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In a number of problems of quantum mechanics, par-
ticularly in problems of quantum chemistry, the problem
arises of calculating matrix elements of a physics quantity
f between states which can be described quasiclassically.
(For simplicity we shall have in mind a one dimensional
case and consider that / is simply a function of the coor-
dinates f(x).)

This problem is in actual fact more difficult than might
appear from first glance. The point is that in the case of a
sufficiently large difference between the energies of the ini-
tial and the final states the matrix element turns out to be
exponentially small. And the quasiclassical wave functions
in the classically accessible region are not small and the
exponential smallness of the integral arises as a result of
rapid oscillations of the integrand. In such a case even a
relatively small difference of the quasiclassical wave func-
tions from the exact ones can lead to a large error in the
matrix element. And, furthermore, a significant contribu-
tion to the integral is made by the region near the classical
turning point, where the asymptotic quasiclassical expres-
sion of the wave function is inapplicable.

The situation turns out to be relatively simple in the
case that the energy of the initial and final states are suf-
ficiently close that in accordance with the general principle
of correspondence between classical and quantum mechan-
ics the matrix element turns out to be equal to the Fourier
component with respect to time of the corresponding clas-
sical quantity f [ x ( t ) ] with the frequency equal to the
"transition frequency":

/12- J /[*(')] exp(-/u>2i')d/,

(1)

In this case the difference between the energies can still be
sufficiently great that the Fourier component (and conse-
quently also the matrix element) would be exponentially
small.

In this case the Fourier component can be estimated by
shifting the contour of integration with respect to the time
into the upper half-plane of the complex variable t. (Here
and subsequently we assume for the sake of definiteness
that E2 > El). Such a shift is restricted by the necessity of
going around singularities. As a result the matrix element
can be estimated with exponential accuracy as1

where tc is the singular point of the integrand (1) closest to
the real axis. In order to estimate the integral with respect
to its modulus it is sufficient of course, to know the imag-
inary part tc, |/12| ~exp(—u)21 Im tc).

If, as often occurs, the function f(x) has no singular-
ities, the singularities of the above expression are deter-
mined by the singularities of the potential energy U(x).
Then tc represents "complex time", during which the par-
ticle reaches the singularity xc of the potential energy:

т

2(E-U(x))

1/2 dx
(3)

/12~exp(-m>21fc), (2)

here v(x) is the velocity of the particle; and for E in the
formula one can take either one of the two close values E2

or E!.
The case is typical when xc occurs for real values of x,

but in the classically forbidden region. (In such a case for
the lower limit of integration x0 one can take any arbi-
trarily chosen point in the classically allowed region; the
imaginary part of the integral obviously does not depend
on this choice.) Then the estimate (2), (3) requires an
analytic continuation of the potential energy into this re-
gion. This procedure may turn out to be quite unpleasant
in numerical calculations, if, for example, the potential en-
ergy is also specified numerically. Usually, however, there
is no need of an analytic continuation. The modern numer-
ical methods of Fourier-analysis enable one to calculate the
integral (1) directly with the required accuracy without
employing a preliminary analytical continuation of expres-
sion (1) with the aid of (2). (Of course, in such a case one
requires a sufficiently accurate specification of the potential
{/(*).) On the other hand in accordance with (2) the
dependence of the integral (1) on co2\ must be exponential.
Having found this dependence over a sufficiently wide in-
terval of variation of <a2i we can make the obtained values
of/12 fit formula (2) and thus to determine the complex
time tc as a function of E. One can say that by a sufficiently
accurate calculation of the integral (1) we in fact con-
structed the required analytical continuation to complex
values of time. We emphasize in connection with this the
trivial, but important circumstance, that for finding tc(E)
by this method it is necessary to know the potential energy
U(x) only in the classically allowed (at the energy E)
range of values of the coordinates.

We now note that the limiting formula (2) for the
matrix element is valid under the conditions:
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E2, (4)

Relinquishing the lefthand inequality dramatically compli-
cates the problem since now the calculation of the matrix
element no longer reduces to the calculation of the Fourier
component.

The object of this note consists of showing that in re-
taining the righthand inequality, i.e., under the conditions
when the matrix element is exponentially small, in order to
estimate it with an exponential accuracy it is sufficient to
calculate the Fourier component of the classical quantity
in the range of energies between E{ and E2.

2'3

The problem of estimating /12 under such conditions
was solved in general form by Landau in 1932,4 but a
sufficiently detailed derivation of the result was published
only in "Quantum Mechanics" by Landau and Lifshitz; see
Ref. 5, §51. A sufficiently complete justification of Land-
au's result leads to interesting mathematical problems.
Some of them are discussed in Ref. 6.

The expression obtained by Landau for the matrix el-
ement has the form

/12|~exp --Im

(5)

We note that the matrix element (5) is broken up into a
product of two factors. One of them is exponentially great,
and the other is exponentially small. But the product as a
whole is exponentially small. (The square roots in the for-
bidden region must be interpreted as being positive.)

Expression (5) can be written in the form:

/i2l~exp -llm

(6)

where S(Xc,xQ,E) is the abbreviated action calculated
along the classical trajectory with energy E joining the
points x0 and xc. Since the point xc lies in the classically
forbidden region the time corresponding to motion along
such trajectories turns out to be complex.

Expression (6) has a simple physical interpretation as
the transition from the state 1 to the state 2 through the
point xc at which in view of the infinity of the potential
energy U the difference between the energies E2 and E\ is
not significant, so that the classical transition becomes pos-
sible. A similar expression can also be written for the sys-
tem with several degrees of freedom, although the justifi-
cation of such a formal expression requires in each specific
case additional arguments.

The central point for the present note is the remark
that the time of motion between the end points of the
trajectory is equal to the derivative of the abbreviated ac-
tion with respect to energy (see Ref. 7, §44, equation
(44,11)). This assertion is valid, naturally, also for motion
with "complex time" in the classically inaccessible region.
Thus,

dS(xc,x0,E)

ЭЕ (7)

Integrating this equation with respect to the energy from
E2, we obtain

ГJE,
tc(E)dE=S(xc,x0,E2)-S(xc,x0,El),

i.e., just the expression defining the exponent of the expo-
nential function in (6). This enables one finally to rewrite
the quasiclassical matrix component in the Landau ap-
proximation as

tc(E)dE (8)

Formula (8) solves, in principle, the problem posed by
us to express the matrix element in the Landau approxi-
mation in terms of the classical Fourier component, since
the quantity tc can be defined in accordance with (2) if one
knows the dependence of these components on frequency.
The method opens up a conventional procedure of a nu-
merical determination of the Landau matrix element since,
as we have already said, the modern programs of numeri-
cal calculations enable one to calculate the Fourier com-
ponent with a high accuracy. And the integration with
respect to energy in (8) does not present any difficulty.
When the difference E2—El is small the expression (8)
goes over in a natural manner into (2).

Formula (8) defines the matrix element with exponen-
tial accuracy. As regards the factor preceding the exponen-
tial, in view of its weak dependence on the frequency of the
transition it can be taken equal to the value which it has for
the Fourier component for the "average" energy
(E2+E,)/2.

We also note the following: from what has been said
above one can easily see that the matrix element in the
Landau approximation together with the corresponding
Fourier components depends only on the values of the po-
tential in the classically allowed (for the greater energy E2)
region. The matrix element is not altered if we change the
behavior of the potential in the forbidden region. (In such
a case the potential, of course, will become nonanalytic.)
This, however, can be understood also from the Landau
derivation, since he uses the analytic continuation of the
potential from the allowed region into the forbidden one
(and not the potential itself in the forbidden region).

One of the authors (L.P.) is grateful to the Israel
Technological Institute whose hospitality made possible
the writing of Reference 3 and of the present note.
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