustration purposes , I present here several formulas 
from the last paper of [39] for the case of the W r + i - c o n -
straints , associated with the simply-laced algebras A of r ank 
r. 

The par t i t ion function in such a ' conformal mul t imat r ix 
(X) 

m o d e l ' is a function of ' t ime var iables ' t\ \ k= O.. .00, 
A = l , . . . , r = r ank A, and also depends on the integer-
valued 
r-vector N = {Ni,...,nr}. The W r + i -constraints imposed on 
the par t i t ion function are 
wP(t)Z${t} = 0 , 7 i > l - a , a = 2 , . . . , r + l . (2 .24) 

The form of the W-opera to rs is somewhat complicated; for 
example, in the case r + 1 = 3 {i.e. for A = A2 [SL (3)]}, 

00 / 

k=o V 
dt - + ktk — 

k+n 8F k+n 

a+b=n dtadtt dtadtb 
(2.25) 

k,l>0\ Otk+n+l 
- ktklti- 2ktklt[— 

k+n+l Vtk+n+l 

k>0a+t^n+k\ 8 ^ 8 ^ U ^ 

4 8 3 

3 a+f^c=n \dtadthdtc dtadthdtc 

, (2.26) 

J I n t h e c a s e o f J\f = 2 s u p e r s y m m e t r y a p r o b l e m a r i s e s b e c a u s e o f t h e 
l a c k o f r e a s o n a b l e s c r e e n i n g c h a r g e s . A t t h e m o s t n a i v e level t h e r e l e v a n t 
o p e r a t o r t o b e i n t e g r a t e d o v e r s u p e r s p a c e ( o v e r dzd-^6) in o r d e r t o 
p r o d u c e s c r e e n i n g c h a r g e h a s d i m e n s i o n 1 • 
J\f = 2. 

lj\f, w h i c h vanishes w h e n 
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and two types of t ime-variables, denoted by tk and tk are 
associated with two orthogonal direct ions in the Ca r t an p lane 
o f A 2 : 

V2 V2 •t 

All other formulas, however , are very simple: the 
conformal mode l is usually tha t of the r free fields, where 
S ~ j 8 0 8 0 d 2 z , which is used to describe representa t ion of 
the level-one K a c - M o o d y algebra associated with A. The 
Hami l t on i an 

r+l 

^ ' ^ E E w -
X=l k>0 

(2.27) 

where the set {fix} is associated with the ' fundamenta l weight ' 
vectors vx in the Ca r t an hyperp lane and, in the simplest case 
ofA= A r [ S L ( r + 1)], satisfy 

i r+l 
, $ > = 0 ; fixfix' = SM 

r + l 

thus , only r of the t ime variables t^l\ ..., t^r + V) are linearly 
i n d e p e n d e n t . T h e r e l a t i o n b e t w e e n t h e d i f fe ren t ia l 
ope ra to r s Wn

a\t) and the opera to r s in C F T is n o w 
defined by 

WM(N | exp [#(*)] • • • = (N | e x p [ # ( f ) ] w / f l ) . . . , 

a = 2 , . . . , p ; / ̂  1 — <z , 

where 

W W = ( ) z ^ - i w W ( z ) ? 

(2.28) 

(2.29) 

are spin-a genera tors of the W ̂ - a l g e b r a . The screening 
charges, which c o m m u t e with all the W (a) (z), are given by 

)(«) oJ («) (j) exp a0 . (2.30) 

{a} being the roo t s of the finite-dimensional simply laced Lie 
algebra A. 

Thus , the par t i t ion function arises in the form 

Z${t} = (N\exp[H(t)}G{QM}\0) (2.31) 

where G is an exponent ia l function of screening charges. 
Evalua t ion of the free-field correlator gives 

[n 
i=i U ; £ > O 

* n n n f e ( a ) - ^ v • ^ 
(a,/J) i=l j=l 

In fact this expression can be rewri t ten in te rms of an r -matr ix 
integral — a 'conformal mul t imat r ix mode l ' : 

f S u c h a n o r t h o g o n a l b a s i s is e spec i a l l y c o n v e n i e n t for t h e d i s c u s s i o n o f 
i n t e g r a b i l i t y p r o p e r t i e s o f t h e m o d e l ; t h e s e t a n d t a r e l i n e a r c o m b i n a t i o n s 
o f t h e t i m e - v a r i a b l e s t \ a p p e a r i n g in E q n s (2 .27) a n d (2 .32) . 

ZA

N{t^} 
J I V X 

d # ( 1 ) . . . d # 

a=l 

TvH, 
k=0 

x Y[DQt(H^ ®I-I®H(a+^)a/i . (2.33) 

In the simplest case of the W3-algebra, E q n (2.32), with the 
insert ion of only two (of the six) screening charges Qai and 
g a 2 , t u rns into 

Z"Ufc'~) = n ^ < N ^ exp[//(u")](G(ai)r(G(a2)nO) 

x JJ [ d v 7 e x p [ % ^ M ^ ) ^ ) , (2-34) 

w h e r e A(x,y) = A(x)A(y)Y[t • (xt-yt). T h i s m o d e l is 
assoc ia ted wi th t he a lgebra A= A2 [SL(3)], whi le t he 
or iginal 1-matrix m o d e l ( 2 . 2 1 ) - ( 2 . 2 3 ) is associated with 
A= A i [SL(2 ) ] . 

The whole series of models (2 .32) - (2 .33) for A = 
A r [SL( r + 1)] is dist inguished by its relat ion to the level 
k = 1 simply-laced K a c - M o o d y algebras. In this 
par t icular s i tuat ion the under ly ing conformal mode l has 
integer central charge c(= r = r a n k A ) and can be 
'fermionised' . f The main feature of this formulat ion is tha t 
the K a c - M o o d y currents (which, after integrat ion, tu rn into 
'screening charges ' in the above const ruct ion) are quadra t i c 
in fermionic fields, while they are represented by exponents in 
the free-boson formulat ion. 

In fact the fermionic (spinor) mode l na tura l ly possesses 
G L ( r + 1) ra ther t han SL(r + 1) symmetry (other simply-
laced algebras can be embedded into larger GL-a lgebras and 
this provides a fermionic descript ion for them in the case of 
k = 1). The mode l conta ins r + l s p i n ^ fields ij/t and their 
conjugates \j/t (b, c-systems): 

r+l 

J ' = I J 

where the central charge is given by c = r + l , and the 
opera tor algebra is 

+ (l-Sjk):^(z)Mz')--

^j{z)^k{z,) = {z-z')bjk:^j{z)^k{z'): 

+ (l-SJk):4,j(z)Mz')--

J T h i s is p o s s i b l e o n l y for v e r y s p e c i a l K a c - M o o d y a l g e b r a s , a n d s u c h a 
f o r m u l a t i o n is i m p o r t a n t in o r d e r t o d e a l w i t h t h e conventional f o r m u l a 
t i o n o f i n t e g r a b i l i t y , w h i c h u s u a l l y i n v o l v e s commuting H a m i l t o n i a n f lows 
( n o t j u s t a c l o s e d a l g e b r a o f f lows) a n d t h e f e r m i o n i c r e a l i s a t i o n o f t h e 
u n i v e r s a l m o d u l e s p a c e ( u n i v e r s a l G r a s s m a n n i a n ) . I n fact t h e s e 
r e s t r i c t i o n s a r e q u i t e a r b i t r a r y a n d c a n b e r e m o v e d ( t h o u g h t h i s h a s n o t 
ye t b e e n d o n e in full d e t a i l ) ; see S e c t i o n 4 b e l o w for a m o r e d e t a i l e d 
d i s c u s s i o n . 
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The K a c ^ - M o o d y currents of level k = 1 G L ( r + 1) are jus t 
Jjk= '-^j^k: 0> ^ = l > - - - ? r + l ) , _ a n d t h e s c r een ing 
charges are given by Q ( a ) = iE^ <j> : i/fyi/̂  :, where E^ are 
representa t ions of the roo t s a in the mat r ix representa t ion of 
G L (r + 1). The C a r t a n subalgebra is represented by while 
posit ive and negative Borel subalgebras are represented by 
Jjk with j< k and j > k, respectively. In Eqn (2.23), 

Q+ = i o i A i ^ 

while in E q n (2.34), 

I (a5) : 

Q («2) = 

g (04) : 

O (ae) : 
^ 3 ^ 2 • 

can be subst i tu ted for Q ^ in E q n (2.34) w i thou t 
changing the answer. F o r generic r the similar choice of 
'adjacent ' (not simple!) roo t s (such tha t their scalar p roduc t s 
are + 1 or 0) leads to the selection of the following r screening 
opera to r s 

G ( D = 

i.e. QO") 
even j . 

( 2 ) = 
i o ^ 3 > Q 

( 3 ) = 

i§}j/jil/j+l for odd 7 and < 2 ( j ) = — i<J> 1/^1/^ for 

2.4 Gross - N e w m a n equation 
I n o w consider the W i s for another sort of mat r ix model . This 
subjec t c o n c e r n s a t leas t t w o i m p o r t a n t c lasses : t h e 
convent ional discrete 2-matr ix models and the Kontsevich 
models . As was explained in the in t roduct ion , theories of the 
second type arise from considerat ion of the (p, 1) con t inuous 
mat r ix models , as well as from the s tudy of topologica l 
L a n d a u - G i n z b u r g theories ; while the 2-matr ix mode l is 
believed to exhibit a rich pa t t e rn of con t inuous limits and is 
capable of provid ing representa t ions of all the (p, q) un i 
versality classes (this line of reasoning, however , has never 
been fully developed and I shall no t discuss it in these notes) . 

The s tar t ing poin t and the basic example is provided by 
the integral 

dX e x p [ - t r V(X)+trLX] (2.35) 

over nxn Hermi t i an matr ices , which I shall further refer to 
as the 'Kontsevich integral ' , in order to keep in mind its mos t 
impor t an t appl icat ion ( though, this obvious quan t i ty has , of 
course, been considered by m a n y other people) . It m a y seem 
tha t the act ion in this integral is not of the most general type 
and one can no longer pe r fo rm an arbitrary change of 
variables X -> f(X), wi thout changing the functional form 
of the integral. In fact this is incorrect , because the 'external 
field' L is mat r ix valued and is coupled linearly to X, and 
therefore any correlator o fX fields can be represented th rough 
L derivatives. Consider again the shift + snXn+ l , 
n ^ — 1. Invar iance of the integral implies 

j dX exp [ - t r V(X) + tr LX ] tr sn ^ - X n + l V'(X)+ LX n + l 

+ ^TxktrXn-k} = 0 , 
k=o / 

which can be wri t ten a s | 

tr sn dLtYJ V \dLtY

 + L 8 L t r 

n+l 

= tr Sn 6L t r 

8L, r 

n+l 

V 

tr 

8L t r 

8 

'8Ltr 

n—k-

Fv{L} 

Fv{L} = 0. (2.36) 

This system is in fact equivalent to a single matr ix-valued 
equat ion: 

V 
8 L t r 

TW{L } = 0 . (2.37) 

As far as I know, this equat ion was first wri t ten down by 
Gross and N e w m a n [54]; therefore, it will be referred to as the 
G r o s s - N e w m a n ( G N ) equat ion . It was rediscovered and its 
i m p l i c a t i o n s for t h e t h e o r y of m a t r i x m o d e l s w e r e 
investigated in [24, 30, 38]. 

There are essentially two types of corollary, which will be 
discussed in the next two subsections. Firs t , the G N equat ion 
can be used to characterise the function Ty{L } itself. This 
will lead to the considerat ion of Kontsevich models . Second, 
it can be used to derive equa t ions for the 2-matr ix model , 
which arises after Ty {L } is further integrated with some 
weight over L . 

2.5 Ward identities for the generalised Kontsevich model 
Being jus t the complete set of E q M s , the G N equat ion (2.37) 
provides complete informat ion abou t the function Ty\L } . 
H o w e v e r , th i s s t a t e m e n t needs to be f o r m u l a t e d m o r e 
carefully. A reason for this comes, for example, from the 
observat ion tha t the opera to r s 

trLn V 
8 L t r 

(2.38) 

do not form a closed algebra: their c o m m u t a t o r s have some 
different funct ional form. O n e of the r easons for these 
complicat ions is tha t Eqn (2.37) does not account explicitly 
for a very impor t an t p rope r ty of Ty {L }: tha t this function in 
fact depends only on the eigenvalues of L . This informat ion 
should be added s o m e h o w to the G N equa t ion . I shall 
analyse this issue of eigenvalue dependence in m o r e detail in 
the next sections. F o r m y current purposes this a rgument 
implies tha t one should t ry to express E q n (2.37) in te rms of 
eigenvalues. Here , however , one should be careful again. 
Clearly, Ty {L } depends no t only on eigenvalues, it depends 
a lso on the i r ' s y m m e t r i c ' ( W e y l - g r o u p i n v a r i a n t ) 
combina t ions , i.e. it depends m o r e on quant i t ies like tr La 

t han on par t icular eigenvalues. Moreover , powers a here 
should be negative and fractional. 

Indeed, integrals like tha t in E q n (2.35) are usually 
unde r s tood as the analyt ical cont inua t ion from some values 
of pa rame te r s in the potent ia l V, when the integral is 

f T h e o b v i o u s r e l a t i o n is u s e d h e r e : Xy$ e x p ( t r L X ) = e x p ( t r L X ) . 

N o t e t h a t t h e o r d e r o f t h e m a t r i x i n d i c e s yd is r e v e r s e d o n t h e r . h . s . a s 

c o m p a r e d t o t h a t o n t h e left h a n d s ide ( l .h . s ) , i .e. d e r i v a t i v e s a r e in fact 

t a k e n w i t h r e s p e c t t o t h e transposed m a t r i x L : f(X) e x p ( t r L X ) 

= /(8/8/ t r ) e x p ( t r L X ) [at l eas t for a n y f u n c t i o n f(x) w h i c h c a n b e 

r e p r e s e n t e d a s a f o r m a l ser ies in i n t e g e r p o w e r s o f X ]. 
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convergent . They can also be related to the formal 
(per turba t ion) series arising when the in tegrand is expanded 
a r o u n d a s ta t ionary poin t . To begin with, it is reasonable to 
t ake n= 1 i.e. to consider just an o rd inary integral. F o r the 
sake of simplicity, one m a y also t ake V(x) to be given by 
V(x) = —xp+ll(p + I). Then, the s ta t ionary poin t is at 
x = kL/P and 

| dx exp ^~ 
xP+l 

P + l 
+ lx 

exp 
p+l 

_l(p+V/p 
k ^ o 

Cki 
-k/p 

It is n o w easy to unde r s t and what should be done in the 
general s i tuat ion with matr ices and a rb i t ra ry potent ia ls . 
Firs t of all, one needs to solve the equat ion for the 
s ta t ionary point : V'(X) = L . F o r this pu rpose it is mos t 
convenient to in t roduce a new mat r ix var iable A instead of L , 
which by definition satisfies V'(A) = L. Then, the 
s ta t ionary poin t is just X = A. Second, one should separate 
the ana logue of the complicated prefactor (quasiclassical 
cont r ibu t ion) Cy {A }, where 

Cv {A } = (2tc) N
2/2QxV{tr[AV'(A)-V(A)]} 

y/d&V"(A) 
(2.40) 

T h e n , t h e func t ion t h a t desc r ibes t h e p u r e ' q u a n t u m ' 
c o n t r i b u t i o n , ! 

ZV{T} = CV{A}-XTV{V\A)} , (2.41) 

to be referred to as the par t i t ion function of the generalised 
Kontsev ich m o d e l ( G K M ) [30], can be represented as a 
formal (per turba t ion) series expansion in the variable, where 

Tk=\trA-k . (2.42) 
k 

The G N equat ions (2.37) can be n o w rewri t ten as a set of 
differential E q n s for ZV{T }. Indeed, we already have 

^ ) — L CyZv{T} = 0, (2.43) V 

bu t it is still necessary to express the opera tor on the l.h.s. in 
t e rms of T. This is in fact possible by means of the relat ion 

8Z 
zv{T} = J2 6L t r 9L t r dTk 

(2.44) 

and subst i tut ing the traces of the A matr ices , which can arise 
in the process of calculat ion, by Ts. It is impor t an t only tha t 
the As usual ly appear in negative powers : this is achieved by 

f T h e ' c l a s s i ca l a c t i o n ' in E q n (2 .40) c a n a l s o b e r e p r e s e n t e d a s 
tr[AV'(A) - V(A)]= tr$AdV'(A). T h e d e t e r m i n a n t o f t h e q u a d r a t i c 
f l u c t u a t i o n s is d e f i n e d a s 

( 2 7 i ) w 3 / 2 [ d e t V"{A)]~l/2 - J d F e x p [ - t r V2(A, Y )] : 

w h e r e V2(A, Y) = \ime^0[V(A +sY)-V(A)-sV'(A)Y]/s2. F o r V(A) = 
AP + 1/(P + \) w e h a v e V"(A) = EEo^ ® Ap-k~l. O n e c o u l d eas i ly 
c h o o s e a n ' o p p o s i t e ' p a r a m e t r i s a t i o n in E q n (2.42): Tk = —(\/k)trA~k. 
T h o u g h n o t q u i t e o b v i o u s , t h i s n e v e r i n f l u e n c e s a n y r e s u l t s (see S e c t i o n 
2 .10 for a n e x a m p l e ) . T h e c h o i c e o f s igns is m o t i v a t e d b y a s i m p l i f i c a t i o n 
o f f o r m u l a s for t h e G K M i n c l u d i n g t h e r e l a t i o n s b e t w e e n L a n d A. 
I n s t e a d , s o m e sign f ac to r s a p p e a r in t h e f o r m u l a s , a n d a r e r e l a t e d t o T o d a -
l ike r e p r e s e n t a t i o n s o f p a r t i t i o n f u n c t i o n s a n d t h o s e i n v o l v i n g W - o p e r a t o r s . 

the choice of a p roper normal i sa t ion factor Cy{A}. F o r the 
m o n o m i a l po ten t ia l 

XP+I 

this is especially simple: 

L = Ap and - — = 
8 L t r 

_A-P-k _ 

This reasoning allows one to rewrite Eqn (2.43) 
identically in the form 

(2.39) ^A-lOi(T)Zv{T} = 09 (2.45) 

where the Oi are differential ope ra to r s tha t are dependent on 
the shape of V, bu t are independent of the size, n, of the 
mat r ix (because n o n e of the above reasoning referred to 
par t icular values of n, except for an example at the very 
beginning) . It r emains to use the fact tha t mat r ix L can be 
a rb i t ra r i ly large and have a rb i t ra r i ly m a n y independen t 
entries, in order to deduce a set of const ra in ts on Zy in the 
form 

Ol(T)Zv{T} = 0 . (2.46) 

F o r a po ten t ia l V of degree p+l these appear to be 
exactly the ' con t inuous Virasoro cons t ra in ts ' . See [24, 30] for 
a detailed analysis of the Virasoro case p = 2 (associated 
with pu re topological gravity and with the double-scal ing 
limit of the 1-matrix model) , and [55] for an exhaust ive 
presenta t ion of the case of p = 3. 

2.6 Discrete Virasoro constraints for the gaussian 
Kontsevich model 
As a simple i l lustration of the technique described in the 
previous subsection, I n o w derive the const ra ints for the 
g a u s s i a n K o n t s e v i c h m o d e l [56] w i t h p o t e n t i a l V(X) 
= I X 2 : 

Z,X2{N,T} 
e x p ( - t r \L2) 

( d e t L f 

x j d X ( d e t X ) N e x p ( - t r \X 2 + LX ) . (2.47) 

In this case, L = V\A) = A, and the t ime-variables are jus t 
1 1 

Tk =-txA~K = -trL (2.48) 

To m a k e the mode l nontr iv ia l an extra 'zero- t ime ' var iable 
[36], N, is in t roduced, which was no t included in the previous 
definition (2.41). N o w no te tha t the N dependence of the 
Kontsevich integral (2.35) can be described simply as an extra 
t e r m in t h e p o t e n t i a l : V(X)^V(X)= V(X)-NlnX 
( though, this can be done neither in the quasiclassical factor 
Cy nor in the definition of the t ime variables T). Since the G N 
equat ion depends only on the Kontsevich equat ion , one can 
use it with V subst i tuted by V. Then one has the following 
instead of Eqn (2.43): 

e x p ( - t r \L2) ( 6 

( d e t L ) " V 8 Ltr 

n+l 6 

IT 2 

-N 
8 L t r 

( d e t L ) " 

x exp(tr \L2)Z[_x2{N,T} = 0 . (2.49) 
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In order to get rid of the integral opera to r ( 8 / 8 L ) - 1 one 
should t ake here n ^ 0 ra ther t han n ^ — 1 . In fact all the 
equa t ions with n > 0 follow from the one with n = 0, and I 
restrict considerat ion to the last one. F o r n = 0 one obta ins 
from E q n (2.49): 

L I 8 N L 
\dLtr L 

Z = 0 

' 6 \ 2 ( 2N\ 6 N2 N \ 
duj + { L + i r ) d L ; r

+ L 2 ~ ~ L t r L 
z = o, 

(2.50) 

and it r emains to subst i tute 

QZ 

6 L t r 

and 

V — — 

= £ 
1 

L m + 2 
& > max(m,0) 

1 \ dZ 
Lk-m I QT 

+£ d2z 
dTkdT 

and finally obta in 

1 
E 

m=— 1 
L m + 2 

1 

£<Ji m-k 

m-1 Q 2 

t = 1 5 . 1 l t r L 0 8 r ^ + S 8 r * 8 r » + * 

- 2Af + Af 2 <5 m , 0 - Af ( t r £ ) 5 m ,_ i 
m+2 

= £ 7 ^ + 2 exp(WT0)Lm(7' + r) e x p ( - W r 0 ) 2 = 0 
m=— 1 

(2.51) 

He re , L m ( f ) are jus t the genera to r s (2.7) of the discrete 
Virasoro algebra (2.6): 

e x p ( M 0 ) L m ( f ) e x p ( - M o ) 

/ oo Q m 

= e x p ( M 0 ) ^2kth- + 
k+m k=0 

e x p ( - M o ) , 

(2.52) 

and, on the r .h.s . of E q n (2.51), 
Thus , it was found tha t the W i s of the gaussian 

Kontsevich mode l (2.47) coincide with those of the o rd inary 

f T h i s s m a l l c o r r e c t i o n is a m a n i f e s t a t i o n o f a v e r y g e n e r a l p h e n o m e n o n : 
in t e r m s o f s y m m e t r i e s ( W i s ) it is m o r e n a t u r a l t o c o n s i d e r Zv n o t a s a 
f u n c t i o n o f T - v a r i a b l e s , b u t o f s o m e m o r e c o m p l i c a t e d c o m b i n a t i o n , 
tk +rk, d e p e n d i n g o n t h e s h a p e o f p o t e n t i a l V. I f V is a p o l y n o m i a l 
o f d e g r e e p + l, t h e n fk — t r [V'(X)]~k'p/k, w h i l e rk is g iven b y 

'» = i ^ E ) ^ r ( M ) r / ' ^ . 

F o r m o n o m i a l p o t e n t i a l s t h e s e e x p r e s s i o n s b e c o m e v e r y s i m p l e : Tk = Tk 

a n d rk = —[p/(p + l )]Sk,P + i- See [39] a n d S e c t i o n 4 .9 b e l o w for m o r e 
d e t a i l s . I n m o s t p l a c e s in t h e s e n o t e s I p r e f e r t o u s e i n v a r i a n t p o t e n t i a l -
i n d e p e n d e n t t i m e s Tk i n s t e a d o f Tk, b u t t h e n t h e W i s a c q u i r e s o m e e x t r a 
t e r m s w i t h rk (in fac t , t h e s e t e r m s wi l l b e v e r y s i m p l e in m y e x a m p l e s , 
w h i c h a r e a l l g iven for m o n o m i a l p o t e n t i a l s ) . 

1-matrix model ; moreover , the size of the mat r ix N in the 
latter mode l is associated with the 'zero t ime ' in the former 
one. This result [56], of course, implies tha t the two models 
are identical: 

e x p ( - A f r 0 ) % 2 { A f , r 1 , r 2 , . . . } - ZN{T09T19T2, • • •} • (2.53) 

I shall discuss the direct connect ion between the two mat r ix 
integrals (2.1) and (2.47) in the next section, after some m o r e 
de t a i l s h a v e b e e n p r e s e n t e d a b o u t t h e s t r u c t u r e of 
'e igenvalue ' mat r ix models . 

2.7 Continuous Virasoro constraints for the V = 
Kontsevich model 
This example is a little m o r e complicated than tha t in the 
previous subsection, and I do not present the calculat ions in 
full detail (see [24, 30]). M y goal is to demons t r a t e tha t the 
const ra in ts which arise in this model , t hough they still form (a 
Borel subalgebra of) some Virasoro algebra, are different 
from Eqn (2.6). F r o m the poin t of view of the C F T - f o r m u l a -
t ion the relevant mode l is tha t of the twisted (in this par t icular 
case, ant iperiodic) free field. These so called ' con t inuous 
Virasoro cons t ra in t s ' give the simplest i l lustrat ion of the 
difference between discrete and con t inuous mat r ix models : 
th is is essentially the difference be tween ' h o m o g e n e o u s ' 
( F r e n k e l - K a c ) and ' p r inc ipa l ' (sol i ton ver tex o p e r a t o r ) 
representa t ion of the level k = 1 K a c - M o o d y algebra. In 
te rms of integrable hierarchies, this is the difference between 
To da-chain-l ike and KP- l ike hierarchies. I shall come back 
to a m o r e detailed discussion of this difference later, when the 
'multiscaling con t inuum limit ' will be considered. 

Ano the r (historical) aspect of the same relat ion also 
deserves ment ioning, since it also il lustrates the interrelat ion 
between different models . The discrete 1-matrix mode l arises 
na tura l ly in the description of q u a n t u m 2d gravity as the sum 
over 2-geometries in the formalism of r a n d o m equilateral 
t r iangula t ions . The model , however , describes only lattice 
approx ima t ion to 2d gravity and the (double-scaling) 
con t inuum limit should be t aken in order to obta in the real 
(cont inuous) theory of 2d gravity. This limit was originally 
formulated in te rms of the const ra int algebra ( E q M s , or 
' l oop ' or 'Schwinger - D y s o n ' equa t ions — the te rminology is 
dependent on taste), leaving open the p rob lem of wha t the 
form of the par t i t ion function, Zcont{T }, of the con t inuous 
theory, is. Since the relevant algebra appeared to be just the 
W i s for the Kontsevich mode l [with V(X)= ^ X 3 ] , this 
proves tha t the latter one is exactly the con t inuous theory of 
pu re 2d gravity. At the same t ime, the Kontsevich mode l itself 
can be na tura l ly in t roduced as a theory of topological gravity 
(in fact this is h o w the mode l was originally discovered in 
[22]). F r o m this poin t of view the const ra int algebra, to be 
discussed below, plays a central role in the p r o o f of the 
equivalence between pu re 2d q u a n t u m gravity and p u r e 
topological gravity (in b o t h cases ' pu re ' means tha t 'ma t t e r ' 
fields are no t in t roduced) . 

After these in t roduc to ry remarks , I n o w proceed to the 
calculat ions. Actual ly they jus t repeat those for the gaussian 
model , performed in the previous subsection, bu t the 
formulas get somewhat m o r e complicated. This t ime I do 
no t include zero-t ime N and just use E q n (2.37) with 
V(X)= ^X3. N o w it is also much m o r e t r icky ( though 
possible) to work in ma t r ix no ta t ion (because fractional 
powers of L will be involved) and I rewrite everything in 
te rms of the eigenvalues of L . 
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The following subst i tu t ions are made : 

C i n > x P ( j A f ) 

in t roducing the no ta t ion 

V 
— = r~1 —r 

4Xy 2i?y^i\fh + V^) 
Then , Eqn (2.37) becomes 

% 3 { r } = o. 
(2.54) 

N o w an explicit expression for T is needed: 

1 
T k = - L - (2.55) 

and, as is a l ready k n o w n from the previous subsections, 

2 

"3 
(2.56) 

is also needed. A l though the fact will no t be explained unt i l I 
tu rn to consider the integrable s t ructure of the Kontsevich 
mode l in the following sections, ZiX3 {T} is independent of 
all t ime-variables with eve?z-numbered subscripts . Therefore, 
one can take only k = 2a + 1 in E q n (2.55): 

1 
2a+l 

2 o + L V ' 3 

0 

ria+\ (2.57) 

and 

8X, ) 

E°° 6 r 2 a + i dZ _ _ 1̂  ̂  -a-\ sz 

a = 0 8A7 8 r 2 a + 1 2 ^ ' 7 8r: ' a = 0 2a+ l 

8 ^ 

1 ^ 82Z 
a ,6=0 

+ ? £ K 
' a=0 8r2 a. 

W h e n these expressions are subst i tuted into E q n (2.54), one 
obta ins 

1 £^ 
' a,b=0 

a-b-3 $Z 
y QT2a+\QT2b+i 

+£ 
a = 0 ' a = 0 

1 

s r 2 a + 1 

+ [ » • ] * = E ^ 2 ^ ' < 2 - 5 8 ) 
n=-\ Ay 

with 

£>2n = ^ (a + ^ ( ^ 2 a + l + ^ 2 a + l ) + 
8r 2a+2«+l 

+ E 
1 

4 a + f e t l ^ 2 a + l 8 r 2 f c + 1 16 
a , 6 ^ 0 

2 n - l 

1 X ) * ( r * + ' * ) a ^ r + i £ 
"odd*=l 

8 ^ + 2 » 4 o d f e l 8 r t 8 r 2 » - t 

(2.59) 

The factor of \ in front of the first te rm at the r .h.s . of E q n 
(2.59) is impor t an t for L2n to satisfy the proper ly normal ised 
Virasoro a l g e b r a : | 

[£>2n,£>2m] = (n ~ m)C2n+2m • 

The coefficient \ in front of the second te rm in E q n (2.59) can 
be eliminated by rescaling the t ime variables: T -> \T. Then, 
the last te rm tu rns into ^ T\bn _1. 

I shall no t actually discuss evaluat ion of the coefficient in 
front of Z (with no derivatives), which is denoted by [...] in 
E q n (2.58) (see [24, 30]). In fact, a lmost all the te rms in the 
original complicated expression cancel, giving finally 

1 
- + -

L ' " J 16A2 Uy 9 

and this is represented by the te rms with dn>o and dn>-i in 
expressions (2.59) for the Virasoro genera tors L2n. 

The term with the double T-derivative in E q n (2.58) is 
a l ready of the necessary form. Of in termedia te complexity is 
the evaluat ion of the coefficient in front of dZ/dT2a+i in 
E q n (2.58), which I shall briefly describe now. Firs t of all, 
rewrite this coefficient, reorder ing the items, as follows: 

+ 
7 -a-2 

2

 S^y + V ^ 7 . 
(2.60) 

The first two te rms together are equal to the sum over all j 
( including j = /): 

1 V A y 

2 V 

1 

''2A"+2 £ 
1 a+2 1 2 7 a+2 AY -AYA§ 

Ay A§ 

f T h e r e f o r e , it c o u l d b e r e a s o n a b l e t o u s e a d i f fe ren t n o t a t i o n : Cn i n s t e a d 
o f Cin-1 p r e f e r £ 2 « , b e c a u s e it e m p h a s i s e s t h e p r o p e r t y o f t h e m o d e l t o b e a 
2 - r e d u c t i o n o f t h e K P h i e r a r c h y ( to K d V ) ; see S e c t i o n 4 b e l o w . 
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Similarly, the next two te rms can be rewrit ten as 

1 y/% ~ 

I 2 ^ 2 a+i 1 A+2 

£ 
2 1 a + 2 E 

• 1,5 

• h 

The sum of these two expressions is equal to 

21 

I ; a+2 _ ; a+2 , 
1 V ^ A y A<5 1 

y <5 A 7 A<5 1 . 2 

N o t e tha t the powers a + 2 are a l ready integers and the 
remain ing rat io can be represented as a sum of a + 2 terms. 
A d d i n g also the last te rm of the coefficient (2.60), one finally 
ob ta ins 

1 1 ^ 1 1 

7 n=—1 7 S A ̂  

= \ £ Jn-Tl (2Cl ~ 2 n + lXT + r)2a-2n+l > 
n = - l Ay 

in accordance with E q n s (2.58) and (2.59). 

2.8 W-constraints for the asymmetric 2-matrix model 
I tu rn n o w to a very different appl icat ion [38] of the G N 
equat ion (2.37). Namely , I shall n o w consider Fv,n{L} as a 
bu i ld ing b lock in t he c o n s t r u c t i o n of t he c o n v e n t i o n a l 
discrete 2-matr ix model : 

zN{t,t} 

= 4 J D ^ exp Y^^tkTrHk+ tkTr H + T r HH 

= J D L exp l^tkTxLk^jT^N{L } . 

N o w L plays the role of / / , and U(H) = J2khHk-
The G N equat ion m a y also be used to derive a relat ion for 

ZN{t,t}. T a k e Eqn (2.37): 

( ^ + L ) ^ { L } = 0 , (2.62) 

mult iply by exp[Tr£/ (L)] [which is equal to exp ( ^ tkTrLk)] 
and integrate over L . In order to express this relat ion in te rms 
of ^-derivatives of z it is necessary to have scalar ra ther t han 
matrix equat ions ; therefore, it will be necessary to t ake the 
t r ace of E q n (2.62). However , in o rder no t to lose any 
informat ion, one mus t first mult iply E q n (2.62) by Ln and 
then t ake the t race. In this way one ob ta ins 

d L e x P ( l 2 t k T r T r L " (°aZ7 + L ) } = 0 ' 

In tegra t ion by pa r t s gives 

&LTIJ{L } Tr Lnexp^tkTrLk 

(2.63) 

N o w it is necessary to in t roduce a new class of opera to r s 
[38]. Consider the action of Tr [(dm/dL™)Ln] on 
exp [Tr U (L )]. It gives a linear combina t ion of t e rms like 

8Z 

t r L a i . . . t r L a / exp[tr U(L)\ =- — e x p [ - t r U(L)\ , 
otai... ctai 

i.e. one ob ta ins a combina t ion of differential ope ra to r s with 
^-derivatives, to be denoted W(t): 

W (»+') ( 0 exp [tr U(L)] = T r — L " exp [tr U(L)], m,n>0. 

(2.64) 

F o r example, 

n Ss 0 

^ 2 ) = £ ^ + £ 
k=0 k+n k=0 dtkdtn 

n ^ - 1 ; 

and 

kJ=\ 

+ E f a * E 
k=l a+b=n+l 

dtadtb+k-l 

( / i + l ) ( / i + 2) 8 
dtadthdt, 

• + - (2.65) 

N o t e tha t while and are jus t the o rd inary U ( l ) 
K a c - M o o d y and Virasoro opera to r s respectively, the higher 
W ^ - o p e r a t o r s do not coincide with the genera tors of the 
W-algebras : intact 

(2.61) ^ ( 3 ) ^ w ( 3 ) = ^ f a t / / / 

+l+n 

4 
• + 3 E r - r , r - r , 8 ^ a 8 ^ 3 dtadtbdtc 

k=l a+b=k+n " " a + & + c = « " " c 

The W-opera to r s (in contras t with o rd inary W-opera tors ) 
satisfy the recurrence relat ion 

(2.66) 

Actual ly, not much is yet k n o w n abou t the W-opera to r s and 
the s t ructure of W-algebras (in par t icular it remains unclear 
whether the negative ha rmonics W n

m+^ with n < —m can be 
i n t r o d u c e d in a n y r e a s o n a b l e w a y ) , see [38] for s o m e 
pre l iminary results. 
_ E q n (2.63) can n o w be presented in te rms of the 

W-opera to r s as follows: 

dLF0{L } 

E ( - i ) * - 1 ^ w 

6 
" 8 L ^ 

(k) 
n+l-k 

L n e x p [ T r U(t)] 

+ W n+l ZN{t,t} = 0 . 

(2.67) 
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This relat ion is highly asymmetr ic in t and t, and in fact it 
provides a suitable descript ion of the W I only in the some
wha t peculiar case when the poten t ia l U(H) is a po lynomia l 
of finite degree . See [57, 38] for a d i scuss ion of such 
asymmetr ic models . 

2.9 W-constraints for the generic 2-matrix model 
W h e n b o t h potent ia ls U and U in E q n (2.61) are generic 
fo rmal series, E q n s (2.67) represent only a 1-parameter 
subset of the 2-parameter family of W i s . Before I describe 
the whole set, let me emphasise tha t the 2-matr ix mode l (2.61) 
is the one (where the action is not of the most general form) 
consistent with some symmetry. Therefore, it is no t covar iant 
u n d e r the a rb i t r a ry change of var iab les / / , H-> f ( / / , H), 
f ( / / , H), and the usua l me thod of deriving the W i s does no t 
work . The reason why the generic 2-matr ix mode l with act ion 
c o n t a i n i n g al l t h e p o s s i b l e c o m b i n a t i o n s 
Tr ( / / aiHblHa2Hbl...) is neve r c o n s i d e r e d se r ious ly is 
essentially our p o o r unde r s t and ing of the 1-matrix integrals 
for 'noneigenvalue ' theories, to which class such a generic 
mode l belongs . F o r reasons to be explained in the next 
section, such p rob lems do no t arise for models of the form 
(2.61) or (2.33), and this is why they have a t t rac ted mos t 
a t tent ion . Hopeful ly the p rob lems with the un i ta ry-mat r ix 
i n t e g r a l s a r e t e m p o r a r y a n d t h i s r e s t r i c t e d c lass of 
m u l t i m a t r i x m o d e l s wil l be e n l a r g e d ; t h i s s h o u l d b e 
especially easy to do in the pa r t of the theory dealing with 
const ra int algebras, bu t this subject is beyond the scope of the 
present notes . 

In order to derive the complete set of W i s for the mode l 
(2.61), I apply the following semi-artificial trick. N o t e tha t 
the exponent ia l exp (Tr HH) satisfies 

TrHn 

dHl 
— T r / / ' 

8 H ? r 

e x p ( T r # # ) = 0 . (2.1 

If one integrates this identi ty over H and H with the weight 
exp [Tr U(H) + Tr U(H)] and then integrates by par t s , one 
obta ins an identity: 

dH dH exp(Tr iZ iZ) Tr 
8//tr 

Hn - Tr 
8//tr 

x exp [Tr U(H) + Tr U(H)] = 0 , (2.69) 

which can be represented in te rms of W ope ra to r s [30] : | 

W£:P(t)Z{t, 1} = (-l)m-"W%${t)Z{t, 1} , (2.70) 

for all m, n ^ 0 . 
This is the complete (?) set of W i s for the 2-matr ix model . 

W h e n one of the potent ia ls [say, U(t)] is a po lynomia l of finite 
degree, most of this symmetry is ' spontaneous ly b roken ' , the 
surviving pa r t being described by Eqn (2.67). 

f R e l a t i o n s (2 .68 ) , a n d t h u s E q n (2 .70 ) , a r e in t h e o b v i o u s s e n s e 
a s s o c i a t e d w i t h TrHnHm. O f c o u r s e , t h e r e a r e s i m i l a r r e l a t i o n s , in t h e 
s a m e s e n s e a s s o c i a t e d w i t h a n y o b j e c t l ike T r (H aiH blH a2H bl...) a n d w i t h 
p r o d u c t s o f s u c h t r a c e s : it is e n o u g h t o s u b s t i t u t e a l l H^d/dHtr t o o b t a i n 
t h e l .h . s . o f t h e e q u a t i o n , a n d t o s u b s t i t u t e a l l o f H^d/dHtr t o o b t a i n i t s 
r . h . s . ( o n e s h o u l d r e m e m b e r t h a t s u c h a s u b s t i t u t i o n is p o s s i b l e , s a y o n t h e 
l .h . s . , if a l l t h e H a r e p u t t o t h e r i g h t o f a l l H; in o r d e r t o r e s t o r e t h e m a t r i x -
p r o d u c t f o r m o f t h e r e l a t i o n , o n e s h o u l d ca r e fu l l y t a k e i n t o a c c o u n t a l l t h e 
c o m m u t a t o r s a r i s i n g w h e n d/dHtr is c a r r i e d b a c k t o t h e o r i g i n a l p o s i t i o n 
o f t h e c o r r e s p o n d i n g H). A l l s u c h r e l a t i o n s c a n a p p e a r t o b e j u s t 
i m p l i c a t i o n s o f E q n (2 .70) . 

A m o n g other things, E q n (2.70) reveals an amus ing a u t o 
morph i sm of the Woo-algebra : 

W (m+l) W (n+l) ^ Q 
¥V n-m ¥V m-n ' '""> 1 1 ^ u • (2.71) 

F o r example, Vi rasoro ' s Borel subalgebra is formed no t only 
1 [while the b_ythe opera to r s W n

2 \ bu t also by W - t 2 \ n ^ 
u ( l ) Borel ^ubalgebra is formed no t only by = d/dtn, 
but also by W{

n

n+l\n ^ 0]. 
One can a t t empt to apply the same p rocedure and derive 

W-identities for the convent ional (p- l ) -mat r ix models with 
p-l > 2. In principle, this is possible, bu t unfor tuna te ly the 
equa t ions arising neither have a nice form nor are there 
enough of them. However , for i l lustrat ional purposes I shall 
sketch some relevant formulas in the rest of this subsection. 

Consider the mul t imat r ix integral 

Z = J d # i . • . d ^ _ i exp [Tr Ul(Hl)+... + T r U^H^)]... 

x exp [Tr (HXH2 + H2H3 + ... + Hp_2Hp_x)\ . (2.72) 

A c t i n g o n Z_, t h e o p e r a t o r W%^\t^) p r o d u c e s t h e 
t e rm T r / / " ( 8 / 8 / / i 9 t r ) m at t he pos i t ion d e n o t e d b y . . . i n 
(2.72). In tegra t ion by pa r t s gives 

T r i Z ? 
8 # l , t r 

( - l ) m T r / / " / / 2 = ( - I f TrH^H'l 

In t he case of p— 1 = 2, discussed above , th is can be 
rewri t ten as 

{-\)m TrH™ 
dH 2,tr 

and integrat ion by pa r t s gives 

{-\)m TxH\ 
6 # 2 , t r 

which is equivalent to the act ion of {-\)m+nW t-n{t ^) on 
Z : we have thus reproduced Eqn (2.70). 

However , for p- \ >2 th ings are more complicated. 
Inser t ion of TxH1

nH \ is equivalent to tha t of 

T r / / o 
6 # 2 , t r 

-Hz 

w h i c h af ter i n t e g r a t i o n b y p a r t s a n d o p e r a t i o n on 
Qxp[U2(H2)] gives: 

TrHi 

6 # 2 , t r 
H (2.73) 

Derivat ives remain ing at the r .h.s . should be carried t h rough 
the first b racke t and then act on exp [U2(H2)] etc. T h e 
end r e su l t is s o m e l inear c o m b i n a t i o n of t e r m s l ike 
Tr H b

2

lH c

3

lH b

2

2H c

3

2 . . . with t ^ - d e p e n d e n t coefficients. 
N o w , if we are dealing with the p-l = 3 mat r ix model , 

every H2 s tanding to the right of / / 3 S can be subst i tuted by 
8/8//3,tr; otherwise one should also include te rms with 
c o m m u t a t o r s when this 8/8//3,tr is carried back to the place 



18 A M o r o z o v 

where H2 was s tanding. This leads to a combina t ion of 
insert ions of the form 

Tr 
9H 3 , tr 

TjCx 
N 3 9H 3 , tr 

bi 

Hc

3

2... . (2.74) 

The result ing opera tor can be expressed in te rms of W(t ^) 
resu l t ing in an iden t i ty t h a t s ta tes t h a t some a lgebra ic 
c o m b i n a t i o n of W(t^) and W(t^) wi th ^ - d e p e n d e n t 
coefficients annihi lates the par t i t ion function. 

F o r p - \ > 3 insertion of Hi is equivalent to that of 
d/dH3tr—H4 ra ther than 8 / 8 / / 3 ? T R , and the procedure should 
be repeated again and again. Finally one arrives at constraints 
where the opera tors are algebraic combinat ions of 
W(t^) and W (t^p~1^) with coefficients which depend on 

(moreover these are infinite series in the W-(P-2) 

operators , unless all the intermediate potentials U2, • • •, Up-i 
are polynomials offinite degree). 

This is, of course, not a very i l luminat ing p rocedure and 
in fact it has never been possible to obta in with its use 
concrete identities in any nice form. Ins tead it can serve to 
i l lustrate the p rob lems peculiar for the class of convent ional 
mul t imat r ix models (at least for p-\>T). It can also 
emphasise the beau ty of conformal mul t imat r ix models , 
which have clear advantages at the level of the W i s . 

2.10 W -operators in the Kontsevich model 
One can rewri te the G N equa t ion (2.43) for Kontsev ich 
models in te rms of Ws. Namely , I shall p rove the following 
identi ty [38]: 

m+l 

Z{Tk} = ( ± \ ) m + l ^ A - i - i u f M ) 
VV l-m 

1^0 

{T)Z{Tk}, 

(2.75) 

va l id for any f unc t i on Z w h i c h d e p e n d s on 
Tk = +(l/k)trA-k(k ^ 1) and T0 = ± t r l n y l , where A is 
an n x n mat r ix . Appl ica t ion of the identi ty (2.75) is mos t 
s t ra ightforward in the gaussian mode l (2.47), e.g. for the 
t rans format ion of Eqn (2.50) into E q n (2.51) (recall tha t 
L = A in this case). In other cases, calculat ions with the use 
of identi ty (2.75), account ing for the quasiclassical factor 
CV{L } a n d t h e difference b e t w e e n L = V'(A) a n d A, 
become somewhat m o r e involved, t hough they still seem 
fairly s t ra ightforward. Also, for par t icular potent ia ls V(X) 
the pa r t i t ion function ZV{T} is actual ly independen t of 
certain (combina t ions of) t ime var iables [for example, if 
V(X)= XP+ll(p + \) it is independent of all 7 > , keZ + \ 
and this is impor t an t for the appearance of the const ra in ts in 
s t andard form, like E q n s (2.58) and (2.59), i.e. for a certain 
reduction of the W-const ra in ts to the o rd inary W-const ra ints . 
This relat ion between W- and W-opera to r s deserves further 
investigation. 

The p r o o f of E q n (2.75) is provided by the following ploy. 
Let us m a k e a sort of Four ie r t rans format ion : 

Z{T } = j dH Q{H } exp I J TkTvH k J , (2.76) 

where the integral is over N x N Hermi t i an mat r ix //."f" Then 
it is clear tha t once identi ty (2.75) is established for Z{T} 
subst i tuted by exp [Tr U(H)], U{H) =T,?=oTkTrHk, with 
a n y m a t r i x / / , it is val id for any func t ion Z{T}. T h e 
advan tage of such a subst i tut ion is tha t use can be m a d e of 
the definition (2.64) of the W-opera to r s in order to rewrite 
E q n (2.75) in a very explicit form: 

m+l 

— ) exprrrtfOO] 

= ( ± l ) m + 1 }Z A~l~l W tn,1](T) exp [Tr U(H )] 
1^0 

= ( ± 1 ) m + \ £ / " z " l T r ( a f c ) R l e x p [ T r U { H ) ] 

= ( ± l ) m + 1 T r f - M exp [Tr U(H)} . 
v ; V9#try A®I — I ®H P L v J1 

(2.77) 

N o w the expression for Ts in te rms of A should be used. Then 

exp [Tr U(H)] = Det ±l(A <g> I - I 0 H) , 

and subst i tut ing this into Eqn (2.77) we see tha t E q n (2.75) is 
equivalent to 

8Ar 

m+l 
( ± l ) m + 1 I - Tr 

1 

dHtYJ A®I-I®H 

xDet ±l(A®I-I®H) = 0 

Here T r ' s tands for the t race in the / / - space only, while 
Det = De t ® det s tands for the de terminant in b o t h H and A 
spaces. One ^l-derivative gives explicitly: 

(I (8) Tr) 
8 _ 

8 A r 
) I - I l 

" 8 / / t r 

Det ±l(A®I-I®H) 
A&I-I&H 

0 . (2.78) 

This is actually a mat r ix identity, valid for any A and H of the 
sizes nxn and N x N respectively. F o r example, if m = 0 
(W ( 1 ) - case ) , it is obviously satisfied. If b o t h n= N = 1, it is 
also trivially t rue , t hough for different reasons for different 
choice of signs: for the upper signs, the rat io on the l.h.s. is 
just un i ty and all derivatives vanish; for the lower signs one 
has : 

81 dh 

E 
a+b=m—1 

a,b ^ 0 

dh QJL + ~dh 

f i t is h e r e t h a t w e e n c o u n t e r for t h e first t i m e a n i m p o r t a n t i d e a : t h a t 
m a t r i x m o d e l s — t h e o r d i n a r y 1 -ma t r ix m o d e l (2 .1) in t h i s c a s e — c a n b e 
c o n s i d e r e d a s d e f i n i n g i n t e g r a l t r a n s f o r m a t i o n s . T h i s v i e w o n m a t r i x 
m o d e l s c a n t o a l a r g e e x t e n t d e f i n e t h e i r r o l e in t h e f u t u r e d e v e l o p m e n t o f 
s t r i n g t h e o r y . 
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and this obviously vanishes since 

for any f(x). 

If m > 0 and A, H are indeed matrices, direct evaluat ion 
becomes much m o r e sophist icated. I present the first two 
nontr iv ia l examples: m = 1 and m = 2. The following 
relat ions will be useful. Let Q = II{A (G) I - 1 (G) H). Then 

Det ±lQ—Det = ± [ ( I 0 tr)Q] ; 
( M t r 

Q 

Oer = " 6 ^ - ^ '""'G = =F[(tr ® i ) G ] ; 

I G = - [ ( t r ® I ) G ] G ; 

i ® g ^ ) G = [ ( i ® T r ) e ] e . (2.79) 

This is enough for the p r o o f in the case of m = 1. Indeed, 

D e t ± l Q ( d c 0 1 T 1 0 MT) Q DET TL Q 

= { - [ ( t r ® I ) G ] G ± [ ( I ® T r ) e ] e } 

T { [ ( I ® T r ) g ] e T [(tr ® i)g]G} = o . 

The first two te rms on the r .h.s . arise from ^-der iva t ives , 
while the last two arise from / / -der ivat ives . 

In the case of m = 2 one should t ake derivatives once 
again. This is a little m o r e tr icky, and the same compact 
no ta t ion is not sufficient. In addi t ion to relat ions (2.79), one 
n o w needs: 

I [(tr ® I)G]G = -[( t r ® I)G]2G - B . (2.80) PA, 
Here , 

[(tr ® I)G] 2 = {(tr ® I)[(tr ® I)G]G} , (2.81) 

while, in order to write B explicitly, we need to restore mat r ix 
indices (Greek for ^4-space and La t in for / / - space ) . The 
(ow, y£)-component of E q n (2.80) looks like 

(2.82) 

and the appea rance of the second term on the r .h.s . implies 

ay t h a t B * = Q%QlidQ%. Fu r the r , 

l ) [ ( I ® T r ) G ] G 

= - { ( 1 ® Tr)[(tr ® I )Q]Q}Q - { ( I ® Tr)[(I ®Tr)Q]Q}Q ; 

) ^ ) [ ( t r ® I ) G ] G 

+ { ( t r ® I)[(I ® T r ) e ] g } e + {(I ® Tr)[(tr ® I)Q]G}G ; 

I ® ^ - J [ ( I ® T r ) G ] G 

= + { ( I ® Tr)[(I ®Tr)G]G}G + B (2.83) 

It is impor t an t tha t the B tha t appears in the last relat ion in 
tik . 
ay 

2: 

the form of B l k , = Qli$QspQJpy is exactly the same B as in 
E q n (2.80). 

N o w E q n (2.78) can be proved for m 

Det ±lQ 8_ 
) I - I I 

8//tr 

QDet TlQ 

= {±[(1 0 T r ) Q ] ( - [ ( t r 0 l)Q]Q ± [(I 0 Tv)Q]Q) 

- ( - [ ( t r ® I ) [ ( t r ® I ) Q ] Q ] Q - B ) 

± ( - [ ( 1 0 Tr)[(tr 0 l)Q]Q]Q - [(tr 0 1 ) [ ( I 0 Tx)Q]Q]Q)} 

- { T [ ( t r 0 I)Q]([(I 0 Tr)G]G T [(tr 0 / )Q]Q) 

+ ( [ ( I ® T r ) [ ( I ® T r ) Q ] Q ] Q + B) 

T([( t r 0 I)[(I 0 T r ) g ] g ] g + [(I 0 Tr)[(tr 0 I)G]G]G)} , 

(2.84) 

where te rms 1, 2, 3, 4, 5, 6 in the first pair of curly braces 
cancel the te rms 1, 3, 2, 4, 6, 5 in the second pair of curly 
b races and the ident i ty (2.81) and its c o u n t e r p a r t wi th 
(tr <S> I) -> (I <8> Tr) has been used. 

A n explicit p r o o f of E q n (2.78) for general m is u n k n o w n . 

3. Eigenvalue models 
3.1 What are eigenvalue models? 
Given the present state of knowledge, we need to consider in 
most cases only the n a r r o w class of the 'e igenvalue ' models . 
These models have the p rope r ty of being associated with 
conven t iona l in tegrable hierarchies [of (mu l t i componen t ) 
K a d o m t s e v - P e t v i a s h v i l i ( K P ) a n d T o d a t ype ] , w h e r e 
integrable flows just c o m m u t e (instead of forming less trivial 
closed algebras) , and thus with the level-1 K a c - M o o d y 
algebras (by artificial tr icks, familiar from the bosonisa t ion 
formalism in conformal field theory [58] these can sometimes 
be generalised to par t icular other levels like k = 2). This 
means tha t the models are essentially associated with abelian 
C a r t a n subalgebras ra ther t han with full mat r ix a l g e b r a s . | In 
the conformal-f ield-theory ( C F T ) formulat ion (see below) 
this means tha t the eigenvalue models can be represented in 
te rms of the free fields, which bosonise the C a r t a n subalgebra 
of the whole g roup in the W e s s - N o v i k o v - W i t t e n ( W Z N W ) 
m o d e l [ the r e m a i n i n g (/?, y)-fields [16] b e i n g ( a l m o s t ) 
neglected — their r e m n a n t s are observed in the form of 
'cocycle ' factors in the F r e n k e l - K a c formulas [47], see [58]. 
In the m a t r i x - i n t e g r a l representa t ions the integrals for the 
eigenvalue models are in fact reduced to those over d iagonal 
matr ices (consisting of eigenvalues of original matr ices , thus 
the n a m e 'eigenvalue models ' ) . 

M o s t impor tan t , from the physical po in t of view 
eigenvalue models describe only topological (discrete) 

f G r o u p s a r i s i n g in t h e t h e o r y o f m a t r i x m o d e l s a n d i n t e g r a b l e h i e r a r c h i e s 
a r e n o t j u s t t h o s e o f m a t r i c e s a p p e a r i n g in t h e i n t e g r a l r e p r e s e n t a t i o n s : t h e 
l a t t e r a r e a t b e s t r e l a t e d t o t h e z e r o - m o d e s o f t h e f o r m e r . M o r e o v e r , even 
t h i s r e l a t i o n is n o t u s u a l l y s i m p l e t o r e v e a l . T h i s r e m a r k is i m p o r t a n t t o 
a v o i d c o n f u s i o n in t h e f o l l o w i n g p a r a g r a p h s . 
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degrees of freedom, bu t no t any p ropaga t i ng particles.^ This 
can be unde r s tood if one notes tha t ma t r ix models usually 
possess gauge symmetry, associated with the uni tary rotat ion 
of matrices, Ma —> Ul,MaMa; i.e. mat r ix models are usually 
gauge theories. In the case of eigenvalue models this 
symmetry is realised wi thout 'gauge fields' Vap, which would 
depend on pairs of indices a, ft and t ransform like 
Vap—> H lyapUp. In other words , eigenvalue models are 
gauge theories wi thout gauge fields, i.e. are purely 
topological . Thus , it is not a surprise tha t they usually live in 
the spacetime of dimension d < 2,J since for d > 2 there 
should be particles, associated with the gauge fields. At the 
' b o u n d a r y ' lies the mode l of the 'd = 2 (c = 1) s tr ing ' , which 
has one particle-like degree of freedom (dilaton, which 
becomes tachyon in d > 2 models) . This very interesting 
mode l is much worse unders tood than the d < 2 models , at 
least its proper t ies are somewhat different from other 
eigenvalue models (especially in the most interesting 
'compactif ied ' case), and will not be discussed in these notes . 
Later I shall re turn to the subject of noneigenvalue id > 2) 
theories, t hough not very much is yet k n o w n abou t them; n o w 
I am going to concentra te on the eigenvalue models . 

3.2 1-matrix model 
Hermi t i an mat r ix integrals are usual ly t ransformed to the 
eigenvalue form by separa t ion of angular and eigenvalue 
variables. As usual , the simplest is the case of the 1-matrix 
mode l 

d t f e x p f ^tkTrHk J , 
k=0 

(3.1) 

where this separa t ion does no t involve any in fo rmat ion 
abou t un i ta ry-mat r ix integrals. Take 

H = U^DU , (3.2) 

where U is a u n i t a r y m a t r i x whose d i agona l ma t r ix , D 
[ = d i a g ( h i . . .hN)\ has eigenvalues of H as its entries. Then 
the integrat ion measure 

+t\ [d t /ca r tan j f_\ 
(3.3) 

where the 'Van der M o n d e de te rminan t ' A(h) = de t (y) h^1 

= n ! > j ( ^ ~~ hj)> a n d [dU] is the H a a r measure of integrat ion 
over un i ta ry matr ices . 

f P a r t i c l e s a r e a l w a y s r e l a t e d t o t h e ' a n g u l a r ( u n i t a r y - ) m a t r i x ' i n t e g r a l s 
(as is we l l k n o w n f r o m t h e e x a m p l e o f W i l s o n - l a t t i c e q u a n t u m 
c h r o m o d y n a m i c s ) w h i c h a r e far less t r i v i a l t o d e a l w i t h , t h o u g h t h e s e 
a r e a l s o i n t e g r a b l e in s o m e b r o a d e r s e n s e o f t h e w o r d — w i t h i n t h e (as ye t 
n o n e x i s t e n t ) g e n e r a l i s a t i o n o f i n t e g r a b l e h i e r a r c h i e s f r o m t h e fields in t h e 
C a r t a n s u b a l g e b r a t o t h e e n t i r e W Z N W m o d e l . 

J R e c a l l t h a t in t h e P o l y a k o v f o r m u l a t i o n , w h i c h is t h e l eas t 
c o u n t e r i n t u i t i v e f o r m u l a t i o n for i n t e r p r e t i n g w h a t h a p p e n s in t h e 
s p a c e t i m e ( t a r g e t s p a c e ) , s t r i n g m o d e l s u s u a l l y i n v o l v e t h e L i o u v i l l e 
field, i d e n t i f i e d a s a t i m e - v a r i a b l e in t h e t a r g e t - s p a c e f o r m a l i s m . ( N o t e 
t h a t for t h i s r e a s o n t h e r e is u s u a l l y (a t l eas t o n e ) time in t h e s t r i n g t h e o r y , 
w h i l e s p a c e c a n b e o f a n y d i m e n s i o n (a t l eas t b e t w e e n 0 a n d 2 5 ) , n o t 
n e c e s s a r i l y i n t e g e r . ) B e c a u s e o f t h i s e x t r a L i o u v i l l e field, t h e s p a c e t i m e 
d i m e n s i o n , d, u s u a l l y d i f fers b y 1 f r o m t h e c e n t r a l c h a r g e o f t h e C F T 
m o d e l , w h i c h is c o u p l e d t o t w o - d i m e n s i o n a l g r a v i t y t o f o r m a s t r i n g 
m o d e l : d = c + 1 a n d d < 2 is t h e s a m e a s c < 1. 

The way to derive E q n (3.3) is to consider the n o r m of the 
infinitesimal var ia t ion 

\\&H | | 2 = JT \6HtJ\2 = JT 6HtJ SHjl = TT(SH f 

= T r ( - U f W U ^DU + U f£> W + Uf bD U f 

= Tr(5Z)) 2 + 2 i Tr 8M [8D, D] + 2 Tr [-huD huD 

+ ( 5 M ) 2 Z ) 2 ] , 

where hu = ( l / i )8 t f Uf = 8 ^ and 5Z) = d i ag (5 / z i , . . . , &hN). 
The second te rm on the r .h.s . vanishes because b o t h D and 8Z) 
are d iagonal and commute . Therefore, 

W&h ||2 = f > / * ; ) 2 + f > M ) , ( s M y / , - hjf . 

i=l ij=l 

N o w it remains to recall the basic relat ion between the infin
itesimal n o r m and the measure : if 1 1 8 / 1 1 2 = Gab 8 / ^ 5 / ^ then 
[ d / ] = ^/dQt^bGabYladla, and we ob t a in E q n (3.3) wi th 
H a a r measure [ d £ / ] = I l ^ d ^ y being associated with the 
infinitesimal n o r m 

N N 
||8w||2 = Tr(8w) 2 = ^2 huijhuji = ^ | 8 ^ - | 2 , 

hJ=i hJ=i 

and [d£/cartan] = Ylf=i dw#. 
C o m i n g back to the 1-matrix model , it remains to no te 

tha t the ' ac t ion ' Tr U(H) = J2T=o h Tr HK with H 
subst i tuted in the form (3.2) is independent of U: 

TrU(H)=J2U^ • 
i=l 

T h u s 

Z n ^ = j t n f l U^vWiht)] f[(ht - hjf 
n ' i=lJ i>j 

I N
 f i 

''N~\ 

provided CN is chosen such tha t 

c ^ 1 =N\ 
Volu(Af) 

( V o l u ( 1 ) ) A 

(3.4) 

(3.5) 

where the vo lume of the un i ta ry group in the H a a r measure is 
given by 

V o \ v { N ) = — (3.6) 

A simple way to derive Eqn (3.6) will be described at the end 
of this section, as an example of the appl ica t ion of the 
o r thogona l -po lynomia l s technique. 

3.3 I t z y k s o n - Z u b e r and Kontsevich integrals 
Let us proceed n o w to the Kontsevich integral, 

Fv,n{L} = f d X e x P [ - t r V(X ) + tr LX ] . (3.7) 
Jnxn 

W e shall see short ly tha t it in fact depends only on the 
eigenvalues of the mat r ix L (this fact has a l ready been used 
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in the previous section); however , this t ime somewhat m o r e 
sophist icated un i ta ry-mat r ix integrals will be involved. 

Subst i tute X = UXDXUX, and L = u[dlUl in 
E q n (3.7), and let U = UXU[. Then , 

F V,n{L} 

= f[\dxiexV[-V(xi)]A2(x) \ 
;_i J Jnxn 

[dU] 

[df/cartan] 

2 
x e x p ^2x7ls\Uy8\2 I • (3.8) 

\y,d=l 

In order to proceed further we need to evaluate the integral 
over un i ta ry matr ices which appear on the r .h.s . 

This integral can actually be presented in two different 
ways: 

In{X,L}= [ 
Jn 

[dU] 

xn [dUc artan 

[dU 

•QXP(trXULU ) (3.9) 

= [ \}nU] l e x p ( E V ^ I ^ I 2 ) > ( 3 - 1 0 ) 
y,S=l 

(the Us in the two integrals are related by the t rans format ion 
U -> UXUU\ and the H a a r measure is b o t h left and right 
invar iant) . F o r m u l a (3.9) implies tha t In{X,L} satisfies a set 
of simple equa t ions [59]: 

and by using the fact tha t 

detysfy(ls) 
A{1) 

{/<5=0} 
n 
k=0 

k\ 
d e t 7 ^ - y 7 ( 0 ) 

E q n (3.12) is usual ly referred to as the I t z y k s o n - Z u b e r 
fo rmu la [60]. In m a t h e m a t i c a l l i t e r a tu r e it w a s earl ier 
derived by H a r i s h - C h a n d r a [61], and in fact the integral 
(3.9) is a basic example of coadjoint orbit integrals [ 6 2 - 6 5 ] , 
w h i c h can b e e v a l u a t e d exac t ly w i t h t h e he lp of t h e 
D u i s t e r m a a t - H e c k m a n n t h e o r e m [43, 44, 64, 65]. T h i s 
calculat ion is the simplest example of the very impor t an t 
technique of EXACT evaluat ion of NONGAUSSIAN un i ta ry-mat r ix 
integrals, which is n o w at an early stage (see [66 - 68]) and will 
be discussed at the end of these notes . 

N o w we tu rn back to the eigenvalue formulat ion of the 
generalised Kontesevich mode l ( G K M ) . Subst i tut ion of 
E q n (3.12) into E q n (3.8) gives: 

• F v , » { £ } = 
(2TT) 

\n{n-\) 

A{1) 

x Y[ DX§QXP[-V(xs)]A(X) — DQTYSQXP(Xyls) 
5=1 J n ' 

' ; -J] \dxSQxp[-V(xs)+xsls]A(x) , (3.13) 
A{1) 

t r | - — ) - t r L * 

tr( — ) - t r X A 

In{X,L} = 0 , k ^ 0 ; 

In{X,L} = 0 , k ^ 0 ; (3.11) 

which b y themselves are no t very res t r ic t ive . H o w e v e r , 
ano ther formula, E q n (3.10), implies tha t In{X,L} in fact 
depends only on the eigenvalues of X and L , and, for such 
In{X,L} = I{xy, Is}, E q n s (3.11) become very res t r ic t ive! 
and al low one to determine I{xy, Is} unambiguous ly (at least 
if I{xy, Is} is expandable in a formal power series in XY and Is). 
The final solut ion is 

In{X,L} = 
(271) \n(n-\) det7<5 QXP(Xyls) 

A(X)A(l) 
(3.12) 

One can define the normal i sa t ion cons tant by t ak ing L = 0, 
whence 

In{X,L = 0 } 
V o l u ( n ) _ ( 2 T C ) : \n{n-\) 

( V o l u ( 1 ) ) " 

k=i 

f W h e n a c t i n g o n / , w h i c h d e p e n d s o n l y o n e i g e n v a l u e s , m a t r i x d e r i v a t i v e s 
b e c o m e 

t r - — / = > —I , 

t r 62 f_y, 62 f 1 / 8 8_V 

where I used the an t i symmetry of A(X) under pe rmu ta t i ons of 
x 7 s in order to change (1/n!) det7<5 exp(xyl$) for QXP(J2sx^) 
under the sign of the XS in tegrat ion. 

One can n o w use the fact tha t A(X) 
to rewrite the r .h.s . of E q n (3.13): 

det7<5 X I 1 in order 

where 

A(l) 

dxxf-1 exp[-V(x)+lx] , y ^ l 

(3.14) 

(3.15) 

These functions cp(l) satisfy a simple recurrence relat ion: 

with 

6/ \Qll 
(3.16) 

$(l)=yl(l) = jdxexp[-V(x)+lx] . (3.17) 

N o t e also tha t if the 'zero- t ime ' N is in t roduced (see 
Subsection 2.6 and [36]), then 

(X )—N \nX,n {L} 

a„(„_i) detyg <py+N(k) 
{2nf 

A(l) 
(3.18) 

with jus t the SAME (py(l) and y, 3 = 1 . . . N. If one divides by 
the quasiclassical factor Cy {A}(detA)N [with L = V ( ^ ) ] m 

o r d e r to t r a n s f o r m t h e K o n t s e v i c h i n t e g r a l i n to t h e 
Kontsevich mode l (see Section 2.5), one ob ta ins 

ZV{N,T}-
1 

' (detAf 

DQTYS cpy+N(Xd) 
(3.19) 
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The role of Cy {A} is to convert cp(l) into proper ly normal ised 
expansions in negative integer powers of h 

m m exp [ -Ay ' (A) + y f f l ] 0 ^ 
<PyW = <My W\ 

(3.20) 

a n d to c h a n g e A(l) = / l [V ' ( ^ ) ] m t h e d e n o m i n a t o r of 
E q n (3.18) for A(X) in E q n (3.19). Ins tead of the simple 
recurrence relat ions (3.16) for q>, the normal ised functions cp 
satisfy 

cpy{X) = Acpy_x{X) = Ay~1(P(X) , (3.21) 

where = q>i(X) and the opera tor A is given by 

1 8 1 V"'{X) 
V"(A)8A 2 [ y / / ( A ) ] 2 

and n o w depends on the poten t ia l V(x). 

3.4 Conventional multimatrix models 
The mul t imat r ix integrals of the form 

(3.22) 

f p-l / oo 

a=l \fc=0 
(a) 

P-2 
:Y[QXP(TYH^H^) (3.23) 

a=l 

can be rewri t ten in the eigenvalue form by means of the same 
I t z y k s o n - Z u b e r f o r m u l a (3 .12) . I n d e e d , s u b s t i t u t i n g 
H (a) = U («) U W and then defining («) ( a + 1 ) t = U («), 
one obta ins 

z w ^ ( a ) } = ^ n n k a ) e x P [ - v ( ^ ) ] 
i V • a = l i=l J 

x ^ 2 ^ ) ] ^ / ^ ! ^ ( a ) , # ( a + 1 ) } 
a=l 

= ^ i i n f d ^ ) e x p [ - y ^ ) ) ] 
• a = i i=\ J 

x | ] e x p ^ / z ^ 1 ^ ^ 1 ) ) / ! ^ 2 ) ) , (3.24) 
a=l 

w h e r e t h e s ame t r ick is d o n e wi th t h e s u b s t i t u t i o n of 
( l /^V!)de t . . exp( /z | a ) / z j a + 1 ) ) for e x p ^ t i h\a)h\*+1)) under the 
sign of the hf> in tegrat ion (step by step: first for a = 1, then 
for a = 2, and so on) . N o t e tha t all the Van der M o n d e 
de te rminants d isappeared from the final formula on the r .h.s. 
of E q n (3.24), except for those at the ends of the mat r ix chain 
(at a = 1 and a = p-l). 

If the chain was closed ra ther than open, i.e. with an 
addi t iona l factor of exp ( T r H (P-^H ( 1 ) ) under the integral in 
E q n (3.23), then the trick with separa t ion of all angula r -
var iable (uni tary-matr ix) in tegrat ions would not work so 
simply: in addi t ion to the I t z y k s o n - Z u b e r integral, much 
m o r e involved quant i t ies would be required, like 

In{Xl9X2;L} =cn 

[&Ui [dU2] 

nxn CARTAN] [ d ^ 2 , CARTAN] 

QXp[tTX1UiLU\+tTX2U2LUl 

+tvXl(Ulu\)X2(U2u\)] . (3.25) 

This (so far unresolved) closed-chain mode l (lattice Po t t s 
mode l ) is an example of a none igenva lue mode l , in the 
p = oo case it t u rns into a 'compact i f ied ' c = 1 model . 
This theory is m o r e complicated t han wha t so far is the 
simplest class of noneigenvalue models of ' induced Y a n g -
Mills theory ' , k n o w n as K a z a k o v - M i g d a l models . 

3.5 Determinant formulas for eigenvalue models 
W e are n o w p repa red to m a k e the crucial step t o w a r d s 
u n d e r s t a n d i n g t h e m a t h e m a t i c a l s t r u c t u r e b e h i n d 
e igenva lue m o d e l s , wh ich d i s t i ngu i shes the i r p a r t i t i o n 
functions in the entire variety of a rb i t ra ry A/-fold integrals. 
This s t ructure expresses itself in the form of de te rminan ta l 
formulas , which I am n o w going to discuss. In Section 4 these 
formulas will be identified as examples of T-funct ions of K P 
and T o d a hierarchies. 

L o o k i n g at the relevant integrals — E q n s (3.4) and 
(3.24) — one can notice tha t integrals over different 
eigenvalues with nontr iv ia l measures which depend on the 
shape of potent ia ls U or V are a lmost separated, the only 
' in terac t ion ' between different eigenvalues being defined by 
universal (potent ia l - independent) quant i t ies m a d e from the 
Van der M o n d e de te rminants . This feature is int imately 
related b o t h to its origin (decoupling of angular variables in 
the original mat r ix integral) and to its mos t impor t an t 
implicat ion (integrabili ty). The main p rope r ty of the 
Van der M o n d e de te rminant is tha t it is at the same t ime a 
Pfaffian (it is in this qual i ty tha t it arises from mat r ix 
integrals) and a determinant (this is the feature tha t implies 
integrabil i ty): 

l[(hl-hJ)=A(h) •• dety h\ (3.26) 
i>j 

This p rope r ty was used above, when going from E q n (3.13) 
to E q n (3.14), which as we shall see later is the crucial step in 
the p r o o f of integrabil i ty of the Kontsevich model . In tha t 
case t he d e t e r m i n a n t a l fo rmula (3.14) for the p a r t i t i o n 
function was trivial to derive, because the in tegrand was 
linear in V a n der M o n d e d e t e r m i n a n t s . N o w I t u r n to 
slightly m o r e complicated si tuat ions, involving p roduc t s of 
Van der M o n d e de te rminants . 

Consider an eigenvalue mode l of the form 

dfihtykA(h)A(h) , (3.27) Z " = A M I 1 
k = l -

to b e r e fe r red to as t h e ' s c a l a r - p r o d u c t ' m o d e l . Al l 
convent ional mul t imat r ix models (3.23) be long to this class. 
In the case of the 1-matrix mode l (3.4) 

dfih f; = d/zd/z exp [£/(/?)] 8(/z — h) , (3.28) 

while for convent ional mul t imat r ix models (3.24) 

d ^ ( i , , ^ - i , =dh^dh^f[\dh^f[QxV[U^)} 
a=2 J <x=l 

P-2 

x ] J e x p ( M a W a + 1 ) ) . (3.29) 
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If dfih h = 8(/z — h)dhdfih we call this measure local. The 
main feature of a local measure is tha t the opera t ion of 
mult ipl icat ion by H (or any function of h) is Hermi t i an . Thus , 
the measure is local in the 1-matrix model , bu t is nonloca l for 
all p - l > 1. In the latter case the measure is defined to 
depend on ly on h = M 1 ) a n d h = h^p~l\ all o the r M a ) 
(a = 2 , . . . , p - 2 ) b e i n g i n t e g r a t e d o u t ; th i s m a k e s t h e 
' in terac t ion ' between h and h m o r e complicated than jus t 
b(h-h) in the 1-matrix (p = 2) and Qxp(hh) in the 2-matr ix 
(p = 3) cases. In no sense is the set of par t icular formulas 
(3.29) for p > 3 dist inguished a m o n g other scalar-product 
models , and from n o w on we shall no t consider convent ional 
mul t ima t r ix mode ls with p - l > 2 as a separa te class of 
theories . 

E q n s (3.26) and (3.27) together imply tha t 

1 N f 
Z n =iJ]U 9hk D Qttk hk~lT> QtjkhJ

k

 1 

' k=i ^ 
= DGtij^dfih9flhi-1hj-1 = D e t ^ ' - 1 | / ^ ' - 1 ) , (3.30) 

where an obvious no ta t ion has been in t roduced for the scalar 
p roduc t : 

<f(A)|g(A))=JD^f c-f(A)g(A) 

W e can n o w be a little m o r e specific and in t roduce t ime 
variables tk and tk, so tha t 

d / * M = exp[£/(/*) + U(h)]dfih^ , 

U(h) = 2Z > v&) = Yl ' <3-31) 
k=—oo k=—oo 

and dfih, h is already independent of h and h. If we n o w define 
H\tJ) = ( l | l ) , t h e n 

i f _ U > 0 /_8_ 

and 

ZN=DQtNH. 

Hf(t,t) , (3.32) 

(3.33) 

where Det/v s tands for de te rminant of the N x N mat r ix 
Hi-ij-1 (which is itself defined for any integers /, j) with /, 
j = 0, ...,N-l. A charac ter i s t ic p r o p e r t y of H.\- is its 
peculiar t ime dependence: 

Hi i+k,j 
3 
64 hj+k (3.34) 

E q n (3.33) provides the de te rminan ta l formula for all 
scalar-product models . The case of the local measure — 
for the 1-matrix mode l — is a little special. In this case 
U(h) conta ins full informat ion abou t the measure : 
dfih,h= b(h-h)dfih, dfih= exp[£/(/?)]d/z, and there is no 
U(h) (or /"simply coincides with t). Then Eqn (3.33) is still 
valid bu t 

^ = ( h ' \ h J ) L k , = (h,+J)\ -H\t) 
i+j 

• f ^ ^ 8 - ) ' \ ^ ) . ( 3 . 3 5 ) 

The same formula (3.35) can also be derived as a limit of 
E q n (3.14) for the Kontsevich integral. Indeed, 

ZN{t} = cN [ d H exp [Tr £ / ( # ) ] = lim J F ^ j L } 

lim 
A{1) 

= Det;y (0) 

= Det ( , -Wf_ w _ 1 

where this t ime 

H t i,j>0 d^q>jU}(lj)„ N , ( 3 . 1 4 ) 

v-1 -(1 = 0) = 
i+j-2 

(3.36) 

1=0 • 

(3.37) 

N o w we n o t e , t h a t t h e a c t i o n of 8/8/ o n <!>{U}(1) 
= J dx exp [£/(*) + / x ] is equivalent to tha t of (8/8/1), since 
this is no longer a mat r ix integral, and thus 

x i - ( £ y v > < » > (3.38) 

i.e. H\t)= &u\0). 
Conformal mul t imat r ix models were in t roduced in 

Section 2.3 as eigenvalue models . F o r the Ap-\ series, the 
par t i t ion functions are defined to be 

^ Ni...Np-iV ' • • • > ' I 
( P - l ) ] 

= f [ c N a f dH^QxV[TrUa(H^)] 
A = l JNaxNa 

P-2 

A = l 

= n ^ n i i f d ^ ) e x p ^ ^ ) ^ 2 ( / ' ( a ) ) 

A = l j , A; 

) . (3.39) 

This expression does no t have the form of Eqn (3.27); thus , 
conformal mat r ix models for p- 1 > 1 are no t of the 'scalar-
p r o d u c t ' type. I shall sometimes call them (p- l ) - componen t 
models , because they are related to the m u l t i c o m p o n e n t 
integrable hierarchies. The simplest way to proceed with 
their investigation is to use on the Kontsevich integral the 
same trick tha t was jus t applied in the 1-matrix case. 

Let us start from a very general (p- l ) - componen t 
model : 

P-i 

A = l J 

dH W exp [Tr U„(H ( a ) ) ] / C ( t f . . . , H ^ ) . 

(3.40) 

It can also be represented in te rms of Kontsevich integrals: 

) 8 
K 

8L 8L (p-i) 
z»=o 

(3.41) 
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This representa t ion is no t very useful, since the limit L -> 0 is 
no t easy to take unless K is a po lynomia l in the eigenvalues of 
all its a rguments . However , this is exactly the case for our 
conformal models (3.39). Indeed, 

P-2 

K A p ~ i = n D e t i >i - i 
- («+i) / • 

(3.42) 
<x=l \ < ^ t r Q ^ t i 

Still, this is no t very convenient , because the representa t ion 
(3.14) for T conta ins A(L) in the denomina to r , which is no t 
very pleasant to differentiate. Simplification can be achieved 
if instead I rewrite the original expression on the r .h.s . of 
E q n (3.39) as follows: 

>(p-ih 

8 / a ) 

P-2 

i p 
8/w 6K«+ln Ve/B-1) 

a = l I'Vot- i=l J 

, (3.43) 
/(«)=0 

where 
N N' 

A (h, h o = - ^ n(/» i - K) n - h<) • 
i>j k>l i=l k=l 

This formula takes the specific form of K into account . The 
p roduc t of integrals in bracke ts on the r .h.s . of Eqn (3.43) is 
equal (for every fixed a) to 

1 Na 

(3.44) 

[compare with E q n (3.38)]. 
In order to simplify the no ta t ion I shall further denote 

by and 

' ) ^ } ( | W ) : 

(x)+lx 

by 9* #«( / ) . Thus , 

8 

8/ (a) 
( / («)) e 

P - 2 

I P 
8/ 0) 7

 14 V 9 / («)' 8/ ( a + 1 ) / V 9 / (^-!) 
7
 a=l v 7 v 

x n ( ^ n * - c i B ) ) 
« = i \ A ' I = I / /(«)=o 

(3.45) 

If/? - 1 = 1, the differential opera tor is jus t the square of the 
de te rminant /I ( 9 / 8 / ) and one can use the relat ion 

A2(h) = j2veuJhi;{-)

2 

E D e t 

p 

1 hp{2) h2 h N l ~ l 1 nP(Nl) 

fcp(l) h2 h3 hNl 

nP(Ni) 

h2 h3 
nP(3) ' ' ' h N l + l 

hN'l~l 

lnp{\) hNl 
nP(2) 

hNi+l h2Nx-2 

, (3.46) 

1 HP(2) • • J V I - 1 NP(N1) 1 HN-2~L 1 

HP{I) H2 
FLP(N1) % ) H2- NP(N2) 

H2 

NP{\) 
H3 

NP{2) • • 
HN1+L H2- 9-

NP{2) • • 
HN-2 + 1 

P(N2) 

_NP[\) hN' hM+NL-2 NP{N,) > ( 1 ) 
NP{2) • • rAf+N 2-2 

P{N2) 

where the sum is over all the N ! pe rmu ta t i ons PofN elements 
1 , . . . , N, in order to conclude tha t E q n (3.45) reproduces our 
old formulas (3.33), and (3.38): ZN = Dety8*'+J'"2<f>. 

F o r p - l = 2 one needs to use a m o r e complicated 
ana logue of (3.46): 

A(h)A(h,h')A(h') 

(3.47) 

w h e r e J\f = A^a. M a k i n g use of th i s f o r m u l a , we 
conclude tha t the r .h.s . of E q n (3.45) for p - l = 2 is also 
representable in the form of a de te rminant : 

D e t 

where <2> = ^>i, <P = <2>2, and / ( a ) = 0. It is especially easy to 
check formula (3.47) in the simplest case of N\ = N2 = 1. 
Then it jus t says tha t 

n 11 

6<2>... & e i . . . 

6<2> 62<f>... 6 2 i . . . 

6 ^ . . . 6 ^ 4 . . . dAf+N2-2J, 

h-h= De t 
h h 

Ana logous expressions for p - 1 > 2 are m o r e involved; they 
are no longer jus t de te rminants : this is a l ready obvious from 
considerat ion of the simplest case of N\ = ...= Np-\= 1, 
w h e n t h e p r o d u c t Ila=i(^ ^ — ^ ( a + 1 ) ) is no longe r t h e 
de te rminant of any nice matr ix . 

3.6 Orthogonal polynomials 
The formalism of o r thogona l po lynomia ls was intensively 
used in the early days of the theory of mat r ix models . It is 
applicable to scalar-product eigenvalue models and allows 
o n e to fu r the r ( d i a g o n a l i s e ) t r a n s f o r m t h e r e m a i n i n g 
de te rminants into p roduc t s . In var iance bo th with reduct ion 
from the original N 2 - fold mat r ix integrals to the eigenvalue 
p r o b l e m [which, w h e n p o s s i b l e , ref lec ts a p h y s i c a l 
p h e n o m e n o n — decoupl ing of the angular (uni tary-matr ix) 
degrees of freedom (associated with ^-dimensional gauge 
b o s o n s ) ] a n d w i t h t h e o c c u r r e n c e o f t h e d e t e r m i n a n t 
f o r m u l a s wh ich reflect t h e in t eg rab i l i t y o f t h e m o d e l , 
o r thogona l po lynomia ls appear m o r e as a technical device. 
Essentially, o r t h o g o n a l po lynomia l s are necessary if one 
wan t s to explicitly separate the dependence on the size N of 
the m a t r i x in the m a t r i x in tegra l ( ' zero- t ime ' ) from the 
dependencies on all other t ime-variables and to explicitly 
c o n s t r u c t v a r i a b l e s wh ich satisfy T o d a - l i k e e q u a t i o n s . 
However , a m o d e r n description of integrable hierarchies in 
te rms of T-funct ions does no t require explicit separat ion of 
the zero-t ime and t rea ts it m o r e or less on an equal footing to 
all o the r var iab les , t h u s m a k i n g the use of o r t h o g o n a l 
po lynomia ls unnecessary. Still, this technique remains in the 
arsenal of mat r ix mode l t h e o r y ! and we n o w briefly explain 

f O f c o u r s e , o n c e c a n a l so u s e t h i s l i nk j u s t w i t h t h e a i m o f p u t t i n g t h e r i c h 
a n d b e a u t i f u l m a t h e m a t i c a l t h e o r y o f o r t h o g o n a l p o l y n o m i a l s i n t o t h e 
g e n e r a l c o n t e x t o f s t r i n g t h e o r y . A m o n g i n t e r e s t i n g p r o b l e m s h e r e is t h e 
m a t r i x - m o d e l d e s c r i p t i o n o f ̂ - o r t h o g o n a l p o l y n o m i a l s . 
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wha t it is abou t . At the end of this section, two simple 
appl icat ions will also be described: the evaluat ion of the 
v o l u m e of t h e u n i t a r y g r o u p , a n d a d i rec t p r o o f of 
equivalence of the o rd inary 1-matrix mode l and the gaussian 
K o n t s e v i c h m o d e l . B o t h t h e s e e x a m p l e s m a k e use o f 
explicitly k n o w n o r thogona l Hermi t e po lynomia ls and in 
this sense are not qui te representat ive: usual ly o r thogona l 
po lynomia ls are no t k n o w n explicitly. Some appl icat ions of 
such an ' abs t rac t ' theory of o r t hogona l po lynomia ls to the 
s tudy of mat r ix models will be ment ioned in the following 
sections. 

In the context of the theory of scalar-product mat r ix 
models , o r t hogona l po lynomia ls na tura l ly arise when one 
notes tha t after the par t i t ion functions appear in the simple 
de te rminan ta l form of E q n (3.30), any linear change of bases, 
ti^Qi(h)= J2kAikh, hj ^Qj{h) = EiBJih\ can be 
easily per formed and Z - > Z det A det B. In par t icular , if A 
and B are t r iangular with uni ts at d iagonals , their 
de te rminants are just uni ty and Z does no t change at all. 
This freedom is, however , enough to diagonalise the scalar 
p roduc t and to al low the choice of po lynomia ls Qt and Qj so 
tha t 

(Ql(h)\QJ(h)) = Qxp($l)dlJ (3.48) 

Qi and Qj defined in this way up to normal i sa t ion are called 
o r thogona l polynomia ls . (Note tha t Q does no t need to be a 
complex conjugate of Q: the ba r does no t mean complex 
conjugat ion.) Because of the above restrict ion on the form of 
matr ices A and B, these po lynomia ls are normal ised so tha t 

Qt(h) = t i + . . . ; Qj(h)=hj + . . . , 

i.e. the leading power enters with a unit coefficient. F r o m 
E q n s (3.30) and (3.48) it follows tha t 

ZN = exp (</>;_!). (3.49) 

This formula is essentially the main ou tcome of o r thogona l 
po lynomia l theory for mat r ix models : it provides complete 
separat ion of the A/-dependence of Z (on the size of the 
matr ix) from tha t on all other pa rame te r s (which specify the 
s h a p e of t h e p o t e n t i a l , i .e. t h e m e a s u r e d\ih ^ ) ; t h i s 
informat ion is encoded in a ra ther complicated fashion in 
4>i. As was a l ready ment ioned , any feature of the mat r ix 
mode l can al ready be examined at the level of Eqn (3.30), 
which does no t refer to o r thogona l po lynomia ls and thus 
they are no t really relevant to the subject. 

One can, however , reverse the p rob lem and ask what it is 
tha t mat r ix models can provide/6>r the theory of o r thogona l 
p o l y n o m i a l s . ! The first quest ion to ask in the theory of 
o r thogona l po lynomia ls is: given the measure d\ih ^, wha t 
are the cor responding o r thogona l polynomials? 

Usua l ly the answer to this type of quest ion is no t at all 
s t ra ightforward. I ts complexity, however , depends on wha t 
one agrees to accept as a suitable answer. Of par t icular 
interest for our purposes be low would be integral 
representa t ions . It would be very helpful to have just an 
integral t ransformat ion , convert ing the set of o r thogona l 

f O f c o u r s e , o n e c a n h a r d l y ge t a n y t h i n g new for t h a t t h e o r y , b u t t h e 
p u r p o s e is t o see w h i c h f e a t u r e s a r e i m m e d i a t e c o n s e q u e n c e s o f t h e 
' p h y s i c a l l y i n s p i r e d ' a p p r o a c h . U s u a l l y t h i s c a n h e l p o n e t o s o m e h o w 
o r g a n i s e t h e e x i s t i n g k n o w l e d g e o n t h e a p p r o p r i a t e s y s t e m . T h i s is , 
h o w e v e r , m y g o a l in t h e s e n o t e s : o n l y a v e r y s i m p l e e x a m p l e wi l l b e 
m e n t i o n e d , w h i c h wi l l a l s o b e o f u s e t o u s l a t e r . 

po lynomia ls for given djiih ^ into some s tandard set, like 
Qi = x l . Unfor tuna te ly , such t rans format ions are rarely 
available, t hough there are impor t an t examples: classical 
o r thogona l po lynomia ls and their ^-analogues [expressed 
th rough the (g-)-hypergeometric functions, which usually 
possess integral representa t ion of a simple form, see [69] for 
an in t roduc to ry review of such integral formulas , which are 
in fact well k n o w n in C F T ] . The simplest example of this 
kind, which will be used below, is the set of Hermi te 
polynomia ls : 

( u ) ' « p ( - I * > - « * ) d * 

dh 
•1 

1 
exp ( — h2 

: exp I -h' 

exp 

dh exp 

- hk hk + . . . (3.50) 

These po lynomia ls are o r thogona l with the local measure 
d\ih = e x p ( - i / z 2 ) . 

F o r a generic measure an answer of this type does no t 
exist in any universal form. However , mat r ix models still 
p rovide a somewhat peculiar integral representa t ion for any 
measure , with the number of in tegrat ions depending on the 
number of polynomials . In order to obta in this expression, let 
us consider a slight general isat ion of formula (3.27): 

k, y 

Then, A(h) Ylk,y(^y — hk) = A(h, X)/A(A), and Xy can be con
sidered jus t as hN+ y, which a re not i n t eg ra t ed over in 
E q n (3.51). Then it is clear tha t 

A(h,X) = De t 
Qi-l(hk) QN+y-l(hk) 

Qi-\(h) QN+y-\(h) 
(3.52) 

while A{h) = Det^gj-i^JO- Since all the QN+y-\(hk) are 
o r thogona l to all <2/_i(^0 (because N + y-l ^ J - l ) , one 
obta ins : 

detys QN+y-\(h) ry 
^NXA$J — 77T\ ZN-A[k) 

In par t icular , 

ZN{X} 

(3.53) 

(3.54) 

where b o t h the n u m e r a t o r and the d e n o m i n a t o r can be 
represented by N x A/-matrix integrals. 

The inverse of the 'main ques t ion ' of the theory of 
o r thogona l po lynomia ls is: given a set of polynomials , 

Qi(h)=hi + . . . , 

Qj{h) = hj + . . . , 

what is the measure d\ih^ ^ with respect to which they form an 
o r thogona l system? 
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I shall no t discuss the complete answer to this quest ion 
and consider only the case of the local measure , when 
Qi = Qi- Then, usually the answer does no t exist at all: no t 
every system of po lynomia ls is o r thogona l with respect to 
some local measure . It is easy to find the necessary (and in 
fact sufficient) condi t ion. As was ment ioned above, the local 
measure is dist inguished by the p rope r ty tha t mult ipl icat ion 
by (any function of ) h is a Hermi t i an opera t ion: 

<Af (A)|g(A)> = (f (A)|Ag(A)> , if d/i^ ~ 8(A - h). (3.55) 

This p rope r ty implies tha t the coefficients ctj in the recurrence 
relat ion 

hQt{h) = Qi+1 (h) + Y^CijQiih) 

are a lmost all vanishing. Indeed, for j < i 

= (hQj(h)\Qj(h)) = (Qi(h)\hQj(h)) 
lJ (Qj(h)\Qj(h)) (Qj(h)\Qj(h)) 

(3.56) 

= S 
(Qi(h)\Qi(h)) 

(Qj(h)\Qj(h)) 
= d U i - i exp(</>; - ^ _ x ) . (3.57) 

In other words , po lynomia ls o r thogona l with respect to a 
local measure are obliged to satisfy the '3-term recurrence 
re la t ion ' 

hQt(h) = Qi+i(h) + CiQiW+RiQt-xih) (3.58) 

(the coefficient of Qt+\ can, of course, be changed by a 
change of n o r m a l i s a t i o n ) . P a r a m e t e r Ct van i shes if t he 
measure is even (symmetric under the change h-> - h ) ; in 
this case the po lynomia l s are split into two o r t h o g o n a l 
subsets: even and odd in h . The par t i t ion function (3.49) of 
the 1-component mode l can be expressed t h rough pa rame te r s 
Ri = exp(</>*-</>*•_ i ) of the 3-term relat ion: 

k=0 

(3.62) 

As usual , this relat ion should be unde r s tood as an analytical 
cont inua t ion . The squared n o r m s | | 2 ^ | | 2 in the denomina to r 
a re expressed t h r o u g h the coefficients Ri of t he 3-term 
r e l a t i o n (3 .59) u p to an ove ra l l c o n s t a n t as fo l lows : 

\\Qk\\2= nt=i*,-lieoii2. 
F o r example, in the case of the Hermi t e po lynomia ls 

(3.50) we have: 

H e * + I ( / i ) = (h " ^ W W = hRQk(h)--^RQk(h) 

hilek(h) - kRek-i(h) (3.63) 

(the last equali ty holds because d/dh and h — d/dh p lay the 
role of annihi la t ion and creat ion opera to rs , respectively). 
This means tha t the 3-term relat ion is satisfied with Rk = k 
a n d t h u s | | H e ^ | | 2 = | | H e 0 | | 2 £ ! . W e sha l l u se t h e 
n o r m a l i s a t i o n c o n d i t i o n | | H e o | | 2 = V^TL T h e n , for 
exp[— U(h)\ we get: 

U HHet||2 

1 1 (u d 

dh 
h - ^ \ -1 

dh) 

— exp i - h 2 + - h 2 > - . 
P l 2 2 Jfak\\dhdh 2K 

x exp 
2 2 

N-i (3.59) 

thus defining a 1-component mat r ix mode l (i.e. the par t icular 
shape of potent ia l ) associated with any system of o r thogona l 
polynomia ls . 

Our ' inverse main ques t ion ' in the case of the local 
measure should n o w be formulated as follows: given a set of 
o r thogona l po lynomia ls QtQi) = hl+ ...which satisfy the 

3-term relation (3.58), wha t is the measure d /^? 
As with every complete o r thogona l system of functions, 

o r thogona l po lynomia ls satisfy the completeness relat ion 

1 

V2K 

1 
V27C 

1 
e x p ( - / z +-h ] exp 

f da da 

a I d l ) e X P ( - ^ 2 - ^ " : 

Im 

x exp a — + a ^ I exp 
P l dh dh] 

A / 2 7 1 
Im 

2 ^ e x p ( - a a ) e x p f ^h2+^h2 

2 2 

- - ( a + a ) 2 
f d a d a 

2TC 
-exp 

(3.60) 
i=0 

x exp - - ( a + a)(/z + /z) exp - - ( a - a ) ( / z - / z ) 

where the 8-function associated with the measure d\ih ^ is 
defined so tha t 

Jf(A)8^>(A,A')dAiA > A- = f(A') (3.61) 

for a n y func t i on f(/z). S ince for t h e local m e a s u r e 
dfih = Qxp[U(h)]dh t h e 8 - func t ion is j u s t 8 { d / ^(/z, /z) 
= exp[— U(h)]6(h-h\ as an answer to our quest ion we can 
t ake a representa t ion of U(h) in te rms of the cor responding 
o r thogona l polynomials : 

Qxp[-h2 )h(h-h) . 

3.7 Scalar-product models in the M i w a parametrisation 
I shall n o w take the first step t owards clarification of the 
in ter re la t ion be tween the sca la r -produc t and Kontsev ich 
models . W e already k n o w tha t in the latter case an impor t an t 
role is played by the representa t ion of t ime variables in the 
form of 

1 
-txA~ (3.64) 
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(with the nxn ma t r ix A), which will be further referred to 
as the M i w a paramet r i sa t ion (expressions of a similar form 
were first in t roduced in [70]). Let us n o w perform such a 
t r ans fo rma t ion in the case of the sca la r -produc t mode l . 
Let us use E q n (3.31) to define the t ime-dependence of the 
m e a s u r e , b u t i gnore t he ^"-variables. N a m e l y , i n t r o d u c e 
dnh,h= ex-p[U(h)]dvh,ii {i.e. dvh,h = exp[U(h)]dp.h,h}. 
Subst i tute 

tk = T[UrA k +rk (3.65) 

and obta in 

exp [£/(/?)] = exp[—V{h)\ exp 

: exp -V(h) 
d e t ^ ^ - M ) ' 

det ,4 

exp[-V(/z)] 
dQtA 

(3.66) 

where V(h) = i ^ r ^ / i * . Let us choose the upper signs in 
these formulas . Then we can use E q n s (3.51) and (3.53) to 
conclude tha t , in the M i w a paramet r i sa t ion , 

ry {d/XJ _ 1 ry {dl>} C 0 ^ 
Z N ~ W a J Z N W 

_ z {dv} detys QN+y-\{h) 
N A(X)(detA)N 9 

where dvh,h = exp [— V(h)]dvh,h and Qk are the cor respond
ing o r thogona l polynomials . In other words , the mode l with 
po ten t ia l U(h) has been reduced to ano the r model , with 
poten t ia l —V(h), and the difference has been expressed in 
te rms of o r thogona l po lynomia ls Qk'. 

J V 
-{dv} 

1 

(de t , 4 ) A 

dQtyS QN+y-l(ls) 

A{X) 
(3.67) 

If V(h) is adjusted to give rise to some simple o r thogona l 
po lynomia ls (i.e. if the new mode l Z ^ is easy to solve) this 
representa t ion can considerably simplify the original model . 

Ano the r in terpre ta t ion of this formula is tha t we obta ined 
a G K M - l i k e representa t ion of the form of E q n (3.19) for 
the discrete sca lar-product model . The only difference is tha t 
(p\V^'m Eqn (3.19) are changed for g y - i m Eqn (3.67). 
This is an impor t an t difference, because cp\V^ in G K M are 
defined by integral formulas like E q n (3.15), cp\V^ = ((xy~1)) 

or, alternatively, satisfy recursive relat ions like Eqn (3.21). 
Moreover , generic (p\V^ are infinite formal series in X~1, while 
Qy-i are o r thogona l polynomials. This discrepancy is one of 
the impor t an t stimuli for further development of the concept 
of the G K M , as well as for the search for convenient integral 
representa t ions for o r t hogona l polynomia ls . 

There is, however , at least one interesting si tuat ion when 
the two formulas indeed coincide. This is the case of the 
gaussian potent ia ls V and V, when b o t h (p\v^ and Qy-\ are 
represented by o r thogona l Hermi te polynomials , which 
possess integral representa t ion , and are exactly adequa te in 
the context of G K M . This is the subject of the next 
subsection. 

3.8 Equivalence of the discrete 1-matrix and gaussian 
Kontsevich models 
Let us t ake the o rd ina ry 1-matrix m o d e l wi th the local 
measure dfih = Qxp[U(h)]dh to be the scalar-product model , 
considered in the previous subsection, and t ake the M i w a 
paramet r i sa t ion with upper signs and with rk = —\^k,i (as 
in Sect ion 2.6). T h e n V(h) = J2k rkh' ,k _ l / 7 2 _ 1 

The relevant o r thogona l po lynomia ls Q are just Hermi t e 
p o l y n o m i a l s o f imaginary a r g u m e n t : ! q\ 2hdh^= 
i~kHek(ih) = h k + . . . . T h e s e p o l y n o m i a l s pos se s s an 
integral representat ion (3.50): 

•A-k H e * _ I ( i / i ) 
1 

A / 2 7 1 
exp 

1 

x ^xk 1 exp ^~ \ x 2 ^xh^dx =0) (pfx2}(h) , (3.68) 

U s i n g E q n s (3.67) and (3.19) one ob t a in s a r e m a r k a b l e 
relat ion between the two mat r ix models : 

ZN{t0 = 0;tk = -(l/k)tTA-k+±8k92} 

I 
d t f e x p (y^tkTrH*} 

NxN \k=o / 

1 
dH exp^t f 2 ) 

exp(-tr iy l 2 ) 

(27i)i" 2 (detyl) i v J 

= Zkxl{N,t} 

dX (det X f exp (-tr \ X2 + AX) 

(3.69) 

where ZN{tk = 5 ^ , 2 } = ( — 2n)2N2CN. Th is re la t ion can 
also be regarded as an identity: 

[ d t f e x p Q T r t f 2 ) D e t ( , 4 ( g ) I -I®H) 
JNxN 

d t f e x p g T r t f 2 ) 

[ dX exp ( - \ t r X 2 ) det^(X + A) 
i n x n - , (3.70) 

d X e x p ( - ^ t r X 2 ) 
Jnxn 

valid for any A. N o t e tha t the integrals are of different sizes: 
N x N on t h e l .h .s . a n d n x n a t t h e r . h . s . W h i l e t he 
A/-dependence is explicit on b o t h sides of the equa t ion , 
t h e ^ - d e p e n d e n c e on t h e l .h .s . e n t e r s o n l y impl ic i t ly , 
t h r o u g h t h e a l lowed d o m a i n of v a r i a t i o n of va r i ab l e s 
tk = —{\/k)trA~k + ^dk,2. (This can serve as an i l lustration 
to the general s ta tement tha t the shape of the Kontsevich 
par t i t ion function Zv, considered as a function of Ts ra ther 

f N o t e t h a t t h i s s y s t e m o f f u n c t i o n s (pt = i~kHQk(ih) l o o k s l ike (po = 1, 
(pi = h, (p2= h2 + 1 , . . . , a n d d o e s n o t r e s e m b l e a n y set o f o r t h o g o n a l 
p o l y n o m i a l s w i t h a l o c a l m e a s u r e (for e x a m p l e t h e p r o d u c t (po(p2 = h2 + \ 
m a y s e e m p o s i t i v e de f in i t e , t h i s b e i n g i n c o n s i s t e n t w i t h t h e o r t h o g o n a l i t y 
r e q u i r e m e n t ((po\(p2) =

 0) . T h e t h i n g is t h a t i n t e g r a t i o n o n t h e l .h . s . o f 
E q n (3 .69) is we l l d e f i n e d o n l y a l o n g t h e i m a g i n a r y ax i s , w h i l e i n t e g r a l s 
a l o n g t h e r e a l a x i s a r e u n d e r s t o o d a s a n a l y t i c a l c o n t i n u a t i o n s . 
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t h a n of L or A, is i n d e p e n d e n t of t h e m a t r i x size n.) 
The identi ty (3.69) was ant icipated from the s tudy of the 
W i s for the gaussian Kontsevich mode l in [56] [see Eqn (2.53) 
in Section 2.6], and was derived in the present form in [36]. 

E q n (3.69) can be used to perform analytical con t inua
t ion in N and define ZN for N, which are no t posit ive 
integers. Since CN = 0 for all negative integers [see 
E q n (3.77) below], the same is t rue for ZN. In Section 4 we 
shall see tha t it is a characteris t ic p rope r ty of T-funct ions of 
forced hierarchies. 

3.9 Volume of the unitary group 
The formalism of o r thogona l po lynomia ls provides a simple 
derivat ion of E q n (3.6) for the vo lume of the un i ta ry g roup . 
Consider E q n (3.4) with U(H) = H2. Then the gaussian 
mat r ix integral can be easily evaluated: 

cN 

N , 

d / / e x p ( - l T r / / 2 ) =cNY[ d / / , e x p ( - ± / / 2 ) 
iVxiV i = i J 

x n [ d 2 ^ e x p ( - | ^ | 2 ) = ( 2 7 r ) ^ 2 , 
iV/' J 

while according to E q n s (3.48) and (3.49) the same integral is 
given by 

1 

AM-f [ e x p ( - I / * 2 ) UUh> - hjf = n7=i HHe,-

H e r e | |He/_i | | s tands for the n o r m of o r thogona l Hermi t e 
po lynomia ls (3.50), | |He^ | | 2 = y/2nk\. C o m p a r i n g the two 
expressions for the same integral we get: 

N-l 

^ = ( 2 i o * * 2 n 
i (2n} MN-I) 

k=0 2nk\ N-l 

k=0 

(3.71) 

Accord ing to E q n (3.5), 

Vol V(N) 

and Volu (i) 

V o l u ( / V ) = 

( V o l u d j f ' 

2K. Thus , we obta in E q n (3.6): 

N 
Hk! 

A n example of a somewhat m o r e sophist icated ( q u a n t u m ) 
group- theore t ica l quant i ty , arising from gaussian mat r ix 
models , is provided by the following formula for the 
^-factorial [71, 72]: 

1 

dH[dU] Qxp(-m2TrH2 + TrHUHUjf) 
JNxN 

V o l u ( / V ) dH e x p ( - m 2 TYH2) 
(3.72) 

The integral in the numera to r is over Hermi t i an (H) and 
un i t a ry (U) N x N matr ices , and q = m 2 — Vm 4 — 1. 

The explicit expression (3.71) can be used to p rove tha t 
CN = 0 for all negative integers N [36]. Eqn (3.71) defines cN 

only for posit ive integers N, as a finite p roduc t . There is an 
obvious prescr ipt ion for analytical cont inua t ion of such 
p roduc t s , provided cont inua t ion of the i tems is k n o w n (it 
can be considered as implied by the similar formula for 
integrals with varying upper limit): let 

(3.73) 

then 

S(N) = jy(k)=F(N)-F(0) (3.74) 

and, obviously F (0) - F ( - N) = £ t = i _Nf(k), so that 

i V " 1 

S(-N)=F(-N)-F(0) = -^2f(-k) . (3.75) 

E x p o n e n t i a t i o n of th i s f o r m u l a gives t h e ru le for t h e 
p r o d u c t s . In the case of cN one can t rea t fac tor ia ls in 
E q n (3.71) as g a m m a functions, 

and obta in : 

( 2 n ) i W ) 

N 
C N = Y[r(k) 

C-N 
k=0 

0 , 

(3.76) 

(3.77) 

because of the poles of the g a m m a functions. 

4 . Integrable structure of eigenvalue models 
4.1 The concept of integrability 
The integrable s t ructure of dynamica l systems implies tha t all 
t h e d y n a m i c a l c h a r a c t e r i s t i c s — t h e s o l u t i o n s of t h e 
equa t i ons of m o t i o n ( E q M s ) for a classical system and 
funct ional in tegra ls for a q u a n t u m one — can be found 
exac t ly . A c c o r d i n g to t h i s d e s c r i p t i o n t h e n o t i o n o f 
integrabil i ty is no t very concrete, and in fact it evolves with 
t ime, including m o r e and m o r e classes of theories into the 
class of in teg rab le sys tems. N o w a d a y s we cons ider the 
following types of theories as clearly belonging to this class: 
— free mo t ion (classical or q u a n t u m ) on group manifolds 
and h o m o g e n e o u s spaces; 
— 2d c o n f o r m a l theor i e s a n d thei r ' i n t eg rab le mass ive 
deformat ions ' ; 
— i n t e g r a b l e h i e r a r c h i e s of t h e ( m u l t i c o m p o n e n t ) 
K a d o m t s e v - P e t v i a s h v i l i (KP) and T o d a type, and their 
reduct ions ; 
— functional integrals, subjected to the condi t ions of the 
(generalised) D u i s t e r m a a t - H e c k m a n theorem; 
— (eigenvalue) ma t r ix models ; 
— topological theories; 
— m a n y super symmetr ic models (at least those al lowing for 
Nicola i t r ans format ions and /o r a D u i s t e r m a a t - H e c k m a n -
like descript ion); 
— systems with (infinitely) m a n y local integrals of mot ion . 

This list (which is in no par t icular order) is ra ther 
arbi t rary . Also, different i tems are no t really different and 
(as it should be) can be considered as different descript ions of 
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the same reality. N o w I discuss very briefly at least some of 
the mos t impor t an t views on the concept of integrabili ty. 

Often the no t ion of integrabil i ty is related to the occur
rence of 'sufficiently m a n y ' integrals of mot ion ('sufficiently' 
means equal to the number of degrees of freedom). This is, 
however , not as rigid a definition as one might th ink. In fact, 
in classical mechanics there is usual ly a complete set of 
integrals of mo t ion available: jus t initial condi t ions in the 
phase space (or, to be m o r e sophist icated, a n g l e - a c t i o n 
variables). The p rob lem is, however , tha t : 
— these obvious integrals are complicated (nonlocal and 
mul t ivalued) functionals of the current coordinates ; and 
— in the general s i tuat ion they are very 'uns tab le ' under a 
sma l l c h a n g e of c u r r e n t c o o r d i n a t e s ( ' d i v e r g e n c e of 
trajectories ') . 

In order to avoid these p rob lems one usually imposes a 
' locali ty ' condi t ion on E q M s . While this is a reasonable th ing 
to do for par t icular classes of theories (e.g. possessing a well-
defined kinetic term, which is quadra t i c in momen ta ) , this is 
not a nice descript ion in the general s i tuat ion, since ' locality ' 
is no t invar iant under a rb i t ra ry (including nonlocal ) changes 
of variables. In pract ice, when approached from this side, 
integrabil i ty implies a kind of ' regular ' behaviour of trajec
tories and some more-or- less nicely defined t rans format ion 
from ' na tu ra l ' (or, ra ther 'or iginal ' ) coordina tes to the 
action - angle variables. 

The si tuat ion becomes even less clear when q u a n t u m 
theory is considered, since 'chaot ic behav iou r ' no longer 
implies anyth ing really ' chaot ic ' for the q u a n t u m system. 
Again , very much depends on wha t kind of observables one 
wan t s to consider, and any no t ion of ' regular i ty ' is no t 
enough under an a rb i t ra ry change of variables. 

This can be m a d e even m o r e t r ansparen t , if one recalls the 
idea of universali ty classes, so impor t an t in the m o d e r n 
theory. The idea is tha t even in the cases when the behaviour 
of the system seems absolutely chaot ic from any naive poin t 
of view (as in the cases of turbulence or q u a n t u m gravity), 
one can and should in t roduce new variables (which can be 
very complicated functions of the original ones), which have 
smooth and well defined correlat ion functions. In most cases 
one is no t a t t empt ing to find a complete set of such variables 
(and thus some informat ion is lost), bu t this reflects no th ing 
bu t the current state of knowledge, and in fact in studies of 2d 
q u a n t u m gravity the goal of a complete descript ion is a l ready 
clearly formulated. 

Despi te these comments , the 'definit ion' of integrabil i ty 
in te rms of 'sufficiently' local integrals of mot ion should be 
given pr ior i ty in this discussion because mos t of the systems 
which so far were considered as integrable, m o r e or less 
na tura l ly get into this class, al lowing for some preferred 
choice of dynamica l variables ( 'more or less' appears because 
some 'minor ' nonlocal i ty is usual ly present in any interesting 
examples, where a n g l e - a c t i o n variables are no t obvious 
from the very beginning) . 

This 'definit ion' is so unclear because I a t t empted to look 
for a generic description of integrabili ty. M o s t interesting 
approaches , however , are in ano ther direction. One starts 
from some simple system and then per forms a change of 
variables, which makes it look much m o r e complicated 
(being still simple in its essence). This appears to be a much 
m o r e fruitful view on the p rob lem and in fact all the other 
i tems in my list above are describable in te rms of this kind. 

A trivial, bu t surprisingly representat ive example of this 
app roach is provided by a free part icle, moving in flat 

Z)-dimensional space. The eigenfunctions of the Laplace 
opera tor are just plain waves or, equivalently, spherical 
ha rmonics . The radia l pa r t of the jth h a r m o n i c is a l ready a 
no t very simple function, satisfying the equat ion 

dr: 
+ -

D - I d , C2(j)' 

r dr r2 
«A(r) = £«A(r) (4.1) 

This equa t ion is of course less t r ivial t h a n the or ig inal 
Laplace equat ion , bu t solut ions are related in a simple way. 
In order to find a solut ion of Eqn (4.1), say, for j = 0, one 
should take an angular average of a p lane wave: 

0*M = j e x p ( i £ r v ) d D~lv: 1*1 = 1 (4.2) 

Th i s in t eg ra l r e p r e s e n t a t i o n expresses t h e s o l u t i o n s of 
E q n (4.1) t h rough Bessel functions, and this is in fact the 
p roper way to derive the wel l -known formula 

<t>k(r)=2^TC1D)(kr)i-^JkD_l(kr) (4.3) 

If one expands the exponent in the integral in a series, the 
s t andard expansion for the Bessel function arises. 

A slightly m o r e involved example is the q u a n t u m 
mechanica l mode l of a part icle in the poten t ia l exp( — q ) , 
i.e. the theory of the equat ion 

dq: 
• + exp(-?) j,(q) = 0 (4.4) 

(one of course recognises a simplified vers ion of T o d a 
m o d e l s ) . I t can be solved b y p ro j ec t i on of t h e s imple 
Schrodinger equat ion for a part icle moving on the upper 
pa r t of the hyperbolo id x2, — x \ — x \ = 1, x 0 > 0 [73]. If 

x 0 = c o s h ( ^ ) + ± z 2 e x p ( ± g ) , 

xi = s i n h ( ^ ) - ± z 2 e x p ( ± < ? ) , 

x2 =ZQxp(±q) , 

t h e n q= l n ( x o + x i ) . T h e L a p l a c e o p e r a t o r on t h e 
hyperbolo id is 

v 2 = 
dq2 

1 6 1 , , dz 

• 2 ^ + 4 e x p ( - ^ 
(4.5) 

a n d ave rage of t he wave funct ion i/a(g,z) p r o v i d e s t he 
following expression for solut ions of E q n (4.4): 

^ 2 U - ! e x p [ - ^ t + 
exp q 

•)] 
At (4.6) 

This idea, which is somet imes referred to as the 
'projection m e t h o d ' (see [73] for a b r o a d review) reveals 
h idden symmetries of some complicated systems (which do 
no t possess any symmetry at all in the usual , Noether- l ike , 
sense of the word) by considering them as embedded into 
wider theories with m o r e degrees of freedom. Q u a n t u m 
mechanica l examples of the applicabil i ty of the me thod are 
by no means exhausted by the two systems above; one can 
consider var ious project ions, s tar t ing from (the exactly 
solvable p rob lem of) the free mo t ion on any group 
manifold, and in general this gives rise to the very impor t an t 
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theory of 'zonal spherical funct ions ' , which n o w a d a y s is 
increasingly a t t rac t ing a t tent ion because of its obvious links 
to integrabil i ty theory and q u a n t u m geometry (see [74], for a 
discussion of the latter relat ion and [75], where relat ions with 
o r thogona l poly-nomials and the generalised Kontsevich 
mode l are par t ly revealed). A n extremely impor t an t example 
of free mo t ion on a g roup manifold (in the infinite-
dimensional K a c - M o o d y case) is provided by the 2d 
W i t t e n - Z u m i n o - N o v i k o v - W e s s ( W Z N W ) mode l and the 
cor responding version of project ion me thod is k n o w n as the 
Hami l ton i an reduct ion in conformal field theory ( C F T ) . 
Again the result ing theories (like min imal conformal 
models) do no t possess any kind of symmetry in the usua l 
sense of the word , bu t still they are very simple and exactly 
solvable because of their origin in the theory of free fields. 

In principle, the theory which is reduced — i.e. 
complemented by const ra ints (initial condi t ions) — does no t 
need to be absolutely symmetr ic — i.e. to have a Casimir 
opera tor of even zero (as in the W Z N W case) as its 
Hami l ton ian . In fact, it is possible to use the project ion 
me thod to gain a lot of informat ion abou t reduct ions of 
theories with m o r e sophist icated Hami l t on i ans which are 
nontr iv ia l functions of g roup genera tors . The simplest 
example is provided by the theory of quan tum-mechan ica l 
'quasi-exactly-solvable models ' [76 , 77] and its C F T 
general isat ions [77, 78]. A m o r e e labora te technique has the 
n a m e ' localisation t h e o r y ' ! (also k n o w n as geometr ical 
quant i sa t ion , Four ie r analysis on group manifolds , and 
D u i s t e r m a a t - H e c k m a n theory) and provides a very wide 
general isat ion of the above averaging procedure , which m a p s 
plain waves into Bessel functions. The classical example of a 
system il lustrating all the aspects of integrabili ty, s tar t ing 
from free mo t ion and ending with anionic statistics, 
Woo-algebras and 2d Y a n g - M i l l s theory, is the C a l o g e r o -
Suther land system, which can be associated in a uni form way 
with any simple Lie algebra and, in an ' intermediately 
involved ' form, looks like a mult ipar t ic le theory in 1 + 1 
dimensions with interact ion potent ia l g2 [sin e(xi-Xj)]~2, 
(see [73] for an in t roduct ion to the theory of Calogero- type 
models , and [80, 81] for the new developments) . 

This discussion was necessary to i l lustrate a very simple 
idea: tha t the theory of free particles, t hough trivial, is in fact 
in exhaustively deep. It is enough to impose sophist icated 
initial condi t ions or to perform a sophist icated change of 
variables in order to obta in very complicated dynamica l 
systems, which, after they are studied, per se appear to be 
surprisingly systematic, the reason for this simplicity being 
tha t the real under ly ing dynamics is jus t trivial — tha t of the 
free part icles — though it m a y be a very ha rd p rob lem to 
reveal this simplicity when the system is given. It is an 
advan tage of the general theory tha t one can begin from the 
p roper side: from the theory of free part icles and m a k i n g it 
m o r e and m o r e complicated; by in t roducing a different kind 
of variables; by considering corre la tors of sophist icated oper 
a tors ; and so on. Everything tha t can be obta ined in this way 
is by definition trivially integrable, t hough it m a y not be so 
simple to guess for somebody who did no t k n o w where the 
par t icular system at the end of this p rocedure appeared from. 

I n o w proceed to a discussion of a par t icular ly impor t an t 
realisat ion of this idea: the theory of 8-operators in 1 complex 

f F o r v a r i o u s v i e w s a n d a p p r o a c h e s t o t h i s t h e o r y see [5, 4 3 , 44 , 6 1 -
65 , 79]. (So far t h e r e a r e n o c o n n e c t i o n s w i t h A n d e r s s o n l o c a l i s a t i o n in 
s o l i d - s t a t e p h y s i c s . ) 

d imension (i.e. the theory of free ho lomorph ic fields in 2 real 
dimensions) . W h e n considered as functions of modu l i of 
bundles over R i e m a n n surfaces (i.e. b o u n d a r y condi t ions , 
imposed on 2d free fields), these simple objects (known as 
'T-funct ions ' ) start looking a little involved and after all 
appear related to sophist icated nonl inear equa t ions (but of 
course integrable) in 2 and 3 dimensions [like K d V or the K P 
equat ion] . I do no t a t t empt to present an exhaustive theory of 
T-funct ions and integrable hierarchies (besides being still 
uncomple ted , this is a very big field), bu t instead concent ra te 
on the very core of it, which consists of simple de terminant 
formulas for the simplest T-funct ions (namely, those 
associated with free-fermion theory and level k = 1 K a c -
M o o d y algebras) . This issue will be discussed in some 
detail , because besides being the basis of integrable 
h ierarchy theory, it is also where the links with the mat r ix 
models are found. 

4.2 The notion of T-function 
There are several different definitions of T-funct ions, bu t all 
of them are par t icular real isat ions of the following idea: the 
T-function is a generat ing functional of all the correlat ion 
functions in the theory of free part icles in 1 + 1 dimensions . 
This basic quant i ty is a kind of 'detD\ where D is a t ime-
evolut ion opera to r (cont inuous or discrete) and 'det' is a sort 
of p roduc t over eigenvalues of D , which is usual ly expressed 
in the form of a functional integral , associated with free 
part icles (it is no t a priori gaussian in the original variables) . 
This quan t i ty is the mos t general definition of the T-funct ion. 

In pract ice one is usual ly m o r e specific. The mos t well-
studied version of T-function arises if one th inks abou t free 
part icles of a peculiar type: free fermions with quadra t i c 
Hami l ton i an and con t inuous t ime evolution, i.e. the theory 
of the s p i n - T j / ? , c-system (fermions), z) , i/f(z, z) , described 
by the functional integral 

T{A} ~Det (d + A) 

D ij/D \\f exp 

x exp 

( 1 

jd2z L27 
A(z ,z )5 (z -z)^{z)^{z) 

where z plays the role of t ime and A = A (z, z )5(z — z)dz dz 
is some 1; \ , l ) -b id i f ferent ia l (i.e. c o n t a i n s a factor 

o f d ? 1 / 2 d z d z 1 / 2 d z ) . 
Of course, one can th ink abou t m o r e general T-funct ions, 

involving m a n y fermions (this is often done) , and m o r e 
general b-, c- and /?-, y-systems, in par t icular , arising in the 
context of the W Z N W mode l associated with any K a c -
M o o d y algebra of any level.} It is also of interest to consider 
discrete t ime evolut ion (described by difference equa t ions 
ra ther t han in differential equat ions) , though , as usua l in the 
2d theories, this is no t really a independent p rob lem. 

J T h e m a i n t e c h n i c a l d i f f e rence b e t w e e n t h e g e n e r i c a n d t h e ' f r e e - f e r m i o n ' 
c a s e s is t h a t t h e L a g r a n g i a n o f g e n e r i c free-field t h e o r y is n o t j u s t 
q u a d r a t i c in t h e s c a l a r fields (p, b u t c a n a l so c o n t a i n p a r t i c u l a r 
c o m b i n a t i o n s o f e x p o n e n t s exp (cp). I t is a l s o w o r t h n o t i n g t h a t t h e m o s t 
g e n e r a l e x p r e s s i o n , q u a d r a t i c in s c a l a r fields, if r e w r i t t e n in t e r m s o f 
f e r m i o n s is in fact q u a r t i c ( b u t , o f c o u r s e , a g e n e r i c q u a r t i c i n t e r a c t i o n 
d o e s n o t a r i s e in t h i s w a y ) . T h e i n t e g r a b l e n a t u r e o f c e r t a i n q u a r t i c -
f e r m i o n i n t e r a c t i o n s is we l l k n o w n f r o m t h e t h e o r y o f T h i r r i n g m o d e l s ( in 
t h i s c l a s s o f m o d e l s i n t e r a c t i o n s a r e u s u a l l y l oca l ) . 
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In the language of mat r ix models the restrict ion to free-
fermion T-funct ions is essentially equivalent to the restriction 
to eigenvalue models . Serious considerat ion of noneigenvalue 
models, aimed at revealing their integrable (solvable) structure 
will certainly involve the theory of generic T-functions, bu t 
bo th these things are mat te r s for future research, and I shall 
not go into details abou t them in these notes . 

4.3 The T-function, associated with the free fermions 
Because of the specific form of the Lagrang ian in E q n (4.7) 
t h e f u n c t i o n a l i n t e g r a l can eas i ly b e r e p r e s e n t e d in 
Hami l ton i an form, provided the topology of the 2-surface 
on which (z,z) are coordinates^ is trivial (genus 0: sphere or 
annulus) . Name ly , consider \JJ and \J/ as opera to r -va lued 
funct ions of z only (not of the t ime_z) . T h e n the only 
th ing reminiscent of a kinetic te rm Jd2 I/ZDI// is the canonical 
commuta t i on relat ion 

M(z),Hz)}+ = S(Z-zWl/2dzl/2 . 

Then, 

T { A } ~ (0| exp 
JdzJdz 

N o w it is usua l to expand a r o u n d z 

|0> 

(4.7) 

(4.8) 

0: 

Hz) = £ Hz " d z 1 / 2 ; Hz) = £ Hz -N~LDZ1/2 ; 
nez nez 

^ J 0 ) = 0 for m < 0 ; j / r m |0) = 0 for m ^ O ; 

A ( * , ? ) = E 

so tha t 

z " - 1 zNAMN dz ll2&z1'2 

M , « E Z 

A A ( z , z ) l ^ ( z ) l A ( z ) = AmrAfJfn • 
JdzJdz M , N G Z 

In fact, this expansion could be a r o u n d any po in t zo and on a 
2-surface of any topology: topological effects can be easily 
included as specific shifts of the funct ional A(z,z) by a 
combina t ion o f ' hand le -g lu ing ope ra to r s ' . Ana logous shifts 
can imitate the change of basic functions zn for zn + oc and 
m o r e complicated expressions (ho lomorph ic ^-differentials 
with var ious b o u n d a r y condi t ions on surfaces of var ious 
topologies) . 

One can n o w consider whether local functionals 
A ( z , z ) = U(z)§(z-z)dzl/2dz 1 / 2 p lay any special role. The 
cor responding cont r ibu t ion to the Hami l ton i an looks likef 

/ /CARTAN = I U(Z) ^ ( z ) Hz) = I U(Z) J{z) , (4.9) 
Jdz Jdz 

where 

J(z) = Hz) Hz) = ^ ^ - " - ' d z (4.10) 
nez 

is the U(l)yt= i K a c - M o o d y current ; 

Jn = Y^m^m+n \ [Jm,Jn] = ™<W«, 0 . (4.11) 

f N o t e t h a t t h e n o r m a l i s a t i o n f a c t o r h e r e is d i f fe ren t b y a f a c t o r o f l/y/2 
f r o m t h a t in t h e d i s c u s s i o n o f d i s c r e t e m o d e l s in S e c t i o n s 2 . 3 , 2 .7 , a n d 2 . 8 . 
T h i s is n o t j u s t a c h a n g e o f notation, s i nce t h e M i w a t r a n s f o r m a t i o n c a n 
l e a d t o d i f fe ren t r e s u l t s w h e n t h i s n o r m a l i s a t i o n is c h a n g e d . See a f o o t n o t e 
in S e c t i o n 4 .6 b e l o w for m o r e d e t a i l e d d i s c u s s i o n . 

I f t h e sca lar func t ion ( p o t e n t i a l ) U(z) is e x p a n d e d as 

Hr (4.12) 
nez 

T h i s c o n t r i b u t i o n to t h e w h o l e H a m i l t o n i a n can b e 
considered to be special for the following reason. Let us 
re turn to the original expression (4.8) and t ry to consider it as 
a generat ing functional for all the correlat ion functions of XJJ 
and Naively, var ia t ion with respect to A(z,z) should 
p roduce the bilinear combina t ion \J/(z)X//(z) and this would 
solve the p rob lem. However , things are no t so trivial, because 
the opera to r s involved do not c o m m u t e (and in par t icular , 
the exponent ia l opera tor in Eqn (4.8) should still be defined 
less symbolically, see the next subsection). Things would be 
much simpler if one were to consider^a commuting set of 
opera to rs : this is where the abelian XJ(\)k=l subgroup of the 
entire G L ( o o ) ^ = i g roup (and even its purely commut ing Borel 
subalgebra) enters the game. Remarkab ly , it is sufficient to 
deal with this abelian subgroup in order to r ep roduce all the 
correlat ion functions.} The crucial po in t is the identi ty for 
free fermions (generalisable to any b, c-systems): 

:\l/(X)\j/(X): = :exp (4.13) 

which is widely k n o w n in the form of bosonisa t ion formulas:§ 
i f / ( z ) = 8</>(z), 

~ : exp[(0(1)]: { : 0 ( o o $ ( I ) : = :exp[0(1) - 0(oo)]:}, 

xjj{X) - : exp [ -0 (A) : {:xjj{X)^{oo): = :exp[0(oo) - 0(A)]:}. 

This ident i ty implies tha t one can genera te any bil inear 
combina t ions of i/f-operators by var ia t ion of the poten t ia l 
U(z) only; moreover , this var ia t ion should be of the specific 
form 

z - ' - ' d z 
J \kez I ^ kez J 

1 / 1 1 

kez 

tha t is 

k \zk 
(4.14) 

% I o n c e a g a i n e m p h a s i s e t h a t t h i s t r i c k is speci f ic t o free f e r m i o n s a n d for 
t h e level k = 1 K a c - M o o d y a l g e b r a s , w h i c h c a n b e e x p r e s s e d e n t i r e l y in 
t e r m s o f free f ields a s s o c i a t e d w i t h C a r t a n g e n e r a t o r s ( m o d u l o s o m e 
u n p l e a s a n t d e t a i l s , r e l a t e d t o ' c o c y c l e f a c t o r s ' in t h e F r e n k e l - K a c 
r e p r e s e n t a t i o n s [47], w h i c h a r e in fact r e m i n i s c e n t o f free f ields a s s o c i a t e d 
w i t h t h e n o n - C a r t a n g e n e r a t o r s ( p a r a f e r m i o n s ) [58]. T h e s e c a n , h o w e v e r , 
b e p u t u n d e r t h e c a r p e t a n d / o r t a k e n i n t o a c c o u n t ' b y h a n d ' a s u n p l e a s a n t 
b u t n o n e s s e n t i a l ^ ) s o p h i s t i c a t i o n s ) . 

§ T h e f o r m u l a s in b r a c k e t s a r e i n d e e d c o r r e c t ; b e f o r e t h e m t h e u s u a l 
s y m b o l i c r e l a t i o n s a r e w r i t t e n . U s i n g t h e s e f o r m u l a s w e get 

:\lf(X)ijf(X): = : exp [0(1) - 0 ( A ) ] : = : exp Q^</>) : = :exp Q*/^ : 

T h i s i d e n t i t y c a n o f c o u r s e b e o b t a i n e d w i t h i n f e r m i o n i c t h e o r y ; o n e 
s h o u l d t a k e i n t o a c c o u n t o n l y t h o s e i / f -opera tors t h a t a r e n i l p o t e n t , so t h a t 
t h e e x p o n e n t o f a s ing le ^ - o p e r a t o r w o u l d b e j u s t t h e s u m e o f t w o t e r m s 
( p o l y n o m i a l ) . 
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N o t e tha t this is not an infinitesimal var ia t ion and tha t it has 
exactly the form consistent with the M i w a paramet r i sa t ion 
used in Section 3. 

Since any bilinear combina t ion can be generated in this 
way from U(z), it is clear tha t the entire Hami l ton i an 
J2Arnn^m^n

 c a n a l s o ^ Q considered as result ing from some 
t rans format ion of V (i.e. of ' t ime-var iables ' tk). In other 
words , 

T{A} = 0A[t]T{A = U} . 

These opera to r s GA are na tura l ly interpreted as elements of 
the group GL (oo) , act ing on the 'universal G r a s s m a n n i a n ' 
[82, 83 , 84], p a r a m e t r i s e d b y the ma t r i c e s Amn m o d u l o 
changes of coo rd ina t e s z -> f(z). Th is r ep resen ta t ion for 
T { A } is, however , no t very convenient , and usual ly one 
considers an infinitesimal version of the t r ans fo rma t ion , 
which just shifts A: 

T{t\A+SA} = 6M[t]z{t\A} . (4.15) 

N o t e tha t this t r ans format ion clearly distinguishes between 
the dependencies of T on t and on all other componen t s of A. 
T h e possibi l i ty of us ing such a r ep resen ta t ion wi th the 
privileged role of C a r t a n gene ra to r s is the origin of all 
t h e s impl i f i ca t ions a r i s ing in t h e case of f ree- fermion 
T - funct ions. | 

Re la t ion (4.15) is the basis of the orbit in terpre ta t ion of 
T-funct ions [83]. It is also impor t an t to unde r s t and the role 
of the 's tr ing equa t ion ' and other constra ints , imposed on 
T-funct ions in the theory of mat r ix models . These arise as 
some par t icular subalgebras in the set of (9-operators , and 
their role is to specify par t icular poin ts , A, in the 
Gras smann ian , of which this subalgebra is a stabiliser. J The 
simplest examples are in fact provided by formulas from 
Section 2.3 above, where combina t ions of the screening 
charges describe As which are stable po in t s of discrete 
Virasoro and W-const ra in ts (in the latter case the mul t i -
fermion system is used). 

The fact tha t the T-function at all the po in t s A of a 
G r a s s m a n n i a n can be obta ined by the group act ion from 
T{0}, has an implicat ion, k n o w n as the H i ro t a equat ion . The 

f T h i s is a l s o t h e r e a s o n , w h y t h e s e a r e t h e f r e e - f e r m i o n T - f u n c t i o n s t h a t 
a p p e a r in t h e s t u d y o f o r d i n a r y i n t e g r a b l e h i e r a r c h i e s : t h e H a m i l t o n i a n 
f lows , w h i c h d e s c r i b e e v o l u t i o n in d i f fe ren t r - d i r e c t i o n s , j u s t c o m m u t e 
b e c a u s e t h e ts a r e a s s o c i a t e d w i t h t h e c o m m u t i n g C a r t a n g e n e r a t o r s o f 
G L ( o o ) . I n t h e m o r e g e n e r a l s i t u a t i o n t h e f lows w o u l d f o r m a c l o s e d , b u t 
nonabelian, a l g e b r a . 

J T h i s r e l a t i o n is s t r a i g h t f o r w a r d in t h e c a s e o f V i r a s o r o c o n s t r a i n t s , s ince 
V i r a s o r o a l g e b r a is j u s t a s u b a l g e b r a o f G L ( o o ) a c t i n g o n T - f u n c t i o n s , a n d 
t h u s is a s y m m e t r y ( c o v a r i a n c e ) o f t h e a s s o c i a t e d i n t e g r a b l e h i e r a r c h i e s 
[84]. ^ - c o n s t r a i n t s d o n o t f o r m a L i e - s u b a l g e b r a o f t h i s G L ( o o ) , t h e y 
a r i s e a f te r a c e r t a i n r e d u c t i o n , w h i c h in t u r n ex i s t s in a s i m p l e f o r m not 
e v e r y w h e r e o n t h e G r a s s m a n n i a n (in p a r t i c u l a r W is not a s y m m e t r y o f t h e 
e n t i r e K P h i e r a r c h y [85]: h e r e w e d e a l w i t h a m o r e s o p h i s t i c a t e d self-
c o n s i s t e n c y r e l a t i o n , w h i c h r e m a i n s t o b e u n d e r s t o o d in full d e t a i l (e .g . it 
is u n k n o w n w h e t h e r r e d u c t i o n ex i s t s a t a l l a t any V i r a s o r o - s t a b l e p o i n t , 
w h i c h w o u l d s i g n i f i c a n t l y s impl i fy t h i s k i n d o f c o n s i d e r a t i o n ) . I n fac t , t h e 
e n t i r e r e l a t i o n b e t w e e n t h e c o n s t r a i n t s a n d T - f u n c t i o n s is n o t e x h a u s t i v e l y 
w o r k e d o u t : for e x a m p l e , t h e r e is sti l l n o c l ea r a n d s a t i s f a c t o r y p r o o f t h a t 
t h e full set o f V i r a s o r o a n d / o r W - c o n s t r a i n t s i m p l i e s t h a t t h e p a r t i t i o n 
f u n c t i o n is a T - f u n c t i o n , w h i c h w o u l d b e p u r e l y a l g e b r a i c a n d n o t re fe r t o 
t h e u n i q u e n e s s o f s o l u t i o n s t o t h e c o n s t r a i n t s . T h e r e s u l t , w i d e l y d i s c u s s e d 
in t h e l i t e r a t u r e (see [29]) is t h a t t h e s t r i n g e q u a t i o n ( t h e l o w e s t V i r a s o r o 
c o n s t r a i n t L _ i Z = 0) , if i m p o s e d o n Z , w h i c h is s o m e h o w k n o w n t o b e 
t h e p r o p e r l y r e d u c e d T - f u n c t i o n , i m p l i e s t h e e n t i r e set o f V i r a s o r o a n d 
^ - c o n s t r a i n t s ( t h o u g h even t h i s p r o o f c a n st i l l h a v e s o m e l o o p h o l e s ) . 

idea [83] is jus t tha t there are Casimir opera to r s in the g roup , 
which c o m m u t e with the group action and thus the 
eigenvalue of the Casimir opera tor is the same for T { A } at 
all po in ts A . In the free-fermion case the simplest example of 
a Casimir opera tor is given by 

(4.16) 

The eigenvalue of this opera to r for the vacuum state |0) 
is an infinite s u b t r a c t i o n c o n s t a n t , a n d th is m a k e s t he 
equat ion J0OA\0) = 0AJo\0) = cons t • £> A |0) , or J0T{A} = 
const * T { A } , no t very interesting. However , this opera tor is 
represented in bilinear form and in such cases the following 
trick is usually useful. 

If the opera tor TaTa, which is bilinear in the genera tors 
of the algebra, commutes with the act ion of the g roup , so 
does Ta®Ta if the group act ion on the tensor p roduc t of 
representa t ions is defined as |) ® |) —> OA |) ® OA |) . Indeed, 
(Ta®I + 1 ® Ta)2 then commutes with the group act ion 
and so does Ta®Ta = \ \{Ta <g> I + I <g> Ta)2-TaTa <g> I -
I <g> TaTa)]. If, further, Ta ®Ta annihi la tes the p roduc t of 
two vacuum states: 

(ra<g)ra)|o)(g)|o) = o, 

then the same equat ion holds for all A: 

(Ta®Ta)\OA)®\OA) = 0 . 

Condi t ion (4.17) is trivially valid in our case: 

2>„ |o>®&, |o> = o , 

(4.17) 

(4.1* 

(4.19) 

since in every term in the sum, one of the vacuum states is 
annihi la ted: the first one if n ^ 0 and the second if n < 0.§ 
Thus , we obta in the relat ion 

£ > J 0 A > ® ^ 0 A > = O , (4.20) 
nez 

which can n o w be multiplied from the left by 

((#(00) exp[# C ar tan(0] ® e X P [^CARTAN (O] 
(t'k need not coincide with tk) and after the i/f-operators are 
expressed as the t ime shifts, we obta in 

Y,D-x{t\A}®D+

nx{t'\A} = Q, 
n^Z 

where 

' ±Y—— 
^ kzk dtk 

(4.21) 

n^O \ k>0 

This is a par t icular form of the H i ro t a equat ion [86], which is 
often used to define T-funct ions, associated with integrable 
hierarchies. If one takes E q n (4.8) for the definition, as it is 

§ I t is e a s y t o ver i fy d i r e c t l y t h a t J2n ® i s i n d e e d a C a s i m i r o p e r a t o r 
in t h e t e n s o r p r o d u c t 

n l,m l,m 
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m o r e na tu ra l to do in the general ' theory of everything ' and 
as we did above, E q n (4.21) is the star t ing poin t for the pa th , 
leading to hierarchies in convent ional form of differential 
equat ions ; the L a x and pseudodifferential representa t ions 
naturally appear ing on the way. I do no t go a long this pa th in 
these notes . 

The last r emark to be made , before I proceed to m o r e 
detailed formulas, is tha t T-funct ions can be considered 
as the de te rminan ts Detd of the 8-operators act ing on 
fields with some complicated b o u n d a r y condi t ions [like 
i/f(z)~ e x p ( ^ > 0 tkZ ~k) in the simplest cast of f-dependen-
cies]. Ent i re A-dependence is usual ly described in this context 
as tha t on poin ts in the 'universal modu le space' , which once 
appeared in the s tudy of string models on R i e m a n n surfaces 
of a rb i t ra ry genus [87]. F r o m this po in t of view, m o r e general 
T-funct ions are sections of the bundles over the universal 
modu le space associated with conformal models and is m o r e 
sophist icated than jus t the theory of free fermions (and b-9 c-
systems). The W Z N W mode l is, of course, the mos t 
impor t an t example to be studied in this context . 

The crucial feature of all the quant i t ies associated in this 
way to conformal models is the applicabil i ty of the Wick 
theorem, reducing mul t ipoin t correlat ion functions to pair 
corre la tors . In the free-fermion case this is just a consequence 
of the quadra t i c form of the Lagrang ian ; in the generic 
s i tuat ion this follows from the existence of ho lomorph ic 
opera tor algebra, which allows one to define the corre la tors 
by fixing the m o n o d r o m y proper t ies dictated by the pairwise 
collision of poin ts . The Wick theorem is the concrete source 
of de te rminant formulas for T-funct ions, which are used in 
order to establish their re lat ions with mat r ix models and 
other b ranches of string theory. 

After this discussion of the context where free-fermion 
T-funct ions can and do appear , I tu rn n o w to m o r e detailed 
and exact formulas tha t are relevant in this par t icular free-
fermion case. The only sophist icated par t of the work with 
these formulas is the accura te account ing for the n o r m a l 
order ing rou t ine [88] (mostly due to the Japanese school [88], 
t hough m a n y other people cont r ibuted to this field after it 
was established), which will be most ly unnecessary for our 
purposes . In the main , I shall follow the presenta t ion of [30, 
36, 89]. 

4.4 Basic determinant formula for the free-fermion 
correlator 
Let us consider the following mat r ix element: 

TN{tJ\G} = (N\Qxp(H)GQxp(H)\N) , (4.22) 

where 

Hz) = J2H-z"dz >/2 ; Hz) = J2^nZ-"-ldz >/2 ; 
nGZ nGZ 

G = expf ^ Amn\jjJ/n \ ; 

\ m , n G Z / 

H = ^^tkJk , H = Y^tkJ-k ; 
k>0 k>0 

J(z) = Hz)Hz) = ^ z - ^ d z ; Jn = J2HH+n ; 
nez k 

[^m^n]+ =<>m,n \ [Jm,Jn] = m3m+n^0 \ 

lj/m\N)=0, m<N; (N\\l/m = 0, m^N; 

i/fm\N)=09 m^N; (N\ifrm=0, m<N; 

Jm\N)=0, m > 0 ; (N \ Jm = 0 , m < 0 . (4.23) 

The W t h vacuum s ta te ' \N) is defined as the Di r ac sea, filled 
up to level N: 

oo _ N-l 

\n) = I[h°°)= II * . - l - ° ° > ; 

N-l 

(N\ = (oo\l[^ = (-oo\ J] +i (4.24) 

where the ' empty ' (bare) and 'completely filled' vacua are 
defined so tha t : 

^ m | - o o ) = 0 , ( - o c # m = 0 , 

tfrjoo)=0, < o c # m = 0 , (4.25) 

for any m G Z . F o r the same reason tha t ope ra to r s / / , H, 
and G are defined so tha t they have usual ly \j/ at the very 
right and \j/ at the very left, we have also: 

Jm \ - oo) = 0 , (-oo\Jm = 0 , 

G±l\-oo) = \-oo); {-oo\G±l = {-oo\ ; 

e x p ( ± / 7 ) | — oo) = | — oo) ; (—oo| e x p ( ± / / ) = (—oo| . 
(4.26) 

N o w one can use all these formulas to rewrite the original 
correlator E q n (4.22) as: 

(N\Qxp(H)GQxp(H)\N) 

= ( - o o | ( [ ] < M e x p ( # ) G e x p ( H ) [ ] ^ ; j| - oo) 

= < - o o | exp(- f f ) ^ 4>}j exp(ff) G 

xexp( f f ) ( f[ ^ . J e x p ( - f f ) | - o o > 
1=—OO 

N-l N-l 
<-oc| n m n v?n-<x>) 

i=—oo j=—oo 

= D e t _ 0 0 < u < i V ( - o o | ^ W ^ J

G [ n i - oo) 

= T>&i9J<oHi+N9J+N . (4.27) 

The last two steps here in t roduce 'GL(oo) - ro ta ted ' fermions, 

y ^ ] = e x p ( - H ) ^ e x p ( H ) ; 

Wj[t}=QxV(H)^jQxV(-H) ; 

Wf[t] = GWj [t]G~l ; (4.28) 

and an appl ica t ion of the Wick t heo rem to express the 
mult i fermion correlat ion function th rough pair correla tors : 

^ ^ 0 = ( - o c | ^ W ^ G [ r ] | - o o ) 

= (-oo\Wi[t]GWj[t]\-oo) , (4.29) 

(once again the fact tha t G ~ l\ — oo) = | — oo) was used). The 
only nontr iv ia l dynamica l informat ion entered th rough the 
use of the Wick theorem, and for tha t it was crucial tha t all 
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the opera to r s e x p ( / / ) , e x p ( H ) , G are quadratic exponents , 
i.e. can only modify the shape of the p ropaga to r , bu t do no t 
destroy the quadra t i c form of the act ion (fields remain free). 

This is exactly equivalent to the s ta tement tha t 'Heisenberg ' 
ope ra to r s W[t] are just ' r o t a t ions ' of x//9 i.e. tha t t r ans fo rma
t ions (4.28) are linear. 

I shall n o w describe these t rans format ions in a little m o r e 
detail . Namely , their entire t ime-dependence can be encoded 
in te rms of Schur polynomials , Pn(t). These are defined to 
have a very simple generat ing function (which we have 
al ready encountered m a n y t imes in the theory of mat r ix 
models) : 

^Pn(t)zn = exp \^2tkz 
k=l 

(4.30) 

(i.e. P0 = 1, Px = tl9 P2 = \t\ + r , etc.), and satisfy the 
relat ion 

SPn = P n-k (4.31) 

Since 

expf ^ t k z 
k=\ 

n e 
k>0 \nk ^ 0 

_f

nk„ knk 

\ l k Z 

the Schur po lynomia ls can also be represented as 

p«{t) e ( n _fnk (4.32) 

1 

N o w , since 

Qxp(-B)A Qxp(B) =A + \A,B]+^[\A9B]9B] 

1 
+ - [ [ [ A , , 

and 

Wi* Jk] = ^i+k > [Wi, J h l Jk2] = ^i+kl+k2> 

we have, for every fixed k9 

t "k 

GXp(-tkJk)\l/iGXp(tkJk)= ^ — ^ i + k n , 

It r e m a i n s to n o t e t h a t al l t h e h a r m o n i c s of / in 
H = J2k>o tkJk c o m m u t e with each other , which yields: 

Vi(t)=QxV(-H)^iQxV(H) 

= U exp 
_k>0 

JJexp(^Jife) 
k>0 

n ^ 0 " kn.=n\\k>0nk' ink\J2k>0knk=n} 

( 4 . 3 2 ) 

n S= 0 

Similarly, the relat ion [Jk, ipj] = ij/k+j implies tha t 

y /(F) = exp(ff)^ .exp(-ff) 

= £ H+nPn(t) = H,Pm-j(t) (4.34) 
n ^ 0 m ^ j 

and f inal ly! 

^ (-oc^G^J-oc^MP^jit) 
i9m 

= ^ TimPi_i(t)Pm-j(t) , 
/ ^ z, m ^ j 

which implies also tha t 

(4.35) 

(4.36) 

The mat r ix 

Tlm = < - o c # z G i A m | - o o ) (4.37) 

is the one which defines fermion ro ta t ions under the action of 
the GL (oo) g roup element G: 

Gil/mG~l = ^^{run ; 
lez 

G-^lG = YJTi^m, or G^G-1 =J2(T-X,H 
mez 

(4.38) 

I f G = 1, Tlm= Slm. I fa l l f* = 4 = 0 , t h e n ^ = Ttj. 

4.5 Toda-lattice T-function and linear reductions of the 
Toda-lattice hierarchies 
In the previous subsection I derived a formula, 

TN{t9t\G} = Deti9J<oHi+Ny j+N (4.39) 

for the bas ic cor re la tor , which defines the 'Toda- la t t i ce 
T - funct ion ' . F o r obvious reasons , t is often referred to as 
negative-t ime. The T-function can be normal ised by dividing 
by the same quant i ty for all vanishing t ime-variables, bu t this 
is no t a lways convenient . E q n (4.39) has genera l i sa t ions 
when similar mat r ix elements in a mult i fermion system are 
c o n s i d e r e d — th i s l eads to ' m u l t i c o m p o n e n t T o d a ' (or 
A K N S ) T-funct ions. Genera l i sa t ions to a rb i t ra ry conformal 
models should be considered as well. It has also par t icular 
' r educt ions ' , of which the most impor t an t are: K P , forced 
(semi-infini te) , a n d T o d a - c h a i n T - func t ions . Th i s is t he 
subject to be discussed in this subsection. 

The idea of linear reduct ion is tha t the form of the 
opera tor G or, equivalently, of the mat r ic Tim in Eqn (4.35), 
can be adjusted in such a way tha t XN{t,t\G} becomes 
independent of some variables; i.e. equat ion(s) 

\ k o T k k o T k k j 
(4.40) 

can be solved as equa t ions for G for all the values of t9 t9 and 
N at once. [In E q n (4.40) DN(k)fN =fN + k~fN-] In this case 
the system of integrable equa t ions (hierarchy), arising from 

f E q n s (4 .34) c a n b e a l so i n t e r p r e t e d a s r e p r e s e n t a t i o n s o f S c h u r 
p o l y n o m i a l s in t e r m s o f f e r m i o n i c c o r r e l a t o r s in t h e b a r e v a c u u m : 

Pm(t) ( - o o | ^ J + m exp(H)\l/j\ - oo ) 

Pm(t) ( - o o | & e x p ( t f ) ^ f + m | - oo) . 
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the H i ro t a equat ion for T , gets reduced and one usually 
speaks abou t a ' reduced hierarchy ' . Usua l ly Eqn (4.40) is 
imposed directly on mat r ix Titj; of course, then E q n (4.40) is 
just a corollary. 

I shall refer to the si tuat ion when Eqn (4.40) is fulfilled 
for any t9 t9 N as a ' s t rong reduct ion ' . It is often reasonable to 
consider also 'weak reduct ions ' , when E q n (4.40) is satisfied 
on par t icular infinite-dimensional hyperplanes in the space of 
t ime-variables. Weak reduct ion is usual ly a p rope r ty of the 
entire T-funct ion as well, bu t is no t expressible in the form of a 
local linear equat ion , satisfied identically for all values of t9 t9 

N. N o w I proceed to concrete examples. 

Toda-chain hierarchy. This is a strong reduct ion. The corres
p o n d i n g constra int E q n (4.40) is just 

dHtj dHij 

dh dh 

or , b e c a u s e of E q n (4.36) , Tb + kj 
obvious solution: 

Ti[9j = Wi+j , 

(4.41) 

Hij + k- It h a s an 

(4.42) 

i.e. Titj is expressed in te rms of a one- index quant i ty Tit. It is, 
however , no t enough to ask wha t the restr ict ions on Titj 
are — the equa t ions should be satisfied for all t and Fat once, 
i.e. should be resolvable as equa t ions for Tim. In the case 
under considerat ion this is simple: Tim should be such tha t 

Tim = fl+m . (4.43) 

Indeed, then 

= ^^TimPi_i(t)pm-j(i) = f i+mp i-j(t)p m-j(j) 
/, m 

= ^2 Tn+i+j 
n^0 

and 

Hi = f -
n^0 

YPk{t)Pn-k{t) 
k=0 

YPk(t)Pn-k(t) (4.44) 

Volterra hierarchy. T h e T o d a - c h a i n T - func t i on can b e 
further weakly reduced to satisfy the identi ty 

d T 2 ; V 

8; 2k+l 
= 0 , for all k (4.45) 

{?2/+l=0} 

i.e. T2N is required to be an even function of all odd- t imes 
tn+i (this is an example of 'global charac ter i sa t ion ' of the 
weak reduct ion) . N o t e tha t E q n (4.45) is imposed only on 
Toda-chain T-funct ions with even values of zero-t ime. Then 
E q n (4.45) will hold whenever Tit in Eqn (4.44) are even 
(odd) functions of tQdd for even (odd) values of /. Since Schur 
po lynomia ls Pk (t) are even (odd) functions of odd- t imes for 
even (odd) k, it is enough tha t the sum in E q n (4.44) goes 
over even (odd) n when / is even (odd) . In other words , the 
restriction on Tim is tha t 

Tim = T\ l+m j and 2k+\ = 0 for all k (4.46) 

Forced hierarchies. This is ano ther impor t an t example of 
s t rong reduct ion. It also provides an example of singular 
T-function, arising when 

G = QXv(YAmnll/m^n) 

blows up and n o r m a l order ing opera to r s should be used to 
define regular ised T - func t ions . F o r c e d h ie ra rchy appea r s 
when G can be represented in the form [89] G = GoP+, 
where project ion opera to r P+ is such tha t 

P+\N) = \N) for N ^ No 

p+\N) = 0 for N < No . (4.47) 

Explicit expression for this opera to r i s | 

P+ = : exp ( - £ MA : = n 0 - ^ ) = I I ^ -

B e c a u s e of (4 .47) , P + | - o o ) = 0, a n d t h e i d e n t i t y 
G| — oo) = | — oo), which played an essential role in the 
derivat ion of (4.27), can be satisfied only if Go is singular 
and Tim = oo. In order to avoid this p rob lem one usually 
in t roduces in the vicinity of such singular po in t s in the 
universa l m o d u l e space a sort of a normal i sed (forced) 
T-function T ^ = TN/TNQ. One can check tha t n o w Tlm = oo 
for all /, m < No, and T F can be represented as de te rminant of 
a finite d imensional ma t r ix [90, 89]. 

TN— Detiv0 ^ i9j<Nl~Lij 9 

T jy = 0 , for N < No 

for N > N0 

(4.48) 

F o r N > No we h a v e n o w a d e t e r m i n a n t o f a finite-
dimensional (N -No) x (N-No) matr ix . The choice of No is 
no t really essential; therefore it is bet ter to pu t No = 0 in 
order to simplify the formulas , phras ing , and relat ions with 
the discrete mat r ix models (No is easily restored if everywhere 
N is subst i tuted by N-No). F o r forced hierarchies one can 
also represent T* as 

Tf

N=DQt0<i9J<NQ[d/1Hf, (4.49) 

where Hf = Hoo and dx = d/dtl,dl = 8/8^. F o r the forced 
Toda-chain h i e r a r c h y t h i s t u r n s in to an even s imple r 
expression: 

D e t 0 ^ i,j<N (4.50) 

while for the forced Volterra case we get a p roduc t of two 
Toda-cha in T-funct ions with a halvedvalue of N [91]: 

x[N = ( D e t 0 < i , j < N 8 ^ W f ) ( D e t 0 < , , J < N 8 ^ ( 6 2 H f ) ) 

= 4 [ ^ f ] 4 M f ] - (4.51) 

Forced T ^ can always be represented in the form of a 
scalar-product mat r ix model . Indeed, 

Tiij = Y] TimPi-i(t)Pm-j(J) 

(4.52) = ojexv[U(h) + U(h)]hlhJT (h9h) dhdh , 

where T(h, h) = J2im Timh~l~lh~m~\ and 

exp[£/(/*)] = exp = 5 > ^ / M • 
\k>n / Z ^ 0 

f N o r m a l o r d e r i n g s ign : : m e a n s t h a t a l l o p e r a t o r s \j/ s t a n d t o t h e left o f 
a l l o p e r a t o r s i//. T h e p r o d u c t a t t h e r . h . s . o b v i o u s l y i m p l i e s b o t h t h e 
p r o p e r t y (4 .47) a n d t h e p r o j e c t i o n p r o p e r t y — P+. 
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Then , since 

(this is where it is essential tha t the hierarchy is forced), 

Vet0<i9J<NHij = Y[^OQxp[U(hi) + U(hi)} 

xT(hi9hi) dhidhi AN(h)AN(h) , (4.53) 

i.e. we obta in a scalar-product mode l with 

dnhj = exp [£/(/*) + U(h)]T(h,h)dhdh . (4.54) 

The inverse is also t rue: the par t i t ion function of every scalar-
p r o d u c t m o d e l is a forced Toda- l a t t i ce T - func t ion — see 
Section 4.7 for m o r e details. 

KP hierarchy. In this case we just ignore the dependence of 
the T-funct ion on t imes t. Every Toda- la t t ice T-function can 
b e c o n s i d e r e d also as a K P T - f u n c t i o n : t h e o p e r a t o r 
G K P = GexpH (a poin t of the G r a s s m a n n i a n ) becomes t 
dependent . Usua l ly N dependence is also eliminated — this 
can be considered as a little m o r e sophist icated change of 
G. W h e n N is fixed, extra changes of field-variables are 
allowed, including the t rans format ion from the R a m o n d to 
t h e N e v e u - S c h w a r z ( N S ) sec tor , e tc . Of ten t h e K P 
hierarchy is formulated from the very beginning in te rms of 
N e v e u - S c h w a r z ( a n t i p e r i o d i c ) f e r m i o n i c f ields, I / ^ N S , 

associated with pr incipal representa t ions of K a c - M o o d y 
algebras) i.e. expansions in the first line of E q n (4.23) are in 
semi-integer powers of z: *ANS(z) = Z)«ez ll/nz &z l/2. 

Given a K P T-funct ion one can usually construct a T o d a -
lattice one with the same G b y int roducing, in an appropr i a t e 
way, dependences on /"and N. F or this pu rpose T k p should be 
represented in the form of E q n (4.39): 

4.6 Fermion correlator in M i w a coordinates 
Let me n o w re turn to the original correla tor Eqn (4.22) and 
d i scuss in a l i t t le m o r e de ta i l t h e i m p l i c a t i o n s of t h e 
b o s o n i s a t i o n iden t i ty E q n (4.13). In o rde r no t to wr i te 
down integrals of / , I in t roduce the scalar fieldt 

• £ i 
k^O K 

kez-o 

-zk + (/>o+^o lnz (4.59) 

such tha t 80(z) = J(z). Then E q n (4.13) states tha t 

: \l/(X)\j/(X): = : exp [0(1) - 0(A)]: . (4.60) 

' N o r m a l o r d e r i n g ' he r e m e a n s n o t h i n g m o r e t h a n t h e 
r e q u i r e m e n t to neg lec t all m u t u a l c o n t r a c t i o n s (or 
correla tors) of opera to r s between the colons when the Wick 
theorem is applied to evaluate correlat ion functions. One can 
also get rid of the n o r m a l order ing sign on the l.h.s. of 
E q n (4.60), then 

\l/(X)\j/(Ji) = : exp [0(1)]: : exp [-0(A)]: . (4.61) 

In dist inguished coordina tes on a sphere, when the free-field 
p r o p a g a t o r is just l n ( z - z ) , one also has 

1 

M y task n o w is to express opera to r s exp (H) and exp (H) in 
te rms of the field 0. This is simple: 

H = i U(z) J(z) = I U(z) 80(z) = - 1 0(z) QU(z) . (4.62) 
Jo Jo Jo 

Here , as usual , U(z) = X^>o h z k a n < ^ t n e m t e g r a l is a r o u n d 
z = 0. This is very similar to the generic linear functional of 

T K P { f | G } = D e t i , i < 0 ^ (4.55) H = (4.63) 

where Hf? = J2i TyP^it). Since Tlm is a function of G only, 
it does no t change when one cons t ruc t s a Toda - l a t t i c e 
T-funct ion: 

one should require only t h a t } 

z - l 
dX , 

TN{t,t\G} = VG%j<0Hi+N, j+N tha t is 

n y = ^T^PUt)Pn,-j(jf)=^7^Pm-j(t) . (4.56) t/(z) = | l n ( l - i ) / W d A . 
/, m 

Then, 

z™{t\G}=z0{t,0\G} 

If one goes in the opposi te direction, when the Toda- la t t ice 
T-function is considered as K P T-funct ion, 

In te rms of t ime-variables this means tha t 

1 

(4.57) 
tk 

dX . 

(4.64) 

(4.65) 

Here , one requires tha t U(z = 0) = 0; sometimes it can be 
m o r e na tu ra l to in t roduce also 

T0{tJ\G} = TK?{t\G(t)} 9 

m 

flj{G{t)} = Y,TiAG}Pm-j{t) 

to = J in (A)/(A) dX . (4.66) 

(4.58) 

T h e K P r e d u c t i o n in its t u r n h a s m a n y fur ther w e a k 
r e d u c t i o n s ( K d V a n d B o u s s i n e s q b e i n g t h e s imples t 
examples). I shall ment ion them again in Section 4.9, after 
the M i w a t rans format ion of representa t ion Eqn (4.39) has 
been considered in the next subsection. 

This change from t ime-variables to ' t ime densi ty ' , f(X)9 is 
k n o w n as the M i w a t rans format ion . In order to establish the 

f O n e c a n c o n s i d e r (j) a s i n t r o d u c e d for s i m p l i c i t y o f n o t a t i o n , b u t it 
s h o u l d b e k e p t in m i n d t h a t t h e sca la r - f i e ld r e p r e s e n t a t i o n is in fact m o r e 
f u n d a m e n t a l for generic T - f u n c t i o n s n o t r e l a t e d t o t h e level k = 1 K a c -
M o o d y a l g e b r a s ( th i s p h e n o m e n o n is we l l k n o w n in C F T , see [16] for 
m o r e d e t a i l s ) . 

J A s is u s u a l n o w a d a y s , a f a c t o r o f 2ni is a s s u m e d t o b e i n c l u d e d in t h e 
d e f i n i t i o n o f t h e c o n t o u r i n t e g r a l <J>. 
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relat ion with fermionic representa t ion and also with mat r ix 
models we shall need it in 'discretised' form: 

to : (4.67) 

The integral over A has been replaced by a discrete sum, 
i.e. the density func t ion / (A) is a combina t ion of 8-functions 
picked at some po in t s A7, A7. This is, of course, just ano ther 
basis in the space of linear functionals, bu t the change from 
one basis to ano ther is highly nontr ivial . The th ing is tha t the 
basis has been selected where the ampl i tudes of the different 
8-functions are the same', the pa ramete r ^ in E q n (4.67) is 
independent of y. Thus , the real p a r a m e t e r s are jus t the 
pos i t ions of the po in ts A7, A7, while the ampl i tude is defined 
by the density of these po in t s in the integrat ion ( summat ion) 
domain . This domain does no t need to be specified a priori: it 
can be the real line, any other con tour o r — b e t t e r still — 
some R i e m a n n surface. The pa rame te r ^ is also unnecessary 
because bases with different £ are essentially equivalent . 
I shall soon pu t it equal to one, bu t no t before the M i w a 
t rans format ion has been discussed in a little m o r e detail. 

Subst i tut ion of E q n (4.63) into Eqn (4.67) gives 

(4.68) 

In fact, wha t is needed is no t the opera to r H itself, bu t the 
state which is created when e x p ( / / ) acts on the vacuum state 
(N |. Then , since (N \Jm = 0 for m < 0, (N | exp[-£</>_(A)] is 
e s sen t i a l ly e q u i v a l e n t to (N | exp[— ^</>(A)] w i t h </>-(A) 
rep laced b y 4>(X). I f ^ = 1, exp[ — </>(A)] can be fur ther 
changed for \jj(X) and one obta ins an expression for the 
correlator (4.22), an expression where exp (H) is replaced 
by a p roduc t of ope ra to r s xl/(ky). The same is, of course, t rue 
for exp (H). Then the Wick theorem can be applied and a new 
type of de te rminant formula arises, like, for example, 

A(lJ) 
^ d e t ^ ( A f | i A ( ^ ) < K W W) (4.69) 

A2{X)A2{X) 

It can also be obta ined directly from E q n s (4.27), (4.29), and 
(4.35) by M i w a t rans format ion . The rest of this subsection 
describes this derivat ion in somewhat m o r e detail . 

The first task is to replace </>_ by </>. F o r this pu rpose I 
in t roduce the opera tor 

tkJk=H++H_ (4.70) 

w h e r e t f + = X^>o h^k is just our old H; H_ = E ^ o ' - ^ 
a n d ' n e g a t i v e t i m e s ' t_k a r e def ined b y ' a n a l y t i c a l 
con t inua t ion ' of the same formulas (4.65) and (4.67): 

t-k 

Then 

J2 tkJk=H+ + H. = -^ 
k——oo 

Fur the r , 

. (4.72) 

exp(H+ +H-) = exp [ - ^ ( 0 ] exp(H+) exp (H_) 

= exp [±s(t)] e x p ( H _ ) exp(H+) , (4.73) 

where 

s(t) = ^2ktkt_k 

A 

k>o L y x ' s 

k>0 

^ 2 l n n 
( 1 - V A y ) ( l - Ag/Ay) 

( 1 - V ^ ) 0 - W ) 
+ const , (4.74) 

w h e r e t he p r i m e m e a n s t h a t the t e r m s wi th y = 3 a re 
excluded from the p roduc t in the numera to r and accounted 
for in the infinite ' cons tant ' , added on the r .h.s . In other 
words , 

]^[(A7 - h){hy - As) 
y>d 

exp [ ^ ( 0 ] — const 

= const x 

y s 

'A2(X)A2(X) 

A(k,k) 
(4.75) 

Since {N\Jm= 0 for all m < 0, we have {N | exp ( / / _ ) = {N\, 
and therefore 

(N | exp(H ) = (N\ exp(H+) = (N | exp (H_) exp(H+) 

= exp [~\s(t)] {N | exp(H+ +H_) . (4.76) 

F r o m E q n (4.72), 

exp ( # + + # _ ) 

= const x Y[ : e x p [ - ^ ( A y ) ] : :exp[£</>(A7)]: , (4.77) 
y 

where 'const ' is exactly the same as in E q n (4.75). If Q = 1, 
E q n (4.61) can be used to w r i t e | 

( # | e x p ( # ) 
A(k9k) 

A2(X)A2(X) 

f T h e v a l u e o f £ c a n b e c h o s e n t o su i t p a r t i c u l a r p u r p o s e s . H e r e I i m p o s e 
t h e r e q u i r e m e n t t h a t t h e M i w a t r a n s f o r m r e p r e s e n t s Qxp(H) = 
Qxp(Hcartan) a s a p r o d u c t o f d i m e n s i o n - ^ o p e r a t o r s — t h i s is m o s t 
n a t u r a l f r o m t h e p o i n t o f v i e w o f H i r o t a e q u a t i o n s a n d s impl i f i es t h e 
r e l a t i o n w i t h i n t e g r a b l e h i e r a r c h i e s . H o w e v e r , in S e c t i o n 2 .7 a n d 2 . 8 1 u s e d 
a n o t h e r r e q u i r e m e n t ( a n d t h e r e £ = \/y/2 r a t h e r t h a n £ = 1). T h e r e t h e 
1 -ma t r ix m o d e l , w h i c h is c h a r a c t e r i s e d b y a n e spec i a l l y s i m p l e f o r m o f t h e 

full H a m i l t o n i a n ( p r o d u c t o f d i m e n s i o n - z e r o o p e r a t o r s ) , w a s c o n s i d e r e d 
a n d it w a s m o r e i m p o r t a n t t o a d j u s t o p e r a t o r s w h i c h a r i s e f r o m 
oxp(Hcartan) a f te r M i w a ^ t r a n s f o r m a t i o n so t h a t t h e y h a v e s i m p l e 
c o r r e l a t o r s w i t h e x p ( A ^ ) . W h e n a n a l y s i n g t h e 1 -ma t r i x m o d e l f r o m 
t h i s p o i n t o f v i e w o n e s h o u l d a l s o k e e p in m i n d t h a t it w a s a c t u a l l y 
r e p r e s e n t e d in S e c t i o n 2 .3 in t e r m s o f two c o m p l e x f e r m i o n s . T h e 
s c r e e n i n g c h a r g e s a r e 

exp(\ /2(/>) = K I ( F 2 = 0 )exp(( / ) 1 — <f>2) , 

Q ( ) = J e x p ( - V 2 0 ) = 'Ai J exp ( ( /> 2 - , 

w h i l e <j) — ( l / \ / 2 ) ( ( / > i — <j)2). T h e H a m i l t o n i a n is 

# C a r t a n = = ^ ^ h {J \ - J\) , 

v 2 V 1 k 
a n d t h e M i w a t r a n s f o r m a t i o n g e n e r a t o r s a r e o p e r a t o r s XiXi^ w h e r e X\ a n d 
#2 h a v e d i m e n s i o n | [ r a t h e r t h a n \ a s in t h e o n e ( c o m p l e x ) - f e r m i o n s y s t e m 
c o n s i d e r e d in this s e c t i o n ] . 



38 A M o r o z o v 

Similarly, 

exp (ff)|AO = I I 
A(X,X) 

A2(X)A2(l) 
, (4.79) 

where 

and I used the fact the Jm\N) = 0 for all m > 0. Final ly, 

TN{tJ\G} = (N\Qxp(H)GQxp(H)\N) 

A(Xj) A(xJ) 
1 ' y A2{X)A2{X) A2{X)A2{X) 

Singu l a r i t i e s a t t h e c o i n c i d i n g p o i n t s a r e c o m p l e t e l y 
el iminated from this expression, since poles and zeroes of 
the co r re l a to r a re cancel led b y t h o s e c o m i n g from the 
Van der M o n d e de te rminants . 

Let me n o w pu t N = 0 and define the normal ised 
T-funct ion: 

T0{t,t\G} 
t0{t,t\G} = 

T 0 { 0 , 0 | G } ' 
(4.82) 

i.e. divide the r .h.s . of E q n (4.18) by (0 |G |0 ) . The Wick 
theorem n o w allows one to rewrite the correlator on the 
r.h.s . as the de terminant of the block mat r ix 

(0\iP(Xy)iP(Xs)G |0> <<#(A 7 ) Gtfrfo) |0> 

_ ? ' G | 0 > 

( 0 ^ ) 0 ^ ( 3 , ) 
(0 |G |0) 

<0|G|0>_ 

(0 |G |0) 

(4.83) 

Special choices of poin ts Xy, ...,Xs can lead to simpler 
formulas . If Xy —> I 7 , so tha t tk —> 0, the mat r ix elements 
at the lower right block in the mat r ix (4.83) b low up , so tha t 
the off-diagonal b locks can be neglected. Then 

z0{t,I\G}^zK?{t\G} = -
| e x p ( f f ) G | 0 ) 

(0 |G |0) 

A(X,X) . d ^ W ( y W G | 0 ) , ^ 
(0 |G |0) A2{X)A2(X) 

This function no longer depends on F-times and is jus t a K P 
T - funct ion. 

T h e mat r ix element 

<0|<KW(I)G|0) 
cp(x,x) 

( 0 | G | 0 ) 
(4.85) 

is s i ngu la r w h e n X —> X : cp(X, X) —> \/(X — X). I f n o w in 
E q n (4.84) all X -> oo, 

kp rt i r X _ dety<3 (ps(Xy) 
1 1 l _ A{X) ' 

where 

9,(A) = <0|<KA)(8'-1£)(oo)G|0) 

(4.86) 

l + O 

(4.87) 

This is the m a i n d e t e r m i n a n t r ep re sen ta t i on of the K P 
T-function in the M i w a paramet r i sa t ion . 

Star t ing from representa t ion (4.86) one can restore the 
cor responding mat r ix 7if? in E q n (4.55) [36]: 

(4.80) tha t is 

(4.88) 

(4.89) 

Then obviously 

KP 
ni+kJ 

N o w one needs to p rove tha t the T-function is given at once 
by det^y(X$)/A(X) and Det7Y^ p {t}. In order to compare these 
two expressions one should take tk = (1 /k) J2y Kk:, so tha t 

k>0 =1 " 7 

H E M E •Xy A(X) 

where 

(4.90) 

(4.91) 

and 

, ( - i r % ( A ) , 
1(1) V - A ) 

(4.92) 

As long as « is kept finite, 

o, 

since it is obvious from E q n (4.92) tha t the r ank of the mat r ix 
is e q u a l to n. T h e r e f o r e , let u s cons ide r t h e m a x i m a l 
nonvanish ing de terminant , 

Det_/v ^ y / < o « £ P | t k = ± Y n X -

det7J- CPj(Xy) 

(-iy+1Ay(x) 

X'MX) 
&etyj<Pj{Xy) 

(4.93) 

I used here the fact tha t de te rminant of a mat r ix is a p roduc t 
of de te rminants , and reversed the signs of / and j . Also used 
were some simple relat ions: 

d e t h i p > 

n 
1 1 

( - 1 ) 
\n{n-\) 

-(n-l) 

A(X)(l[l 
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thus , 

' 4 w 

Since E q n (4.93) is t rue for any n, one can claim tha t in the 
l imit n -> oo o n e r e c o v e r s t h e s t a t e m e n t t h a t T K P { ^ } 

= DQti9J<0Hf* with ^ p g i v e n by E q n (4.92) ( that formula 
does no t refer direct ly to M i w a p a r a m e t r i s a t i o n and is 
defined for any t and for any j < 0 and / ) . This relat ion 
between the cpys and Hf? can n o w be used to in t roduce 
negative t imes tk according to the rule (4.58). Especially 
simple is the prescr ip t ion for zero- t ime: Tiy —> TLi+nj+n-, 
which, when expressed in te rms of cp, implies just tha t 

det cpy{h) det cpy+N{h) 

A{X) (det 4 ) " A{X) 
(4.94) 

Genera l i sa t ions of E q n (4.88), like 

o < p z V | t f r (z )Gtf r (z) |0 )exp 5>*z*+'*z*) d z d z , 

(4 .95) 

also can be considered. 

par t i t ion function is interpreted as a T-function), 

Zmodel W = I^model} , (4.96) 

and the string equat ion which serves to fix the opera tor G — 
the poin t in the universal modu le s p a c e . | After tha t , it 
becomes an internal (yet unsolved) p rob lem of integrabil i ty 
theory to explain what is so special abou t the set of po in t s 
{Gmodei} m this space. (I shall touch this p rob lem in the next 
subsection, devoted to K a c - S c h w a r z opera tors . ) A l t e rna 
tively, if there is no th ing special, it is an (unsolved) p rob lem 
of ma t r ix mode l theory to find models associated with any 
poin t s G in the universal modu le space (or to explain what , if 
anything, is an obstacle) . 

I proceed n o w to a descript ion of par t icular mat r ix 
models from this po in t of view. As everywhere in these 
notes I consider only the most impor t an t classes of scalar 
p roduc t , conformal (mul t i component ) and generalised 
Kontsevich models ( G K M ) . All other examples (like models 
of complex matr ices , o r t hogona l matr ices , un i t a ry matr ices , 
etc.) can be taken into considerat ion with m o r e or less effort 
(see [28, 91] for cases of complex and un i t a ry models , 
respectively), bu t they do not add much to the general theory 
tha t we are n o w considering. String equa t ions will be 
discussed in the next subsection. 

4.7 Matrix models versus T-functions 
I can n o w r e t u r n to m y m a i n subject a n d discuss t h e 
integrabil i ty proper t ies of eigenvalue mat r ix models . The 
claim is tha t the par t i t ion functions of all these models , 
when considered as functions of t ime-variables (paramet r i s 
ing t he shapes of po ten t i a l s ) a re in fact T- func t ions of 
(pe rhaps m u l t i c o m p o n e n t ) Toda- la t t i ce a n d / o r K P type. 
(Interest ing noneigenvalue models are believed to be related 
to integrable systems of m o r e general type, no t restricted to 
l e v e l s = 1 K a c - M o o d y algebras) . 

Par t i t ion functions are, however , no t generic T o d a or K P 
T-funct ions: first, they usually be long to some reduced 
hierarchies; second, the relevant opera to r s G (points of a 
G r a s s m a n n i a n ) are restricted to stay in par t icular doma ins of 
the universal modu le space, specified by 'str ing equa t ions ' . 
The string equa t ions are in fact no th ing bu t the set of W a r d 
identities (Wis) (Virasoro or W-constra ints , in the examples 
under investigation), which are n o w interpreted as equa t ions 
on G. The very possibili ty of such in terpre ta t ion is highly 
nontr iv ia l and reflects some deep relat ion between the 
const ra in ts and integrable s t ructure. In the case of Virasoro 
const ra in ts this is not a puzzle, because Virasoro algebra is a 
symmetry (covariance) of the hierarchy, the si tuat ion with 
other const ra ints is less clear (see the footnote in Section 4.3). 
In fact, when applied to a T-function of appropr ia te ly 
reduced hierarchy, the infinitely m a n y const ra ints usually 
become dependent and it is enough to impose only the lowest 
Virasoro const ra int L _ i T = 0 (or C-Px = 0, where p is the 
degree of reduct ion) , in order to recover the entire set [29]. It 
is this lowest constra int [or ra ther its ^ -der iva t ive , 
( 9 / 9 f i ) / ( L _ i T ) = 0] tha t t radi t ional ly carries the n a m e 
'string equa t ion ' . It is often much simpler to deduce than 
the entire set of identities, which is impor t an t in pract ical 
appl icat ions (especially because de te rminant formulas , 
which imply integrabili ty, can also be simpler to find, in 
some si tuat ions, t han the Wis ) . 

In order to give a complete descript ion of some sort of 
(matr ix) mode l from the poin t of view of integrabil i ty theory 
it is enough to specify the hierarchy to which it belongs (if the 

Scalar-product models. These were exhaustively discussed in 
Sections 3.5 — 3.7. Recal l tha t all convent ional mul t imat r ix 
m o d e l s [with i n t e r m a t r i x i n t e r a c t i o n of t h e fo rm 
exp(Tr H ( a + 1 ) ) ] b e l o n g to th i s c lass . T h e c ruc i a l 
formulas are: 

ZN = Det/y'HJ- = D e t 0 ^ tj ^ n-i^j 

Det_/v ^ ij<oH\-i+NJ+N 
1 / a v 

(4.97) 

Here , 

U\ = (ti \hj) = | ~ h e x p [ U ( h ) + U(h)]h'hJ . (4 .98 ) 

Fu r the r , 

exp [17(A)] = exp ( £ tkhk ) = £ A 'P , ( f ) , 

exp[0(h)] = exp ( ^ Jkhk ] = hmpm(t) , (4 .99 ) 

\k ^ 0 / m and thus , 

= ^2TlP,.i(t)Pm.j(t), 
/, m 

TL = {{ti\hm)), ( 4 . 1 0 0 ) 

f A s a r g u e d in t h e I n t r o d u c t i o n a n d in S e c t i o n 2 . 1 , t h e w o r d ' m a t r i x ' c a n 
p r o b a b l y b e o m i t t e d if g e n e r i c L a g r a n g i a n s a r e c o n s i d e r e d in o t h e r 
m o d e l s o f q u a n t u m field t h e o r y . A l s o , t h e u n i v e r s a l m o d u l e s p a c e (-
w h e r e m o d u l i a r e o f b u n d l e s o v e r spectral R i e m a n n s u r f a c e s ) c a n ( a n d 
s h o u l d ) b e t r e a t e d a s a ' s p a c e o f t h e o r i e s ' . I t is o n e o f t h e g r e a t p u z z l e s 
( a n d b e a u t i e s ) o f s t r i n g t h e o r y t h a t R i e m a n n s u r f a c e s a p p e a r b o t h in t h e 
w o r l d - s h e e t a n d in t h e s p e c t r a l ' d i m e n s i o n s ' . See [6] for m o r e d i s c u s s i o n o f 
t h i s i s sue . 
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where the scalar p roduc t (( | )) is with respect to the measure 
djih f; {while ( | ) is with respect to the measure d\ih ^ = 
w\u(h) + U(h)}dh,n}-

One would immediate ly recognise in these formulas 
representa t ion (4.39) of the Toda- la t t ice T-funct ion, were 
there no addi t iona l restriction tha t the de te rminant in 
Eqn (4.97) is over a finite-dimensional N x N matr ix (indices 
are constrained: ij ^ — N). This can be automat ical ly taken 
into account if one requires tha t 

: oo for all /, m < 0 (4.101) 

and identify ZN as a normal ised T-funct ion, T , of forced T o d a -
lattice hierarchy ( thus the superscript f carried by TL and T). 
One concludes tha t the par t i t ion function of any scalar-
p roduc t mode l is a T-function of the forced Toda- la t t ice 
hierarchy. 

Let us n o w consider them as K P T-funct ions. This means 
tha t the ^"-dependence is simply ignored. However , N will be 
preserved explicitly as a parameter labelling the K P T-function. 
After the Miwa t ransformat ion tk = — (l/k) J2y X~k — rk, 
described in Section 3.7, one gets: 

_ - det7<5 QN+y-
z N — z N 

A(X) 
(4.102) 

where the g s are o r thogona l po lynomia ls with respect to the 
measure d v M - = exp ( - rkhk)dp.hj. 

One concludes tha t in the f ramework of the K P hierarchy 
the scalar-product models are dist inguished by the fact tha t 
the cor responding cpy(X) in Eqn (4.86) are polynomials ra ther 
t han infinite series in powers of A - 1 . 

The 1-matrix model. Th i s is a pa r t i cu l a r example of a 
scalar-product mode l with a local measure given by 

d / i M - = exp [£/(/*) + U(h)]b(h-h)dhdh. 

In this case, 

K = V\V) = ^ ) = ± * = ( £ - y * . (4-103) 

Thus , in this case one is dealing with the (forced) Toda-cha in 
reduct ion of a Toda- la t t ice hierarchy. At the end of this 
section o r thogona l po lynomia ls are used to present a detailed 
descript ion of 1-matrix models as Toda-cha in T-funct ions. 

This mode l can alternatively be defined as a gaussian 
Kontsevich model : see Section 3.8. The fact tha t the par t i t ion 
function is a T-funct ion follows then from the general 
s ta tement for the G K M , see below. The fact tha t it is a 
forced T-function is related to the p rope r ty c_N = 0, 
ment ioned at the end of Section 3.8 (and proved in Section 
3.9). Also, the reduct ion to a Toda-cha in hierarchy can be 
observed directly in te rms of the G K M ; see [36] for m o r e 
details. 

Multicomponent (conformal) matrix models. T h e s e a re 
re la ted to m u l t i c o m p o n e n t h ierarchies , wi th T - func t ions 
representable as corre la tors in mul t i fermion systems. A n 
e x a m p l e o f a d e t e r m i n a n t f o r m u l a w h i c h s u b s t i t u t e s 
E q n (4.39) in the 2-component case is given at the end of 
Section 3.5, where it is derived from a considerat ion of the 
re levant m a t r i x m o d e l [39]. F o r der iva t ion of the same 
de te rminant formula in the theory of T-funct ions see [92]. 
The generic theory of mul t i componen t hierarchies is n o w 
m a k i n g its first steps and I do no t review it in these notes . See 
[93] for the g roup- theory app roach to the p rob lem. 

General ised Kontsevich model ( G K M ) . D e t e r m i n a n t 
formulas for this case are derived in Section 3.3. The mos t 
impor t an t expression is 

ZV{N,T}. 
1 dQtys (py+N(ks) 

(detAf A{X) 
(4.104) 

where 

and 

<py{X) = _ e x p [ - A V ' ( A ) + V(A)] 0 ^ ( 1 ) 
V27t 

x j x ^ 1 e x p [ - V ( x ) + V'(X)x] dx 

= ^- 1 [ i + o ( r 1 ) ] , 

cpy(X) = Acpy_i(X) = Ay~l<P(X) . 

(4.105) 

(4.106) 

F o r N = 0 this is just the representa t ion, peculiar to the K P 
T-function in the M i w a paramet r i sa t ion , Tk = (\/k)trA~k; 
see E q n (4.86) above. Thus , 

z y { r } = T K P { r | G y } , (4.107) 

where it is the opera to r G (the poin t in the G r a s s m a n n i a n ) 
which depends on the shape of poten t ia l V(X). Also, recall 
tha t the only way in which Z depends on the size of the mat r ix 
n is t h rough the domain of variation of the t ime variables T. 
If E q n (4.104) is extended to the full Toda- la t t ice T-function 
by the in t roduct ion of negative t imes, one obta ins [36] 

(det ,4) 

d X ( d e t X ) ^ exp 

£>0 

-tYV(X)+trAX+^2Tk t r X " 
£>0 

(4.108) 

W h e n this extended par t i t ion function is considered as a K P 
T-function we have, instead of Eqn (4.104), 

ZV{T,N,T} = -
1 det 7 < 5 cp{yV

+

]

N{h) 
(4.109) 

(det ; !)" A{X) 

and the relevant (^-functions are 

x jjc5""1 exp[-y(jc) + V'{X)x] dx 

= xN+y~l[i + o ( r 1 ) ] , (4.H0) 

with 

V(x) = V(x) - N\nx - ~Y^Tkx-
k>0 

V(x) = V + ( * ) , (4.111) 

where V+(x) is the posi t ive-power por t ion of the Lauren t 
series V(x). F u n c t i o n s cpy(X) in Eqn (4.105) are equal to 
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4.8 String equations and the general concept of reduction 
The role of the string equat ion is to fix the poin t G in the 
universal modu le space ( U M S ) associated with the par t icular 
mat r ix model , so tha t the par t i t ion function, considered as a 
function of t ime-variables, will appear as the cor responding 
T-function of a fixed shape. In this sense the idea behind the 
s t r ing equa t ion is exact ly the same as the r educ t ion of 
i n t e g r a b l e h i e r a r c h i e s . T h e di f ference is t h a t linear 
reduct ions , as defined in Section 4.5 above, are no t enough 
to fix G unambiguous ly : they jus t specify certain subsets in 
the Gras smann ian , which are still infinite-dimensional. The 
r eason w h y these are usua l ly l inear r educ t ions t ha t a re 
c o n s i d e r e d in t h e c o n v e n t i o n a l t h e o r y o f i n t e g r a b l e 
h ierarchies is t ha t they are associated with the simplest 
p o s s i b l e — K a c - M o o d y — s u b a l g e b r a s in t h e en t i r e 
GL (oo) . String equat ions , even their simplest examples, are 
u s u a l l y f r a g m e n t s o f m o r e c o m p l i c a t e d V i r a s o r o a n d 
W-algebras , and are in fact considerably m o r e restrictive. 
M o r e o v e r , the s t r ing equa t ion is usual ly a distinguished 
f r a g m e n t , b e c a u s e it u s u a l l y b e l o n g s to t h e V i r a s o r o 
componen t of the W i s , and the Virasoro algebra is still a 
Lie subalgebra in GL (oo) . This is wha t makes the p rob lem of 
string equa t ions very similar to the 'classical ' one with linear 
reduct ion. 

M o r e specifically, in order to t ake str ing equa t ions (and in 
fact the entire set of V i r a s o r o — b u t no t W — constra ints) 
into considerat ion of reduct ion it is enough to allow the 
coefficients in E q n (4.40) to depend on t and t, wi thout 
changing the order of t ime-derivatives. Of course, there are 
no obvious reasons to th ink tha t any po in t G in the U M S can 
be selected by imposing these kind of l inear-derivative 
const ra in ts on T-funct ion, and further investigation m a y 
require essential general isat ion of such a restricted no t ion of 
string equat ions . However , some of the eigenvalue mat r ix 
models are a l ready k n o w n to possess string equa t ions of such 
simple type, associated with Virasoro subalgebras of GL (oo) . 
I will no t go into details of the general theory — it is far from 
completed y e t — b u t instead present several examples of h o w 
string equa t ions arise in par t icular mat r ix models . These 
examples can il lustrate also the simplifications arising when 
only string equa t ions and no t the entire sets of W i s need to be 
derived. In par t icular , it is clear tha t in cases when T is r ep re 
sented as Det j /%/ , a linear differential equa t ion imposed on 
Hij will give rise to a similar equat ion on T itself. M o s t k n o w n 
string equa t ions can be derived with the help of this technical 
idea. They are usually associated with the in var iance of inte
grals under constant shifts of integration variables bh = const 
in scalar-product and other discrete models , and with the 
action of the opera tor t r (8 /8L t r ) in the G K M . F o r somewhat 
more involved ideas associated with string equat ions , see [94]. 

Scalar-product models. The string equat ion can be easily 
deduced for very specific types of measures dfih ^. Since the 
integral 

or 

Htj = J/i'P"exp [£/(/*) + 0 ( h ) ] dj i M (4.112) 

is i n v a r i a n t u n d e r t h e shift of i n t e g r a t i o n v a r i a b l e bh 
= const, 

hlhjQxp[U(h) + U(h)]djiKn-

ih 
I dU(h) 8 t / 1 A , 

0 , (4.113) 

iHi- j + Y k t k 

k>0 dt k-i 

d_ d_ 
dt' dt 0 . (4.114) 

T h e s t r ing e q u a t i o n ar ises s t r a i g h t f o r w a r d l y w h e n t h e 
opera tor S is linear. This is t rue if ln(dfth ^) ~ hf(h) with 
any function f(h). If the measure dfth ^ is also required to be 
symmetr ic in h and /z, one obta ins the convent ional 2-matr ix 
mode l as the only example: 

d£ih h = exp (chh )dhdh . 

The equat ion for Titj is: 

Y k t k 

k>0 

I ts implicat ion for TN is: 

8 

k>0 

(4.115) 

(4.116) 

(4.117) 

since the r .h.s . of E q n (4.116) does no t cont r ibu te to the 
de te rminant (the entries in the iih r o w are p r o p o r t i o n a l to 
those in r o w / - 1). 

In the par t icular case of the 1-matrix model, c = 0, one 
recognises the lowest Virasoro constra int L_\TN = 0. T r a d i 
t ionally the n a m e string equat ion is given no t to the L _ i 
const ra int itself, bu t to its t\ derivative: (dldt\) (L-\xN) = 0. 
F o r the 2-matr ix model , E q n (4.117) is the lowest (m = 1, 
n = 0) componen t of the W i s 

Of course, there is also a similar equat ion with t <-> t. 

Multicomponent (conformal) models. The crucial feature of 
these m o d e l s is t h a t t he i n t e r m a t r i x i n t e r a c t i o n , w h e n 
rewri t ten in te rms of eigenvalues, usua l ly con ta ins only 
differences h^ — hf\ T h u s t h e r e is usua l ly c o v a r i a n c e 

(a) 
under simultaneous shift of all eigenvalues 67z- ' = const by 
the same cons tant . This gives rise to a string equat ion of the 
form 

See [39] for details. 

(4.118) 

Generalised Kontsevich model. In order to derive the string 
e q u a t i o n , o n e s h o u l d act on t h e p a r t i t i o n func t i on 
Zv{Tk = (\/k)trA~k} = Cy^yiL = V'(A)} w i t h t h e 
opera tor 

6 1 
txdux ~ txv"(A)dAix • 

One can rewrite the result of this act ion in terms of t ime-
derivatives: 

t r - ^ - l n Z y { r } = - V ( tr l—r-v | ^ - l n Z y { r } . 
dLix

 V X 1 V"(A)Ak+l)dTk

 V X 1 

(4.119) 

Alternat ively one can use the fact tha t 

t r - ^ = V — ^ — / = V'(X) , 
8 L t r Z - y ( A 7 ) 8 A / K J ' 
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a n d o b t a i n an expl ici t exp re s s ion for Z y in t e r m s of 
eigenvalues (Miwa coordinates) : 

"det (py{h) 
Zv ^GxvltYVW-tYAV'iA^jYlV'i^-

det (py(h) 

A{X) 

A(X) 

(4.120) 

to get: 

1 V '"(A) 1 ^ V "{Xy)-V"{Xs) 1 
= - tr 1 V N ' 

2 [V"W]2 2 U V"(ly)V"(lS) 

- t r > l + ^ — l n d e t y ^ y ( / 5 ) . (4.121) 

C o m p a r i s o n of these two expressions gives: 

C™Zy_ 1 

Z v Z v [k>0 

l^V"(l,)-V"(Xs) 1 

§ ( t r y " ( ^ + 1 ) ^ 

1 v - ^ < 

7><5 Xy-Xd V"(Xy)V"(Xd) QTX 

8 r 
• I n Z y + t r ^ - ^ — l n d e t 7 < 5 ^ ( / < 5 ) . (4.122) 

One can show tha t the r .h.s . is equal to zero, and thus the 
string equat ion arises in the form 

£ ^ Z y = 0 . (4.123) 

If t he p o t e n t i a l is m o n o m i a l , Vp = Xp+ l/(p + 1), t h e n 
n = -[pl(p + ^Wk,P+ 1 and 

Y(k+P)(Tk+P + rk+P) 

p-l 

p-k (4.124) 

The technical idea behind the p r o o f [30] is to represent 

Zv{Tk + (\/kXk)}dX 
I N Z Y = R e s -

Zy{Tk} 
(4.125) 

and to m a k e use of the second de te rminant representa t ion in 
(4.120) in bo th the denomina to r and the numera to r : 

I n Z y = R e s -
dX 

det 
<PdW <Pn+lW 

l[(X-Xy) 
7=1 

det (p5(Xy) 

N o w recall tha t 

^ W - t f - ' t i + o f r 1 ) ] . 
At some poin t we shall need even more : in fact, 

cpy(x)~xy-l[\+o(x-2)], 

(4.126) 

(4.127) 

tha t is, 

(py(X) = Xy~l + CyXy~2 + . . . , and cy = 0 for any y . (4.128) 

This is a ra ther delicate p rope r ty of the G K M . It follows 
from two facts: first, tha t 

yffff ( y " ' ) 2 > 

1 + 0 
(V")2 ' (V"f 

t h u s c\ = 0; a n d s e c o n d , t h a t t h e K a c - S c h w a r z 
o p e r a t o r A, de f ined in E q n (4 .106) , d o e s n o t h a v e 
c o n t r i b u t i o n s wi th zero th p o w e r s of A, t h u s cy + \ = cy. 
(For example, if 

V(x) ±x2 

then 

CPy(x) 
2K. 

xy~l e x p [ - \ { x - X 2 ) ] dx = Xy~l + 0 • Xy~2 +...; 

the dangerous te rms with a simply do not show up in the 
expression for cpy.) 

After this comment I can come back to the evaluat ion of 
E q n (4.126). The p roduc t in the denomina to r , which arose 
from the Van der M o n d e de terminant , is a l ready p r o p o r 
t ional to X2: n"=iC* - ^y) =kn[\+ OCT1)]. Because of this 
and the asymptot ic formulas (4.127), it is clear tha t if 
de te rminant in the numera to r of Eqn (4.126) is rewri t ten as 
a linear combina t ion of n x n de te rminan ts with the 
coefficients cpy(X) from the last row, only te rms with y ^ n 
can cont r ibute . There are two such terms: with y = n and 
y = n + l . In the expansion of the (n + 1) x (n + 1) 
de terminant , cpn + \(X) is multiplied by det (py(X$\ which 
exactly cancels with the de te rminant in the denomina to r , 
and the relevant cont r ibut ion is 

Res 

7=1 

The term with cpn(X) is 

de t [<p x (X y ) . . . cpn_x{Xy) cpn+l{Xy)] R ^ cpn(X)dX ^ ^ 

l[(X-Xy) 
7=1 

The remain ing residue is jus t uni ty. The de te rminant in the 
n u m e r a t o r differs from the one in the denomina to r by a 
subst i tut ion of the column with entries cpn(Xy) for tha t with 
<Pn + l(Xy). 

At last we can re turn to E q n (4.122) and recall tha t 
(8/8/)<py + l(I) = <py+i(iy, t hus 

(4.131) 

the r .h.s . of which is jus t the same as the te rm (4.130), since 
the cp§ differ from the cp§s by a ^- independent factor of 
Qxp[V(X) - XV'(X)]^/V"(X). Thus , one concludes tha t the 
r .h .s . of E q n (4.122) is equa l to —cn+i, which ac tual ly 
vanishes, as was explained several lines above. 

Two things deserve a t tent ion in this derivat ion. Firs t , it 
was absolutely crucial tha t we had ( 8 / 8 r i ) l n Z y on the r .h.s. 
of E q n (4.122) to m a k e it vanish, and therefore d/dti 

immediately appears in the expression for the opera tor 
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on the l.h.s. [this is the origin of the r^-corrections in 
E q n (4.124)]. Second, the result is b o t h simple and na tura l , 
bu t the p r o o f is full of technical details and looks somewhat 
artificial. It becomes even m o r e involved when the general 
formula (4.136) for the TVderivat ives of Z y with 1 ^ k ^ p 
(see [40]) is derived; this formula plays an impor t an t role in 
the theory of G K M and its appl icat ions to the theory of 
q u a n t u m gravity. The p r o o f of the string equat ion is just a 
par t icular case of tha t formula, since using the integral 
representa t ion of cp(l) one can represent the r.h.s. of 
Eqn (4.131) as ( l / Z y ) ( t r X ) , where ( ) n o w stands for the 
average defined by the Kontsevich integral. Thus , 

(4.122) 6 , ,(4-136) 
Z y + (trA - trX) = 0 . (4.132) 

4.9 O n the theory of the generalised Kontsevich model 
This theory is a na tura l ly b r o a d collection of topics for a 
separate big section in these notes . However , I decided no t to 
include too detailed a presenta t ion because the G K M theory 
seems to be incomplete . Firs t , I believe tha t the n a t u r a l 
i n v a r i a n t f o r m u l a t i o n — of w h i c h t h e ex i s t ing m a t r i x 
in t eg ra l is on ly a specific r ea l i s a t ion — is still l ack ing . 
Second, the G K M is not yet generalised enough to fulfil its 
main pu rpose of incorpora t ing informat ion abou t all the 
models of 2d gravity (in fact it should include even more : the 
ent i re t h e o r y of in t eg rab le h ie ra rch ies a n d geomet r i ca l 
quant i sa t ion) . Third , t hough the whole app roach is very 
conceptua l and deep, m a n y proofs, as available nowadays , 
are still very technical and long. All this implies tha t a p roper 
view on the subject of G K M still needs to be found. At the 
m o m e n t I could describe two complementa ry approaches : 
one, s tar t ing from the integral representa t ions , the other 
from the D u i s t e r m a a t - H e c k m a n (localisation) theory and 
Four i e r analysis on group manifolds . T h o u g h int imately 
related, these two approaches are still technically different 
in too m a n y respects. The second one is m o r e fundamenta l 
(since o rd inary integrals arise from discrete sums either in 
special limits or in the case of infinite-dimensional algebras, 
and is m o r e impor tan t , since the integral representa t ion is 
only one of m a n y possible ways to define the quant i t ies of 
interest) . However , m a n y of the mos t i m p o r t a n t resul ts 
ob ta ined in the first a p p r o a c h do not have their p rope r 
names and exact coun te rpar t s in the second one. I believe 
tha t this whole issue will be greatly clarified in the near future 
and have decided to pos tpone a detailed review till tha t t ime. 
W h a t one cannot avoid in these notes is giving at least a list of 
topics a l ready included in the theory of G K M , and this is the 
pu rpose of the present subsection. 

The Kontsevich mode l with V = ^X3 was derived by 
Kontsevich [22] from the original definition of topological 2d 
gravity, given by Wit ten [9] in te rms of the generat ing 
functional for Chern classes of certain bundles over 
R i e m a n n surfaces. General isa t ion of this reasoning (when 
m o r e bundles are taken into considerat ion) leads to the 
theory of L a n d a u - G i n z b u r g gravity ( L G G ) , which is 
believed to be the same as the G K M , though no t all the 
proofs are yet ava i l ab le . ! 

f I n t e r m e d i a t e r e s u l t s i n c l u d e t h e s t u d y o f t h e s p h e r i c a l a p p r o x i m a t i o n t o 

L G G , w h i c h e x h i b i t s t h e s t r u c t u r e s p e c u l i a r t o ' q u a s i c l a s s i c a l i n t e g r a b l e 

h i e r a r c h i e s ' (o f w h i c h t h e B a t e m a n h i e r a r c h y , t o b e b r i e f ly m e n t i o n e d in 

S e c t i o n 5.2, is a n e x a m p l e ) , a n d w h i c h a l so a r i s e in ' q u a s i c l a s s i c a l 

a p p r o x i m a t i o n ' t o t h e G K M . F o r s o m e r e s u l t s in t h i s d i r e c t i o n see [17, 

40 , 4 1 , 9 5 - 9 7 ] , r e f e r e n c e s t h e r e i n . 

The crucial feature of nonper tu rba t ive par t i t ion func-tions, 
as discussed at the beginning of Section 2, is their intrinsic 
integrabili ty. F o r 2d gravity this general idea acquires a very 
concrete formulat ion: the par t i t ion functions are usually jus t 
T-funct ions of convent ional integrable hierarchies; moreover , 
for L G G , associated with min imal models , these are jus t 
o rd inary mul t i componen t T o d a hierarchies .} 

Kontsevich found a representa t ion for the generat ing 
func-tional in the form of a mat r ix integral, i.e. he 
formulated a mat r ix model , which later allowed him to 
p rove Wi t t en ' s conjecture tha t the functional is in fact a T -
function. The concept of the G K M as a universal mat r ix 
model , including all the informat ion abou t generic 
(eigenvalue?) mat r ix models and thus all the models of 2d(?) 
gravity, was in t roduced in [30], and the ana logue of the 
Kontsevich mode l with a rb i t ra ry poten t ia l V(X), i.e. the 
expression 

ZV{T} =Cy(A)-lFv[V\A)\ 
Tk = (l/k)trA-k 

JdQtV"(A) 
rsj 

( 2 T I ) ^ 2 exptr[AV'(A) - V(A)] 

x d X e x p [ - t r V ( X ) + t r V'(A)X] (4.133) 
Jnxn 

was p roposed as an in termedia te step in this direction.§ This 
(still restricted) version of the G K M is a l ready enough to 
unify all the (p, l ) -models of 2d gravity. In some sense, (p, q)-
m o d e l s w i t h q ^ 1 a r e a lso i n c l u d e d , b u t in a ve ry 
non t r anspa ren t way (using analytical cont inuat ion) , which 
does no t even explicitly respect the p <-> q symmetry. The 
par t i t ion function of such a G K M , ZV{T}, depends on two 
types of variables: t ime-variables, Tk, and the potent ia l , V. 
F o r m a l l y t h e s e t w o t y p e s o f v a r i a b l e s a r e a b s o l u t e l y 
different, V being responsible for the choice of a par t icular 
L G G mode l or, wha t is essentially the same, of a par t icular 
r e d u c t i o n of t h e T o d a - l a t t i c e or K P h i e r a r c h y ; Tk a re 
pa rame te r s of the generat ing functional of all correlat ion 
functions in this par t icular model . But of course, since one is 
dealing with an exact (nonper turba t ive) approach , there is 
a l m o s t no r e a l d i f fe rence b e t w e e n t h e s e t y p e s o f 
dependencies — on the mode l (vacuum state) and on the Ts: 
the mode l can be changed by a noninfini tesimal shift of the T 
variables. Technically, in the G K M this is reflected in the 
identi ty of the form [40]: 

ZvPiT } =fp(r\fk + n) z{fk + n | Gp} , 
where 

(4.134) 

k(p-k) R e s I V ' M ] 1 " * ^ 

provides a specific pa ramet r i sa t ion of potent ia ls V (which is 
here assumed to be any po lynomia l of degree p) a n d / p is some 
simple function: 

% O n e c a n s a y t h a t t h i s is n a t u r a l : b o t h s u c h m o d e l s a n d T o d a h i e r a r c h i e s 

a r e a s s o c i a t e d w i t h t h e level k = 1 K a c - M o o d y a l g e b r a s a n d 

c o r r e s p o n d i n g s impl i f i ed v e r s i o n s o f t h e W Z N W m o d e l . H o w e v e r , t o o 

m u c h sti l l r e m a i n s t o b e c la r i f i ed a b o u t t h i s ' o b v i o u s ' c o n n e c t i o n . 

§1 r e m i n d t h e r e a d e r t h a t d e t V "{A) h a s a s o m e w h a t t r i c k y d e f i n i t i o n , see 

S e c t i o n 2 . 5 . T h e s a m e m a t r i x i n t e g r a l (4 .133) w a s a l s o c o n s i d e r e d in 

[ 3 1 - 3 3 , 98] . 
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fp{r\Tk +rk) = exp 

Ay- = R e s [ y ' ( ^ ) ] ^ d [ y , ( ^ ) ] 

- ^ A y ( r ) ( f i + r O ( f J + r J ) 

]j/p 
dtfitj 

(4.135) 

and is a T-function of the 'quasiclassical h ierarchy ' . The 
impor t an t th ing to no te is tha t Gp (which defines the shape of 
the T-function as a function of T + r) a n d / p depend only on 
the degree p and no t on the other details of the shape of the 
p o t e n t i a l . Th i s is a deep fo rmula . It a c c o u n t s for two 
p h e n o m e n a at once. Firs t , it says tha t Z depends on the sum 
off and r . | Second, the dependence on V is no t quite smooth : 
when the degree of the poten t ia l changes, the shape of the 
f u n c t i o n s / a n d T also change abrupt ly . Ano the r side of the 
same p h e n o m e n o n is tha t the par t i t ion function ZV{T}, 
which in principle is well defined as a ma t r ix integral for all 
choices of V and L (and thus T) at once, is in fact singular at 
s o m e p o i n t s : t h e r e a r e p h a s e t r a n s i t i o n s , m a n i f e s t i n g 
themselves in the switch from one L G G mode l to another . 
After a phase t rans i t ion the or iginal in tegral expression 
b e c o m e s s o m e w h a t s y m b o l i c : it def ines t h e p a r t i t i o n 
function only in the sense of analyt ical cont inua t ion , and it 
is a separate p rob lem to find an integral representa t ion tha t is 
a d e q u a t e in the new phases . In prac t ice , w h a t is nicely 
described by the G K M integral representa t ion in the form 
of E q n (4.133) are (p, l ) -models , with p + l being jus t the 
power of the poten t ia l V(x). W h a t has no t yet been found is 
an ana logous representa t ion for (p, g)-models with q ^ 1 (it 
can involve mul t ip le ma t r i x integrals , and the universa l 
m od e l is supposed to be 'mat r ix q u a n t u m mechanics in 
external fields'). 

Der iva t ion of the crucial formula (4.134) by any 
app roach —sta r t ing from the G K M in the form of either 
L G G or mat r ix integrals — is still very tedious . In the ma t r ix -
mode l representa t ion it relies u p o n the identities [40] 

8Zy 
an 

(trAk -trXk) =C\ (txAk -txXk) 

x e x p [ - t r V p ( X ) + trV'p(A)X]&X for 1 < A; < p , 

(4.136) 

which look trivial bu t are ra ther ha rd to derive. (A p r o o f of 
the str ing equat ion in the G K M at the end of the previous 
subsection is the simplest example of this k ind of exercise.) 
Certainly, some simple derivat ion 'in two lines ' should exist, 
bu t has no t yet been found. F o r m u l a s of this kind are very 
impor t an t for all aspects of G K M theory . Besides other 
t h i n g s , t h e y a re n e c e s s a r y to e v a l u a t e t h e c o r r e l a t i o n 
functions in (p, l ) -models of 2d gravity, of which ZV{T} is 
a g e n e r a t i n g f u n c t i o n a l . I f i n s t e a d of t he se ' p h y s i c a l ' 

f i n t h e M i w a p a r a m e t r i s a t i o n , fk = (\/k)tr[V'p(A)]~k/p. T h r o u g h o u t 
t h e s e n o t e s I h a v e u s e d d i f fe ren t t i m e - v a r i a b l e s Tk = (\/k)tr A~k, w h i c h 
a r e i n d e p e n d e n t o f t h e p o t e n t i a l V; i n s t e a d t h e V - d e p e n d e n c e o f Z y — 
w h i c h w e d i d n o t r e a l l y s t u d y — w a s r a t h e r n o n t r i v i a l . I f e x p r e s s e d in 
t e r m s o f T, t h e p a r t i t i o n f u n c t i o n ZV{T + r } = ZV{T } b e c o m e s a l m o s t 
i n d e p e n d e n t o f V: it c h a n g e s — a b r u p t l y — only w h e n t h e d e g r e e , / ? , o f t h e 
p o t e n t i a l c h a n g e s . T h i s s e c o n d t y p e o f d e s c r i p t i o n is , o f c o u r s e , in b e t t e r 
a c c o r d w i t h t h e s y m m e t r i e s o f t h e p a r t i c u l a r m o d e l , w h i c h a r e d i f fe ren t in 
d i f fe ren t ' v a c u a ' ( for d i f fe ren t p). T h e r e f o r e , t h e v a r i a b l e s T + r, r a t h e r 
t h a n T, a r i s e n a t u r a l l y in t h e W i s a s w e s a w in S e c t i o n s 2 .5 a n d 2 .6 . Ts a n d 
Ts a r e s u i t e d t o d i f f e ren t p u r p o s e s : t h e Ts a r e n i c e w h e r e t h e universality 
a s p e c t s o f t h e G K M a r e c o n c e r n e d , w h i l e t h e Ts a r i s e w h e n specif ic 
f e a t u r e s o f p a r t i c u l a r m o d e l s ( o r b i t s , v a c u a ) a r e c o n s i d e r e d . 

quest ions, one asks abou t integrabil i ty theory, identities of 
this sort also play an impor t an t role. F o r example, looking at 
E q n (4.136) for a special k = p a n d specia l cho ice of 
po t en t i a l — m o n o m i a l VP(X)= Xp+l/(p + 1) — one can 
no te tha t the r .h.s . vanishes: this is just a W I , reflecting 
i n v a r i a n c e u n d e r t h e shift o f t h e i n t e g r a t i o n va r i ab l e , 
8X = const. This is the simplest version of a m o r e general 
s ta tement :} 

if M * ) X P + 1 • 6 Z v 

P + i 
then 

dT 
0 for all n e Z + . 

Pk 
(4.137) 

L o o k i n g from the poin t of view of integrable hierarchies, one 
immediately recognises s ta tement (4.137) as an example of 
the reduct ion condi t ion E q n (4.40). It cor responds to the so-
called p - r e d u c t i o n of the K P h ie ra rchy , of which K d V 
(p = 2) and Boussinesq (p = 3) are the mos t celebrated 
examples. See [30, 40] for all details and references, the only 
th ing to ment ion here is tha t the slightly weaker version of the 
const ra int (4.137), 

6Zy 
—— = an = const , (4.138) 

pn 

where the an do no t depend on any t ime variables, can be 
expressed simply in the M i w a paramet r i sa t ion : it is jus t the 
s ta tement tha t the (^-functions in 

dQtys cpy(h) 
Z y 

A{X) 

satisfy the p- reduct ion condi t ion 
y+p 

Fcpy{X) = Y VysVsW • (4.139) 
6=1 

This is a restrictive relat ion, because the cps are infinite series 
in 1/A, while on the r .h.s . of Eqn (4.139) there is only a finite 
number of terms. In the G K M it is satisfied for m o n o m i a l 
po ten t ia l jus t as a corol lary of the G r o s s - N e w m a n equat ion , 
or, m o r e exactly, of the WI for the integral 

cpy(X) - j x y~l e x p [ - V ( x ) + V\X)x]dx . 

I n d e e d , t h e i n t e g r a l d o e s n o t c h a n g e u n d e r t h e shift 
8x = const, and this implies 

V'{x)-V'{X)-- e x p [ - V ( x ) + V'(X)x]&x = 0 , 

tha t is, 

p+i 

YkDk[(py+k- .Xk-\(X)]-(y-l)cp, 
7 - 1 = 0 . 

(4.140) 

If only vp+ i 7^ 0, this leads to an identi ty of the required form 
of E q n (4.139). This descript ion of reduct ion can be modified 
to al low for n o n m o n o m i a l potent ia ls , m a k i n g use of the 
concept of 'equivalent h ierarchies ' , see [40, 100]: in this 
f ramework the reduct ion condi t ion is 

V,(X)q>y(X) = YtVy6<PS, (4.141) 

J T h i s p r o p e r t y w a s t e c h n i c a l l y imp l i c i t in K o n t s e v i c h ' s o r i g i n a l w o r k [22] 
for p + 1 = 3 , w h e r e it w a s r e l a t e d t o c e r t a i n c o m b i n a t o r i a l i d e n t i t i e s . A 
t r i c k y p r o o f , r e l y i n g u p o n p r o p e r t i e s o f T - f u n c t i o n s , w a s g iven in [30] for 
a n y p. A n e x a m p l e o f a s t r a i g h t f o r w a r d p r o o f , a g a i n for p + 1 = 3 , ( just 
in t e r m s o f K o n t s e v i c h m a t r i x i n t e g r a l s ) c a n b e f o u n d in [99]. 
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bu t classes of essentially different reduct ions are labelled by 
the degree of the poten t ia l only. 

As a l ready discussed in the previous subsection, linear 
const ra in ts like E q n (4.139) are no t restrictive enough to fix 
the shape of the T-funct ion (the poin t G in the universal 
modu le space) unambiguous ly ; the string equat ion should 
also be imposed. If expressed in te rms of q>s, the string 
equat ion is jus t the p rope r ty (4.106): 

<Py+1 = ACPy , 

where the K a c - S c h w a r z opera tor is given by 

1 8 1 V"'{X) 
A = V%l)a i 2 [ y " ( A ) ] 2 

and has an obvious general isat ion of the form 

A - ^ - I J W + Q , ( j l ) 

(4.142) 

(4.143) 

(4.144) 

where Qq(X) is a po lynomia l of degree q + 1 and Eqn (4.142) 
is replaced by 

This general isat ion is na tura l ly related to the string equat ion 
in (p, g)-models; see [41] and references therein. The generic 
(p, q) L G G m o d e l can b e d e s c r i b e d b y a sys tem of 
constra ints , 

(F-Vp){cp} = 0, 

Ap,q{cp} = 0, (4.146) 

where the opera to r s Vp and Ap, q are no t uniquely fixed by the 
choice of p and q, and there is also the freedom to change 
variables X -> f(X) and to m a k e a t r iangular t r ans format ion of 
t h e bas i s cpy —> cpy + J2s<y

 c

ys(Pd- A l t o g e t h e r , t h e set o f 
E q n s (4.146), m o d u l o these a l lowed t r a n s f o r m a t i o n s , is 
finite: (p-\)(q-l)-dimensional, which is the dimension of 
the modu le space of L G G models with given p and q. The 
Kontsevich integral can n o w be used to establish dual i ty 
t rans format ion from the (p, q ) - to the (g,/?)-model [41]: 

ZV,Q(A) = CV]Q(A) 

x [ dXexp[-trSv,Q(X,A)+trV\A)Q'(X)]ZQ,v(X). 
Jnxn 

(4.147) 

Here , 

Sv,Q(x,X) = ^ V(y)Q"(y)dy = JV(y)dG'(y) • (4.148) 

As usual , Cy, Q(A) is the quasiclassical approx ima t ion to the 
integral, and 

_ dQtys (py(Xs) 

A(X) 

where cp are solut ions to E q n s (4.146) with Vp and Ap,q 

def ined b y E q n s (4 .141) a n d (4 .144) , r e s p e c t i v e l y . ! 

f A l s o , t h e e x p r e s s i o n for t h e ^ - v a r i a b l e s is n o w m o d i f i e d : 

'k(p-k) 

F o r m o n o m i a l Vp a n d Qq, 

rk — : — O k p+q . 
p + q 

R e s [ V ' (n)]l-k/pdQ'pQjl) . 

This relat ion does not p rov ide any formula for ZVP,Qq(A) 
unless q= 1. The case of q = 1 is dist inguished because 
ZVP,QY is t r iv i a l . I n d e e d , t h e 1- reduc t ion c o n s t r a i n t , 
X(Py = fy+i + T,s<yVyd<Pd> i m P 1 1 ^ t h a t dQtyd cpy(Xd) 
= AW IldVi(^)' a n d hence Z Q u V p = e x p ^ ^ ^ , which 
is essentially the same as Z Q u V p = l , t a n d E q n (4.147) is jus t 
our old formula (4.133) for the (p, 1) version of G K M . [In 
fact, Qi(X) ~X2, and ZVp^Ql is no th ing bu t the gaussian 
Kontsevich model . It is trivial for the 'zero- t ime ' condi t ion 
N = 0, as is assumed here.] The mat r ix mode l real isat ion of 
ZVP,QQ for q 7^ 1 is as yet u n k n o w n . 

This is no t the only impor t an t further general isat ion of 
G K M E q n (4.133). Ano the r one is implied by the formula for 
Tv in te rms of the eigenvalues from Section 3.3, 

n /• 

Fv - ]J dxyQxp[-V(xy)]A2(x)I(xJ) . (4.149) 

As was al ready ment ioned in Section 3.3, the I t z y k s o n -
Zuber integral, 

(4.145) I(x,l)> \DU]exp(trUXU f L ) 
det7 <5 Qxp(xyls) 

A(x)A{l) ' 
(4.150) 

is, in fact, a coad jo in t o rb i t in tegra l a n d h a s a g r o u p 
t h e o r e t i c a l i n t e r p r e t a t i o n : u n d e r c e r t a i n c o n d i t i o n s it 
becomes a charac ter XR(§>) = ^Yr g of the g roup GL(n). 
Here , g = exp (L) is considered as a group element, and the 
representa t ion R is labelled by integer-valued pa rame te r s 
mi,.. .,mn — essentially the lengths of the rows in the Y o u n g 
d iagram. The exact s ta tement is 

I(m,l) 
A{1) XR(§) 
A(g) A(m)A(g) dR 

(4.151) 

i.e. in order to get a character one should integrate over 
m a t r i c e s , X , w i t h i n t e g e r - v a l u e d e igenva lues .§ T h e 
d i m e n s i o n , dRR(I), o f t h e r e p r e s e n t a t i o n can also b e 
expressed in te rms of m-variables: dR = A(m). As regards 
the traces, \\Xk = J2y

xy ~^ J2y

my> which appear in the 
action of the G K M , they are very similar to the &-th Casimir 
eigenvalue Ck(R) ( though not exactly the same). Thus , we see 
tha t the integral in Eqn (4.149) is in fact very similar to 

k=0 

,(4.152) 

{ S i n c e q>x(X) = 1+£*><,M"*> ln^iW = Et>o(fl*A)̂ "*» a n d t h e 

s u m E^ln^i(^) = Et>o(fltA)Ea^J* = Y,k>QakTk- A d d i t i o n o f a n y 
linear c o m b i n a t i o n o f t i m e - v a r i a b l e s t o ln t d o e s n o t e s s e n t i a l l y c h a n g e t h e 
T - f u n c t i o n . F o r e x a m p l e , t h e o r d i n a r y i n t e g r a b l e e q u a t i o n s ( l ike K d V o r 
K P ) a r e u s u a l l y w r i t t e n in t e r m s o f v a r i a b l e s l ike u = (d2/dT^) ln t , w h i c h 
a r e second d e r i v a t i v e s o f ln t . 

S T h e r a t i o 

Ms)' 
TT 
£ J e x p ( Z y ) - • e x p ( / 5 ) 

is t h e u s u a l c o r r e c t i o n f a c t o r , w h i c h is t h e p r i c e for t h e p o s s i b i l i t y o f 
r e d u c i n g t h e q u a n t u m - m e c h a n i c a l p r o b l e m o f m o t i o n o n t h e o r b i t t o a 
single m a t r i x i n t e g r a l . T h e full p r o b l e m o f m a t r i x q u a n t u m m e c h a n i c s c a n 
a n d s h o u l d b e c o n s i d e r e d a s a m u l t i m a t r i x (in fact , i n f i n i t e - m a t r i x ) 
g e n e r a l i s a t i o n o f G K M E q n (4 .133 ) , w h i c h i n c o r p o r a t e s a l l t h e (p, q) 
L G G m o d e l s . 
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evaluated at the poin t g = I. The only real difference is tha t 
instead of the integral we have a sum over discrete values of m 
[sum over all the representa t ions , or a model of GL(n)]. This 
'd iscret ised ' ( quan tum?) G K M is m o r e general t h a n the 
con t inuum one, which can be obta ined by var ious l imiting 
p r o c e d u r e s . I t is n o w o b v i o u s t h a t t h e t h e o r y of t h e 
discretised G K M largely overlaps tha t of 2d Y a n g - M i l l s 
theory. The simplest ingredient of this theory is the classical 
result , [101] tha t GL(N) charac ters are in fact (singular) 
Toda- la t t ice and K P T - funct ions. Moreover , the entire sum 
on the r .h.s . of E q n (4.152), if considered as a function of Tk 

= (\/k)tr g k and Tk = [(\/k)tr g k ] is in fact a Toda- la t t ice 
T-funct ion. There are also features paral lel to E q n (4.134). 
See [102] for a little m o r e details abou t the discretised G K M 
(see also the recent p a p e r [81]). Th i s is one m o r e very 
impor tant direction for the further investigation of G K M . 

4.10 The 1-matrix model versus the Toda-chain hierarchy 
At the end of this section I use an explicit example of a 
discrete 1-matrix mode l [26] to i l lustrate h o w a m o r e familiar 
L a x d e s c r i p t i o n o f i n t e g r a b l e h i e r a r c h i e s a r i ses f rom 
de te rminant formulas . This example will also be useful in 
Section 5.3 below, when one of the ways to t ake the doub le -
scal ing c o n t i n u u m limit of t he 1-matrix m o d e l will be 
discussed. T h e L a x r ep resen ta t ion a p p e a r s usua l ly after 
some coord ina te system is chosen in the Gra s smann ian . In 
the example which is n o w being considered this system is 
in t roduced by the use of o r t hogona l polynomia ls . 

W e already k n o w from Section 3.6 tha t the par t i t ion 
function of the 1-matrix mode l (which is a twe-component 
model ) is given by 

N-l 

ZN = D e t 0 < u ^ N {ti \hj) = Yl exp(0,.) = Z x ]J R f~l , 
i=0 i=l 

(4.153) 

N-l 

n 
i=l 

where the last two representa t ions are in te rms of the n o r m s 
of o r thogona l polynomials : 

( G n l G m H e x p ^ j a ™ , (4.154) 

and the pa rame te r of the 3-term relat ion 

hQnih) = Qn+\{h) + CnQn{h) + RnQn-l(h) , 

Z i = e x p ( 0 o ) = (1|1), 7?n = e x p ( 0 n - 0 n _ 1 ) . 

Of course, all the informat ion is conta ined in the de terminant 
fo rmula toge the r wi th the ru le which defines the t i m e -
dependence of n \ = (hl \y) = n\+j\ 

"_U_ _ nji' _ nji' 
or 

6 7 ^ 
Hi i+k (4.155) 

(The possibili ty of expressing everything in te rms of Ti\ with a 
single mat r ix index / is a feature of the Toda-cha in reduct ion 
of the generic Toda- la t t ice hierarchy.) 

However , in order to reveal the s t andard Lax represent
at ion I need to go into somewhat m o r e involved considera
t ions. Namely , I consider representa t ion of two opera to r s on 
the basis of o r thogona l polynomials . Firs t , 

n+k j \rk I \ n+k 

m=0 \ I ' ra=0 

(here a simplified no ta t ion is in t roduced for 

(*) i n \ h k \m) {n\f(h)\m) = (Qn\f(h)\Qm) and y 

Second, 

(m\m) 

d(j)n (n\hk\n) 
{n\n} ' nn (4.157) 

[These last r e l a t i o n s a r i se f rom d i f f e ren t i a t ion o f t h e 
or thogona l i ty condi t ion (4.154): 

8(/> Q{Qn\Qm) 

8Q„ 
Qn) + (Qn + (Qn\hk\Qm) , 

by looking at the cases of m < n and m = n, respectively.] 
F r o m these relat ions one immediately derives the L a x -

like formula 
n—1 n+k dv(k) 

Im 
l=m+l ^'Q l=m-k 

or, in mat r ix form, 

where Ry (k) = -y £ if m > n 

y)nk if m<n 

(4.158) 

(4.159) 

(4.160) 

[I remind the reader tha t usual ly the R-matrix acts on a 
function 

+oo 

n=—oo 

according to the rule 

Rf(h) = ^2fnhn-^2fnhn 

n^l n<l 

with some 'level' /.] These y^ are no t symmetr ic matr ices , bu t 
one can also rewri te all the formulas above in t e rms of 
symmetr ic ones: 

(*) (m\hk\n) 
C ^ ^ Q x V [ \ ^ n - ^ m ) ] y [ 

(m\m)(n\n) 
(4.161) 

F r o m E q n s (4.158) one can easily deduce Toda -equa t ions 
for </>„: 

8 2 0 n 8 (n\hl\n) 
dtkdtt dtk (n\n) 

= ( E - E 
m>n m<n 

{n\hk\m){m\hl\n} 

(m\m)(n\n) 
(4.162) 

where the r .h.s . can be expressed in te rms of Rm, where 
Rm= exp ( 0 m - ( / ) m _ i ) . In par t icular , 

'- Rn+l — Rn 

: exp((/> n + 1 - 4>n) - exp(</>„ - $ n _ x ) . (4.163) 
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Let me also ment ion tha t in this formalism the W i s 
(Virasoro constra ints) follow essentially from the relat ion 

^ktkh'-1 , (4.164) 
k>0 dh dh 

where the Hermi t ean conjugat ion is with respect to the scalar 
p roduc t ( | ) . F o r example, this relat ion implies, tha t 

Qn 
dh dh 

Qn)-^2kth(Qn\hk-l\Qn) . (4.165) 
k>0 

N o w note tha t dQJdh is a po lynomia l of degree n - l , t hus 
(Qn\dQn/dh) = 0. In fact, 

k>0 

Also, recall tha t 

i=0 dt, k-i 

(Qn\hk-[\Qn) = (Qn\Qn) 
dtk-] 

to obta in : 

J2kt> 
k>0 

36, 
dtk-\ 

= 0 (4.166) 

for any n. This should be supplemented by the re la t ion 
d4>n/dto = 4>n. In order to get the lowest Virasoro const ra int 
( s t r ing e q u a t i o n ) , L-\ZN= 0 or L -\\nZN = 0, it is 
enough just to sum over n from 0 to N - 1 . 

F o r m o r e details abou t the 1-matrix model , Toda-cha in 
hierarchy, and appl icat ion of the formalism of o r thogona l 
po lynomia ls in this context , see [26]. 

5 . Continuum limits of discrete matrix models 
5.1 What is the continuum limit? 
The con t inuum limit of mat r ix models is, of course, the 
crucial issue for their phsycial appl icat ion whenever these 
models are interpreted as discrete (lattice) approx ima t ions to 
con t inuum theory. The very first th ing to be kept in mind is 
tha t it is not the only possible view on mat r ix models . Ano the r 
app roach considers them as describing topological (and thus 
also in a certain sense 'discrete ') proper t ies of the theory. 
Such models , when appear ing in the field of, say, q u a n t u m 
gravity (which after all is a sort of pu re topological theory) do 
not require any con t inuum limit to be taken: their discrete 
na tu re (occurrence of integer-valued ma t r ix indices) reflects 
not the discrete approx ima t ion to the spacetime (which does 
no t really exist in q u a n t u m gravity), bu t ra ther the essential 
discreteness of the under ly ing s tructures: the topo logy of the 
modu le spaces of geometries. Examples of ma t r ix models 
which al low for this kind of in terpre ta t ion — in te rms of the 
t o p o l o g y o f m o d u l e spaces of b u n d l e s over R i e m a n n 
surfaces — are provided by Kontsevich models , and this is 
why they usual ly do no t require any con t inuum limit and why 
t h e y w e r e ca l led ' c o n t i n u o u s m a t r i x m o d e l s ' in t h e 
in t roduct ion . The models which are usual ly interpreted in a 
m o r e t rad i t iona l way — as lattice theories — are represented 
by our 'discrete ' models , the 1-matrix, convent ional , and 
' conformal ' mul t imat r ix models being included in this class. 
M o r e s o p h i s t i c a t e d e x a m p l e s a r e p r o v i d e d b y 'c = 1' 
theories , the K a z a k o v - M i g d a l model , and, say, Wilson ' s 
q u a n t u m c h r o m o d y n a m i c s ( Q C D ) (and infinitely m a n y 
other lattice theories) . It is no t surprising tha t the con t inuum 

l imits of some discre te m o d e l s p r o v i d e theor i e s of t he 
Kontsevich type: this h a p p e n s whenever con t inuum theory 
is supposed to have a kind of topological na tu re . This is 
usual ly the case for q u a n t u m gravity (which, as I said, is 
conceptual ly a topological theory in the 'module space of 
geometr ies ' , the no t ion of which is a l ready m a d e m o r e or less 
explicit in the 2d case), bu t in principle this can also be t rue 
for m a n y other theories , including the exhaust ive q u a n t u m 
theory of Y a n g - M i l l s ( Y M ) fields (again there is a l ready 
considerable progress in this direction, as far as the 2d Y M 
mode l is concerned) . There should no t be confusion abou t 
the presence of gauge part icles in d imensions greater t han 2 
(for Y M ) and 3 (for gravity): there is no reason to prevent 
generic topo log ica l t heo ry from possess ing a c o n t i n u u m 
spectrum of excitat ions, t h rough an explicit ana logue of the 
Kontsevich- l ike description of such s i tuat ions has not yet 
been found (as I have ment ioned m a n y t imes, it should 
p robab ly rely u p o n noneigenvalue models) . 

I shall no t discuss the nontr iv ia l h is tory of invention and 
unde r s t and ing of all these no t ions (the crucial steps being the 
discovery of the 'mult iscaling con t inuum limits [19, 20], 
which preserve the integrable s t ructure of the discrete 
models in the con t inuum case; and the hypothesis of the 
equivalence of q u a n t u m and topological 2d gravities [9] and 
its p r o o f [23, 24], provided by discovery of Kontsevich 
models [22] as a peculiar and powerful too l for descript ion 
of the topo logy of the modu le spaces). Ins tead, following the 
main theme of these notes , I shall concent ra te on the intrinsic 
relat ion between (multi-scaling) con t inuum limits and 
integrabili ty: the no t ion of con t inuum limits is, in fact, built 
into the theory of integrable hierarchies and the under ly ing 
representa t ion theory of K a c - M o o d y algebras. 

In the case of the eigenvalue models the central issue here 
is the interrelat ion between Toda- la t t ice and K a d o m t s e v -
Petviasvili (KP) hierarchies, even its m o r e n a r r o w aspect: 
el imination of the zero-t ime N, present in the Toda- la t t ice 
case. In te rms of representa t ion theory (or conformal field 
theory, which is essentially the same) the zero-t ime (which 
labels the filling level of the D i r ac sea in the fermionic picture) 
is associated with the zero-modes of a scalar field and its 
el imination is just the change of b o u n d a r y condi t ions , which 
eliminates zero-modes . The simplest example of this 
' twis t ing 'procedure is just the t rans format ion from per iodic 
to ant iper iodic scalars — it still preserves the possibili ty of a a 
fermionic descript ion (where it looks like a switch from the 
R a m o n d to the N e v e u - S c h w a r z sector), and thus does no t 
t ake us out of the field of convent ional integrable hierarchies. 
In representa t ion theory one can interpret the same opera t ion 
simply as a switch from the h o m o g e n e o u s to the pr incipal 
representa t ion (associated with the Toda- la t t ice and K P 
hierarchies respectively). 

This r emarkab ly simple descript ion is, of course, far from 
obvious if one investigates the con t inuum limit in a naive 
way, wi thout t ak ing integrable s t ructure into account 
explicitly, bu t jus t sending the number of degrees of freedom 
in the discrete theory (i.e. the mat r ix size N) to infinity 
( together with the inverse lattice spacing, if any). See the 
classical review [18] for a discussion of the naive con t inuum 
limits in lattice gauge theories, i.e. the condi t ions for 
ob ta in ing the second-order phase transitions, which allows for 
a continuum-like scaling behaviour in the vicinity of the 
critical point , with critical exponents defining all the 
con t inuum physics, from the q u a n t u m dimension of the 
spacetime to the spectrum of particles. The prob lem with 
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naive con t inuum limits is tha t they can easily destroy the 
integrable s t ructure of the theory (the under lying hidden 
symmetries), unless special precaut ion is taken: the critical 
point (which is in fact a low-codimensional hypersurface in the 
infinite-dimensional space of parameters ) should be 
approached from certain directions, so tha t the W a r d 
identities (Wis) are not explicitly b roken . 

As soon as one considers W i s one is a l ready into the field 
of integrable systems and the issue can be discussed inside this 
field. The above-ment ioned switch from periodic to 
ant iper iodic fields is, of course, apparen t if the discrete and 
con t inuous Virasoro const ra ints [represented by formulas 
(1.2) and (1.3)] are compared , bu t this is a posteriori 
informat ion, because so far I have interpreted ' con t inuous 
Virasoro cons t ra in t s ' as the W i s for the V = X 3 Kontsevich 
model , and it still remains to be explained why the 
Kontsevich mode l is indeed wha t arises after the con t inuum 
limit is taken. The simplest app roach to this p rob lem is to 
m a k e use of the identi ty between the discrete 1-matrix mode l 
and the gaussian Kontsevich mode l [56], established in 
Section 3.8. Then the X 3 mode l arises in the large-Af limit, 
just when the mat r ix integral is evaluated by the steepest-
descent me thod [36]. I shall present this simple calculat ion in 
Section 5.4, bu t before tha t , I t ake a somewhat m o r e direct 
(and complicated) app roach in order to reveal at least some 
of ideas under ly ing the entire theory of con t inuum limits. 

5.2 From the Toda-chain to the Korteveg de Vries equation 
I begin with the simplest existing example: the con t inuum 
l imi t , in w h i c h t h e lowes t e q u a t i o n of t h e ' V o l t e r r a 
hierarchy ' , 

= -Rn(fin+\ - Rn-l) •> (5-1) 

t u rns into the lowest Kor teveg de Vries (KdV) equat ion: 

8r 
= _ I r " ' -2rr' 

dT3

 3 
(5.2) 

The Vol terra h ierarchy is a reduct ion of the Toda-cha in 
hierarchy, with Rn = exp (</>„-4>n-i), arising when all the 
o d d - t i m e s t2k + i = 0 a n d all (f>n a r e s u p p o s e d to b e 
independent of them. M o r e precisely, 

90» = 0 
?odd=0 

Therefore, this h ierarchy is clearly related to the discrete 1-
mat r ix model . I shall tu rn to the s tudy of the 1-matrix mode l 
in the next subsection, bu t here I address the t rans format ion 
from E q n s (5.1) to (5.2) [26, 103]. 

The basic idea of t ak ing the con t inuum limit is to change 
the discrete 'zero- t ime ' n for the continuum var iable x (to be 
subst i tuted by T\ of the con t inuous hierarchy) . In other 
words , the idea is to consider a subset of functions Rm 

which satisfy the Vol terra equat ion and depend on n very 
smoothly , so tha t they can actually be subst i tuted by a 
smooth function R(x). This is a very na tu ra l th ing to do , of 
course, when one is interested in the large-n limit of the 
equat ion . Namely , one replaces Eqn (5.1) by 

dR(x) 

This is a very interest ing equat ion (see [104] for a descript ion 
of the amus ing aspects of the related theory, which is in fact 
int imately related to the theory of jets). However , it is much 
simpler than the K d V equat ion (for example, it is completely 
integrable in the mos t trivial sense of the word : the entire set 
of so lu t ions satisfying any b o u n d a r y cond i t i ons can be 
wri t ten down immediately, see [104]). The K d V equat ion 
can be considered as a sort of ' quan t i sa t ion ' of E q n (5.4) 
( un fo r tuna t e ly th is very in te res t ing subject h a s no t yet 
a t t rac ted enough a t tent ion and has no t been studied well 
enough) . 

Remarkab ly , the Ba teman equat ion is no t the only 
possible limit of the Vol terra equat ion: a fine-tuning 
p rocedure [ 'double-scaling (d.s) l imit '] exists, which can 
provide a less trivial — K d V — equat ion [103]. Indeed, 
suppose tha t in the con t inuum limit Rn t ends to a cons tant 
Ro, and the function r(x) arises only as a scaling 
approx ima t ion to this constant : R(x) = Ro[\ + ssr(x)]. 
Then, the leading term on the r .h.s. of E q n (5.4) is 
sRR '(*) = -2ssr(x)[\ + 0 ( e 2 , £*)], and instead of E q n (5.4) 
we would get 

8r 
8; 

= -2sR0r'(x)[\ + 0 ( e 2 , e * ) ] . (5.5) 

This equa t ion is even simpler t h a n E q n (5.4) — it is jus t 
linear, bu t in fact it is too simple to preserve its form: by a 
simple change of va r i ab le s , ! 

(5.6) 

(5.7) 

x = x — 2sRot , 

7= s3R0t , 

it can be t ransformed into 

%=s-20(s2,ss), 
dt y J 

and te rms on the r .h.s . also deserve to be taken into account . 
Then we get 

^ = -2fiK 0 [ l + esr(x)][r'(x) + ±fiV"(x) + 0 ( e 4 ) ] 

= -2sR0[r\x) + ±eV"(jc) + esrr'(x) + e 2 0 ( e 2 , £*)], 

and, after the change of variables (5.7), 

^- |2 = -lr'"(x) -2ss-2rr\Pj + 0 ( e 2 , e * ) . 

It is n o w clear tha t the choice s = 2 is to be preferred 
(a critical point ) , and at this po in t we get 

(5.8) 

-R(x)[R(x -\-s) -R(x - e)] (5.3) 

8r 1 8 r 9r 
8 7 ^ ~ ~3DF]~ r 8 7 V 

where new no ta t ion , T\ and T3, is in t roduced for x and t, 
respectively. This is a l ready the K d V Eqn (5.2), so we reach 
the following conclusion. 

While the naive con t inuum limit of the Vol terra equat ion 
is just a simple Ba t eman equat ion , the scaling limit can be fine 
tuned so tha t the K d V equat ion arises instead. The crucial 
ingredient of this adjustment is the change of t ime-variables, 
{t} -> {T}, which involves a singular pa ramete r e. The 
p rocedure can be easily generalised to the entire Vol terra 

and takes the limit e -> 0, which, after rescaling x -> ex, gives 
rise to the 'Ba teman equa t ion ' (or ' H o p f equa t ion ' ) , 

dR(x) 
-R(x)Rf(x) (5.4) 

f T h i s c h a n g e o f v a r i a b l e s is i m p l i e d b y t h e r e l a t i o n : 

+ 2ssRl 

dx ) 8f ~ dx J dx dt 
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hierarchy, and fine tun ing allows one to get the entire K d V 
hierarchy in the limit of s -> 0. Uusal ly , t r ans format ion to the 
' K a z a k o v var iables ' {T } (they are a little different from those 
originally in t roduced by K a z a k o v [19]) from {t} is some 
linear triangular t r ans format ion . 

A n impor t an t detail is tha t this p rocedure requires 
restriction to only even t ime-variables tim-, m ^ 0. (If odd 
t imes are also involved, a pair of K d V hierarchies arises in the 
con t inuum limit — this is no t a 'min imal ' case.) T h u s 
' i r reducible ' real isat ion of the con t inuum limit requires a 
reduction of the original hierarchy. This can also be seen from 
the fact tha t the lowest K d V equat ion arises from the lowest 
Vol terra equat ion , which is related to the second equa t ion of 
the Toda-cha in hierarchy. 

Unfor tuna te ly , this simple piece of theory (con t inuum 
limits in te rms of hierarchies) has never been worked out in 
full detail (for the entire Toda- la t t ice hierarchy, its mul t i -
componen t general isat ions and their reduct ions) . As a l ready 
ment ioned , this theory will involve the general relat ion 
between h o m o g e n e o u s and pr incipal representa t ions of the 
(level k = 1) K a c - M o o d y algebras. 

5.3 Double-scaling limit of the 1-matrix model 
N o w I proceed to a discussion of a slightly different app roach 
to con t inuum limits, which is directly suited to the needs of 
mat r ix models . The naive idea [20, 29] is to forget abou t 
integrabil i ty and just look at the W i s (Virasoro const ra in ts in 
the 1-matrix case) and t ake a c o n t i n u u m limit of these 
ident i t ies . Th i s a p p r o a c h m a k e s close con tac t wi th t he 
s t andard technique o f ' l o o p equa t ions ' ( M a k e e n k o - M i g d a l 
equa t ions [105]) in the theory of mat r ix models , of which 
Virasoro and W-const ra in ts are just par t icular example s . ! 

However , careful analysis of the con t inuum limit of 
discrete Virasoro const ra in ts [28] makes it clear tha t the 
p ro-cedure is far less simple t han one might have t hough t 
(usually, der ivat ions are no t very careful and details are 
'swept under the carpet ' ) . The crucial p rob lem is tha t wha t 
is needed is a peculiar (double scaling) limit ra ther t han a 
naive limit, and, as ment ioned in the previous subsection, this 
also requires a certain reduc-t ion (elimination of the o d d -
times t i m + i)- If par i ty symmetry (with respect to the change 
of H -> — H in the original mat r ix integral) is t aken into 
account , one can easily t h r o w away first derivatives with 
respect to the odd- t imes t 2 m + I , jus t because 

8Z/V 

dt2 m+l 
= o, 

t2k+l = 0 

bu t this is no longer t rue as far as the second derivatives 

2m+ldt2l-l t 2 k + l = 0 ' 8; 

are concerned, which appear in (the ' q u a n t u m p o r t i o n ' of) 
the Virasoro const ra in ts (1.2). It is a highly nontr iv ia l feature 
of loop e q u a t i o n s (hav ing its or igin in their in tegrab le 

f O n e o f t h e p u z z l e s in t h e t h e o r y o f n o n e i g e n v a l u e m o d e l s is t o i den t i f y 
t h e g r o u p t h e o r e t i c a l m e a n i n g o f g e n e r i c l o o p e q u a t i o n s : t h e y a r e u s u a l l y 
i n t r o d u c e d a s e q u a t i o n s o f m o t i o n r a t h e r t h a n a s W i s (see t h e d i s c u s s i o n 
a t t h e b e g i n n i n g o f S e c t i o n 2) , a n d t h u s t h e i r i m p l i c a t i o n s a r e a m o r e 
o b s c u r e a n d t e c h n i c a l m e a n s t o d e a l w i t h t h e m a n d a r e m u c h m o r e 
r e s t r i c t e d . W h e n a g r o u p - t h e o r e t i c a l d e s c r i p t i o n h a s b e e n f o u n d , it w i l l 
v e r y s o o n r e v e a l t h e ( g e n e r a l i s e d ) i n t e g r a b l e s t r u c t u r e o f n o n e i g e n v a l u e 
m o d e l s a n d it wi l l b e a b i g s t ep f o r w a r d in t h e w h o l e t h e o r y . 

s tructure!) tha t in the con t inuum limit these te rms can in fact 
b e carefu l ly e l i m i n a t e d . T h e t h i n g is t h a t t h e s econd 
derivatives of \nZN appear to be local objects, in the sense 
t h a t t h e y d e p e n d o n l y on w i t h t h e d i f ference 
\N — N | ^ m + /, which does not b l o w up as N -> oo in 
con t inuum limit. Moreover , the differences 

8 2 l n Z / v 8 2 l n Z / v 
8; 2m+l 9*2 Z- dt2mdt: 21 

almost tend to zero, leaving some simple ( though vitally 
i m p o r t a n t ) c o r r e c t i o n to t h e a r i s i n g c o n t i n u o u s l o o p 
equat ions . This locality p rope r ty allows one to get rid of 
these dangerous odd- t ime derivatives, subst i tut ing them by 
second derivatives with respect to the even-times. Since such 
a s u b s t i t u t i o n is p o s s i b l e o n l y for logarithms o f ZN, 
con t inuous const ra ints appear imposed on the square root 
of the original par t i t ion function [or on the (l//?)-th power in 
t h e case of t h e (p-l)-component c o n f o r m a l m o d e l s ] . 
A n o t h e r aspect of th is t r ick to deal wi th the o d d - t i m e 
derivatives is tha t it makes the entire der ivat ion dependent 
on the fact t h a t the t h e o r y is in tegrab le — this is w h a t 
guarantees the above-ment ioned locality. Since the way to 
r evea l i n t eg rab i l i t y , b y l o o k i n g at t h e l oop e q u a t i o n s 
themselves , is n o t yet very well u n d e r s t o o d , t he who le 
calculat ion becomes no t quite self-contained (but of course, 
if everything is k n o w n abou t integrable s t ructure this is not a 
real d rawback , just a l imitat ion of the par t icular app roach 
s tar t ing from the loop equat ions) . In par t icular , this is the 
only loophole which is still no t filled in the descript ion of the 
c o n t i n u u m limit of conformal (mul t i - componen t ) ma t r ix 
models , which in all o ther respects goes t h rough exactly in 
paral lel with the 1-component (1-matrix) case.} 

I shall n o w describe briefly the steps of this calculat ion for 
the 1-matrix model , referring for all the details to [28 and 45]. 
The previous discussion al ready conta ins mot iva t ions for the 
main steps, so I do not need to go into detailed explana- t ions . 
Man ipu l a t i ons below, involving K a z a k o v variables can look 
a little artificial, bu t I repeat tha t they can be interpreted as a 
switch from the Toda- type to the KP- type hierarchies, which, 
was a l ready seen in the previous subsection, is na tura l ly 
associated with the double-scal ing con t inuum limit. 

I start from the discrete Virasoro const ra ints (1.2), 
rewri t ten in te rms of a generat ing functional ( 'stress t ensor ' 
on the spectral p lane) : 

L_(z)ZN = 0 

where 

L _ ( z ) = £ L„z — 

(5.9) 

(5.10) 

and 

J i t t r a n s f o r m s d i s c r e t e W - c o n s t r a i n t s i n t o c o n t i n u u m ^ - c o n s t r a i n t s , 
w h i c h , in t h e i r t u r n , a r i s e f r o m t h e g e n e r a l i s e d K o n t s e v i c h m o d e l ( G K M ) 
w i t h t h e a p p r o p r i a t e p o t e n t i a l [30, 55] . U n f o r t u n a t e l y , s i nce t h e G K M 
i n t e r p r e t a t i o n o f discrete m u l t i c o m p o n e n t m o d e l s ( l ike t h e o n e e x i s t i n g in 
t h e 1 -ma t r i x c a s e , see S e c t i o n 3.8) is a s ye t u n k n o w n , t h e d i r e c t w a y t o 
t a k e t h e i r c o n t i n u u m l imi t — l ike t h e o n e t o b e d e s c r i b e d in t h e n e x t 
s u b s e c t i o n for t h e 1 -ma t r i x c a s e — is a l so a s ye t u n a v a i l a b l e . F o r m o r e 
d e t a i l s a b o u t c o n f o r m a l m a t r i x m o d e l s , t h e i r i n t e g r a b l e s t r u c t u r e , a n d 
c o n t i n u u m l im i t s , see [39]. 
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n=—oo 

l 
4>{z) 

J-k = 

•=NZN 

E ^ - ^ E -
k>0 

k dtk 

V2 
ktk, k > 0 , 

(5.11) 

Next , one needs to reduce the original par t i t ion function: 

Z/v{*} —> Z ^ d {*even} = ^/v{*odd = 0, *even} • (5.12) 

All odd Virasoro genera tors , L 2 n + 1 , act trivially on Z ^ d , since 

a z ^ = o 

and it is necessary to consider only L2n. I n t roduce a l s o | 
-2k 

k>0 
k dt2k 

L - d ( z ) = i [ e r d ( z ) ] 2 , 

J2n = £ ^ e w ; + £ 
k>0 k=0 

dt2kdti 
(5.13) 

N o w there are two issues to be discussed separately. The 
first is the change from t2k to K a z a k o v variables, T2m + \. The 
second is the difference between the const ra in ts imposed on 
Z r e d a n d Z . 

The simplest way to describe K a z a k o v variables is to 
in t roduce one m o r e — ant iper iodic — scalar field: 

k ^ 0 k ^ 0 k + 2 oT2k+i 

H e r e t and T are related by the t rans format ion 

T2k+\ — T2k+\ + 8 
k 

k + \ 
r 2k-\ '*,o 

(5.14) 

(5.15) 

Now impose the relation 

6 « / , r e d ( z ) = i [ / - 1 6 $ ( „ ) [ / 

7, 2 = 1 + £ 2 M , (5.16) 

and in the con t inuum limit s is assumed to vanish. This is a 
r e l a t i o n w h i c h m a p s h o m o g e n e o u s in to p r i n c i p a l 
representa t ions , bu t its invar iant mean ing (especially from 
the poin t of view of C F T ) does no t seem to be well-enough 
u n d e r s t o o d . A n y h o w , these re la t ions establish a re la t ion 
between £even and T. Namely , compar ing the coefficients in 
front of the posit ive powers of u on b o t h sides of this equat ion , 
one obta ins 

f N o t e t h a t (/>red(z) ^ 0 ( z ) | , o d d = o a n d s i m i l a r l y L\f(z) ^ L 2 n \ t o M = 0 , s o m e 
f a c t o r s o f 2 in E q n s (5 .13) b e i n g r e s p o n s i b l e for t h i s d i s c r e p a n c y . I n fac t , 
L r e d a r e r e l a t e d t o g e n e r a t o r s o f t h e V i r a s o r o c o n s t r a i n t s in t h e complex-
matrix m o d e l [28], 

d M exp £ f M T r ( M M t ) * 

gm = mt2m, m ^ 1; # 0 = . (5.17) 

The inverse t rans format ion looks as follows 

g m - 2 E ( - ! ) £ 2 * + i ( , + ! ) • ( 5 - 1 8 ) 

N o w , 

9f2i 2 ^ ( f c - m - l ) ! r ( m + | ) 8 7 ' 2 m + 1 ' 

and, us ing the formula when compar ing the negative powers 
of w, one finds tha t 

U = exp I ^ A m n f 2 m + i f 2 n + i J , 

A _ 2 ( - i ) m + " r(m + f)r(»+§) 
£2(m+«+l) m l „J ( m _|_ „ _|_ J ) ( m _|_ „ _|_ 2) 

(5.20) 

The square of relat ion (5.16) is 

(Wei)\z)=±U-l(d<P)2(u)U 

E ^ 
red -2p-2 
2p z 

p>0 

This equali ty implies tha t 

u - l c 2 n u = a 4 J 2 L 2 p i 

n+l 

(5.21) 

. (5.22) 

un+ldu 
r2P+2 

-e-2"52(-lY+1-pC>n+lL<2f, (5.23) 
p=0 

M " + 1 dw 1 un+1du 

, z 2 p + 2 " L (1 + e 2

M y + 1 ~ £2" (n +l-p)\T(-n ~ 1) 

( - 1 ) ' 
n+p+l ( » + l ) ! _ ( - ! > n+l—/? 

82 n ^ ( n + l - p ) ! 8: .2n «+l ' 

Expl ic i t exp res s ions for t h e g e n e r a t o r s £ 2 n [which a re 
ha rmonics of the stress tensor kd(P)2 (u) of the ant iper iodic 
field $(u)]9 are 

k>l Ol2(k-l)+l * 

C0= $ ^ ( ^ + 3 ) r 2 J k + i 
k ^ o 2£+l 

C 2 n = Y s ( k + li)T-2k+\ 

k^0 K j l 2(k+n)+l 

n-l ~>2 
a n d , in t h e c o n t i n u m m l imi t , Z ^ < l ^ v 8 

+ i E 
( - i r 

4f^df2k+ldT2{n_k_l)+l 16e2" 
, n > 0 . 

(5.24) 
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So far, all tha t has been done is to change the variables, and 
all the relat ions were exact for any e; no limits were taken . 

Ope ra to r s (5.24) are very similar to £ 2 , 1 , arising in the 
' con t inuous Virasoro cons t ra in t s ' (1.3), imposed on the 
par t i t ion function of the X 3 -Kon t sev ich model . There are, 
however , two^ i sc repanc ies . 

Firs t , d/dT instead of d/dT appears in (5.24). One^can 
argue tha t this difference is no t really essential, since T2k+\ 
and T2k+\ differ by te rms which are p r o p o r t i o n a l to s2 and 
thus vanish in the con t inuum limit e-> 0. [Note, however, 
tha t this reasoning can be applied only for each par t icular 
const ra int L2nZ = 0 (n ^ — 1) no t to the entire generat ing 
functional, where different te rms are summed, multiplied by 
different powers of £.] 

The second discrepancy is a little m o r e serious: it is the 
occurrence of an extra te rm ( — \)n+ l/\6s2n for all n ^ 0 [this 
difference is present for n = 0 as well, because £0 conta ins 
the coefficient ^ , which is lacking in (5.24)]. This extra te rm 
cannot be eliminated jus t by tak ing the con t inuum limit; 
moreover , it b lows up instead of vanishing when e -> 0. 
R e m a r k a b l y enough, this te rm disappears when considering 
ac tual Virasoro constra ints , no t just a formal choice of t ime 
variables. It cancels completely with the other po ten t ia l 
source of p rob lems for the derivat ion of con t inuum W i s . I 
proceed n o w to this, the most sophist icated mat te r in this 
whole subsection. 

The poin t is tha t , as ment ioned before, the reduct ion of 
the discrete Virasoro constra int L2nZ^ = 0 conta ins some 
nonvanish ing te rms with odd- t ime derivatives: 

£ 2 f o 
k>0 

2k dt 2k+2n + 2 S 
k=0 

' red 

" 2 

\k=0 

n-l 

dt2kdt2i 
- £ 

k=0 
dt2k+idt2n-2k-\ 

' red 

(5.25) 

A n extra term with second even-time derivatives has been 
added to b o t h sides of the identi ty in order to get on the r .h.s. 
a combina t ion which has a chance to vanish in the con t inuum 
limit. [This formula still needs to be corrected, see Eqn (5.29) 
below.] 

In order to find a r igorous reason for el iminating the 
te rms on the r .h.s . I need to address the explicit formulas 
from Section 4.10 (no simpler way is k n o w n so far). The 
crucial formula needed is 

62</>n _ 6 (n\hl\n) 
dtkdti dtk (n I n) £ - £ 

m>n m<n 

(n\hk \m)(m\hl \n) 
(m\m)(n\n) 

(5.26) 

and the most impor t an t feature of it is its R-matrix s t ructure 
(the fact tha t a difference occurs on the r.h.s.) . This s t ructure 
implies an almost complete cancellat ion of te rms when one 
sums over n in order to get l n Z ^ = Y^~l 0n» leaving only a 
finite sum of the length independent ofN: 

d2 l n Z ^ 
dtkdti = E £ 

0<j '<min(£, / ) \n=N-j 

{n\hk\n+j){n+j\h'\n) 
(n\n)(n+j\n+j) 

(5.27) 

The finite sum on the r .h.s . can be expressed in te rms of 
Rn= exp (4>n — 4>n-i), and conta ins exactly the quant i t ies to 
satisfy the equat ions of the Vol terra hierarchy and tending to 

a constant (denoted by Ro in the previous section) in the 
con t inuum limit. The locality p rope r ty — the finiteness of the 
sum on the r .h.s . of E q n (5.26) — implies tha t the r .h.s . tends 
to a cons t an t va lue as N -> 00. Th is cons t an t does no t 
completely cancel in the difference 

E 
k=0 

dtitdt; 2kOt2n-2k £ 
k=0 

dt2k+idt2n-2k-i 
I n Z red (5.28) 

and the remain ing cont r ibu t ions appear to be exactly those 
necessary to cancel the dangerous term (— 1)" + V 1 6 s 2 n which 
appeared in the difference between Cn and Cn. See [28] for 
m o r e details on these cancellat ions, and the only th ing to 
discuss in the rest of this subsection is the difference between 
the r .h.s . of (5.25) and (5.28). In the second expression the 
second derivatives are taken of ln Z , while they are of z itself 
in the first one. Of course, 

d2 l n Z ^ e d 

dt2k+idt2n-2k-i 

1 fi2y red 
U ^ N 

Z - d dP 2k+lVl2n-2k-l ?odd = 0 

bu t this is not t rue for even derivatives. So identi ty (5.25) still 
needs to be t ransformed a little m o r e in order to conta in 
exactly E q n (5.26) on its r .h.s . If this is achieved, the l.h.s. 
acquires an addi t iona l cont r ibu t ion and tu rns into 

£2^ p\y red n 

2 * ^ — + 2^ 8; 2k+2n k=0 

fY-y red 
) u ^ N 

dt2kdt2n-2k 

1 
7 red 
^ N 

P\y red p\y red 
U Z , N U Z , N 

d2k dt2n-2k 

red (5.29) 

As a result of all this reasoning it is possible to conclude 
tha t the double-scal ing con t inuum limit of the reduced 
1-matrix can be described by the following relat ion: 

lim 
d.s. £—>0, iV—>oo 

^ Z ^ { t e v e n } = U-1Zv=,x,{T}, (5.30) 

where the factor U is defined in Eqn (5.20), the relat ion 
between the t and T variables is given by E q n (5.17), and 
Z v = i x i {T } is the X 3 -Kon t sev ich model . The mot iva t ion for 
this conclusion is tha t b o t h sides of the equat ion satisfy the 
same con t inuous Virasoro const ra ints E q n (1.3). 

This whole derivation can be straightforwardly generalised 
to the case of the multiscaling limit in conformal matr ix models 
and the analogous relation contains roo ts of the pth degree, see 
Ref. 39 for a detailed discussion. 

5.4 From the gaussian to the X 3 -Kontsevich model 
I shall n o w a b a n d o n these complicated mat te r s and give a 
simple i l lustrat ion of h o w things can work , if expressed in 
adequa te terms. Namely , as an al ternat ive to the sophist i 
cated p rocedure involving an explicit switch to K a z a k o v 
var iab les and the s tudy of the l imits of the W i s ( loop 
equat ions) , I shall use jus t the equivalence of the discrete 
1-matrix mode l and gaussian Kontsevich model , p roved in 
Section 3.8, in order to take the con t inuum limit just of this 
simplest Kontsevich model . This p rocedure , suggested in [36] 
appears to be a kind of s tandard evaluat ion of the integral in 
the large-Af limit b y t he s teepes t -descent m e t h o d . It is 
impor t an t here tha t the G K M is not sensitive to the size n of 
the mat r ix in the Kontsevich integral; therefore, this limit, 
when expressed in te rms of the G K M , has no th ing to do with 
the infinitely large matr ices . 
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The relat ion to be proved be low is 

lim T {v} -^{v} (5.31) 

where V(X)= \X2-N\nX and V(X) = ± X 3 . 
Very naively, wha t h a p p e n s as N -> oo is tha t in the 

Kontsevich integral , 

j d X e x p t r ( - ± X 2 + N]nX + AX) 

a s ta t ionary poin t arises at X = Xo, such tha t 

X 0 = ^ - + A . 

(5.32) 

(5.33) 

E x p a n s i o n of this ac t ion in p o w e r s of X = y~l(X-X0) 
comes entirely from the logar i thmic expression 

y2 ~2 
•S0=jX2-N In 1 + 

X 
T0 

•y- i . N \ ~ 2 TT^N X 
(5.34) 

In the con t inuum limit, y should be adjusted in such a way 
tha t the quadra t i c te rm is finite, i.e. y ~ (1 + NIX Q ) ~ 1 / 2 . N O W , 
if T4 remains finite as A/" -> oo, Xo ~ V^V, y ~ 1 and all the 
t e rms wi th k ^ 3 in the sum are d a m p e d as ykNX^k ~ 
Nl~k/2. This is the naive con t inuum limit. However , it is 
c lear , t h a t o n e can u s u a l l y ask A to b e h a v e m o r e 
adequate ly — blow up together with the growth of N — and 
fine tune the way in which it tends to infinity so tha t in the end 
the first te rm with k = 3 also survives. F o r this pu rpose A, 
and thus Xo, should scale in such a way, tha t b o t h quant i t ies 
y 2 ( l + NIX Q) and Ny3 jX \ remain finite. This requi rement in 
the case of the latter expression means tha t y « X§N ~1/3 and 
then 

2 / 1 N ,N+Xl 
N2/3 

This is never finite, unless N + X 2 , -> 0 as A" -> O O . This in 
tu rn implies tha t X0 w iy/N and A -> 2Xo w 2iV^V should be 
pu re imaginary. One can also check tha t the te rms with k > 3 
in the sum in E q n (5.34) all tend to zero in this specific limit. 
Thus , we are left with a mode l which has only cubic and 
quadra t i c t e rms in the act ion. By a simple shift of variables, 
the quadra t i c te rm can be changed to a linear one and we get a 
descript ion of the theory in the vicinity of the s ta t ionary poin t 
in te rms of an X 3 -Kon t sev ich model . 

In pract ice things are a little m o r e complicated because 
reduct ion to even-times should also be taken into account . 
However , this does no t add too m a n y new prob lems . W e 
need tha t only even t imes, t2k = ( l / 2 £ ) t r (l/A2k), r emain 
nonvanish ing , while all the odd t imes, 

hk+\ — 
l 

t r -
l 

2k + l A2k+ 
= 0 

This obviously implies tha t the mat r ix A should be of block 
form: 

M 
0 

0 
-M (5.35) 

a n d , t he r e fo re , t h e m a t r i x i n t e g r a t i o n v a r i a b l e is also 
na tura l ly decomposed into block form: 

'X Z] 
z y • x (5.36) 

Then 

{V=±X2-N\nX} dXdyd2Z , 

det xy -zx-zy exp[-tr{ |Z| : 

+\x2+\y2-Mx+My}] (5.37) 

To take the limit N -> oo, one should assume a certain scaling 
b e h a v i o u r for X, y a n d Z. M o r e o v e r , p r e v i o u s na ive 
considerat ion gave us some feeling of wha t the fine-tuned 
scaling behaviour can look like. So I t ake 

X = yQfiI + x) , y = y(-ipi + y) 

M = y~l(iocI + m) , (5.38) 

with some large real pa rame te r s a, and y. If expressed 
th rough these variables, the act ion becomes: 

tr \z\2 + \x2 + \y2- mx + My 

-Ann xy z-zy :y 2 tr[i(i /?/+*) 2 

+ l t r ( i j 8 / - y ) 2 + |z | 2 ] - t r ( i a / + m ) ( 2 i / ? / + j t - y ) 

•|2 

-Wtr lnOSyV l -y xy 

P2 
i + o 

= (2ap-p2y2 2N\nfiy) t r / - 2 i j S t r m (A) 

a + ^ - ) ( t r x •try)+5 

+ ( V + S ) t r | C | 2 

iN 
-tr mx + tr my H—'-rtr(x 3 

3/f 

+ o 
TV 

+ o |C| 

^ ) ( t r x 2 + t r y 2 ) 
P ) (B) 

(C) 

(D) 

(E) 

(5.39) 

W e want to adjust the scaling behaviour of a, and y in such 
a way tha t only the te rms in line (D) survive. This goal is 
achieved in several steps. 

Line (A) describes the normal i sa t ion of the functional 
integral , and does no t contain x and y. Thus , it is no t of 
interest to us at the m o m e n t . 

Two te rms in line (B) are eliminated by adjustment of a 
and y: 

y = 
N 

J2 

2N 

T (5.40) 

As we shall see soon, y2 = N/fi2 is large in the limit of 
N -> oo. Thus , the term (C) implies tha t the f luctuat ions of 
the £-field are severely suppressed, and this is wha t makes the 
te rms of the second type in the line (E) negligible. M o r e 
generally, this is the reason for the integral Z ^ to split into a 
p roduc t of two independent integrals leading to the square of 
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the par t i t ion function in the limit N -> oo [this splitting is 
evident as, if Z can be neglected, the only mixing term 

tu rns into ln Xy = ln X + ln y ]. 
Thus , we remain with a single free pa ramete r which can 

be adjusted so tha t 

— —> const as Af —> oo (5.41) 

(i.e. N!/3, y2 ~ N ! / 3 , a ~ A " 2 / 3 ) , mak ing the te rms in the 
last line (E) vanishing and the thi rd te rm in line (D) finite. 

This proves the s ta tement E q n (5.31) in a ra ther s t raight
forward way. Unfor tuna te ly no general isat ion of this p r o 
cedure for other discrete models has so far been found, the 
main p rob lem being identification of G K M - t y p e realisation 
of other (for example, conformal) discrete mat r ix models . 

6. Conclusion 
I have come to the end of my brief review of the facts tha t are 
current ly k n o w n abou t the relat ion between mat r ix models 
and integrable hierarchies. There are still several topics which 
are discussed in the l i terature bu t are no t presented in these 
notes . 

F irst, I did no t discuss the relat ion between mat r ix models 
and theories of topological ( L a n d a u - G i n z b u r g ) activity 
( L G G ) . This field has been developing rapidly in recent 
m o n t h s and will soon be ready for inclusion in reviews of 
this k ind. This list of things which are sufficiently clarified 
includes the realisation of the W a r d identities in the form of 
' recursion re la t ions ' for topological gravity [9]. Also, the rela
tion between quasiclassical hierarchies, arising in the spherical 
approx imat ion to topological theories [96], to the integrable 
s t ructure of the generalised Kontsevich mode l is more or less 
unders tood [40]. Of special impor tance is the chapter on this 
theory, which provides a mat r ix-model description of modu le 
spaces associated with R i e m a n n surfaces [22, 106]. W h a t sill 
deserves better unders tand ing is the acionatic construct ion of 
topological gravity, similar to the remarkab ly simple con
struction of topological LG models (before they are coupled 
to 2d gravity) in te rms of the Gro thendieck residues and chiral 
r ings [107] : see [108] for a very nice presenta t ion of the latter 
case, and [17] for the first big steps towards a similar 
construct ion in the former case. Also, the relation to the 
theory of nonconformal L G models [109], deserves clarifica
t ion. A piece which is essentially lacking so far is the clear 
description of minimal (p, g)-models coupled to 2d gravity in 
the case ofp^ 1. In this si tuation the generalised Kontsevich 
mode l is k n o w n to describe no th ing more t han duali ty 
t ransformat ion between (p, q) and (q,p) models [41], ra ther 
than the models themselves. This subject is also connected 
with the theory of the K a c - S c h w a r z opera tor [110]. The 
work in this direction is extremely impor tan t for the 
unders tand ing of the unification of var ious string models 
and of the essential symmetries of future string field theory (in 
part icular, generic B R S T and Ba ta l in -Vi lkov i sky symmetries 
are very close analogues of the complete sets of the W a r d 
identities, as described in the general f ramework in the 
beginning of Section 2). All these things would const i tute a 
na tu ra l next section to these notes , bu t I chose to wait a little 
longer unti l further clarification is achieved in this fragment 
of the theory. 

Second, I did no t touch at all the physical in terpre ta t ions 
of mat r ix models , which include q u a n t u m gravity. Y a n g -
Mills theory, and m a n y other possible appl icat ions . This 
should be a subject of a very different review, for which the 
whole content of these notes is just a list of techniques 
involved in the s tudy of physical p h e n o m e n a . 

Third , the biggest terra incognita in this b ranch of science, 
which remained beyond the scope of these notes , is the theory 
of noneigenvalue mat r ix models , which are related to 
physical theories in spacetime dimensions d ^ 2. It is indeed 
a terra incognita, at least from the poin t of view of the 
semir igorous analysis which I am reviewing. The recent 
b r e a k t h r o u g h in this field is due to the appearance of the 
K a z a k o v - M i g d a l mode l [25] (see also the latest review [111] 
and references therein) , which for the first t ime creates the 
possibili ty to t reat a wide class of noneigenvalue models by 
the extra m e t h o d s of localisation theory (other names for this 
field, which in fact is developing into the generic theory of 
integra-bili ty, are the D u i s t e r m a a t - H e c k m a n theorem or 
Four ie r analysis on group manifolds) . W o r k in this direction 
is, however , only at the early stages and this is why I decided 
no t to present the first nonsystemat ised results in these notes . 
A pa r t of it which is very close to being satisfactorily 
unde r s tood is the ' b o u n d a r y m o d e l ' of the c = 1 str ing 
{'d = 2 di la ton g r a v i t y ' ) — a very impor t an t one from the 
poin t of view of general string theory. F or the present state of 
knowledge abou t this mode l see [112], and its relat ion to 
integrabil i ty theory is par t ly revealed in [41, 113]. 

In the doma in which was actually reviewed, the weakest 
po in t s are the theory of con t inuum limits and tha t of the 
mul t icomponent hierarchies. These theories, when developed, 
can also help to move in the most impor tan t direction, 
ment ion m a n y times above: t owards the creation of a m o r e 
general theory of integrability. The next na tu ra l step, when 
approached form this side, should be generalisation of the 
convent ional integrable hierarchies, which would life the 
restriction to level k = 1 simply-laced K a c - M o o d y 
algebras and un i ta ry representat ions . The emerging theory 
will, of course, have much to do with bo th localisation theory 
and noneigenvalue mat r ix models , and when it is created we 
shall find ourselves at a new level of unders tanding , which will 
be one step closer to the goal of construct ing the entire 
bui lding of string theory (mathemat ica l physics) and will 
p robab ly provide us with an unexpected new means for 
investigating the features of the real physical world a round us. 
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