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This note is devoted to the role played by the boundary conditions in the macroscopic theory
of superconductivity. For "usual" superconductors one uses the boundary condition
which does not contain any kind of a constant characterizing the superconductor. But in the
general case the boundary condition involves a certain length Л (the extrapolation
length). Taking into account of a more general boundary condition may turn out to be
significant for high-temperature superconductors in which the coherence length is small.

The present note is of a methodological nature and is
devoted to the role played by the boundary conditions of a
general form in the macroscopic theory of superconductiv-
ity. The choice of such conditions is important in the so-
lution of specific problems—particularly in the case of
HTSC (high temperature superconductors).

Within the framework of the well-known macroscopic
theory of superconductivity we shall base ourselves on the
following expression for the volume free energy of the
system:1"3
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where Fn0 is the free energy of the normal state, В is the
magnetic induction, В=curl A, e is the charge of the elec-
tron, с is the velocity of light, fi is the quantum constant
and m* is a certain mass which one can regard as the mass
of the free electron [the point is that the value of the coef-
ficient denoted in (1) by l/4/и*, can be chosen arbitrarily
in connection with the fact that the magnitude of | * |2 is
not fixed4]; obviously, in (1) we restrict ourselves to the
isotropic case—otherwise the mass tensor with the princi-
pal values mf is involved (see, for example, Ref. 3). Fur-
ther, in (1) a and b are coefficients where b does not de-
pend on Т and

T-T,
a=a (2)

where Tc is the critical temperature of the superconducting
transition. The equilibrium value of the macroscopic wave
function Ф corresponds to the minimum of Ft and is ob-
tained by solving the system of equations:
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where j is the density of the superconducting current (we
assume that the normal current is absent). The boundary
conditions for the system of equations (3) reduce to the
condition of continuity of all the components of the mag-
netic induction vector В at the boundary of the supercon-
ductor and to a certain boundary condition for the func-
tion Ч*. We shall now undertake the discussion of this latter
condition. A number of publications is naturally devoted to
the solution of equations (3) using boundary conditions;
these questions are discussed also in monographs (see
Refs. 4, 5).

In the majority of cases, just as was done from the
outset,1 the boundary conditions
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was used where the subscripts, both here and subsequently,
denotes that the value of the quantities is taken on the
surface of the superconductor, and n is the vector of the
external normal to the surface.

Condition (4) was obtained in Ref. 1, one can say,
automatically from the requirement of looking for the min-
imum of the variation of the energy Ft with a not fixed
value of Ф on the boundary. In the more general approach
condition (4) is obtained below. At the same time, in the
macroscopic theory of superfluidity of liquid helium the
boundary condition6 Ф8 = 0 was justified and used. Thus,
the question arises of the general form of the boundary
condition, which, as far as we know, began to be discussed
in Ref. 4. Such a more general condition (sometimes called
the mixed boundary condition) has the form:
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where Л is the phenomenological coefficient with the di-
mensionality of length, sometimes called the extrapolation
length. Condition (5) can be obtained on the basis of dif-
ferent considerations, among them taking into account that
this most general condition guaranteeing the vanishing of
the component of the current density normal to the bound-
ary, i.e., the equation (nj)=0. For us, however, the deri-
vation of condition (5) on the basis of the same phenom-
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enological considerations from which equations (3) were
obtained is preferable. In this spirit one should add to the
functional (1) the surface contribution

(6)

where Fs n is the surface contribution to the free energy for
the normal state, and the density of the superconducting
free energy is represented in the form of an expansion in
powers of Ф8 of the order parameter on the boundary of the
sample. The conditions of applicability of the expansion
(6) apparently coincide with the conditions of the appli-
cability of the expansion (1), while such a method itself of
taking into account the surface contribution was proposed
in Ref. 7, and see also Refs. 3, 8, and 9.

The coefficient 7 in (6) can be expressed in terms of
the difference in the values of the coefficient a [see (2)] on
the surface and in the bulk of the superconductor, or,
which is the same thing, in terms of the difference Tc— Tcs

of the values of the temperature of the superconducting
transition in the bulk of the superconductor Tc and in a
certain near-surface layer Гс>8 which is of thickness of the
order of the lattice constant /:

7=- (7)

Condition (5) is obtained if one varies with respect to Ф*
the total free energy Ft+Fs [see (1) and (6)] as the re-
quirement for the vanishing of the factor multiplying
This is accompanied by

Л =
4m*y'

(8)

Some time ago one also considered the derivation of the
boundary condition (5) from the microscopic theory of
superconductivity (Refs. 10-13) in the same limiting case

Tr-T

6(Т) is the London penetration depth, £(0) is the coher-
ence length at T=0 denned below [see (10)] in which the
equations (3) themselves are valid (Ref. 14). It was shown
that Л is determined by the properties of the material ad-
jacent to the superconductor. For a boundary with a di-
electric in the case of specular reflection of electrons from
the boundary,10 Л tends to infinity and the boundary con-
dition (4) holds. For a superconductor-normal metal
boundary it was shown11 that Л~£(0). In this case, Л
may vary in a wide range depending on the parameters of
the normal metal. In ordinary (not high-temperature) su-
perconductors the coherence length £(0) is quite signifi-
cant and this provides the possibility of using the boundary
condition (4), as is usually done. Indeed, according to (7)
and (8) we have

Л=
4т*а/(Гс-Гс>8) 1(TC-TC>S)'

since in the theory of Ref. 1 (see Ref. 3)

(9)

4m*a
(10)

4m*a '

If the length £(0) is large (roughly speaking, significantly
greater than /), then Л>£(0), and also the following con-
dition can be satisfied

Л>£(Г). (На)

Generally speaking, d4f/dz~ty/E, and therefore under the
condition ( l la) the expression (5) goes over into (4).

In contrast, if

( l ib)

(12)

then the condition (5) takes on the form

In high-temperature superconductors, as is well known
(see, for example, Ref. 15), the coherence length £(0) is
small. Therefore the necessity of using condition (12) is
possible or, in any case, one should use the general bound-
ary condition (5) and not the condition (4).

In principle, negative values of the coefficients у and Л
are possible, and then the boundary facilitates the appear-
ance of superconductivity. This case, apparently, is real-
ized at the boundaries of twins in tin.16

The boundary conditions considered above change
their form in the case of the boundary of an anisotropic
superconductor [see, for example, Ref. 3, where the anisot-
ropy of effective masses is taken into account and also
equations (3) are written in differential-difference form for
layered superconductors]. Boundary conditions for aniso-
tropic superconductors were specifically examined in Ref.
17, where it was shown that for the boundary
superconductor-dielectric у differs from zero, both for dif-
fuse reflection from the boundary and also for the aniso-
tropic superconductor with an arbitrary orientation of the
boundary (for an isotropic superconductor in the case of
specular reflection as has already been shown, 7=0).

Let us study now a chain of problems in which the
consideration of more general boundary conditions (5) can
be essential for the results being obtained. In doing so, we
go over using a standard method to new units, which en-
able us to free ourselves from the majority of the constants
in equations (3). The new quantities are denoted by primes
which subsequently are omitted. Thus,

where 4?0 is the equilibrium value of Ф in a homogeneous
superconductor without a magnetic field. Further we have

A . m*c2b
A' = 82(T) = —

(14)

where Hc is the thermodynamic critical field. Finally
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Then equations (3) are brought to the form:

(15)

(16)

(17a)

хг curl curl A= —-

(17b)

where x=8(T)/g(T) and the boundary condition (5) is

1
= Л (18)

The critical temperature (in the absence of a field) of
a thin film of thickness d in the case of the general bound-
ary condition was examined in Ref. 12, see also Refs. 18,
19. We also note Refs. 20-22, in which for the analysis of
experimental data on HTSC the solution was used with the
limiting variant of (12) for the boundary condition.

The direction perpendicular to the plane of the film is
denoted by z with the film occupying the region 0<z<cf.
Then equation (17a) has the form

(19)
23Its solution is expressed in terms of the elliptic sine

1/2

(20)

where k is the modulus determined from the transcenden-
tal equation which follows from (18);

+

(21)

К is the complete elliptic integral of the first kind

/Чг/2 йф

K=K(k)= JQ d^gfcZ^l/Z-

Equation (21) defines A: as an implicit function of d and Л
and also of the temperature T [since d and Л are expressed
in the units of (15)]; it can be brought to the form

d . £ . ... sin(n*)
e'"^'

23

(22)

-rrd
x=-
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jT*
К' is the elliptic integral of the additional modulus
/t' = (l-^)1/2.

The disappearance of superconductivity in the film [ap-
pearance of the solution of (20) with a zero amplitude]

corresponds to the temperature T*(d,A) at which k be-
comes zero. In order to determine T* in the zero-order
approximation one can omit the second term in the right-
hand side of (22) and to obtain in the limiting cases

(23a)

(23b)= т i--1 г \ * dA

where d and Л are now shown in unreduced units.
The equation T*(d,A) = T determines the critical

thickness dc(T) of the film;6'12 as the thickness d is de-
creased at a given temperature T the temperature of the
transition falls and at d=dc(T) the superconductivity in
the film vanishes; this is accompanied by Ф(г)=0, which
corresponds to k=0 and the elliplic sine becomes snx
= sinx. Consequently from the boundary condition (18)
we obtain

(24)

In the limiting case (lla), which corresponds to the usu-
ally employed boundary condition (4), it is evident that
dc(T)=0, i.e., superconductivity of the film within the
framework of the macroscopic theory always exists. In the
opposite limiting case ( l ib) which corresponds to the
boundary condition (12), we have

(this formula is the one that was obtained in Ref. 6 for
liquid helium).

In Ref. 18 a calculation was made also of the discon-
tinuity of the heat capacity of the film at the moment of the
transition at T = T*(d,A) for an arbitrary value of d/A

ДС=§ДС0Х-

sm u

t/

1+-
sin и 2

1+-COS2 -3'
(25)

where ДС0 is the discontinuity in the heat capacity in a
massive superconductor and the parameter и
= 2d/$(T*), ?(TC)=#TC and /4m*a(Tc

— T*(d,A)). For и—2(d/A)1/2 < 1 the suppression of su-
perconductivity at the boundary of the film is relatively not
very great, ДС=ДС0. In the opposite limiting case A<gd
the parameter u = tr and the discontinuity in the specific
heat capacity amounts to (2/3)ДС0.

In Ref. 18 a discussion was given also of the magnetic
susceptibility of thin films near T* in a weak field parallel
to the surface of the film. In particular, on the assumption
that *:> 1 and that the magnetic field is so weak that it does
not affect in the zero-order approximation the amplitude Ф
the following formula for the susceptibility was obtained:

1 d2

48тгб2(Г?)
<p(u)

T*-T

TP-T*'
(26)
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where

3 sin и 3cosM

I 1.5+cos2-

<р(и)=-

Thus, in the case d ~ £(Г*) > £(0), Л one can
expect some differences of the thermodynamic quantities in
the field near the superconducting transition from the
usual ones.

The form of the boundary condition also exerts a con-
siderable influence on the solution of the problem concern-
ing the appearance of a superconducting nucleus near the
surface of the superconductor as the magnetic field is de-
creased. As was shown in Ref. 24 (see also Ref. 4) in the
case of the boundary condition (4) in a field parallel to the
surface of the sample surface superconductivity arises at a
field intensity H<,Hc3zz\.7Hc2. Taking into account a more
general boundary condition or, what is the same, an addi-
tional surface energy (6) changes the conditions for the
formation of superconducting nuclei. As has been shown in
Ref. 13 as y— oo (i.e., Л-»0) the field Hc3->Hc2, i.e., sur-
face superconductivity is suppressed. The converse situa-
tion, generally speaking, can be expected for negative j,
however, it is not very clear how one can create the free
surface characterized by such a phenomenological param-
eter.

Above we considered the order parameter (the func-
tion Т to be a complex scalar, i.e., we had in mind the
so-called ^-pairing. One must remember, however, that also
a more general pairing is possible, for which the order
parameter is the function Ф of a more complex form (see,
for example, Ref. 25). Naturally, the problem of boundary
conditions exists also in the case of a more general pairing
and must be solved taking into account the nature of the
order parameter.

In a number of cases it turns out to be necessary to
calculate the fluctuations of the different quantities and, in
particular, the fluctuation corrections to the heat capacity
(see, for example, Ref. 3; as is well known, the role played
by the fluctuations is particularly great for high-
temperature superconductors). In solving the correspond-
ing problems one should utilize definite boundary condi-
tions for Ф. This set of problems, as far as we know, has
not yet been investigated. Apparently, taking into account
a more general boundary condition is needed for the inter-

pretation of experiments on the diffraction of low-energy
electrons on the surface. The same can, generally speaking,
be said concerning the analysis of the role played by the
boundary conditions that appears to be very necessary
from the point of view of the interpretation of some other
experiments with high-temperature superconductors. This
is in fact the explanation of our attention to the problem of
boundary conditions raised in the present note.
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